[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / LiveInterval.cpp
blobc81540602f59b36b67ae2758c08c6d1e726b5c0e
1 //===- LiveInterval.cpp - Live Interval Representation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveRange and LiveInterval classes. Given some
10 // numbering of each the machine instructions an interval [i, j) is said to be a
11 // live range for register v if there is no instruction with number j' >= j
12 // such that v is live at j' and there is no instruction with number i' < i such
13 // that v is live at i'. In this implementation ranges can have holes,
14 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each
15 // individual segment is represented as an instance of LiveRange::Segment,
16 // and the whole range is represented as an instance of LiveRange.
18 //===----------------------------------------------------------------------===//
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "LiveRangeUtils.h"
22 #include "RegisterCoalescer.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/CodeGen/LiveIntervals.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SlotIndexes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/Config/llvm-config.h"
36 #include "llvm/MC/LaneBitmask.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstddef>
43 #include <iterator>
44 #include <utility>
46 using namespace llvm;
48 namespace {
50 //===----------------------------------------------------------------------===//
51 // Implementation of various methods necessary for calculation of live ranges.
52 // The implementation of the methods abstracts from the concrete type of the
53 // segment collection.
55 // Implementation of the class follows the Template design pattern. The base
56 // class contains generic algorithms that call collection-specific methods,
57 // which are provided in concrete subclasses. In order to avoid virtual calls
58 // these methods are provided by means of C++ template instantiation.
59 // The base class calls the methods of the subclass through method impl(),
60 // which casts 'this' pointer to the type of the subclass.
62 //===----------------------------------------------------------------------===//
64 template <typename ImplT, typename IteratorT, typename CollectionT>
65 class CalcLiveRangeUtilBase {
66 protected:
67 LiveRange *LR;
69 protected:
70 CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
72 public:
73 using Segment = LiveRange::Segment;
74 using iterator = IteratorT;
76 /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
77 /// value defined at @p Def.
78 /// If @p ForVNI is null, and there is no value defined at @p Def, a new
79 /// value will be allocated using @p VNInfoAllocator.
80 /// If @p ForVNI is null, the return value is the value defined at @p Def,
81 /// either a pre-existing one, or the one newly created.
82 /// If @p ForVNI is not null, then @p Def should be the location where
83 /// @p ForVNI is defined. If the range does not have a value defined at
84 /// @p Def, the value @p ForVNI will be used instead of allocating a new
85 /// one. If the range already has a value defined at @p Def, it must be
86 /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
87 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator,
88 VNInfo *ForVNI) {
89 assert(!Def.isDead() && "Cannot define a value at the dead slot");
90 assert((!ForVNI || ForVNI->def == Def) &&
91 "If ForVNI is specified, it must match Def");
92 iterator I = impl().find(Def);
93 if (I == segments().end()) {
94 VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
95 impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
96 return VNI;
99 Segment *S = segmentAt(I);
100 if (SlotIndex::isSameInstr(Def, S->start)) {
101 assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch");
102 assert(S->valno->def == S->start && "Inconsistent existing value def");
104 // It is possible to have both normal and early-clobber defs of the same
105 // register on an instruction. It doesn't make a lot of sense, but it is
106 // possible to specify in inline assembly.
108 // Just convert everything to early-clobber.
109 Def = std::min(Def, S->start);
110 if (Def != S->start)
111 S->start = S->valno->def = Def;
112 return S->valno;
114 assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
115 VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
116 segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
117 return VNI;
120 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
121 if (segments().empty())
122 return nullptr;
123 iterator I =
124 impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
125 if (I == segments().begin())
126 return nullptr;
127 --I;
128 if (I->end <= StartIdx)
129 return nullptr;
130 if (I->end < Use)
131 extendSegmentEndTo(I, Use);
132 return I->valno;
135 std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
136 SlotIndex StartIdx, SlotIndex Use) {
137 if (segments().empty())
138 return std::make_pair(nullptr, false);
139 SlotIndex BeforeUse = Use.getPrevSlot();
140 iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr));
141 if (I == segments().begin())
142 return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
143 --I;
144 if (I->end <= StartIdx)
145 return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
146 if (I->end < Use) {
147 if (LR->isUndefIn(Undefs, I->end, BeforeUse))
148 return std::make_pair(nullptr, true);
149 extendSegmentEndTo(I, Use);
151 return std::make_pair(I->valno, false);
154 /// This method is used when we want to extend the segment specified
155 /// by I to end at the specified endpoint. To do this, we should
156 /// merge and eliminate all segments that this will overlap
157 /// with. The iterator is not invalidated.
158 void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
159 assert(I != segments().end() && "Not a valid segment!");
160 Segment *S = segmentAt(I);
161 VNInfo *ValNo = I->valno;
163 // Search for the first segment that we can't merge with.
164 iterator MergeTo = std::next(I);
165 for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
166 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
168 // If NewEnd was in the middle of a segment, make sure to get its endpoint.
169 S->end = std::max(NewEnd, std::prev(MergeTo)->end);
171 // If the newly formed segment now touches the segment after it and if they
172 // have the same value number, merge the two segments into one segment.
173 if (MergeTo != segments().end() && MergeTo->start <= I->end &&
174 MergeTo->valno == ValNo) {
175 S->end = MergeTo->end;
176 ++MergeTo;
179 // Erase any dead segments.
180 segments().erase(std::next(I), MergeTo);
183 /// This method is used when we want to extend the segment specified
184 /// by I to start at the specified endpoint. To do this, we should
185 /// merge and eliminate all segments that this will overlap with.
186 iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
187 assert(I != segments().end() && "Not a valid segment!");
188 Segment *S = segmentAt(I);
189 VNInfo *ValNo = I->valno;
191 // Search for the first segment that we can't merge with.
192 iterator MergeTo = I;
193 do {
194 if (MergeTo == segments().begin()) {
195 S->start = NewStart;
196 segments().erase(MergeTo, I);
197 return I;
199 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
200 --MergeTo;
201 } while (NewStart <= MergeTo->start);
203 // If we start in the middle of another segment, just delete a range and
204 // extend that segment.
205 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
206 segmentAt(MergeTo)->end = S->end;
207 } else {
208 // Otherwise, extend the segment right after.
209 ++MergeTo;
210 Segment *MergeToSeg = segmentAt(MergeTo);
211 MergeToSeg->start = NewStart;
212 MergeToSeg->end = S->end;
215 segments().erase(std::next(MergeTo), std::next(I));
216 return MergeTo;
219 iterator addSegment(Segment S) {
220 SlotIndex Start = S.start, End = S.end;
221 iterator I = impl().findInsertPos(S);
223 // If the inserted segment starts in the middle or right at the end of
224 // another segment, just extend that segment to contain the segment of S.
225 if (I != segments().begin()) {
226 iterator B = std::prev(I);
227 if (S.valno == B->valno) {
228 if (B->start <= Start && B->end >= Start) {
229 extendSegmentEndTo(B, End);
230 return B;
232 } else {
233 // Check to make sure that we are not overlapping two live segments with
234 // different valno's.
235 assert(B->end <= Start &&
236 "Cannot overlap two segments with differing ValID's"
237 " (did you def the same reg twice in a MachineInstr?)");
241 // Otherwise, if this segment ends in the middle of, or right next
242 // to, another segment, merge it into that segment.
243 if (I != segments().end()) {
244 if (S.valno == I->valno) {
245 if (I->start <= End) {
246 I = extendSegmentStartTo(I, Start);
248 // If S is a complete superset of a segment, we may need to grow its
249 // endpoint as well.
250 if (End > I->end)
251 extendSegmentEndTo(I, End);
252 return I;
254 } else {
255 // Check to make sure that we are not overlapping two live segments with
256 // different valno's.
257 assert(I->start >= End &&
258 "Cannot overlap two segments with differing ValID's");
262 // Otherwise, this is just a new segment that doesn't interact with
263 // anything.
264 // Insert it.
265 return segments().insert(I, S);
268 private:
269 ImplT &impl() { return *static_cast<ImplT *>(this); }
271 CollectionT &segments() { return impl().segmentsColl(); }
273 Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
276 //===----------------------------------------------------------------------===//
277 // Instantiation of the methods for calculation of live ranges
278 // based on a segment vector.
279 //===----------------------------------------------------------------------===//
281 class CalcLiveRangeUtilVector;
282 using CalcLiveRangeUtilVectorBase =
283 CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
284 LiveRange::Segments>;
286 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
287 public:
288 CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
290 private:
291 friend CalcLiveRangeUtilVectorBase;
293 LiveRange::Segments &segmentsColl() { return LR->segments; }
295 void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
297 iterator find(SlotIndex Pos) { return LR->find(Pos); }
299 iterator findInsertPos(Segment S) { return llvm::upper_bound(*LR, S.start); }
302 //===----------------------------------------------------------------------===//
303 // Instantiation of the methods for calculation of live ranges
304 // based on a segment set.
305 //===----------------------------------------------------------------------===//
307 class CalcLiveRangeUtilSet;
308 using CalcLiveRangeUtilSetBase =
309 CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator,
310 LiveRange::SegmentSet>;
312 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
313 public:
314 CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
316 private:
317 friend CalcLiveRangeUtilSetBase;
319 LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
321 void insertAtEnd(const Segment &S) {
322 LR->segmentSet->insert(LR->segmentSet->end(), S);
325 iterator find(SlotIndex Pos) {
326 iterator I =
327 LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
328 if (I == LR->segmentSet->begin())
329 return I;
330 iterator PrevI = std::prev(I);
331 if (Pos < (*PrevI).end)
332 return PrevI;
333 return I;
336 iterator findInsertPos(Segment S) {
337 iterator I = LR->segmentSet->upper_bound(S);
338 if (I != LR->segmentSet->end() && !(S.start < *I))
339 ++I;
340 return I;
344 } // end anonymous namespace
346 //===----------------------------------------------------------------------===//
347 // LiveRange methods
348 //===----------------------------------------------------------------------===//
350 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
351 return llvm::partition_point(*this,
352 [&](const Segment &X) { return X.end <= Pos; });
355 VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) {
356 // Use the segment set, if it is available.
357 if (segmentSet != nullptr)
358 return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr);
359 // Otherwise use the segment vector.
360 return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr);
363 VNInfo *LiveRange::createDeadDef(VNInfo *VNI) {
364 // Use the segment set, if it is available.
365 if (segmentSet != nullptr)
366 return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI);
367 // Otherwise use the segment vector.
368 return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI);
371 // overlaps - Return true if the intersection of the two live ranges is
372 // not empty.
374 // An example for overlaps():
376 // 0: A = ...
377 // 4: B = ...
378 // 8: C = A + B ;; last use of A
380 // The live ranges should look like:
382 // A = [3, 11)
383 // B = [7, x)
384 // C = [11, y)
386 // A->overlaps(C) should return false since we want to be able to join
387 // A and C.
389 bool LiveRange::overlapsFrom(const LiveRange& other,
390 const_iterator StartPos) const {
391 assert(!empty() && "empty range");
392 const_iterator i = begin();
393 const_iterator ie = end();
394 const_iterator j = StartPos;
395 const_iterator je = other.end();
397 assert((StartPos->start <= i->start || StartPos == other.begin()) &&
398 StartPos != other.end() && "Bogus start position hint!");
400 if (i->start < j->start) {
401 i = std::upper_bound(i, ie, j->start);
402 if (i != begin()) --i;
403 } else if (j->start < i->start) {
404 ++StartPos;
405 if (StartPos != other.end() && StartPos->start <= i->start) {
406 assert(StartPos < other.end() && i < end());
407 j = std::upper_bound(j, je, i->start);
408 if (j != other.begin()) --j;
410 } else {
411 return true;
414 if (j == je) return false;
416 while (i != ie) {
417 if (i->start > j->start) {
418 std::swap(i, j);
419 std::swap(ie, je);
422 if (i->end > j->start)
423 return true;
424 ++i;
427 return false;
430 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
431 const SlotIndexes &Indexes) const {
432 assert(!empty() && "empty range");
433 if (Other.empty())
434 return false;
436 // Use binary searches to find initial positions.
437 const_iterator I = find(Other.beginIndex());
438 const_iterator IE = end();
439 if (I == IE)
440 return false;
441 const_iterator J = Other.find(I->start);
442 const_iterator JE = Other.end();
443 if (J == JE)
444 return false;
446 while (true) {
447 // J has just been advanced to satisfy:
448 assert(J->end > I->start);
449 // Check for an overlap.
450 if (J->start < I->end) {
451 // I and J are overlapping. Find the later start.
452 SlotIndex Def = std::max(I->start, J->start);
453 // Allow the overlap if Def is a coalescable copy.
454 if (Def.isBlock() ||
455 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
456 return true;
458 // Advance the iterator that ends first to check for more overlaps.
459 if (J->end > I->end) {
460 std::swap(I, J);
461 std::swap(IE, JE);
463 // Advance J until J->end > I->start.
465 if (++J == JE)
466 return false;
467 while (J->end <= I->start);
471 /// overlaps - Return true if the live range overlaps an interval specified
472 /// by [Start, End).
473 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
474 assert(Start < End && "Invalid range");
475 const_iterator I = lower_bound(*this, End);
476 return I != begin() && (--I)->end > Start;
479 bool LiveRange::covers(const LiveRange &Other) const {
480 if (empty())
481 return Other.empty();
483 const_iterator I = begin();
484 for (const Segment &O : Other.segments) {
485 I = advanceTo(I, O.start);
486 if (I == end() || I->start > O.start)
487 return false;
489 // Check adjacent live segments and see if we can get behind O.end.
490 while (I->end < O.end) {
491 const_iterator Last = I;
492 // Get next segment and abort if it was not adjacent.
493 ++I;
494 if (I == end() || Last->end != I->start)
495 return false;
498 return true;
501 /// ValNo is dead, remove it. If it is the largest value number, just nuke it
502 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
503 /// it can be nuked later.
504 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
505 if (ValNo->id == getNumValNums()-1) {
506 do {
507 valnos.pop_back();
508 } while (!valnos.empty() && valnos.back()->isUnused());
509 } else {
510 ValNo->markUnused();
514 /// RenumberValues - Renumber all values in order of appearance and delete the
515 /// remaining unused values.
516 void LiveRange::RenumberValues() {
517 SmallPtrSet<VNInfo*, 8> Seen;
518 valnos.clear();
519 for (const Segment &S : segments) {
520 VNInfo *VNI = S.valno;
521 if (!Seen.insert(VNI).second)
522 continue;
523 assert(!VNI->isUnused() && "Unused valno used by live segment");
524 VNI->id = (unsigned)valnos.size();
525 valnos.push_back(VNI);
529 void LiveRange::addSegmentToSet(Segment S) {
530 CalcLiveRangeUtilSet(this).addSegment(S);
533 LiveRange::iterator LiveRange::addSegment(Segment S) {
534 // Use the segment set, if it is available.
535 if (segmentSet != nullptr) {
536 addSegmentToSet(S);
537 return end();
539 // Otherwise use the segment vector.
540 return CalcLiveRangeUtilVector(this).addSegment(S);
543 void LiveRange::append(const Segment S) {
544 // Check that the segment belongs to the back of the list.
545 assert(segments.empty() || segments.back().end <= S.start);
546 segments.push_back(S);
549 std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs,
550 SlotIndex StartIdx, SlotIndex Kill) {
551 // Use the segment set, if it is available.
552 if (segmentSet != nullptr)
553 return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill);
554 // Otherwise use the segment vector.
555 return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill);
558 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
559 // Use the segment set, if it is available.
560 if (segmentSet != nullptr)
561 return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
562 // Otherwise use the segment vector.
563 return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
566 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
567 bool RemoveDeadValNo) {
568 // Find the Segment containing this span.
569 iterator I = find(Start);
571 // No Segment found, so nothing to do.
572 if (I == end())
573 return;
575 assert(I->containsInterval(Start, End)
576 && "Segment is not entirely in range!");
578 // If the span we are removing is at the start of the Segment, adjust it.
579 VNInfo *ValNo = I->valno;
580 if (I->start == Start) {
581 if (I->end == End) {
582 segments.erase(I); // Removed the whole Segment.
584 if (RemoveDeadValNo)
585 removeValNoIfDead(ValNo);
586 } else
587 I->start = End;
588 return;
591 // Otherwise if the span we are removing is at the end of the Segment,
592 // adjust the other way.
593 if (I->end == End) {
594 I->end = Start;
595 return;
598 // Otherwise, we are splitting the Segment into two pieces.
599 SlotIndex OldEnd = I->end;
600 I->end = Start; // Trim the old segment.
602 // Insert the new one.
603 segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
606 LiveRange::iterator LiveRange::removeSegment(iterator I, bool RemoveDeadValNo) {
607 VNInfo *ValNo = I->valno;
608 I = segments.erase(I);
609 if (RemoveDeadValNo)
610 removeValNoIfDead(ValNo);
611 return I;
614 void LiveRange::removeValNoIfDead(VNInfo *ValNo) {
615 if (none_of(*this, [=](const Segment &S) { return S.valno == ValNo; }))
616 markValNoForDeletion(ValNo);
619 /// removeValNo - Remove all the segments defined by the specified value#.
620 /// Also remove the value# from value# list.
621 void LiveRange::removeValNo(VNInfo *ValNo) {
622 if (empty()) return;
623 llvm::erase_if(segments,
624 [ValNo](const Segment &S) { return S.valno == ValNo; });
625 // Now that ValNo is dead, remove it.
626 markValNoForDeletion(ValNo);
629 void LiveRange::join(LiveRange &Other,
630 const int *LHSValNoAssignments,
631 const int *RHSValNoAssignments,
632 SmallVectorImpl<VNInfo *> &NewVNInfo) {
633 verify();
634 Other.verify();
636 // Determine if any of our values are mapped. This is uncommon, so we want
637 // to avoid the range scan if not.
638 bool MustMapCurValNos = false;
639 unsigned NumVals = getNumValNums();
640 unsigned NumNewVals = NewVNInfo.size();
641 for (unsigned i = 0; i != NumVals; ++i) {
642 unsigned LHSValID = LHSValNoAssignments[i];
643 if (i != LHSValID ||
644 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
645 MustMapCurValNos = true;
646 break;
650 // If we have to apply a mapping to our base range assignment, rewrite it now.
651 if (MustMapCurValNos && !empty()) {
652 // Map the first live range.
654 iterator OutIt = begin();
655 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
656 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
657 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
658 assert(nextValNo && "Huh?");
660 // If this live range has the same value # as its immediate predecessor,
661 // and if they are neighbors, remove one Segment. This happens when we
662 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
663 if (OutIt->valno == nextValNo && OutIt->end == I->start) {
664 OutIt->end = I->end;
665 } else {
666 // Didn't merge. Move OutIt to the next segment,
667 ++OutIt;
668 OutIt->valno = nextValNo;
669 if (OutIt != I) {
670 OutIt->start = I->start;
671 OutIt->end = I->end;
675 // If we merge some segments, chop off the end.
676 ++OutIt;
677 segments.erase(OutIt, end());
680 // Rewrite Other values before changing the VNInfo ids.
681 // This can leave Other in an invalid state because we're not coalescing
682 // touching segments that now have identical values. That's OK since Other is
683 // not supposed to be valid after calling join();
684 for (Segment &S : Other.segments)
685 S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
687 // Update val# info. Renumber them and make sure they all belong to this
688 // LiveRange now. Also remove dead val#'s.
689 unsigned NumValNos = 0;
690 for (unsigned i = 0; i < NumNewVals; ++i) {
691 VNInfo *VNI = NewVNInfo[i];
692 if (VNI) {
693 if (NumValNos >= NumVals)
694 valnos.push_back(VNI);
695 else
696 valnos[NumValNos] = VNI;
697 VNI->id = NumValNos++; // Renumber val#.
700 if (NumNewVals < NumVals)
701 valnos.resize(NumNewVals); // shrinkify
703 // Okay, now insert the RHS live segments into the LHS.
704 LiveRangeUpdater Updater(this);
705 for (Segment &S : Other.segments)
706 Updater.add(S);
709 /// Merge all of the segments in RHS into this live range as the specified
710 /// value number. The segments in RHS are allowed to overlap with segments in
711 /// the current range, but only if the overlapping segments have the
712 /// specified value number.
713 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
714 VNInfo *LHSValNo) {
715 LiveRangeUpdater Updater(this);
716 for (const Segment &S : RHS.segments)
717 Updater.add(S.start, S.end, LHSValNo);
720 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
721 /// in RHS into this live range as the specified value number.
722 /// The segments in RHS are allowed to overlap with segments in the
723 /// current range, it will replace the value numbers of the overlaped
724 /// segments with the specified value number.
725 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
726 const VNInfo *RHSValNo,
727 VNInfo *LHSValNo) {
728 LiveRangeUpdater Updater(this);
729 for (const Segment &S : RHS.segments)
730 if (S.valno == RHSValNo)
731 Updater.add(S.start, S.end, LHSValNo);
734 /// MergeValueNumberInto - This method is called when two value nubmers
735 /// are found to be equivalent. This eliminates V1, replacing all
736 /// segments with the V1 value number with the V2 value number. This can
737 /// cause merging of V1/V2 values numbers and compaction of the value space.
738 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
739 assert(V1 != V2 && "Identical value#'s are always equivalent!");
741 // This code actually merges the (numerically) larger value number into the
742 // smaller value number, which is likely to allow us to compactify the value
743 // space. The only thing we have to be careful of is to preserve the
744 // instruction that defines the result value.
746 // Make sure V2 is smaller than V1.
747 if (V1->id < V2->id) {
748 V1->copyFrom(*V2);
749 std::swap(V1, V2);
752 // Merge V1 segments into V2.
753 for (iterator I = begin(); I != end(); ) {
754 iterator S = I++;
755 if (S->valno != V1) continue; // Not a V1 Segment.
757 // Okay, we found a V1 live range. If it had a previous, touching, V2 live
758 // range, extend it.
759 if (S != begin()) {
760 iterator Prev = S-1;
761 if (Prev->valno == V2 && Prev->end == S->start) {
762 Prev->end = S->end;
764 // Erase this live-range.
765 segments.erase(S);
766 I = Prev+1;
767 S = Prev;
771 // Okay, now we have a V1 or V2 live range that is maximally merged forward.
772 // Ensure that it is a V2 live-range.
773 S->valno = V2;
775 // If we can merge it into later V2 segments, do so now. We ignore any
776 // following V1 segments, as they will be merged in subsequent iterations
777 // of the loop.
778 if (I != end()) {
779 if (I->start == S->end && I->valno == V2) {
780 S->end = I->end;
781 segments.erase(I);
782 I = S+1;
787 // Now that V1 is dead, remove it.
788 markValNoForDeletion(V1);
790 return V2;
793 void LiveRange::flushSegmentSet() {
794 assert(segmentSet != nullptr && "segment set must have been created");
795 assert(
796 segments.empty() &&
797 "segment set can be used only initially before switching to the array");
798 segments.append(segmentSet->begin(), segmentSet->end());
799 segmentSet = nullptr;
800 verify();
803 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
804 ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
805 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
807 // If there are no regmask slots, we have nothing to search.
808 if (SlotI == SlotE)
809 return false;
811 // Start our search at the first segment that ends after the first slot.
812 const_iterator SegmentI = find(*SlotI);
813 const_iterator SegmentE = end();
815 // If there are no segments that end after the first slot, we're done.
816 if (SegmentI == SegmentE)
817 return false;
819 // Look for each slot in the live range.
820 for ( ; SlotI != SlotE; ++SlotI) {
821 // Go to the next segment that ends after the current slot.
822 // The slot may be within a hole in the range.
823 SegmentI = advanceTo(SegmentI, *SlotI);
824 if (SegmentI == SegmentE)
825 return false;
827 // If this segment contains the slot, we're done.
828 if (SegmentI->contains(*SlotI))
829 return true;
830 // Otherwise, look for the next slot.
833 // We didn't find a segment containing any of the slots.
834 return false;
837 void LiveInterval::freeSubRange(SubRange *S) {
838 S->~SubRange();
839 // Memory was allocated with BumpPtr allocator and is not freed here.
842 void LiveInterval::removeEmptySubRanges() {
843 SubRange **NextPtr = &SubRanges;
844 SubRange *I = *NextPtr;
845 while (I != nullptr) {
846 if (!I->empty()) {
847 NextPtr = &I->Next;
848 I = *NextPtr;
849 continue;
851 // Skip empty subranges until we find the first nonempty one.
852 do {
853 SubRange *Next = I->Next;
854 freeSubRange(I);
855 I = Next;
856 } while (I != nullptr && I->empty());
857 *NextPtr = I;
861 void LiveInterval::clearSubRanges() {
862 for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
863 Next = I->Next;
864 freeSubRange(I);
866 SubRanges = nullptr;
869 /// For each VNI in \p SR, check whether or not that value defines part
870 /// of the mask describe by \p LaneMask and if not, remove that value
871 /// from \p SR.
872 static void stripValuesNotDefiningMask(unsigned Reg, LiveInterval::SubRange &SR,
873 LaneBitmask LaneMask,
874 const SlotIndexes &Indexes,
875 const TargetRegisterInfo &TRI,
876 unsigned ComposeSubRegIdx) {
877 // Phys reg should not be tracked at subreg level.
878 // Same for noreg (Reg == 0).
879 if (!Register::isVirtualRegister(Reg) || !Reg)
880 return;
881 // Remove the values that don't define those lanes.
882 SmallVector<VNInfo *, 8> ToBeRemoved;
883 for (VNInfo *VNI : SR.valnos) {
884 if (VNI->isUnused())
885 continue;
886 // PHI definitions don't have MI attached, so there is nothing
887 // we can use to strip the VNI.
888 if (VNI->isPHIDef())
889 continue;
890 const MachineInstr *MI = Indexes.getInstructionFromIndex(VNI->def);
891 assert(MI && "Cannot find the definition of a value");
892 bool hasDef = false;
893 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
894 if (!MOI->isReg() || !MOI->isDef())
895 continue;
896 if (MOI->getReg() != Reg)
897 continue;
898 LaneBitmask OrigMask = TRI.getSubRegIndexLaneMask(MOI->getSubReg());
899 LaneBitmask ExpectedDefMask =
900 ComposeSubRegIdx
901 ? TRI.composeSubRegIndexLaneMask(ComposeSubRegIdx, OrigMask)
902 : OrigMask;
903 if ((ExpectedDefMask & LaneMask).none())
904 continue;
905 hasDef = true;
906 break;
909 if (!hasDef)
910 ToBeRemoved.push_back(VNI);
912 for (VNInfo *VNI : ToBeRemoved)
913 SR.removeValNo(VNI);
915 // If the subrange is empty at this point, the MIR is invalid. Do not assert
916 // and let the verifier catch this case.
919 void LiveInterval::refineSubRanges(
920 BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
921 std::function<void(LiveInterval::SubRange &)> Apply,
922 const SlotIndexes &Indexes, const TargetRegisterInfo &TRI,
923 unsigned ComposeSubRegIdx) {
924 LaneBitmask ToApply = LaneMask;
925 for (SubRange &SR : subranges()) {
926 LaneBitmask SRMask = SR.LaneMask;
927 LaneBitmask Matching = SRMask & LaneMask;
928 if (Matching.none())
929 continue;
931 SubRange *MatchingRange;
932 if (SRMask == Matching) {
933 // The subrange fits (it does not cover bits outside \p LaneMask).
934 MatchingRange = &SR;
935 } else {
936 // We have to split the subrange into a matching and non-matching part.
937 // Reduce lanemask of existing lane to non-matching part.
938 SR.LaneMask = SRMask & ~Matching;
939 // Create a new subrange for the matching part
940 MatchingRange = createSubRangeFrom(Allocator, Matching, SR);
941 // Now that the subrange is split in half, make sure we
942 // only keep in the subranges the VNIs that touch the related half.
943 stripValuesNotDefiningMask(reg(), *MatchingRange, Matching, Indexes, TRI,
944 ComposeSubRegIdx);
945 stripValuesNotDefiningMask(reg(), SR, SR.LaneMask, Indexes, TRI,
946 ComposeSubRegIdx);
948 Apply(*MatchingRange);
949 ToApply &= ~Matching;
951 // Create a new subrange if there are uncovered bits left.
952 if (ToApply.any()) {
953 SubRange *NewRange = createSubRange(Allocator, ToApply);
954 Apply(*NewRange);
958 unsigned LiveInterval::getSize() const {
959 unsigned Sum = 0;
960 for (const Segment &S : segments)
961 Sum += S.start.distance(S.end);
962 return Sum;
965 void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
966 LaneBitmask LaneMask,
967 const MachineRegisterInfo &MRI,
968 const SlotIndexes &Indexes) const {
969 assert(reg().isVirtual());
970 LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg());
971 assert((VRegMask & LaneMask).any());
972 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
973 for (const MachineOperand &MO : MRI.def_operands(reg())) {
974 if (!MO.isUndef())
975 continue;
976 unsigned SubReg = MO.getSubReg();
977 assert(SubReg != 0 && "Undef should only be set on subreg defs");
978 LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg);
979 LaneBitmask UndefMask = VRegMask & ~DefMask;
980 if ((UndefMask & LaneMask).any()) {
981 const MachineInstr &MI = *MO.getParent();
982 bool EarlyClobber = MO.isEarlyClobber();
983 SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber);
984 Undefs.push_back(Pos);
989 raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) {
990 return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
993 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
994 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
995 dbgs() << *this << '\n';
997 #endif
999 void LiveRange::print(raw_ostream &OS) const {
1000 if (empty())
1001 OS << "EMPTY";
1002 else {
1003 for (const Segment &S : segments) {
1004 OS << S;
1005 assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
1009 // Print value number info.
1010 if (getNumValNums()) {
1011 OS << ' ';
1012 unsigned vnum = 0;
1013 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
1014 ++i, ++vnum) {
1015 const VNInfo *vni = *i;
1016 if (vnum) OS << ' ';
1017 OS << vnum << '@';
1018 if (vni->isUnused()) {
1019 OS << 'x';
1020 } else {
1021 OS << vni->def;
1022 if (vni->isPHIDef())
1023 OS << "-phi";
1029 void LiveInterval::SubRange::print(raw_ostream &OS) const {
1030 OS << " L" << PrintLaneMask(LaneMask) << ' '
1031 << static_cast<const LiveRange &>(*this);
1034 void LiveInterval::print(raw_ostream &OS) const {
1035 OS << printReg(reg()) << ' ';
1036 super::print(OS);
1037 // Print subranges
1038 for (const SubRange &SR : subranges())
1039 OS << SR;
1040 OS << " weight:" << Weight;
1043 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1044 LLVM_DUMP_METHOD void LiveRange::dump() const {
1045 dbgs() << *this << '\n';
1048 LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const {
1049 dbgs() << *this << '\n';
1052 LLVM_DUMP_METHOD void LiveInterval::dump() const {
1053 dbgs() << *this << '\n';
1055 #endif
1057 #ifndef NDEBUG
1058 void LiveRange::verify() const {
1059 for (const_iterator I = begin(), E = end(); I != E; ++I) {
1060 assert(I->start.isValid());
1061 assert(I->end.isValid());
1062 assert(I->start < I->end);
1063 assert(I->valno != nullptr);
1064 assert(I->valno->id < valnos.size());
1065 assert(I->valno == valnos[I->valno->id]);
1066 if (std::next(I) != E) {
1067 assert(I->end <= std::next(I)->start);
1068 if (I->end == std::next(I)->start)
1069 assert(I->valno != std::next(I)->valno);
1074 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
1075 super::verify();
1077 // Make sure SubRanges are fine and LaneMasks are disjunct.
1078 LaneBitmask Mask;
1079 LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg())
1080 : LaneBitmask::getAll();
1081 for (const SubRange &SR : subranges()) {
1082 // Subrange lanemask should be disjunct to any previous subrange masks.
1083 assert((Mask & SR.LaneMask).none());
1084 Mask |= SR.LaneMask;
1086 // subrange mask should not contained in maximum lane mask for the vreg.
1087 assert((Mask & ~MaxMask).none());
1088 // empty subranges must be removed.
1089 assert(!SR.empty());
1091 SR.verify();
1092 // Main liverange should cover subrange.
1093 assert(covers(SR));
1096 #endif
1098 //===----------------------------------------------------------------------===//
1099 // LiveRangeUpdater class
1100 //===----------------------------------------------------------------------===//
1102 // The LiveRangeUpdater class always maintains these invariants:
1104 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1105 // This is the initial state, and the state created by flush().
1106 // In this state, isDirty() returns false.
1108 // Otherwise, segments are kept in three separate areas:
1110 // 1. [begin; WriteI) at the front of LR.
1111 // 2. [ReadI; end) at the back of LR.
1112 // 3. Spills.
1114 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1115 // - Segments in all three areas are fully ordered and coalesced.
1116 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1117 // - Segments in Spills precede and can't coalesce with segments in area 2.
1118 // - No coalescing is possible between segments in Spills and segments in area
1119 // 1, and there are no overlapping segments.
1121 // The segments in Spills are not ordered with respect to the segments in area
1122 // 1. They need to be merged.
1124 // When they exist, Spills.back().start <= LastStart,
1125 // and WriteI[-1].start <= LastStart.
1127 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1128 void LiveRangeUpdater::print(raw_ostream &OS) const {
1129 if (!isDirty()) {
1130 if (LR)
1131 OS << "Clean updater: " << *LR << '\n';
1132 else
1133 OS << "Null updater.\n";
1134 return;
1136 assert(LR && "Can't have null LR in dirty updater.");
1137 OS << " updater with gap = " << (ReadI - WriteI)
1138 << ", last start = " << LastStart
1139 << ":\n Area 1:";
1140 for (const auto &S : make_range(LR->begin(), WriteI))
1141 OS << ' ' << S;
1142 OS << "\n Spills:";
1143 for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1144 OS << ' ' << Spills[I];
1145 OS << "\n Area 2:";
1146 for (const auto &S : make_range(ReadI, LR->end()))
1147 OS << ' ' << S;
1148 OS << '\n';
1151 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
1152 print(errs());
1154 #endif
1156 // Determine if A and B should be coalesced.
1157 static inline bool coalescable(const LiveRange::Segment &A,
1158 const LiveRange::Segment &B) {
1159 assert(A.start <= B.start && "Unordered live segments.");
1160 if (A.end == B.start)
1161 return A.valno == B.valno;
1162 if (A.end < B.start)
1163 return false;
1164 assert(A.valno == B.valno && "Cannot overlap different values");
1165 return true;
1168 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1169 assert(LR && "Cannot add to a null destination");
1171 // Fall back to the regular add method if the live range
1172 // is using the segment set instead of the segment vector.
1173 if (LR->segmentSet != nullptr) {
1174 LR->addSegmentToSet(Seg);
1175 return;
1178 // Flush the state if Start moves backwards.
1179 if (!LastStart.isValid() || LastStart > Seg.start) {
1180 if (isDirty())
1181 flush();
1182 // This brings us to an uninitialized state. Reinitialize.
1183 assert(Spills.empty() && "Leftover spilled segments");
1184 WriteI = ReadI = LR->begin();
1187 // Remember start for next time.
1188 LastStart = Seg.start;
1190 // Advance ReadI until it ends after Seg.start.
1191 LiveRange::iterator E = LR->end();
1192 if (ReadI != E && ReadI->end <= Seg.start) {
1193 // First try to close the gap between WriteI and ReadI with spills.
1194 if (ReadI != WriteI)
1195 mergeSpills();
1196 // Then advance ReadI.
1197 if (ReadI == WriteI)
1198 ReadI = WriteI = LR->find(Seg.start);
1199 else
1200 while (ReadI != E && ReadI->end <= Seg.start)
1201 *WriteI++ = *ReadI++;
1204 assert(ReadI == E || ReadI->end > Seg.start);
1206 // Check if the ReadI segment begins early.
1207 if (ReadI != E && ReadI->start <= Seg.start) {
1208 assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1209 // Bail if Seg is completely contained in ReadI.
1210 if (ReadI->end >= Seg.end)
1211 return;
1212 // Coalesce into Seg.
1213 Seg.start = ReadI->start;
1214 ++ReadI;
1217 // Coalesce as much as possible from ReadI into Seg.
1218 while (ReadI != E && coalescable(Seg, *ReadI)) {
1219 Seg.end = std::max(Seg.end, ReadI->end);
1220 ++ReadI;
1223 // Try coalescing Spills.back() into Seg.
1224 if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1225 Seg.start = Spills.back().start;
1226 Seg.end = std::max(Spills.back().end, Seg.end);
1227 Spills.pop_back();
1230 // Try coalescing Seg into WriteI[-1].
1231 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1232 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1233 return;
1236 // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1237 if (WriteI != ReadI) {
1238 *WriteI++ = Seg;
1239 return;
1242 // Finally, append to LR or Spills.
1243 if (WriteI == E) {
1244 LR->segments.push_back(Seg);
1245 WriteI = ReadI = LR->end();
1246 } else
1247 Spills.push_back(Seg);
1250 // Merge as many spilled segments as possible into the gap between WriteI
1251 // and ReadI. Advance WriteI to reflect the inserted instructions.
1252 void LiveRangeUpdater::mergeSpills() {
1253 // Perform a backwards merge of Spills and [SpillI;WriteI).
1254 size_t GapSize = ReadI - WriteI;
1255 size_t NumMoved = std::min(Spills.size(), GapSize);
1256 LiveRange::iterator Src = WriteI;
1257 LiveRange::iterator Dst = Src + NumMoved;
1258 LiveRange::iterator SpillSrc = Spills.end();
1259 LiveRange::iterator B = LR->begin();
1261 // This is the new WriteI position after merging spills.
1262 WriteI = Dst;
1264 // Now merge Src and Spills backwards.
1265 while (Src != Dst) {
1266 if (Src != B && Src[-1].start > SpillSrc[-1].start)
1267 *--Dst = *--Src;
1268 else
1269 *--Dst = *--SpillSrc;
1271 assert(NumMoved == size_t(Spills.end() - SpillSrc));
1272 Spills.erase(SpillSrc, Spills.end());
1275 void LiveRangeUpdater::flush() {
1276 if (!isDirty())
1277 return;
1278 // Clear the dirty state.
1279 LastStart = SlotIndex();
1281 assert(LR && "Cannot add to a null destination");
1283 // Nothing to merge?
1284 if (Spills.empty()) {
1285 LR->segments.erase(WriteI, ReadI);
1286 LR->verify();
1287 return;
1290 // Resize the WriteI - ReadI gap to match Spills.
1291 size_t GapSize = ReadI - WriteI;
1292 if (GapSize < Spills.size()) {
1293 // The gap is too small. Make some room.
1294 size_t WritePos = WriteI - LR->begin();
1295 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1296 // This also invalidated ReadI, but it is recomputed below.
1297 WriteI = LR->begin() + WritePos;
1298 } else {
1299 // Shrink the gap if necessary.
1300 LR->segments.erase(WriteI + Spills.size(), ReadI);
1302 ReadI = WriteI + Spills.size();
1303 mergeSpills();
1304 LR->verify();
1307 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
1308 // Create initial equivalence classes.
1309 EqClass.clear();
1310 EqClass.grow(LR.getNumValNums());
1312 const VNInfo *used = nullptr, *unused = nullptr;
1314 // Determine connections.
1315 for (const VNInfo *VNI : LR.valnos) {
1316 // Group all unused values into one class.
1317 if (VNI->isUnused()) {
1318 if (unused)
1319 EqClass.join(unused->id, VNI->id);
1320 unused = VNI;
1321 continue;
1323 used = VNI;
1324 if (VNI->isPHIDef()) {
1325 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1326 assert(MBB && "Phi-def has no defining MBB");
1327 // Connect to values live out of predecessors.
1328 for (MachineBasicBlock *Pred : MBB->predecessors())
1329 if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(Pred)))
1330 EqClass.join(VNI->id, PVNI->id);
1331 } else {
1332 // Normal value defined by an instruction. Check for two-addr redef.
1333 // FIXME: This could be coincidental. Should we really check for a tied
1334 // operand constraint?
1335 // Note that VNI->def may be a use slot for an early clobber def.
1336 if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
1337 EqClass.join(VNI->id, UVNI->id);
1341 // Lump all the unused values in with the last used value.
1342 if (used && unused)
1343 EqClass.join(used->id, unused->id);
1345 EqClass.compress();
1346 return EqClass.getNumClasses();
1349 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1350 MachineRegisterInfo &MRI) {
1351 // Rewrite instructions.
1352 for (MachineOperand &MO :
1353 llvm::make_early_inc_range(MRI.reg_operands(LI.reg()))) {
1354 MachineInstr *MI = MO.getParent();
1355 const VNInfo *VNI;
1356 if (MI->isDebugValue()) {
1357 // DBG_VALUE instructions don't have slot indexes, so get the index of
1358 // the instruction before them. The value is defined there too.
1359 SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
1360 VNI = LI.Query(Idx).valueOut();
1361 } else {
1362 SlotIndex Idx = LIS.getInstructionIndex(*MI);
1363 LiveQueryResult LRQ = LI.Query(Idx);
1364 VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1366 // In the case of an <undef> use that isn't tied to any def, VNI will be
1367 // NULL. If the use is tied to a def, VNI will be the defined value.
1368 if (!VNI)
1369 continue;
1370 if (unsigned EqClass = getEqClass(VNI))
1371 MO.setReg(LIV[EqClass - 1]->reg());
1374 // Distribute subregister liveranges.
1375 if (LI.hasSubRanges()) {
1376 unsigned NumComponents = EqClass.getNumClasses();
1377 SmallVector<unsigned, 8> VNIMapping;
1378 SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1379 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1380 for (LiveInterval::SubRange &SR : LI.subranges()) {
1381 // Create new subranges in the split intervals and construct a mapping
1382 // for the VNInfos in the subrange.
1383 unsigned NumValNos = SR.valnos.size();
1384 VNIMapping.clear();
1385 VNIMapping.reserve(NumValNos);
1386 SubRanges.clear();
1387 SubRanges.resize(NumComponents-1, nullptr);
1388 for (unsigned I = 0; I < NumValNos; ++I) {
1389 const VNInfo &VNI = *SR.valnos[I];
1390 unsigned ComponentNum;
1391 if (VNI.isUnused()) {
1392 ComponentNum = 0;
1393 } else {
1394 const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1395 assert(MainRangeVNI != nullptr
1396 && "SubRange def must have corresponding main range def");
1397 ComponentNum = getEqClass(MainRangeVNI);
1398 if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1399 SubRanges[ComponentNum-1]
1400 = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1403 VNIMapping.push_back(ComponentNum);
1405 DistributeRange(SR, SubRanges.data(), VNIMapping);
1407 LI.removeEmptySubRanges();
1410 // Distribute main liverange.
1411 DistributeRange(LI, LIV, EqClass);