[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / MachineScheduler.cpp
blobf40e91819a48f171e330c95d7bdfb3c6b6c8fac3
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/MachineValueType.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/Config/llvm-config.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/GraphWriter.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <limits>
66 #include <memory>
67 #include <string>
68 #include <tuple>
69 #include <utility>
70 #include <vector>
72 using namespace llvm;
74 #define DEBUG_TYPE "machine-scheduler"
76 STATISTIC(NumClustered, "Number of load/store pairs clustered");
78 namespace llvm {
80 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
81 cl::desc("Force top-down list scheduling"));
82 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
83 cl::desc("Force bottom-up list scheduling"));
84 cl::opt<bool>
85 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
86 cl::desc("Print critical path length to stdout"));
88 cl::opt<bool> VerifyScheduling(
89 "verify-misched", cl::Hidden,
90 cl::desc("Verify machine instrs before and after machine scheduling"));
92 #ifndef NDEBUG
93 cl::opt<bool> ViewMISchedDAGs(
94 "view-misched-dags", cl::Hidden,
95 cl::desc("Pop up a window to show MISched dags after they are processed"));
96 cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
97 cl::desc("Print schedule DAGs"));
98 cl::opt<bool> MISchedDumpReservedCycles(
99 "misched-dump-reserved-cycles", cl::Hidden, cl::init(false),
100 cl::desc("Dump resource usage at schedule boundary."));
101 cl::opt<bool> MischedDetailResourceBooking(
102 "misched-detail-resource-booking", cl::Hidden, cl::init(false),
103 cl::desc("Show details of invoking getNextResoufceCycle."));
104 #else
105 const bool ViewMISchedDAGs = false;
106 const bool PrintDAGs = false;
107 const bool MischedDetailResourceBooking = false;
108 #ifdef LLVM_ENABLE_DUMP
109 const bool MISchedDumpReservedCycles = false;
110 #endif // LLVM_ENABLE_DUMP
111 #endif // NDEBUG
113 } // end namespace llvm
115 #ifndef NDEBUG
116 /// In some situations a few uninteresting nodes depend on nearly all other
117 /// nodes in the graph, provide a cutoff to hide them.
118 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
119 cl::desc("Hide nodes with more predecessor/successor than cutoff"));
121 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
122 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
124 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
125 cl::desc("Only schedule this function"));
126 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
127 cl::desc("Only schedule this MBB#"));
128 #endif // NDEBUG
130 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
131 /// size of the ready lists.
132 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
133 cl::desc("Limit ready list to N instructions"), cl::init(256));
135 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
136 cl::desc("Enable register pressure scheduling."), cl::init(true));
138 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
139 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
141 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
142 cl::desc("Enable memop clustering."),
143 cl::init(true));
144 static cl::opt<bool>
145 ForceFastCluster("force-fast-cluster", cl::Hidden,
146 cl::desc("Switch to fast cluster algorithm with the lost "
147 "of some fusion opportunities"),
148 cl::init(false));
149 static cl::opt<unsigned>
150 FastClusterThreshold("fast-cluster-threshold", cl::Hidden,
151 cl::desc("The threshold for fast cluster"),
152 cl::init(1000));
154 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
155 static cl::opt<bool> MISchedDumpScheduleTrace(
156 "misched-dump-schedule-trace", cl::Hidden, cl::init(false),
157 cl::desc("Dump resource usage at schedule boundary."));
158 static cl::opt<unsigned>
159 HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden,
160 cl::desc("Set width of the columns with "
161 "the resources and schedule units"),
162 cl::init(19));
163 static cl::opt<unsigned>
164 ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden,
165 cl::desc("Set width of the columns showing resource booking."),
166 cl::init(5));
167 static cl::opt<bool> MISchedSortResourcesInTrace(
168 "misched-sort-resources-in-trace", cl::Hidden, cl::init(true),
169 cl::desc("Sort the resources printed in the dump trace"));
170 #endif
172 static cl::opt<unsigned>
173 MIResourceCutOff("misched-resource-cutoff", cl::Hidden,
174 cl::desc("Number of intervals to track"), cl::init(10));
176 // DAG subtrees must have at least this many nodes.
177 static const unsigned MinSubtreeSize = 8;
179 // Pin the vtables to this file.
180 void MachineSchedStrategy::anchor() {}
182 void ScheduleDAGMutation::anchor() {}
184 //===----------------------------------------------------------------------===//
185 // Machine Instruction Scheduling Pass and Registry
186 //===----------------------------------------------------------------------===//
188 MachineSchedContext::MachineSchedContext() {
189 RegClassInfo = new RegisterClassInfo();
192 MachineSchedContext::~MachineSchedContext() {
193 delete RegClassInfo;
196 namespace {
198 /// Base class for a machine scheduler class that can run at any point.
199 class MachineSchedulerBase : public MachineSchedContext,
200 public MachineFunctionPass {
201 public:
202 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
204 void print(raw_ostream &O, const Module* = nullptr) const override;
206 protected:
207 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
210 /// MachineScheduler runs after coalescing and before register allocation.
211 class MachineScheduler : public MachineSchedulerBase {
212 public:
213 MachineScheduler();
215 void getAnalysisUsage(AnalysisUsage &AU) const override;
217 bool runOnMachineFunction(MachineFunction&) override;
219 static char ID; // Class identification, replacement for typeinfo
221 protected:
222 ScheduleDAGInstrs *createMachineScheduler();
225 /// PostMachineScheduler runs after shortly before code emission.
226 class PostMachineScheduler : public MachineSchedulerBase {
227 public:
228 PostMachineScheduler();
230 void getAnalysisUsage(AnalysisUsage &AU) const override;
232 bool runOnMachineFunction(MachineFunction&) override;
234 static char ID; // Class identification, replacement for typeinfo
236 protected:
237 ScheduleDAGInstrs *createPostMachineScheduler();
240 } // end anonymous namespace
242 char MachineScheduler::ID = 0;
244 char &llvm::MachineSchedulerID = MachineScheduler::ID;
246 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
247 "Machine Instruction Scheduler", false, false)
248 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
249 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
250 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
251 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
252 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
253 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
254 "Machine Instruction Scheduler", false, false)
256 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
257 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
260 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
261 AU.setPreservesCFG();
262 AU.addRequired<MachineDominatorTree>();
263 AU.addRequired<MachineLoopInfo>();
264 AU.addRequired<AAResultsWrapperPass>();
265 AU.addRequired<TargetPassConfig>();
266 AU.addRequired<SlotIndexes>();
267 AU.addPreserved<SlotIndexes>();
268 AU.addRequired<LiveIntervals>();
269 AU.addPreserved<LiveIntervals>();
270 MachineFunctionPass::getAnalysisUsage(AU);
273 char PostMachineScheduler::ID = 0;
275 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
277 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched",
278 "PostRA Machine Instruction Scheduler", false, false)
279 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
280 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
281 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
282 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched",
283 "PostRA Machine Instruction Scheduler", false, false)
285 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
286 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
289 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
290 AU.setPreservesCFG();
291 AU.addRequired<MachineDominatorTree>();
292 AU.addRequired<MachineLoopInfo>();
293 AU.addRequired<AAResultsWrapperPass>();
294 AU.addRequired<TargetPassConfig>();
295 MachineFunctionPass::getAnalysisUsage(AU);
298 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
299 MachineSchedRegistry::Registry;
301 /// A dummy default scheduler factory indicates whether the scheduler
302 /// is overridden on the command line.
303 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
304 return nullptr;
307 /// MachineSchedOpt allows command line selection of the scheduler.
308 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
309 RegisterPassParser<MachineSchedRegistry>>
310 MachineSchedOpt("misched",
311 cl::init(&useDefaultMachineSched), cl::Hidden,
312 cl::desc("Machine instruction scheduler to use"));
314 static MachineSchedRegistry
315 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
316 useDefaultMachineSched);
318 static cl::opt<bool> EnableMachineSched(
319 "enable-misched",
320 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
321 cl::Hidden);
323 static cl::opt<bool> EnablePostRAMachineSched(
324 "enable-post-misched",
325 cl::desc("Enable the post-ra machine instruction scheduling pass."),
326 cl::init(true), cl::Hidden);
328 /// Decrement this iterator until reaching the top or a non-debug instr.
329 static MachineBasicBlock::const_iterator
330 priorNonDebug(MachineBasicBlock::const_iterator I,
331 MachineBasicBlock::const_iterator Beg) {
332 assert(I != Beg && "reached the top of the region, cannot decrement");
333 while (--I != Beg) {
334 if (!I->isDebugOrPseudoInstr())
335 break;
337 return I;
340 /// Non-const version.
341 static MachineBasicBlock::iterator
342 priorNonDebug(MachineBasicBlock::iterator I,
343 MachineBasicBlock::const_iterator Beg) {
344 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
345 .getNonConstIterator();
348 /// If this iterator is a debug value, increment until reaching the End or a
349 /// non-debug instruction.
350 static MachineBasicBlock::const_iterator
351 nextIfDebug(MachineBasicBlock::const_iterator I,
352 MachineBasicBlock::const_iterator End) {
353 for(; I != End; ++I) {
354 if (!I->isDebugOrPseudoInstr())
355 break;
357 return I;
360 /// Non-const version.
361 static MachineBasicBlock::iterator
362 nextIfDebug(MachineBasicBlock::iterator I,
363 MachineBasicBlock::const_iterator End) {
364 return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
365 .getNonConstIterator();
368 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
369 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
370 // Select the scheduler, or set the default.
371 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
372 if (Ctor != useDefaultMachineSched)
373 return Ctor(this);
375 // Get the default scheduler set by the target for this function.
376 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
377 if (Scheduler)
378 return Scheduler;
380 // Default to GenericScheduler.
381 return createGenericSchedLive(this);
384 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
385 /// the caller. We don't have a command line option to override the postRA
386 /// scheduler. The Target must configure it.
387 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
388 // Get the postRA scheduler set by the target for this function.
389 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
390 if (Scheduler)
391 return Scheduler;
393 // Default to GenericScheduler.
394 return createGenericSchedPostRA(this);
397 /// Top-level MachineScheduler pass driver.
399 /// Visit blocks in function order. Divide each block into scheduling regions
400 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
401 /// consistent with the DAG builder, which traverses the interior of the
402 /// scheduling regions bottom-up.
404 /// This design avoids exposing scheduling boundaries to the DAG builder,
405 /// simplifying the DAG builder's support for "special" target instructions.
406 /// At the same time the design allows target schedulers to operate across
407 /// scheduling boundaries, for example to bundle the boundary instructions
408 /// without reordering them. This creates complexity, because the target
409 /// scheduler must update the RegionBegin and RegionEnd positions cached by
410 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
411 /// design would be to split blocks at scheduling boundaries, but LLVM has a
412 /// general bias against block splitting purely for implementation simplicity.
413 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
414 if (skipFunction(mf.getFunction()))
415 return false;
417 if (EnableMachineSched.getNumOccurrences()) {
418 if (!EnableMachineSched)
419 return false;
420 } else if (!mf.getSubtarget().enableMachineScheduler())
421 return false;
423 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
425 // Initialize the context of the pass.
426 MF = &mf;
427 MLI = &getAnalysis<MachineLoopInfo>();
428 MDT = &getAnalysis<MachineDominatorTree>();
429 PassConfig = &getAnalysis<TargetPassConfig>();
430 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
432 LIS = &getAnalysis<LiveIntervals>();
434 if (VerifyScheduling) {
435 LLVM_DEBUG(LIS->dump());
436 MF->verify(this, "Before machine scheduling.");
438 RegClassInfo->runOnMachineFunction(*MF);
440 // Instantiate the selected scheduler for this target, function, and
441 // optimization level.
442 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
443 scheduleRegions(*Scheduler, false);
445 LLVM_DEBUG(LIS->dump());
446 if (VerifyScheduling)
447 MF->verify(this, "After machine scheduling.");
448 return true;
451 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
452 if (skipFunction(mf.getFunction()))
453 return false;
455 if (EnablePostRAMachineSched.getNumOccurrences()) {
456 if (!EnablePostRAMachineSched)
457 return false;
458 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
459 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
460 return false;
462 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
464 // Initialize the context of the pass.
465 MF = &mf;
466 MLI = &getAnalysis<MachineLoopInfo>();
467 PassConfig = &getAnalysis<TargetPassConfig>();
468 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
470 if (VerifyScheduling)
471 MF->verify(this, "Before post machine scheduling.");
473 // Instantiate the selected scheduler for this target, function, and
474 // optimization level.
475 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
476 scheduleRegions(*Scheduler, true);
478 if (VerifyScheduling)
479 MF->verify(this, "After post machine scheduling.");
480 return true;
483 /// Return true of the given instruction should not be included in a scheduling
484 /// region.
486 /// MachineScheduler does not currently support scheduling across calls. To
487 /// handle calls, the DAG builder needs to be modified to create register
488 /// anti/output dependencies on the registers clobbered by the call's regmask
489 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
490 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
491 /// the boundary, but there would be no benefit to postRA scheduling across
492 /// calls this late anyway.
493 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
494 MachineBasicBlock *MBB,
495 MachineFunction *MF,
496 const TargetInstrInfo *TII) {
497 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
500 /// A region of an MBB for scheduling.
501 namespace {
502 struct SchedRegion {
503 /// RegionBegin is the first instruction in the scheduling region, and
504 /// RegionEnd is either MBB->end() or the scheduling boundary after the
505 /// last instruction in the scheduling region. These iterators cannot refer
506 /// to instructions outside of the identified scheduling region because
507 /// those may be reordered before scheduling this region.
508 MachineBasicBlock::iterator RegionBegin;
509 MachineBasicBlock::iterator RegionEnd;
510 unsigned NumRegionInstrs;
512 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
513 unsigned N) :
514 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
516 } // end anonymous namespace
518 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
520 static void
521 getSchedRegions(MachineBasicBlock *MBB,
522 MBBRegionsVector &Regions,
523 bool RegionsTopDown) {
524 MachineFunction *MF = MBB->getParent();
525 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
527 MachineBasicBlock::iterator I = nullptr;
528 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
529 RegionEnd != MBB->begin(); RegionEnd = I) {
531 // Avoid decrementing RegionEnd for blocks with no terminator.
532 if (RegionEnd != MBB->end() ||
533 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
534 --RegionEnd;
537 // The next region starts above the previous region. Look backward in the
538 // instruction stream until we find the nearest boundary.
539 unsigned NumRegionInstrs = 0;
540 I = RegionEnd;
541 for (;I != MBB->begin(); --I) {
542 MachineInstr &MI = *std::prev(I);
543 if (isSchedBoundary(&MI, &*MBB, MF, TII))
544 break;
545 if (!MI.isDebugOrPseudoInstr()) {
546 // MBB::size() uses instr_iterator to count. Here we need a bundle to
547 // count as a single instruction.
548 ++NumRegionInstrs;
552 // It's possible we found a scheduling region that only has debug
553 // instructions. Don't bother scheduling these.
554 if (NumRegionInstrs != 0)
555 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
558 if (RegionsTopDown)
559 std::reverse(Regions.begin(), Regions.end());
562 /// Main driver for both MachineScheduler and PostMachineScheduler.
563 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
564 bool FixKillFlags) {
565 // Visit all machine basic blocks.
567 // TODO: Visit blocks in global postorder or postorder within the bottom-up
568 // loop tree. Then we can optionally compute global RegPressure.
569 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
570 MBB != MBBEnd; ++MBB) {
572 Scheduler.startBlock(&*MBB);
574 #ifndef NDEBUG
575 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
576 continue;
577 if (SchedOnlyBlock.getNumOccurrences()
578 && (int)SchedOnlyBlock != MBB->getNumber())
579 continue;
580 #endif
582 // Break the block into scheduling regions [I, RegionEnd). RegionEnd
583 // points to the scheduling boundary at the bottom of the region. The DAG
584 // does not include RegionEnd, but the region does (i.e. the next
585 // RegionEnd is above the previous RegionBegin). If the current block has
586 // no terminator then RegionEnd == MBB->end() for the bottom region.
588 // All the regions of MBB are first found and stored in MBBRegions, which
589 // will be processed (MBB) top-down if initialized with true.
591 // The Scheduler may insert instructions during either schedule() or
592 // exitRegion(), even for empty regions. So the local iterators 'I' and
593 // 'RegionEnd' are invalid across these calls. Instructions must not be
594 // added to other regions than the current one without updating MBBRegions.
596 MBBRegionsVector MBBRegions;
597 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
598 for (const SchedRegion &R : MBBRegions) {
599 MachineBasicBlock::iterator I = R.RegionBegin;
600 MachineBasicBlock::iterator RegionEnd = R.RegionEnd;
601 unsigned NumRegionInstrs = R.NumRegionInstrs;
603 // Notify the scheduler of the region, even if we may skip scheduling
604 // it. Perhaps it still needs to be bundled.
605 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
607 // Skip empty scheduling regions (0 or 1 schedulable instructions).
608 if (I == RegionEnd || I == std::prev(RegionEnd)) {
609 // Close the current region. Bundle the terminator if needed.
610 // This invalidates 'RegionEnd' and 'I'.
611 Scheduler.exitRegion();
612 continue;
614 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
615 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
616 << " " << MBB->getName() << "\n From: " << *I
617 << " To: ";
618 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
619 else dbgs() << "End\n";
620 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
621 if (DumpCriticalPathLength) {
622 errs() << MF->getName();
623 errs() << ":%bb. " << MBB->getNumber();
624 errs() << " " << MBB->getName() << " \n";
627 // Schedule a region: possibly reorder instructions.
628 // This invalidates the original region iterators.
629 Scheduler.schedule();
631 // Close the current region.
632 Scheduler.exitRegion();
634 Scheduler.finishBlock();
635 // FIXME: Ideally, no further passes should rely on kill flags. However,
636 // thumb2 size reduction is currently an exception, so the PostMIScheduler
637 // needs to do this.
638 if (FixKillFlags)
639 Scheduler.fixupKills(*MBB);
641 Scheduler.finalizeSchedule();
644 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
645 // unimplemented
648 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
649 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
650 dbgs() << "Queue " << Name << ": ";
651 for (const SUnit *SU : Queue)
652 dbgs() << SU->NodeNum << " ";
653 dbgs() << "\n";
655 #endif
657 //===----------------------------------------------------------------------===//
658 // ScheduleDAGMI - Basic machine instruction scheduling. This is
659 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
660 // virtual registers.
661 // ===----------------------------------------------------------------------===/
663 // Provide a vtable anchor.
664 ScheduleDAGMI::~ScheduleDAGMI() = default;
666 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
667 /// NumPredsLeft reaches zero, release the successor node.
669 /// FIXME: Adjust SuccSU height based on MinLatency.
670 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
671 SUnit *SuccSU = SuccEdge->getSUnit();
673 if (SuccEdge->isWeak()) {
674 --SuccSU->WeakPredsLeft;
675 if (SuccEdge->isCluster())
676 NextClusterSucc = SuccSU;
677 return;
679 #ifndef NDEBUG
680 if (SuccSU->NumPredsLeft == 0) {
681 dbgs() << "*** Scheduling failed! ***\n";
682 dumpNode(*SuccSU);
683 dbgs() << " has been released too many times!\n";
684 llvm_unreachable(nullptr);
686 #endif
687 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
688 // CurrCycle may have advanced since then.
689 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
690 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
692 --SuccSU->NumPredsLeft;
693 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
694 SchedImpl->releaseTopNode(SuccSU);
697 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
698 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
699 for (SDep &Succ : SU->Succs)
700 releaseSucc(SU, &Succ);
703 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
704 /// NumSuccsLeft reaches zero, release the predecessor node.
706 /// FIXME: Adjust PredSU height based on MinLatency.
707 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
708 SUnit *PredSU = PredEdge->getSUnit();
710 if (PredEdge->isWeak()) {
711 --PredSU->WeakSuccsLeft;
712 if (PredEdge->isCluster())
713 NextClusterPred = PredSU;
714 return;
716 #ifndef NDEBUG
717 if (PredSU->NumSuccsLeft == 0) {
718 dbgs() << "*** Scheduling failed! ***\n";
719 dumpNode(*PredSU);
720 dbgs() << " has been released too many times!\n";
721 llvm_unreachable(nullptr);
723 #endif
724 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
725 // CurrCycle may have advanced since then.
726 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
727 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
729 --PredSU->NumSuccsLeft;
730 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
731 SchedImpl->releaseBottomNode(PredSU);
734 /// releasePredecessors - Call releasePred on each of SU's predecessors.
735 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
736 for (SDep &Pred : SU->Preds)
737 releasePred(SU, &Pred);
740 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
741 ScheduleDAGInstrs::startBlock(bb);
742 SchedImpl->enterMBB(bb);
745 void ScheduleDAGMI::finishBlock() {
746 SchedImpl->leaveMBB();
747 ScheduleDAGInstrs::finishBlock();
750 /// enterRegion - Called back from PostMachineScheduler::runOnMachineFunction
751 /// after crossing a scheduling boundary. [begin, end) includes all instructions
752 /// in the region, including the boundary itself and single-instruction regions
753 /// that don't get scheduled.
754 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
755 MachineBasicBlock::iterator begin,
756 MachineBasicBlock::iterator end,
757 unsigned regioninstrs)
759 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
761 SchedImpl->initPolicy(begin, end, regioninstrs);
764 /// This is normally called from the main scheduler loop but may also be invoked
765 /// by the scheduling strategy to perform additional code motion.
766 void ScheduleDAGMI::moveInstruction(
767 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
768 // Advance RegionBegin if the first instruction moves down.
769 if (&*RegionBegin == MI)
770 ++RegionBegin;
772 // Update the instruction stream.
773 BB->splice(InsertPos, BB, MI);
775 // Update LiveIntervals
776 if (LIS)
777 LIS->handleMove(*MI, /*UpdateFlags=*/true);
779 // Recede RegionBegin if an instruction moves above the first.
780 if (RegionBegin == InsertPos)
781 RegionBegin = MI;
784 bool ScheduleDAGMI::checkSchedLimit() {
785 #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG)
786 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
787 CurrentTop = CurrentBottom;
788 return false;
790 ++NumInstrsScheduled;
791 #endif
792 return true;
795 /// Per-region scheduling driver, called back from
796 /// PostMachineScheduler::runOnMachineFunction. This is a simplified driver
797 /// that does not consider liveness or register pressure. It is useful for
798 /// PostRA scheduling and potentially other custom schedulers.
799 void ScheduleDAGMI::schedule() {
800 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
801 LLVM_DEBUG(SchedImpl->dumpPolicy());
803 // Build the DAG.
804 buildSchedGraph(AA);
806 postProcessDAG();
808 SmallVector<SUnit*, 8> TopRoots, BotRoots;
809 findRootsAndBiasEdges(TopRoots, BotRoots);
811 LLVM_DEBUG(dump());
812 if (PrintDAGs) dump();
813 if (ViewMISchedDAGs) viewGraph();
815 // Initialize the strategy before modifying the DAG.
816 // This may initialize a DFSResult to be used for queue priority.
817 SchedImpl->initialize(this);
819 // Initialize ready queues now that the DAG and priority data are finalized.
820 initQueues(TopRoots, BotRoots);
822 bool IsTopNode = false;
823 while (true) {
824 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
825 SUnit *SU = SchedImpl->pickNode(IsTopNode);
826 if (!SU) break;
828 assert(!SU->isScheduled && "Node already scheduled");
829 if (!checkSchedLimit())
830 break;
832 MachineInstr *MI = SU->getInstr();
833 if (IsTopNode) {
834 assert(SU->isTopReady() && "node still has unscheduled dependencies");
835 if (&*CurrentTop == MI)
836 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
837 else
838 moveInstruction(MI, CurrentTop);
839 } else {
840 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
841 MachineBasicBlock::iterator priorII =
842 priorNonDebug(CurrentBottom, CurrentTop);
843 if (&*priorII == MI)
844 CurrentBottom = priorII;
845 else {
846 if (&*CurrentTop == MI)
847 CurrentTop = nextIfDebug(++CurrentTop, priorII);
848 moveInstruction(MI, CurrentBottom);
849 CurrentBottom = MI;
852 // Notify the scheduling strategy before updating the DAG.
853 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
854 // runs, it can then use the accurate ReadyCycle time to determine whether
855 // newly released nodes can move to the readyQ.
856 SchedImpl->schedNode(SU, IsTopNode);
858 updateQueues(SU, IsTopNode);
860 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
862 placeDebugValues();
864 LLVM_DEBUG({
865 dbgs() << "*** Final schedule for "
866 << printMBBReference(*begin()->getParent()) << " ***\n";
867 dumpSchedule();
868 dbgs() << '\n';
872 /// Apply each ScheduleDAGMutation step in order.
873 void ScheduleDAGMI::postProcessDAG() {
874 for (auto &m : Mutations)
875 m->apply(this);
878 void ScheduleDAGMI::
879 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
880 SmallVectorImpl<SUnit*> &BotRoots) {
881 for (SUnit &SU : SUnits) {
882 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
884 // Order predecessors so DFSResult follows the critical path.
885 SU.biasCriticalPath();
887 // A SUnit is ready to top schedule if it has no predecessors.
888 if (!SU.NumPredsLeft)
889 TopRoots.push_back(&SU);
890 // A SUnit is ready to bottom schedule if it has no successors.
891 if (!SU.NumSuccsLeft)
892 BotRoots.push_back(&SU);
894 ExitSU.biasCriticalPath();
897 /// Identify DAG roots and setup scheduler queues.
898 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
899 ArrayRef<SUnit*> BotRoots) {
900 NextClusterSucc = nullptr;
901 NextClusterPred = nullptr;
903 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
905 // Nodes with unreleased weak edges can still be roots.
906 // Release top roots in forward order.
907 for (SUnit *SU : TopRoots)
908 SchedImpl->releaseTopNode(SU);
910 // Release bottom roots in reverse order so the higher priority nodes appear
911 // first. This is more natural and slightly more efficient.
912 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
913 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
914 SchedImpl->releaseBottomNode(*I);
917 releaseSuccessors(&EntrySU);
918 releasePredecessors(&ExitSU);
920 SchedImpl->registerRoots();
922 // Advance past initial DebugValues.
923 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
924 CurrentBottom = RegionEnd;
927 /// Update scheduler queues after scheduling an instruction.
928 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
929 // Release dependent instructions for scheduling.
930 if (IsTopNode)
931 releaseSuccessors(SU);
932 else
933 releasePredecessors(SU);
935 SU->isScheduled = true;
938 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
939 void ScheduleDAGMI::placeDebugValues() {
940 // If first instruction was a DBG_VALUE then put it back.
941 if (FirstDbgValue) {
942 BB->splice(RegionBegin, BB, FirstDbgValue);
943 RegionBegin = FirstDbgValue;
946 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
947 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
948 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
949 MachineInstr *DbgValue = P.first;
950 MachineBasicBlock::iterator OrigPrevMI = P.second;
951 if (&*RegionBegin == DbgValue)
952 ++RegionBegin;
953 BB->splice(std::next(OrigPrevMI), BB, DbgValue);
954 if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd)
955 RegionEnd = DbgValue;
959 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
960 static const char *scheduleTableLegend = " i: issue\n x: resource booked";
962 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceTopDown() const {
963 // Bail off when there is no schedule model to query.
964 if (!SchedModel.hasInstrSchedModel())
965 return;
967 // Nothing to show if there is no or just one instruction.
968 if (BB->size() < 2)
969 return;
971 dbgs() << " * Schedule table (TopDown):\n";
972 dbgs() << scheduleTableLegend << "\n";
973 const unsigned FirstCycle = getSUnit(&*(std::begin(*this)))->TopReadyCycle;
974 unsigned LastCycle = getSUnit(&*(std::prev(std::end(*this))))->TopReadyCycle;
975 for (MachineInstr &MI : *this) {
976 SUnit *SU = getSUnit(&MI);
977 if (!SU)
978 continue;
979 const MCSchedClassDesc *SC = getSchedClass(SU);
980 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
981 PE = SchedModel.getWriteProcResEnd(SC);
982 PI != PE; ++PI) {
983 if (SU->TopReadyCycle + PI->ReleaseAtCycle - 1 > LastCycle)
984 LastCycle = SU->TopReadyCycle + PI->ReleaseAtCycle - 1;
987 // Print the header with the cycles
988 dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
989 for (unsigned C = FirstCycle; C <= LastCycle; ++C)
990 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
991 dbgs() << "|\n";
993 for (MachineInstr &MI : *this) {
994 SUnit *SU = getSUnit(&MI);
995 if (!SU) {
996 dbgs() << "Missing SUnit\n";
997 continue;
999 std::string NodeName("SU(");
1000 NodeName += std::to_string(SU->NodeNum) + ")";
1001 dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
1002 unsigned C = FirstCycle;
1003 for (; C <= LastCycle; ++C) {
1004 if (C == SU->TopReadyCycle)
1005 dbgs() << llvm::left_justify("| i", ColWidth);
1006 else
1007 dbgs() << llvm::left_justify("|", ColWidth);
1009 dbgs() << "|\n";
1010 const MCSchedClassDesc *SC = getSchedClass(SU);
1012 SmallVector<MCWriteProcResEntry, 4> ResourcesIt(
1013 make_range(SchedModel.getWriteProcResBegin(SC),
1014 SchedModel.getWriteProcResEnd(SC)));
1016 if (MISchedSortResourcesInTrace)
1017 llvm::stable_sort(ResourcesIt,
1018 [](const MCWriteProcResEntry &LHS,
1019 const MCWriteProcResEntry &RHS) -> bool {
1020 return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||
1021 (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&
1022 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);
1024 for (const MCWriteProcResEntry &PI : ResourcesIt) {
1025 C = FirstCycle;
1026 const std::string ResName =
1027 SchedModel.getResourceName(PI.ProcResourceIdx);
1028 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth);
1029 for (; C < SU->TopReadyCycle + PI.AcquireAtCycle; ++C) {
1030 dbgs() << llvm::left_justify("|", ColWidth);
1032 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;
1033 ++I, ++C)
1034 dbgs() << llvm::left_justify("| x", ColWidth);
1035 while (C++ <= LastCycle)
1036 dbgs() << llvm::left_justify("|", ColWidth);
1037 // Place end char
1038 dbgs() << "| \n";
1043 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceBottomUp() const {
1044 // Bail off when there is no schedule model to query.
1045 if (!SchedModel.hasInstrSchedModel())
1046 return;
1048 // Nothing to show if there is no or just one instruction.
1049 if (BB->size() < 2)
1050 return;
1052 dbgs() << " * Schedule table (BottomUp):\n";
1053 dbgs() << scheduleTableLegend << "\n";
1055 const int FirstCycle = getSUnit(&*(std::begin(*this)))->BotReadyCycle;
1056 int LastCycle = getSUnit(&*(std::prev(std::end(*this))))->BotReadyCycle;
1057 for (MachineInstr &MI : *this) {
1058 SUnit *SU = getSUnit(&MI);
1059 if (!SU)
1060 continue;
1061 const MCSchedClassDesc *SC = getSchedClass(SU);
1062 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
1063 PE = SchedModel.getWriteProcResEnd(SC);
1064 PI != PE; ++PI) {
1065 if ((int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1 < LastCycle)
1066 LastCycle = (int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1;
1069 // Print the header with the cycles
1070 dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
1071 for (int C = FirstCycle; C >= LastCycle; --C)
1072 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
1073 dbgs() << "|\n";
1075 for (MachineInstr &MI : *this) {
1076 SUnit *SU = getSUnit(&MI);
1077 if (!SU) {
1078 dbgs() << "Missing SUnit\n";
1079 continue;
1081 std::string NodeName("SU(");
1082 NodeName += std::to_string(SU->NodeNum) + ")";
1083 dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
1084 int C = FirstCycle;
1085 for (; C >= LastCycle; --C) {
1086 if (C == (int)SU->BotReadyCycle)
1087 dbgs() << llvm::left_justify("| i", ColWidth);
1088 else
1089 dbgs() << llvm::left_justify("|", ColWidth);
1091 dbgs() << "|\n";
1092 const MCSchedClassDesc *SC = getSchedClass(SU);
1093 SmallVector<MCWriteProcResEntry, 4> ResourcesIt(
1094 make_range(SchedModel.getWriteProcResBegin(SC),
1095 SchedModel.getWriteProcResEnd(SC)));
1097 if (MISchedSortResourcesInTrace)
1098 llvm::stable_sort(ResourcesIt,
1099 [](const MCWriteProcResEntry &LHS,
1100 const MCWriteProcResEntry &RHS) -> bool {
1101 return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||
1102 (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&
1103 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);
1105 for (const MCWriteProcResEntry &PI : ResourcesIt) {
1106 C = FirstCycle;
1107 const std::string ResName =
1108 SchedModel.getResourceName(PI.ProcResourceIdx);
1109 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth);
1110 for (; C > ((int)SU->BotReadyCycle - (int)PI.AcquireAtCycle); --C) {
1111 dbgs() << llvm::left_justify("|", ColWidth);
1113 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;
1114 ++I, --C)
1115 dbgs() << llvm::left_justify("| x", ColWidth);
1116 while (C-- >= LastCycle)
1117 dbgs() << llvm::left_justify("|", ColWidth);
1118 // Place end char
1119 dbgs() << "| \n";
1123 #endif
1125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1126 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
1127 if (MISchedDumpScheduleTrace) {
1128 if (ForceTopDown)
1129 dumpScheduleTraceTopDown();
1130 else if (ForceBottomUp)
1131 dumpScheduleTraceBottomUp();
1132 else {
1133 dbgs() << "* Schedule table (Bidirectional): not implemented\n";
1137 for (MachineInstr &MI : *this) {
1138 if (SUnit *SU = getSUnit(&MI))
1139 dumpNode(*SU);
1140 else
1141 dbgs() << "Missing SUnit\n";
1144 #endif
1146 //===----------------------------------------------------------------------===//
1147 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
1148 // preservation.
1149 //===----------------------------------------------------------------------===//
1151 ScheduleDAGMILive::~ScheduleDAGMILive() {
1152 delete DFSResult;
1155 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
1156 const MachineInstr &MI = *SU.getInstr();
1157 for (const MachineOperand &MO : MI.operands()) {
1158 if (!MO.isReg())
1159 continue;
1160 if (!MO.readsReg())
1161 continue;
1162 if (TrackLaneMasks && !MO.isUse())
1163 continue;
1165 Register Reg = MO.getReg();
1166 if (!Reg.isVirtual())
1167 continue;
1169 // Ignore re-defs.
1170 if (TrackLaneMasks) {
1171 bool FoundDef = false;
1172 for (const MachineOperand &MO2 : MI.all_defs()) {
1173 if (MO2.getReg() == Reg && !MO2.isDead()) {
1174 FoundDef = true;
1175 break;
1178 if (FoundDef)
1179 continue;
1182 // Record this local VReg use.
1183 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
1184 for (; UI != VRegUses.end(); ++UI) {
1185 if (UI->SU == &SU)
1186 break;
1188 if (UI == VRegUses.end())
1189 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
1193 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
1194 /// crossing a scheduling boundary. [begin, end) includes all instructions in
1195 /// the region, including the boundary itself and single-instruction regions
1196 /// that don't get scheduled.
1197 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
1198 MachineBasicBlock::iterator begin,
1199 MachineBasicBlock::iterator end,
1200 unsigned regioninstrs)
1202 // ScheduleDAGMI initializes SchedImpl's per-region policy.
1203 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
1205 // For convenience remember the end of the liveness region.
1206 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
1208 SUPressureDiffs.clear();
1210 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1211 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1213 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1214 "ShouldTrackLaneMasks requires ShouldTrackPressure");
1217 // Setup the register pressure trackers for the top scheduled and bottom
1218 // scheduled regions.
1219 void ScheduleDAGMILive::initRegPressure() {
1220 VRegUses.clear();
1221 VRegUses.setUniverse(MRI.getNumVirtRegs());
1222 for (SUnit &SU : SUnits)
1223 collectVRegUses(SU);
1225 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1226 ShouldTrackLaneMasks, false);
1227 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1228 ShouldTrackLaneMasks, false);
1230 // Close the RPTracker to finalize live ins.
1231 RPTracker.closeRegion();
1233 LLVM_DEBUG(RPTracker.dump());
1235 // Initialize the live ins and live outs.
1236 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1237 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1239 // Close one end of the tracker so we can call
1240 // getMaxUpward/DownwardPressureDelta before advancing across any
1241 // instructions. This converts currently live regs into live ins/outs.
1242 TopRPTracker.closeTop();
1243 BotRPTracker.closeBottom();
1245 BotRPTracker.initLiveThru(RPTracker);
1246 if (!BotRPTracker.getLiveThru().empty()) {
1247 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1248 LLVM_DEBUG(dbgs() << "Live Thru: ";
1249 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1252 // For each live out vreg reduce the pressure change associated with other
1253 // uses of the same vreg below the live-out reaching def.
1254 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1256 // Account for liveness generated by the region boundary.
1257 if (LiveRegionEnd != RegionEnd) {
1258 SmallVector<RegisterMaskPair, 8> LiveUses;
1259 BotRPTracker.recede(&LiveUses);
1260 updatePressureDiffs(LiveUses);
1263 LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1264 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1265 dbgs() << "Bottom Pressure:\n";
1266 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1268 assert((BotRPTracker.getPos() == RegionEnd ||
1269 (RegionEnd->isDebugInstr() &&
1270 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1271 "Can't find the region bottom");
1273 // Cache the list of excess pressure sets in this region. This will also track
1274 // the max pressure in the scheduled code for these sets.
1275 RegionCriticalPSets.clear();
1276 const std::vector<unsigned> &RegionPressure =
1277 RPTracker.getPressure().MaxSetPressure;
1278 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1279 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1280 if (RegionPressure[i] > Limit) {
1281 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1282 << " Actual " << RegionPressure[i] << "\n");
1283 RegionCriticalPSets.push_back(PressureChange(i));
1286 LLVM_DEBUG(dbgs() << "Excess PSets: ";
1287 for (const PressureChange &RCPS
1288 : RegionCriticalPSets) dbgs()
1289 << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1290 dbgs() << "\n");
1293 void ScheduleDAGMILive::
1294 updateScheduledPressure(const SUnit *SU,
1295 const std::vector<unsigned> &NewMaxPressure) {
1296 const PressureDiff &PDiff = getPressureDiff(SU);
1297 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1298 for (const PressureChange &PC : PDiff) {
1299 if (!PC.isValid())
1300 break;
1301 unsigned ID = PC.getPSet();
1302 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1303 ++CritIdx;
1304 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1305 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1306 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1307 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1309 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1310 if (NewMaxPressure[ID] >= Limit - 2) {
1311 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
1312 << NewMaxPressure[ID]
1313 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1314 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1315 << " livethru)\n");
1320 /// Update the PressureDiff array for liveness after scheduling this
1321 /// instruction.
1322 void ScheduleDAGMILive::updatePressureDiffs(
1323 ArrayRef<RegisterMaskPair> LiveUses) {
1324 for (const RegisterMaskPair &P : LiveUses) {
1325 Register Reg = P.RegUnit;
1326 /// FIXME: Currently assuming single-use physregs.
1327 if (!Reg.isVirtual())
1328 continue;
1330 if (ShouldTrackLaneMasks) {
1331 // If the register has just become live then other uses won't change
1332 // this fact anymore => decrement pressure.
1333 // If the register has just become dead then other uses make it come
1334 // back to life => increment pressure.
1335 bool Decrement = P.LaneMask.any();
1337 for (const VReg2SUnit &V2SU
1338 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1339 SUnit &SU = *V2SU.SU;
1340 if (SU.isScheduled || &SU == &ExitSU)
1341 continue;
1343 PressureDiff &PDiff = getPressureDiff(&SU);
1344 PDiff.addPressureChange(Reg, Decrement, &MRI);
1345 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") "
1346 << printReg(Reg, TRI) << ':'
1347 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1348 dbgs() << " to "; PDiff.dump(*TRI););
1350 } else {
1351 assert(P.LaneMask.any());
1352 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1353 // This may be called before CurrentBottom has been initialized. However,
1354 // BotRPTracker must have a valid position. We want the value live into the
1355 // instruction or live out of the block, so ask for the previous
1356 // instruction's live-out.
1357 const LiveInterval &LI = LIS->getInterval(Reg);
1358 VNInfo *VNI;
1359 MachineBasicBlock::const_iterator I =
1360 nextIfDebug(BotRPTracker.getPos(), BB->end());
1361 if (I == BB->end())
1362 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1363 else {
1364 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1365 VNI = LRQ.valueIn();
1367 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1368 assert(VNI && "No live value at use.");
1369 for (const VReg2SUnit &V2SU
1370 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1371 SUnit *SU = V2SU.SU;
1372 // If this use comes before the reaching def, it cannot be a last use,
1373 // so decrease its pressure change.
1374 if (!SU->isScheduled && SU != &ExitSU) {
1375 LiveQueryResult LRQ =
1376 LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1377 if (LRQ.valueIn() == VNI) {
1378 PressureDiff &PDiff = getPressureDiff(SU);
1379 PDiff.addPressureChange(Reg, true, &MRI);
1380 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
1381 << *SU->getInstr();
1382 dbgs() << " to "; PDiff.dump(*TRI););
1390 void ScheduleDAGMILive::dump() const {
1391 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1392 if (EntrySU.getInstr() != nullptr)
1393 dumpNodeAll(EntrySU);
1394 for (const SUnit &SU : SUnits) {
1395 dumpNodeAll(SU);
1396 if (ShouldTrackPressure) {
1397 dbgs() << " Pressure Diff : ";
1398 getPressureDiff(&SU).dump(*TRI);
1400 dbgs() << " Single Issue : ";
1401 if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1402 SchedModel.mustEndGroup(SU.getInstr()))
1403 dbgs() << "true;";
1404 else
1405 dbgs() << "false;";
1406 dbgs() << '\n';
1408 if (ExitSU.getInstr() != nullptr)
1409 dumpNodeAll(ExitSU);
1410 #endif
1413 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1414 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1415 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1417 /// This is a skeletal driver, with all the functionality pushed into helpers,
1418 /// so that it can be easily extended by experimental schedulers. Generally,
1419 /// implementing MachineSchedStrategy should be sufficient to implement a new
1420 /// scheduling algorithm. However, if a scheduler further subclasses
1421 /// ScheduleDAGMILive then it will want to override this virtual method in order
1422 /// to update any specialized state.
1423 void ScheduleDAGMILive::schedule() {
1424 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1425 LLVM_DEBUG(SchedImpl->dumpPolicy());
1426 buildDAGWithRegPressure();
1428 postProcessDAG();
1430 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1431 findRootsAndBiasEdges(TopRoots, BotRoots);
1433 // Initialize the strategy before modifying the DAG.
1434 // This may initialize a DFSResult to be used for queue priority.
1435 SchedImpl->initialize(this);
1437 LLVM_DEBUG(dump());
1438 if (PrintDAGs) dump();
1439 if (ViewMISchedDAGs) viewGraph();
1441 // Initialize ready queues now that the DAG and priority data are finalized.
1442 initQueues(TopRoots, BotRoots);
1444 bool IsTopNode = false;
1445 while (true) {
1446 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1447 SUnit *SU = SchedImpl->pickNode(IsTopNode);
1448 if (!SU) break;
1450 assert(!SU->isScheduled && "Node already scheduled");
1451 if (!checkSchedLimit())
1452 break;
1454 scheduleMI(SU, IsTopNode);
1456 if (DFSResult) {
1457 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1458 if (!ScheduledTrees.test(SubtreeID)) {
1459 ScheduledTrees.set(SubtreeID);
1460 DFSResult->scheduleTree(SubtreeID);
1461 SchedImpl->scheduleTree(SubtreeID);
1465 // Notify the scheduling strategy after updating the DAG.
1466 SchedImpl->schedNode(SU, IsTopNode);
1468 updateQueues(SU, IsTopNode);
1470 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1472 placeDebugValues();
1474 LLVM_DEBUG({
1475 dbgs() << "*** Final schedule for "
1476 << printMBBReference(*begin()->getParent()) << " ***\n";
1477 dumpSchedule();
1478 dbgs() << '\n';
1482 /// Build the DAG and setup three register pressure trackers.
1483 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1484 if (!ShouldTrackPressure) {
1485 RPTracker.reset();
1486 RegionCriticalPSets.clear();
1487 buildSchedGraph(AA);
1488 return;
1491 // Initialize the register pressure tracker used by buildSchedGraph.
1492 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1493 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1495 // Account for liveness generate by the region boundary.
1496 if (LiveRegionEnd != RegionEnd)
1497 RPTracker.recede();
1499 // Build the DAG, and compute current register pressure.
1500 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1502 // Initialize top/bottom trackers after computing region pressure.
1503 initRegPressure();
1506 void ScheduleDAGMILive::computeDFSResult() {
1507 if (!DFSResult)
1508 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1509 DFSResult->clear();
1510 ScheduledTrees.clear();
1511 DFSResult->resize(SUnits.size());
1512 DFSResult->compute(SUnits);
1513 ScheduledTrees.resize(DFSResult->getNumSubtrees());
1516 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1517 /// only provides the critical path for single block loops. To handle loops that
1518 /// span blocks, we could use the vreg path latencies provided by
1519 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1520 /// available for use in the scheduler.
1522 /// The cyclic path estimation identifies a def-use pair that crosses the back
1523 /// edge and considers the depth and height of the nodes. For example, consider
1524 /// the following instruction sequence where each instruction has unit latency
1525 /// and defines an eponymous virtual register:
1527 /// a->b(a,c)->c(b)->d(c)->exit
1529 /// The cyclic critical path is a two cycles: b->c->b
1530 /// The acyclic critical path is four cycles: a->b->c->d->exit
1531 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1532 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1533 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1534 /// LiveInDepth = depth(b) = len(a->b) = 1
1536 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1537 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1538 /// CyclicCriticalPath = min(2, 2) = 2
1540 /// This could be relevant to PostRA scheduling, but is currently implemented
1541 /// assuming LiveIntervals.
1542 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1543 // This only applies to single block loop.
1544 if (!BB->isSuccessor(BB))
1545 return 0;
1547 unsigned MaxCyclicLatency = 0;
1548 // Visit each live out vreg def to find def/use pairs that cross iterations.
1549 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1550 Register Reg = P.RegUnit;
1551 if (!Reg.isVirtual())
1552 continue;
1553 const LiveInterval &LI = LIS->getInterval(Reg);
1554 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1555 if (!DefVNI)
1556 continue;
1558 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1559 const SUnit *DefSU = getSUnit(DefMI);
1560 if (!DefSU)
1561 continue;
1563 unsigned LiveOutHeight = DefSU->getHeight();
1564 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1565 // Visit all local users of the vreg def.
1566 for (const VReg2SUnit &V2SU
1567 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1568 SUnit *SU = V2SU.SU;
1569 if (SU == &ExitSU)
1570 continue;
1572 // Only consider uses of the phi.
1573 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1574 if (!LRQ.valueIn()->isPHIDef())
1575 continue;
1577 // Assume that a path spanning two iterations is a cycle, which could
1578 // overestimate in strange cases. This allows cyclic latency to be
1579 // estimated as the minimum slack of the vreg's depth or height.
1580 unsigned CyclicLatency = 0;
1581 if (LiveOutDepth > SU->getDepth())
1582 CyclicLatency = LiveOutDepth - SU->getDepth();
1584 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1585 if (LiveInHeight > LiveOutHeight) {
1586 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1587 CyclicLatency = LiveInHeight - LiveOutHeight;
1588 } else
1589 CyclicLatency = 0;
1591 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1592 << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1593 if (CyclicLatency > MaxCyclicLatency)
1594 MaxCyclicLatency = CyclicLatency;
1597 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1598 return MaxCyclicLatency;
1601 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1602 /// the Top RP tracker in case the region beginning has changed.
1603 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1604 ArrayRef<SUnit*> BotRoots) {
1605 ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1606 if (ShouldTrackPressure) {
1607 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1608 TopRPTracker.setPos(CurrentTop);
1612 /// Move an instruction and update register pressure.
1613 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1614 // Move the instruction to its new location in the instruction stream.
1615 MachineInstr *MI = SU->getInstr();
1617 if (IsTopNode) {
1618 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1619 if (&*CurrentTop == MI)
1620 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1621 else {
1622 moveInstruction(MI, CurrentTop);
1623 TopRPTracker.setPos(MI);
1626 if (ShouldTrackPressure) {
1627 // Update top scheduled pressure.
1628 RegisterOperands RegOpers;
1629 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1630 if (ShouldTrackLaneMasks) {
1631 // Adjust liveness and add missing dead+read-undef flags.
1632 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1633 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1634 } else {
1635 // Adjust for missing dead-def flags.
1636 RegOpers.detectDeadDefs(*MI, *LIS);
1639 TopRPTracker.advance(RegOpers);
1640 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1641 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1642 TopRPTracker.getRegSetPressureAtPos(), TRI););
1644 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1646 } else {
1647 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1648 MachineBasicBlock::iterator priorII =
1649 priorNonDebug(CurrentBottom, CurrentTop);
1650 if (&*priorII == MI)
1651 CurrentBottom = priorII;
1652 else {
1653 if (&*CurrentTop == MI) {
1654 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1655 TopRPTracker.setPos(CurrentTop);
1657 moveInstruction(MI, CurrentBottom);
1658 CurrentBottom = MI;
1659 BotRPTracker.setPos(CurrentBottom);
1661 if (ShouldTrackPressure) {
1662 RegisterOperands RegOpers;
1663 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1664 if (ShouldTrackLaneMasks) {
1665 // Adjust liveness and add missing dead+read-undef flags.
1666 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1667 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1668 } else {
1669 // Adjust for missing dead-def flags.
1670 RegOpers.detectDeadDefs(*MI, *LIS);
1673 if (BotRPTracker.getPos() != CurrentBottom)
1674 BotRPTracker.recedeSkipDebugValues();
1675 SmallVector<RegisterMaskPair, 8> LiveUses;
1676 BotRPTracker.recede(RegOpers, &LiveUses);
1677 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1678 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1679 BotRPTracker.getRegSetPressureAtPos(), TRI););
1681 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1682 updatePressureDiffs(LiveUses);
1687 //===----------------------------------------------------------------------===//
1688 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1689 //===----------------------------------------------------------------------===//
1691 namespace {
1693 /// Post-process the DAG to create cluster edges between neighboring
1694 /// loads or between neighboring stores.
1695 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1696 struct MemOpInfo {
1697 SUnit *SU;
1698 SmallVector<const MachineOperand *, 4> BaseOps;
1699 int64_t Offset;
1700 unsigned Width;
1701 bool OffsetIsScalable;
1703 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1704 int64_t Offset, bool OffsetIsScalable, unsigned Width)
1705 : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1706 Width(Width), OffsetIsScalable(OffsetIsScalable) {}
1708 static bool Compare(const MachineOperand *const &A,
1709 const MachineOperand *const &B) {
1710 if (A->getType() != B->getType())
1711 return A->getType() < B->getType();
1712 if (A->isReg())
1713 return A->getReg() < B->getReg();
1714 if (A->isFI()) {
1715 const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1716 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1717 bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1718 TargetFrameLowering::StackGrowsDown;
1719 return StackGrowsDown ? A->getIndex() > B->getIndex()
1720 : A->getIndex() < B->getIndex();
1723 llvm_unreachable("MemOpClusterMutation only supports register or frame "
1724 "index bases.");
1727 bool operator<(const MemOpInfo &RHS) const {
1728 // FIXME: Don't compare everything twice. Maybe use C++20 three way
1729 // comparison instead when it's available.
1730 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1731 RHS.BaseOps.begin(), RHS.BaseOps.end(),
1732 Compare))
1733 return true;
1734 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1735 BaseOps.begin(), BaseOps.end(), Compare))
1736 return false;
1737 if (Offset != RHS.Offset)
1738 return Offset < RHS.Offset;
1739 return SU->NodeNum < RHS.SU->NodeNum;
1743 const TargetInstrInfo *TII;
1744 const TargetRegisterInfo *TRI;
1745 bool IsLoad;
1746 bool ReorderWhileClustering;
1748 public:
1749 BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1750 const TargetRegisterInfo *tri, bool IsLoad,
1751 bool ReorderWhileClustering)
1752 : TII(tii), TRI(tri), IsLoad(IsLoad),
1753 ReorderWhileClustering(ReorderWhileClustering) {}
1755 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1757 protected:
1758 void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster,
1759 ScheduleDAGInstrs *DAG);
1760 void collectMemOpRecords(std::vector<SUnit> &SUnits,
1761 SmallVectorImpl<MemOpInfo> &MemOpRecords);
1762 bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1763 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups);
1766 class StoreClusterMutation : public BaseMemOpClusterMutation {
1767 public:
1768 StoreClusterMutation(const TargetInstrInfo *tii,
1769 const TargetRegisterInfo *tri,
1770 bool ReorderWhileClustering)
1771 : BaseMemOpClusterMutation(tii, tri, false, ReorderWhileClustering) {}
1774 class LoadClusterMutation : public BaseMemOpClusterMutation {
1775 public:
1776 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri,
1777 bool ReorderWhileClustering)
1778 : BaseMemOpClusterMutation(tii, tri, true, ReorderWhileClustering) {}
1781 } // end anonymous namespace
1783 namespace llvm {
1785 std::unique_ptr<ScheduleDAGMutation>
1786 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1787 const TargetRegisterInfo *TRI,
1788 bool ReorderWhileClustering) {
1789 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(
1790 TII, TRI, ReorderWhileClustering)
1791 : nullptr;
1794 std::unique_ptr<ScheduleDAGMutation>
1795 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1796 const TargetRegisterInfo *TRI,
1797 bool ReorderWhileClustering) {
1798 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(
1799 TII, TRI, ReorderWhileClustering)
1800 : nullptr;
1803 } // end namespace llvm
1805 // Sorting all the loads/stores first, then for each load/store, checking the
1806 // following load/store one by one, until reach the first non-dependent one and
1807 // call target hook to see if they can cluster.
1808 // If FastCluster is enabled, we assume that, all the loads/stores have been
1809 // preprocessed and now, they didn't have dependencies on each other.
1810 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1811 ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster,
1812 ScheduleDAGInstrs *DAG) {
1813 // Keep track of the current cluster length and bytes for each SUnit.
1814 DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo;
1816 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1817 // cluster mem ops collected within `MemOpRecords` array.
1818 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1819 // Decision to cluster mem ops is taken based on target dependent logic
1820 auto MemOpa = MemOpRecords[Idx];
1822 // Seek for the next load/store to do the cluster.
1823 unsigned NextIdx = Idx + 1;
1824 for (; NextIdx < End; ++NextIdx)
1825 // Skip if MemOpb has been clustered already or has dependency with
1826 // MemOpa.
1827 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1828 (FastCluster ||
1829 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1830 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))
1831 break;
1832 if (NextIdx == End)
1833 continue;
1835 auto MemOpb = MemOpRecords[NextIdx];
1836 unsigned ClusterLength = 2;
1837 unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width;
1838 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1839 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1840 CurrentClusterBytes =
1841 SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width;
1844 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpa.Offset,
1845 MemOpa.OffsetIsScalable, MemOpb.BaseOps,
1846 MemOpb.Offset, MemOpb.OffsetIsScalable,
1847 ClusterLength, CurrentClusterBytes))
1848 continue;
1850 SUnit *SUa = MemOpa.SU;
1851 SUnit *SUb = MemOpb.SU;
1852 if (!ReorderWhileClustering && SUa->NodeNum > SUb->NodeNum)
1853 std::swap(SUa, SUb);
1855 // FIXME: Is this check really required?
1856 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1857 continue;
1859 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1860 << SUb->NodeNum << ")\n");
1861 ++NumClustered;
1863 if (IsLoad) {
1864 // Copy successor edges from SUa to SUb. Interleaving computation
1865 // dependent on SUa can prevent load combining due to register reuse.
1866 // Predecessor edges do not need to be copied from SUb to SUa since
1867 // nearby loads should have effectively the same inputs.
1868 for (const SDep &Succ : SUa->Succs) {
1869 if (Succ.getSUnit() == SUb)
1870 continue;
1871 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum
1872 << ")\n");
1873 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1875 } else {
1876 // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1877 // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1878 // do not need to be copied from SUa to SUb since no one will depend
1879 // on stores.
1880 // Notice that, we don't need to care about the memory dependency as
1881 // we won't try to cluster them if they have any memory dependency.
1882 for (const SDep &Pred : SUb->Preds) {
1883 if (Pred.getSUnit() == SUa)
1884 continue;
1885 LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum
1886 << ")\n");
1887 DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1891 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1892 CurrentClusterBytes};
1894 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength
1895 << ", Curr cluster bytes: " << CurrentClusterBytes
1896 << "\n");
1900 void BaseMemOpClusterMutation::collectMemOpRecords(
1901 std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1902 for (auto &SU : SUnits) {
1903 if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1904 (!IsLoad && !SU.getInstr()->mayStore()))
1905 continue;
1907 const MachineInstr &MI = *SU.getInstr();
1908 SmallVector<const MachineOperand *, 4> BaseOps;
1909 int64_t Offset;
1910 bool OffsetIsScalable;
1911 unsigned Width;
1912 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1913 OffsetIsScalable, Width, TRI)) {
1914 MemOpRecords.push_back(
1915 MemOpInfo(&SU, BaseOps, Offset, OffsetIsScalable, Width));
1917 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1918 << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1919 << ", Width: " << Width << "\n");
1921 #ifndef NDEBUG
1922 for (const auto *Op : BaseOps)
1923 assert(Op);
1924 #endif
1928 bool BaseMemOpClusterMutation::groupMemOps(
1929 ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1930 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) {
1931 bool FastCluster =
1932 ForceFastCluster ||
1933 MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold;
1935 for (const auto &MemOp : MemOps) {
1936 unsigned ChainPredID = DAG->SUnits.size();
1937 if (FastCluster) {
1938 for (const SDep &Pred : MemOp.SU->Preds) {
1939 // We only want to cluster the mem ops that have the same ctrl(non-data)
1940 // pred so that they didn't have ctrl dependency for each other. But for
1941 // store instrs, we can still cluster them if the pred is load instr.
1942 if ((Pred.isCtrl() &&
1943 (IsLoad ||
1944 (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) &&
1945 !Pred.isArtificial()) {
1946 ChainPredID = Pred.getSUnit()->NodeNum;
1947 break;
1950 } else
1951 ChainPredID = 0;
1953 Groups[ChainPredID].push_back(MemOp);
1955 return FastCluster;
1958 /// Callback from DAG postProcessing to create cluster edges for loads/stores.
1959 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1960 // Collect all the clusterable loads/stores
1961 SmallVector<MemOpInfo, 32> MemOpRecords;
1962 collectMemOpRecords(DAG->SUnits, MemOpRecords);
1964 if (MemOpRecords.size() < 2)
1965 return;
1967 // Put the loads/stores without dependency into the same group with some
1968 // heuristic if the DAG is too complex to avoid compiling time blow up.
1969 // Notice that, some fusion pair could be lost with this.
1970 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups;
1971 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups);
1973 for (auto &Group : Groups) {
1974 // Sorting the loads/stores, so that, we can stop the cluster as early as
1975 // possible.
1976 llvm::sort(Group.second);
1978 // Trying to cluster all the neighboring loads/stores.
1979 clusterNeighboringMemOps(Group.second, FastCluster, DAG);
1983 //===----------------------------------------------------------------------===//
1984 // CopyConstrain - DAG post-processing to encourage copy elimination.
1985 //===----------------------------------------------------------------------===//
1987 namespace {
1989 /// Post-process the DAG to create weak edges from all uses of a copy to
1990 /// the one use that defines the copy's source vreg, most likely an induction
1991 /// variable increment.
1992 class CopyConstrain : public ScheduleDAGMutation {
1993 // Transient state.
1994 SlotIndex RegionBeginIdx;
1996 // RegionEndIdx is the slot index of the last non-debug instruction in the
1997 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1998 SlotIndex RegionEndIdx;
2000 public:
2001 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
2003 void apply(ScheduleDAGInstrs *DAGInstrs) override;
2005 protected:
2006 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
2009 } // end anonymous namespace
2011 namespace llvm {
2013 std::unique_ptr<ScheduleDAGMutation>
2014 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
2015 const TargetRegisterInfo *TRI) {
2016 return std::make_unique<CopyConstrain>(TII, TRI);
2019 } // end namespace llvm
2021 /// constrainLocalCopy handles two possibilities:
2022 /// 1) Local src:
2023 /// I0: = dst
2024 /// I1: src = ...
2025 /// I2: = dst
2026 /// I3: dst = src (copy)
2027 /// (create pred->succ edges I0->I1, I2->I1)
2029 /// 2) Local copy:
2030 /// I0: dst = src (copy)
2031 /// I1: = dst
2032 /// I2: src = ...
2033 /// I3: = dst
2034 /// (create pred->succ edges I1->I2, I3->I2)
2036 /// Although the MachineScheduler is currently constrained to single blocks,
2037 /// this algorithm should handle extended blocks. An EBB is a set of
2038 /// contiguously numbered blocks such that the previous block in the EBB is
2039 /// always the single predecessor.
2040 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
2041 LiveIntervals *LIS = DAG->getLIS();
2042 MachineInstr *Copy = CopySU->getInstr();
2044 // Check for pure vreg copies.
2045 const MachineOperand &SrcOp = Copy->getOperand(1);
2046 Register SrcReg = SrcOp.getReg();
2047 if (!SrcReg.isVirtual() || !SrcOp.readsReg())
2048 return;
2050 const MachineOperand &DstOp = Copy->getOperand(0);
2051 Register DstReg = DstOp.getReg();
2052 if (!DstReg.isVirtual() || DstOp.isDead())
2053 return;
2055 // Check if either the dest or source is local. If it's live across a back
2056 // edge, it's not local. Note that if both vregs are live across the back
2057 // edge, we cannot successfully contrain the copy without cyclic scheduling.
2058 // If both the copy's source and dest are local live intervals, then we
2059 // should treat the dest as the global for the purpose of adding
2060 // constraints. This adds edges from source's other uses to the copy.
2061 unsigned LocalReg = SrcReg;
2062 unsigned GlobalReg = DstReg;
2063 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
2064 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
2065 LocalReg = DstReg;
2066 GlobalReg = SrcReg;
2067 LocalLI = &LIS->getInterval(LocalReg);
2068 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
2069 return;
2071 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
2073 // Find the global segment after the start of the local LI.
2074 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
2075 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
2076 // local live range. We could create edges from other global uses to the local
2077 // start, but the coalescer should have already eliminated these cases, so
2078 // don't bother dealing with it.
2079 if (GlobalSegment == GlobalLI->end())
2080 return;
2082 // If GlobalSegment is killed at the LocalLI->start, the call to find()
2083 // returned the next global segment. But if GlobalSegment overlaps with
2084 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
2085 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
2086 if (GlobalSegment->contains(LocalLI->beginIndex()))
2087 ++GlobalSegment;
2089 if (GlobalSegment == GlobalLI->end())
2090 return;
2092 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
2093 if (GlobalSegment != GlobalLI->begin()) {
2094 // Two address defs have no hole.
2095 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
2096 GlobalSegment->start)) {
2097 return;
2099 // If the prior global segment may be defined by the same two-address
2100 // instruction that also defines LocalLI, then can't make a hole here.
2101 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
2102 LocalLI->beginIndex())) {
2103 return;
2105 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
2106 // it would be a disconnected component in the live range.
2107 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
2108 "Disconnected LRG within the scheduling region.");
2110 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
2111 if (!GlobalDef)
2112 return;
2114 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
2115 if (!GlobalSU)
2116 return;
2118 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
2119 // constraining the uses of the last local def to precede GlobalDef.
2120 SmallVector<SUnit*,8> LocalUses;
2121 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
2122 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
2123 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
2124 for (const SDep &Succ : LastLocalSU->Succs) {
2125 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
2126 continue;
2127 if (Succ.getSUnit() == GlobalSU)
2128 continue;
2129 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
2130 return;
2131 LocalUses.push_back(Succ.getSUnit());
2133 // Open the top of the GlobalLI hole by constraining any earlier global uses
2134 // to precede the start of LocalLI.
2135 SmallVector<SUnit*,8> GlobalUses;
2136 MachineInstr *FirstLocalDef =
2137 LIS->getInstructionFromIndex(LocalLI->beginIndex());
2138 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
2139 for (const SDep &Pred : GlobalSU->Preds) {
2140 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
2141 continue;
2142 if (Pred.getSUnit() == FirstLocalSU)
2143 continue;
2144 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
2145 return;
2146 GlobalUses.push_back(Pred.getSUnit());
2148 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
2149 // Add the weak edges.
2150 for (SUnit *LU : LocalUses) {
2151 LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU("
2152 << GlobalSU->NodeNum << ")\n");
2153 DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak));
2155 for (SUnit *GU : GlobalUses) {
2156 LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU("
2157 << FirstLocalSU->NodeNum << ")\n");
2158 DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak));
2162 /// Callback from DAG postProcessing to create weak edges to encourage
2163 /// copy elimination.
2164 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
2165 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
2166 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
2168 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
2169 if (FirstPos == DAG->end())
2170 return;
2171 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
2172 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
2173 *priorNonDebug(DAG->end(), DAG->begin()));
2175 for (SUnit &SU : DAG->SUnits) {
2176 if (!SU.getInstr()->isCopy())
2177 continue;
2179 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
2183 //===----------------------------------------------------------------------===//
2184 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
2185 // and possibly other custom schedulers.
2186 //===----------------------------------------------------------------------===//
2188 static const unsigned InvalidCycle = ~0U;
2190 SchedBoundary::~SchedBoundary() { delete HazardRec; }
2192 /// Given a Count of resource usage and a Latency value, return true if a
2193 /// SchedBoundary becomes resource limited.
2194 /// If we are checking after scheduling a node, we should return true when
2195 /// we just reach the resource limit.
2196 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
2197 unsigned Latency, bool AfterSchedNode) {
2198 int ResCntFactor = (int)(Count - (Latency * LFactor));
2199 if (AfterSchedNode)
2200 return ResCntFactor >= (int)LFactor;
2201 else
2202 return ResCntFactor > (int)LFactor;
2205 void SchedBoundary::reset() {
2206 // A new HazardRec is created for each DAG and owned by SchedBoundary.
2207 // Destroying and reconstructing it is very expensive though. So keep
2208 // invalid, placeholder HazardRecs.
2209 if (HazardRec && HazardRec->isEnabled()) {
2210 delete HazardRec;
2211 HazardRec = nullptr;
2213 Available.clear();
2214 Pending.clear();
2215 CheckPending = false;
2216 CurrCycle = 0;
2217 CurrMOps = 0;
2218 MinReadyCycle = std::numeric_limits<unsigned>::max();
2219 ExpectedLatency = 0;
2220 DependentLatency = 0;
2221 RetiredMOps = 0;
2222 MaxExecutedResCount = 0;
2223 ZoneCritResIdx = 0;
2224 IsResourceLimited = false;
2225 ReservedCycles.clear();
2226 ReservedResourceSegments.clear();
2227 ReservedCyclesIndex.clear();
2228 ResourceGroupSubUnitMasks.clear();
2229 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2230 // Track the maximum number of stall cycles that could arise either from the
2231 // latency of a DAG edge or the number of cycles that a processor resource is
2232 // reserved (SchedBoundary::ReservedCycles).
2233 MaxObservedStall = 0;
2234 #endif
2235 // Reserve a zero-count for invalid CritResIdx.
2236 ExecutedResCounts.resize(1);
2237 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
2240 void SchedRemainder::
2241 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
2242 reset();
2243 if (!SchedModel->hasInstrSchedModel())
2244 return;
2245 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
2246 for (SUnit &SU : DAG->SUnits) {
2247 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
2248 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
2249 * SchedModel->getMicroOpFactor();
2250 for (TargetSchedModel::ProcResIter
2251 PI = SchedModel->getWriteProcResBegin(SC),
2252 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2253 unsigned PIdx = PI->ProcResourceIdx;
2254 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2255 assert(PI->ReleaseAtCycle >= PI->AcquireAtCycle);
2256 RemainingCounts[PIdx] +=
2257 (Factor * (PI->ReleaseAtCycle - PI->AcquireAtCycle));
2262 void SchedBoundary::
2263 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
2264 reset();
2265 DAG = dag;
2266 SchedModel = smodel;
2267 Rem = rem;
2268 if (SchedModel->hasInstrSchedModel()) {
2269 unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2270 ReservedCyclesIndex.resize(ResourceCount);
2271 ExecutedResCounts.resize(ResourceCount);
2272 ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0));
2273 unsigned NumUnits = 0;
2275 for (unsigned i = 0; i < ResourceCount; ++i) {
2276 ReservedCyclesIndex[i] = NumUnits;
2277 NumUnits += SchedModel->getProcResource(i)->NumUnits;
2278 if (isUnbufferedGroup(i)) {
2279 auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin;
2280 for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits;
2281 U != UE; ++U)
2282 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]);
2286 ReservedCycles.resize(NumUnits, InvalidCycle);
2290 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2291 /// these "soft stalls" differently than the hard stall cycles based on CPU
2292 /// resources and computed by checkHazard(). A fully in-order model
2293 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
2294 /// available for scheduling until they are ready. However, a weaker in-order
2295 /// model may use this for heuristics. For example, if a processor has in-order
2296 /// behavior when reading certain resources, this may come into play.
2297 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2298 if (!SU->isUnbuffered)
2299 return 0;
2301 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2302 if (ReadyCycle > CurrCycle)
2303 return ReadyCycle - CurrCycle;
2304 return 0;
2307 /// Compute the next cycle at which the given processor resource unit
2308 /// can be scheduled.
2309 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2310 unsigned ReleaseAtCycle,
2311 unsigned AcquireAtCycle) {
2312 if (SchedModel && SchedModel->enableIntervals()) {
2313 if (isTop())
2314 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromTop(
2315 CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2317 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromBottom(
2318 CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2321 unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2322 // If this resource has never been used, always return cycle zero.
2323 if (NextUnreserved == InvalidCycle)
2324 return CurrCycle;
2325 // For bottom-up scheduling add the cycles needed for the current operation.
2326 if (!isTop())
2327 NextUnreserved = std::max(CurrCycle, NextUnreserved + ReleaseAtCycle);
2328 return NextUnreserved;
2331 /// Compute the next cycle at which the given processor resource can be
2332 /// scheduled. Returns the next cycle and the index of the processor resource
2333 /// instance in the reserved cycles vector.
2334 std::pair<unsigned, unsigned>
2335 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx,
2336 unsigned ReleaseAtCycle,
2337 unsigned AcquireAtCycle) {
2338 if (MischedDetailResourceBooking) {
2339 LLVM_DEBUG(dbgs() << " Resource booking (@" << CurrCycle << "c): \n");
2340 LLVM_DEBUG(dumpReservedCycles());
2341 LLVM_DEBUG(dbgs() << " getNextResourceCycle (@" << CurrCycle << "c): \n");
2343 unsigned MinNextUnreserved = InvalidCycle;
2344 unsigned InstanceIdx = 0;
2345 unsigned StartIndex = ReservedCyclesIndex[PIdx];
2346 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2347 assert(NumberOfInstances > 0 &&
2348 "Cannot have zero instances of a ProcResource");
2350 if (isUnbufferedGroup(PIdx)) {
2351 // If any subunits are used by the instruction, report that the
2352 // subunits of the resource group are available at the first cycle
2353 // in which the unit is available, effectively removing the group
2354 // record from hazarding and basing the hazarding decisions on the
2355 // subunit records. Otherwise, choose the first available instance
2356 // from among the subunits. Specifications which assign cycles to
2357 // both the subunits and the group or which use an unbuffered
2358 // group with buffered subunits will appear to schedule
2359 // strangely. In the first case, the additional cycles for the
2360 // group will be ignored. In the second, the group will be
2361 // ignored entirely.
2362 for (const MCWriteProcResEntry &PE :
2363 make_range(SchedModel->getWriteProcResBegin(SC),
2364 SchedModel->getWriteProcResEnd(SC)))
2365 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx])
2366 return std::make_pair(getNextResourceCycleByInstance(
2367 StartIndex, ReleaseAtCycle, AcquireAtCycle),
2368 StartIndex);
2370 auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin;
2371 for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) {
2372 unsigned NextUnreserved, NextInstanceIdx;
2373 std::tie(NextUnreserved, NextInstanceIdx) =
2374 getNextResourceCycle(SC, SubUnits[I], ReleaseAtCycle, AcquireAtCycle);
2375 if (MinNextUnreserved > NextUnreserved) {
2376 InstanceIdx = NextInstanceIdx;
2377 MinNextUnreserved = NextUnreserved;
2380 return std::make_pair(MinNextUnreserved, InstanceIdx);
2383 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2384 ++I) {
2385 unsigned NextUnreserved =
2386 getNextResourceCycleByInstance(I, ReleaseAtCycle, AcquireAtCycle);
2387 if (MischedDetailResourceBooking)
2388 LLVM_DEBUG(dbgs() << " Instance " << I - StartIndex << " available @"
2389 << NextUnreserved << "c\n");
2390 if (MinNextUnreserved > NextUnreserved) {
2391 InstanceIdx = I;
2392 MinNextUnreserved = NextUnreserved;
2395 if (MischedDetailResourceBooking)
2396 LLVM_DEBUG(dbgs() << " selecting " << SchedModel->getResourceName(PIdx)
2397 << "[" << InstanceIdx - StartIndex << "]"
2398 << " available @" << MinNextUnreserved << "c"
2399 << "\n");
2400 return std::make_pair(MinNextUnreserved, InstanceIdx);
2403 /// Does this SU have a hazard within the current instruction group.
2405 /// The scheduler supports two modes of hazard recognition. The first is the
2406 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2407 /// supports highly complicated in-order reservation tables
2408 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2410 /// The second is a streamlined mechanism that checks for hazards based on
2411 /// simple counters that the scheduler itself maintains. It explicitly checks
2412 /// for instruction dispatch limitations, including the number of micro-ops that
2413 /// can dispatch per cycle.
2415 /// TODO: Also check whether the SU must start a new group.
2416 bool SchedBoundary::checkHazard(SUnit *SU) {
2417 if (HazardRec->isEnabled()
2418 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2419 return true;
2422 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2423 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2424 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
2425 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2426 return true;
2429 if (CurrMOps > 0 &&
2430 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2431 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2432 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must "
2433 << (isTop() ? "begin" : "end") << " group\n");
2434 return true;
2437 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2438 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2439 for (const MCWriteProcResEntry &PE :
2440 make_range(SchedModel->getWriteProcResBegin(SC),
2441 SchedModel->getWriteProcResEnd(SC))) {
2442 unsigned ResIdx = PE.ProcResourceIdx;
2443 unsigned ReleaseAtCycle = PE.ReleaseAtCycle;
2444 unsigned AcquireAtCycle = PE.AcquireAtCycle;
2445 unsigned NRCycle, InstanceIdx;
2446 std::tie(NRCycle, InstanceIdx) =
2447 getNextResourceCycle(SC, ResIdx, ReleaseAtCycle, AcquireAtCycle);
2448 if (NRCycle > CurrCycle) {
2449 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2450 MaxObservedStall = std::max(ReleaseAtCycle, MaxObservedStall);
2451 #endif
2452 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
2453 << SchedModel->getResourceName(ResIdx)
2454 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']'
2455 << "=" << NRCycle << "c\n");
2456 return true;
2460 return false;
2463 // Find the unscheduled node in ReadySUs with the highest latency.
2464 unsigned SchedBoundary::
2465 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2466 SUnit *LateSU = nullptr;
2467 unsigned RemLatency = 0;
2468 for (SUnit *SU : ReadySUs) {
2469 unsigned L = getUnscheduledLatency(SU);
2470 if (L > RemLatency) {
2471 RemLatency = L;
2472 LateSU = SU;
2475 if (LateSU) {
2476 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2477 << LateSU->NodeNum << ") " << RemLatency << "c\n");
2479 return RemLatency;
2482 // Count resources in this zone and the remaining unscheduled
2483 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2484 // resource index, or zero if the zone is issue limited.
2485 unsigned SchedBoundary::
2486 getOtherResourceCount(unsigned &OtherCritIdx) {
2487 OtherCritIdx = 0;
2488 if (!SchedModel->hasInstrSchedModel())
2489 return 0;
2491 unsigned OtherCritCount = Rem->RemIssueCount
2492 + (RetiredMOps * SchedModel->getMicroOpFactor());
2493 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
2494 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2495 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2496 PIdx != PEnd; ++PIdx) {
2497 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2498 if (OtherCount > OtherCritCount) {
2499 OtherCritCount = OtherCount;
2500 OtherCritIdx = PIdx;
2503 if (OtherCritIdx) {
2504 LLVM_DEBUG(
2505 dbgs() << " " << Available.getName() << " + Remain CritRes: "
2506 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2507 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2509 return OtherCritCount;
2512 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2513 unsigned Idx) {
2514 assert(SU->getInstr() && "Scheduled SUnit must have instr");
2516 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2517 // ReadyCycle was been bumped up to the CurrCycle when this node was
2518 // scheduled, but CurrCycle may have been eagerly advanced immediately after
2519 // scheduling, so may now be greater than ReadyCycle.
2520 if (ReadyCycle > CurrCycle)
2521 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2522 #endif
2524 if (ReadyCycle < MinReadyCycle)
2525 MinReadyCycle = ReadyCycle;
2527 // Check for interlocks first. For the purpose of other heuristics, an
2528 // instruction that cannot issue appears as if it's not in the ReadyQueue.
2529 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2530 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2531 checkHazard(SU) || (Available.size() >= ReadyListLimit);
2533 if (!HazardDetected) {
2534 Available.push(SU);
2536 if (InPQueue)
2537 Pending.remove(Pending.begin() + Idx);
2538 return;
2541 if (!InPQueue)
2542 Pending.push(SU);
2545 /// Move the boundary of scheduled code by one cycle.
2546 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2547 if (SchedModel->getMicroOpBufferSize() == 0) {
2548 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2549 "MinReadyCycle uninitialized");
2550 if (MinReadyCycle > NextCycle)
2551 NextCycle = MinReadyCycle;
2553 // Update the current micro-ops, which will issue in the next cycle.
2554 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2555 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2557 // Decrement DependentLatency based on the next cycle.
2558 if ((NextCycle - CurrCycle) > DependentLatency)
2559 DependentLatency = 0;
2560 else
2561 DependentLatency -= (NextCycle - CurrCycle);
2563 if (!HazardRec->isEnabled()) {
2564 // Bypass HazardRec virtual calls.
2565 CurrCycle = NextCycle;
2566 } else {
2567 // Bypass getHazardType calls in case of long latency.
2568 for (; CurrCycle != NextCycle; ++CurrCycle) {
2569 if (isTop())
2570 HazardRec->AdvanceCycle();
2571 else
2572 HazardRec->RecedeCycle();
2575 CheckPending = true;
2576 IsResourceLimited =
2577 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2578 getScheduledLatency(), true);
2580 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2581 << '\n');
2584 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2585 ExecutedResCounts[PIdx] += Count;
2586 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2587 MaxExecutedResCount = ExecutedResCounts[PIdx];
2590 /// Add the given processor resource to this scheduled zone.
2592 /// \param ReleaseAtCycle indicates the number of consecutive (non-pipelined)
2593 /// cycles during which this resource is released.
2595 /// \param AcquireAtCycle indicates the number of consecutive (non-pipelined)
2596 /// cycles at which the resource is aquired after issue (assuming no stalls).
2598 /// \return the next cycle at which the instruction may execute without
2599 /// oversubscribing resources.
2600 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx,
2601 unsigned ReleaseAtCycle,
2602 unsigned NextCycle,
2603 unsigned AcquireAtCycle) {
2604 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2605 unsigned Count = Factor * (ReleaseAtCycle- AcquireAtCycle);
2606 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +"
2607 << ReleaseAtCycle << "x" << Factor << "u\n");
2609 // Update Executed resources counts.
2610 incExecutedResources(PIdx, Count);
2611 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2612 Rem->RemainingCounts[PIdx] -= Count;
2614 // Check if this resource exceeds the current critical resource. If so, it
2615 // becomes the critical resource.
2616 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2617 ZoneCritResIdx = PIdx;
2618 LLVM_DEBUG(dbgs() << " *** Critical resource "
2619 << SchedModel->getResourceName(PIdx) << ": "
2620 << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2621 << "c\n");
2623 // For reserved resources, record the highest cycle using the resource.
2624 unsigned NextAvailable, InstanceIdx;
2625 std::tie(NextAvailable, InstanceIdx) =
2626 getNextResourceCycle(SC, PIdx, ReleaseAtCycle, AcquireAtCycle);
2627 if (NextAvailable > CurrCycle) {
2628 LLVM_DEBUG(dbgs() << " Resource conflict: "
2629 << SchedModel->getResourceName(PIdx)
2630 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']'
2631 << " reserved until @" << NextAvailable << "\n");
2633 return NextAvailable;
2636 /// Move the boundary of scheduled code by one SUnit.
2637 void SchedBoundary::bumpNode(SUnit *SU) {
2638 // Update the reservation table.
2639 if (HazardRec->isEnabled()) {
2640 if (!isTop() && SU->isCall) {
2641 // Calls are scheduled with their preceding instructions. For bottom-up
2642 // scheduling, clear the pipeline state before emitting.
2643 HazardRec->Reset();
2645 HazardRec->EmitInstruction(SU);
2646 // Scheduling an instruction may have made pending instructions available.
2647 CheckPending = true;
2649 // checkHazard should prevent scheduling multiple instructions per cycle that
2650 // exceed the issue width.
2651 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2652 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2653 assert(
2654 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2655 "Cannot schedule this instruction's MicroOps in the current cycle.");
2657 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2658 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
2660 unsigned NextCycle = CurrCycle;
2661 switch (SchedModel->getMicroOpBufferSize()) {
2662 case 0:
2663 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2664 break;
2665 case 1:
2666 if (ReadyCycle > NextCycle) {
2667 NextCycle = ReadyCycle;
2668 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
2670 break;
2671 default:
2672 // We don't currently model the OOO reorder buffer, so consider all
2673 // scheduled MOps to be "retired". We do loosely model in-order resource
2674 // latency. If this instruction uses an in-order resource, account for any
2675 // likely stall cycles.
2676 if (SU->isUnbuffered && ReadyCycle > NextCycle)
2677 NextCycle = ReadyCycle;
2678 break;
2680 RetiredMOps += IncMOps;
2682 // Update resource counts and critical resource.
2683 if (SchedModel->hasInstrSchedModel()) {
2684 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2685 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2686 Rem->RemIssueCount -= DecRemIssue;
2687 if (ZoneCritResIdx) {
2688 // Scale scheduled micro-ops for comparing with the critical resource.
2689 unsigned ScaledMOps =
2690 RetiredMOps * SchedModel->getMicroOpFactor();
2692 // If scaled micro-ops are now more than the previous critical resource by
2693 // a full cycle, then micro-ops issue becomes critical.
2694 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2695 >= (int)SchedModel->getLatencyFactor()) {
2696 ZoneCritResIdx = 0;
2697 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
2698 << ScaledMOps / SchedModel->getLatencyFactor()
2699 << "c\n");
2702 for (TargetSchedModel::ProcResIter
2703 PI = SchedModel->getWriteProcResBegin(SC),
2704 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2705 unsigned RCycle =
2706 countResource(SC, PI->ProcResourceIdx, PI->ReleaseAtCycle, NextCycle,
2707 PI->AcquireAtCycle);
2708 if (RCycle > NextCycle)
2709 NextCycle = RCycle;
2711 if (SU->hasReservedResource) {
2712 // For reserved resources, record the highest cycle using the resource.
2713 // For top-down scheduling, this is the cycle in which we schedule this
2714 // instruction plus the number of cycles the operations reserves the
2715 // resource. For bottom-up is it simply the instruction's cycle.
2716 for (TargetSchedModel::ProcResIter
2717 PI = SchedModel->getWriteProcResBegin(SC),
2718 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2719 unsigned PIdx = PI->ProcResourceIdx;
2720 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2722 if (SchedModel && SchedModel->enableIntervals()) {
2723 unsigned ReservedUntil, InstanceIdx;
2724 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(
2725 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
2726 if (isTop()) {
2727 ReservedResourceSegments[InstanceIdx].add(
2728 ResourceSegments::getResourceIntervalTop(
2729 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
2730 MIResourceCutOff);
2731 } else {
2732 ReservedResourceSegments[InstanceIdx].add(
2733 ResourceSegments::getResourceIntervalBottom(
2734 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
2735 MIResourceCutOff);
2737 } else {
2739 unsigned ReservedUntil, InstanceIdx;
2740 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(
2741 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
2742 if (isTop()) {
2743 ReservedCycles[InstanceIdx] =
2744 std::max(ReservedUntil, NextCycle + PI->ReleaseAtCycle);
2745 } else
2746 ReservedCycles[InstanceIdx] = NextCycle;
2752 // Update ExpectedLatency and DependentLatency.
2753 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2754 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2755 if (SU->getDepth() > TopLatency) {
2756 TopLatency = SU->getDepth();
2757 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU("
2758 << SU->NodeNum << ") " << TopLatency << "c\n");
2760 if (SU->getHeight() > BotLatency) {
2761 BotLatency = SU->getHeight();
2762 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU("
2763 << SU->NodeNum << ") " << BotLatency << "c\n");
2765 // If we stall for any reason, bump the cycle.
2766 if (NextCycle > CurrCycle)
2767 bumpCycle(NextCycle);
2768 else
2769 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2770 // resource limited. If a stall occurred, bumpCycle does this.
2771 IsResourceLimited =
2772 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2773 getScheduledLatency(), true);
2775 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2776 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2777 // one cycle. Since we commonly reach the max MOps here, opportunistically
2778 // bump the cycle to avoid uselessly checking everything in the readyQ.
2779 CurrMOps += IncMOps;
2781 // Bump the cycle count for issue group constraints.
2782 // This must be done after NextCycle has been adjust for all other stalls.
2783 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2784 // currCycle to X.
2785 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) ||
2786 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2787 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin")
2788 << " group\n");
2789 bumpCycle(++NextCycle);
2792 while (CurrMOps >= SchedModel->getIssueWidth()) {
2793 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle "
2794 << CurrCycle << '\n');
2795 bumpCycle(++NextCycle);
2797 LLVM_DEBUG(dumpScheduledState());
2800 /// Release pending ready nodes in to the available queue. This makes them
2801 /// visible to heuristics.
2802 void SchedBoundary::releasePending() {
2803 // If the available queue is empty, it is safe to reset MinReadyCycle.
2804 if (Available.empty())
2805 MinReadyCycle = std::numeric_limits<unsigned>::max();
2807 // Check to see if any of the pending instructions are ready to issue. If
2808 // so, add them to the available queue.
2809 for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2810 SUnit *SU = *(Pending.begin() + I);
2811 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2813 if (ReadyCycle < MinReadyCycle)
2814 MinReadyCycle = ReadyCycle;
2816 if (Available.size() >= ReadyListLimit)
2817 break;
2819 releaseNode(SU, ReadyCycle, true, I);
2820 if (E != Pending.size()) {
2821 --I;
2822 --E;
2825 CheckPending = false;
2828 /// Remove SU from the ready set for this boundary.
2829 void SchedBoundary::removeReady(SUnit *SU) {
2830 if (Available.isInQueue(SU))
2831 Available.remove(Available.find(SU));
2832 else {
2833 assert(Pending.isInQueue(SU) && "bad ready count");
2834 Pending.remove(Pending.find(SU));
2838 /// If this queue only has one ready candidate, return it. As a side effect,
2839 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2840 /// one node is ready. If multiple instructions are ready, return NULL.
2841 SUnit *SchedBoundary::pickOnlyChoice() {
2842 if (CheckPending)
2843 releasePending();
2845 // Defer any ready instrs that now have a hazard.
2846 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2847 if (checkHazard(*I)) {
2848 Pending.push(*I);
2849 I = Available.remove(I);
2850 continue;
2852 ++I;
2854 for (unsigned i = 0; Available.empty(); ++i) {
2855 // FIXME: Re-enable assert once PR20057 is resolved.
2856 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2857 // "permanent hazard");
2858 (void)i;
2859 bumpCycle(CurrCycle + 1);
2860 releasePending();
2863 LLVM_DEBUG(Pending.dump());
2864 LLVM_DEBUG(Available.dump());
2866 if (Available.size() == 1)
2867 return *Available.begin();
2868 return nullptr;
2871 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2873 /// Dump the content of the \ref ReservedCycles vector for the
2874 /// resources that are used in the basic block.
2876 LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const {
2877 if (!SchedModel->hasInstrSchedModel())
2878 return;
2880 unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2881 unsigned StartIdx = 0;
2883 for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) {
2884 const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits;
2885 std::string ResName = SchedModel->getResourceName(ResIdx);
2886 for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) {
2887 dbgs() << ResName << "(" << UnitIdx << ") = ";
2888 if (SchedModel && SchedModel->enableIntervals()) {
2889 if (ReservedResourceSegments.count(StartIdx + UnitIdx))
2890 dbgs() << ReservedResourceSegments.at(StartIdx + UnitIdx);
2891 else
2892 dbgs() << "{ }\n";
2893 } else
2894 dbgs() << ReservedCycles[StartIdx + UnitIdx] << "\n";
2896 StartIdx += NumUnits;
2900 // This is useful information to dump after bumpNode.
2901 // Note that the Queue contents are more useful before pickNodeFromQueue.
2902 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2903 unsigned ResFactor;
2904 unsigned ResCount;
2905 if (ZoneCritResIdx) {
2906 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2907 ResCount = getResourceCount(ZoneCritResIdx);
2908 } else {
2909 ResFactor = SchedModel->getMicroOpFactor();
2910 ResCount = RetiredMOps * ResFactor;
2912 unsigned LFactor = SchedModel->getLatencyFactor();
2913 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2914 << " Retired: " << RetiredMOps;
2915 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2916 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2917 << ResCount / ResFactor << " "
2918 << SchedModel->getResourceName(ZoneCritResIdx)
2919 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2920 << (IsResourceLimited ? " - Resource" : " - Latency")
2921 << " limited.\n";
2922 if (MISchedDumpReservedCycles)
2923 dumpReservedCycles();
2925 #endif
2927 //===----------------------------------------------------------------------===//
2928 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2929 //===----------------------------------------------------------------------===//
2931 void GenericSchedulerBase::SchedCandidate::
2932 initResourceDelta(const ScheduleDAGMI *DAG,
2933 const TargetSchedModel *SchedModel) {
2934 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2935 return;
2937 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2938 for (TargetSchedModel::ProcResIter
2939 PI = SchedModel->getWriteProcResBegin(SC),
2940 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2941 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2942 ResDelta.CritResources += PI->ReleaseAtCycle;
2943 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2944 ResDelta.DemandedResources += PI->ReleaseAtCycle;
2948 /// Compute remaining latency. We need this both to determine whether the
2949 /// overall schedule has become latency-limited and whether the instructions
2950 /// outside this zone are resource or latency limited.
2952 /// The "dependent" latency is updated incrementally during scheduling as the
2953 /// max height/depth of scheduled nodes minus the cycles since it was
2954 /// scheduled:
2955 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2957 /// The "independent" latency is the max ready queue depth:
2958 /// ILat = max N.depth for N in Available|Pending
2960 /// RemainingLatency is the greater of independent and dependent latency.
2962 /// These computations are expensive, especially in DAGs with many edges, so
2963 /// only do them if necessary.
2964 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2965 unsigned RemLatency = CurrZone.getDependentLatency();
2966 RemLatency = std::max(RemLatency,
2967 CurrZone.findMaxLatency(CurrZone.Available.elements()));
2968 RemLatency = std::max(RemLatency,
2969 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2970 return RemLatency;
2973 /// Returns true if the current cycle plus remaning latency is greater than
2974 /// the critical path in the scheduling region.
2975 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2976 SchedBoundary &CurrZone,
2977 bool ComputeRemLatency,
2978 unsigned &RemLatency) const {
2979 // The current cycle is already greater than the critical path, so we are
2980 // already latency limited and don't need to compute the remaining latency.
2981 if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2982 return true;
2984 // If we haven't scheduled anything yet, then we aren't latency limited.
2985 if (CurrZone.getCurrCycle() == 0)
2986 return false;
2988 if (ComputeRemLatency)
2989 RemLatency = computeRemLatency(CurrZone);
2991 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2994 /// Set the CandPolicy given a scheduling zone given the current resources and
2995 /// latencies inside and outside the zone.
2996 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2997 SchedBoundary &CurrZone,
2998 SchedBoundary *OtherZone) {
2999 // Apply preemptive heuristics based on the total latency and resources
3000 // inside and outside this zone. Potential stalls should be considered before
3001 // following this policy.
3003 // Compute the critical resource outside the zone.
3004 unsigned OtherCritIdx = 0;
3005 unsigned OtherCount =
3006 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
3008 bool OtherResLimited = false;
3009 unsigned RemLatency = 0;
3010 bool RemLatencyComputed = false;
3011 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
3012 RemLatency = computeRemLatency(CurrZone);
3013 RemLatencyComputed = true;
3014 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
3015 OtherCount, RemLatency, false);
3018 // Schedule aggressively for latency in PostRA mode. We don't check for
3019 // acyclic latency during PostRA, and highly out-of-order processors will
3020 // skip PostRA scheduling.
3021 if (!OtherResLimited &&
3022 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
3023 RemLatency))) {
3024 Policy.ReduceLatency |= true;
3025 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName()
3026 << " RemainingLatency " << RemLatency << " + "
3027 << CurrZone.getCurrCycle() << "c > CritPath "
3028 << Rem.CriticalPath << "\n");
3030 // If the same resource is limiting inside and outside the zone, do nothing.
3031 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
3032 return;
3034 LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
3035 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
3036 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
3037 } if (OtherResLimited) dbgs()
3038 << " RemainingLimit: "
3039 << SchedModel->getResourceName(OtherCritIdx) << "\n";
3040 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
3041 << " Latency limited both directions.\n");
3043 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
3044 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
3046 if (OtherResLimited)
3047 Policy.DemandResIdx = OtherCritIdx;
3050 #ifndef NDEBUG
3051 const char *GenericSchedulerBase::getReasonStr(
3052 GenericSchedulerBase::CandReason Reason) {
3053 switch (Reason) {
3054 case NoCand: return "NOCAND ";
3055 case Only1: return "ONLY1 ";
3056 case PhysReg: return "PHYS-REG ";
3057 case RegExcess: return "REG-EXCESS";
3058 case RegCritical: return "REG-CRIT ";
3059 case Stall: return "STALL ";
3060 case Cluster: return "CLUSTER ";
3061 case Weak: return "WEAK ";
3062 case RegMax: return "REG-MAX ";
3063 case ResourceReduce: return "RES-REDUCE";
3064 case ResourceDemand: return "RES-DEMAND";
3065 case TopDepthReduce: return "TOP-DEPTH ";
3066 case TopPathReduce: return "TOP-PATH ";
3067 case BotHeightReduce:return "BOT-HEIGHT";
3068 case BotPathReduce: return "BOT-PATH ";
3069 case NextDefUse: return "DEF-USE ";
3070 case NodeOrder: return "ORDER ";
3072 llvm_unreachable("Unknown reason!");
3075 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
3076 PressureChange P;
3077 unsigned ResIdx = 0;
3078 unsigned Latency = 0;
3079 switch (Cand.Reason) {
3080 default:
3081 break;
3082 case RegExcess:
3083 P = Cand.RPDelta.Excess;
3084 break;
3085 case RegCritical:
3086 P = Cand.RPDelta.CriticalMax;
3087 break;
3088 case RegMax:
3089 P = Cand.RPDelta.CurrentMax;
3090 break;
3091 case ResourceReduce:
3092 ResIdx = Cand.Policy.ReduceResIdx;
3093 break;
3094 case ResourceDemand:
3095 ResIdx = Cand.Policy.DemandResIdx;
3096 break;
3097 case TopDepthReduce:
3098 Latency = Cand.SU->getDepth();
3099 break;
3100 case TopPathReduce:
3101 Latency = Cand.SU->getHeight();
3102 break;
3103 case BotHeightReduce:
3104 Latency = Cand.SU->getHeight();
3105 break;
3106 case BotPathReduce:
3107 Latency = Cand.SU->getDepth();
3108 break;
3110 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
3111 if (P.isValid())
3112 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
3113 << ":" << P.getUnitInc() << " ";
3114 else
3115 dbgs() << " ";
3116 if (ResIdx)
3117 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
3118 else
3119 dbgs() << " ";
3120 if (Latency)
3121 dbgs() << " " << Latency << " cycles ";
3122 else
3123 dbgs() << " ";
3124 dbgs() << '\n';
3126 #endif
3128 namespace llvm {
3129 /// Return true if this heuristic determines order.
3130 /// TODO: Consider refactor return type of these functions as integer or enum,
3131 /// as we may need to differentiate whether TryCand is better than Cand.
3132 bool tryLess(int TryVal, int CandVal,
3133 GenericSchedulerBase::SchedCandidate &TryCand,
3134 GenericSchedulerBase::SchedCandidate &Cand,
3135 GenericSchedulerBase::CandReason Reason) {
3136 if (TryVal < CandVal) {
3137 TryCand.Reason = Reason;
3138 return true;
3140 if (TryVal > CandVal) {
3141 if (Cand.Reason > Reason)
3142 Cand.Reason = Reason;
3143 return true;
3145 return false;
3148 bool tryGreater(int TryVal, int CandVal,
3149 GenericSchedulerBase::SchedCandidate &TryCand,
3150 GenericSchedulerBase::SchedCandidate &Cand,
3151 GenericSchedulerBase::CandReason Reason) {
3152 if (TryVal > CandVal) {
3153 TryCand.Reason = Reason;
3154 return true;
3156 if (TryVal < CandVal) {
3157 if (Cand.Reason > Reason)
3158 Cand.Reason = Reason;
3159 return true;
3161 return false;
3164 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
3165 GenericSchedulerBase::SchedCandidate &Cand,
3166 SchedBoundary &Zone) {
3167 if (Zone.isTop()) {
3168 // Prefer the candidate with the lesser depth, but only if one of them has
3169 // depth greater than the total latency scheduled so far, otherwise either
3170 // of them could be scheduled now with no stall.
3171 if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
3172 Zone.getScheduledLatency()) {
3173 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3174 TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
3175 return true;
3177 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3178 TryCand, Cand, GenericSchedulerBase::TopPathReduce))
3179 return true;
3180 } else {
3181 // Prefer the candidate with the lesser height, but only if one of them has
3182 // height greater than the total latency scheduled so far, otherwise either
3183 // of them could be scheduled now with no stall.
3184 if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
3185 Zone.getScheduledLatency()) {
3186 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3187 TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
3188 return true;
3190 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3191 TryCand, Cand, GenericSchedulerBase::BotPathReduce))
3192 return true;
3194 return false;
3196 } // end namespace llvm
3198 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
3199 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
3200 << GenericSchedulerBase::getReasonStr(Reason) << '\n');
3203 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
3204 tracePick(Cand.Reason, Cand.AtTop);
3207 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
3208 assert(dag->hasVRegLiveness() &&
3209 "(PreRA)GenericScheduler needs vreg liveness");
3210 DAG = static_cast<ScheduleDAGMILive*>(dag);
3211 SchedModel = DAG->getSchedModel();
3212 TRI = DAG->TRI;
3214 if (RegionPolicy.ComputeDFSResult)
3215 DAG->computeDFSResult();
3217 Rem.init(DAG, SchedModel);
3218 Top.init(DAG, SchedModel, &Rem);
3219 Bot.init(DAG, SchedModel, &Rem);
3221 // Initialize resource counts.
3223 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
3224 // are disabled, then these HazardRecs will be disabled.
3225 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3226 if (!Top.HazardRec) {
3227 Top.HazardRec =
3228 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3229 Itin, DAG);
3231 if (!Bot.HazardRec) {
3232 Bot.HazardRec =
3233 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3234 Itin, DAG);
3236 TopCand.SU = nullptr;
3237 BotCand.SU = nullptr;
3240 /// Initialize the per-region scheduling policy.
3241 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
3242 MachineBasicBlock::iterator End,
3243 unsigned NumRegionInstrs) {
3244 const MachineFunction &MF = *Begin->getMF();
3245 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
3247 // Avoid setting up the register pressure tracker for small regions to save
3248 // compile time. As a rough heuristic, only track pressure when the number of
3249 // schedulable instructions exceeds half the integer register file.
3250 RegionPolicy.ShouldTrackPressure = true;
3251 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
3252 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
3253 if (TLI->isTypeLegal(LegalIntVT)) {
3254 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
3255 TLI->getRegClassFor(LegalIntVT));
3256 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
3260 // For generic targets, we default to bottom-up, because it's simpler and more
3261 // compile-time optimizations have been implemented in that direction.
3262 RegionPolicy.OnlyBottomUp = true;
3264 // Allow the subtarget to override default policy.
3265 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
3267 // After subtarget overrides, apply command line options.
3268 if (!EnableRegPressure) {
3269 RegionPolicy.ShouldTrackPressure = false;
3270 RegionPolicy.ShouldTrackLaneMasks = false;
3273 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
3274 // e.g. -misched-bottomup=false allows scheduling in both directions.
3275 assert((!ForceTopDown || !ForceBottomUp) &&
3276 "-misched-topdown incompatible with -misched-bottomup");
3277 if (ForceBottomUp.getNumOccurrences() > 0) {
3278 RegionPolicy.OnlyBottomUp = ForceBottomUp;
3279 if (RegionPolicy.OnlyBottomUp)
3280 RegionPolicy.OnlyTopDown = false;
3282 if (ForceTopDown.getNumOccurrences() > 0) {
3283 RegionPolicy.OnlyTopDown = ForceTopDown;
3284 if (RegionPolicy.OnlyTopDown)
3285 RegionPolicy.OnlyBottomUp = false;
3289 void GenericScheduler::dumpPolicy() const {
3290 // Cannot completely remove virtual function even in release mode.
3291 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3292 dbgs() << "GenericScheduler RegionPolicy: "
3293 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
3294 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
3295 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
3296 << "\n";
3297 #endif
3300 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
3301 /// critical path by more cycles than it takes to drain the instruction buffer.
3302 /// We estimate an upper bounds on in-flight instructions as:
3304 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
3305 /// InFlightIterations = AcyclicPath / CyclesPerIteration
3306 /// InFlightResources = InFlightIterations * LoopResources
3308 /// TODO: Check execution resources in addition to IssueCount.
3309 void GenericScheduler::checkAcyclicLatency() {
3310 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
3311 return;
3313 // Scaled number of cycles per loop iteration.
3314 unsigned IterCount =
3315 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
3316 Rem.RemIssueCount);
3317 // Scaled acyclic critical path.
3318 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
3319 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
3320 unsigned InFlightCount =
3321 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
3322 unsigned BufferLimit =
3323 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
3325 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
3327 LLVM_DEBUG(
3328 dbgs() << "IssueCycles="
3329 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
3330 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
3331 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
3332 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
3333 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
3334 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n");
3337 void GenericScheduler::registerRoots() {
3338 Rem.CriticalPath = DAG->ExitSU.getDepth();
3340 // Some roots may not feed into ExitSU. Check all of them in case.
3341 for (const SUnit *SU : Bot.Available) {
3342 if (SU->getDepth() > Rem.CriticalPath)
3343 Rem.CriticalPath = SU->getDepth();
3345 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
3346 if (DumpCriticalPathLength) {
3347 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
3350 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
3351 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
3352 checkAcyclicLatency();
3356 namespace llvm {
3357 bool tryPressure(const PressureChange &TryP,
3358 const PressureChange &CandP,
3359 GenericSchedulerBase::SchedCandidate &TryCand,
3360 GenericSchedulerBase::SchedCandidate &Cand,
3361 GenericSchedulerBase::CandReason Reason,
3362 const TargetRegisterInfo *TRI,
3363 const MachineFunction &MF) {
3364 // If one candidate decreases and the other increases, go with it.
3365 // Invalid candidates have UnitInc==0.
3366 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
3367 Reason)) {
3368 return true;
3370 // Do not compare the magnitude of pressure changes between top and bottom
3371 // boundary.
3372 if (Cand.AtTop != TryCand.AtTop)
3373 return false;
3375 // If both candidates affect the same set in the same boundary, go with the
3376 // smallest increase.
3377 unsigned TryPSet = TryP.getPSetOrMax();
3378 unsigned CandPSet = CandP.getPSetOrMax();
3379 if (TryPSet == CandPSet) {
3380 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
3381 Reason);
3384 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
3385 std::numeric_limits<int>::max();
3387 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
3388 std::numeric_limits<int>::max();
3390 // If the candidates are decreasing pressure, reverse priority.
3391 if (TryP.getUnitInc() < 0)
3392 std::swap(TryRank, CandRank);
3393 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
3396 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
3397 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
3400 /// Minimize physical register live ranges. Regalloc wants them adjacent to
3401 /// their physreg def/use.
3403 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
3404 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
3405 /// with the operation that produces or consumes the physreg. We'll do this when
3406 /// regalloc has support for parallel copies.
3407 int biasPhysReg(const SUnit *SU, bool isTop) {
3408 const MachineInstr *MI = SU->getInstr();
3410 if (MI->isCopy()) {
3411 unsigned ScheduledOper = isTop ? 1 : 0;
3412 unsigned UnscheduledOper = isTop ? 0 : 1;
3413 // If we have already scheduled the physreg produce/consumer, immediately
3414 // schedule the copy.
3415 if (MI->getOperand(ScheduledOper).getReg().isPhysical())
3416 return 1;
3417 // If the physreg is at the boundary, defer it. Otherwise schedule it
3418 // immediately to free the dependent. We can hoist the copy later.
3419 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3420 if (MI->getOperand(UnscheduledOper).getReg().isPhysical())
3421 return AtBoundary ? -1 : 1;
3424 if (MI->isMoveImmediate()) {
3425 // If we have a move immediate and all successors have been assigned, bias
3426 // towards scheduling this later. Make sure all register defs are to
3427 // physical registers.
3428 bool DoBias = true;
3429 for (const MachineOperand &Op : MI->defs()) {
3430 if (Op.isReg() && !Op.getReg().isPhysical()) {
3431 DoBias = false;
3432 break;
3436 if (DoBias)
3437 return isTop ? -1 : 1;
3440 return 0;
3442 } // end namespace llvm
3444 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3445 bool AtTop,
3446 const RegPressureTracker &RPTracker,
3447 RegPressureTracker &TempTracker) {
3448 Cand.SU = SU;
3449 Cand.AtTop = AtTop;
3450 if (DAG->isTrackingPressure()) {
3451 if (AtTop) {
3452 TempTracker.getMaxDownwardPressureDelta(
3453 Cand.SU->getInstr(),
3454 Cand.RPDelta,
3455 DAG->getRegionCriticalPSets(),
3456 DAG->getRegPressure().MaxSetPressure);
3457 } else {
3458 if (VerifyScheduling) {
3459 TempTracker.getMaxUpwardPressureDelta(
3460 Cand.SU->getInstr(),
3461 &DAG->getPressureDiff(Cand.SU),
3462 Cand.RPDelta,
3463 DAG->getRegionCriticalPSets(),
3464 DAG->getRegPressure().MaxSetPressure);
3465 } else {
3466 RPTracker.getUpwardPressureDelta(
3467 Cand.SU->getInstr(),
3468 DAG->getPressureDiff(Cand.SU),
3469 Cand.RPDelta,
3470 DAG->getRegionCriticalPSets(),
3471 DAG->getRegPressure().MaxSetPressure);
3475 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3476 << " Try SU(" << Cand.SU->NodeNum << ") "
3477 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3478 << Cand.RPDelta.Excess.getUnitInc() << "\n");
3481 /// Apply a set of heuristics to a new candidate. Heuristics are currently
3482 /// hierarchical. This may be more efficient than a graduated cost model because
3483 /// we don't need to evaluate all aspects of the model for each node in the
3484 /// queue. But it's really done to make the heuristics easier to debug and
3485 /// statistically analyze.
3487 /// \param Cand provides the policy and current best candidate.
3488 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3489 /// \param Zone describes the scheduled zone that we are extending, or nullptr
3490 /// if Cand is from a different zone than TryCand.
3491 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3492 bool GenericScheduler::tryCandidate(SchedCandidate &Cand,
3493 SchedCandidate &TryCand,
3494 SchedBoundary *Zone) const {
3495 // Initialize the candidate if needed.
3496 if (!Cand.isValid()) {
3497 TryCand.Reason = NodeOrder;
3498 return true;
3501 // Bias PhysReg Defs and copies to their uses and defined respectively.
3502 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3503 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3504 return TryCand.Reason != NoCand;
3506 // Avoid exceeding the target's limit.
3507 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3508 Cand.RPDelta.Excess,
3509 TryCand, Cand, RegExcess, TRI,
3510 DAG->MF))
3511 return TryCand.Reason != NoCand;
3513 // Avoid increasing the max critical pressure in the scheduled region.
3514 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3515 Cand.RPDelta.CriticalMax,
3516 TryCand, Cand, RegCritical, TRI,
3517 DAG->MF))
3518 return TryCand.Reason != NoCand;
3520 // We only compare a subset of features when comparing nodes between
3521 // Top and Bottom boundary. Some properties are simply incomparable, in many
3522 // other instances we should only override the other boundary if something
3523 // is a clear good pick on one boundary. Skip heuristics that are more
3524 // "tie-breaking" in nature.
3525 bool SameBoundary = Zone != nullptr;
3526 if (SameBoundary) {
3527 // For loops that are acyclic path limited, aggressively schedule for
3528 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3529 // heuristics to take precedence.
3530 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3531 tryLatency(TryCand, Cand, *Zone))
3532 return TryCand.Reason != NoCand;
3534 // Prioritize instructions that read unbuffered resources by stall cycles.
3535 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3536 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3537 return TryCand.Reason != NoCand;
3540 // Keep clustered nodes together to encourage downstream peephole
3541 // optimizations which may reduce resource requirements.
3543 // This is a best effort to set things up for a post-RA pass. Optimizations
3544 // like generating loads of multiple registers should ideally be done within
3545 // the scheduler pass by combining the loads during DAG postprocessing.
3546 const SUnit *CandNextClusterSU =
3547 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3548 const SUnit *TryCandNextClusterSU =
3549 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3550 if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3551 Cand.SU == CandNextClusterSU,
3552 TryCand, Cand, Cluster))
3553 return TryCand.Reason != NoCand;
3555 if (SameBoundary) {
3556 // Weak edges are for clustering and other constraints.
3557 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3558 getWeakLeft(Cand.SU, Cand.AtTop),
3559 TryCand, Cand, Weak))
3560 return TryCand.Reason != NoCand;
3563 // Avoid increasing the max pressure of the entire region.
3564 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3565 Cand.RPDelta.CurrentMax,
3566 TryCand, Cand, RegMax, TRI,
3567 DAG->MF))
3568 return TryCand.Reason != NoCand;
3570 if (SameBoundary) {
3571 // Avoid critical resource consumption and balance the schedule.
3572 TryCand.initResourceDelta(DAG, SchedModel);
3573 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3574 TryCand, Cand, ResourceReduce))
3575 return TryCand.Reason != NoCand;
3576 if (tryGreater(TryCand.ResDelta.DemandedResources,
3577 Cand.ResDelta.DemandedResources,
3578 TryCand, Cand, ResourceDemand))
3579 return TryCand.Reason != NoCand;
3581 // Avoid serializing long latency dependence chains.
3582 // For acyclic path limited loops, latency was already checked above.
3583 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3584 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3585 return TryCand.Reason != NoCand;
3587 // Fall through to original instruction order.
3588 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3589 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3590 TryCand.Reason = NodeOrder;
3591 return true;
3595 return false;
3598 /// Pick the best candidate from the queue.
3600 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3601 /// DAG building. To adjust for the current scheduling location we need to
3602 /// maintain the number of vreg uses remaining to be top-scheduled.
3603 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3604 const CandPolicy &ZonePolicy,
3605 const RegPressureTracker &RPTracker,
3606 SchedCandidate &Cand) {
3607 // getMaxPressureDelta temporarily modifies the tracker.
3608 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3610 ReadyQueue &Q = Zone.Available;
3611 for (SUnit *SU : Q) {
3613 SchedCandidate TryCand(ZonePolicy);
3614 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3615 // Pass SchedBoundary only when comparing nodes from the same boundary.
3616 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3617 if (tryCandidate(Cand, TryCand, ZoneArg)) {
3618 // Initialize resource delta if needed in case future heuristics query it.
3619 if (TryCand.ResDelta == SchedResourceDelta())
3620 TryCand.initResourceDelta(DAG, SchedModel);
3621 Cand.setBest(TryCand);
3622 LLVM_DEBUG(traceCandidate(Cand));
3627 /// Pick the best candidate node from either the top or bottom queue.
3628 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3629 // Schedule as far as possible in the direction of no choice. This is most
3630 // efficient, but also provides the best heuristics for CriticalPSets.
3631 if (SUnit *SU = Bot.pickOnlyChoice()) {
3632 IsTopNode = false;
3633 tracePick(Only1, false);
3634 return SU;
3636 if (SUnit *SU = Top.pickOnlyChoice()) {
3637 IsTopNode = true;
3638 tracePick(Only1, true);
3639 return SU;
3641 // Set the bottom-up policy based on the state of the current bottom zone and
3642 // the instructions outside the zone, including the top zone.
3643 CandPolicy BotPolicy;
3644 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3645 // Set the top-down policy based on the state of the current top zone and
3646 // the instructions outside the zone, including the bottom zone.
3647 CandPolicy TopPolicy;
3648 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3650 // See if BotCand is still valid (because we previously scheduled from Top).
3651 LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3652 if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3653 BotCand.Policy != BotPolicy) {
3654 BotCand.reset(CandPolicy());
3655 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3656 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3657 } else {
3658 LLVM_DEBUG(traceCandidate(BotCand));
3659 #ifndef NDEBUG
3660 if (VerifyScheduling) {
3661 SchedCandidate TCand;
3662 TCand.reset(CandPolicy());
3663 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3664 assert(TCand.SU == BotCand.SU &&
3665 "Last pick result should correspond to re-picking right now");
3667 #endif
3670 // Check if the top Q has a better candidate.
3671 LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3672 if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3673 TopCand.Policy != TopPolicy) {
3674 TopCand.reset(CandPolicy());
3675 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3676 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3677 } else {
3678 LLVM_DEBUG(traceCandidate(TopCand));
3679 #ifndef NDEBUG
3680 if (VerifyScheduling) {
3681 SchedCandidate TCand;
3682 TCand.reset(CandPolicy());
3683 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3684 assert(TCand.SU == TopCand.SU &&
3685 "Last pick result should correspond to re-picking right now");
3687 #endif
3690 // Pick best from BotCand and TopCand.
3691 assert(BotCand.isValid());
3692 assert(TopCand.isValid());
3693 SchedCandidate Cand = BotCand;
3694 TopCand.Reason = NoCand;
3695 if (tryCandidate(Cand, TopCand, nullptr)) {
3696 Cand.setBest(TopCand);
3697 LLVM_DEBUG(traceCandidate(Cand));
3700 IsTopNode = Cand.AtTop;
3701 tracePick(Cand);
3702 return Cand.SU;
3705 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3706 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3707 if (DAG->top() == DAG->bottom()) {
3708 assert(Top.Available.empty() && Top.Pending.empty() &&
3709 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3710 return nullptr;
3712 SUnit *SU;
3713 do {
3714 if (RegionPolicy.OnlyTopDown) {
3715 SU = Top.pickOnlyChoice();
3716 if (!SU) {
3717 CandPolicy NoPolicy;
3718 TopCand.reset(NoPolicy);
3719 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3720 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3721 tracePick(TopCand);
3722 SU = TopCand.SU;
3724 IsTopNode = true;
3725 } else if (RegionPolicy.OnlyBottomUp) {
3726 SU = Bot.pickOnlyChoice();
3727 if (!SU) {
3728 CandPolicy NoPolicy;
3729 BotCand.reset(NoPolicy);
3730 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3731 assert(BotCand.Reason != NoCand && "failed to find a candidate");
3732 tracePick(BotCand);
3733 SU = BotCand.SU;
3735 IsTopNode = false;
3736 } else {
3737 SU = pickNodeBidirectional(IsTopNode);
3739 } while (SU->isScheduled);
3741 if (SU->isTopReady())
3742 Top.removeReady(SU);
3743 if (SU->isBottomReady())
3744 Bot.removeReady(SU);
3746 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3747 << *SU->getInstr());
3748 return SU;
3751 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3752 MachineBasicBlock::iterator InsertPos = SU->getInstr();
3753 if (!isTop)
3754 ++InsertPos;
3755 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3757 // Find already scheduled copies with a single physreg dependence and move
3758 // them just above the scheduled instruction.
3759 for (SDep &Dep : Deps) {
3760 if (Dep.getKind() != SDep::Data ||
3761 !Register::isPhysicalRegister(Dep.getReg()))
3762 continue;
3763 SUnit *DepSU = Dep.getSUnit();
3764 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3765 continue;
3766 MachineInstr *Copy = DepSU->getInstr();
3767 if (!Copy->isCopy() && !Copy->isMoveImmediate())
3768 continue;
3769 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy ";
3770 DAG->dumpNode(*Dep.getSUnit()));
3771 DAG->moveInstruction(Copy, InsertPos);
3775 /// Update the scheduler's state after scheduling a node. This is the same node
3776 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3777 /// update it's state based on the current cycle before MachineSchedStrategy
3778 /// does.
3780 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3781 /// them here. See comments in biasPhysReg.
3782 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3783 if (IsTopNode) {
3784 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3785 Top.bumpNode(SU);
3786 if (SU->hasPhysRegUses)
3787 reschedulePhysReg(SU, true);
3788 } else {
3789 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3790 Bot.bumpNode(SU);
3791 if (SU->hasPhysRegDefs)
3792 reschedulePhysReg(SU, false);
3796 /// Create the standard converging machine scheduler. This will be used as the
3797 /// default scheduler if the target does not set a default.
3798 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3799 ScheduleDAGMILive *DAG =
3800 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3801 // Register DAG post-processors.
3803 // FIXME: extend the mutation API to allow earlier mutations to instantiate
3804 // data and pass it to later mutations. Have a single mutation that gathers
3805 // the interesting nodes in one pass.
3806 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3807 return DAG;
3810 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
3811 return createGenericSchedLive(C);
3814 static MachineSchedRegistry
3815 GenericSchedRegistry("converge", "Standard converging scheduler.",
3816 createConvergingSched);
3818 //===----------------------------------------------------------------------===//
3819 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3820 //===----------------------------------------------------------------------===//
3822 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3823 DAG = Dag;
3824 SchedModel = DAG->getSchedModel();
3825 TRI = DAG->TRI;
3827 Rem.init(DAG, SchedModel);
3828 Top.init(DAG, SchedModel, &Rem);
3829 BotRoots.clear();
3831 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3832 // or are disabled, then these HazardRecs will be disabled.
3833 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3834 if (!Top.HazardRec) {
3835 Top.HazardRec =
3836 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3837 Itin, DAG);
3841 void PostGenericScheduler::registerRoots() {
3842 Rem.CriticalPath = DAG->ExitSU.getDepth();
3844 // Some roots may not feed into ExitSU. Check all of them in case.
3845 for (const SUnit *SU : BotRoots) {
3846 if (SU->getDepth() > Rem.CriticalPath)
3847 Rem.CriticalPath = SU->getDepth();
3849 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3850 if (DumpCriticalPathLength) {
3851 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3855 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3857 /// \param Cand provides the policy and current best candidate.
3858 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3859 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3860 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3861 SchedCandidate &TryCand) {
3862 // Initialize the candidate if needed.
3863 if (!Cand.isValid()) {
3864 TryCand.Reason = NodeOrder;
3865 return true;
3868 // Prioritize instructions that read unbuffered resources by stall cycles.
3869 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3870 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3871 return TryCand.Reason != NoCand;
3873 // Keep clustered nodes together.
3874 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3875 Cand.SU == DAG->getNextClusterSucc(),
3876 TryCand, Cand, Cluster))
3877 return TryCand.Reason != NoCand;
3879 // Avoid critical resource consumption and balance the schedule.
3880 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3881 TryCand, Cand, ResourceReduce))
3882 return TryCand.Reason != NoCand;
3883 if (tryGreater(TryCand.ResDelta.DemandedResources,
3884 Cand.ResDelta.DemandedResources,
3885 TryCand, Cand, ResourceDemand))
3886 return TryCand.Reason != NoCand;
3888 // Avoid serializing long latency dependence chains.
3889 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3890 return TryCand.Reason != NoCand;
3893 // Fall through to original instruction order.
3894 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
3895 TryCand.Reason = NodeOrder;
3896 return true;
3899 return false;
3902 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3903 ReadyQueue &Q = Top.Available;
3904 for (SUnit *SU : Q) {
3905 SchedCandidate TryCand(Cand.Policy);
3906 TryCand.SU = SU;
3907 TryCand.AtTop = true;
3908 TryCand.initResourceDelta(DAG, SchedModel);
3909 if (tryCandidate(Cand, TryCand)) {
3910 Cand.setBest(TryCand);
3911 LLVM_DEBUG(traceCandidate(Cand));
3916 /// Pick the next node to schedule.
3917 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3918 if (DAG->top() == DAG->bottom()) {
3919 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3920 return nullptr;
3922 SUnit *SU;
3923 do {
3924 SU = Top.pickOnlyChoice();
3925 if (SU) {
3926 tracePick(Only1, true);
3927 } else {
3928 CandPolicy NoPolicy;
3929 SchedCandidate TopCand(NoPolicy);
3930 // Set the top-down policy based on the state of the current top zone and
3931 // the instructions outside the zone, including the bottom zone.
3932 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3933 pickNodeFromQueue(TopCand);
3934 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3935 tracePick(TopCand);
3936 SU = TopCand.SU;
3938 } while (SU->isScheduled);
3940 IsTopNode = true;
3941 Top.removeReady(SU);
3943 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3944 << *SU->getInstr());
3945 return SU;
3948 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3949 /// scheduled/remaining flags in the DAG nodes.
3950 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3951 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3952 Top.bumpNode(SU);
3955 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3956 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3957 /*RemoveKillFlags=*/true);
3960 //===----------------------------------------------------------------------===//
3961 // ILP Scheduler. Currently for experimental analysis of heuristics.
3962 //===----------------------------------------------------------------------===//
3964 namespace {
3966 /// Order nodes by the ILP metric.
3967 struct ILPOrder {
3968 const SchedDFSResult *DFSResult = nullptr;
3969 const BitVector *ScheduledTrees = nullptr;
3970 bool MaximizeILP;
3972 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3974 /// Apply a less-than relation on node priority.
3976 /// (Return true if A comes after B in the Q.)
3977 bool operator()(const SUnit *A, const SUnit *B) const {
3978 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3979 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3980 if (SchedTreeA != SchedTreeB) {
3981 // Unscheduled trees have lower priority.
3982 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3983 return ScheduledTrees->test(SchedTreeB);
3985 // Trees with shallower connections have lower priority.
3986 if (DFSResult->getSubtreeLevel(SchedTreeA)
3987 != DFSResult->getSubtreeLevel(SchedTreeB)) {
3988 return DFSResult->getSubtreeLevel(SchedTreeA)
3989 < DFSResult->getSubtreeLevel(SchedTreeB);
3992 if (MaximizeILP)
3993 return DFSResult->getILP(A) < DFSResult->getILP(B);
3994 else
3995 return DFSResult->getILP(A) > DFSResult->getILP(B);
3999 /// Schedule based on the ILP metric.
4000 class ILPScheduler : public MachineSchedStrategy {
4001 ScheduleDAGMILive *DAG = nullptr;
4002 ILPOrder Cmp;
4004 std::vector<SUnit*> ReadyQ;
4006 public:
4007 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
4009 void initialize(ScheduleDAGMI *dag) override {
4010 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
4011 DAG = static_cast<ScheduleDAGMILive*>(dag);
4012 DAG->computeDFSResult();
4013 Cmp.DFSResult = DAG->getDFSResult();
4014 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
4015 ReadyQ.clear();
4018 void registerRoots() override {
4019 // Restore the heap in ReadyQ with the updated DFS results.
4020 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4023 /// Implement MachineSchedStrategy interface.
4024 /// -----------------------------------------
4026 /// Callback to select the highest priority node from the ready Q.
4027 SUnit *pickNode(bool &IsTopNode) override {
4028 if (ReadyQ.empty()) return nullptr;
4029 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4030 SUnit *SU = ReadyQ.back();
4031 ReadyQ.pop_back();
4032 IsTopNode = false;
4033 LLVM_DEBUG(dbgs() << "Pick node "
4034 << "SU(" << SU->NodeNum << ") "
4035 << " ILP: " << DAG->getDFSResult()->getILP(SU)
4036 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
4037 << " @"
4038 << DAG->getDFSResult()->getSubtreeLevel(
4039 DAG->getDFSResult()->getSubtreeID(SU))
4040 << '\n'
4041 << "Scheduling " << *SU->getInstr());
4042 return SU;
4045 /// Scheduler callback to notify that a new subtree is scheduled.
4046 void scheduleTree(unsigned SubtreeID) override {
4047 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4050 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
4051 /// DFSResults, and resort the priority Q.
4052 void schedNode(SUnit *SU, bool IsTopNode) override {
4053 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
4056 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
4058 void releaseBottomNode(SUnit *SU) override {
4059 ReadyQ.push_back(SU);
4060 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4064 } // end anonymous namespace
4066 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
4067 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
4069 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
4070 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
4073 static MachineSchedRegistry ILPMaxRegistry(
4074 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
4075 static MachineSchedRegistry ILPMinRegistry(
4076 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
4078 //===----------------------------------------------------------------------===//
4079 // Machine Instruction Shuffler for Correctness Testing
4080 //===----------------------------------------------------------------------===//
4082 #ifndef NDEBUG
4083 namespace {
4085 /// Apply a less-than relation on the node order, which corresponds to the
4086 /// instruction order prior to scheduling. IsReverse implements greater-than.
4087 template<bool IsReverse>
4088 struct SUnitOrder {
4089 bool operator()(SUnit *A, SUnit *B) const {
4090 if (IsReverse)
4091 return A->NodeNum > B->NodeNum;
4092 else
4093 return A->NodeNum < B->NodeNum;
4097 /// Reorder instructions as much as possible.
4098 class InstructionShuffler : public MachineSchedStrategy {
4099 bool IsAlternating;
4100 bool IsTopDown;
4102 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
4103 // gives nodes with a higher number higher priority causing the latest
4104 // instructions to be scheduled first.
4105 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
4106 TopQ;
4108 // When scheduling bottom-up, use greater-than as the queue priority.
4109 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
4110 BottomQ;
4112 public:
4113 InstructionShuffler(bool alternate, bool topdown)
4114 : IsAlternating(alternate), IsTopDown(topdown) {}
4116 void initialize(ScheduleDAGMI*) override {
4117 TopQ.clear();
4118 BottomQ.clear();
4121 /// Implement MachineSchedStrategy interface.
4122 /// -----------------------------------------
4124 SUnit *pickNode(bool &IsTopNode) override {
4125 SUnit *SU;
4126 if (IsTopDown) {
4127 do {
4128 if (TopQ.empty()) return nullptr;
4129 SU = TopQ.top();
4130 TopQ.pop();
4131 } while (SU->isScheduled);
4132 IsTopNode = true;
4133 } else {
4134 do {
4135 if (BottomQ.empty()) return nullptr;
4136 SU = BottomQ.top();
4137 BottomQ.pop();
4138 } while (SU->isScheduled);
4139 IsTopNode = false;
4141 if (IsAlternating)
4142 IsTopDown = !IsTopDown;
4143 return SU;
4146 void schedNode(SUnit *SU, bool IsTopNode) override {}
4148 void releaseTopNode(SUnit *SU) override {
4149 TopQ.push(SU);
4151 void releaseBottomNode(SUnit *SU) override {
4152 BottomQ.push(SU);
4156 } // end anonymous namespace
4158 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
4159 bool Alternate = !ForceTopDown && !ForceBottomUp;
4160 bool TopDown = !ForceBottomUp;
4161 assert((TopDown || !ForceTopDown) &&
4162 "-misched-topdown incompatible with -misched-bottomup");
4163 return new ScheduleDAGMILive(
4164 C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
4167 static MachineSchedRegistry ShufflerRegistry(
4168 "shuffle", "Shuffle machine instructions alternating directions",
4169 createInstructionShuffler);
4170 #endif // !NDEBUG
4172 //===----------------------------------------------------------------------===//
4173 // GraphWriter support for ScheduleDAGMILive.
4174 //===----------------------------------------------------------------------===//
4176 #ifndef NDEBUG
4177 namespace llvm {
4179 template<> struct GraphTraits<
4180 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
4182 template<>
4183 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
4184 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
4186 static std::string getGraphName(const ScheduleDAG *G) {
4187 return std::string(G->MF.getName());
4190 static bool renderGraphFromBottomUp() {
4191 return true;
4194 static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) {
4195 if (ViewMISchedCutoff == 0)
4196 return false;
4197 return (Node->Preds.size() > ViewMISchedCutoff
4198 || Node->Succs.size() > ViewMISchedCutoff);
4201 /// If you want to override the dot attributes printed for a particular
4202 /// edge, override this method.
4203 static std::string getEdgeAttributes(const SUnit *Node,
4204 SUnitIterator EI,
4205 const ScheduleDAG *Graph) {
4206 if (EI.isArtificialDep())
4207 return "color=cyan,style=dashed";
4208 if (EI.isCtrlDep())
4209 return "color=blue,style=dashed";
4210 return "";
4213 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
4214 std::string Str;
4215 raw_string_ostream SS(Str);
4216 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4217 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4218 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4219 SS << "SU:" << SU->NodeNum;
4220 if (DFS)
4221 SS << " I:" << DFS->getNumInstrs(SU);
4222 return SS.str();
4225 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
4226 return G->getGraphNodeLabel(SU);
4229 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
4230 std::string Str("shape=Mrecord");
4231 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4232 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4233 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4234 if (DFS) {
4235 Str += ",style=filled,fillcolor=\"#";
4236 Str += DOT::getColorString(DFS->getSubtreeID(N));
4237 Str += '"';
4239 return Str;
4243 } // end namespace llvm
4244 #endif // NDEBUG
4246 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
4247 /// rendered using 'dot'.
4248 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
4249 #ifndef NDEBUG
4250 ViewGraph(this, Name, false, Title);
4251 #else
4252 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
4253 << "systems with Graphviz or gv!\n";
4254 #endif // NDEBUG
4257 /// Out-of-line implementation with no arguments is handy for gdb.
4258 void ScheduleDAGMI::viewGraph() {
4259 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
4262 /// Sort predicate for the intervals stored in an instance of
4263 /// ResourceSegments. Intervals are always disjoint (no intersection
4264 /// for any pairs of intervals), therefore we can sort the totality of
4265 /// the intervals by looking only at the left boundary.
4266 static bool sortIntervals(const ResourceSegments::IntervalTy &A,
4267 const ResourceSegments::IntervalTy &B) {
4268 return A.first < B.first;
4271 unsigned ResourceSegments::getFirstAvailableAt(
4272 unsigned CurrCycle, unsigned AcquireAtCycle, unsigned ReleaseAtCycle,
4273 std::function<ResourceSegments::IntervalTy(unsigned, unsigned, unsigned)>
4274 IntervalBuilder) const {
4275 assert(std::is_sorted(std::begin(_Intervals), std::end(_Intervals),
4276 sortIntervals) &&
4277 "Cannot execute on an un-sorted set of intervals.");
4278 unsigned RetCycle = CurrCycle;
4279 ResourceSegments::IntervalTy NewInterval =
4280 IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4281 for (auto &Interval : _Intervals) {
4282 if (!intersects(NewInterval, Interval))
4283 continue;
4285 // Move the interval right next to the top of the one it
4286 // intersects.
4287 assert(Interval.second > NewInterval.first &&
4288 "Invalid intervals configuration.");
4289 RetCycle += (unsigned)Interval.second - (unsigned)NewInterval.first;
4290 NewInterval = IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4292 return RetCycle;
4295 void ResourceSegments::add(ResourceSegments::IntervalTy A,
4296 const unsigned CutOff) {
4297 assert(A.first < A.second && "Cannot add empty resource usage");
4298 assert(CutOff > 0 && "0-size interval history has no use.");
4299 assert(all_of(_Intervals,
4300 [&A](const ResourceSegments::IntervalTy &Interval) -> bool {
4301 return !intersects(A, Interval);
4302 }) &&
4303 "A resource is being overwritten");
4304 _Intervals.push_back(A);
4306 sortAndMerge();
4308 // Do not keep the full history of the intervals, just the
4309 // latest #CutOff.
4310 while (_Intervals.size() > CutOff)
4311 _Intervals.pop_front();
4314 bool ResourceSegments::intersects(ResourceSegments::IntervalTy A,
4315 ResourceSegments::IntervalTy B) {
4316 assert(A.first <= A.second && "Invalid interval");
4317 assert(B.first <= B.second && "Invalid interval");
4319 // Share one boundary.
4320 if ((A.first == B.first) || (A.second == B.second))
4321 return true;
4323 // full intersersect: [ *** ) B
4324 // [***) A
4325 if ((A.first > B.first) && (A.second < B.second))
4326 return true;
4328 // right intersect: [ ***) B
4329 // [*** ) A
4330 if ((A.first > B.first) && (A.first < B.second) && (A.second > B.second))
4331 return true;
4333 // left intersect: [*** ) B
4334 // [ ***) A
4335 if ((A.first < B.first) && (B.first < A.second) && (B.second > B.first))
4336 return true;
4338 return false;
4341 void ResourceSegments::sortAndMerge() {
4342 if (_Intervals.size() <= 1)
4343 return;
4345 // First sort the collection.
4346 _Intervals.sort(sortIntervals);
4348 // can use next because I have at least 2 elements in the list
4349 auto next = std::next(std::begin(_Intervals));
4350 auto E = std::end(_Intervals);
4351 for (; next != E; ++next) {
4352 if (std::prev(next)->second >= next->first) {
4353 next->first = std::prev(next)->first;
4354 _Intervals.erase(std::prev(next));
4355 continue;