1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the RAGreedy function pass for register allocation in
12 //===----------------------------------------------------------------------===//
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "RegAllocEvictionAdvisor.h"
20 #include "RegAllocPriorityAdvisor.h"
21 #include "SpillPlacement.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/CodeGen/CalcSpillWeights.h"
33 #include "llvm/CodeGen/EdgeBundles.h"
34 #include "llvm/CodeGen/LiveInterval.h"
35 #include "llvm/CodeGen/LiveIntervalUnion.h"
36 #include "llvm/CodeGen/LiveIntervals.h"
37 #include "llvm/CodeGen/LiveRangeEdit.h"
38 #include "llvm/CodeGen/LiveRegMatrix.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineLoopInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/RegAllocRegistry.h"
52 #include "llvm/CodeGen/RegisterClassInfo.h"
53 #include "llvm/CodeGen/SlotIndexes.h"
54 #include "llvm/CodeGen/Spiller.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/CodeGen/VirtRegMap.h"
59 #include "llvm/IR/DebugInfoMetadata.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/BlockFrequency.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
79 #define DEBUG_TYPE "regalloc"
81 STATISTIC(NumGlobalSplits
, "Number of split global live ranges");
82 STATISTIC(NumLocalSplits
, "Number of split local live ranges");
83 STATISTIC(NumEvicted
, "Number of interferences evicted");
85 static cl::opt
<SplitEditor::ComplementSpillMode
> SplitSpillMode(
86 "split-spill-mode", cl::Hidden
,
87 cl::desc("Spill mode for splitting live ranges"),
88 cl::values(clEnumValN(SplitEditor::SM_Partition
, "default", "Default"),
89 clEnumValN(SplitEditor::SM_Size
, "size", "Optimize for size"),
90 clEnumValN(SplitEditor::SM_Speed
, "speed", "Optimize for speed")),
91 cl::init(SplitEditor::SM_Speed
));
93 static cl::opt
<unsigned>
94 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden
,
95 cl::desc("Last chance recoloring max depth"),
98 static cl::opt
<unsigned> LastChanceRecoloringMaxInterference(
99 "lcr-max-interf", cl::Hidden
,
100 cl::desc("Last chance recoloring maximum number of considered"
101 " interference at a time"),
104 static cl::opt
<bool> ExhaustiveSearch(
105 "exhaustive-register-search", cl::NotHidden
,
106 cl::desc("Exhaustive Search for registers bypassing the depth "
107 "and interference cutoffs of last chance recoloring"),
110 static cl::opt
<bool> EnableDeferredSpilling(
111 "enable-deferred-spilling", cl::Hidden
,
112 cl::desc("Instead of spilling a variable right away, defer the actual "
113 "code insertion to the end of the allocation. That way the "
114 "allocator might still find a suitable coloring for this "
115 "variable because of other evicted variables."),
118 // FIXME: Find a good default for this flag and remove the flag.
119 static cl::opt
<unsigned>
120 CSRFirstTimeCost("regalloc-csr-first-time-cost",
121 cl::desc("Cost for first time use of callee-saved register."),
122 cl::init(0), cl::Hidden
);
124 static cl::opt
<unsigned long> GrowRegionComplexityBudget(
125 "grow-region-complexity-budget",
126 cl::desc("growRegion() does not scale with the number of BB edges, so "
127 "limit its budget and bail out once we reach the limit."),
128 cl::init(10000), cl::Hidden
);
130 static cl::opt
<bool> GreedyRegClassPriorityTrumpsGlobalness(
131 "greedy-regclass-priority-trumps-globalness",
132 cl::desc("Change the greedy register allocator's live range priority "
133 "calculation to make the AllocationPriority of the register class "
134 "more important then whether the range is global"),
137 static cl::opt
<bool> GreedyReverseLocalAssignment(
138 "greedy-reverse-local-assignment",
139 cl::desc("Reverse allocation order of local live ranges, such that "
140 "shorter local live ranges will tend to be allocated first"),
143 static cl::opt
<unsigned> SplitThresholdForRegWithHint(
144 "split-threshold-for-reg-with-hint",
145 cl::desc("The threshold for splitting a virtual register with a hint, in "
147 cl::init(75), cl::Hidden
);
149 static RegisterRegAlloc
greedyRegAlloc("greedy", "greedy register allocator",
150 createGreedyRegisterAllocator
);
152 char RAGreedy::ID
= 0;
153 char &llvm::RAGreedyID
= RAGreedy::ID
;
155 INITIALIZE_PASS_BEGIN(RAGreedy
, "greedy",
156 "Greedy Register Allocator", false, false)
157 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables
)
158 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
159 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
160 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer
)
161 INITIALIZE_PASS_DEPENDENCY(MachineScheduler
)
162 INITIALIZE_PASS_DEPENDENCY(LiveStacks
)
163 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
164 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
165 INITIALIZE_PASS_DEPENDENCY(VirtRegMap
)
166 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix
)
167 INITIALIZE_PASS_DEPENDENCY(EdgeBundles
)
168 INITIALIZE_PASS_DEPENDENCY(SpillPlacement
)
169 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass
)
170 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis
)
171 INITIALIZE_PASS_DEPENDENCY(RegAllocPriorityAdvisorAnalysis
)
172 INITIALIZE_PASS_END(RAGreedy
, "greedy",
173 "Greedy Register Allocator", false, false)
176 const char *const RAGreedy::StageName
[] = {
187 // Hysteresis to use when comparing floats.
188 // This helps stabilize decisions based on float comparisons.
189 const float Hysteresis
= (2007 / 2048.0f
); // 0.97998046875
191 FunctionPass
* llvm::createGreedyRegisterAllocator() {
192 return new RAGreedy();
195 FunctionPass
*llvm::createGreedyRegisterAllocator(RegClassFilterFunc Ftor
) {
196 return new RAGreedy(Ftor
);
199 RAGreedy::RAGreedy(RegClassFilterFunc F
):
200 MachineFunctionPass(ID
),
204 void RAGreedy::getAnalysisUsage(AnalysisUsage
&AU
) const {
205 AU
.setPreservesCFG();
206 AU
.addRequired
<MachineBlockFrequencyInfo
>();
207 AU
.addPreserved
<MachineBlockFrequencyInfo
>();
208 AU
.addRequired
<LiveIntervals
>();
209 AU
.addPreserved
<LiveIntervals
>();
210 AU
.addRequired
<SlotIndexes
>();
211 AU
.addPreserved
<SlotIndexes
>();
212 AU
.addRequired
<LiveDebugVariables
>();
213 AU
.addPreserved
<LiveDebugVariables
>();
214 AU
.addRequired
<LiveStacks
>();
215 AU
.addPreserved
<LiveStacks
>();
216 AU
.addRequired
<MachineDominatorTree
>();
217 AU
.addPreserved
<MachineDominatorTree
>();
218 AU
.addRequired
<MachineLoopInfo
>();
219 AU
.addPreserved
<MachineLoopInfo
>();
220 AU
.addRequired
<VirtRegMap
>();
221 AU
.addPreserved
<VirtRegMap
>();
222 AU
.addRequired
<LiveRegMatrix
>();
223 AU
.addPreserved
<LiveRegMatrix
>();
224 AU
.addRequired
<EdgeBundles
>();
225 AU
.addRequired
<SpillPlacement
>();
226 AU
.addRequired
<MachineOptimizationRemarkEmitterPass
>();
227 AU
.addRequired
<RegAllocEvictionAdvisorAnalysis
>();
228 AU
.addRequired
<RegAllocPriorityAdvisorAnalysis
>();
229 MachineFunctionPass::getAnalysisUsage(AU
);
232 //===----------------------------------------------------------------------===//
233 // LiveRangeEdit delegate methods
234 //===----------------------------------------------------------------------===//
236 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg
) {
237 LiveInterval
&LI
= LIS
->getInterval(VirtReg
);
238 if (VRM
->hasPhys(VirtReg
)) {
239 Matrix
->unassign(LI
);
240 aboutToRemoveInterval(LI
);
243 // Unassigned virtreg is probably in the priority queue.
244 // RegAllocBase will erase it after dequeueing.
245 // Nonetheless, clear the live-range so that the debug
246 // dump will show the right state for that VirtReg.
251 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg
) {
252 if (!VRM
->hasPhys(VirtReg
))
255 // Register is assigned, put it back on the queue for reassignment.
256 LiveInterval
&LI
= LIS
->getInterval(VirtReg
);
257 Matrix
->unassign(LI
);
258 RegAllocBase::enqueue(&LI
);
261 void RAGreedy::LRE_DidCloneVirtReg(Register New
, Register Old
) {
262 ExtraInfo
->LRE_DidCloneVirtReg(New
, Old
);
265 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New
, Register Old
) {
266 // Cloning a register we haven't even heard about yet? Just ignore it.
267 if (!Info
.inBounds(Old
))
270 // LRE may clone a virtual register because dead code elimination causes it to
271 // be split into connected components. The new components are much smaller
272 // than the original, so they should get a new chance at being assigned.
273 // same stage as the parent.
274 Info
[Old
].Stage
= RS_Assign
;
276 Info
[New
] = Info
[Old
];
279 void RAGreedy::releaseMemory() {
280 SpillerInstance
.reset();
284 void RAGreedy::enqueueImpl(const LiveInterval
*LI
) { enqueue(Queue
, LI
); }
286 void RAGreedy::enqueue(PQueue
&CurQueue
, const LiveInterval
*LI
) {
287 // Prioritize live ranges by size, assigning larger ranges first.
288 // The queue holds (size, reg) pairs.
289 const Register Reg
= LI
->reg();
290 assert(Reg
.isVirtual() && "Can only enqueue virtual registers");
292 auto Stage
= ExtraInfo
->getOrInitStage(Reg
);
293 if (Stage
== RS_New
) {
295 ExtraInfo
->setStage(Reg
, Stage
);
298 unsigned Ret
= PriorityAdvisor
->getPriority(*LI
);
300 // The virtual register number is a tie breaker for same-sized ranges.
301 // Give lower vreg numbers higher priority to assign them first.
302 CurQueue
.push(std::make_pair(Ret
, ~Reg
));
305 unsigned DefaultPriorityAdvisor::getPriority(const LiveInterval
&LI
) const {
306 const unsigned Size
= LI
.getSize();
307 const Register Reg
= LI
.reg();
309 LiveRangeStage Stage
= RA
.getExtraInfo().getStage(LI
);
311 if (Stage
== RS_Split
) {
312 // Unsplit ranges that couldn't be allocated immediately are deferred until
313 // everything else has been allocated.
315 } else if (Stage
== RS_Memory
) {
316 // Memory operand should be considered last.
317 // Change the priority such that Memory operand are assigned in
318 // the reverse order that they came in.
319 // TODO: Make this a member variable and probably do something about hints.
320 static unsigned MemOp
= 0;
323 // Giant live ranges fall back to the global assignment heuristic, which
324 // prevents excessive spilling in pathological cases.
325 const TargetRegisterClass
&RC
= *MRI
->getRegClass(Reg
);
326 bool ForceGlobal
= RC
.GlobalPriority
||
327 (!ReverseLocalAssignment
&&
328 (Size
/ SlotIndex::InstrDist
) >
329 (2 * RegClassInfo
.getNumAllocatableRegs(&RC
)));
330 unsigned GlobalBit
= 0;
332 if (Stage
== RS_Assign
&& !ForceGlobal
&& !LI
.empty() &&
333 LIS
->intervalIsInOneMBB(LI
)) {
334 // Allocate original local ranges in linear instruction order. Since they
335 // are singly defined, this produces optimal coloring in the absence of
336 // global interference and other constraints.
337 if (!ReverseLocalAssignment
)
338 Prio
= LI
.beginIndex().getApproxInstrDistance(Indexes
->getLastIndex());
340 // Allocating bottom up may allow many short LRGs to be assigned first
341 // to one of the cheap registers. This could be much faster for very
342 // large blocks on targets with many physical registers.
343 Prio
= Indexes
->getZeroIndex().getApproxInstrDistance(LI
.endIndex());
346 // Allocate global and split ranges in long->short order. Long ranges that
347 // don't fit should be spilled (or split) ASAP so they don't create
348 // interference. Mark a bit to prioritize global above local ranges.
353 // Priority bit layout:
354 // 31 RS_Assign priority
355 // 30 Preference priority
356 // if (RegClassPriorityTrumpsGlobalness)
357 // 29-25 AllocPriority
361 // 28-24 AllocPriority
362 // 0-23 Size/Instr distance
364 // Clamp the size to fit with the priority masking scheme
365 Prio
= std::min(Prio
, (unsigned)maxUIntN(24));
366 assert(isUInt
<5>(RC
.AllocationPriority
) && "allocation priority overflow");
368 if (RegClassPriorityTrumpsGlobalness
)
369 Prio
|= RC
.AllocationPriority
<< 25 | GlobalBit
<< 24;
371 Prio
|= GlobalBit
<< 29 | RC
.AllocationPriority
<< 24;
373 // Mark a higher bit to prioritize global and local above RS_Split.
376 // Boost ranges that have a physical register hint.
377 if (VRM
->hasKnownPreference(Reg
))
384 const LiveInterval
*RAGreedy::dequeue() { return dequeue(Queue
); }
386 const LiveInterval
*RAGreedy::dequeue(PQueue
&CurQueue
) {
387 if (CurQueue
.empty())
389 LiveInterval
*LI
= &LIS
->getInterval(~CurQueue
.top().second
);
394 //===----------------------------------------------------------------------===//
396 //===----------------------------------------------------------------------===//
398 /// tryAssign - Try to assign VirtReg to an available register.
399 MCRegister
RAGreedy::tryAssign(const LiveInterval
&VirtReg
,
400 AllocationOrder
&Order
,
401 SmallVectorImpl
<Register
> &NewVRegs
,
402 const SmallVirtRegSet
&FixedRegisters
) {
404 for (auto I
= Order
.begin(), E
= Order
.end(); I
!= E
&& !PhysReg
; ++I
) {
406 if (!Matrix
->checkInterference(VirtReg
, *I
)) {
413 if (!PhysReg
.isValid())
416 // PhysReg is available, but there may be a better choice.
418 // If we missed a simple hint, try to cheaply evict interference from the
419 // preferred register.
420 if (Register Hint
= MRI
->getSimpleHint(VirtReg
.reg()))
421 if (Order
.isHint(Hint
)) {
422 MCRegister PhysHint
= Hint
.asMCReg();
423 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint
, TRI
) << '\n');
425 if (EvictAdvisor
->canEvictHintInterference(VirtReg
, PhysHint
,
427 evictInterference(VirtReg
, PhysHint
, NewVRegs
);
431 // We can also split the virtual register in cold blocks.
432 if (trySplitAroundHintReg(PhysHint
, VirtReg
, NewVRegs
, Order
))
435 // Record the missed hint, we may be able to recover
436 // at the end if the surrounding allocation changed.
437 SetOfBrokenHints
.insert(&VirtReg
);
440 // Try to evict interference from a cheaper alternative.
441 uint8_t Cost
= RegCosts
[PhysReg
];
443 // Most registers have 0 additional cost.
447 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << " is available at cost "
448 << (unsigned)Cost
<< '\n');
449 MCRegister CheapReg
= tryEvict(VirtReg
, Order
, NewVRegs
, Cost
, FixedRegisters
);
450 return CheapReg
? CheapReg
: PhysReg
;
453 //===----------------------------------------------------------------------===//
454 // Interference eviction
455 //===----------------------------------------------------------------------===//
457 bool RegAllocEvictionAdvisor::canReassign(const LiveInterval
&VirtReg
,
458 MCRegister FromReg
) const {
459 auto HasRegUnitInterference
= [&](MCRegUnit Unit
) {
460 // Instantiate a "subquery", not to be confused with the Queries array.
461 LiveIntervalUnion::Query
SubQ(VirtReg
, Matrix
->getLiveUnions()[Unit
]);
462 return SubQ
.checkInterference();
465 for (MCRegister Reg
:
466 AllocationOrder::create(VirtReg
.reg(), *VRM
, RegClassInfo
, Matrix
)) {
469 // If no units have interference, reassignment is possible.
470 if (none_of(TRI
->regunits(Reg
), HasRegUnitInterference
)) {
471 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg
<< " from "
472 << printReg(FromReg
, TRI
) << " to "
473 << printReg(Reg
, TRI
) << '\n');
480 /// evictInterference - Evict any interferring registers that prevent VirtReg
481 /// from being assigned to Physreg. This assumes that canEvictInterference
483 void RAGreedy::evictInterference(const LiveInterval
&VirtReg
,
485 SmallVectorImpl
<Register
> &NewVRegs
) {
486 // Make sure that VirtReg has a cascade number, and assign that cascade
487 // number to every evicted register. These live ranges than then only be
488 // evicted by a newer cascade, preventing infinite loops.
489 unsigned Cascade
= ExtraInfo
->getOrAssignNewCascade(VirtReg
.reg());
491 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg
, TRI
)
492 << " interference: Cascade " << Cascade
<< '\n');
494 // Collect all interfering virtregs first.
495 SmallVector
<const LiveInterval
*, 8> Intfs
;
496 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
)) {
497 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, Unit
);
498 // We usually have the interfering VRegs cached so collectInterferingVRegs()
499 // should be fast, we may need to recalculate if when different physregs
500 // overlap the same register unit so we had different SubRanges queried
502 ArrayRef
<const LiveInterval
*> IVR
= Q
.interferingVRegs();
503 Intfs
.append(IVR
.begin(), IVR
.end());
506 // Evict them second. This will invalidate the queries.
507 for (const LiveInterval
*Intf
: Intfs
) {
508 // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
509 if (!VRM
->hasPhys(Intf
->reg()))
512 Matrix
->unassign(*Intf
);
513 assert((ExtraInfo
->getCascade(Intf
->reg()) < Cascade
||
514 VirtReg
.isSpillable() < Intf
->isSpillable()) &&
515 "Cannot decrease cascade number, illegal eviction");
516 ExtraInfo
->setCascade(Intf
->reg(), Cascade
);
518 NewVRegs
.push_back(Intf
->reg());
522 /// Returns true if the given \p PhysReg is a callee saved register and has not
523 /// been used for allocation yet.
524 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg
) const {
525 MCRegister CSR
= RegClassInfo
.getLastCalleeSavedAlias(PhysReg
);
529 return !Matrix
->isPhysRegUsed(PhysReg
);
532 std::optional
<unsigned>
533 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval
&VirtReg
,
534 const AllocationOrder
&Order
,
535 unsigned CostPerUseLimit
) const {
536 unsigned OrderLimit
= Order
.getOrder().size();
538 if (CostPerUseLimit
< uint8_t(~0u)) {
539 // Check of any registers in RC are below CostPerUseLimit.
540 const TargetRegisterClass
*RC
= MRI
->getRegClass(VirtReg
.reg());
541 uint8_t MinCost
= RegClassInfo
.getMinCost(RC
);
542 if (MinCost
>= CostPerUseLimit
) {
543 LLVM_DEBUG(dbgs() << TRI
->getRegClassName(RC
) << " minimum cost = "
544 << MinCost
<< ", no cheaper registers to be found.\n");
548 // It is normal for register classes to have a long tail of registers with
549 // the same cost. We don't need to look at them if they're too expensive.
550 if (RegCosts
[Order
.getOrder().back()] >= CostPerUseLimit
) {
551 OrderLimit
= RegClassInfo
.getLastCostChange(RC
);
552 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
559 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit
,
560 MCRegister PhysReg
) const {
561 if (RegCosts
[PhysReg
] >= CostPerUseLimit
)
563 // The first use of a callee-saved register in a function has cost 1.
564 // Don't start using a CSR when the CostPerUseLimit is low.
565 if (CostPerUseLimit
== 1 && isUnusedCalleeSavedReg(PhysReg
)) {
567 dbgs() << printReg(PhysReg
, TRI
) << " would clobber CSR "
568 << printReg(RegClassInfo
.getLastCalleeSavedAlias(PhysReg
), TRI
)
575 /// tryEvict - Try to evict all interferences for a physreg.
576 /// @param VirtReg Currently unassigned virtual register.
577 /// @param Order Physregs to try.
578 /// @return Physreg to assign VirtReg, or 0.
579 MCRegister
RAGreedy::tryEvict(const LiveInterval
&VirtReg
,
580 AllocationOrder
&Order
,
581 SmallVectorImpl
<Register
> &NewVRegs
,
582 uint8_t CostPerUseLimit
,
583 const SmallVirtRegSet
&FixedRegisters
) {
584 NamedRegionTimer
T("evict", "Evict", TimerGroupName
, TimerGroupDescription
,
585 TimePassesIsEnabled
);
587 MCRegister BestPhys
= EvictAdvisor
->tryFindEvictionCandidate(
588 VirtReg
, Order
, CostPerUseLimit
, FixedRegisters
);
589 if (BestPhys
.isValid())
590 evictInterference(VirtReg
, BestPhys
, NewVRegs
);
594 //===----------------------------------------------------------------------===//
596 //===----------------------------------------------------------------------===//
598 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
599 /// interference pattern in Physreg and its aliases. Add the constraints to
600 /// SpillPlacement and return the static cost of this split in Cost, assuming
601 /// that all preferences in SplitConstraints are met.
602 /// Return false if there are no bundles with positive bias.
603 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf
,
604 BlockFrequency
&Cost
) {
605 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
607 // Reset interference dependent info.
608 SplitConstraints
.resize(UseBlocks
.size());
609 BlockFrequency StaticCost
= BlockFrequency(0);
610 for (unsigned I
= 0; I
!= UseBlocks
.size(); ++I
) {
611 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[I
];
612 SpillPlacement::BlockConstraint
&BC
= SplitConstraints
[I
];
614 BC
.Number
= BI
.MBB
->getNumber();
615 Intf
.moveToBlock(BC
.Number
);
616 BC
.Entry
= BI
.LiveIn
? SpillPlacement::PrefReg
: SpillPlacement::DontCare
;
617 BC
.Exit
= (BI
.LiveOut
&&
618 !LIS
->getInstructionFromIndex(BI
.LastInstr
)->isImplicitDef())
619 ? SpillPlacement::PrefReg
620 : SpillPlacement::DontCare
;
621 BC
.ChangesValue
= BI
.FirstDef
.isValid();
623 if (!Intf
.hasInterference())
626 // Number of spill code instructions to insert.
629 // Interference for the live-in value.
631 if (Intf
.first() <= Indexes
->getMBBStartIdx(BC
.Number
)) {
632 BC
.Entry
= SpillPlacement::MustSpill
;
634 } else if (Intf
.first() < BI
.FirstInstr
) {
635 BC
.Entry
= SpillPlacement::PrefSpill
;
637 } else if (Intf
.first() < BI
.LastInstr
) {
641 // Abort if the spill cannot be inserted at the MBB' start
642 if (((BC
.Entry
== SpillPlacement::MustSpill
) ||
643 (BC
.Entry
== SpillPlacement::PrefSpill
)) &&
644 SlotIndex::isEarlierInstr(BI
.FirstInstr
,
645 SA
->getFirstSplitPoint(BC
.Number
)))
649 // Interference for the live-out value.
651 if (Intf
.last() >= SA
->getLastSplitPoint(BC
.Number
)) {
652 BC
.Exit
= SpillPlacement::MustSpill
;
654 } else if (Intf
.last() > BI
.LastInstr
) {
655 BC
.Exit
= SpillPlacement::PrefSpill
;
657 } else if (Intf
.last() > BI
.FirstInstr
) {
662 // Accumulate the total frequency of inserted spill code.
664 StaticCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
668 // Add constraints for use-blocks. Note that these are the only constraints
669 // that may add a positive bias, it is downhill from here.
670 SpillPlacer
->addConstraints(SplitConstraints
);
671 return SpillPlacer
->scanActiveBundles();
674 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
675 /// live-through blocks in Blocks.
676 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf
,
677 ArrayRef
<unsigned> Blocks
) {
678 const unsigned GroupSize
= 8;
679 SpillPlacement::BlockConstraint BCS
[GroupSize
];
680 unsigned TBS
[GroupSize
];
681 unsigned B
= 0, T
= 0;
683 for (unsigned Number
: Blocks
) {
684 Intf
.moveToBlock(Number
);
686 if (!Intf
.hasInterference()) {
687 assert(T
< GroupSize
&& "Array overflow");
689 if (++T
== GroupSize
) {
690 SpillPlacer
->addLinks(ArrayRef(TBS
, T
));
696 assert(B
< GroupSize
&& "Array overflow");
697 BCS
[B
].Number
= Number
;
699 // Abort if the spill cannot be inserted at the MBB' start
700 MachineBasicBlock
*MBB
= MF
->getBlockNumbered(Number
);
701 auto FirstNonDebugInstr
= MBB
->getFirstNonDebugInstr();
702 if (FirstNonDebugInstr
!= MBB
->end() &&
703 SlotIndex::isEarlierInstr(LIS
->getInstructionIndex(*FirstNonDebugInstr
),
704 SA
->getFirstSplitPoint(Number
)))
706 // Interference for the live-in value.
707 if (Intf
.first() <= Indexes
->getMBBStartIdx(Number
))
708 BCS
[B
].Entry
= SpillPlacement::MustSpill
;
710 BCS
[B
].Entry
= SpillPlacement::PrefSpill
;
712 // Interference for the live-out value.
713 if (Intf
.last() >= SA
->getLastSplitPoint(Number
))
714 BCS
[B
].Exit
= SpillPlacement::MustSpill
;
716 BCS
[B
].Exit
= SpillPlacement::PrefSpill
;
718 if (++B
== GroupSize
) {
719 SpillPlacer
->addConstraints(ArrayRef(BCS
, B
));
724 SpillPlacer
->addConstraints(ArrayRef(BCS
, B
));
725 SpillPlacer
->addLinks(ArrayRef(TBS
, T
));
729 bool RAGreedy::growRegion(GlobalSplitCandidate
&Cand
) {
730 // Keep track of through blocks that have not been added to SpillPlacer.
731 BitVector Todo
= SA
->getThroughBlocks();
732 SmallVectorImpl
<unsigned> &ActiveBlocks
= Cand
.ActiveBlocks
;
733 unsigned AddedTo
= 0;
735 unsigned Visited
= 0;
738 unsigned long Budget
= GrowRegionComplexityBudget
;
740 ArrayRef
<unsigned> NewBundles
= SpillPlacer
->getRecentPositive();
741 // Find new through blocks in the periphery of PrefRegBundles.
742 for (unsigned Bundle
: NewBundles
) {
743 // Look at all blocks connected to Bundle in the full graph.
744 ArrayRef
<unsigned> Blocks
= Bundles
->getBlocks(Bundle
);
745 // Limit compilation time by bailing out after we use all our budget.
746 if (Blocks
.size() >= Budget
)
748 Budget
-= Blocks
.size();
749 for (unsigned Block
: Blocks
) {
750 if (!Todo
.test(Block
))
753 // This is a new through block. Add it to SpillPlacer later.
754 ActiveBlocks
.push_back(Block
);
760 // Any new blocks to add?
761 if (ActiveBlocks
.size() == AddedTo
)
764 // Compute through constraints from the interference, or assume that all
765 // through blocks prefer spilling when forming compact regions.
766 auto NewBlocks
= ArrayRef(ActiveBlocks
).slice(AddedTo
);
768 if (!addThroughConstraints(Cand
.Intf
, NewBlocks
))
771 // Providing that the variable being spilled does not look like a loop
772 // induction variable, which is expensive to spill around and better
773 // pushed into a condition inside the loop if possible, provide a strong
774 // negative bias on through blocks to prevent unwanted liveness on loop
776 bool PrefSpill
= true;
777 if (SA
->looksLikeLoopIV() && NewBlocks
.size() >= 2) {
778 // Check that the current bundle is adding a Header + start+end of
779 // loop-internal blocks. If the block is indeed a header, don't make
780 // the NewBlocks as PrefSpill to allow the variable to be live in
782 MachineLoop
*L
= Loops
->getLoopFor(MF
->getBlockNumbered(NewBlocks
[0]));
783 if (L
&& L
->getHeader()->getNumber() == (int)NewBlocks
[0] &&
784 all_of(NewBlocks
.drop_front(), [&](unsigned Block
) {
785 return L
== Loops
->getLoopFor(MF
->getBlockNumbered(Block
));
790 SpillPlacer
->addPrefSpill(NewBlocks
, /* Strong= */ true);
792 AddedTo
= ActiveBlocks
.size();
794 // Perhaps iterating can enable more bundles?
795 SpillPlacer
->iterate();
797 LLVM_DEBUG(dbgs() << ", v=" << Visited
);
801 /// calcCompactRegion - Compute the set of edge bundles that should be live
802 /// when splitting the current live range into compact regions. Compact
803 /// regions can be computed without looking at interference. They are the
804 /// regions formed by removing all the live-through blocks from the live range.
806 /// Returns false if the current live range is already compact, or if the
807 /// compact regions would form single block regions anyway.
808 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate
&Cand
) {
809 // Without any through blocks, the live range is already compact.
810 if (!SA
->getNumThroughBlocks())
813 // Compact regions don't correspond to any physreg.
814 Cand
.reset(IntfCache
, MCRegister::NoRegister
);
816 LLVM_DEBUG(dbgs() << "Compact region bundles");
818 // Use the spill placer to determine the live bundles. GrowRegion pretends
819 // that all the through blocks have interference when PhysReg is unset.
820 SpillPlacer
->prepare(Cand
.LiveBundles
);
822 // The static split cost will be zero since Cand.Intf reports no interference.
824 if (!addSplitConstraints(Cand
.Intf
, Cost
)) {
825 LLVM_DEBUG(dbgs() << ", none.\n");
829 if (!growRegion(Cand
)) {
830 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
834 SpillPlacer
->finish();
836 if (!Cand
.LiveBundles
.any()) {
837 LLVM_DEBUG(dbgs() << ", none.\n");
842 for (int I
: Cand
.LiveBundles
.set_bits())
843 dbgs() << " EB#" << I
;
849 /// calcSpillCost - Compute how expensive it would be to split the live range in
850 /// SA around all use blocks instead of forming bundle regions.
851 BlockFrequency
RAGreedy::calcSpillCost() {
852 BlockFrequency Cost
= BlockFrequency(0);
853 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
854 for (const SplitAnalysis::BlockInfo
&BI
: UseBlocks
) {
855 unsigned Number
= BI
.MBB
->getNumber();
856 // We normally only need one spill instruction - a load or a store.
857 Cost
+= SpillPlacer
->getBlockFrequency(Number
);
859 // Unless the value is redefined in the block.
860 if (BI
.LiveIn
&& BI
.LiveOut
&& BI
.FirstDef
)
861 Cost
+= SpillPlacer
->getBlockFrequency(Number
);
866 /// calcGlobalSplitCost - Return the global split cost of following the split
867 /// pattern in LiveBundles. This cost should be added to the local cost of the
868 /// interference pattern in SplitConstraints.
870 BlockFrequency
RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate
&Cand
,
871 const AllocationOrder
&Order
) {
872 BlockFrequency GlobalCost
= BlockFrequency(0);
873 const BitVector
&LiveBundles
= Cand
.LiveBundles
;
874 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
875 for (unsigned I
= 0; I
!= UseBlocks
.size(); ++I
) {
876 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[I
];
877 SpillPlacement::BlockConstraint
&BC
= SplitConstraints
[I
];
878 bool RegIn
= LiveBundles
[Bundles
->getBundle(BC
.Number
, false)];
879 bool RegOut
= LiveBundles
[Bundles
->getBundle(BC
.Number
, true)];
882 Cand
.Intf
.moveToBlock(BC
.Number
);
885 Ins
+= RegIn
!= (BC
.Entry
== SpillPlacement::PrefReg
);
887 Ins
+= RegOut
!= (BC
.Exit
== SpillPlacement::PrefReg
);
889 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
892 for (unsigned Number
: Cand
.ActiveBlocks
) {
893 bool RegIn
= LiveBundles
[Bundles
->getBundle(Number
, false)];
894 bool RegOut
= LiveBundles
[Bundles
->getBundle(Number
, true)];
895 if (!RegIn
&& !RegOut
)
897 if (RegIn
&& RegOut
) {
898 // We need double spill code if this block has interference.
899 Cand
.Intf
.moveToBlock(Number
);
900 if (Cand
.Intf
.hasInterference()) {
901 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
902 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
906 // live-in / stack-out or stack-in live-out.
907 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
912 /// splitAroundRegion - Split the current live range around the regions
913 /// determined by BundleCand and GlobalCand.
915 /// Before calling this function, GlobalCand and BundleCand must be initialized
916 /// so each bundle is assigned to a valid candidate, or NoCand for the
917 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
918 /// objects must be initialized for the current live range, and intervals
919 /// created for the used candidates.
921 /// @param LREdit The LiveRangeEdit object handling the current split.
922 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
923 /// must appear in this list.
924 void RAGreedy::splitAroundRegion(LiveRangeEdit
&LREdit
,
925 ArrayRef
<unsigned> UsedCands
) {
926 // These are the intervals created for new global ranges. We may create more
927 // intervals for local ranges.
928 const unsigned NumGlobalIntvs
= LREdit
.size();
929 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
931 assert(NumGlobalIntvs
&& "No global intervals configured");
933 // Isolate even single instructions when dealing with a proper sub-class.
934 // That guarantees register class inflation for the stack interval because it
936 Register Reg
= SA
->getParent().reg();
937 bool SingleInstrs
= RegClassInfo
.isProperSubClass(MRI
->getRegClass(Reg
));
939 // First handle all the blocks with uses.
940 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
941 for (const SplitAnalysis::BlockInfo
&BI
: UseBlocks
) {
942 unsigned Number
= BI
.MBB
->getNumber();
943 unsigned IntvIn
= 0, IntvOut
= 0;
944 SlotIndex IntfIn
, IntfOut
;
946 unsigned CandIn
= BundleCand
[Bundles
->getBundle(Number
, false)];
947 if (CandIn
!= NoCand
) {
948 GlobalSplitCandidate
&Cand
= GlobalCand
[CandIn
];
949 IntvIn
= Cand
.IntvIdx
;
950 Cand
.Intf
.moveToBlock(Number
);
951 IntfIn
= Cand
.Intf
.first();
955 unsigned CandOut
= BundleCand
[Bundles
->getBundle(Number
, true)];
956 if (CandOut
!= NoCand
) {
957 GlobalSplitCandidate
&Cand
= GlobalCand
[CandOut
];
958 IntvOut
= Cand
.IntvIdx
;
959 Cand
.Intf
.moveToBlock(Number
);
960 IntfOut
= Cand
.Intf
.last();
964 // Create separate intervals for isolated blocks with multiple uses.
965 if (!IntvIn
&& !IntvOut
) {
966 LLVM_DEBUG(dbgs() << printMBBReference(*BI
.MBB
) << " isolated.\n");
967 if (SA
->shouldSplitSingleBlock(BI
, SingleInstrs
))
968 SE
->splitSingleBlock(BI
);
972 if (IntvIn
&& IntvOut
)
973 SE
->splitLiveThroughBlock(Number
, IntvIn
, IntfIn
, IntvOut
, IntfOut
);
975 SE
->splitRegInBlock(BI
, IntvIn
, IntfIn
);
977 SE
->splitRegOutBlock(BI
, IntvOut
, IntfOut
);
980 // Handle live-through blocks. The relevant live-through blocks are stored in
981 // the ActiveBlocks list with each candidate. We need to filter out
983 BitVector Todo
= SA
->getThroughBlocks();
984 for (unsigned UsedCand
: UsedCands
) {
985 ArrayRef
<unsigned> Blocks
= GlobalCand
[UsedCand
].ActiveBlocks
;
986 for (unsigned Number
: Blocks
) {
987 if (!Todo
.test(Number
))
991 unsigned IntvIn
= 0, IntvOut
= 0;
992 SlotIndex IntfIn
, IntfOut
;
994 unsigned CandIn
= BundleCand
[Bundles
->getBundle(Number
, false)];
995 if (CandIn
!= NoCand
) {
996 GlobalSplitCandidate
&Cand
= GlobalCand
[CandIn
];
997 IntvIn
= Cand
.IntvIdx
;
998 Cand
.Intf
.moveToBlock(Number
);
999 IntfIn
= Cand
.Intf
.first();
1002 unsigned CandOut
= BundleCand
[Bundles
->getBundle(Number
, true)];
1003 if (CandOut
!= NoCand
) {
1004 GlobalSplitCandidate
&Cand
= GlobalCand
[CandOut
];
1005 IntvOut
= Cand
.IntvIdx
;
1006 Cand
.Intf
.moveToBlock(Number
);
1007 IntfOut
= Cand
.Intf
.last();
1009 if (!IntvIn
&& !IntvOut
)
1011 SE
->splitLiveThroughBlock(Number
, IntvIn
, IntfIn
, IntvOut
, IntfOut
);
1017 SmallVector
<unsigned, 8> IntvMap
;
1018 SE
->finish(&IntvMap
);
1019 DebugVars
->splitRegister(Reg
, LREdit
.regs(), *LIS
);
1021 unsigned OrigBlocks
= SA
->getNumLiveBlocks();
1023 // Sort out the new intervals created by splitting. We get four kinds:
1024 // - Remainder intervals should not be split again.
1025 // - Candidate intervals can be assigned to Cand.PhysReg.
1026 // - Block-local splits are candidates for local splitting.
1027 // - DCE leftovers should go back on the queue.
1028 for (unsigned I
= 0, E
= LREdit
.size(); I
!= E
; ++I
) {
1029 const LiveInterval
&Reg
= LIS
->getInterval(LREdit
.get(I
));
1031 // Ignore old intervals from DCE.
1032 if (ExtraInfo
->getOrInitStage(Reg
.reg()) != RS_New
)
1035 // Remainder interval. Don't try splitting again, spill if it doesn't
1037 if (IntvMap
[I
] == 0) {
1038 ExtraInfo
->setStage(Reg
, RS_Spill
);
1042 // Global intervals. Allow repeated splitting as long as the number of live
1043 // blocks is strictly decreasing.
1044 if (IntvMap
[I
] < NumGlobalIntvs
) {
1045 if (SA
->countLiveBlocks(&Reg
) >= OrigBlocks
) {
1046 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1047 << " blocks as original.\n");
1048 // Don't allow repeated splitting as a safe guard against looping.
1049 ExtraInfo
->setStage(Reg
, RS_Split2
);
1054 // Other intervals are treated as new. This includes local intervals created
1055 // for blocks with multiple uses, and anything created by DCE.
1059 MF
->verify(this, "After splitting live range around region");
1062 MCRegister
RAGreedy::tryRegionSplit(const LiveInterval
&VirtReg
,
1063 AllocationOrder
&Order
,
1064 SmallVectorImpl
<Register
> &NewVRegs
) {
1065 if (!TRI
->shouldRegionSplitForVirtReg(*MF
, VirtReg
))
1066 return MCRegister::NoRegister
;
1067 unsigned NumCands
= 0;
1068 BlockFrequency SpillCost
= calcSpillCost();
1069 BlockFrequency BestCost
;
1071 // Check if we can split this live range around a compact region.
1072 bool HasCompact
= calcCompactRegion(GlobalCand
.front());
1074 // Yes, keep GlobalCand[0] as the compact region candidate.
1076 BestCost
= BlockFrequency::max();
1078 // No benefit from the compact region, our fallback will be per-block
1079 // splitting. Make sure we find a solution that is cheaper than spilling.
1080 BestCost
= SpillCost
;
1081 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "
1082 << printBlockFreq(*MBFI
, BestCost
) << '\n');
1085 unsigned BestCand
= calculateRegionSplitCost(VirtReg
, Order
, BestCost
,
1086 NumCands
, false /*IgnoreCSR*/);
1088 // No solutions found, fall back to single block splitting.
1089 if (!HasCompact
&& BestCand
== NoCand
)
1090 return MCRegister::NoRegister
;
1092 return doRegionSplit(VirtReg
, BestCand
, HasCompact
, NewVRegs
);
1096 RAGreedy::calculateRegionSplitCostAroundReg(MCPhysReg PhysReg
,
1097 AllocationOrder
&Order
,
1098 BlockFrequency
&BestCost
,
1100 unsigned &BestCand
) {
1101 // Discard bad candidates before we run out of interference cache cursors.
1102 // This will only affect register classes with a lot of registers (>32).
1103 if (NumCands
== IntfCache
.getMaxCursors()) {
1104 unsigned WorstCount
= ~0u;
1106 for (unsigned CandIndex
= 0; CandIndex
!= NumCands
; ++CandIndex
) {
1107 if (CandIndex
== BestCand
|| !GlobalCand
[CandIndex
].PhysReg
)
1109 unsigned Count
= GlobalCand
[CandIndex
].LiveBundles
.count();
1110 if (Count
< WorstCount
) {
1116 GlobalCand
[Worst
] = GlobalCand
[NumCands
];
1117 if (BestCand
== NumCands
)
1121 if (GlobalCand
.size() <= NumCands
)
1122 GlobalCand
.resize(NumCands
+1);
1123 GlobalSplitCandidate
&Cand
= GlobalCand
[NumCands
];
1124 Cand
.reset(IntfCache
, PhysReg
);
1126 SpillPlacer
->prepare(Cand
.LiveBundles
);
1127 BlockFrequency Cost
;
1128 if (!addSplitConstraints(Cand
.Intf
, Cost
)) {
1129 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << "\tno positive bundles\n");
1132 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
)
1133 << "\tstatic = " << printBlockFreq(*MBFI
, Cost
));
1134 if (Cost
>= BestCost
) {
1136 if (BestCand
== NoCand
)
1137 dbgs() << " worse than no bundles\n";
1139 dbgs() << " worse than "
1140 << printReg(GlobalCand
[BestCand
].PhysReg
, TRI
) << '\n';
1144 if (!growRegion(Cand
)) {
1145 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1149 SpillPlacer
->finish();
1151 // No live bundles, defer to splitSingleBlocks().
1152 if (!Cand
.LiveBundles
.any()) {
1153 LLVM_DEBUG(dbgs() << " no bundles.\n");
1157 Cost
+= calcGlobalSplitCost(Cand
, Order
);
1159 dbgs() << ", total = " << printBlockFreq(*MBFI
, Cost
) << " with bundles";
1160 for (int I
: Cand
.LiveBundles
.set_bits())
1161 dbgs() << " EB#" << I
;
1164 if (Cost
< BestCost
) {
1165 BestCand
= NumCands
;
1173 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval
&VirtReg
,
1174 AllocationOrder
&Order
,
1175 BlockFrequency
&BestCost
,
1178 unsigned BestCand
= NoCand
;
1179 for (MCPhysReg PhysReg
: Order
) {
1181 if (IgnoreCSR
&& EvictAdvisor
->isUnusedCalleeSavedReg(PhysReg
))
1184 calculateRegionSplitCostAroundReg(PhysReg
, Order
, BestCost
, NumCands
,
1191 unsigned RAGreedy::doRegionSplit(const LiveInterval
&VirtReg
, unsigned BestCand
,
1193 SmallVectorImpl
<Register
> &NewVRegs
) {
1194 SmallVector
<unsigned, 8> UsedCands
;
1195 // Prepare split editor.
1196 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
1197 SE
->reset(LREdit
, SplitSpillMode
);
1199 // Assign all edge bundles to the preferred candidate, or NoCand.
1200 BundleCand
.assign(Bundles
->getNumBundles(), NoCand
);
1202 // Assign bundles for the best candidate region.
1203 if (BestCand
!= NoCand
) {
1204 GlobalSplitCandidate
&Cand
= GlobalCand
[BestCand
];
1205 if (unsigned B
= Cand
.getBundles(BundleCand
, BestCand
)) {
1206 UsedCands
.push_back(BestCand
);
1207 Cand
.IntvIdx
= SE
->openIntv();
1208 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand
.PhysReg
, TRI
) << " in "
1209 << B
<< " bundles, intv " << Cand
.IntvIdx
<< ".\n");
1214 // Assign bundles for the compact region.
1216 GlobalSplitCandidate
&Cand
= GlobalCand
.front();
1217 assert(!Cand
.PhysReg
&& "Compact region has no physreg");
1218 if (unsigned B
= Cand
.getBundles(BundleCand
, 0)) {
1219 UsedCands
.push_back(0);
1220 Cand
.IntvIdx
= SE
->openIntv();
1221 LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1222 << " bundles, intv " << Cand
.IntvIdx
<< ".\n");
1227 splitAroundRegion(LREdit
, UsedCands
);
1231 // VirtReg has a physical Hint, this function tries to split VirtReg around
1232 // Hint if we can place new COPY instructions in cold blocks.
1233 bool RAGreedy::trySplitAroundHintReg(MCPhysReg Hint
,
1234 const LiveInterval
&VirtReg
,
1235 SmallVectorImpl
<Register
> &NewVRegs
,
1236 AllocationOrder
&Order
) {
1237 // Split the VirtReg may generate COPY instructions in multiple cold basic
1238 // blocks, and increase code size. So we avoid it when the function is
1239 // optimized for size.
1240 if (MF
->getFunction().hasOptSize())
1243 // Don't allow repeated splitting as a safe guard against looping.
1244 if (ExtraInfo
->getStage(VirtReg
) >= RS_Split2
)
1247 BlockFrequency Cost
= BlockFrequency(0);
1248 Register Reg
= VirtReg
.reg();
1250 // Compute the cost of assigning a non Hint physical register to VirtReg.
1251 // We define it as the total frequency of broken COPY instructions to/from
1252 // Hint register, and after split, they can be deleted.
1253 for (const MachineInstr
&Instr
: MRI
->reg_nodbg_instructions(Reg
)) {
1254 if (!TII
->isFullCopyInstr(Instr
))
1256 Register OtherReg
= Instr
.getOperand(1).getReg();
1257 if (OtherReg
== Reg
) {
1258 OtherReg
= Instr
.getOperand(0).getReg();
1259 if (OtherReg
== Reg
)
1261 // Check if VirtReg interferes with OtherReg after this COPY instruction.
1262 if (VirtReg
.liveAt(LIS
->getInstructionIndex(Instr
).getRegSlot()))
1265 MCRegister OtherPhysReg
=
1266 OtherReg
.isPhysical() ? OtherReg
.asMCReg() : VRM
->getPhys(OtherReg
);
1267 if (OtherPhysReg
== Hint
)
1268 Cost
+= MBFI
->getBlockFreq(Instr
.getParent());
1271 // Decrease the cost so it will be split in colder blocks.
1272 BranchProbability
Threshold(SplitThresholdForRegWithHint
, 100);
1274 if (Cost
== BlockFrequency(0))
1277 unsigned NumCands
= 0;
1278 unsigned BestCand
= NoCand
;
1279 SA
->analyze(&VirtReg
);
1280 calculateRegionSplitCostAroundReg(Hint
, Order
, Cost
, NumCands
, BestCand
);
1281 if (BestCand
== NoCand
)
1284 doRegionSplit(VirtReg
, BestCand
, false/*HasCompact*/, NewVRegs
);
1288 //===----------------------------------------------------------------------===//
1289 // Per-Block Splitting
1290 //===----------------------------------------------------------------------===//
1292 /// tryBlockSplit - Split a global live range around every block with uses. This
1293 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1294 /// they don't allocate.
1295 unsigned RAGreedy::tryBlockSplit(const LiveInterval
&VirtReg
,
1296 AllocationOrder
&Order
,
1297 SmallVectorImpl
<Register
> &NewVRegs
) {
1298 assert(&SA
->getParent() == &VirtReg
&& "Live range wasn't analyzed");
1299 Register Reg
= VirtReg
.reg();
1300 bool SingleInstrs
= RegClassInfo
.isProperSubClass(MRI
->getRegClass(Reg
));
1301 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
1302 SE
->reset(LREdit
, SplitSpillMode
);
1303 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1304 for (const SplitAnalysis::BlockInfo
&BI
: UseBlocks
) {
1305 if (SA
->shouldSplitSingleBlock(BI
, SingleInstrs
))
1306 SE
->splitSingleBlock(BI
);
1308 // No blocks were split.
1312 // We did split for some blocks.
1313 SmallVector
<unsigned, 8> IntvMap
;
1314 SE
->finish(&IntvMap
);
1316 // Tell LiveDebugVariables about the new ranges.
1317 DebugVars
->splitRegister(Reg
, LREdit
.regs(), *LIS
);
1319 // Sort out the new intervals created by splitting. The remainder interval
1320 // goes straight to spilling, the new local ranges get to stay RS_New.
1321 for (unsigned I
= 0, E
= LREdit
.size(); I
!= E
; ++I
) {
1322 const LiveInterval
&LI
= LIS
->getInterval(LREdit
.get(I
));
1323 if (ExtraInfo
->getOrInitStage(LI
.reg()) == RS_New
&& IntvMap
[I
] == 0)
1324 ExtraInfo
->setStage(LI
, RS_Spill
);
1328 MF
->verify(this, "After splitting live range around basic blocks");
1332 //===----------------------------------------------------------------------===//
1333 // Per-Instruction Splitting
1334 //===----------------------------------------------------------------------===//
1336 /// Get the number of allocatable registers that match the constraints of \p Reg
1337 /// on \p MI and that are also in \p SuperRC.
1338 static unsigned getNumAllocatableRegsForConstraints(
1339 const MachineInstr
*MI
, Register Reg
, const TargetRegisterClass
*SuperRC
,
1340 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
,
1341 const RegisterClassInfo
&RCI
) {
1342 assert(SuperRC
&& "Invalid register class");
1344 const TargetRegisterClass
*ConstrainedRC
=
1345 MI
->getRegClassConstraintEffectForVReg(Reg
, SuperRC
, TII
, TRI
,
1346 /* ExploreBundle */ true);
1349 return RCI
.getNumAllocatableRegs(ConstrainedRC
);
1352 static LaneBitmask
getInstReadLaneMask(const MachineRegisterInfo
&MRI
,
1353 const TargetRegisterInfo
&TRI
,
1354 const MachineInstr
&FirstMI
,
1357 SmallVector
<std::pair
<MachineInstr
*, unsigned>, 8> Ops
;
1358 (void)AnalyzeVirtRegInBundle(const_cast<MachineInstr
&>(FirstMI
), Reg
, &Ops
);
1360 for (auto [MI
, OpIdx
] : Ops
) {
1361 const MachineOperand
&MO
= MI
->getOperand(OpIdx
);
1362 assert(MO
.isReg() && MO
.getReg() == Reg
);
1363 unsigned SubReg
= MO
.getSubReg();
1364 if (SubReg
== 0 && MO
.isUse()) {
1367 return MRI
.getMaxLaneMaskForVReg(Reg
);
1370 LaneBitmask SubRegMask
= TRI
.getSubRegIndexLaneMask(SubReg
);
1373 Mask
|= ~SubRegMask
;
1381 /// Return true if \p MI at \P Use reads a subset of the lanes live in \p
1383 static bool readsLaneSubset(const MachineRegisterInfo
&MRI
,
1384 const MachineInstr
*MI
, const LiveInterval
&VirtReg
,
1385 const TargetRegisterInfo
*TRI
, SlotIndex Use
,
1386 const TargetInstrInfo
*TII
) {
1387 // Early check the common case. Beware of the semi-formed bundles SplitKit
1388 // creates by setting the bundle flag on copies without a matching BUNDLE.
1390 auto DestSrc
= TII
->isCopyInstr(*MI
);
1391 if (DestSrc
&& !MI
->isBundled() &&
1392 DestSrc
->Destination
->getSubReg() == DestSrc
->Source
->getSubReg())
1395 // FIXME: We're only considering uses, but should be consider defs too?
1396 LaneBitmask ReadMask
= getInstReadLaneMask(MRI
, *TRI
, *MI
, VirtReg
.reg());
1398 LaneBitmask LiveAtMask
;
1399 for (const LiveInterval::SubRange
&S
: VirtReg
.subranges()) {
1401 LiveAtMask
|= S
.LaneMask
;
1404 // If the live lanes aren't different from the lanes used by the instruction,
1405 // this doesn't help.
1406 return (ReadMask
& ~(LiveAtMask
& TRI
->getCoveringLanes())).any();
1409 /// tryInstructionSplit - Split a live range around individual instructions.
1410 /// This is normally not worthwhile since the spiller is doing essentially the
1411 /// same thing. However, when the live range is in a constrained register
1412 /// class, it may help to insert copies such that parts of the live range can
1413 /// be moved to a larger register class.
1415 /// This is similar to spilling to a larger register class.
1416 unsigned RAGreedy::tryInstructionSplit(const LiveInterval
&VirtReg
,
1417 AllocationOrder
&Order
,
1418 SmallVectorImpl
<Register
> &NewVRegs
) {
1419 const TargetRegisterClass
*CurRC
= MRI
->getRegClass(VirtReg
.reg());
1420 // There is no point to this if there are no larger sub-classes.
1422 bool SplitSubClass
= true;
1423 if (!RegClassInfo
.isProperSubClass(CurRC
)) {
1424 if (!VirtReg
.hasSubRanges())
1426 SplitSubClass
= false;
1429 // Always enable split spill mode, since we're effectively spilling to a
1431 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
1432 SE
->reset(LREdit
, SplitEditor::SM_Size
);
1434 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
1435 if (Uses
.size() <= 1)
1438 LLVM_DEBUG(dbgs() << "Split around " << Uses
.size()
1439 << " individual instrs.\n");
1441 const TargetRegisterClass
*SuperRC
=
1442 TRI
->getLargestLegalSuperClass(CurRC
, *MF
);
1443 unsigned SuperRCNumAllocatableRegs
=
1444 RegClassInfo
.getNumAllocatableRegs(SuperRC
);
1445 // Split around every non-copy instruction if this split will relax
1446 // the constraints on the virtual register.
1447 // Otherwise, splitting just inserts uncoalescable copies that do not help
1449 for (const SlotIndex Use
: Uses
) {
1450 if (const MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Use
)) {
1451 if (TII
->isFullCopyInstr(*MI
) ||
1453 SuperRCNumAllocatableRegs
==
1454 getNumAllocatableRegsForConstraints(MI
, VirtReg
.reg(), SuperRC
,
1455 TII
, TRI
, RegClassInfo
)) ||
1456 // TODO: Handle split for subranges with subclass constraints?
1457 (!SplitSubClass
&& VirtReg
.hasSubRanges() &&
1458 !readsLaneSubset(*MRI
, MI
, VirtReg
, TRI
, Use
, TII
))) {
1459 LLVM_DEBUG(dbgs() << " skip:\t" << Use
<< '\t' << *MI
);
1464 SlotIndex SegStart
= SE
->enterIntvBefore(Use
);
1465 SlotIndex SegStop
= SE
->leaveIntvAfter(Use
);
1466 SE
->useIntv(SegStart
, SegStop
);
1469 if (LREdit
.empty()) {
1470 LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1474 SmallVector
<unsigned, 8> IntvMap
;
1475 SE
->finish(&IntvMap
);
1476 DebugVars
->splitRegister(VirtReg
.reg(), LREdit
.regs(), *LIS
);
1477 // Assign all new registers to RS_Spill. This was the last chance.
1478 ExtraInfo
->setStage(LREdit
.begin(), LREdit
.end(), RS_Spill
);
1482 //===----------------------------------------------------------------------===//
1484 //===----------------------------------------------------------------------===//
1486 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1487 /// in order to use PhysReg between two entries in SA->UseSlots.
1489 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1491 void RAGreedy::calcGapWeights(MCRegister PhysReg
,
1492 SmallVectorImpl
<float> &GapWeight
) {
1493 assert(SA
->getUseBlocks().size() == 1 && "Not a local interval");
1494 const SplitAnalysis::BlockInfo
&BI
= SA
->getUseBlocks().front();
1495 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
1496 const unsigned NumGaps
= Uses
.size()-1;
1498 // Start and end points for the interference check.
1499 SlotIndex StartIdx
=
1500 BI
.LiveIn
? BI
.FirstInstr
.getBaseIndex() : BI
.FirstInstr
;
1502 BI
.LiveOut
? BI
.LastInstr
.getBoundaryIndex() : BI
.LastInstr
;
1504 GapWeight
.assign(NumGaps
, 0.0f
);
1506 // Add interference from each overlapping register.
1507 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
)) {
1508 if (!Matrix
->query(const_cast<LiveInterval
&>(SA
->getParent()), Unit
)
1509 .checkInterference())
1512 // We know that VirtReg is a continuous interval from FirstInstr to
1513 // LastInstr, so we don't need InterferenceQuery.
1515 // Interference that overlaps an instruction is counted in both gaps
1516 // surrounding the instruction. The exception is interference before
1517 // StartIdx and after StopIdx.
1519 LiveIntervalUnion::SegmentIter IntI
=
1520 Matrix
->getLiveUnions()[Unit
].find(StartIdx
);
1521 for (unsigned Gap
= 0; IntI
.valid() && IntI
.start() < StopIdx
; ++IntI
) {
1522 // Skip the gaps before IntI.
1523 while (Uses
[Gap
+1].getBoundaryIndex() < IntI
.start())
1524 if (++Gap
== NumGaps
)
1529 // Update the gaps covered by IntI.
1530 const float weight
= IntI
.value()->weight();
1531 for (; Gap
!= NumGaps
; ++Gap
) {
1532 GapWeight
[Gap
] = std::max(GapWeight
[Gap
], weight
);
1533 if (Uses
[Gap
+1].getBaseIndex() >= IntI
.stop())
1541 // Add fixed interference.
1542 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
)) {
1543 const LiveRange
&LR
= LIS
->getRegUnit(Unit
);
1544 LiveRange::const_iterator I
= LR
.find(StartIdx
);
1545 LiveRange::const_iterator E
= LR
.end();
1547 // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1548 for (unsigned Gap
= 0; I
!= E
&& I
->start
< StopIdx
; ++I
) {
1549 while (Uses
[Gap
+1].getBoundaryIndex() < I
->start
)
1550 if (++Gap
== NumGaps
)
1555 for (; Gap
!= NumGaps
; ++Gap
) {
1556 GapWeight
[Gap
] = huge_valf
;
1557 if (Uses
[Gap
+1].getBaseIndex() >= I
->end
)
1566 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1569 unsigned RAGreedy::tryLocalSplit(const LiveInterval
&VirtReg
,
1570 AllocationOrder
&Order
,
1571 SmallVectorImpl
<Register
> &NewVRegs
) {
1572 // TODO: the function currently only handles a single UseBlock; it should be
1573 // possible to generalize.
1574 if (SA
->getUseBlocks().size() != 1)
1577 const SplitAnalysis::BlockInfo
&BI
= SA
->getUseBlocks().front();
1579 // Note that it is possible to have an interval that is live-in or live-out
1580 // while only covering a single block - A phi-def can use undef values from
1581 // predecessors, and the block could be a single-block loop.
1582 // We don't bother doing anything clever about such a case, we simply assume
1583 // that the interval is continuous from FirstInstr to LastInstr. We should
1584 // make sure that we don't do anything illegal to such an interval, though.
1586 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
1587 if (Uses
.size() <= 2)
1589 const unsigned NumGaps
= Uses
.size()-1;
1592 dbgs() << "tryLocalSplit: ";
1593 for (const auto &Use
: Uses
)
1594 dbgs() << ' ' << Use
;
1598 // If VirtReg is live across any register mask operands, compute a list of
1599 // gaps with register masks.
1600 SmallVector
<unsigned, 8> RegMaskGaps
;
1601 if (Matrix
->checkRegMaskInterference(VirtReg
)) {
1602 // Get regmask slots for the whole block.
1603 ArrayRef
<SlotIndex
> RMS
= LIS
->getRegMaskSlotsInBlock(BI
.MBB
->getNumber());
1604 LLVM_DEBUG(dbgs() << RMS
.size() << " regmasks in block:");
1605 // Constrain to VirtReg's live range.
1607 llvm::lower_bound(RMS
, Uses
.front().getRegSlot()) - RMS
.begin();
1608 unsigned RE
= RMS
.size();
1609 for (unsigned I
= 0; I
!= NumGaps
&& RI
!= RE
; ++I
) {
1610 // Look for Uses[I] <= RMS <= Uses[I + 1].
1611 assert(!SlotIndex::isEarlierInstr(RMS
[RI
], Uses
[I
]));
1612 if (SlotIndex::isEarlierInstr(Uses
[I
+ 1], RMS
[RI
]))
1614 // Skip a regmask on the same instruction as the last use. It doesn't
1615 // overlap the live range.
1616 if (SlotIndex::isSameInstr(Uses
[I
+ 1], RMS
[RI
]) && I
+ 1 == NumGaps
)
1618 LLVM_DEBUG(dbgs() << ' ' << RMS
[RI
] << ':' << Uses
[I
] << '-'
1620 RegMaskGaps
.push_back(I
);
1621 // Advance ri to the next gap. A regmask on one of the uses counts in
1623 while (RI
!= RE
&& SlotIndex::isEarlierInstr(RMS
[RI
], Uses
[I
+ 1]))
1626 LLVM_DEBUG(dbgs() << '\n');
1629 // Since we allow local split results to be split again, there is a risk of
1630 // creating infinite loops. It is tempting to require that the new live
1631 // ranges have less instructions than the original. That would guarantee
1632 // convergence, but it is too strict. A live range with 3 instructions can be
1633 // split 2+3 (including the COPY), and we want to allow that.
1635 // Instead we use these rules:
1637 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1638 // noop split, of course).
1639 // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1640 // the new ranges must have fewer instructions than before the split.
1641 // 3. New ranges with the same number of instructions are marked RS_Split2,
1642 // smaller ranges are marked RS_New.
1644 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1645 // excessive splitting and infinite loops.
1647 bool ProgressRequired
= ExtraInfo
->getStage(VirtReg
) >= RS_Split2
;
1649 // Best split candidate.
1650 unsigned BestBefore
= NumGaps
;
1651 unsigned BestAfter
= 0;
1654 const float blockFreq
=
1655 SpillPlacer
->getBlockFrequency(BI
.MBB
->getNumber()).getFrequency() *
1656 (1.0f
/ MBFI
->getEntryFreq().getFrequency());
1657 SmallVector
<float, 8> GapWeight
;
1659 for (MCPhysReg PhysReg
: Order
) {
1661 // Keep track of the largest spill weight that would need to be evicted in
1662 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1663 calcGapWeights(PhysReg
, GapWeight
);
1665 // Remove any gaps with regmask clobbers.
1666 if (Matrix
->checkRegMaskInterference(VirtReg
, PhysReg
))
1667 for (unsigned I
= 0, E
= RegMaskGaps
.size(); I
!= E
; ++I
)
1668 GapWeight
[RegMaskGaps
[I
]] = huge_valf
;
1670 // Try to find the best sequence of gaps to close.
1671 // The new spill weight must be larger than any gap interference.
1673 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1674 unsigned SplitBefore
= 0, SplitAfter
= 1;
1676 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1677 // It is the spill weight that needs to be evicted.
1678 float MaxGap
= GapWeight
[0];
1681 // Live before/after split?
1682 const bool LiveBefore
= SplitBefore
!= 0 || BI
.LiveIn
;
1683 const bool LiveAfter
= SplitAfter
!= NumGaps
|| BI
.LiveOut
;
1685 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << ' ' << Uses
[SplitBefore
]
1686 << '-' << Uses
[SplitAfter
] << " I=" << MaxGap
);
1688 // Stop before the interval gets so big we wouldn't be making progress.
1689 if (!LiveBefore
&& !LiveAfter
) {
1690 LLVM_DEBUG(dbgs() << " all\n");
1693 // Should the interval be extended or shrunk?
1696 // How many gaps would the new range have?
1697 unsigned NewGaps
= LiveBefore
+ SplitAfter
- SplitBefore
+ LiveAfter
;
1699 // Legally, without causing looping?
1700 bool Legal
= !ProgressRequired
|| NewGaps
< NumGaps
;
1702 if (Legal
&& MaxGap
< huge_valf
) {
1703 // Estimate the new spill weight. Each instruction reads or writes the
1704 // register. Conservatively assume there are no read-modify-write
1707 // Try to guess the size of the new interval.
1708 const float EstWeight
= normalizeSpillWeight(
1709 blockFreq
* (NewGaps
+ 1),
1710 Uses
[SplitBefore
].distance(Uses
[SplitAfter
]) +
1711 (LiveBefore
+ LiveAfter
) * SlotIndex::InstrDist
,
1713 // Would this split be possible to allocate?
1714 // Never allocate all gaps, we wouldn't be making progress.
1715 LLVM_DEBUG(dbgs() << " w=" << EstWeight
);
1716 if (EstWeight
* Hysteresis
>= MaxGap
) {
1718 float Diff
= EstWeight
- MaxGap
;
1719 if (Diff
> BestDiff
) {
1720 LLVM_DEBUG(dbgs() << " (best)");
1721 BestDiff
= Hysteresis
* Diff
;
1722 BestBefore
= SplitBefore
;
1723 BestAfter
= SplitAfter
;
1730 if (++SplitBefore
< SplitAfter
) {
1731 LLVM_DEBUG(dbgs() << " shrink\n");
1732 // Recompute the max when necessary.
1733 if (GapWeight
[SplitBefore
- 1] >= MaxGap
) {
1734 MaxGap
= GapWeight
[SplitBefore
];
1735 for (unsigned I
= SplitBefore
+ 1; I
!= SplitAfter
; ++I
)
1736 MaxGap
= std::max(MaxGap
, GapWeight
[I
]);
1743 // Try to extend the interval.
1744 if (SplitAfter
>= NumGaps
) {
1745 LLVM_DEBUG(dbgs() << " end\n");
1749 LLVM_DEBUG(dbgs() << " extend\n");
1750 MaxGap
= std::max(MaxGap
, GapWeight
[SplitAfter
++]);
1754 // Didn't find any candidates?
1755 if (BestBefore
== NumGaps
)
1758 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses
[BestBefore
] << '-'
1759 << Uses
[BestAfter
] << ", " << BestDiff
<< ", "
1760 << (BestAfter
- BestBefore
+ 1) << " instrs\n");
1762 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
1766 SlotIndex SegStart
= SE
->enterIntvBefore(Uses
[BestBefore
]);
1767 SlotIndex SegStop
= SE
->leaveIntvAfter(Uses
[BestAfter
]);
1768 SE
->useIntv(SegStart
, SegStop
);
1769 SmallVector
<unsigned, 8> IntvMap
;
1770 SE
->finish(&IntvMap
);
1771 DebugVars
->splitRegister(VirtReg
.reg(), LREdit
.regs(), *LIS
);
1772 // If the new range has the same number of instructions as before, mark it as
1773 // RS_Split2 so the next split will be forced to make progress. Otherwise,
1774 // leave the new intervals as RS_New so they can compete.
1775 bool LiveBefore
= BestBefore
!= 0 || BI
.LiveIn
;
1776 bool LiveAfter
= BestAfter
!= NumGaps
|| BI
.LiveOut
;
1777 unsigned NewGaps
= LiveBefore
+ BestAfter
- BestBefore
+ LiveAfter
;
1778 if (NewGaps
>= NumGaps
) {
1779 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1780 assert(!ProgressRequired
&& "Didn't make progress when it was required.");
1781 for (unsigned I
= 0, E
= IntvMap
.size(); I
!= E
; ++I
)
1782 if (IntvMap
[I
] == 1) {
1783 ExtraInfo
->setStage(LIS
->getInterval(LREdit
.get(I
)), RS_Split2
);
1784 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit
.get(I
)));
1786 LLVM_DEBUG(dbgs() << '\n');
1793 //===----------------------------------------------------------------------===//
1794 // Live Range Splitting
1795 //===----------------------------------------------------------------------===//
1797 /// trySplit - Try to split VirtReg or one of its interferences, making it
1799 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1800 unsigned RAGreedy::trySplit(const LiveInterval
&VirtReg
, AllocationOrder
&Order
,
1801 SmallVectorImpl
<Register
> &NewVRegs
,
1802 const SmallVirtRegSet
&FixedRegisters
) {
1803 // Ranges must be Split2 or less.
1804 if (ExtraInfo
->getStage(VirtReg
) >= RS_Spill
)
1807 // Local intervals are handled separately.
1808 if (LIS
->intervalIsInOneMBB(VirtReg
)) {
1809 NamedRegionTimer
T("local_split", "Local Splitting", TimerGroupName
,
1810 TimerGroupDescription
, TimePassesIsEnabled
);
1811 SA
->analyze(&VirtReg
);
1812 Register PhysReg
= tryLocalSplit(VirtReg
, Order
, NewVRegs
);
1813 if (PhysReg
|| !NewVRegs
.empty())
1815 return tryInstructionSplit(VirtReg
, Order
, NewVRegs
);
1818 NamedRegionTimer
T("global_split", "Global Splitting", TimerGroupName
,
1819 TimerGroupDescription
, TimePassesIsEnabled
);
1821 SA
->analyze(&VirtReg
);
1823 // First try to split around a region spanning multiple blocks. RS_Split2
1824 // ranges already made dubious progress with region splitting, so they go
1825 // straight to single block splitting.
1826 if (ExtraInfo
->getStage(VirtReg
) < RS_Split2
) {
1827 MCRegister PhysReg
= tryRegionSplit(VirtReg
, Order
, NewVRegs
);
1828 if (PhysReg
|| !NewVRegs
.empty())
1832 // Then isolate blocks.
1833 return tryBlockSplit(VirtReg
, Order
, NewVRegs
);
1836 //===----------------------------------------------------------------------===//
1837 // Last Chance Recoloring
1838 //===----------------------------------------------------------------------===//
1840 /// Return true if \p reg has any tied def operand.
1841 static bool hasTiedDef(MachineRegisterInfo
*MRI
, unsigned reg
) {
1842 for (const MachineOperand
&MO
: MRI
->def_operands(reg
))
1849 /// Return true if the existing assignment of \p Intf overlaps, but is not the
1850 /// same, as \p PhysReg.
1851 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo
&TRI
,
1852 const VirtRegMap
&VRM
,
1854 const LiveInterval
&Intf
) {
1855 MCRegister AssignedReg
= VRM
.getPhys(Intf
.reg());
1856 if (PhysReg
== AssignedReg
)
1858 return TRI
.regsOverlap(PhysReg
, AssignedReg
);
1861 /// mayRecolorAllInterferences - Check if the virtual registers that
1862 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1863 /// recolored to free \p PhysReg.
1864 /// When true is returned, \p RecoloringCandidates has been augmented with all
1865 /// the live intervals that need to be recolored in order to free \p PhysReg
1867 /// \p FixedRegisters contains all the virtual registers that cannot be
1869 bool RAGreedy::mayRecolorAllInterferences(
1870 MCRegister PhysReg
, const LiveInterval
&VirtReg
,
1871 SmallLISet
&RecoloringCandidates
, const SmallVirtRegSet
&FixedRegisters
) {
1872 const TargetRegisterClass
*CurRC
= MRI
->getRegClass(VirtReg
.reg());
1874 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
)) {
1875 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, Unit
);
1876 // If there is LastChanceRecoloringMaxInterference or more interferences,
1877 // chances are one would not be recolorable.
1878 if (Q
.interferingVRegs(LastChanceRecoloringMaxInterference
).size() >=
1879 LastChanceRecoloringMaxInterference
&&
1880 !ExhaustiveSearch
) {
1881 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1882 CutOffInfo
|= CO_Interf
;
1885 for (const LiveInterval
*Intf
: reverse(Q
.interferingVRegs())) {
1886 // If Intf is done and sits on the same register class as VirtReg, it
1887 // would not be recolorable as it is in the same state as
1888 // VirtReg. However there are at least two exceptions.
1890 // If VirtReg has tied defs and Intf doesn't, then
1891 // there is still a point in examining if it can be recolorable.
1893 // Additionally, if the register class has overlapping tuple members, it
1894 // may still be recolorable using a different tuple. This is more likely
1895 // if the existing assignment aliases with the candidate.
1897 if (((ExtraInfo
->getStage(*Intf
) == RS_Done
&&
1898 MRI
->getRegClass(Intf
->reg()) == CurRC
&&
1899 !assignedRegPartiallyOverlaps(*TRI
, *VRM
, PhysReg
, *Intf
)) &&
1900 !(hasTiedDef(MRI
, VirtReg
.reg()) &&
1901 !hasTiedDef(MRI
, Intf
->reg()))) ||
1902 FixedRegisters
.count(Intf
->reg())) {
1904 dbgs() << "Early abort: the interference is not recolorable.\n");
1907 RecoloringCandidates
.insert(Intf
);
1913 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1914 /// its interferences.
1915 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1916 /// virtual register that was using it. The recoloring process may recursively
1917 /// use the last chance recoloring. Therefore, when a virtual register has been
1918 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1919 /// be last-chance-recolored again during this recoloring "session".
1922 /// vA can use {R1, R2 }
1923 /// vB can use { R2, R3}
1924 /// vC can use {R1 }
1925 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
1926 /// instance) and they all interfere.
1928 /// vA is assigned R1
1929 /// vB is assigned R2
1930 /// vC tries to evict vA but vA is already done.
1931 /// Regular register allocation fails.
1933 /// Last chance recoloring kicks in:
1934 /// vC does as if vA was evicted => vC uses R1.
1935 /// vC is marked as fixed.
1936 /// vA needs to find a color.
1937 /// None are available.
1938 /// vA cannot evict vC: vC is a fixed virtual register now.
1939 /// vA does as if vB was evicted => vA uses R2.
1940 /// vB needs to find a color.
1941 /// R3 is available.
1942 /// Recoloring => vC = R1, vA = R2, vB = R3
1944 /// \p Order defines the preferred allocation order for \p VirtReg.
1945 /// \p NewRegs will contain any new virtual register that have been created
1946 /// (split, spill) during the process and that must be assigned.
1947 /// \p FixedRegisters contains all the virtual registers that cannot be
1950 /// \p RecolorStack tracks the original assignments of successfully recolored
1953 /// \p Depth gives the current depth of the last chance recoloring.
1954 /// \return a physical register that can be used for VirtReg or ~0u if none
1956 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval
&VirtReg
,
1957 AllocationOrder
&Order
,
1958 SmallVectorImpl
<Register
> &NewVRegs
,
1959 SmallVirtRegSet
&FixedRegisters
,
1960 RecoloringStack
&RecolorStack
,
1962 if (!TRI
->shouldUseLastChanceRecoloringForVirtReg(*MF
, VirtReg
))
1965 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg
<< '\n');
1967 const ssize_t EntryStackSize
= RecolorStack
.size();
1969 // Ranges must be Done.
1970 assert((ExtraInfo
->getStage(VirtReg
) >= RS_Done
|| !VirtReg
.isSpillable()) &&
1971 "Last chance recoloring should really be last chance");
1972 // Set the max depth to LastChanceRecoloringMaxDepth.
1973 // We may want to reconsider that if we end up with a too large search space
1974 // for target with hundreds of registers.
1975 // Indeed, in that case we may want to cut the search space earlier.
1976 if (Depth
>= LastChanceRecoloringMaxDepth
&& !ExhaustiveSearch
) {
1977 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
1978 CutOffInfo
|= CO_Depth
;
1982 // Set of Live intervals that will need to be recolored.
1983 SmallLISet RecoloringCandidates
;
1985 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
1986 // this recoloring "session".
1987 assert(!FixedRegisters
.count(VirtReg
.reg()));
1988 FixedRegisters
.insert(VirtReg
.reg());
1989 SmallVector
<Register
, 4> CurrentNewVRegs
;
1991 for (MCRegister PhysReg
: Order
) {
1992 assert(PhysReg
.isValid());
1993 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg
<< " to "
1994 << printReg(PhysReg
, TRI
) << '\n');
1995 RecoloringCandidates
.clear();
1996 CurrentNewVRegs
.clear();
1998 // It is only possible to recolor virtual register interference.
1999 if (Matrix
->checkInterference(VirtReg
, PhysReg
) >
2000 LiveRegMatrix::IK_VirtReg
) {
2002 dbgs() << "Some interferences are not with virtual registers.\n");
2007 // Early give up on this PhysReg if it is obvious we cannot recolor all
2008 // the interferences.
2009 if (!mayRecolorAllInterferences(PhysReg
, VirtReg
, RecoloringCandidates
,
2011 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2015 // RecoloringCandidates contains all the virtual registers that interfere
2016 // with VirtReg on PhysReg (or one of its aliases). Enqueue them for
2017 // recoloring and perform the actual recoloring.
2018 PQueue RecoloringQueue
;
2019 for (const LiveInterval
*RC
: RecoloringCandidates
) {
2020 Register ItVirtReg
= RC
->reg();
2021 enqueue(RecoloringQueue
, RC
);
2022 assert(VRM
->hasPhys(ItVirtReg
) &&
2023 "Interferences are supposed to be with allocated variables");
2025 // Record the current allocation.
2026 RecolorStack
.push_back(std::make_pair(RC
, VRM
->getPhys(ItVirtReg
)));
2028 // unset the related struct.
2029 Matrix
->unassign(*RC
);
2032 // Do as if VirtReg was assigned to PhysReg so that the underlying
2033 // recoloring has the right information about the interferes and
2034 // available colors.
2035 Matrix
->assign(VirtReg
, PhysReg
);
2037 // Save the current recoloring state.
2038 // If we cannot recolor all the interferences, we will have to start again
2039 // at this point for the next physical register.
2040 SmallVirtRegSet
SaveFixedRegisters(FixedRegisters
);
2041 if (tryRecoloringCandidates(RecoloringQueue
, CurrentNewVRegs
,
2042 FixedRegisters
, RecolorStack
, Depth
)) {
2043 // Push the queued vregs into the main queue.
2044 for (Register NewVReg
: CurrentNewVRegs
)
2045 NewVRegs
.push_back(NewVReg
);
2046 // Do not mess up with the global assignment process.
2047 // I.e., VirtReg must be unassigned.
2048 Matrix
->unassign(VirtReg
);
2052 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg
<< " to "
2053 << printReg(PhysReg
, TRI
) << '\n');
2055 // The recoloring attempt failed, undo the changes.
2056 FixedRegisters
= SaveFixedRegisters
;
2057 Matrix
->unassign(VirtReg
);
2059 // For a newly created vreg which is also in RecoloringCandidates,
2060 // don't add it to NewVRegs because its physical register will be restored
2061 // below. Other vregs in CurrentNewVRegs are created by calling
2062 // selectOrSplit and should be added into NewVRegs.
2063 for (Register R
: CurrentNewVRegs
) {
2064 if (RecoloringCandidates
.count(&LIS
->getInterval(R
)))
2066 NewVRegs
.push_back(R
);
2069 // Roll back our unsuccessful recoloring. Also roll back any successful
2070 // recolorings in any recursive recoloring attempts, since it's possible
2071 // they would have introduced conflicts with assignments we will be
2072 // restoring further up the stack. Perform all unassignments prior to
2073 // reassigning, since sub-recolorings may have conflicted with the registers
2074 // we are going to restore to their original assignments.
2075 for (ssize_t I
= RecolorStack
.size() - 1; I
>= EntryStackSize
; --I
) {
2076 const LiveInterval
*LI
;
2078 std::tie(LI
, PhysReg
) = RecolorStack
[I
];
2080 if (VRM
->hasPhys(LI
->reg()))
2081 Matrix
->unassign(*LI
);
2084 for (size_t I
= EntryStackSize
; I
!= RecolorStack
.size(); ++I
) {
2085 const LiveInterval
*LI
;
2087 std::tie(LI
, PhysReg
) = RecolorStack
[I
];
2088 if (!LI
->empty() && !MRI
->reg_nodbg_empty(LI
->reg()))
2089 Matrix
->assign(*LI
, PhysReg
);
2092 // Pop the stack of recoloring attempts.
2093 RecolorStack
.resize(EntryStackSize
);
2096 // Last chance recoloring did not worked either, give up.
2100 /// tryRecoloringCandidates - Try to assign a new color to every register
2101 /// in \RecoloringQueue.
2102 /// \p NewRegs will contain any new virtual register created during the
2103 /// recoloring process.
2104 /// \p FixedRegisters[in/out] contains all the registers that have been
2106 /// \return true if all virtual registers in RecoloringQueue were successfully
2107 /// recolored, false otherwise.
2108 bool RAGreedy::tryRecoloringCandidates(PQueue
&RecoloringQueue
,
2109 SmallVectorImpl
<Register
> &NewVRegs
,
2110 SmallVirtRegSet
&FixedRegisters
,
2111 RecoloringStack
&RecolorStack
,
2113 while (!RecoloringQueue
.empty()) {
2114 const LiveInterval
*LI
= dequeue(RecoloringQueue
);
2115 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI
<< '\n');
2116 MCRegister PhysReg
= selectOrSplitImpl(*LI
, NewVRegs
, FixedRegisters
,
2117 RecolorStack
, Depth
+ 1);
2118 // When splitting happens, the live-range may actually be empty.
2119 // In that case, this is okay to continue the recoloring even
2120 // if we did not find an alternative color for it. Indeed,
2121 // there will not be anything to color for LI in the end.
2122 if (PhysReg
== ~0u || (!PhysReg
&& !LI
->empty()))
2126 assert(LI
->empty() && "Only empty live-range do not require a register");
2127 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2128 << " succeeded. Empty LI.\n");
2131 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2132 << " succeeded with: " << printReg(PhysReg
, TRI
) << '\n');
2134 Matrix
->assign(*LI
, PhysReg
);
2135 FixedRegisters
.insert(LI
->reg());
2140 //===----------------------------------------------------------------------===//
2142 //===----------------------------------------------------------------------===//
2144 MCRegister
RAGreedy::selectOrSplit(const LiveInterval
&VirtReg
,
2145 SmallVectorImpl
<Register
> &NewVRegs
) {
2146 CutOffInfo
= CO_None
;
2147 LLVMContext
&Ctx
= MF
->getFunction().getContext();
2148 SmallVirtRegSet FixedRegisters
;
2149 RecoloringStack RecolorStack
;
2151 selectOrSplitImpl(VirtReg
, NewVRegs
, FixedRegisters
, RecolorStack
);
2152 if (Reg
== ~0U && (CutOffInfo
!= CO_None
)) {
2153 uint8_t CutOffEncountered
= CutOffInfo
& (CO_Depth
| CO_Interf
);
2154 if (CutOffEncountered
== CO_Depth
)
2155 Ctx
.emitError("register allocation failed: maximum depth for recoloring "
2156 "reached. Use -fexhaustive-register-search to skip "
2158 else if (CutOffEncountered
== CO_Interf
)
2159 Ctx
.emitError("register allocation failed: maximum interference for "
2160 "recoloring reached. Use -fexhaustive-register-search "
2162 else if (CutOffEncountered
== (CO_Depth
| CO_Interf
))
2163 Ctx
.emitError("register allocation failed: maximum interference and "
2164 "depth for recoloring reached. Use "
2165 "-fexhaustive-register-search to skip cutoffs");
2170 /// Using a CSR for the first time has a cost because it causes push|pop
2171 /// to be added to prologue|epilogue. Splitting a cold section of the live
2172 /// range can have lower cost than using the CSR for the first time;
2173 /// Spilling a live range in the cold path can have lower cost than using
2174 /// the CSR for the first time. Returns the physical register if we decide
2175 /// to use the CSR; otherwise return 0.
2176 MCRegister
RAGreedy::tryAssignCSRFirstTime(
2177 const LiveInterval
&VirtReg
, AllocationOrder
&Order
, MCRegister PhysReg
,
2178 uint8_t &CostPerUseLimit
, SmallVectorImpl
<Register
> &NewVRegs
) {
2179 if (ExtraInfo
->getStage(VirtReg
) == RS_Spill
&& VirtReg
.isSpillable()) {
2180 // We choose spill over using the CSR for the first time if the spill cost
2181 // is lower than CSRCost.
2182 SA
->analyze(&VirtReg
);
2183 if (calcSpillCost() >= CSRCost
)
2186 // We are going to spill, set CostPerUseLimit to 1 to make sure that
2187 // we will not use a callee-saved register in tryEvict.
2188 CostPerUseLimit
= 1;
2191 if (ExtraInfo
->getStage(VirtReg
) < RS_Split
) {
2192 // We choose pre-splitting over using the CSR for the first time if
2193 // the cost of splitting is lower than CSRCost.
2194 SA
->analyze(&VirtReg
);
2195 unsigned NumCands
= 0;
2196 BlockFrequency BestCost
= CSRCost
; // Don't modify CSRCost.
2197 unsigned BestCand
= calculateRegionSplitCost(VirtReg
, Order
, BestCost
,
2198 NumCands
, true /*IgnoreCSR*/);
2199 if (BestCand
== NoCand
)
2200 // Use the CSR if we can't find a region split below CSRCost.
2203 // Perform the actual pre-splitting.
2204 doRegionSplit(VirtReg
, BestCand
, false/*HasCompact*/, NewVRegs
);
2210 void RAGreedy::aboutToRemoveInterval(const LiveInterval
&LI
) {
2211 // Do not keep invalid information around.
2212 SetOfBrokenHints
.remove(&LI
);
2215 void RAGreedy::initializeCSRCost() {
2216 // We use the larger one out of the command-line option and the value report
2218 CSRCost
= BlockFrequency(
2219 std::max((unsigned)CSRFirstTimeCost
, TRI
->getCSRFirstUseCost()));
2220 if (!CSRCost
.getFrequency())
2223 // Raw cost is relative to Entry == 2^14; scale it appropriately.
2224 uint64_t ActualEntry
= MBFI
->getEntryFreq().getFrequency();
2226 CSRCost
= BlockFrequency(0);
2229 uint64_t FixedEntry
= 1 << 14;
2230 if (ActualEntry
< FixedEntry
)
2231 CSRCost
*= BranchProbability(ActualEntry
, FixedEntry
);
2232 else if (ActualEntry
<= UINT32_MAX
)
2233 // Invert the fraction and divide.
2234 CSRCost
/= BranchProbability(FixedEntry
, ActualEntry
);
2236 // Can't use BranchProbability in general, since it takes 32-bit numbers.
2238 BlockFrequency(CSRCost
.getFrequency() * (ActualEntry
/ FixedEntry
));
2241 /// Collect the hint info for \p Reg.
2242 /// The results are stored into \p Out.
2243 /// \p Out is not cleared before being populated.
2244 void RAGreedy::collectHintInfo(Register Reg
, HintsInfo
&Out
) {
2245 for (const MachineInstr
&Instr
: MRI
->reg_nodbg_instructions(Reg
)) {
2246 if (!TII
->isFullCopyInstr(Instr
))
2248 // Look for the other end of the copy.
2249 Register OtherReg
= Instr
.getOperand(0).getReg();
2250 if (OtherReg
== Reg
) {
2251 OtherReg
= Instr
.getOperand(1).getReg();
2252 if (OtherReg
== Reg
)
2255 // Get the current assignment.
2256 MCRegister OtherPhysReg
=
2257 OtherReg
.isPhysical() ? OtherReg
.asMCReg() : VRM
->getPhys(OtherReg
);
2258 // Push the collected information.
2259 Out
.push_back(HintInfo(MBFI
->getBlockFreq(Instr
.getParent()), OtherReg
,
2264 /// Using the given \p List, compute the cost of the broken hints if
2265 /// \p PhysReg was used.
2266 /// \return The cost of \p List for \p PhysReg.
2267 BlockFrequency
RAGreedy::getBrokenHintFreq(const HintsInfo
&List
,
2268 MCRegister PhysReg
) {
2269 BlockFrequency Cost
= BlockFrequency(0);
2270 for (const HintInfo
&Info
: List
) {
2271 if (Info
.PhysReg
!= PhysReg
)
2277 /// Using the register assigned to \p VirtReg, try to recolor
2278 /// all the live ranges that are copy-related with \p VirtReg.
2279 /// The recoloring is then propagated to all the live-ranges that have
2280 /// been recolored and so on, until no more copies can be coalesced or
2281 /// it is not profitable.
2282 /// For a given live range, profitability is determined by the sum of the
2283 /// frequencies of the non-identity copies it would introduce with the old
2284 /// and new register.
2285 void RAGreedy::tryHintRecoloring(const LiveInterval
&VirtReg
) {
2286 // We have a broken hint, check if it is possible to fix it by
2287 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2288 // some register and PhysReg may be available for the other live-ranges.
2289 SmallSet
<Register
, 4> Visited
;
2290 SmallVector
<unsigned, 2> RecoloringCandidates
;
2292 Register Reg
= VirtReg
.reg();
2293 MCRegister PhysReg
= VRM
->getPhys(Reg
);
2294 // Start the recoloring algorithm from the input live-interval, then
2295 // it will propagate to the ones that are copy-related with it.
2296 Visited
.insert(Reg
);
2297 RecoloringCandidates
.push_back(Reg
);
2299 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg
, TRI
)
2300 << '(' << printReg(PhysReg
, TRI
) << ")\n");
2303 Reg
= RecoloringCandidates
.pop_back_val();
2305 // We cannot recolor physical register.
2306 if (Reg
.isPhysical())
2309 // This may be a skipped class
2310 if (!VRM
->hasPhys(Reg
)) {
2311 assert(!ShouldAllocateClass(*TRI
, *MRI
->getRegClass(Reg
)) &&
2312 "We have an unallocated variable which should have been handled");
2316 // Get the live interval mapped with this virtual register to be able
2317 // to check for the interference with the new color.
2318 LiveInterval
&LI
= LIS
->getInterval(Reg
);
2319 MCRegister CurrPhys
= VRM
->getPhys(Reg
);
2320 // Check that the new color matches the register class constraints and
2321 // that it is free for this live range.
2322 if (CurrPhys
!= PhysReg
&& (!MRI
->getRegClass(Reg
)->contains(PhysReg
) ||
2323 Matrix
->checkInterference(LI
, PhysReg
)))
2326 LLVM_DEBUG(dbgs() << printReg(Reg
, TRI
) << '(' << printReg(CurrPhys
, TRI
)
2327 << ") is recolorable.\n");
2329 // Gather the hint info.
2331 collectHintInfo(Reg
, Info
);
2332 // Check if recoloring the live-range will increase the cost of the
2333 // non-identity copies.
2334 if (CurrPhys
!= PhysReg
) {
2335 LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2336 BlockFrequency OldCopiesCost
= getBrokenHintFreq(Info
, CurrPhys
);
2337 BlockFrequency NewCopiesCost
= getBrokenHintFreq(Info
, PhysReg
);
2338 LLVM_DEBUG(dbgs() << "Old Cost: " << printBlockFreq(*MBFI
, OldCopiesCost
)
2340 << printBlockFreq(*MBFI
, NewCopiesCost
) << '\n');
2341 if (OldCopiesCost
< NewCopiesCost
) {
2342 LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2345 // At this point, the cost is either cheaper or equal. If it is
2346 // equal, we consider this is profitable because it may expose
2347 // more recoloring opportunities.
2348 LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2349 // Recolor the live-range.
2350 Matrix
->unassign(LI
);
2351 Matrix
->assign(LI
, PhysReg
);
2353 // Push all copy-related live-ranges to keep reconciling the broken
2355 for (const HintInfo
&HI
: Info
) {
2356 if (Visited
.insert(HI
.Reg
).second
)
2357 RecoloringCandidates
.push_back(HI
.Reg
);
2359 } while (!RecoloringCandidates
.empty());
2362 /// Try to recolor broken hints.
2363 /// Broken hints may be repaired by recoloring when an evicted variable
2364 /// freed up a register for a larger live-range.
2365 /// Consider the following example:
2373 /// Let us assume b gets split:
2383 /// Because of how the allocation work, b, c, and d may be assigned different
2384 /// colors. Now, if a gets evicted later:
2394 /// e = ld SpillSlot
2396 /// This is likely that we can assign the same register for b, c, and d,
2397 /// getting rid of 2 copies.
2398 void RAGreedy::tryHintsRecoloring() {
2399 for (const LiveInterval
*LI
: SetOfBrokenHints
) {
2400 assert(LI
->reg().isVirtual() &&
2401 "Recoloring is possible only for virtual registers");
2402 // Some dead defs may be around (e.g., because of debug uses).
2404 if (!VRM
->hasPhys(LI
->reg()))
2406 tryHintRecoloring(*LI
);
2410 MCRegister
RAGreedy::selectOrSplitImpl(const LiveInterval
&VirtReg
,
2411 SmallVectorImpl
<Register
> &NewVRegs
,
2412 SmallVirtRegSet
&FixedRegisters
,
2413 RecoloringStack
&RecolorStack
,
2415 uint8_t CostPerUseLimit
= uint8_t(~0u);
2416 // First try assigning a free register.
2418 AllocationOrder::create(VirtReg
.reg(), *VRM
, RegClassInfo
, Matrix
);
2419 if (MCRegister PhysReg
=
2420 tryAssign(VirtReg
, Order
, NewVRegs
, FixedRegisters
)) {
2421 // When NewVRegs is not empty, we may have made decisions such as evicting
2422 // a virtual register, go with the earlier decisions and use the physical
2424 if (CSRCost
.getFrequency() &&
2425 EvictAdvisor
->isUnusedCalleeSavedReg(PhysReg
) && NewVRegs
.empty()) {
2426 MCRegister CSRReg
= tryAssignCSRFirstTime(VirtReg
, Order
, PhysReg
,
2427 CostPerUseLimit
, NewVRegs
);
2428 if (CSRReg
|| !NewVRegs
.empty())
2429 // Return now if we decide to use a CSR or create new vregs due to
2435 // Non emtpy NewVRegs means VirtReg has been split.
2436 if (!NewVRegs
.empty())
2439 LiveRangeStage Stage
= ExtraInfo
->getStage(VirtReg
);
2440 LLVM_DEBUG(dbgs() << StageName
[Stage
] << " Cascade "
2441 << ExtraInfo
->getCascade(VirtReg
.reg()) << '\n');
2443 // Try to evict a less worthy live range, but only for ranges from the primary
2444 // queue. The RS_Split ranges already failed to do this, and they should not
2445 // get a second chance until they have been split.
2446 if (Stage
!= RS_Split
)
2447 if (Register PhysReg
=
2448 tryEvict(VirtReg
, Order
, NewVRegs
, CostPerUseLimit
,
2450 Register Hint
= MRI
->getSimpleHint(VirtReg
.reg());
2451 // If VirtReg has a hint and that hint is broken record this
2452 // virtual register as a recoloring candidate for broken hint.
2453 // Indeed, since we evicted a variable in its neighborhood it is
2454 // likely we can at least partially recolor some of the
2455 // copy-related live-ranges.
2456 if (Hint
&& Hint
!= PhysReg
)
2457 SetOfBrokenHints
.insert(&VirtReg
);
2461 assert((NewVRegs
.empty() || Depth
) && "Cannot append to existing NewVRegs");
2463 // The first time we see a live range, don't try to split or spill.
2464 // Wait until the second time, when all smaller ranges have been allocated.
2465 // This gives a better picture of the interference to split around.
2466 if (Stage
< RS_Split
) {
2467 ExtraInfo
->setStage(VirtReg
, RS_Split
);
2468 LLVM_DEBUG(dbgs() << "wait for second round\n");
2469 NewVRegs
.push_back(VirtReg
.reg());
2473 if (Stage
< RS_Spill
) {
2474 // Try splitting VirtReg or interferences.
2475 unsigned NewVRegSizeBefore
= NewVRegs
.size();
2476 Register PhysReg
= trySplit(VirtReg
, Order
, NewVRegs
, FixedRegisters
);
2477 if (PhysReg
|| (NewVRegs
.size() - NewVRegSizeBefore
))
2481 // If we couldn't allocate a register from spilling, there is probably some
2482 // invalid inline assembly. The base class will report it.
2483 if (Stage
>= RS_Done
|| !VirtReg
.isSpillable()) {
2484 return tryLastChanceRecoloring(VirtReg
, Order
, NewVRegs
, FixedRegisters
,
2485 RecolorStack
, Depth
);
2488 // Finally spill VirtReg itself.
2489 if ((EnableDeferredSpilling
||
2490 TRI
->shouldUseDeferredSpillingForVirtReg(*MF
, VirtReg
)) &&
2491 ExtraInfo
->getStage(VirtReg
) < RS_Memory
) {
2492 // TODO: This is experimental and in particular, we do not model
2493 // the live range splitting done by spilling correctly.
2494 // We would need a deep integration with the spiller to do the
2495 // right thing here. Anyway, that is still good for early testing.
2496 ExtraInfo
->setStage(VirtReg
, RS_Memory
);
2497 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2498 NewVRegs
.push_back(VirtReg
.reg());
2500 NamedRegionTimer
T("spill", "Spiller", TimerGroupName
,
2501 TimerGroupDescription
, TimePassesIsEnabled
);
2502 LiveRangeEdit
LRE(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
2503 spiller().spill(LRE
);
2504 ExtraInfo
->setStage(NewVRegs
.begin(), NewVRegs
.end(), RS_Done
);
2506 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2507 // the new regs are kept in LDV (still mapping to the old register), until
2508 // we rewrite spilled locations in LDV at a later stage.
2509 DebugVars
->splitRegister(VirtReg
.reg(), LRE
.regs(), *LIS
);
2512 MF
->verify(this, "After spilling");
2515 // The live virtual register requesting allocation was spilled, so tell
2516 // the caller not to allocate anything during this round.
2520 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed
&R
) {
2521 using namespace ore
;
2523 R
<< NV("NumSpills", Spills
) << " spills ";
2524 R
<< NV("TotalSpillsCost", SpillsCost
) << " total spills cost ";
2527 R
<< NV("NumFoldedSpills", FoldedSpills
) << " folded spills ";
2528 R
<< NV("TotalFoldedSpillsCost", FoldedSpillsCost
)
2529 << " total folded spills cost ";
2532 R
<< NV("NumReloads", Reloads
) << " reloads ";
2533 R
<< NV("TotalReloadsCost", ReloadsCost
) << " total reloads cost ";
2535 if (FoldedReloads
) {
2536 R
<< NV("NumFoldedReloads", FoldedReloads
) << " folded reloads ";
2537 R
<< NV("TotalFoldedReloadsCost", FoldedReloadsCost
)
2538 << " total folded reloads cost ";
2540 if (ZeroCostFoldedReloads
)
2541 R
<< NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads
)
2542 << " zero cost folded reloads ";
2544 R
<< NV("NumVRCopies", Copies
) << " virtual registers copies ";
2545 R
<< NV("TotalCopiesCost", CopiesCost
) << " total copies cost ";
2549 RAGreedy::RAGreedyStats
RAGreedy::computeStats(MachineBasicBlock
&MBB
) {
2550 RAGreedyStats Stats
;
2551 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
2554 auto isSpillSlotAccess
= [&MFI
](const MachineMemOperand
*A
) {
2555 return MFI
.isSpillSlotObjectIndex(cast
<FixedStackPseudoSourceValue
>(
2556 A
->getPseudoValue())->getFrameIndex());
2558 auto isPatchpointInstr
= [](const MachineInstr
&MI
) {
2559 return MI
.getOpcode() == TargetOpcode::PATCHPOINT
||
2560 MI
.getOpcode() == TargetOpcode::STACKMAP
||
2561 MI
.getOpcode() == TargetOpcode::STATEPOINT
;
2563 for (MachineInstr
&MI
: MBB
) {
2564 auto DestSrc
= TII
->isCopyInstr(MI
);
2566 const MachineOperand
&Dest
= *DestSrc
->Destination
;
2567 const MachineOperand
&Src
= *DestSrc
->Source
;
2568 Register SrcReg
= Src
.getReg();
2569 Register DestReg
= Dest
.getReg();
2570 // Only count `COPY`s with a virtual register as source or destination.
2571 if (SrcReg
.isVirtual() || DestReg
.isVirtual()) {
2572 if (SrcReg
.isVirtual()) {
2573 SrcReg
= VRM
->getPhys(SrcReg
);
2574 if (SrcReg
&& Src
.getSubReg())
2575 SrcReg
= TRI
->getSubReg(SrcReg
, Src
.getSubReg());
2577 if (DestReg
.isVirtual()) {
2578 DestReg
= VRM
->getPhys(DestReg
);
2579 if (DestReg
&& Dest
.getSubReg())
2580 DestReg
= TRI
->getSubReg(DestReg
, Dest
.getSubReg());
2582 if (SrcReg
!= DestReg
)
2588 SmallVector
<const MachineMemOperand
*, 2> Accesses
;
2589 if (TII
->isLoadFromStackSlot(MI
, FI
) && MFI
.isSpillSlotObjectIndex(FI
)) {
2593 if (TII
->isStoreToStackSlot(MI
, FI
) && MFI
.isSpillSlotObjectIndex(FI
)) {
2597 if (TII
->hasLoadFromStackSlot(MI
, Accesses
) &&
2598 llvm::any_of(Accesses
, isSpillSlotAccess
)) {
2599 if (!isPatchpointInstr(MI
)) {
2600 Stats
.FoldedReloads
+= Accesses
.size();
2603 // For statepoint there may be folded and zero cost folded stack reloads.
2604 std::pair
<unsigned, unsigned> NonZeroCostRange
=
2605 TII
->getPatchpointUnfoldableRange(MI
);
2606 SmallSet
<unsigned, 16> FoldedReloads
;
2607 SmallSet
<unsigned, 16> ZeroCostFoldedReloads
;
2608 for (unsigned Idx
= 0, E
= MI
.getNumOperands(); Idx
< E
; ++Idx
) {
2609 MachineOperand
&MO
= MI
.getOperand(Idx
);
2610 if (!MO
.isFI() || !MFI
.isSpillSlotObjectIndex(MO
.getIndex()))
2612 if (Idx
>= NonZeroCostRange
.first
&& Idx
< NonZeroCostRange
.second
)
2613 FoldedReloads
.insert(MO
.getIndex());
2615 ZeroCostFoldedReloads
.insert(MO
.getIndex());
2617 // If stack slot is used in folded reload it is not zero cost then.
2618 for (unsigned Slot
: FoldedReloads
)
2619 ZeroCostFoldedReloads
.erase(Slot
);
2620 Stats
.FoldedReloads
+= FoldedReloads
.size();
2621 Stats
.ZeroCostFoldedReloads
+= ZeroCostFoldedReloads
.size();
2625 if (TII
->hasStoreToStackSlot(MI
, Accesses
) &&
2626 llvm::any_of(Accesses
, isSpillSlotAccess
)) {
2627 Stats
.FoldedSpills
+= Accesses
.size();
2630 // Set cost of collected statistic by multiplication to relative frequency of
2631 // this basic block.
2632 float RelFreq
= MBFI
->getBlockFreqRelativeToEntryBlock(&MBB
);
2633 Stats
.ReloadsCost
= RelFreq
* Stats
.Reloads
;
2634 Stats
.FoldedReloadsCost
= RelFreq
* Stats
.FoldedReloads
;
2635 Stats
.SpillsCost
= RelFreq
* Stats
.Spills
;
2636 Stats
.FoldedSpillsCost
= RelFreq
* Stats
.FoldedSpills
;
2637 Stats
.CopiesCost
= RelFreq
* Stats
.Copies
;
2641 RAGreedy::RAGreedyStats
RAGreedy::reportStats(MachineLoop
*L
) {
2642 RAGreedyStats Stats
;
2644 // Sum up the spill and reloads in subloops.
2645 for (MachineLoop
*SubLoop
: *L
)
2646 Stats
.add(reportStats(SubLoop
));
2648 for (MachineBasicBlock
*MBB
: L
->getBlocks())
2649 // Handle blocks that were not included in subloops.
2650 if (Loops
->getLoopFor(MBB
) == L
)
2651 Stats
.add(computeStats(*MBB
));
2653 if (!Stats
.isEmpty()) {
2654 using namespace ore
;
2657 MachineOptimizationRemarkMissed
R(DEBUG_TYPE
, "LoopSpillReloadCopies",
2658 L
->getStartLoc(), L
->getHeader());
2660 R
<< "generated in loop";
2667 void RAGreedy::reportStats() {
2668 if (!ORE
->allowExtraAnalysis(DEBUG_TYPE
))
2670 RAGreedyStats Stats
;
2671 for (MachineLoop
*L
: *Loops
)
2672 Stats
.add(reportStats(L
));
2673 // Process non-loop blocks.
2674 for (MachineBasicBlock
&MBB
: *MF
)
2675 if (!Loops
->getLoopFor(&MBB
))
2676 Stats
.add(computeStats(MBB
));
2677 if (!Stats
.isEmpty()) {
2678 using namespace ore
;
2682 if (auto *SP
= MF
->getFunction().getSubprogram())
2683 Loc
= DILocation::get(SP
->getContext(), SP
->getLine(), 1, SP
);
2684 MachineOptimizationRemarkMissed
R(DEBUG_TYPE
, "SpillReloadCopies", Loc
,
2687 R
<< "generated in function";
2693 bool RAGreedy::hasVirtRegAlloc() {
2694 for (unsigned I
= 0, E
= MRI
->getNumVirtRegs(); I
!= E
; ++I
) {
2695 Register Reg
= Register::index2VirtReg(I
);
2696 if (MRI
->reg_nodbg_empty(Reg
))
2698 const TargetRegisterClass
*RC
= MRI
->getRegClass(Reg
);
2701 if (ShouldAllocateClass(*TRI
, *RC
))
2708 bool RAGreedy::runOnMachineFunction(MachineFunction
&mf
) {
2709 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2710 << "********** Function: " << mf
.getName() << '\n');
2713 TII
= MF
->getSubtarget().getInstrInfo();
2716 MF
->verify(this, "Before greedy register allocator");
2718 RegAllocBase::init(getAnalysis
<VirtRegMap
>(),
2719 getAnalysis
<LiveIntervals
>(),
2720 getAnalysis
<LiveRegMatrix
>());
2722 // Early return if there is no virtual register to be allocated to a
2723 // physical register.
2724 if (!hasVirtRegAlloc())
2727 Indexes
= &getAnalysis
<SlotIndexes
>();
2728 // Renumber to get accurate and consistent results from
2729 // SlotIndexes::getApproxInstrDistance.
2730 Indexes
->packIndexes();
2731 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
2732 DomTree
= &getAnalysis
<MachineDominatorTree
>();
2733 ORE
= &getAnalysis
<MachineOptimizationRemarkEmitterPass
>().getORE();
2734 Loops
= &getAnalysis
<MachineLoopInfo
>();
2735 Bundles
= &getAnalysis
<EdgeBundles
>();
2736 SpillPlacer
= &getAnalysis
<SpillPlacement
>();
2737 DebugVars
= &getAnalysis
<LiveDebugVariables
>();
2739 initializeCSRCost();
2741 RegCosts
= TRI
->getRegisterCosts(*MF
);
2742 RegClassPriorityTrumpsGlobalness
=
2743 GreedyRegClassPriorityTrumpsGlobalness
.getNumOccurrences()
2744 ? GreedyRegClassPriorityTrumpsGlobalness
2745 : TRI
->regClassPriorityTrumpsGlobalness(*MF
);
2747 ReverseLocalAssignment
= GreedyReverseLocalAssignment
.getNumOccurrences()
2748 ? GreedyReverseLocalAssignment
2749 : TRI
->reverseLocalAssignment();
2751 ExtraInfo
.emplace();
2753 getAnalysis
<RegAllocEvictionAdvisorAnalysis
>().getAdvisor(*MF
, *this);
2755 getAnalysis
<RegAllocPriorityAdvisorAnalysis
>().getAdvisor(*MF
, *this);
2757 VRAI
= std::make_unique
<VirtRegAuxInfo
>(*MF
, *LIS
, *VRM
, *Loops
, *MBFI
);
2758 SpillerInstance
.reset(createInlineSpiller(*this, *MF
, *VRM
, *VRAI
));
2760 VRAI
->calculateSpillWeightsAndHints();
2762 LLVM_DEBUG(LIS
->dump());
2764 SA
.reset(new SplitAnalysis(*VRM
, *LIS
, *Loops
));
2765 SE
.reset(new SplitEditor(*SA
, *LIS
, *VRM
, *DomTree
, *MBFI
, *VRAI
));
2767 IntfCache
.init(MF
, Matrix
->getLiveUnions(), Indexes
, LIS
, TRI
);
2768 GlobalCand
.resize(32); // This will grow as needed.
2769 SetOfBrokenHints
.clear();
2772 tryHintsRecoloring();
2775 MF
->verify(this, "Before post optimization");