[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / MLRegAllocEvictAdvisor.cpp
blob114e7910dc27bbd3e5eb42e40b04fe81a30af9b3
1 //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the ML eviction advisor and reward injection pass
11 //===----------------------------------------------------------------------===//
13 #include "AllocationOrder.h"
14 #include "RegAllocEvictionAdvisor.h"
15 #include "RegAllocGreedy.h"
16 #include "llvm/Analysis/InteractiveModelRunner.h"
17 #include "llvm/Analysis/MLModelRunner.h"
18 #include "llvm/Analysis/TensorSpec.h"
19 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TFLITE)
20 #include "llvm/Analysis/ModelUnderTrainingRunner.h"
21 #include "llvm/Analysis/NoInferenceModelRunner.h"
22 #include "llvm/Analysis/Utils/TrainingLogger.h"
23 #endif
24 #include "MLRegAllocEvictAdvisor.h"
25 #include "llvm/Analysis/ReleaseModeModelRunner.h"
26 #include "llvm/CodeGen/CalcSpillWeights.h"
27 #include "llvm/CodeGen/LiveRegMatrix.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/VirtRegMap.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Pass.h"
37 #include "llvm/PassRegistry.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/ErrorHandling.h"
41 #include <array>
42 #include <bitset>
43 #include <memory>
45 using namespace llvm;
47 #define DEBUG_TYPE "ml-regalloc"
49 // Generated header in release (AOT) mode
50 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
51 #include "RegAllocEvictModel.h"
52 using CompiledModelType = RegAllocEvictModel;
53 #else
54 using CompiledModelType = NoopSavedModelImpl;
55 #endif
57 static cl::opt<std::string> InteractiveChannelBaseName(
58 "regalloc-evict-interactive-channel-base", cl::Hidden,
59 cl::desc(
60 "Base file path for the interactive mode. The incoming filename should "
61 "have the name <regalloc-evict-interactive-channel-base>.in, while the "
62 "outgoing name should be "
63 "<regalloc-evict-interactive-channel-base>.out"));
65 // Options that only make sense in development mode
66 #ifdef LLVM_HAVE_TFLITE
67 #include "RegAllocScore.h"
68 #include "llvm/Analysis/Utils/TFUtils.h"
70 static cl::opt<std::string> TrainingLog(
71 "regalloc-training-log", cl::Hidden,
72 cl::desc("Training log for the register allocator eviction model"));
74 static cl::opt<std::string> ModelUnderTraining(
75 "regalloc-model", cl::Hidden,
76 cl::desc("The model being trained for register allocation eviction"));
78 static cl::opt<bool> EnableDevelopmentFeatures(
79 "regalloc-enable-development-features", cl::Hidden,
80 cl::desc("Whether or not to enable features under development for the ML "
81 "regalloc advisor"));
83 #else
84 static const bool EnableDevelopmentFeatures = false;
85 #endif // #ifdef LLVM_HAVE_TFLITE
87 /// The score injection pass.
88 /// This pass calculates the score for a function and inserts it in the log, but
89 /// this happens only in development mode. It's a no-op otherwise.
90 namespace llvm {
91 extern cl::opt<unsigned> EvictInterferenceCutoff;
93 class RegAllocScoring : public MachineFunctionPass {
94 public:
95 static char ID;
97 RegAllocScoring() : MachineFunctionPass(ID) {
98 initializeRegAllocScoringPass(*PassRegistry::getPassRegistry());
101 ~RegAllocScoring() override = default;
103 StringRef getPassName() const override {
104 return "Register Allocation Pass Scoring";
107 /// RegAllocReward analysis usage.
108 void getAnalysisUsage(AnalysisUsage &AU) const override {
109 AU.setPreservesAll();
110 AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
111 AU.addRequired<RegAllocPriorityAdvisorAnalysis>();
112 AU.addRequired<MachineBlockFrequencyInfo>();
113 MachineFunctionPass::getAnalysisUsage(AU);
116 /// Performs this pass
117 bool runOnMachineFunction(MachineFunction &) override;
120 char RegAllocScoring::ID = 0;
121 FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); }
123 } // namespace llvm
125 INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass",
126 "Register Allocation Scoring Pass", false, false)
128 // ===================================
129 // Common ML Advisor declarations
130 // ===================================
131 namespace {
132 // The model can only accept a specified number of opcodes and will error it if
133 // fed an opcode it hasn't seen before. This constant sets the current cutoff.
134 static const int OpcodeValueCutoff = 17716;
136 // Most features are as described above, so we'll reuse this vector in defining
137 // them.
138 static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences};
140 // --------------
141 // Features table
142 // --------------
143 // For each interfering live range (incl. the candidate) we collect a number of
144 // features. However, because the features are of different types (and because
145 // of ML best practices), we organize the tensors per feature, not per
146 // candidate. Each such tensor has a scalar value corresponding to the
147 // interferring live range at that position, in the order in AllocationOrder.
148 // The last position corresponds to the virt reg seeking allocation.
149 // Exception to all that is the progression feature, which is just a scalar (see
150 // its documentation for details).
151 // Note on naming: the "_by_max" are normalized using the largest value of that
152 // tensor, as observed in the current decision making stage (i.e. for the
153 // current call to the advisor's tryFindEvictionCandidate)
155 // The feature list format: type, name, shape, documentation.
156 // Note: we can really just use int64 and float, hence the modeling of some
157 // bools as int64 values.
158 #define RA_EVICT_FEATURES_LIST(M) \
159 M(int64_t, mask, PerLiveRangeShape, \
160 "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \
161 "it " \
162 "can't be evicted)") \
163 M(int64_t, is_free, PerLiveRangeShape, \
164 "boolean values, 1 if this phys reg is actually free (no interferences)") \
165 M(float, nr_urgent, PerLiveRangeShape, \
166 "number of 'urgent' intervals, normalized. Urgent are those that are OK " \
167 "to break cascades") \
168 M(float, nr_broken_hints, PerLiveRangeShape, \
169 "if this position were evicted, how many broken hints would there be") \
170 M(int64_t, is_hint, PerLiveRangeShape, \
171 "is this a preferred phys reg for the candidate") \
172 M(int64_t, is_local, PerLiveRangeShape, \
173 "is this live range local to a basic block") \
174 M(float, nr_rematerializable, PerLiveRangeShape, \
175 "nr rematerializable ranges") \
176 M(float, nr_defs_and_uses, PerLiveRangeShape, \
177 "bb freq - weighed nr defs and uses") \
178 M(float, weighed_reads_by_max, PerLiveRangeShape, \
179 "bb freq - weighed nr of reads, normalized") \
180 M(float, weighed_writes_by_max, PerLiveRangeShape, \
181 "bb feq - weighed nr of writes, normalized") \
182 M(float, weighed_read_writes_by_max, PerLiveRangeShape, \
183 "bb freq - weighed nr of uses that are both read and writes, normalized") \
184 M(float, weighed_indvars_by_max, PerLiveRangeShape, \
185 "bb freq - weighed nr of uses that are indvars, normalized") \
186 M(float, hint_weights_by_max, PerLiveRangeShape, \
187 "bb freq - weighed nr of uses that are hints, normalized") \
188 M(float, start_bb_freq_by_max, PerLiveRangeShape, \
189 "the freq in the start block, normalized") \
190 M(float, end_bb_freq_by_max, PerLiveRangeShape, \
191 "freq of end block, normalized") \
192 M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \
193 "hottest BB freq, normalized") \
194 M(float, liverange_size, PerLiveRangeShape, \
195 "size (instr index diff) of the LR") \
196 M(float, use_def_density, PerLiveRangeShape, \
197 "the max weight, as computed by the manual heuristic") \
198 M(int64_t, max_stage, PerLiveRangeShape, \
199 "largest stage of an interval in this LR") \
200 M(int64_t, min_stage, PerLiveRangeShape, \
201 "lowest stage of an interval in this LR") \
202 M(float, progress, {1}, "ratio of current queue size to initial size")
204 #ifdef LLVM_HAVE_TFLITE
205 #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) \
206 M(int64_t, instructions, InstructionsShape, \
207 "Opcodes of the instructions covered by the eviction problem")
209 #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) \
210 M(int64_t, instructions_mapping, InstructionsMappingShape, \
211 "A binary matrix mapping LRs to instruction opcodes") \
212 M(float, mbb_frequencies, MBBFrequencyShape, \
213 "A vector of machine basic block frequencies") \
214 M(int64_t, mbb_mapping, InstructionsShape, \
215 "A vector of indicies mapping instructions to MBBs")
216 #else
217 #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M)
218 #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M)
219 #endif
221 // The model learns to pick one of the mask == 1 interferences. This is the
222 // name of the output tensor. The contract with the model is that the output
223 // will be guaranteed to be to a mask == 1 position. Using a macro here to
224 // avoid 'not used' warnings (and keep cond compilation to a minimum)
225 #define DecisionName "index_to_evict"
226 static const TensorSpec DecisionSpec =
227 TensorSpec::createSpec<int64_t>(DecisionName, {1});
229 // Named features index.
230 enum FeatureIDs {
231 #define _FEATURE_IDX_SIMPLE(_, name, __, ___) name
232 #define _FEATURE_IDX(A, B, C, D) _FEATURE_IDX_SIMPLE(A, B, C, D),
233 RA_EVICT_FEATURES_LIST(_FEATURE_IDX) FeatureCount,
234 #ifdef LLVM_HAVE_TFLITE
235 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX_SIMPLE) = FeatureCount,
236 #else
237 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX)
238 #endif // #ifdef LLVM_HAVE_TFLITE
239 RA_EVICT_REST_DEVELOPMENT_FEATURES(_FEATURE_IDX) FeaturesWithDevelopmentCount
240 #undef _FEATURE_IDX
241 #undef _FEATURE_IDX_SIMPLE
244 // The ML advisor will typically have a sparse input to the evaluator, because
245 // various phys regs won't be available. It's easier (maintenance-wise) to
246 // bulk-reset the state of the evaluator each time we are about to use it
247 // again.
248 template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) {
249 size_t Ret = sizeof(T);
250 for (const auto V : Shape)
251 Ret *= V;
252 return Ret;
255 void resetInputs(MLModelRunner &Runner) {
256 #define _RESET(TYPE, NAME, SHAPE, __) \
257 std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \
258 getTotalSize<TYPE>(SHAPE));
259 RA_EVICT_FEATURES_LIST(_RESET)
260 if (EnableDevelopmentFeatures) {
261 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_RESET)
262 RA_EVICT_REST_DEVELOPMENT_FEATURES(_RESET)
263 #undef _RESET
267 // Per-live interval components that get aggregated into the feature values
268 // that will be passed to the evaluator.
269 struct LIFeatureComponents {
270 double R = 0;
271 double W = 0;
272 double RW = 0;
273 double IndVarUpdates = 0;
274 double HintWeights = 0.0;
275 int64_t NrDefsAndUses = 0;
276 float HottestBlockFreq = 0.0;
277 bool IsRemat = false;
280 using CandidateRegList =
281 std::array<std::pair<MCRegister, bool>, NumberOfInterferences>;
282 using FeaturesListNormalizer =
283 llvm::SmallVector<float, FeatureIDs::FeatureCount>;
285 /// The ML evictor (commonalities between release and development mode)
286 class MLEvictAdvisor : public RegAllocEvictionAdvisor {
287 public:
288 MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
289 MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI,
290 const MachineLoopInfo &Loops);
292 protected:
293 const RegAllocEvictionAdvisor &getDefaultAdvisor() const {
294 return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor);
297 // The assumption is that if the Runner could not be constructed, we emit-ed
298 // error, and we shouldn't be asking for it here.
299 const MLModelRunner &getRunner() const { return *Runner; }
301 /// This just calls Evaluate on the Runner, but in the development mode
302 /// case, if we're just capturing the log of the default advisor, it needs
303 /// to call the latter instead, so we need to pass all the necessary
304 /// parameters for it. In the development case, it will also log.
305 virtual int64_t
306 tryFindEvictionCandidatePosition(const LiveInterval &VirtReg,
307 const AllocationOrder &Order,
308 unsigned OrderLimit, uint8_t CostPerUseLimit,
309 const SmallVirtRegSet &FixedRegisters) const;
311 /// Load the features of the given VirtReg (allocated or not) at column Pos,
312 /// but if that can't be evicted, return false instead.
313 bool
314 loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg,
315 bool IsHint, const SmallVirtRegSet &FixedRegisters,
316 llvm::SmallVectorImpl<float> &Largest, size_t Pos,
317 SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const;
319 private:
320 static float getInitialQueueSize(const MachineFunction &MF);
322 MCRegister tryFindEvictionCandidate(
323 const LiveInterval &VirtReg, const AllocationOrder &Order,
324 uint8_t CostPerUseLimit,
325 const SmallVirtRegSet &FixedRegisters) const override;
327 void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals,
328 llvm::SmallVectorImpl<float> &Largest, size_t Pos,
329 int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent,
330 SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const;
332 // Point-in-time: we didn't learn this, so we always delegate to the
333 // default.
334 bool canEvictHintInterference(
335 const LiveInterval &VirtReg, MCRegister PhysReg,
336 const SmallVirtRegSet &FixedRegisters) const override {
337 return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg,
338 FixedRegisters);
341 const LIFeatureComponents &
342 getLIFeatureComponents(const LiveInterval &LI) const;
344 // Hold on to a default advisor for:
345 // 1) the implementation of canEvictHintInterference, because we didn't
346 // learn that nuance yet; 2) for bootstrapping (logging) in the development
347 // mode case.
348 const DefaultEvictionAdvisor DefaultAdvisor;
349 MLModelRunner *const Runner;
350 const MachineBlockFrequencyInfo &MBFI;
351 const MachineLoopInfo &Loops;
353 // Indices of those features we don't want to normalize.
354 // This could be static and shared, but its initialization is non-trivial.
355 std::bitset<FeatureIDs::FeatureCount> DoNotNormalize;
356 const float InitialQSize;
358 using RegID = unsigned;
359 mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures;
362 #define _DECL_FEATURES(type, name, shape, _) \
363 TensorSpec::createSpec<type>(#name, shape),
365 // ===================================
366 // Release (AOT) - specifics
367 // ===================================
368 class ReleaseModeEvictionAdvisorAnalysis final
369 : public RegAllocEvictionAdvisorAnalysis {
370 public:
371 ReleaseModeEvictionAdvisorAnalysis()
372 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) {
373 if (EnableDevelopmentFeatures) {
374 InputFeatures = {RA_EVICT_FEATURES_LIST(
375 _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES)
376 RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)};
377 } else {
378 InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)};
381 // support for isa<> and dyn_cast.
382 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
383 return R->getAdvisorMode() == AdvisorMode::Release;
386 private:
387 std::vector<TensorSpec> InputFeatures;
389 void getAnalysisUsage(AnalysisUsage &AU) const override {
390 AU.addRequired<MachineBlockFrequencyInfo>();
391 AU.addRequired<MachineLoopInfo>();
392 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
395 std::unique_ptr<RegAllocEvictionAdvisor>
396 getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
397 if (!Runner) {
398 if (InteractiveChannelBaseName.empty())
399 Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
400 MF.getFunction().getContext(), InputFeatures, DecisionName);
401 else
402 Runner = std::make_unique<InteractiveModelRunner>(
403 MF.getFunction().getContext(), InputFeatures, DecisionSpec,
404 InteractiveChannelBaseName + ".out",
405 InteractiveChannelBaseName + ".in");
407 return std::make_unique<MLEvictAdvisor>(
408 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
409 getAnalysis<MachineLoopInfo>());
411 std::unique_ptr<MLModelRunner> Runner;
414 // ===================================
415 // Development mode-specifics
416 // ===================================
418 // Features we log
419 #ifdef LLVM_HAVE_TFLITE
420 static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
422 // Features we bind on the model. The tensor names have a prefix, and we also
423 // need to include some tensors that are expected to be present by the
424 // training algo.
425 // TODO: can we just get rid of these?
426 #define _DECL_TRAIN_FEATURES(type, name, shape, _) \
427 TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
429 class DevelopmentModeEvictAdvisor : public MLEvictAdvisor {
430 public:
431 DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
432 MLModelRunner *Runner,
433 const MachineBlockFrequencyInfo &MBFI,
434 const MachineLoopInfo &Loops, Logger *Log)
435 : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {}
437 private:
438 int64_t tryFindEvictionCandidatePosition(
439 const LiveInterval &VirtReg, const AllocationOrder &Order,
440 unsigned OrderLimit, uint8_t CostPerUseLimit,
441 const SmallVirtRegSet &FixedRegisters) const override;
443 Logger *const Log;
446 class DevelopmentModeEvictionAdvisorAnalysis final
447 : public RegAllocEvictionAdvisorAnalysis {
448 public:
449 DevelopmentModeEvictionAdvisorAnalysis()
450 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) {
451 if (EnableDevelopmentFeatures) {
452 InputFeatures = {RA_EVICT_FEATURES_LIST(
453 _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES)
454 RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)};
455 TrainingInputFeatures = {
456 RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES)
457 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_TRAIN_FEATURES)
458 RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_TRAIN_FEATURES)
459 TensorSpec::createSpec<float>("action_discount", {1}),
460 TensorSpec::createSpec<int32_t>("action_step_type", {1}),
461 TensorSpec::createSpec<float>("action_reward", {1})};
462 } else {
463 InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)};
464 TrainingInputFeatures = {
465 RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES)
466 TensorSpec::createSpec<float>("action_discount", {1}),
467 TensorSpec::createSpec<int32_t>("action_step_type", {1}),
468 TensorSpec::createSpec<float>("action_reward", {1})};
471 // support for isa<> and dyn_cast.
472 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
473 return R->getAdvisorMode() == AdvisorMode::Development;
476 void logRewardIfNeeded(const MachineFunction &MF,
477 llvm::function_ref<float()> GetReward) override {
478 if (!Log || !Log->hasAnyObservationForContext(MF.getName()))
479 return;
480 // The function pass manager would run all the function passes for a
481 // function, so we assume the last context belongs to this function. If
482 // this invariant ever changes, we can implement at that time switching
483 // contexts. At this point, it'd be an error
484 if (Log->currentContext() != MF.getName()) {
485 MF.getFunction().getContext().emitError(
486 "The training log context shouldn't have had changed.");
488 if (Log->hasObservationInProgress())
489 Log->logReward<float>(GetReward());
492 private:
493 std::vector<TensorSpec> InputFeatures;
494 std::vector<TensorSpec> TrainingInputFeatures;
496 void getAnalysisUsage(AnalysisUsage &AU) const override {
497 AU.addRequired<MachineBlockFrequencyInfo>();
498 AU.addRequired<MachineLoopInfo>();
499 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
502 bool doInitialization(Module &M) override {
503 LLVMContext &Ctx = M.getContext();
504 if (ModelUnderTraining.empty() && TrainingLog.empty()) {
505 Ctx.emitError("Regalloc development mode should be requested with at "
506 "least logging enabled and/or a training model");
507 return false;
509 if (ModelUnderTraining.empty())
510 Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures);
511 else
512 Runner = ModelUnderTrainingRunner::createAndEnsureValid(
513 Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures);
514 if (!Runner) {
515 Ctx.emitError("Regalloc: could not set up the model runner");
516 return false;
518 if (TrainingLog.empty())
519 return false;
520 std::error_code EC;
521 auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
522 if (EC) {
523 M.getContext().emitError(EC.message() + ":" + TrainingLog);
524 return false;
526 std::vector<TensorSpec> LFS = InputFeatures;
527 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get()))
528 append_range(LFS, MUTR->extraOutputsForLoggingSpecs());
529 // We always log the output; in particular, if we're not evaluating, we
530 // don't have an output spec json file. That's why we handle the
531 // 'normal' output separately.
532 LFS.push_back(DecisionSpec);
534 Log = std::make_unique<Logger>(std::move(OS), LFS, Reward,
535 /*IncludeReward*/ true);
536 return false;
539 std::unique_ptr<RegAllocEvictionAdvisor>
540 getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
541 if (!Runner)
542 return nullptr;
543 if (Log)
544 Log->switchContext(MF.getName());
545 return std::make_unique<DevelopmentModeEvictAdvisor>(
546 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
547 getAnalysis<MachineLoopInfo>(), Log.get());
550 std::unique_ptr<MLModelRunner> Runner;
551 std::unique_ptr<Logger> Log;
554 #endif //#ifdef LLVM_HAVE_TFLITE
555 } // namespace
557 float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) {
558 auto &MRI = MF.getRegInfo();
559 float Ret = 0.0;
560 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
561 Register Reg = Register::index2VirtReg(I);
562 if (MRI.reg_nodbg_empty(Reg))
563 continue;
564 ++Ret;
566 return Ret;
569 MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
570 MLModelRunner *Runner,
571 const MachineBlockFrequencyInfo &MBFI,
572 const MachineLoopInfo &Loops)
573 : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA),
574 Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops),
575 InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) {
576 assert(this->Runner);
577 Runner->switchContext(MF.getName());
578 DoNotNormalize.set(FeatureIDs::mask);
579 DoNotNormalize.set(FeatureIDs::is_free);
580 DoNotNormalize.set(FeatureIDs::is_hint);
581 DoNotNormalize.set(FeatureIDs::is_local);
582 DoNotNormalize.set(FeatureIDs::min_stage);
583 DoNotNormalize.set(FeatureIDs::max_stage);
584 DoNotNormalize.set(FeatureIDs::progress);
587 int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition(
588 const LiveInterval &, const AllocationOrder &, unsigned, uint8_t,
589 const SmallVirtRegSet &) const {
590 int64_t Ret = Runner->evaluate<int64_t>();
591 assert(Ret >= 0);
592 assert(Ret <= CandidateVirtRegPos);
593 return Ret;
596 bool MLEvictAdvisor::loadInterferenceFeatures(
597 const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
598 const SmallVirtRegSet &FixedRegisters,
599 llvm::SmallVectorImpl<float> &Largest, size_t Pos,
600 llvm::SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const {
601 // It is only possible to evict virtual register interference.
602 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) {
603 // leave unavailable
604 return false;
607 const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
608 int64_t LocalIntfs = 0;
609 float NrUrgent = 0.0f;
611 // The cascade tracking is the same as in the default advisor
612 unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg());
614 SmallVector<const LiveInterval *, MaxInterferences> InterferingIntervals;
615 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
616 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
617 // Different from the default heuristic, we don't make any assumptions
618 // about what having more than 10 results in the query may mean.
619 const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff);
620 if (IFIntervals.empty() && InterferingIntervals.empty())
621 continue;
622 if (IFIntervals.size() >= EvictInterferenceCutoff)
623 return false;
624 InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end());
625 for (const LiveInterval *Intf : reverse(IFIntervals)) {
626 assert(Intf->reg().isVirtual() &&
627 "Only expecting virtual register interference from query");
628 // This is the same set of legality checks as in the default case: don't
629 // try to evict fixed regs or 'done' ones. Also don't break cascades,
630 // except in the urgent case, with the same nuances used in the default
631 // heuristic.
632 // We could try sharing this between the advisors, but it may end up
633 // more complex than it is right now.
634 if (FixedRegisters.count(Intf->reg()))
635 return false;
636 if (RA.getExtraInfo().getStage(*Intf) == RS_Done)
637 return false;
638 bool Urgent =
639 !VirtReg.isSpillable() &&
640 (Intf->isSpillable() ||
641 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
642 RegClassInfo.getNumAllocatableRegs(
643 MRI->getRegClass(Intf->reg())));
644 // Only evict older cascades or live ranges without a cascade.
645 unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg());
646 if (Cascade <= IntfCascade) {
647 if (!Urgent)
648 return false;
649 ++NrUrgent;
652 LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
653 (!EnableLocalReassign || !canReassign(*Intf, PhysReg)));
656 // OK, so if we made it this far, this LR is an eviction candidate, load its
657 // features.
658 extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs,
659 NrUrgent, LRPosInfo);
660 return true;
663 MCRegister MLEvictAdvisor::tryFindEvictionCandidate(
664 const LiveInterval &VirtReg, const AllocationOrder &Order,
665 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const {
666 auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit);
667 if (!MaybeOrderLimit)
668 return MCRegister::NoRegister;
669 unsigned OrderLimit = *MaybeOrderLimit;
671 // The heuristic sets initial costs such as, if CostPerUseLimit is
672 // max<uint8_t>, then any of the costs of the legally-evictable intervals
673 // would be lower. When that happens, one of those will be selected.
674 // Therefore, we allow the candidate be selected, unless the candidate is
675 // unspillable, in which case it would be incorrect to not find a register
676 // for it.
677 const bool MustFindEviction =
678 (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u));
679 // Number of available candidates - if 0, no need to continue.
680 size_t Available = 0;
681 // Make sure we don't have leftover partial state from an attempt where we
682 // had no available candidates and bailed out early.
683 resetInputs(*Runner);
685 // Track the index->register mapping because AllocationOrder doesn't do that
686 // and we'd have to scan it.
687 // Also track their mask, to write asserts/debug.
688 CandidateRegList Regs;
689 Regs.fill({0, false});
691 // Track the largest value of features seen during this eviction session. We
692 // only normalize (some of) the float features, but it's just simpler to
693 // dimension 'Largest' to all the features, especially since we have the
694 // 'DoNotNormalize' list.
695 FeaturesListNormalizer Largest(FeatureIDs::FeatureCount, 0.0);
697 // Same overal idea as in the default eviction policy - we visit the values
698 // of AllocationOrder one at a time. If it's not legally available, we mask
699 // off the corresponding feature column (==do nothing because we already
700 // reset all the features to 0) Use Pos to capture the column we load
701 // features at - in AllocationOrder order.
702 size_t Pos = 0;
703 SmallVector<LRStartEndInfo, NumberOfInterferences> LRPosInfo;
704 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
705 ++I, ++Pos) {
706 MCRegister PhysReg = *I;
707 assert(!Regs[Pos].second);
708 assert(PhysReg);
709 if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) {
710 continue;
712 if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters,
713 Largest, Pos, LRPosInfo)) {
714 ++Available;
715 Regs[Pos] = std::make_pair(PhysReg, true);
718 if (Available == 0) {
719 // Nothing to decide, nothing to learn.
720 assert(!MustFindEviction);
721 return MCRegister::NoRegister;
723 const size_t ValidPosLimit = Pos;
724 // If we must find eviction, the candidate should be masked out of the
725 // decision making process.
726 Regs[CandidateVirtRegPos].second = !MustFindEviction;
727 if (!MustFindEviction)
728 extractFeatures(SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest,
729 CandidateVirtRegPos, /*IsHint*/ 0,
730 /*LocalIntfsCount*/ 0,
731 /*NrUrgent*/ 0.0, LRPosInfo);
732 assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had "
733 "nothing to allocate initially.");
734 #ifdef LLVM_HAVE_TFLITE
735 if (EnableDevelopmentFeatures) {
736 extractInstructionFeatures(
737 LRPosInfo, Runner,
738 [this](SlotIndex InputIndex) -> int {
739 auto *CurrentMachineInstruction =
740 LIS->getInstructionFromIndex(InputIndex);
741 if (!CurrentMachineInstruction) {
742 return -1;
744 return CurrentMachineInstruction->getOpcode();
746 [this](SlotIndex InputIndex) -> float {
747 auto *CurrentMachineInstruction =
748 LIS->getInstructionFromIndex(InputIndex);
749 return MBFI.getBlockFreqRelativeToEntryBlock(
750 CurrentMachineInstruction->getParent());
752 [this](SlotIndex InputIndex) -> MachineBasicBlock * {
753 auto *CurrentMachineInstruction =
754 LIS->getInstructionFromIndex(InputIndex);
755 return CurrentMachineInstruction->getParent();
757 FeatureIDs::instructions, FeatureIDs::instructions_mapping,
758 FeatureIDs::mbb_frequencies, FeatureIDs::mbb_mapping,
759 LIS->getSlotIndexes()->getLastIndex());
761 #endif // #ifdef LLVM_HAVE_TFLITE
762 // Normalize the features.
763 for (auto &V : Largest)
764 V = V ? V : 1.0;
765 for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount;
766 ++FeatureIndex) {
767 if (DoNotNormalize.test(FeatureIndex))
768 continue;
769 for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) {
770 Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex];
773 *Runner->getTensor<float>(FeatureIDs::progress) =
774 static_cast<float>(RA.getQueueSize()) / InitialQSize;
776 // Get a decision.
777 size_t CandidatePos = tryFindEvictionCandidatePosition(
778 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
779 // The contract with the ML side is that CandidatePos is mask == 1 (i.e.
780 // Regs[CandidatePos].second)
781 assert(Regs[CandidatePos].second);
782 if (CandidatePos == CandidateVirtRegPos) {
783 assert(!MustFindEviction);
784 return MCRegister::NoRegister;
786 assert(CandidatePos < ValidPosLimit);
787 (void)ValidPosLimit;
788 return Regs[CandidatePos].first;
791 const LIFeatureComponents &
792 MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const {
793 RegID ID = LI.reg().id();
794 LIFeatureComponents Empty;
795 auto I = CachedFeatures.insert(std::make_pair(ID, Empty));
796 LIFeatureComponents &Ret = I.first->getSecond();
797 if (!I.second)
798 return Ret;
800 SmallPtrSet<MachineInstr *, 8> Visited;
801 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
803 for (MachineRegisterInfo::reg_instr_nodbg_iterator
804 I = MRI->reg_instr_nodbg_begin(LI.reg()),
805 E = MRI->reg_instr_nodbg_end();
806 I != E;) {
807 MachineInstr *MI = &*(I++);
809 ++Ret.NrDefsAndUses;
810 if (!Visited.insert(MI).second)
811 continue;
813 if (MI->isIdentityCopy() || MI->isImplicitDef())
814 continue;
816 bool Reads, Writes;
817 std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
819 float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent());
820 Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq);
822 Ret.R += (Reads && !Writes) * Freq;
823 Ret.W += (!Reads && Writes) * Freq;
824 Ret.RW += (Reads && Writes) * Freq;
826 auto *MBB = MI->getParent();
827 auto *Loop = Loops.getLoopFor(MBB);
828 bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
830 if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB))
831 Ret.IndVarUpdates += Freq;
833 if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI))
834 Ret.HintWeights += Freq;
836 Ret.IsRemat = VirtRegAuxInfo::isRematerializable(
837 LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo());
838 return Ret;
841 // Overall, this currently mimics what we do for weight calculation, but instead
842 // of accummulating the various features, we keep them separate.
843 void MLEvictAdvisor::extractFeatures(
844 const SmallVectorImpl<const LiveInterval *> &Intervals,
845 llvm::SmallVectorImpl<float> &Largest, size_t Pos, int64_t IsHint,
846 int64_t LocalIntfsCount, float NrUrgent,
847 SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const {
848 int64_t NrDefsAndUses = 0;
849 int64_t NrBrokenHints = 0;
850 double R = 0.0;
851 double W = 0.0;
852 double RW = 0.0;
853 double IndVarUpdates = 0.0;
854 double HintWeights = 0.0;
855 float StartBBFreq = 0.0;
856 float EndBBFreq = 0.0;
857 float HottestBlockFreq = 0.0;
858 int32_t NrRematerializable = 0;
859 float TotalWeight = 0.0;
861 SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex();
862 SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex();
863 int64_t MaxStage = 0;
864 int64_t MinStage =
865 Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max();
867 for (const auto *L : Intervals) {
868 const LiveInterval &LI = *L;
869 MaxStage = std::max<int64_t>(
870 MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
871 MinStage = std::min<int64_t>(
872 MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
874 TotalWeight = std::max(TotalWeight, LI.weight());
876 if (LI.beginIndex() < StartSI)
877 StartSI = LI.beginIndex();
879 if (LI.endIndex() > EndSI)
880 EndSI = LI.endIndex();
881 const LIFeatureComponents &LIFC = getLIFeatureComponents(LI);
882 NrBrokenHints += VRM->hasPreferredPhys(LI.reg());
884 NrDefsAndUses += LIFC.NrDefsAndUses;
885 HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq);
886 R += LIFC.R;
887 W += LIFC.W;
888 RW += LIFC.RW;
890 IndVarUpdates += LIFC.IndVarUpdates;
892 HintWeights += LIFC.HintWeights;
893 NrRematerializable += LIFC.IsRemat;
895 if (EnableDevelopmentFeatures) {
896 for (auto CurrentSegment : LI) {
897 LRPosInfo.push_back(
898 LRStartEndInfo{CurrentSegment.start, CurrentSegment.end, Pos});
902 size_t Size = 0;
903 if (!Intervals.empty()) {
904 StartBBFreq =
905 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI));
906 if (EndSI >= LIS->getSlotIndexes()->getLastIndex())
907 EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex();
908 EndBBFreq =
909 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI));
910 Size = StartSI.distance(EndSI);
912 // Set the features at the column 'Pos'.
913 #define SET(ID, TYPE, VAL) \
914 do { \
915 Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \
916 if (!DoNotNormalize.test(FeatureIDs::ID)) \
917 Largest[FeatureIDs::ID] = \
918 std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \
919 } while (false)
920 SET(mask, int64_t, 1);
921 SET(is_free, int64_t, Intervals.empty());
922 SET(nr_urgent, float, NrUrgent);
923 SET(nr_broken_hints, float, NrBrokenHints);
924 SET(is_hint, int64_t, IsHint);
925 SET(is_local, int64_t, LocalIntfsCount);
926 SET(nr_rematerializable, float, NrRematerializable);
927 SET(nr_defs_and_uses, float, NrDefsAndUses);
928 SET(weighed_reads_by_max, float, R);
929 SET(weighed_writes_by_max, float, W);
930 SET(weighed_read_writes_by_max, float, RW);
931 SET(weighed_indvars_by_max, float, IndVarUpdates);
932 SET(hint_weights_by_max, float, HintWeights);
933 SET(start_bb_freq_by_max, float, StartBBFreq);
934 SET(end_bb_freq_by_max, float, EndBBFreq);
935 SET(hottest_bb_freq_by_max, float, HottestBlockFreq);
936 SET(liverange_size, float, Size);
937 SET(use_def_density, float, TotalWeight);
938 SET(max_stage, int64_t, MaxStage);
939 SET(min_stage, int64_t, MinStage);
940 #undef SET
943 void extractInstructionFeatures(
944 SmallVectorImpl<LRStartEndInfo> &LRPosInfo, MLModelRunner *RegallocRunner,
945 function_ref<int(SlotIndex)> GetOpcode,
946 function_ref<float(SlotIndex)> GetMBBFreq,
947 function_ref<MachineBasicBlock *(SlotIndex)> GetMBBReference,
948 const int InstructionsIndex, const int InstructionsMappingIndex,
949 const int MBBFreqIndex, const int MBBMappingIndex,
950 const SlotIndex LastIndex) {
951 // This function extracts instruction based features relevant to the eviction
952 // problem currently being solved. This function ends up extracting two
953 // tensors.
954 // 1 - A vector of size max instruction count. It contains the opcodes of the
955 // instructions spanned by all the intervals in the current instance of the
956 // eviction problem.
957 // 2 - A binary mapping matrix of size (LR count * max
958 // instruction count) which maps where the LRs are live to the actual opcodes
959 // for which they are live.
960 // 3 - A vector of size max supported MBB count storing MBB frequencies,
961 // encompassing all of the MBBs covered by the eviction problem.
962 // 4 - A vector of size max instruction count of indices to members of the MBB
963 // frequency vector, mapping each instruction to its associated MBB.
965 // Start off by sorting the segments based on the beginning slot index.
966 std::sort(
967 LRPosInfo.begin(), LRPosInfo.end(),
968 [](LRStartEndInfo A, LRStartEndInfo B) { return A.Begin < B.Begin; });
969 size_t InstructionIndex = 0;
970 size_t CurrentSegmentIndex = 0;
971 SlotIndex CurrentIndex = LRPosInfo[0].Begin;
972 std::map<MachineBasicBlock *, size_t> VisitedMBBs;
973 size_t CurrentMBBIndex = 0;
974 // This loop processes all the segments sequentially by starting at the
975 // beginning slot index of the first segment, iterating through all the slot
976 // indices before the end slot index of that segment (while checking for
977 // overlaps with segments that start at greater slot indices). After hitting
978 // that end index, the current segment being processed gets bumped until they
979 // are all processed or the max instruction count is hit, where everything is
980 // just truncated.
981 while (true) {
982 // If the index that we are currently at is within the current segment and
983 // we haven't hit the max instruction count, continue processing the current
984 // segment.
985 while (CurrentIndex <= LRPosInfo[CurrentSegmentIndex].End &&
986 InstructionIndex < ModelMaxSupportedInstructionCount) {
987 int CurrentOpcode = GetOpcode(CurrentIndex);
988 // If the current machine instruction is null, skip it
989 if (CurrentOpcode == -1) {
990 // If we're currently at the last index in the SlotIndex analysis,
991 // we can't go any further, so return from the function
992 if (CurrentIndex >= LastIndex) {
993 return;
995 CurrentIndex = CurrentIndex.getNextIndex();
996 continue;
998 MachineBasicBlock *CurrentMBBReference = GetMBBReference(CurrentIndex);
999 if (VisitedMBBs.count(CurrentMBBReference) == 0) {
1000 VisitedMBBs[CurrentMBBReference] = CurrentMBBIndex;
1001 ++CurrentMBBIndex;
1003 extractMBBFrequency(CurrentIndex, InstructionIndex, VisitedMBBs,
1004 GetMBBFreq, CurrentMBBReference, RegallocRunner,
1005 MBBFreqIndex, MBBMappingIndex);
1006 // Current code assumes we're not going to get any disjointed segments
1007 assert(LRPosInfo[CurrentSegmentIndex].Begin <= CurrentIndex);
1008 RegallocRunner->getTensor<int64_t>(InstructionsIndex)[InstructionIndex] =
1009 CurrentOpcode < OpcodeValueCutoff ? CurrentOpcode : 0;
1010 // set value in the binary mapping matrix for the current instruction
1011 auto CurrentSegmentPosition = LRPosInfo[CurrentSegmentIndex].Pos;
1012 RegallocRunner->getTensor<int64_t>(
1013 InstructionsMappingIndex)[CurrentSegmentPosition *
1014 ModelMaxSupportedInstructionCount +
1015 InstructionIndex] = 1;
1016 // All of the segments are sorted based on the beginning slot index, but
1017 // this doesn't mean that the beginning slot index of the next segment is
1018 // after the end segment of the one being currently processed. This while
1019 // loop checks for overlapping segments and modifies the portion of the
1020 // column in the mapping matrix for the currently processed instruction
1021 // for the LR it is checking. Also make sure that the beginning of the
1022 // current segment we're checking for overlap in is less than the current
1023 // index, otherwise we're done checking overlaps.
1024 size_t OverlapCheckCurrentSegment = CurrentSegmentIndex + 1;
1025 while (OverlapCheckCurrentSegment < LRPosInfo.size() &&
1026 LRPosInfo[OverlapCheckCurrentSegment].Begin <= CurrentIndex) {
1027 auto OverlapCurrentSegmentPosition =
1028 LRPosInfo[OverlapCheckCurrentSegment].Pos;
1029 if (LRPosInfo[OverlapCheckCurrentSegment].End >= CurrentIndex) {
1030 RegallocRunner->getTensor<int64_t>(
1031 InstructionsMappingIndex)[OverlapCurrentSegmentPosition *
1032 ModelMaxSupportedInstructionCount +
1033 InstructionIndex] = 1;
1035 ++OverlapCheckCurrentSegment;
1037 ++InstructionIndex;
1038 if (CurrentIndex >= LastIndex) {
1039 return;
1041 CurrentIndex = CurrentIndex.getNextIndex();
1043 // if we've just finished processing through the last segment or if we've
1044 // hit the maximum number of instructions, break out of the loop.
1045 if (CurrentSegmentIndex == LRPosInfo.size() - 1 ||
1046 InstructionIndex >= ModelMaxSupportedInstructionCount) {
1047 break;
1049 // If the segments are not overlapping, we need to move to the beginning
1050 // index of the next segment to avoid having instructions not attached to
1051 // any register.
1052 if (LRPosInfo[CurrentSegmentIndex + 1].Begin >
1053 LRPosInfo[CurrentSegmentIndex].End) {
1054 CurrentIndex = LRPosInfo[CurrentSegmentIndex + 1].Begin;
1056 ++CurrentSegmentIndex;
1060 void extractMBBFrequency(const SlotIndex CurrentIndex,
1061 const size_t CurrentInstructionIndex,
1062 std::map<MachineBasicBlock *, size_t> &VisitedMBBs,
1063 function_ref<float(SlotIndex)> GetMBBFreq,
1064 MachineBasicBlock *CurrentMBBReference,
1065 MLModelRunner *RegallocRunner, const int MBBFreqIndex,
1066 const int MBBMappingIndex) {
1067 size_t CurrentMBBIndex = VisitedMBBs[CurrentMBBReference];
1068 float CurrentMBBFreq = GetMBBFreq(CurrentIndex);
1069 if (CurrentMBBIndex < ModelMaxSupportedMBBCount) {
1070 RegallocRunner->getTensor<float>(MBBFreqIndex)[CurrentMBBIndex] =
1071 CurrentMBBFreq;
1072 RegallocRunner->getTensor<int64_t>(
1073 MBBMappingIndex)[CurrentInstructionIndex] = CurrentMBBIndex;
1077 // Development mode-specific implementations
1078 #ifdef LLVM_HAVE_TFLITE
1080 RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() {
1081 return new DevelopmentModeEvictionAdvisorAnalysis();
1084 int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition(
1085 const LiveInterval &VirtReg, const AllocationOrder &Order,
1086 unsigned OrderLimit, uint8_t CostPerUseLimit,
1087 const SmallVirtRegSet &FixedRegisters) const {
1088 int64_t Ret = 0;
1089 if (isa<ModelUnderTrainingRunner>(getRunner())) {
1090 Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition(
1091 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
1092 } else {
1093 MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate(
1094 VirtReg, Order, CostPerUseLimit, FixedRegisters);
1095 // Find the index of the selected PhysReg. We need it for logging,
1096 // otherwise this is wasted cycles (but so would starting development mode
1097 // without a model nor logging)
1098 if (!PhysReg)
1099 Ret = CandidateVirtRegPos;
1100 else
1101 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit);
1102 I != E; ++I, ++Ret)
1103 if (*I == PhysReg)
1104 break;
1106 if (TrainingLog.empty())
1107 return Ret;
1108 // TODO(mtrofin): when we support optional rewards, this can go away. In the
1109 // meantime, we log the "pretend" reward (0) for the previous observation
1110 // before starting a new one.
1111 if (Log->hasObservationInProgress())
1112 Log->logReward<float>(0.0);
1114 Log->startObservation();
1115 size_t CurrentFeature = 0;
1116 size_t FeatureCount = EnableDevelopmentFeatures
1117 ? FeatureIDs::FeaturesWithDevelopmentCount
1118 : FeatureIDs::FeatureCount;
1119 for (; CurrentFeature < FeatureCount; ++CurrentFeature) {
1120 Log->logTensorValue(CurrentFeature,
1121 reinterpret_cast<const char *>(
1122 getRunner().getTensorUntyped(CurrentFeature)));
1124 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner()))
1125 for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size();
1126 ++I, ++CurrentFeature)
1127 Log->logTensorValue(
1128 CurrentFeature,
1129 reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I)));
1130 // The output is right after the features and the extra outputs
1131 Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret));
1132 Log->endObservation();
1133 return Ret;
1136 bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) {
1137 std::optional<float> CachedReward;
1138 auto GetReward = [&]() {
1139 if (!CachedReward)
1140 CachedReward = static_cast<float>(
1141 calculateRegAllocScore(MF, getAnalysis<MachineBlockFrequencyInfo>())
1142 .getScore());
1143 return *CachedReward;
1146 getAnalysis<RegAllocEvictionAdvisorAnalysis>().logRewardIfNeeded(MF,
1147 GetReward);
1148 getAnalysis<RegAllocPriorityAdvisorAnalysis>().logRewardIfNeeded(MF,
1149 GetReward);
1150 return false;
1152 #endif // #ifdef LLVM_HAVE_TFLITE
1154 RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() {
1155 return llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() ||
1156 !InteractiveChannelBaseName.empty()
1157 ? new ReleaseModeEvictionAdvisorAnalysis()
1158 : nullptr;
1161 // In all cases except development mode, we don't need scoring.
1162 #if !defined(LLVM_HAVE_TFLITE)
1163 bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; }
1164 #endif