1 //===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
10 // register allocator for LLVM. This allocator works by constructing a PBQP
11 // problem representing the register allocation problem under consideration,
12 // solving this using a PBQP solver, and mapping the solution back to a
13 // register assignment. If any variables are selected for spilling then spill
14 // code is inserted and the process repeated.
16 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
17 // for register allocation. For more information on PBQP for register
18 // allocation, see the following papers:
20 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
21 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
22 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
25 // architectures. In Proceedings of the Joint Conference on Languages,
26 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
29 //===----------------------------------------------------------------------===//
31 #include "llvm/CodeGen/RegAllocPBQP.h"
32 #include "RegisterCoalescer.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/DenseSet.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/StringRef.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/CodeGen/CalcSpillWeights.h"
43 #include "llvm/CodeGen/LiveInterval.h"
44 #include "llvm/CodeGen/LiveIntervals.h"
45 #include "llvm/CodeGen/LiveRangeEdit.h"
46 #include "llvm/CodeGen/LiveStacks.h"
47 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
48 #include "llvm/CodeGen/MachineDominators.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineFunctionPass.h"
51 #include "llvm/CodeGen/MachineInstr.h"
52 #include "llvm/CodeGen/MachineLoopInfo.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/PBQP/Graph.h"
55 #include "llvm/CodeGen/PBQP/Math.h"
56 #include "llvm/CodeGen/PBQP/Solution.h"
57 #include "llvm/CodeGen/PBQPRAConstraint.h"
58 #include "llvm/CodeGen/RegAllocRegistry.h"
59 #include "llvm/CodeGen/SlotIndexes.h"
60 #include "llvm/CodeGen/Spiller.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/VirtRegMap.h"
64 #include "llvm/Config/llvm-config.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/MC/MCRegisterInfo.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/FileSystem.h"
73 #include "llvm/Support/Printable.h"
74 #include "llvm/Support/raw_ostream.h"
85 #include <system_error>
92 #define DEBUG_TYPE "regalloc"
94 static RegisterRegAlloc
95 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
96 createDefaultPBQPRegisterAllocator
);
99 PBQPCoalescing("pbqp-coalescing",
100 cl::desc("Attempt coalescing during PBQP register allocation."),
101 cl::init(false), cl::Hidden
);
105 PBQPDumpGraphs("pbqp-dump-graphs",
106 cl::desc("Dump graphs for each function/round in the compilation unit."),
107 cl::init(false), cl::Hidden
);
113 /// PBQP based allocators solve the register allocation problem by mapping
114 /// register allocation problems to Partitioned Boolean Quadratic
115 /// Programming problems.
116 class RegAllocPBQP
: public MachineFunctionPass
{
120 /// Construct a PBQP register allocator.
121 RegAllocPBQP(char *cPassID
= nullptr)
122 : MachineFunctionPass(ID
), customPassID(cPassID
) {
123 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
124 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
125 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
126 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
129 /// Return the pass name.
130 StringRef
getPassName() const override
{ return "PBQP Register Allocator"; }
132 /// PBQP analysis usage.
133 void getAnalysisUsage(AnalysisUsage
&au
) const override
;
135 /// Perform register allocation
136 bool runOnMachineFunction(MachineFunction
&MF
) override
;
138 MachineFunctionProperties
getRequiredProperties() const override
{
139 return MachineFunctionProperties().set(
140 MachineFunctionProperties::Property::NoPHIs
);
143 MachineFunctionProperties
getClearedProperties() const override
{
144 return MachineFunctionProperties().set(
145 MachineFunctionProperties::Property::IsSSA
);
149 using RegSet
= std::set
<Register
>;
153 RegSet VRegsToAlloc
, EmptyIntervalVRegs
;
155 /// Inst which is a def of an original reg and whose defs are already all
156 /// dead after remat is saved in DeadRemats. The deletion of such inst is
157 /// postponed till all the allocations are done, so its remat expr is
158 /// always available for the remat of all the siblings of the original reg.
159 SmallPtrSet
<MachineInstr
*, 32> DeadRemats
;
161 /// Finds the initial set of vreg intervals to allocate.
162 void findVRegIntervalsToAlloc(const MachineFunction
&MF
, LiveIntervals
&LIS
);
164 /// Constructs an initial graph.
165 void initializeGraph(PBQPRAGraph
&G
, VirtRegMap
&VRM
, Spiller
&VRegSpiller
);
167 /// Spill the given VReg.
168 void spillVReg(Register VReg
, SmallVectorImpl
<Register
> &NewIntervals
,
169 MachineFunction
&MF
, LiveIntervals
&LIS
, VirtRegMap
&VRM
,
170 Spiller
&VRegSpiller
);
172 /// Given a solved PBQP problem maps this solution back to a register
174 bool mapPBQPToRegAlloc(const PBQPRAGraph
&G
,
175 const PBQP::Solution
&Solution
,
177 Spiller
&VRegSpiller
);
179 /// Postprocessing before final spilling. Sets basic block "live in"
181 void finalizeAlloc(MachineFunction
&MF
, LiveIntervals
&LIS
,
182 VirtRegMap
&VRM
) const;
184 void postOptimization(Spiller
&VRegSpiller
, LiveIntervals
&LIS
);
187 char RegAllocPBQP::ID
= 0;
189 /// Set spill costs for each node in the PBQP reg-alloc graph.
190 class SpillCosts
: public PBQPRAConstraint
{
192 void apply(PBQPRAGraph
&G
) override
{
193 LiveIntervals
&LIS
= G
.getMetadata().LIS
;
195 // A minimum spill costs, so that register constraints can be set
196 // without normalization in the [0.0:MinSpillCost( interval.
197 const PBQP::PBQPNum MinSpillCost
= 10.0;
199 for (auto NId
: G
.nodeIds()) {
200 PBQP::PBQPNum SpillCost
=
201 LIS
.getInterval(G
.getNodeMetadata(NId
).getVReg()).weight();
202 if (SpillCost
== 0.0)
203 SpillCost
= std::numeric_limits
<PBQP::PBQPNum
>::min();
205 SpillCost
+= MinSpillCost
;
206 PBQPRAGraph::RawVector
NodeCosts(G
.getNodeCosts(NId
));
207 NodeCosts
[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost
;
208 G
.setNodeCosts(NId
, std::move(NodeCosts
));
213 /// Add interference edges between overlapping vregs.
214 class Interference
: public PBQPRAConstraint
{
216 using AllowedRegVecPtr
= const PBQP::RegAlloc::AllowedRegVector
*;
217 using IKey
= std::pair
<AllowedRegVecPtr
, AllowedRegVecPtr
>;
218 using IMatrixCache
= DenseMap
<IKey
, PBQPRAGraph::MatrixPtr
>;
219 using DisjointAllowedRegsCache
= DenseSet
<IKey
>;
220 using IEdgeKey
= std::pair
<PBQP::GraphBase::NodeId
, PBQP::GraphBase::NodeId
>;
221 using IEdgeCache
= DenseSet
<IEdgeKey
>;
223 bool haveDisjointAllowedRegs(const PBQPRAGraph
&G
, PBQPRAGraph::NodeId NId
,
224 PBQPRAGraph::NodeId MId
,
225 const DisjointAllowedRegsCache
&D
) const {
226 const auto *NRegs
= &G
.getNodeMetadata(NId
).getAllowedRegs();
227 const auto *MRegs
= &G
.getNodeMetadata(MId
).getAllowedRegs();
233 return D
.contains(IKey(NRegs
, MRegs
));
235 return D
.contains(IKey(MRegs
, NRegs
));
238 void setDisjointAllowedRegs(const PBQPRAGraph
&G
, PBQPRAGraph::NodeId NId
,
239 PBQPRAGraph::NodeId MId
,
240 DisjointAllowedRegsCache
&D
) {
241 const auto *NRegs
= &G
.getNodeMetadata(NId
).getAllowedRegs();
242 const auto *MRegs
= &G
.getNodeMetadata(MId
).getAllowedRegs();
244 assert(NRegs
!= MRegs
&& "AllowedRegs can not be disjoint with itself");
247 D
.insert(IKey(NRegs
, MRegs
));
249 D
.insert(IKey(MRegs
, NRegs
));
252 // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
253 // for the fast interference graph construction algorithm. The last is there
254 // to save us from looking up node ids via the VRegToNode map in the graph
257 std::tuple
<LiveInterval
*, size_t, PBQP::GraphBase::NodeId
>;
259 static SlotIndex
getStartPoint(const IntervalInfo
&I
) {
260 return std::get
<0>(I
)->segments
[std::get
<1>(I
)].start
;
263 static SlotIndex
getEndPoint(const IntervalInfo
&I
) {
264 return std::get
<0>(I
)->segments
[std::get
<1>(I
)].end
;
267 static PBQP::GraphBase::NodeId
getNodeId(const IntervalInfo
&I
) {
268 return std::get
<2>(I
);
271 static bool lowestStartPoint(const IntervalInfo
&I1
,
272 const IntervalInfo
&I2
) {
273 // Condition reversed because priority queue has the *highest* element at
274 // the front, rather than the lowest.
275 return getStartPoint(I1
) > getStartPoint(I2
);
278 static bool lowestEndPoint(const IntervalInfo
&I1
,
279 const IntervalInfo
&I2
) {
280 SlotIndex E1
= getEndPoint(I1
);
281 SlotIndex E2
= getEndPoint(I2
);
289 // If two intervals end at the same point, we need a way to break the tie or
290 // the set will assume they're actually equal and refuse to insert a
291 // "duplicate". Just compare the vregs - fast and guaranteed unique.
292 return std::get
<0>(I1
)->reg() < std::get
<0>(I2
)->reg();
295 static bool isAtLastSegment(const IntervalInfo
&I
) {
296 return std::get
<1>(I
) == std::get
<0>(I
)->size() - 1;
299 static IntervalInfo
nextSegment(const IntervalInfo
&I
) {
300 return std::make_tuple(std::get
<0>(I
), std::get
<1>(I
) + 1, std::get
<2>(I
));
304 void apply(PBQPRAGraph
&G
) override
{
305 // The following is loosely based on the linear scan algorithm introduced in
306 // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
307 // isn't linear, because the size of the active set isn't bound by the
308 // number of registers, but rather the size of the largest clique in the
309 // graph. Still, we expect this to be better than N^2.
310 LiveIntervals
&LIS
= G
.getMetadata().LIS
;
312 // Interferenc matrices are incredibly regular - they're only a function of
313 // the allowed sets, so we cache them to avoid the overhead of constructing
314 // and uniquing them.
317 // Finding an edge is expensive in the worst case (O(max_clique(G))). So
318 // cache locally edges we have already seen.
321 // Cache known disjoint allowed registers pairs
322 DisjointAllowedRegsCache D
;
324 using IntervalSet
= std::set
<IntervalInfo
, decltype(&lowestEndPoint
)>;
325 using IntervalQueue
=
326 std::priority_queue
<IntervalInfo
, std::vector
<IntervalInfo
>,
327 decltype(&lowestStartPoint
)>;
328 IntervalSet
Active(lowestEndPoint
);
329 IntervalQueue
Inactive(lowestStartPoint
);
331 // Start by building the inactive set.
332 for (auto NId
: G
.nodeIds()) {
333 Register VReg
= G
.getNodeMetadata(NId
).getVReg();
334 LiveInterval
&LI
= LIS
.getInterval(VReg
);
335 assert(!LI
.empty() && "PBQP graph contains node for empty interval");
336 Inactive
.push(std::make_tuple(&LI
, 0, NId
));
339 while (!Inactive
.empty()) {
340 // Tentatively grab the "next" interval - this choice may be overriden
342 IntervalInfo Cur
= Inactive
.top();
344 // Retire any active intervals that end before Cur starts.
345 IntervalSet::iterator RetireItr
= Active
.begin();
346 while (RetireItr
!= Active
.end() &&
347 (getEndPoint(*RetireItr
) <= getStartPoint(Cur
))) {
348 // If this interval has subsequent segments, add the next one to the
350 if (!isAtLastSegment(*RetireItr
))
351 Inactive
.push(nextSegment(*RetireItr
));
355 Active
.erase(Active
.begin(), RetireItr
);
357 // One of the newly retired segments may actually start before the
358 // Cur segment, so re-grab the front of the inactive list.
359 Cur
= Inactive
.top();
362 // At this point we know that Cur overlaps all active intervals. Add the
363 // interference edges.
364 PBQP::GraphBase::NodeId NId
= getNodeId(Cur
);
365 for (const auto &A
: Active
) {
366 PBQP::GraphBase::NodeId MId
= getNodeId(A
);
368 // Do not add an edge when the nodes' allowed registers do not
369 // intersect: there is obviously no interference.
370 if (haveDisjointAllowedRegs(G
, NId
, MId
, D
))
373 // Check that we haven't already added this edge
374 IEdgeKey
EK(std::min(NId
, MId
), std::max(NId
, MId
));
378 // This is a new edge - add it to the graph.
379 if (!createInterferenceEdge(G
, NId
, MId
, C
))
380 setDisjointAllowedRegs(G
, NId
, MId
, D
);
385 // Finally, add Cur to the Active set.
391 // Create an Interference edge and add it to the graph, unless it is
392 // a null matrix, meaning the nodes' allowed registers do not have any
393 // interference. This case occurs frequently between integer and floating
394 // point registers for example.
395 // return true iff both nodes interferes.
396 bool createInterferenceEdge(PBQPRAGraph
&G
,
397 PBQPRAGraph::NodeId NId
, PBQPRAGraph::NodeId MId
,
399 const TargetRegisterInfo
&TRI
=
400 *G
.getMetadata().MF
.getSubtarget().getRegisterInfo();
401 const auto &NRegs
= G
.getNodeMetadata(NId
).getAllowedRegs();
402 const auto &MRegs
= G
.getNodeMetadata(MId
).getAllowedRegs();
404 // Try looking the edge costs up in the IMatrixCache first.
405 IKey
K(&NRegs
, &MRegs
);
406 IMatrixCache::iterator I
= C
.find(K
);
408 G
.addEdgeBypassingCostAllocator(NId
, MId
, I
->second
);
412 PBQPRAGraph::RawMatrix
M(NRegs
.size() + 1, MRegs
.size() + 1, 0);
413 bool NodesInterfere
= false;
414 for (unsigned I
= 0; I
!= NRegs
.size(); ++I
) {
415 MCRegister PRegN
= NRegs
[I
];
416 for (unsigned J
= 0; J
!= MRegs
.size(); ++J
) {
417 MCRegister PRegM
= MRegs
[J
];
418 if (TRI
.regsOverlap(PRegN
, PRegM
)) {
419 M
[I
+ 1][J
+ 1] = std::numeric_limits
<PBQP::PBQPNum
>::infinity();
420 NodesInterfere
= true;
428 PBQPRAGraph::EdgeId EId
= G
.addEdge(NId
, MId
, std::move(M
));
429 C
[K
] = G
.getEdgeCostsPtr(EId
);
435 class Coalescing
: public PBQPRAConstraint
{
437 void apply(PBQPRAGraph
&G
) override
{
438 MachineFunction
&MF
= G
.getMetadata().MF
;
439 MachineBlockFrequencyInfo
&MBFI
= G
.getMetadata().MBFI
;
440 CoalescerPair
CP(*MF
.getSubtarget().getRegisterInfo());
442 // Scan the machine function and add a coalescing cost whenever CoalescerPair
444 for (const auto &MBB
: MF
) {
445 for (const auto &MI
: MBB
) {
446 // Skip not-coalescable or already coalesced copies.
447 if (!CP
.setRegisters(&MI
) || CP
.getSrcReg() == CP
.getDstReg())
450 Register DstReg
= CP
.getDstReg();
451 Register SrcReg
= CP
.getSrcReg();
453 PBQP::PBQPNum CBenefit
= MBFI
.getBlockFreqRelativeToEntryBlock(&MBB
);
456 if (!MF
.getRegInfo().isAllocatable(DstReg
))
459 PBQPRAGraph::NodeId NId
= G
.getMetadata().getNodeIdForVReg(SrcReg
);
461 const PBQPRAGraph::NodeMetadata::AllowedRegVector
&Allowed
=
462 G
.getNodeMetadata(NId
).getAllowedRegs();
464 unsigned PRegOpt
= 0;
465 while (PRegOpt
< Allowed
.size() && Allowed
[PRegOpt
].id() != DstReg
)
468 if (PRegOpt
< Allowed
.size()) {
469 PBQPRAGraph::RawVector
NewCosts(G
.getNodeCosts(NId
));
470 NewCosts
[PRegOpt
+ 1] -= CBenefit
;
471 G
.setNodeCosts(NId
, std::move(NewCosts
));
474 PBQPRAGraph::NodeId N1Id
= G
.getMetadata().getNodeIdForVReg(DstReg
);
475 PBQPRAGraph::NodeId N2Id
= G
.getMetadata().getNodeIdForVReg(SrcReg
);
476 const PBQPRAGraph::NodeMetadata::AllowedRegVector
*Allowed1
=
477 &G
.getNodeMetadata(N1Id
).getAllowedRegs();
478 const PBQPRAGraph::NodeMetadata::AllowedRegVector
*Allowed2
=
479 &G
.getNodeMetadata(N2Id
).getAllowedRegs();
481 PBQPRAGraph::EdgeId EId
= G
.findEdge(N1Id
, N2Id
);
482 if (EId
== G
.invalidEdgeId()) {
483 PBQPRAGraph::RawMatrix
Costs(Allowed1
->size() + 1,
484 Allowed2
->size() + 1, 0);
485 addVirtRegCoalesce(Costs
, *Allowed1
, *Allowed2
, CBenefit
);
486 G
.addEdge(N1Id
, N2Id
, std::move(Costs
));
488 if (G
.getEdgeNode1Id(EId
) == N2Id
) {
489 std::swap(N1Id
, N2Id
);
490 std::swap(Allowed1
, Allowed2
);
492 PBQPRAGraph::RawMatrix
Costs(G
.getEdgeCosts(EId
));
493 addVirtRegCoalesce(Costs
, *Allowed1
, *Allowed2
, CBenefit
);
494 G
.updateEdgeCosts(EId
, std::move(Costs
));
502 void addVirtRegCoalesce(
503 PBQPRAGraph::RawMatrix
&CostMat
,
504 const PBQPRAGraph::NodeMetadata::AllowedRegVector
&Allowed1
,
505 const PBQPRAGraph::NodeMetadata::AllowedRegVector
&Allowed2
,
506 PBQP::PBQPNum Benefit
) {
507 assert(CostMat
.getRows() == Allowed1
.size() + 1 && "Size mismatch.");
508 assert(CostMat
.getCols() == Allowed2
.size() + 1 && "Size mismatch.");
509 for (unsigned I
= 0; I
!= Allowed1
.size(); ++I
) {
510 MCRegister PReg1
= Allowed1
[I
];
511 for (unsigned J
= 0; J
!= Allowed2
.size(); ++J
) {
512 MCRegister PReg2
= Allowed2
[J
];
514 CostMat
[I
+ 1][J
+ 1] -= Benefit
;
520 /// PBQP-specific implementation of weight normalization.
521 class PBQPVirtRegAuxInfo final
: public VirtRegAuxInfo
{
522 float normalize(float UseDefFreq
, unsigned Size
, unsigned NumInstr
) override
{
523 // All intervals have a spill weight that is mostly proportional to the
524 // number of uses, with uses in loops having a bigger weight.
525 return NumInstr
* VirtRegAuxInfo::normalize(UseDefFreq
, Size
, 1);
529 PBQPVirtRegAuxInfo(MachineFunction
&MF
, LiveIntervals
&LIS
, VirtRegMap
&VRM
,
530 const MachineLoopInfo
&Loops
,
531 const MachineBlockFrequencyInfo
&MBFI
)
532 : VirtRegAuxInfo(MF
, LIS
, VRM
, Loops
, MBFI
) {}
534 } // end anonymous namespace
536 // Out-of-line destructor/anchor for PBQPRAConstraint.
537 PBQPRAConstraint::~PBQPRAConstraint() = default;
539 void PBQPRAConstraint::anchor() {}
541 void PBQPRAConstraintList::anchor() {}
543 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage
&au
) const {
544 au
.setPreservesCFG();
545 au
.addRequired
<AAResultsWrapperPass
>();
546 au
.addPreserved
<AAResultsWrapperPass
>();
547 au
.addRequired
<SlotIndexes
>();
548 au
.addPreserved
<SlotIndexes
>();
549 au
.addRequired
<LiveIntervals
>();
550 au
.addPreserved
<LiveIntervals
>();
551 //au.addRequiredID(SplitCriticalEdgesID);
553 au
.addRequiredID(*customPassID
);
554 au
.addRequired
<LiveStacks
>();
555 au
.addPreserved
<LiveStacks
>();
556 au
.addRequired
<MachineBlockFrequencyInfo
>();
557 au
.addPreserved
<MachineBlockFrequencyInfo
>();
558 au
.addRequired
<MachineLoopInfo
>();
559 au
.addPreserved
<MachineLoopInfo
>();
560 au
.addRequired
<MachineDominatorTree
>();
561 au
.addPreserved
<MachineDominatorTree
>();
562 au
.addRequired
<VirtRegMap
>();
563 au
.addPreserved
<VirtRegMap
>();
564 MachineFunctionPass::getAnalysisUsage(au
);
567 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction
&MF
,
568 LiveIntervals
&LIS
) {
569 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
571 // Iterate over all live ranges.
572 for (unsigned I
= 0, E
= MRI
.getNumVirtRegs(); I
!= E
; ++I
) {
573 Register Reg
= Register::index2VirtReg(I
);
574 if (MRI
.reg_nodbg_empty(Reg
))
576 VRegsToAlloc
.insert(Reg
);
580 static bool isACalleeSavedRegister(MCRegister Reg
,
581 const TargetRegisterInfo
&TRI
,
582 const MachineFunction
&MF
) {
583 const MCPhysReg
*CSR
= MF
.getRegInfo().getCalleeSavedRegs();
584 for (unsigned i
= 0; CSR
[i
] != 0; ++i
)
585 if (TRI
.regsOverlap(Reg
, CSR
[i
]))
590 void RegAllocPBQP::initializeGraph(PBQPRAGraph
&G
, VirtRegMap
&VRM
,
591 Spiller
&VRegSpiller
) {
592 MachineFunction
&MF
= G
.getMetadata().MF
;
594 LiveIntervals
&LIS
= G
.getMetadata().LIS
;
595 const MachineRegisterInfo
&MRI
= G
.getMetadata().MF
.getRegInfo();
596 const TargetRegisterInfo
&TRI
=
597 *G
.getMetadata().MF
.getSubtarget().getRegisterInfo();
599 std::vector
<Register
> Worklist(VRegsToAlloc
.begin(), VRegsToAlloc
.end());
601 std::map
<Register
, std::vector
<MCRegister
>> VRegAllowedMap
;
603 while (!Worklist
.empty()) {
604 Register VReg
= Worklist
.back();
607 LiveInterval
&VRegLI
= LIS
.getInterval(VReg
);
609 // If this is an empty interval move it to the EmptyIntervalVRegs set then
611 if (VRegLI
.empty()) {
612 EmptyIntervalVRegs
.insert(VRegLI
.reg());
613 VRegsToAlloc
.erase(VRegLI
.reg());
617 const TargetRegisterClass
*TRC
= MRI
.getRegClass(VReg
);
619 // Record any overlaps with regmask operands.
620 BitVector RegMaskOverlaps
;
621 LIS
.checkRegMaskInterference(VRegLI
, RegMaskOverlaps
);
623 // Compute an initial allowed set for the current vreg.
624 std::vector
<MCRegister
> VRegAllowed
;
625 ArrayRef
<MCPhysReg
> RawPRegOrder
= TRC
->getRawAllocationOrder(MF
);
626 for (MCPhysReg R
: RawPRegOrder
) {
628 if (MRI
.isReserved(PReg
))
631 // vregLI crosses a regmask operand that clobbers preg.
632 if (!RegMaskOverlaps
.empty() && !RegMaskOverlaps
.test(PReg
))
635 // vregLI overlaps fixed regunit interference.
636 bool Interference
= false;
637 for (MCRegUnit Unit
: TRI
.regunits(PReg
)) {
638 if (VRegLI
.overlaps(LIS
.getRegUnit(Unit
))) {
646 // preg is usable for this virtual register.
647 VRegAllowed
.push_back(PReg
);
650 // Check for vregs that have no allowed registers. These should be
651 // pre-spilled and the new vregs added to the worklist.
652 if (VRegAllowed
.empty()) {
653 SmallVector
<Register
, 8> NewVRegs
;
654 spillVReg(VReg
, NewVRegs
, MF
, LIS
, VRM
, VRegSpiller
);
655 llvm::append_range(Worklist
, NewVRegs
);
659 VRegAllowedMap
[VReg
.id()] = std::move(VRegAllowed
);
662 for (auto &KV
: VRegAllowedMap
) {
663 auto VReg
= KV
.first
;
665 // Move empty intervals to the EmptyIntervalVReg set.
666 if (LIS
.getInterval(VReg
).empty()) {
667 EmptyIntervalVRegs
.insert(VReg
);
668 VRegsToAlloc
.erase(VReg
);
672 auto &VRegAllowed
= KV
.second
;
674 PBQPRAGraph::RawVector
NodeCosts(VRegAllowed
.size() + 1, 0);
676 // Tweak cost of callee saved registers, as using then force spilling and
677 // restoring them. This would only happen in the prologue / epilogue though.
678 for (unsigned i
= 0; i
!= VRegAllowed
.size(); ++i
)
679 if (isACalleeSavedRegister(VRegAllowed
[i
], TRI
, MF
))
680 NodeCosts
[1 + i
] += 1.0;
682 PBQPRAGraph::NodeId NId
= G
.addNode(std::move(NodeCosts
));
683 G
.getNodeMetadata(NId
).setVReg(VReg
);
684 G
.getNodeMetadata(NId
).setAllowedRegs(
685 G
.getMetadata().getAllowedRegs(std::move(VRegAllowed
)));
686 G
.getMetadata().setNodeIdForVReg(VReg
, NId
);
690 void RegAllocPBQP::spillVReg(Register VReg
,
691 SmallVectorImpl
<Register
> &NewIntervals
,
692 MachineFunction
&MF
, LiveIntervals
&LIS
,
693 VirtRegMap
&VRM
, Spiller
&VRegSpiller
) {
694 VRegsToAlloc
.erase(VReg
);
695 LiveRangeEdit
LRE(&LIS
.getInterval(VReg
), NewIntervals
, MF
, LIS
, &VRM
,
696 nullptr, &DeadRemats
);
697 VRegSpiller
.spill(LRE
);
699 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
701 LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg
, &TRI
) << " -> SPILLED (Cost: "
702 << LRE
.getParent().weight() << ", New vregs: ");
704 // Copy any newly inserted live intervals into the list of regs to
706 for (const Register
&R
: LRE
) {
707 const LiveInterval
&LI
= LIS
.getInterval(R
);
708 assert(!LI
.empty() && "Empty spill range.");
709 LLVM_DEBUG(dbgs() << printReg(LI
.reg(), &TRI
) << " ");
710 VRegsToAlloc
.insert(LI
.reg());
713 LLVM_DEBUG(dbgs() << ")\n");
716 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph
&G
,
717 const PBQP::Solution
&Solution
,
719 Spiller
&VRegSpiller
) {
720 MachineFunction
&MF
= G
.getMetadata().MF
;
721 LiveIntervals
&LIS
= G
.getMetadata().LIS
;
722 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
725 // Set to true if we have any spills
726 bool AnotherRoundNeeded
= false;
728 // Clear the existing allocation.
731 // Iterate over the nodes mapping the PBQP solution to a register
733 for (auto NId
: G
.nodeIds()) {
734 Register VReg
= G
.getNodeMetadata(NId
).getVReg();
735 unsigned AllocOpt
= Solution
.getSelection(NId
);
737 if (AllocOpt
!= PBQP::RegAlloc::getSpillOptionIdx()) {
738 MCRegister PReg
= G
.getNodeMetadata(NId
).getAllowedRegs()[AllocOpt
- 1];
739 LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg
, &TRI
) << " -> "
740 << TRI
.getName(PReg
) << "\n");
741 assert(PReg
!= 0 && "Invalid preg selected.");
742 VRM
.assignVirt2Phys(VReg
, PReg
);
744 // Spill VReg. If this introduces new intervals we'll need another round
746 SmallVector
<Register
, 8> NewVRegs
;
747 spillVReg(VReg
, NewVRegs
, MF
, LIS
, VRM
, VRegSpiller
);
748 AnotherRoundNeeded
|= !NewVRegs
.empty();
752 return !AnotherRoundNeeded
;
755 void RegAllocPBQP::finalizeAlloc(MachineFunction
&MF
,
757 VirtRegMap
&VRM
) const {
758 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
760 // First allocate registers for the empty intervals.
761 for (const Register
&R
: EmptyIntervalVRegs
) {
762 LiveInterval
&LI
= LIS
.getInterval(R
);
764 Register PReg
= MRI
.getSimpleHint(LI
.reg());
767 const TargetRegisterClass
&RC
= *MRI
.getRegClass(LI
.reg());
768 const ArrayRef
<MCPhysReg
> RawPRegOrder
= RC
.getRawAllocationOrder(MF
);
769 for (MCRegister CandidateReg
: RawPRegOrder
) {
770 if (!VRM
.getRegInfo().isReserved(CandidateReg
)) {
776 "No un-reserved physical registers in this register class");
779 VRM
.assignVirt2Phys(LI
.reg(), PReg
);
783 void RegAllocPBQP::postOptimization(Spiller
&VRegSpiller
, LiveIntervals
&LIS
) {
784 VRegSpiller
.postOptimization();
785 /// Remove dead defs because of rematerialization.
786 for (auto *DeadInst
: DeadRemats
) {
787 LIS
.RemoveMachineInstrFromMaps(*DeadInst
);
788 DeadInst
->eraseFromParent();
793 bool RegAllocPBQP::runOnMachineFunction(MachineFunction
&MF
) {
794 LiveIntervals
&LIS
= getAnalysis
<LiveIntervals
>();
795 MachineBlockFrequencyInfo
&MBFI
=
796 getAnalysis
<MachineBlockFrequencyInfo
>();
798 VirtRegMap
&VRM
= getAnalysis
<VirtRegMap
>();
800 PBQPVirtRegAuxInfo
VRAI(MF
, LIS
, VRM
, getAnalysis
<MachineLoopInfo
>(), MBFI
);
801 VRAI
.calculateSpillWeightsAndHints();
803 // FIXME: we create DefaultVRAI here to match existing behavior pre-passing
804 // the VRAI through the spiller to the live range editor. However, it probably
805 // makes more sense to pass the PBQP VRAI. The existing behavior had
806 // LiveRangeEdit make its own VirtRegAuxInfo object.
807 VirtRegAuxInfo
DefaultVRAI(MF
, LIS
, VRM
, getAnalysis
<MachineLoopInfo
>(),
809 std::unique_ptr
<Spiller
> VRegSpiller(
810 createInlineSpiller(*this, MF
, VRM
, DefaultVRAI
));
812 MF
.getRegInfo().freezeReservedRegs(MF
);
814 LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF
.getName() << "\n");
816 // Allocator main loop:
818 // * Map current regalloc problem to a PBQP problem
819 // * Solve the PBQP problem
820 // * Map the solution back to a register allocation
821 // * Spill if necessary
823 // This process is continued till no more spills are generated.
825 // Find the vreg intervals in need of allocation.
826 findVRegIntervalsToAlloc(MF
, LIS
);
829 const Function
&F
= MF
.getFunction();
830 std::string FullyQualifiedName
=
831 F
.getParent()->getModuleIdentifier() + "." + F
.getName().str();
834 // If there are non-empty intervals allocate them using pbqp.
835 if (!VRegsToAlloc
.empty()) {
836 const TargetSubtargetInfo
&Subtarget
= MF
.getSubtarget();
837 std::unique_ptr
<PBQPRAConstraintList
> ConstraintsRoot
=
838 std::make_unique
<PBQPRAConstraintList
>();
839 ConstraintsRoot
->addConstraint(std::make_unique
<SpillCosts
>());
840 ConstraintsRoot
->addConstraint(std::make_unique
<Interference
>());
842 ConstraintsRoot
->addConstraint(std::make_unique
<Coalescing
>());
843 ConstraintsRoot
->addConstraint(Subtarget
.getCustomPBQPConstraints());
845 bool PBQPAllocComplete
= false;
848 while (!PBQPAllocComplete
) {
849 LLVM_DEBUG(dbgs() << " PBQP Regalloc round " << Round
<< ":\n");
852 PBQPRAGraph
G(PBQPRAGraph::GraphMetadata(MF
, LIS
, MBFI
));
853 initializeGraph(G
, VRM
, *VRegSpiller
);
854 ConstraintsRoot
->apply(G
);
857 if (PBQPDumpGraphs
) {
858 std::ostringstream RS
;
860 std::string GraphFileName
= FullyQualifiedName
+ "." + RS
.str() +
863 raw_fd_ostream
OS(GraphFileName
, EC
, sys::fs::OF_TextWithCRLF
);
864 LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round
<< " to \""
865 << GraphFileName
<< "\"\n");
870 PBQP::Solution Solution
= PBQP::RegAlloc::solve(G
);
871 PBQPAllocComplete
= mapPBQPToRegAlloc(G
, Solution
, VRM
, *VRegSpiller
);
876 // Finalise allocation, allocate empty ranges.
877 finalizeAlloc(MF
, LIS
, VRM
);
878 postOptimization(*VRegSpiller
, LIS
);
879 VRegsToAlloc
.clear();
880 EmptyIntervalVRegs
.clear();
882 LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM
<< "\n");
887 /// Create Printable object for node and register info.
888 static Printable
PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId
,
889 const PBQP::RegAlloc::PBQPRAGraph
&G
) {
890 return Printable([NId
, &G
](raw_ostream
&OS
) {
891 const MachineRegisterInfo
&MRI
= G
.getMetadata().MF
.getRegInfo();
892 const TargetRegisterInfo
*TRI
= MRI
.getTargetRegisterInfo();
893 Register VReg
= G
.getNodeMetadata(NId
).getVReg();
894 const char *RegClassName
= TRI
->getRegClassName(MRI
.getRegClass(VReg
));
895 OS
<< NId
<< " (" << RegClassName
<< ':' << printReg(VReg
, TRI
) << ')';
899 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
900 LLVM_DUMP_METHOD
void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream
&OS
) const {
901 for (auto NId
: nodeIds()) {
902 const Vector
&Costs
= getNodeCosts(NId
);
903 assert(Costs
.getLength() != 0 && "Empty vector in graph.");
904 OS
<< PrintNodeInfo(NId
, *this) << ": " << Costs
<< '\n';
908 for (auto EId
: edgeIds()) {
909 NodeId N1Id
= getEdgeNode1Id(EId
);
910 NodeId N2Id
= getEdgeNode2Id(EId
);
911 assert(N1Id
!= N2Id
&& "PBQP graphs should not have self-edges.");
912 const Matrix
&M
= getEdgeCosts(EId
);
913 assert(M
.getRows() != 0 && "No rows in matrix.");
914 assert(M
.getCols() != 0 && "No cols in matrix.");
915 OS
<< PrintNodeInfo(N1Id
, *this) << ' ' << M
.getRows() << " rows / ";
916 OS
<< PrintNodeInfo(N2Id
, *this) << ' ' << M
.getCols() << " cols:\n";
921 LLVM_DUMP_METHOD
void PBQP::RegAlloc::PBQPRAGraph::dump() const {
926 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream
&OS
) const {
928 for (auto NId
: nodeIds()) {
929 OS
<< " node" << NId
<< " [ label=\""
930 << PrintNodeInfo(NId
, *this) << "\\n"
931 << getNodeCosts(NId
) << "\" ]\n";
934 OS
<< " edge [ len=" << nodeIds().size() << " ]\n";
935 for (auto EId
: edgeIds()) {
936 OS
<< " node" << getEdgeNode1Id(EId
)
937 << " -- node" << getEdgeNode2Id(EId
)
939 const Matrix
&EdgeCosts
= getEdgeCosts(EId
);
940 for (unsigned i
= 0; i
< EdgeCosts
.getRows(); ++i
) {
941 OS
<< EdgeCosts
.getRowAsVector(i
) << "\\n";
948 FunctionPass
*llvm::createPBQPRegisterAllocator(char *customPassID
) {
949 return new RegAllocPBQP(customPassID
);
952 FunctionPass
* llvm::createDefaultPBQPRegisterAllocator() {
953 return createPBQPRegisterAllocator();