[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / RegAllocGreedy.cpp
bloba208bf89fadf29326c539c2863ff699558907200
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
12 //===----------------------------------------------------------------------===//
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "RegAllocEvictionAdvisor.h"
20 #include "RegAllocPriorityAdvisor.h"
21 #include "SpillPlacement.h"
22 #include "SplitKit.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/CodeGen/CalcSpillWeights.h"
33 #include "llvm/CodeGen/EdgeBundles.h"
34 #include "llvm/CodeGen/LiveInterval.h"
35 #include "llvm/CodeGen/LiveIntervalUnion.h"
36 #include "llvm/CodeGen/LiveIntervals.h"
37 #include "llvm/CodeGen/LiveRangeEdit.h"
38 #include "llvm/CodeGen/LiveRegMatrix.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineLoopInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/RegAllocRegistry.h"
52 #include "llvm/CodeGen/RegisterClassInfo.h"
53 #include "llvm/CodeGen/SlotIndexes.h"
54 #include "llvm/CodeGen/Spiller.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/CodeGen/VirtRegMap.h"
59 #include "llvm/IR/DebugInfoMetadata.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/BlockFrequency.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <utility>
77 using namespace llvm;
79 #define DEBUG_TYPE "regalloc"
81 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
82 STATISTIC(NumLocalSplits, "Number of split local live ranges");
83 STATISTIC(NumEvicted, "Number of interferences evicted");
85 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
86 "split-spill-mode", cl::Hidden,
87 cl::desc("Spill mode for splitting live ranges"),
88 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
89 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
90 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
91 cl::init(SplitEditor::SM_Speed));
93 static cl::opt<unsigned>
94 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
95 cl::desc("Last chance recoloring max depth"),
96 cl::init(5));
98 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
99 "lcr-max-interf", cl::Hidden,
100 cl::desc("Last chance recoloring maximum number of considered"
101 " interference at a time"),
102 cl::init(8));
104 static cl::opt<bool> ExhaustiveSearch(
105 "exhaustive-register-search", cl::NotHidden,
106 cl::desc("Exhaustive Search for registers bypassing the depth "
107 "and interference cutoffs of last chance recoloring"),
108 cl::Hidden);
110 static cl::opt<bool> EnableDeferredSpilling(
111 "enable-deferred-spilling", cl::Hidden,
112 cl::desc("Instead of spilling a variable right away, defer the actual "
113 "code insertion to the end of the allocation. That way the "
114 "allocator might still find a suitable coloring for this "
115 "variable because of other evicted variables."),
116 cl::init(false));
118 // FIXME: Find a good default for this flag and remove the flag.
119 static cl::opt<unsigned>
120 CSRFirstTimeCost("regalloc-csr-first-time-cost",
121 cl::desc("Cost for first time use of callee-saved register."),
122 cl::init(0), cl::Hidden);
124 static cl::opt<unsigned long> GrowRegionComplexityBudget(
125 "grow-region-complexity-budget",
126 cl::desc("growRegion() does not scale with the number of BB edges, so "
127 "limit its budget and bail out once we reach the limit."),
128 cl::init(10000), cl::Hidden);
130 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness(
131 "greedy-regclass-priority-trumps-globalness",
132 cl::desc("Change the greedy register allocator's live range priority "
133 "calculation to make the AllocationPriority of the register class "
134 "more important then whether the range is global"),
135 cl::Hidden);
137 static cl::opt<bool> GreedyReverseLocalAssignment(
138 "greedy-reverse-local-assignment",
139 cl::desc("Reverse allocation order of local live ranges, such that "
140 "shorter local live ranges will tend to be allocated first"),
141 cl::Hidden);
143 static cl::opt<unsigned> SplitThresholdForRegWithHint(
144 "split-threshold-for-reg-with-hint",
145 cl::desc("The threshold for splitting a virtual register with a hint, in "
146 "percentate"),
147 cl::init(75), cl::Hidden);
149 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
150 createGreedyRegisterAllocator);
152 char RAGreedy::ID = 0;
153 char &llvm::RAGreedyID = RAGreedy::ID;
155 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
156 "Greedy Register Allocator", false, false)
157 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
158 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
159 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
160 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
161 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
162 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
163 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
164 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
165 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
166 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
167 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
168 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
169 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
170 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
171 INITIALIZE_PASS_DEPENDENCY(RegAllocPriorityAdvisorAnalysis)
172 INITIALIZE_PASS_END(RAGreedy, "greedy",
173 "Greedy Register Allocator", false, false)
175 #ifndef NDEBUG
176 const char *const RAGreedy::StageName[] = {
177 "RS_New",
178 "RS_Assign",
179 "RS_Split",
180 "RS_Split2",
181 "RS_Spill",
182 "RS_Memory",
183 "RS_Done"
185 #endif
187 // Hysteresis to use when comparing floats.
188 // This helps stabilize decisions based on float comparisons.
189 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
191 FunctionPass* llvm::createGreedyRegisterAllocator() {
192 return new RAGreedy();
195 FunctionPass *llvm::createGreedyRegisterAllocator(RegClassFilterFunc Ftor) {
196 return new RAGreedy(Ftor);
199 RAGreedy::RAGreedy(RegClassFilterFunc F):
200 MachineFunctionPass(ID),
201 RegAllocBase(F) {
204 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
205 AU.setPreservesCFG();
206 AU.addRequired<MachineBlockFrequencyInfo>();
207 AU.addPreserved<MachineBlockFrequencyInfo>();
208 AU.addRequired<LiveIntervals>();
209 AU.addPreserved<LiveIntervals>();
210 AU.addRequired<SlotIndexes>();
211 AU.addPreserved<SlotIndexes>();
212 AU.addRequired<LiveDebugVariables>();
213 AU.addPreserved<LiveDebugVariables>();
214 AU.addRequired<LiveStacks>();
215 AU.addPreserved<LiveStacks>();
216 AU.addRequired<MachineDominatorTree>();
217 AU.addPreserved<MachineDominatorTree>();
218 AU.addRequired<MachineLoopInfo>();
219 AU.addPreserved<MachineLoopInfo>();
220 AU.addRequired<VirtRegMap>();
221 AU.addPreserved<VirtRegMap>();
222 AU.addRequired<LiveRegMatrix>();
223 AU.addPreserved<LiveRegMatrix>();
224 AU.addRequired<EdgeBundles>();
225 AU.addRequired<SpillPlacement>();
226 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
227 AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
228 AU.addRequired<RegAllocPriorityAdvisorAnalysis>();
229 MachineFunctionPass::getAnalysisUsage(AU);
232 //===----------------------------------------------------------------------===//
233 // LiveRangeEdit delegate methods
234 //===----------------------------------------------------------------------===//
236 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
237 LiveInterval &LI = LIS->getInterval(VirtReg);
238 if (VRM->hasPhys(VirtReg)) {
239 Matrix->unassign(LI);
240 aboutToRemoveInterval(LI);
241 return true;
243 // Unassigned virtreg is probably in the priority queue.
244 // RegAllocBase will erase it after dequeueing.
245 // Nonetheless, clear the live-range so that the debug
246 // dump will show the right state for that VirtReg.
247 LI.clear();
248 return false;
251 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
252 if (!VRM->hasPhys(VirtReg))
253 return;
255 // Register is assigned, put it back on the queue for reassignment.
256 LiveInterval &LI = LIS->getInterval(VirtReg);
257 Matrix->unassign(LI);
258 RegAllocBase::enqueue(&LI);
261 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
262 ExtraInfo->LRE_DidCloneVirtReg(New, Old);
265 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
266 // Cloning a register we haven't even heard about yet? Just ignore it.
267 if (!Info.inBounds(Old))
268 return;
270 // LRE may clone a virtual register because dead code elimination causes it to
271 // be split into connected components. The new components are much smaller
272 // than the original, so they should get a new chance at being assigned.
273 // same stage as the parent.
274 Info[Old].Stage = RS_Assign;
275 Info.grow(New.id());
276 Info[New] = Info[Old];
279 void RAGreedy::releaseMemory() {
280 SpillerInstance.reset();
281 GlobalCand.clear();
284 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
286 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
287 // Prioritize live ranges by size, assigning larger ranges first.
288 // The queue holds (size, reg) pairs.
289 const Register Reg = LI->reg();
290 assert(Reg.isVirtual() && "Can only enqueue virtual registers");
292 auto Stage = ExtraInfo->getOrInitStage(Reg);
293 if (Stage == RS_New) {
294 Stage = RS_Assign;
295 ExtraInfo->setStage(Reg, Stage);
298 unsigned Ret = PriorityAdvisor->getPriority(*LI);
300 // The virtual register number is a tie breaker for same-sized ranges.
301 // Give lower vreg numbers higher priority to assign them first.
302 CurQueue.push(std::make_pair(Ret, ~Reg));
305 unsigned DefaultPriorityAdvisor::getPriority(const LiveInterval &LI) const {
306 const unsigned Size = LI.getSize();
307 const Register Reg = LI.reg();
308 unsigned Prio;
309 LiveRangeStage Stage = RA.getExtraInfo().getStage(LI);
311 if (Stage == RS_Split) {
312 // Unsplit ranges that couldn't be allocated immediately are deferred until
313 // everything else has been allocated.
314 Prio = Size;
315 } else if (Stage == RS_Memory) {
316 // Memory operand should be considered last.
317 // Change the priority such that Memory operand are assigned in
318 // the reverse order that they came in.
319 // TODO: Make this a member variable and probably do something about hints.
320 static unsigned MemOp = 0;
321 Prio = MemOp++;
322 } else {
323 // Giant live ranges fall back to the global assignment heuristic, which
324 // prevents excessive spilling in pathological cases.
325 const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
326 bool ForceGlobal = RC.GlobalPriority ||
327 (!ReverseLocalAssignment &&
328 (Size / SlotIndex::InstrDist) >
329 (2 * RegClassInfo.getNumAllocatableRegs(&RC)));
330 unsigned GlobalBit = 0;
332 if (Stage == RS_Assign && !ForceGlobal && !LI.empty() &&
333 LIS->intervalIsInOneMBB(LI)) {
334 // Allocate original local ranges in linear instruction order. Since they
335 // are singly defined, this produces optimal coloring in the absence of
336 // global interference and other constraints.
337 if (!ReverseLocalAssignment)
338 Prio = LI.beginIndex().getApproxInstrDistance(Indexes->getLastIndex());
339 else {
340 // Allocating bottom up may allow many short LRGs to be assigned first
341 // to one of the cheap registers. This could be much faster for very
342 // large blocks on targets with many physical registers.
343 Prio = Indexes->getZeroIndex().getApproxInstrDistance(LI.endIndex());
345 } else {
346 // Allocate global and split ranges in long->short order. Long ranges that
347 // don't fit should be spilled (or split) ASAP so they don't create
348 // interference. Mark a bit to prioritize global above local ranges.
349 Prio = Size;
350 GlobalBit = 1;
353 // Priority bit layout:
354 // 31 RS_Assign priority
355 // 30 Preference priority
356 // if (RegClassPriorityTrumpsGlobalness)
357 // 29-25 AllocPriority
358 // 24 GlobalBit
359 // else
360 // 29 Global bit
361 // 28-24 AllocPriority
362 // 0-23 Size/Instr distance
364 // Clamp the size to fit with the priority masking scheme
365 Prio = std::min(Prio, (unsigned)maxUIntN(24));
366 assert(isUInt<5>(RC.AllocationPriority) && "allocation priority overflow");
368 if (RegClassPriorityTrumpsGlobalness)
369 Prio |= RC.AllocationPriority << 25 | GlobalBit << 24;
370 else
371 Prio |= GlobalBit << 29 | RC.AllocationPriority << 24;
373 // Mark a higher bit to prioritize global and local above RS_Split.
374 Prio |= (1u << 31);
376 // Boost ranges that have a physical register hint.
377 if (VRM->hasKnownPreference(Reg))
378 Prio |= (1u << 30);
381 return Prio;
384 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
386 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
387 if (CurQueue.empty())
388 return nullptr;
389 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
390 CurQueue.pop();
391 return LI;
394 //===----------------------------------------------------------------------===//
395 // Direct Assignment
396 //===----------------------------------------------------------------------===//
398 /// tryAssign - Try to assign VirtReg to an available register.
399 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
400 AllocationOrder &Order,
401 SmallVectorImpl<Register> &NewVRegs,
402 const SmallVirtRegSet &FixedRegisters) {
403 MCRegister PhysReg;
404 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
405 assert(*I);
406 if (!Matrix->checkInterference(VirtReg, *I)) {
407 if (I.isHint())
408 return *I;
409 else
410 PhysReg = *I;
413 if (!PhysReg.isValid())
414 return PhysReg;
416 // PhysReg is available, but there may be a better choice.
418 // If we missed a simple hint, try to cheaply evict interference from the
419 // preferred register.
420 if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
421 if (Order.isHint(Hint)) {
422 MCRegister PhysHint = Hint.asMCReg();
423 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
425 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
426 FixedRegisters)) {
427 evictInterference(VirtReg, PhysHint, NewVRegs);
428 return PhysHint;
431 // We can also split the virtual register in cold blocks.
432 if (trySplitAroundHintReg(PhysHint, VirtReg, NewVRegs, Order))
433 return 0;
435 // Record the missed hint, we may be able to recover
436 // at the end if the surrounding allocation changed.
437 SetOfBrokenHints.insert(&VirtReg);
440 // Try to evict interference from a cheaper alternative.
441 uint8_t Cost = RegCosts[PhysReg];
443 // Most registers have 0 additional cost.
444 if (!Cost)
445 return PhysReg;
447 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
448 << (unsigned)Cost << '\n');
449 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
450 return CheapReg ? CheapReg : PhysReg;
453 //===----------------------------------------------------------------------===//
454 // Interference eviction
455 //===----------------------------------------------------------------------===//
457 bool RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
458 MCRegister FromReg) const {
459 auto HasRegUnitInterference = [&](MCRegUnit Unit) {
460 // Instantiate a "subquery", not to be confused with the Queries array.
461 LiveIntervalUnion::Query SubQ(VirtReg, Matrix->getLiveUnions()[Unit]);
462 return SubQ.checkInterference();
465 for (MCRegister Reg :
466 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix)) {
467 if (Reg == FromReg)
468 continue;
469 // If no units have interference, reassignment is possible.
470 if (none_of(TRI->regunits(Reg), HasRegUnitInterference)) {
471 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
472 << printReg(FromReg, TRI) << " to "
473 << printReg(Reg, TRI) << '\n');
474 return true;
477 return false;
480 /// evictInterference - Evict any interferring registers that prevent VirtReg
481 /// from being assigned to Physreg. This assumes that canEvictInterference
482 /// returned true.
483 void RAGreedy::evictInterference(const LiveInterval &VirtReg,
484 MCRegister PhysReg,
485 SmallVectorImpl<Register> &NewVRegs) {
486 // Make sure that VirtReg has a cascade number, and assign that cascade
487 // number to every evicted register. These live ranges than then only be
488 // evicted by a newer cascade, preventing infinite loops.
489 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
491 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
492 << " interference: Cascade " << Cascade << '\n');
494 // Collect all interfering virtregs first.
495 SmallVector<const LiveInterval *, 8> Intfs;
496 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
497 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
498 // We usually have the interfering VRegs cached so collectInterferingVRegs()
499 // should be fast, we may need to recalculate if when different physregs
500 // overlap the same register unit so we had different SubRanges queried
501 // against it.
502 ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
503 Intfs.append(IVR.begin(), IVR.end());
506 // Evict them second. This will invalidate the queries.
507 for (const LiveInterval *Intf : Intfs) {
508 // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
509 if (!VRM->hasPhys(Intf->reg()))
510 continue;
512 Matrix->unassign(*Intf);
513 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
514 VirtReg.isSpillable() < Intf->isSpillable()) &&
515 "Cannot decrease cascade number, illegal eviction");
516 ExtraInfo->setCascade(Intf->reg(), Cascade);
517 ++NumEvicted;
518 NewVRegs.push_back(Intf->reg());
522 /// Returns true if the given \p PhysReg is a callee saved register and has not
523 /// been used for allocation yet.
524 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
525 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
526 if (!CSR)
527 return false;
529 return !Matrix->isPhysRegUsed(PhysReg);
532 std::optional<unsigned>
533 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
534 const AllocationOrder &Order,
535 unsigned CostPerUseLimit) const {
536 unsigned OrderLimit = Order.getOrder().size();
538 if (CostPerUseLimit < uint8_t(~0u)) {
539 // Check of any registers in RC are below CostPerUseLimit.
540 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
541 uint8_t MinCost = RegClassInfo.getMinCost(RC);
542 if (MinCost >= CostPerUseLimit) {
543 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
544 << MinCost << ", no cheaper registers to be found.\n");
545 return std::nullopt;
548 // It is normal for register classes to have a long tail of registers with
549 // the same cost. We don't need to look at them if they're too expensive.
550 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
551 OrderLimit = RegClassInfo.getLastCostChange(RC);
552 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
553 << " regs.\n");
556 return OrderLimit;
559 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
560 MCRegister PhysReg) const {
561 if (RegCosts[PhysReg] >= CostPerUseLimit)
562 return false;
563 // The first use of a callee-saved register in a function has cost 1.
564 // Don't start using a CSR when the CostPerUseLimit is low.
565 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
566 LLVM_DEBUG(
567 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
568 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
569 << '\n');
570 return false;
572 return true;
575 /// tryEvict - Try to evict all interferences for a physreg.
576 /// @param VirtReg Currently unassigned virtual register.
577 /// @param Order Physregs to try.
578 /// @return Physreg to assign VirtReg, or 0.
579 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
580 AllocationOrder &Order,
581 SmallVectorImpl<Register> &NewVRegs,
582 uint8_t CostPerUseLimit,
583 const SmallVirtRegSet &FixedRegisters) {
584 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
585 TimePassesIsEnabled);
587 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
588 VirtReg, Order, CostPerUseLimit, FixedRegisters);
589 if (BestPhys.isValid())
590 evictInterference(VirtReg, BestPhys, NewVRegs);
591 return BestPhys;
594 //===----------------------------------------------------------------------===//
595 // Region Splitting
596 //===----------------------------------------------------------------------===//
598 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
599 /// interference pattern in Physreg and its aliases. Add the constraints to
600 /// SpillPlacement and return the static cost of this split in Cost, assuming
601 /// that all preferences in SplitConstraints are met.
602 /// Return false if there are no bundles with positive bias.
603 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
604 BlockFrequency &Cost) {
605 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
607 // Reset interference dependent info.
608 SplitConstraints.resize(UseBlocks.size());
609 BlockFrequency StaticCost = BlockFrequency(0);
610 for (unsigned I = 0; I != UseBlocks.size(); ++I) {
611 const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
612 SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
614 BC.Number = BI.MBB->getNumber();
615 Intf.moveToBlock(BC.Number);
616 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
617 BC.Exit = (BI.LiveOut &&
618 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
619 ? SpillPlacement::PrefReg
620 : SpillPlacement::DontCare;
621 BC.ChangesValue = BI.FirstDef.isValid();
623 if (!Intf.hasInterference())
624 continue;
626 // Number of spill code instructions to insert.
627 unsigned Ins = 0;
629 // Interference for the live-in value.
630 if (BI.LiveIn) {
631 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
632 BC.Entry = SpillPlacement::MustSpill;
633 ++Ins;
634 } else if (Intf.first() < BI.FirstInstr) {
635 BC.Entry = SpillPlacement::PrefSpill;
636 ++Ins;
637 } else if (Intf.first() < BI.LastInstr) {
638 ++Ins;
641 // Abort if the spill cannot be inserted at the MBB' start
642 if (((BC.Entry == SpillPlacement::MustSpill) ||
643 (BC.Entry == SpillPlacement::PrefSpill)) &&
644 SlotIndex::isEarlierInstr(BI.FirstInstr,
645 SA->getFirstSplitPoint(BC.Number)))
646 return false;
649 // Interference for the live-out value.
650 if (BI.LiveOut) {
651 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
652 BC.Exit = SpillPlacement::MustSpill;
653 ++Ins;
654 } else if (Intf.last() > BI.LastInstr) {
655 BC.Exit = SpillPlacement::PrefSpill;
656 ++Ins;
657 } else if (Intf.last() > BI.FirstInstr) {
658 ++Ins;
662 // Accumulate the total frequency of inserted spill code.
663 while (Ins--)
664 StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
666 Cost = StaticCost;
668 // Add constraints for use-blocks. Note that these are the only constraints
669 // that may add a positive bias, it is downhill from here.
670 SpillPlacer->addConstraints(SplitConstraints);
671 return SpillPlacer->scanActiveBundles();
674 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
675 /// live-through blocks in Blocks.
676 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
677 ArrayRef<unsigned> Blocks) {
678 const unsigned GroupSize = 8;
679 SpillPlacement::BlockConstraint BCS[GroupSize];
680 unsigned TBS[GroupSize];
681 unsigned B = 0, T = 0;
683 for (unsigned Number : Blocks) {
684 Intf.moveToBlock(Number);
686 if (!Intf.hasInterference()) {
687 assert(T < GroupSize && "Array overflow");
688 TBS[T] = Number;
689 if (++T == GroupSize) {
690 SpillPlacer->addLinks(ArrayRef(TBS, T));
691 T = 0;
693 continue;
696 assert(B < GroupSize && "Array overflow");
697 BCS[B].Number = Number;
699 // Abort if the spill cannot be inserted at the MBB' start
700 MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
701 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
702 if (FirstNonDebugInstr != MBB->end() &&
703 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
704 SA->getFirstSplitPoint(Number)))
705 return false;
706 // Interference for the live-in value.
707 if (Intf.first() <= Indexes->getMBBStartIdx(Number))
708 BCS[B].Entry = SpillPlacement::MustSpill;
709 else
710 BCS[B].Entry = SpillPlacement::PrefSpill;
712 // Interference for the live-out value.
713 if (Intf.last() >= SA->getLastSplitPoint(Number))
714 BCS[B].Exit = SpillPlacement::MustSpill;
715 else
716 BCS[B].Exit = SpillPlacement::PrefSpill;
718 if (++B == GroupSize) {
719 SpillPlacer->addConstraints(ArrayRef(BCS, B));
720 B = 0;
724 SpillPlacer->addConstraints(ArrayRef(BCS, B));
725 SpillPlacer->addLinks(ArrayRef(TBS, T));
726 return true;
729 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
730 // Keep track of through blocks that have not been added to SpillPlacer.
731 BitVector Todo = SA->getThroughBlocks();
732 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
733 unsigned AddedTo = 0;
734 #ifndef NDEBUG
735 unsigned Visited = 0;
736 #endif
738 unsigned long Budget = GrowRegionComplexityBudget;
739 while (true) {
740 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
741 // Find new through blocks in the periphery of PrefRegBundles.
742 for (unsigned Bundle : NewBundles) {
743 // Look at all blocks connected to Bundle in the full graph.
744 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
745 // Limit compilation time by bailing out after we use all our budget.
746 if (Blocks.size() >= Budget)
747 return false;
748 Budget -= Blocks.size();
749 for (unsigned Block : Blocks) {
750 if (!Todo.test(Block))
751 continue;
752 Todo.reset(Block);
753 // This is a new through block. Add it to SpillPlacer later.
754 ActiveBlocks.push_back(Block);
755 #ifndef NDEBUG
756 ++Visited;
757 #endif
760 // Any new blocks to add?
761 if (ActiveBlocks.size() == AddedTo)
762 break;
764 // Compute through constraints from the interference, or assume that all
765 // through blocks prefer spilling when forming compact regions.
766 auto NewBlocks = ArrayRef(ActiveBlocks).slice(AddedTo);
767 if (Cand.PhysReg) {
768 if (!addThroughConstraints(Cand.Intf, NewBlocks))
769 return false;
770 } else {
771 // Providing that the variable being spilled does not look like a loop
772 // induction variable, which is expensive to spill around and better
773 // pushed into a condition inside the loop if possible, provide a strong
774 // negative bias on through blocks to prevent unwanted liveness on loop
775 // backedges.
776 bool PrefSpill = true;
777 if (SA->looksLikeLoopIV() && NewBlocks.size() >= 2) {
778 // Check that the current bundle is adding a Header + start+end of
779 // loop-internal blocks. If the block is indeed a header, don't make
780 // the NewBlocks as PrefSpill to allow the variable to be live in
781 // Header<->Latch.
782 MachineLoop *L = Loops->getLoopFor(MF->getBlockNumbered(NewBlocks[0]));
783 if (L && L->getHeader()->getNumber() == (int)NewBlocks[0] &&
784 all_of(NewBlocks.drop_front(), [&](unsigned Block) {
785 return L == Loops->getLoopFor(MF->getBlockNumbered(Block));
787 PrefSpill = false;
789 if (PrefSpill)
790 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
792 AddedTo = ActiveBlocks.size();
794 // Perhaps iterating can enable more bundles?
795 SpillPlacer->iterate();
797 LLVM_DEBUG(dbgs() << ", v=" << Visited);
798 return true;
801 /// calcCompactRegion - Compute the set of edge bundles that should be live
802 /// when splitting the current live range into compact regions. Compact
803 /// regions can be computed without looking at interference. They are the
804 /// regions formed by removing all the live-through blocks from the live range.
806 /// Returns false if the current live range is already compact, or if the
807 /// compact regions would form single block regions anyway.
808 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
809 // Without any through blocks, the live range is already compact.
810 if (!SA->getNumThroughBlocks())
811 return false;
813 // Compact regions don't correspond to any physreg.
814 Cand.reset(IntfCache, MCRegister::NoRegister);
816 LLVM_DEBUG(dbgs() << "Compact region bundles");
818 // Use the spill placer to determine the live bundles. GrowRegion pretends
819 // that all the through blocks have interference when PhysReg is unset.
820 SpillPlacer->prepare(Cand.LiveBundles);
822 // The static split cost will be zero since Cand.Intf reports no interference.
823 BlockFrequency Cost;
824 if (!addSplitConstraints(Cand.Intf, Cost)) {
825 LLVM_DEBUG(dbgs() << ", none.\n");
826 return false;
829 if (!growRegion(Cand)) {
830 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
831 return false;
834 SpillPlacer->finish();
836 if (!Cand.LiveBundles.any()) {
837 LLVM_DEBUG(dbgs() << ", none.\n");
838 return false;
841 LLVM_DEBUG({
842 for (int I : Cand.LiveBundles.set_bits())
843 dbgs() << " EB#" << I;
844 dbgs() << ".\n";
846 return true;
849 /// calcSpillCost - Compute how expensive it would be to split the live range in
850 /// SA around all use blocks instead of forming bundle regions.
851 BlockFrequency RAGreedy::calcSpillCost() {
852 BlockFrequency Cost = BlockFrequency(0);
853 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
854 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
855 unsigned Number = BI.MBB->getNumber();
856 // We normally only need one spill instruction - a load or a store.
857 Cost += SpillPlacer->getBlockFrequency(Number);
859 // Unless the value is redefined in the block.
860 if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
861 Cost += SpillPlacer->getBlockFrequency(Number);
863 return Cost;
866 /// calcGlobalSplitCost - Return the global split cost of following the split
867 /// pattern in LiveBundles. This cost should be added to the local cost of the
868 /// interference pattern in SplitConstraints.
870 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
871 const AllocationOrder &Order) {
872 BlockFrequency GlobalCost = BlockFrequency(0);
873 const BitVector &LiveBundles = Cand.LiveBundles;
874 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
875 for (unsigned I = 0; I != UseBlocks.size(); ++I) {
876 const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
877 SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
878 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)];
879 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
880 unsigned Ins = 0;
882 Cand.Intf.moveToBlock(BC.Number);
884 if (BI.LiveIn)
885 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
886 if (BI.LiveOut)
887 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
888 while (Ins--)
889 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
892 for (unsigned Number : Cand.ActiveBlocks) {
893 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)];
894 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
895 if (!RegIn && !RegOut)
896 continue;
897 if (RegIn && RegOut) {
898 // We need double spill code if this block has interference.
899 Cand.Intf.moveToBlock(Number);
900 if (Cand.Intf.hasInterference()) {
901 GlobalCost += SpillPlacer->getBlockFrequency(Number);
902 GlobalCost += SpillPlacer->getBlockFrequency(Number);
904 continue;
906 // live-in / stack-out or stack-in live-out.
907 GlobalCost += SpillPlacer->getBlockFrequency(Number);
909 return GlobalCost;
912 /// splitAroundRegion - Split the current live range around the regions
913 /// determined by BundleCand and GlobalCand.
915 /// Before calling this function, GlobalCand and BundleCand must be initialized
916 /// so each bundle is assigned to a valid candidate, or NoCand for the
917 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
918 /// objects must be initialized for the current live range, and intervals
919 /// created for the used candidates.
921 /// @param LREdit The LiveRangeEdit object handling the current split.
922 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
923 /// must appear in this list.
924 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
925 ArrayRef<unsigned> UsedCands) {
926 // These are the intervals created for new global ranges. We may create more
927 // intervals for local ranges.
928 const unsigned NumGlobalIntvs = LREdit.size();
929 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
930 << " globals.\n");
931 assert(NumGlobalIntvs && "No global intervals configured");
933 // Isolate even single instructions when dealing with a proper sub-class.
934 // That guarantees register class inflation for the stack interval because it
935 // is all copies.
936 Register Reg = SA->getParent().reg();
937 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
939 // First handle all the blocks with uses.
940 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
941 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
942 unsigned Number = BI.MBB->getNumber();
943 unsigned IntvIn = 0, IntvOut = 0;
944 SlotIndex IntfIn, IntfOut;
945 if (BI.LiveIn) {
946 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
947 if (CandIn != NoCand) {
948 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
949 IntvIn = Cand.IntvIdx;
950 Cand.Intf.moveToBlock(Number);
951 IntfIn = Cand.Intf.first();
954 if (BI.LiveOut) {
955 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
956 if (CandOut != NoCand) {
957 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
958 IntvOut = Cand.IntvIdx;
959 Cand.Intf.moveToBlock(Number);
960 IntfOut = Cand.Intf.last();
964 // Create separate intervals for isolated blocks with multiple uses.
965 if (!IntvIn && !IntvOut) {
966 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
967 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
968 SE->splitSingleBlock(BI);
969 continue;
972 if (IntvIn && IntvOut)
973 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
974 else if (IntvIn)
975 SE->splitRegInBlock(BI, IntvIn, IntfIn);
976 else
977 SE->splitRegOutBlock(BI, IntvOut, IntfOut);
980 // Handle live-through blocks. The relevant live-through blocks are stored in
981 // the ActiveBlocks list with each candidate. We need to filter out
982 // duplicates.
983 BitVector Todo = SA->getThroughBlocks();
984 for (unsigned UsedCand : UsedCands) {
985 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
986 for (unsigned Number : Blocks) {
987 if (!Todo.test(Number))
988 continue;
989 Todo.reset(Number);
991 unsigned IntvIn = 0, IntvOut = 0;
992 SlotIndex IntfIn, IntfOut;
994 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
995 if (CandIn != NoCand) {
996 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
997 IntvIn = Cand.IntvIdx;
998 Cand.Intf.moveToBlock(Number);
999 IntfIn = Cand.Intf.first();
1002 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1003 if (CandOut != NoCand) {
1004 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1005 IntvOut = Cand.IntvIdx;
1006 Cand.Intf.moveToBlock(Number);
1007 IntfOut = Cand.Intf.last();
1009 if (!IntvIn && !IntvOut)
1010 continue;
1011 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1015 ++NumGlobalSplits;
1017 SmallVector<unsigned, 8> IntvMap;
1018 SE->finish(&IntvMap);
1019 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1021 unsigned OrigBlocks = SA->getNumLiveBlocks();
1023 // Sort out the new intervals created by splitting. We get four kinds:
1024 // - Remainder intervals should not be split again.
1025 // - Candidate intervals can be assigned to Cand.PhysReg.
1026 // - Block-local splits are candidates for local splitting.
1027 // - DCE leftovers should go back on the queue.
1028 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1029 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1031 // Ignore old intervals from DCE.
1032 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1033 continue;
1035 // Remainder interval. Don't try splitting again, spill if it doesn't
1036 // allocate.
1037 if (IntvMap[I] == 0) {
1038 ExtraInfo->setStage(Reg, RS_Spill);
1039 continue;
1042 // Global intervals. Allow repeated splitting as long as the number of live
1043 // blocks is strictly decreasing.
1044 if (IntvMap[I] < NumGlobalIntvs) {
1045 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1046 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1047 << " blocks as original.\n");
1048 // Don't allow repeated splitting as a safe guard against looping.
1049 ExtraInfo->setStage(Reg, RS_Split2);
1051 continue;
1054 // Other intervals are treated as new. This includes local intervals created
1055 // for blocks with multiple uses, and anything created by DCE.
1058 if (VerifyEnabled)
1059 MF->verify(this, "After splitting live range around region");
1062 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
1063 AllocationOrder &Order,
1064 SmallVectorImpl<Register> &NewVRegs) {
1065 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1066 return MCRegister::NoRegister;
1067 unsigned NumCands = 0;
1068 BlockFrequency SpillCost = calcSpillCost();
1069 BlockFrequency BestCost;
1071 // Check if we can split this live range around a compact region.
1072 bool HasCompact = calcCompactRegion(GlobalCand.front());
1073 if (HasCompact) {
1074 // Yes, keep GlobalCand[0] as the compact region candidate.
1075 NumCands = 1;
1076 BestCost = BlockFrequency::max();
1077 } else {
1078 // No benefit from the compact region, our fallback will be per-block
1079 // splitting. Make sure we find a solution that is cheaper than spilling.
1080 BestCost = SpillCost;
1081 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "
1082 << printBlockFreq(*MBFI, BestCost) << '\n');
1085 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
1086 NumCands, false /*IgnoreCSR*/);
1088 // No solutions found, fall back to single block splitting.
1089 if (!HasCompact && BestCand == NoCand)
1090 return MCRegister::NoRegister;
1092 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1095 unsigned
1096 RAGreedy::calculateRegionSplitCostAroundReg(MCPhysReg PhysReg,
1097 AllocationOrder &Order,
1098 BlockFrequency &BestCost,
1099 unsigned &NumCands,
1100 unsigned &BestCand) {
1101 // Discard bad candidates before we run out of interference cache cursors.
1102 // This will only affect register classes with a lot of registers (>32).
1103 if (NumCands == IntfCache.getMaxCursors()) {
1104 unsigned WorstCount = ~0u;
1105 unsigned Worst = 0;
1106 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1107 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1108 continue;
1109 unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1110 if (Count < WorstCount) {
1111 Worst = CandIndex;
1112 WorstCount = Count;
1115 --NumCands;
1116 GlobalCand[Worst] = GlobalCand[NumCands];
1117 if (BestCand == NumCands)
1118 BestCand = Worst;
1121 if (GlobalCand.size() <= NumCands)
1122 GlobalCand.resize(NumCands+1);
1123 GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1124 Cand.reset(IntfCache, PhysReg);
1126 SpillPlacer->prepare(Cand.LiveBundles);
1127 BlockFrequency Cost;
1128 if (!addSplitConstraints(Cand.Intf, Cost)) {
1129 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1130 return BestCand;
1132 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
1133 << "\tstatic = " << printBlockFreq(*MBFI, Cost));
1134 if (Cost >= BestCost) {
1135 LLVM_DEBUG({
1136 if (BestCand == NoCand)
1137 dbgs() << " worse than no bundles\n";
1138 else
1139 dbgs() << " worse than "
1140 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1142 return BestCand;
1144 if (!growRegion(Cand)) {
1145 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1146 return BestCand;
1149 SpillPlacer->finish();
1151 // No live bundles, defer to splitSingleBlocks().
1152 if (!Cand.LiveBundles.any()) {
1153 LLVM_DEBUG(dbgs() << " no bundles.\n");
1154 return BestCand;
1157 Cost += calcGlobalSplitCost(Cand, Order);
1158 LLVM_DEBUG({
1159 dbgs() << ", total = " << printBlockFreq(*MBFI, Cost) << " with bundles";
1160 for (int I : Cand.LiveBundles.set_bits())
1161 dbgs() << " EB#" << I;
1162 dbgs() << ".\n";
1164 if (Cost < BestCost) {
1165 BestCand = NumCands;
1166 BestCost = Cost;
1168 ++NumCands;
1170 return BestCand;
1173 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1174 AllocationOrder &Order,
1175 BlockFrequency &BestCost,
1176 unsigned &NumCands,
1177 bool IgnoreCSR) {
1178 unsigned BestCand = NoCand;
1179 for (MCPhysReg PhysReg : Order) {
1180 assert(PhysReg);
1181 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1182 continue;
1184 calculateRegionSplitCostAroundReg(PhysReg, Order, BestCost, NumCands,
1185 BestCand);
1188 return BestCand;
1191 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1192 bool HasCompact,
1193 SmallVectorImpl<Register> &NewVRegs) {
1194 SmallVector<unsigned, 8> UsedCands;
1195 // Prepare split editor.
1196 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1197 SE->reset(LREdit, SplitSpillMode);
1199 // Assign all edge bundles to the preferred candidate, or NoCand.
1200 BundleCand.assign(Bundles->getNumBundles(), NoCand);
1202 // Assign bundles for the best candidate region.
1203 if (BestCand != NoCand) {
1204 GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1205 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1206 UsedCands.push_back(BestCand);
1207 Cand.IntvIdx = SE->openIntv();
1208 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1209 << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1210 (void)B;
1214 // Assign bundles for the compact region.
1215 if (HasCompact) {
1216 GlobalSplitCandidate &Cand = GlobalCand.front();
1217 assert(!Cand.PhysReg && "Compact region has no physreg");
1218 if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1219 UsedCands.push_back(0);
1220 Cand.IntvIdx = SE->openIntv();
1221 LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1222 << " bundles, intv " << Cand.IntvIdx << ".\n");
1223 (void)B;
1227 splitAroundRegion(LREdit, UsedCands);
1228 return 0;
1231 // VirtReg has a physical Hint, this function tries to split VirtReg around
1232 // Hint if we can place new COPY instructions in cold blocks.
1233 bool RAGreedy::trySplitAroundHintReg(MCPhysReg Hint,
1234 const LiveInterval &VirtReg,
1235 SmallVectorImpl<Register> &NewVRegs,
1236 AllocationOrder &Order) {
1237 // Split the VirtReg may generate COPY instructions in multiple cold basic
1238 // blocks, and increase code size. So we avoid it when the function is
1239 // optimized for size.
1240 if (MF->getFunction().hasOptSize())
1241 return false;
1243 // Don't allow repeated splitting as a safe guard against looping.
1244 if (ExtraInfo->getStage(VirtReg) >= RS_Split2)
1245 return false;
1247 BlockFrequency Cost = BlockFrequency(0);
1248 Register Reg = VirtReg.reg();
1250 // Compute the cost of assigning a non Hint physical register to VirtReg.
1251 // We define it as the total frequency of broken COPY instructions to/from
1252 // Hint register, and after split, they can be deleted.
1253 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
1254 if (!TII->isFullCopyInstr(Instr))
1255 continue;
1256 Register OtherReg = Instr.getOperand(1).getReg();
1257 if (OtherReg == Reg) {
1258 OtherReg = Instr.getOperand(0).getReg();
1259 if (OtherReg == Reg)
1260 continue;
1261 // Check if VirtReg interferes with OtherReg after this COPY instruction.
1262 if (VirtReg.liveAt(LIS->getInstructionIndex(Instr).getRegSlot()))
1263 continue;
1265 MCRegister OtherPhysReg =
1266 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
1267 if (OtherPhysReg == Hint)
1268 Cost += MBFI->getBlockFreq(Instr.getParent());
1271 // Decrease the cost so it will be split in colder blocks.
1272 BranchProbability Threshold(SplitThresholdForRegWithHint, 100);
1273 Cost *= Threshold;
1274 if (Cost == BlockFrequency(0))
1275 return false;
1277 unsigned NumCands = 0;
1278 unsigned BestCand = NoCand;
1279 SA->analyze(&VirtReg);
1280 calculateRegionSplitCostAroundReg(Hint, Order, Cost, NumCands, BestCand);
1281 if (BestCand == NoCand)
1282 return false;
1284 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
1285 return true;
1288 //===----------------------------------------------------------------------===//
1289 // Per-Block Splitting
1290 //===----------------------------------------------------------------------===//
1292 /// tryBlockSplit - Split a global live range around every block with uses. This
1293 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1294 /// they don't allocate.
1295 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1296 AllocationOrder &Order,
1297 SmallVectorImpl<Register> &NewVRegs) {
1298 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1299 Register Reg = VirtReg.reg();
1300 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1301 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1302 SE->reset(LREdit, SplitSpillMode);
1303 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1304 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1305 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1306 SE->splitSingleBlock(BI);
1308 // No blocks were split.
1309 if (LREdit.empty())
1310 return 0;
1312 // We did split for some blocks.
1313 SmallVector<unsigned, 8> IntvMap;
1314 SE->finish(&IntvMap);
1316 // Tell LiveDebugVariables about the new ranges.
1317 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1319 // Sort out the new intervals created by splitting. The remainder interval
1320 // goes straight to spilling, the new local ranges get to stay RS_New.
1321 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1322 const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1323 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1324 ExtraInfo->setStage(LI, RS_Spill);
1327 if (VerifyEnabled)
1328 MF->verify(this, "After splitting live range around basic blocks");
1329 return 0;
1332 //===----------------------------------------------------------------------===//
1333 // Per-Instruction Splitting
1334 //===----------------------------------------------------------------------===//
1336 /// Get the number of allocatable registers that match the constraints of \p Reg
1337 /// on \p MI and that are also in \p SuperRC.
1338 static unsigned getNumAllocatableRegsForConstraints(
1339 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1340 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1341 const RegisterClassInfo &RCI) {
1342 assert(SuperRC && "Invalid register class");
1344 const TargetRegisterClass *ConstrainedRC =
1345 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1346 /* ExploreBundle */ true);
1347 if (!ConstrainedRC)
1348 return 0;
1349 return RCI.getNumAllocatableRegs(ConstrainedRC);
1352 static LaneBitmask getInstReadLaneMask(const MachineRegisterInfo &MRI,
1353 const TargetRegisterInfo &TRI,
1354 const MachineInstr &FirstMI,
1355 Register Reg) {
1356 LaneBitmask Mask;
1357 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
1358 (void)AnalyzeVirtRegInBundle(const_cast<MachineInstr &>(FirstMI), Reg, &Ops);
1360 for (auto [MI, OpIdx] : Ops) {
1361 const MachineOperand &MO = MI->getOperand(OpIdx);
1362 assert(MO.isReg() && MO.getReg() == Reg);
1363 unsigned SubReg = MO.getSubReg();
1364 if (SubReg == 0 && MO.isUse()) {
1365 if (MO.isUndef())
1366 continue;
1367 return MRI.getMaxLaneMaskForVReg(Reg);
1370 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
1371 if (MO.isDef()) {
1372 if (!MO.isUndef())
1373 Mask |= ~SubRegMask;
1374 } else
1375 Mask |= SubRegMask;
1378 return Mask;
1381 /// Return true if \p MI at \P Use reads a subset of the lanes live in \p
1382 /// VirtReg.
1383 static bool readsLaneSubset(const MachineRegisterInfo &MRI,
1384 const MachineInstr *MI, const LiveInterval &VirtReg,
1385 const TargetRegisterInfo *TRI, SlotIndex Use,
1386 const TargetInstrInfo *TII) {
1387 // Early check the common case. Beware of the semi-formed bundles SplitKit
1388 // creates by setting the bundle flag on copies without a matching BUNDLE.
1390 auto DestSrc = TII->isCopyInstr(*MI);
1391 if (DestSrc && !MI->isBundled() &&
1392 DestSrc->Destination->getSubReg() == DestSrc->Source->getSubReg())
1393 return false;
1395 // FIXME: We're only considering uses, but should be consider defs too?
1396 LaneBitmask ReadMask = getInstReadLaneMask(MRI, *TRI, *MI, VirtReg.reg());
1398 LaneBitmask LiveAtMask;
1399 for (const LiveInterval::SubRange &S : VirtReg.subranges()) {
1400 if (S.liveAt(Use))
1401 LiveAtMask |= S.LaneMask;
1404 // If the live lanes aren't different from the lanes used by the instruction,
1405 // this doesn't help.
1406 return (ReadMask & ~(LiveAtMask & TRI->getCoveringLanes())).any();
1409 /// tryInstructionSplit - Split a live range around individual instructions.
1410 /// This is normally not worthwhile since the spiller is doing essentially the
1411 /// same thing. However, when the live range is in a constrained register
1412 /// class, it may help to insert copies such that parts of the live range can
1413 /// be moved to a larger register class.
1415 /// This is similar to spilling to a larger register class.
1416 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1417 AllocationOrder &Order,
1418 SmallVectorImpl<Register> &NewVRegs) {
1419 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1420 // There is no point to this if there are no larger sub-classes.
1422 bool SplitSubClass = true;
1423 if (!RegClassInfo.isProperSubClass(CurRC)) {
1424 if (!VirtReg.hasSubRanges())
1425 return 0;
1426 SplitSubClass = false;
1429 // Always enable split spill mode, since we're effectively spilling to a
1430 // register.
1431 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1432 SE->reset(LREdit, SplitEditor::SM_Size);
1434 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1435 if (Uses.size() <= 1)
1436 return 0;
1438 LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1439 << " individual instrs.\n");
1441 const TargetRegisterClass *SuperRC =
1442 TRI->getLargestLegalSuperClass(CurRC, *MF);
1443 unsigned SuperRCNumAllocatableRegs =
1444 RegClassInfo.getNumAllocatableRegs(SuperRC);
1445 // Split around every non-copy instruction if this split will relax
1446 // the constraints on the virtual register.
1447 // Otherwise, splitting just inserts uncoalescable copies that do not help
1448 // the allocation.
1449 for (const SlotIndex Use : Uses) {
1450 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) {
1451 if (TII->isFullCopyInstr(*MI) ||
1452 (SplitSubClass &&
1453 SuperRCNumAllocatableRegs ==
1454 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1455 TII, TRI, RegClassInfo)) ||
1456 // TODO: Handle split for subranges with subclass constraints?
1457 (!SplitSubClass && VirtReg.hasSubRanges() &&
1458 !readsLaneSubset(*MRI, MI, VirtReg, TRI, Use, TII))) {
1459 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI);
1460 continue;
1463 SE->openIntv();
1464 SlotIndex SegStart = SE->enterIntvBefore(Use);
1465 SlotIndex SegStop = SE->leaveIntvAfter(Use);
1466 SE->useIntv(SegStart, SegStop);
1469 if (LREdit.empty()) {
1470 LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1471 return 0;
1474 SmallVector<unsigned, 8> IntvMap;
1475 SE->finish(&IntvMap);
1476 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1477 // Assign all new registers to RS_Spill. This was the last chance.
1478 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1479 return 0;
1482 //===----------------------------------------------------------------------===//
1483 // Local Splitting
1484 //===----------------------------------------------------------------------===//
1486 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1487 /// in order to use PhysReg between two entries in SA->UseSlots.
1489 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1491 void RAGreedy::calcGapWeights(MCRegister PhysReg,
1492 SmallVectorImpl<float> &GapWeight) {
1493 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1494 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1495 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1496 const unsigned NumGaps = Uses.size()-1;
1498 // Start and end points for the interference check.
1499 SlotIndex StartIdx =
1500 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1501 SlotIndex StopIdx =
1502 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1504 GapWeight.assign(NumGaps, 0.0f);
1506 // Add interference from each overlapping register.
1507 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1508 if (!Matrix->query(const_cast<LiveInterval &>(SA->getParent()), Unit)
1509 .checkInterference())
1510 continue;
1512 // We know that VirtReg is a continuous interval from FirstInstr to
1513 // LastInstr, so we don't need InterferenceQuery.
1515 // Interference that overlaps an instruction is counted in both gaps
1516 // surrounding the instruction. The exception is interference before
1517 // StartIdx and after StopIdx.
1519 LiveIntervalUnion::SegmentIter IntI =
1520 Matrix->getLiveUnions()[Unit].find(StartIdx);
1521 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1522 // Skip the gaps before IntI.
1523 while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1524 if (++Gap == NumGaps)
1525 break;
1526 if (Gap == NumGaps)
1527 break;
1529 // Update the gaps covered by IntI.
1530 const float weight = IntI.value()->weight();
1531 for (; Gap != NumGaps; ++Gap) {
1532 GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1533 if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1534 break;
1536 if (Gap == NumGaps)
1537 break;
1541 // Add fixed interference.
1542 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1543 const LiveRange &LR = LIS->getRegUnit(Unit);
1544 LiveRange::const_iterator I = LR.find(StartIdx);
1545 LiveRange::const_iterator E = LR.end();
1547 // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1548 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1549 while (Uses[Gap+1].getBoundaryIndex() < I->start)
1550 if (++Gap == NumGaps)
1551 break;
1552 if (Gap == NumGaps)
1553 break;
1555 for (; Gap != NumGaps; ++Gap) {
1556 GapWeight[Gap] = huge_valf;
1557 if (Uses[Gap+1].getBaseIndex() >= I->end)
1558 break;
1560 if (Gap == NumGaps)
1561 break;
1566 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1567 /// basic block.
1569 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1570 AllocationOrder &Order,
1571 SmallVectorImpl<Register> &NewVRegs) {
1572 // TODO: the function currently only handles a single UseBlock; it should be
1573 // possible to generalize.
1574 if (SA->getUseBlocks().size() != 1)
1575 return 0;
1577 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1579 // Note that it is possible to have an interval that is live-in or live-out
1580 // while only covering a single block - A phi-def can use undef values from
1581 // predecessors, and the block could be a single-block loop.
1582 // We don't bother doing anything clever about such a case, we simply assume
1583 // that the interval is continuous from FirstInstr to LastInstr. We should
1584 // make sure that we don't do anything illegal to such an interval, though.
1586 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1587 if (Uses.size() <= 2)
1588 return 0;
1589 const unsigned NumGaps = Uses.size()-1;
1591 LLVM_DEBUG({
1592 dbgs() << "tryLocalSplit: ";
1593 for (const auto &Use : Uses)
1594 dbgs() << ' ' << Use;
1595 dbgs() << '\n';
1598 // If VirtReg is live across any register mask operands, compute a list of
1599 // gaps with register masks.
1600 SmallVector<unsigned, 8> RegMaskGaps;
1601 if (Matrix->checkRegMaskInterference(VirtReg)) {
1602 // Get regmask slots for the whole block.
1603 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1604 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1605 // Constrain to VirtReg's live range.
1606 unsigned RI =
1607 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1608 unsigned RE = RMS.size();
1609 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1610 // Look for Uses[I] <= RMS <= Uses[I + 1].
1611 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1612 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1613 continue;
1614 // Skip a regmask on the same instruction as the last use. It doesn't
1615 // overlap the live range.
1616 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1617 break;
1618 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1619 << Uses[I + 1]);
1620 RegMaskGaps.push_back(I);
1621 // Advance ri to the next gap. A regmask on one of the uses counts in
1622 // both gaps.
1623 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1624 ++RI;
1626 LLVM_DEBUG(dbgs() << '\n');
1629 // Since we allow local split results to be split again, there is a risk of
1630 // creating infinite loops. It is tempting to require that the new live
1631 // ranges have less instructions than the original. That would guarantee
1632 // convergence, but it is too strict. A live range with 3 instructions can be
1633 // split 2+3 (including the COPY), and we want to allow that.
1635 // Instead we use these rules:
1637 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1638 // noop split, of course).
1639 // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1640 // the new ranges must have fewer instructions than before the split.
1641 // 3. New ranges with the same number of instructions are marked RS_Split2,
1642 // smaller ranges are marked RS_New.
1644 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1645 // excessive splitting and infinite loops.
1647 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1649 // Best split candidate.
1650 unsigned BestBefore = NumGaps;
1651 unsigned BestAfter = 0;
1652 float BestDiff = 0;
1654 const float blockFreq =
1655 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1656 (1.0f / MBFI->getEntryFreq().getFrequency());
1657 SmallVector<float, 8> GapWeight;
1659 for (MCPhysReg PhysReg : Order) {
1660 assert(PhysReg);
1661 // Keep track of the largest spill weight that would need to be evicted in
1662 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1663 calcGapWeights(PhysReg, GapWeight);
1665 // Remove any gaps with regmask clobbers.
1666 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1667 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
1668 GapWeight[RegMaskGaps[I]] = huge_valf;
1670 // Try to find the best sequence of gaps to close.
1671 // The new spill weight must be larger than any gap interference.
1673 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1674 unsigned SplitBefore = 0, SplitAfter = 1;
1676 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1677 // It is the spill weight that needs to be evicted.
1678 float MaxGap = GapWeight[0];
1680 while (true) {
1681 // Live before/after split?
1682 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1683 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1685 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1686 << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1688 // Stop before the interval gets so big we wouldn't be making progress.
1689 if (!LiveBefore && !LiveAfter) {
1690 LLVM_DEBUG(dbgs() << " all\n");
1691 break;
1693 // Should the interval be extended or shrunk?
1694 bool Shrink = true;
1696 // How many gaps would the new range have?
1697 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1699 // Legally, without causing looping?
1700 bool Legal = !ProgressRequired || NewGaps < NumGaps;
1702 if (Legal && MaxGap < huge_valf) {
1703 // Estimate the new spill weight. Each instruction reads or writes the
1704 // register. Conservatively assume there are no read-modify-write
1705 // instructions.
1707 // Try to guess the size of the new interval.
1708 const float EstWeight = normalizeSpillWeight(
1709 blockFreq * (NewGaps + 1),
1710 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1711 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1713 // Would this split be possible to allocate?
1714 // Never allocate all gaps, we wouldn't be making progress.
1715 LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1716 if (EstWeight * Hysteresis >= MaxGap) {
1717 Shrink = false;
1718 float Diff = EstWeight - MaxGap;
1719 if (Diff > BestDiff) {
1720 LLVM_DEBUG(dbgs() << " (best)");
1721 BestDiff = Hysteresis * Diff;
1722 BestBefore = SplitBefore;
1723 BestAfter = SplitAfter;
1728 // Try to shrink.
1729 if (Shrink) {
1730 if (++SplitBefore < SplitAfter) {
1731 LLVM_DEBUG(dbgs() << " shrink\n");
1732 // Recompute the max when necessary.
1733 if (GapWeight[SplitBefore - 1] >= MaxGap) {
1734 MaxGap = GapWeight[SplitBefore];
1735 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1736 MaxGap = std::max(MaxGap, GapWeight[I]);
1738 continue;
1740 MaxGap = 0;
1743 // Try to extend the interval.
1744 if (SplitAfter >= NumGaps) {
1745 LLVM_DEBUG(dbgs() << " end\n");
1746 break;
1749 LLVM_DEBUG(dbgs() << " extend\n");
1750 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1754 // Didn't find any candidates?
1755 if (BestBefore == NumGaps)
1756 return 0;
1758 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1759 << Uses[BestAfter] << ", " << BestDiff << ", "
1760 << (BestAfter - BestBefore + 1) << " instrs\n");
1762 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1763 SE->reset(LREdit);
1765 SE->openIntv();
1766 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1767 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
1768 SE->useIntv(SegStart, SegStop);
1769 SmallVector<unsigned, 8> IntvMap;
1770 SE->finish(&IntvMap);
1771 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1772 // If the new range has the same number of instructions as before, mark it as
1773 // RS_Split2 so the next split will be forced to make progress. Otherwise,
1774 // leave the new intervals as RS_New so they can compete.
1775 bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1776 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1777 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1778 if (NewGaps >= NumGaps) {
1779 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1780 assert(!ProgressRequired && "Didn't make progress when it was required.");
1781 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1782 if (IntvMap[I] == 1) {
1783 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1784 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1786 LLVM_DEBUG(dbgs() << '\n');
1788 ++NumLocalSplits;
1790 return 0;
1793 //===----------------------------------------------------------------------===//
1794 // Live Range Splitting
1795 //===----------------------------------------------------------------------===//
1797 /// trySplit - Try to split VirtReg or one of its interferences, making it
1798 /// assignable.
1799 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1800 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
1801 SmallVectorImpl<Register> &NewVRegs,
1802 const SmallVirtRegSet &FixedRegisters) {
1803 // Ranges must be Split2 or less.
1804 if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1805 return 0;
1807 // Local intervals are handled separately.
1808 if (LIS->intervalIsInOneMBB(VirtReg)) {
1809 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1810 TimerGroupDescription, TimePassesIsEnabled);
1811 SA->analyze(&VirtReg);
1812 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1813 if (PhysReg || !NewVRegs.empty())
1814 return PhysReg;
1815 return tryInstructionSplit(VirtReg, Order, NewVRegs);
1818 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1819 TimerGroupDescription, TimePassesIsEnabled);
1821 SA->analyze(&VirtReg);
1823 // First try to split around a region spanning multiple blocks. RS_Split2
1824 // ranges already made dubious progress with region splitting, so they go
1825 // straight to single block splitting.
1826 if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1827 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1828 if (PhysReg || !NewVRegs.empty())
1829 return PhysReg;
1832 // Then isolate blocks.
1833 return tryBlockSplit(VirtReg, Order, NewVRegs);
1836 //===----------------------------------------------------------------------===//
1837 // Last Chance Recoloring
1838 //===----------------------------------------------------------------------===//
1840 /// Return true if \p reg has any tied def operand.
1841 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1842 for (const MachineOperand &MO : MRI->def_operands(reg))
1843 if (MO.isTied())
1844 return true;
1846 return false;
1849 /// Return true if the existing assignment of \p Intf overlaps, but is not the
1850 /// same, as \p PhysReg.
1851 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI,
1852 const VirtRegMap &VRM,
1853 MCRegister PhysReg,
1854 const LiveInterval &Intf) {
1855 MCRegister AssignedReg = VRM.getPhys(Intf.reg());
1856 if (PhysReg == AssignedReg)
1857 return false;
1858 return TRI.regsOverlap(PhysReg, AssignedReg);
1861 /// mayRecolorAllInterferences - Check if the virtual registers that
1862 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1863 /// recolored to free \p PhysReg.
1864 /// When true is returned, \p RecoloringCandidates has been augmented with all
1865 /// the live intervals that need to be recolored in order to free \p PhysReg
1866 /// for \p VirtReg.
1867 /// \p FixedRegisters contains all the virtual registers that cannot be
1868 /// recolored.
1869 bool RAGreedy::mayRecolorAllInterferences(
1870 MCRegister PhysReg, const LiveInterval &VirtReg,
1871 SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1872 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1874 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1875 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
1876 // If there is LastChanceRecoloringMaxInterference or more interferences,
1877 // chances are one would not be recolorable.
1878 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1879 LastChanceRecoloringMaxInterference &&
1880 !ExhaustiveSearch) {
1881 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1882 CutOffInfo |= CO_Interf;
1883 return false;
1885 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1886 // If Intf is done and sits on the same register class as VirtReg, it
1887 // would not be recolorable as it is in the same state as
1888 // VirtReg. However there are at least two exceptions.
1890 // If VirtReg has tied defs and Intf doesn't, then
1891 // there is still a point in examining if it can be recolorable.
1893 // Additionally, if the register class has overlapping tuple members, it
1894 // may still be recolorable using a different tuple. This is more likely
1895 // if the existing assignment aliases with the candidate.
1897 if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1898 MRI->getRegClass(Intf->reg()) == CurRC &&
1899 !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) &&
1900 !(hasTiedDef(MRI, VirtReg.reg()) &&
1901 !hasTiedDef(MRI, Intf->reg()))) ||
1902 FixedRegisters.count(Intf->reg())) {
1903 LLVM_DEBUG(
1904 dbgs() << "Early abort: the interference is not recolorable.\n");
1905 return false;
1907 RecoloringCandidates.insert(Intf);
1910 return true;
1913 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1914 /// its interferences.
1915 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1916 /// virtual register that was using it. The recoloring process may recursively
1917 /// use the last chance recoloring. Therefore, when a virtual register has been
1918 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1919 /// be last-chance-recolored again during this recoloring "session".
1920 /// E.g.,
1921 /// Let
1922 /// vA can use {R1, R2 }
1923 /// vB can use { R2, R3}
1924 /// vC can use {R1 }
1925 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
1926 /// instance) and they all interfere.
1928 /// vA is assigned R1
1929 /// vB is assigned R2
1930 /// vC tries to evict vA but vA is already done.
1931 /// Regular register allocation fails.
1933 /// Last chance recoloring kicks in:
1934 /// vC does as if vA was evicted => vC uses R1.
1935 /// vC is marked as fixed.
1936 /// vA needs to find a color.
1937 /// None are available.
1938 /// vA cannot evict vC: vC is a fixed virtual register now.
1939 /// vA does as if vB was evicted => vA uses R2.
1940 /// vB needs to find a color.
1941 /// R3 is available.
1942 /// Recoloring => vC = R1, vA = R2, vB = R3
1944 /// \p Order defines the preferred allocation order for \p VirtReg.
1945 /// \p NewRegs will contain any new virtual register that have been created
1946 /// (split, spill) during the process and that must be assigned.
1947 /// \p FixedRegisters contains all the virtual registers that cannot be
1948 /// recolored.
1950 /// \p RecolorStack tracks the original assignments of successfully recolored
1951 /// registers.
1953 /// \p Depth gives the current depth of the last chance recoloring.
1954 /// \return a physical register that can be used for VirtReg or ~0u if none
1955 /// exists.
1956 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
1957 AllocationOrder &Order,
1958 SmallVectorImpl<Register> &NewVRegs,
1959 SmallVirtRegSet &FixedRegisters,
1960 RecoloringStack &RecolorStack,
1961 unsigned Depth) {
1962 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
1963 return ~0u;
1965 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
1967 const ssize_t EntryStackSize = RecolorStack.size();
1969 // Ranges must be Done.
1970 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
1971 "Last chance recoloring should really be last chance");
1972 // Set the max depth to LastChanceRecoloringMaxDepth.
1973 // We may want to reconsider that if we end up with a too large search space
1974 // for target with hundreds of registers.
1975 // Indeed, in that case we may want to cut the search space earlier.
1976 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
1977 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
1978 CutOffInfo |= CO_Depth;
1979 return ~0u;
1982 // Set of Live intervals that will need to be recolored.
1983 SmallLISet RecoloringCandidates;
1985 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
1986 // this recoloring "session".
1987 assert(!FixedRegisters.count(VirtReg.reg()));
1988 FixedRegisters.insert(VirtReg.reg());
1989 SmallVector<Register, 4> CurrentNewVRegs;
1991 for (MCRegister PhysReg : Order) {
1992 assert(PhysReg.isValid());
1993 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
1994 << printReg(PhysReg, TRI) << '\n');
1995 RecoloringCandidates.clear();
1996 CurrentNewVRegs.clear();
1998 // It is only possible to recolor virtual register interference.
1999 if (Matrix->checkInterference(VirtReg, PhysReg) >
2000 LiveRegMatrix::IK_VirtReg) {
2001 LLVM_DEBUG(
2002 dbgs() << "Some interferences are not with virtual registers.\n");
2004 continue;
2007 // Early give up on this PhysReg if it is obvious we cannot recolor all
2008 // the interferences.
2009 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2010 FixedRegisters)) {
2011 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2012 continue;
2015 // RecoloringCandidates contains all the virtual registers that interfere
2016 // with VirtReg on PhysReg (or one of its aliases). Enqueue them for
2017 // recoloring and perform the actual recoloring.
2018 PQueue RecoloringQueue;
2019 for (const LiveInterval *RC : RecoloringCandidates) {
2020 Register ItVirtReg = RC->reg();
2021 enqueue(RecoloringQueue, RC);
2022 assert(VRM->hasPhys(ItVirtReg) &&
2023 "Interferences are supposed to be with allocated variables");
2025 // Record the current allocation.
2026 RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg)));
2028 // unset the related struct.
2029 Matrix->unassign(*RC);
2032 // Do as if VirtReg was assigned to PhysReg so that the underlying
2033 // recoloring has the right information about the interferes and
2034 // available colors.
2035 Matrix->assign(VirtReg, PhysReg);
2037 // Save the current recoloring state.
2038 // If we cannot recolor all the interferences, we will have to start again
2039 // at this point for the next physical register.
2040 SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2041 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2042 FixedRegisters, RecolorStack, Depth)) {
2043 // Push the queued vregs into the main queue.
2044 for (Register NewVReg : CurrentNewVRegs)
2045 NewVRegs.push_back(NewVReg);
2046 // Do not mess up with the global assignment process.
2047 // I.e., VirtReg must be unassigned.
2048 Matrix->unassign(VirtReg);
2049 return PhysReg;
2052 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2053 << printReg(PhysReg, TRI) << '\n');
2055 // The recoloring attempt failed, undo the changes.
2056 FixedRegisters = SaveFixedRegisters;
2057 Matrix->unassign(VirtReg);
2059 // For a newly created vreg which is also in RecoloringCandidates,
2060 // don't add it to NewVRegs because its physical register will be restored
2061 // below. Other vregs in CurrentNewVRegs are created by calling
2062 // selectOrSplit and should be added into NewVRegs.
2063 for (Register R : CurrentNewVRegs) {
2064 if (RecoloringCandidates.count(&LIS->getInterval(R)))
2065 continue;
2066 NewVRegs.push_back(R);
2069 // Roll back our unsuccessful recoloring. Also roll back any successful
2070 // recolorings in any recursive recoloring attempts, since it's possible
2071 // they would have introduced conflicts with assignments we will be
2072 // restoring further up the stack. Perform all unassignments prior to
2073 // reassigning, since sub-recolorings may have conflicted with the registers
2074 // we are going to restore to their original assignments.
2075 for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) {
2076 const LiveInterval *LI;
2077 MCRegister PhysReg;
2078 std::tie(LI, PhysReg) = RecolorStack[I];
2080 if (VRM->hasPhys(LI->reg()))
2081 Matrix->unassign(*LI);
2084 for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) {
2085 const LiveInterval *LI;
2086 MCRegister PhysReg;
2087 std::tie(LI, PhysReg) = RecolorStack[I];
2088 if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg()))
2089 Matrix->assign(*LI, PhysReg);
2092 // Pop the stack of recoloring attempts.
2093 RecolorStack.resize(EntryStackSize);
2096 // Last chance recoloring did not worked either, give up.
2097 return ~0u;
2100 /// tryRecoloringCandidates - Try to assign a new color to every register
2101 /// in \RecoloringQueue.
2102 /// \p NewRegs will contain any new virtual register created during the
2103 /// recoloring process.
2104 /// \p FixedRegisters[in/out] contains all the registers that have been
2105 /// recolored.
2106 /// \return true if all virtual registers in RecoloringQueue were successfully
2107 /// recolored, false otherwise.
2108 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2109 SmallVectorImpl<Register> &NewVRegs,
2110 SmallVirtRegSet &FixedRegisters,
2111 RecoloringStack &RecolorStack,
2112 unsigned Depth) {
2113 while (!RecoloringQueue.empty()) {
2114 const LiveInterval *LI = dequeue(RecoloringQueue);
2115 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2116 MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2117 RecolorStack, Depth + 1);
2118 // When splitting happens, the live-range may actually be empty.
2119 // In that case, this is okay to continue the recoloring even
2120 // if we did not find an alternative color for it. Indeed,
2121 // there will not be anything to color for LI in the end.
2122 if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2123 return false;
2125 if (!PhysReg) {
2126 assert(LI->empty() && "Only empty live-range do not require a register");
2127 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2128 << " succeeded. Empty LI.\n");
2129 continue;
2131 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2132 << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2134 Matrix->assign(*LI, PhysReg);
2135 FixedRegisters.insert(LI->reg());
2137 return true;
2140 //===----------------------------------------------------------------------===//
2141 // Main Entry Point
2142 //===----------------------------------------------------------------------===//
2144 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
2145 SmallVectorImpl<Register> &NewVRegs) {
2146 CutOffInfo = CO_None;
2147 LLVMContext &Ctx = MF->getFunction().getContext();
2148 SmallVirtRegSet FixedRegisters;
2149 RecoloringStack RecolorStack;
2150 MCRegister Reg =
2151 selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack);
2152 if (Reg == ~0U && (CutOffInfo != CO_None)) {
2153 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2154 if (CutOffEncountered == CO_Depth)
2155 Ctx.emitError("register allocation failed: maximum depth for recoloring "
2156 "reached. Use -fexhaustive-register-search to skip "
2157 "cutoffs");
2158 else if (CutOffEncountered == CO_Interf)
2159 Ctx.emitError("register allocation failed: maximum interference for "
2160 "recoloring reached. Use -fexhaustive-register-search "
2161 "to skip cutoffs");
2162 else if (CutOffEncountered == (CO_Depth | CO_Interf))
2163 Ctx.emitError("register allocation failed: maximum interference and "
2164 "depth for recoloring reached. Use "
2165 "-fexhaustive-register-search to skip cutoffs");
2167 return Reg;
2170 /// Using a CSR for the first time has a cost because it causes push|pop
2171 /// to be added to prologue|epilogue. Splitting a cold section of the live
2172 /// range can have lower cost than using the CSR for the first time;
2173 /// Spilling a live range in the cold path can have lower cost than using
2174 /// the CSR for the first time. Returns the physical register if we decide
2175 /// to use the CSR; otherwise return 0.
2176 MCRegister RAGreedy::tryAssignCSRFirstTime(
2177 const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
2178 uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
2179 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2180 // We choose spill over using the CSR for the first time if the spill cost
2181 // is lower than CSRCost.
2182 SA->analyze(&VirtReg);
2183 if (calcSpillCost() >= CSRCost)
2184 return PhysReg;
2186 // We are going to spill, set CostPerUseLimit to 1 to make sure that
2187 // we will not use a callee-saved register in tryEvict.
2188 CostPerUseLimit = 1;
2189 return 0;
2191 if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2192 // We choose pre-splitting over using the CSR for the first time if
2193 // the cost of splitting is lower than CSRCost.
2194 SA->analyze(&VirtReg);
2195 unsigned NumCands = 0;
2196 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2197 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2198 NumCands, true /*IgnoreCSR*/);
2199 if (BestCand == NoCand)
2200 // Use the CSR if we can't find a region split below CSRCost.
2201 return PhysReg;
2203 // Perform the actual pre-splitting.
2204 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2205 return 0;
2207 return PhysReg;
2210 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
2211 // Do not keep invalid information around.
2212 SetOfBrokenHints.remove(&LI);
2215 void RAGreedy::initializeCSRCost() {
2216 // We use the larger one out of the command-line option and the value report
2217 // by TRI.
2218 CSRCost = BlockFrequency(
2219 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2220 if (!CSRCost.getFrequency())
2221 return;
2223 // Raw cost is relative to Entry == 2^14; scale it appropriately.
2224 uint64_t ActualEntry = MBFI->getEntryFreq().getFrequency();
2225 if (!ActualEntry) {
2226 CSRCost = BlockFrequency(0);
2227 return;
2229 uint64_t FixedEntry = 1 << 14;
2230 if (ActualEntry < FixedEntry)
2231 CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2232 else if (ActualEntry <= UINT32_MAX)
2233 // Invert the fraction and divide.
2234 CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2235 else
2236 // Can't use BranchProbability in general, since it takes 32-bit numbers.
2237 CSRCost =
2238 BlockFrequency(CSRCost.getFrequency() * (ActualEntry / FixedEntry));
2241 /// Collect the hint info for \p Reg.
2242 /// The results are stored into \p Out.
2243 /// \p Out is not cleared before being populated.
2244 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2245 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2246 if (!TII->isFullCopyInstr(Instr))
2247 continue;
2248 // Look for the other end of the copy.
2249 Register OtherReg = Instr.getOperand(0).getReg();
2250 if (OtherReg == Reg) {
2251 OtherReg = Instr.getOperand(1).getReg();
2252 if (OtherReg == Reg)
2253 continue;
2255 // Get the current assignment.
2256 MCRegister OtherPhysReg =
2257 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2258 // Push the collected information.
2259 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2260 OtherPhysReg));
2264 /// Using the given \p List, compute the cost of the broken hints if
2265 /// \p PhysReg was used.
2266 /// \return The cost of \p List for \p PhysReg.
2267 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2268 MCRegister PhysReg) {
2269 BlockFrequency Cost = BlockFrequency(0);
2270 for (const HintInfo &Info : List) {
2271 if (Info.PhysReg != PhysReg)
2272 Cost += Info.Freq;
2274 return Cost;
2277 /// Using the register assigned to \p VirtReg, try to recolor
2278 /// all the live ranges that are copy-related with \p VirtReg.
2279 /// The recoloring is then propagated to all the live-ranges that have
2280 /// been recolored and so on, until no more copies can be coalesced or
2281 /// it is not profitable.
2282 /// For a given live range, profitability is determined by the sum of the
2283 /// frequencies of the non-identity copies it would introduce with the old
2284 /// and new register.
2285 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2286 // We have a broken hint, check if it is possible to fix it by
2287 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2288 // some register and PhysReg may be available for the other live-ranges.
2289 SmallSet<Register, 4> Visited;
2290 SmallVector<unsigned, 2> RecoloringCandidates;
2291 HintsInfo Info;
2292 Register Reg = VirtReg.reg();
2293 MCRegister PhysReg = VRM->getPhys(Reg);
2294 // Start the recoloring algorithm from the input live-interval, then
2295 // it will propagate to the ones that are copy-related with it.
2296 Visited.insert(Reg);
2297 RecoloringCandidates.push_back(Reg);
2299 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2300 << '(' << printReg(PhysReg, TRI) << ")\n");
2302 do {
2303 Reg = RecoloringCandidates.pop_back_val();
2305 // We cannot recolor physical register.
2306 if (Reg.isPhysical())
2307 continue;
2309 // This may be a skipped class
2310 if (!VRM->hasPhys(Reg)) {
2311 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2312 "We have an unallocated variable which should have been handled");
2313 continue;
2316 // Get the live interval mapped with this virtual register to be able
2317 // to check for the interference with the new color.
2318 LiveInterval &LI = LIS->getInterval(Reg);
2319 MCRegister CurrPhys = VRM->getPhys(Reg);
2320 // Check that the new color matches the register class constraints and
2321 // that it is free for this live range.
2322 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2323 Matrix->checkInterference(LI, PhysReg)))
2324 continue;
2326 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2327 << ") is recolorable.\n");
2329 // Gather the hint info.
2330 Info.clear();
2331 collectHintInfo(Reg, Info);
2332 // Check if recoloring the live-range will increase the cost of the
2333 // non-identity copies.
2334 if (CurrPhys != PhysReg) {
2335 LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2336 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2337 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2338 LLVM_DEBUG(dbgs() << "Old Cost: " << printBlockFreq(*MBFI, OldCopiesCost)
2339 << "\nNew Cost: "
2340 << printBlockFreq(*MBFI, NewCopiesCost) << '\n');
2341 if (OldCopiesCost < NewCopiesCost) {
2342 LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2343 continue;
2345 // At this point, the cost is either cheaper or equal. If it is
2346 // equal, we consider this is profitable because it may expose
2347 // more recoloring opportunities.
2348 LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2349 // Recolor the live-range.
2350 Matrix->unassign(LI);
2351 Matrix->assign(LI, PhysReg);
2353 // Push all copy-related live-ranges to keep reconciling the broken
2354 // hints.
2355 for (const HintInfo &HI : Info) {
2356 if (Visited.insert(HI.Reg).second)
2357 RecoloringCandidates.push_back(HI.Reg);
2359 } while (!RecoloringCandidates.empty());
2362 /// Try to recolor broken hints.
2363 /// Broken hints may be repaired by recoloring when an evicted variable
2364 /// freed up a register for a larger live-range.
2365 /// Consider the following example:
2366 /// BB1:
2367 /// a =
2368 /// b =
2369 /// BB2:
2370 /// ...
2371 /// = b
2372 /// = a
2373 /// Let us assume b gets split:
2374 /// BB1:
2375 /// a =
2376 /// b =
2377 /// BB2:
2378 /// c = b
2379 /// ...
2380 /// d = c
2381 /// = d
2382 /// = a
2383 /// Because of how the allocation work, b, c, and d may be assigned different
2384 /// colors. Now, if a gets evicted later:
2385 /// BB1:
2386 /// a =
2387 /// st a, SpillSlot
2388 /// b =
2389 /// BB2:
2390 /// c = b
2391 /// ...
2392 /// d = c
2393 /// = d
2394 /// e = ld SpillSlot
2395 /// = e
2396 /// This is likely that we can assign the same register for b, c, and d,
2397 /// getting rid of 2 copies.
2398 void RAGreedy::tryHintsRecoloring() {
2399 for (const LiveInterval *LI : SetOfBrokenHints) {
2400 assert(LI->reg().isVirtual() &&
2401 "Recoloring is possible only for virtual registers");
2402 // Some dead defs may be around (e.g., because of debug uses).
2403 // Ignore those.
2404 if (!VRM->hasPhys(LI->reg()))
2405 continue;
2406 tryHintRecoloring(*LI);
2410 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
2411 SmallVectorImpl<Register> &NewVRegs,
2412 SmallVirtRegSet &FixedRegisters,
2413 RecoloringStack &RecolorStack,
2414 unsigned Depth) {
2415 uint8_t CostPerUseLimit = uint8_t(~0u);
2416 // First try assigning a free register.
2417 auto Order =
2418 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2419 if (MCRegister PhysReg =
2420 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2421 // When NewVRegs is not empty, we may have made decisions such as evicting
2422 // a virtual register, go with the earlier decisions and use the physical
2423 // register.
2424 if (CSRCost.getFrequency() &&
2425 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2426 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2427 CostPerUseLimit, NewVRegs);
2428 if (CSRReg || !NewVRegs.empty())
2429 // Return now if we decide to use a CSR or create new vregs due to
2430 // pre-splitting.
2431 return CSRReg;
2432 } else
2433 return PhysReg;
2435 // Non emtpy NewVRegs means VirtReg has been split.
2436 if (!NewVRegs.empty())
2437 return 0;
2439 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2440 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2441 << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2443 // Try to evict a less worthy live range, but only for ranges from the primary
2444 // queue. The RS_Split ranges already failed to do this, and they should not
2445 // get a second chance until they have been split.
2446 if (Stage != RS_Split)
2447 if (Register PhysReg =
2448 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2449 FixedRegisters)) {
2450 Register Hint = MRI->getSimpleHint(VirtReg.reg());
2451 // If VirtReg has a hint and that hint is broken record this
2452 // virtual register as a recoloring candidate for broken hint.
2453 // Indeed, since we evicted a variable in its neighborhood it is
2454 // likely we can at least partially recolor some of the
2455 // copy-related live-ranges.
2456 if (Hint && Hint != PhysReg)
2457 SetOfBrokenHints.insert(&VirtReg);
2458 return PhysReg;
2461 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2463 // The first time we see a live range, don't try to split or spill.
2464 // Wait until the second time, when all smaller ranges have been allocated.
2465 // This gives a better picture of the interference to split around.
2466 if (Stage < RS_Split) {
2467 ExtraInfo->setStage(VirtReg, RS_Split);
2468 LLVM_DEBUG(dbgs() << "wait for second round\n");
2469 NewVRegs.push_back(VirtReg.reg());
2470 return 0;
2473 if (Stage < RS_Spill) {
2474 // Try splitting VirtReg or interferences.
2475 unsigned NewVRegSizeBefore = NewVRegs.size();
2476 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2477 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore))
2478 return PhysReg;
2481 // If we couldn't allocate a register from spilling, there is probably some
2482 // invalid inline assembly. The base class will report it.
2483 if (Stage >= RS_Done || !VirtReg.isSpillable()) {
2484 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2485 RecolorStack, Depth);
2488 // Finally spill VirtReg itself.
2489 if ((EnableDeferredSpilling ||
2490 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2491 ExtraInfo->getStage(VirtReg) < RS_Memory) {
2492 // TODO: This is experimental and in particular, we do not model
2493 // the live range splitting done by spilling correctly.
2494 // We would need a deep integration with the spiller to do the
2495 // right thing here. Anyway, that is still good for early testing.
2496 ExtraInfo->setStage(VirtReg, RS_Memory);
2497 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2498 NewVRegs.push_back(VirtReg.reg());
2499 } else {
2500 NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2501 TimerGroupDescription, TimePassesIsEnabled);
2502 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2503 spiller().spill(LRE);
2504 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2506 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2507 // the new regs are kept in LDV (still mapping to the old register), until
2508 // we rewrite spilled locations in LDV at a later stage.
2509 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2511 if (VerifyEnabled)
2512 MF->verify(this, "After spilling");
2515 // The live virtual register requesting allocation was spilled, so tell
2516 // the caller not to allocate anything during this round.
2517 return 0;
2520 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2521 using namespace ore;
2522 if (Spills) {
2523 R << NV("NumSpills", Spills) << " spills ";
2524 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2526 if (FoldedSpills) {
2527 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2528 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2529 << " total folded spills cost ";
2531 if (Reloads) {
2532 R << NV("NumReloads", Reloads) << " reloads ";
2533 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2535 if (FoldedReloads) {
2536 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2537 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2538 << " total folded reloads cost ";
2540 if (ZeroCostFoldedReloads)
2541 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2542 << " zero cost folded reloads ";
2543 if (Copies) {
2544 R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2545 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2549 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2550 RAGreedyStats Stats;
2551 const MachineFrameInfo &MFI = MF->getFrameInfo();
2552 int FI;
2554 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2555 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2556 A->getPseudoValue())->getFrameIndex());
2558 auto isPatchpointInstr = [](const MachineInstr &MI) {
2559 return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2560 MI.getOpcode() == TargetOpcode::STACKMAP ||
2561 MI.getOpcode() == TargetOpcode::STATEPOINT;
2563 for (MachineInstr &MI : MBB) {
2564 auto DestSrc = TII->isCopyInstr(MI);
2565 if (DestSrc) {
2566 const MachineOperand &Dest = *DestSrc->Destination;
2567 const MachineOperand &Src = *DestSrc->Source;
2568 Register SrcReg = Src.getReg();
2569 Register DestReg = Dest.getReg();
2570 // Only count `COPY`s with a virtual register as source or destination.
2571 if (SrcReg.isVirtual() || DestReg.isVirtual()) {
2572 if (SrcReg.isVirtual()) {
2573 SrcReg = VRM->getPhys(SrcReg);
2574 if (SrcReg && Src.getSubReg())
2575 SrcReg = TRI->getSubReg(SrcReg, Src.getSubReg());
2577 if (DestReg.isVirtual()) {
2578 DestReg = VRM->getPhys(DestReg);
2579 if (DestReg && Dest.getSubReg())
2580 DestReg = TRI->getSubReg(DestReg, Dest.getSubReg());
2582 if (SrcReg != DestReg)
2583 ++Stats.Copies;
2585 continue;
2588 SmallVector<const MachineMemOperand *, 2> Accesses;
2589 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2590 ++Stats.Reloads;
2591 continue;
2593 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2594 ++Stats.Spills;
2595 continue;
2597 if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2598 llvm::any_of(Accesses, isSpillSlotAccess)) {
2599 if (!isPatchpointInstr(MI)) {
2600 Stats.FoldedReloads += Accesses.size();
2601 continue;
2603 // For statepoint there may be folded and zero cost folded stack reloads.
2604 std::pair<unsigned, unsigned> NonZeroCostRange =
2605 TII->getPatchpointUnfoldableRange(MI);
2606 SmallSet<unsigned, 16> FoldedReloads;
2607 SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2608 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2609 MachineOperand &MO = MI.getOperand(Idx);
2610 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2611 continue;
2612 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2613 FoldedReloads.insert(MO.getIndex());
2614 else
2615 ZeroCostFoldedReloads.insert(MO.getIndex());
2617 // If stack slot is used in folded reload it is not zero cost then.
2618 for (unsigned Slot : FoldedReloads)
2619 ZeroCostFoldedReloads.erase(Slot);
2620 Stats.FoldedReloads += FoldedReloads.size();
2621 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2622 continue;
2624 Accesses.clear();
2625 if (TII->hasStoreToStackSlot(MI, Accesses) &&
2626 llvm::any_of(Accesses, isSpillSlotAccess)) {
2627 Stats.FoldedSpills += Accesses.size();
2630 // Set cost of collected statistic by multiplication to relative frequency of
2631 // this basic block.
2632 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2633 Stats.ReloadsCost = RelFreq * Stats.Reloads;
2634 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2635 Stats.SpillsCost = RelFreq * Stats.Spills;
2636 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2637 Stats.CopiesCost = RelFreq * Stats.Copies;
2638 return Stats;
2641 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2642 RAGreedyStats Stats;
2644 // Sum up the spill and reloads in subloops.
2645 for (MachineLoop *SubLoop : *L)
2646 Stats.add(reportStats(SubLoop));
2648 for (MachineBasicBlock *MBB : L->getBlocks())
2649 // Handle blocks that were not included in subloops.
2650 if (Loops->getLoopFor(MBB) == L)
2651 Stats.add(computeStats(*MBB));
2653 if (!Stats.isEmpty()) {
2654 using namespace ore;
2656 ORE->emit([&]() {
2657 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2658 L->getStartLoc(), L->getHeader());
2659 Stats.report(R);
2660 R << "generated in loop";
2661 return R;
2664 return Stats;
2667 void RAGreedy::reportStats() {
2668 if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2669 return;
2670 RAGreedyStats Stats;
2671 for (MachineLoop *L : *Loops)
2672 Stats.add(reportStats(L));
2673 // Process non-loop blocks.
2674 for (MachineBasicBlock &MBB : *MF)
2675 if (!Loops->getLoopFor(&MBB))
2676 Stats.add(computeStats(MBB));
2677 if (!Stats.isEmpty()) {
2678 using namespace ore;
2680 ORE->emit([&]() {
2681 DebugLoc Loc;
2682 if (auto *SP = MF->getFunction().getSubprogram())
2683 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2684 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2685 &MF->front());
2686 Stats.report(R);
2687 R << "generated in function";
2688 return R;
2693 bool RAGreedy::hasVirtRegAlloc() {
2694 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2695 Register Reg = Register::index2VirtReg(I);
2696 if (MRI->reg_nodbg_empty(Reg))
2697 continue;
2698 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
2699 if (!RC)
2700 continue;
2701 if (ShouldAllocateClass(*TRI, *RC))
2702 return true;
2705 return false;
2708 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2709 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2710 << "********** Function: " << mf.getName() << '\n');
2712 MF = &mf;
2713 TII = MF->getSubtarget().getInstrInfo();
2715 if (VerifyEnabled)
2716 MF->verify(this, "Before greedy register allocator");
2718 RegAllocBase::init(getAnalysis<VirtRegMap>(),
2719 getAnalysis<LiveIntervals>(),
2720 getAnalysis<LiveRegMatrix>());
2722 // Early return if there is no virtual register to be allocated to a
2723 // physical register.
2724 if (!hasVirtRegAlloc())
2725 return false;
2727 Indexes = &getAnalysis<SlotIndexes>();
2728 // Renumber to get accurate and consistent results from
2729 // SlotIndexes::getApproxInstrDistance.
2730 Indexes->packIndexes();
2731 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2732 DomTree = &getAnalysis<MachineDominatorTree>();
2733 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2734 Loops = &getAnalysis<MachineLoopInfo>();
2735 Bundles = &getAnalysis<EdgeBundles>();
2736 SpillPlacer = &getAnalysis<SpillPlacement>();
2737 DebugVars = &getAnalysis<LiveDebugVariables>();
2739 initializeCSRCost();
2741 RegCosts = TRI->getRegisterCosts(*MF);
2742 RegClassPriorityTrumpsGlobalness =
2743 GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences()
2744 ? GreedyRegClassPriorityTrumpsGlobalness
2745 : TRI->regClassPriorityTrumpsGlobalness(*MF);
2747 ReverseLocalAssignment = GreedyReverseLocalAssignment.getNumOccurrences()
2748 ? GreedyReverseLocalAssignment
2749 : TRI->reverseLocalAssignment();
2751 ExtraInfo.emplace();
2752 EvictAdvisor =
2753 getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2754 PriorityAdvisor =
2755 getAnalysis<RegAllocPriorityAdvisorAnalysis>().getAdvisor(*MF, *this);
2757 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2758 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2760 VRAI->calculateSpillWeightsAndHints();
2762 LLVM_DEBUG(LIS->dump());
2764 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2765 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2767 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2768 GlobalCand.resize(32); // This will grow as needed.
2769 SetOfBrokenHints.clear();
2771 allocatePhysRegs();
2772 tryHintsRecoloring();
2774 if (VerifyEnabled)
2775 MF->verify(this, "Before post optimization");
2776 postOptimization();
2777 reportStats();
2779 releaseMemory();
2780 return true;