1 //===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements the RegisterBankInfo class.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/RegisterBankInfo.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/RegisterBank.h"
20 #include "llvm/CodeGen/TargetOpcodes.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/Config/llvm-config.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm> // For std::max.
29 #define DEBUG_TYPE "registerbankinfo"
33 STATISTIC(NumPartialMappingsCreated
,
34 "Number of partial mappings dynamically created");
35 STATISTIC(NumPartialMappingsAccessed
,
36 "Number of partial mappings dynamically accessed");
37 STATISTIC(NumValueMappingsCreated
,
38 "Number of value mappings dynamically created");
39 STATISTIC(NumValueMappingsAccessed
,
40 "Number of value mappings dynamically accessed");
41 STATISTIC(NumOperandsMappingsCreated
,
42 "Number of operands mappings dynamically created");
43 STATISTIC(NumOperandsMappingsAccessed
,
44 "Number of operands mappings dynamically accessed");
45 STATISTIC(NumInstructionMappingsCreated
,
46 "Number of instruction mappings dynamically created");
47 STATISTIC(NumInstructionMappingsAccessed
,
48 "Number of instruction mappings dynamically accessed");
50 const unsigned RegisterBankInfo::DefaultMappingID
= UINT_MAX
;
51 const unsigned RegisterBankInfo::InvalidMappingID
= UINT_MAX
- 1;
53 //------------------------------------------------------------------------------
54 // RegisterBankInfo implementation.
55 //------------------------------------------------------------------------------
56 RegisterBankInfo::RegisterBankInfo(const RegisterBank
**RegBanks
,
57 unsigned NumRegBanks
, const unsigned *Sizes
,
59 : RegBanks(RegBanks
), NumRegBanks(NumRegBanks
), Sizes(Sizes
),
62 for (unsigned Idx
= 0, End
= getNumRegBanks(); Idx
!= End
; ++Idx
) {
63 assert(RegBanks
[Idx
] != nullptr && "Invalid RegisterBank");
64 assert(RegBanks
[Idx
]->getID() == Idx
&&
65 "RegisterBank ID should match index");
70 bool RegisterBankInfo::verify(const TargetRegisterInfo
&TRI
) const {
72 for (unsigned Idx
= 0, End
= getNumRegBanks(); Idx
!= End
; ++Idx
) {
73 const RegisterBank
&RegBank
= getRegBank(Idx
);
74 assert(Idx
== RegBank
.getID() &&
75 "ID does not match the index in the array");
76 LLVM_DEBUG(dbgs() << "Verify " << RegBank
<< '\n');
77 assert(RegBank
.verify(*this, TRI
) && "RegBank is invalid");
84 RegisterBankInfo::getRegBank(Register Reg
, const MachineRegisterInfo
&MRI
,
85 const TargetRegisterInfo
&TRI
) const {
86 if (!Reg
.isVirtual()) {
87 // FIXME: This was probably a copy to a virtual register that does have a
89 const TargetRegisterClass
*RC
= getMinimalPhysRegClass(Reg
, TRI
);
90 return RC
? &getRegBankFromRegClass(*RC
, LLT()) : nullptr;
93 const RegClassOrRegBank
&RegClassOrBank
= MRI
.getRegClassOrRegBank(Reg
);
94 if (auto *RB
= dyn_cast_if_present
<const RegisterBank
*>(RegClassOrBank
))
97 dyn_cast_if_present
<const TargetRegisterClass
*>(RegClassOrBank
))
98 return &getRegBankFromRegClass(*RC
, MRI
.getType(Reg
));
102 const TargetRegisterClass
*
103 RegisterBankInfo::getMinimalPhysRegClass(Register Reg
,
104 const TargetRegisterInfo
&TRI
) const {
105 assert(Reg
.isPhysical() && "Reg must be a physreg");
106 const auto &RegRCIt
= PhysRegMinimalRCs
.find(Reg
);
107 if (RegRCIt
!= PhysRegMinimalRCs
.end())
108 return RegRCIt
->second
;
109 const TargetRegisterClass
*PhysRC
= TRI
.getMinimalPhysRegClassLLT(Reg
, LLT());
110 PhysRegMinimalRCs
[Reg
] = PhysRC
;
114 const RegisterBank
*RegisterBankInfo::getRegBankFromConstraints(
115 const MachineInstr
&MI
, unsigned OpIdx
, const TargetInstrInfo
&TII
,
116 const MachineRegisterInfo
&MRI
) const {
117 const TargetRegisterInfo
*TRI
= MRI
.getTargetRegisterInfo();
119 // The mapping of the registers may be available via the
120 // register class constraints.
121 const TargetRegisterClass
*RC
= MI
.getRegClassConstraint(OpIdx
, &TII
, TRI
);
126 Register Reg
= MI
.getOperand(OpIdx
).getReg();
127 const RegisterBank
&RegBank
= getRegBankFromRegClass(*RC
, MRI
.getType(Reg
));
128 // Check that the target properly implemented getRegBankFromRegClass.
129 assert(RegBank
.covers(*RC
) &&
130 "The mapping of the register bank does not make sense");
134 const TargetRegisterClass
*RegisterBankInfo::constrainGenericRegister(
135 Register Reg
, const TargetRegisterClass
&RC
, MachineRegisterInfo
&MRI
) {
137 // If the register already has a class, fallback to MRI::constrainRegClass.
138 auto &RegClassOrBank
= MRI
.getRegClassOrRegBank(Reg
);
139 if (isa
<const TargetRegisterClass
*>(RegClassOrBank
))
140 return MRI
.constrainRegClass(Reg
, &RC
);
142 const RegisterBank
*RB
= cast
<const RegisterBank
*>(RegClassOrBank
);
143 // Otherwise, all we can do is ensure the bank covers the class, and set it.
144 if (RB
&& !RB
->covers(RC
))
147 // If nothing was set or the class is simply compatible, set it.
148 MRI
.setRegClass(Reg
, &RC
);
152 /// Check whether or not \p MI should be treated like a copy
153 /// for the mappings.
154 /// Copy like instruction are special for mapping because
155 /// they don't have actual register constraints. Moreover,
156 /// they sometimes have register classes assigned and we can
157 /// just use that instead of failing to provide a generic mapping.
158 static bool isCopyLike(const MachineInstr
&MI
) {
159 return MI
.isCopy() || MI
.isPHI() ||
160 MI
.getOpcode() == TargetOpcode::REG_SEQUENCE
;
163 const RegisterBankInfo::InstructionMapping
&
164 RegisterBankInfo::getInstrMappingImpl(const MachineInstr
&MI
) const {
165 // For copies we want to walk over the operands and try to find one
166 // that has a register bank since the instruction itself will not get
167 // us any constraint.
168 bool IsCopyLike
= isCopyLike(MI
);
169 // For copy like instruction, only the mapping of the definition
170 // is important. The rest is not constrained.
171 unsigned NumOperandsForMapping
= IsCopyLike
? 1 : MI
.getNumOperands();
173 const MachineFunction
&MF
= *MI
.getMF();
174 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
175 const TargetRegisterInfo
&TRI
= *STI
.getRegisterInfo();
176 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
177 // We may need to query the instruction encoding to guess the mapping.
178 const TargetInstrInfo
&TII
= *STI
.getInstrInfo();
180 // Before doing anything complicated check if the mapping is not
181 // directly available.
182 bool CompleteMapping
= true;
184 SmallVector
<const ValueMapping
*, 8> OperandsMapping(NumOperandsForMapping
);
185 for (unsigned OpIdx
= 0, EndIdx
= MI
.getNumOperands(); OpIdx
!= EndIdx
;
187 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
190 Register Reg
= MO
.getReg();
193 // The register bank of Reg is just a side effect of the current
194 // excution and in particular, there is no reason to believe this
195 // is the best default mapping for the current instruction. Keep
196 // it as an alternative register bank if we cannot figure out
198 const RegisterBank
*AltRegBank
= getRegBank(Reg
, MRI
, TRI
);
199 // For copy-like instruction, we want to reuse the register bank
200 // that is already set on Reg, if any, since those instructions do
201 // not have any constraints.
202 const RegisterBank
*CurRegBank
= IsCopyLike
? AltRegBank
: nullptr;
204 // If this is a target specific instruction, we can deduce
205 // the register bank from the encoding constraints.
206 CurRegBank
= getRegBankFromConstraints(MI
, OpIdx
, TII
, MRI
);
208 // All our attempts failed, give up.
209 CompleteMapping
= false;
212 // MI does not carry enough information to guess the mapping.
213 return getInvalidInstructionMapping();
218 unsigned Size
= getSizeInBits(Reg
, MRI
, TRI
);
219 const ValueMapping
*ValMapping
= &getValueMapping(0, Size
, *CurRegBank
);
221 if (!OperandsMapping
[0]) {
222 if (MI
.isRegSequence()) {
223 // For reg_sequence, the result size does not match the input.
224 unsigned ResultSize
= getSizeInBits(MI
.getOperand(0).getReg(),
226 OperandsMapping
[0] = &getValueMapping(0, ResultSize
, *CurRegBank
);
228 OperandsMapping
[0] = ValMapping
;
232 // The default handling assumes any register bank can be copied to any
233 // other. If this isn't the case, the target should specially deal with
234 // reg_sequence/phi. There may also be unsatisfiable copies.
235 for (; OpIdx
!= EndIdx
; ++OpIdx
) {
236 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
239 Register Reg
= MO
.getReg();
243 const RegisterBank
*AltRegBank
= getRegBank(Reg
, MRI
, TRI
);
245 cannotCopy(*CurRegBank
, *AltRegBank
, getSizeInBits(Reg
, MRI
, TRI
)))
246 return getInvalidInstructionMapping();
249 CompleteMapping
= true;
253 OperandsMapping
[OpIdx
] = ValMapping
;
256 if (IsCopyLike
&& !CompleteMapping
) {
257 // No way to deduce the type from what we have.
258 return getInvalidInstructionMapping();
261 assert(CompleteMapping
&& "Setting an uncomplete mapping");
262 return getInstructionMapping(
263 DefaultMappingID
, /*Cost*/ 1,
264 /*OperandsMapping*/ getOperandsMapping(OperandsMapping
),
265 NumOperandsForMapping
);
268 /// Hashing function for PartialMapping.
269 static hash_code
hashPartialMapping(unsigned StartIdx
, unsigned Length
,
270 const RegisterBank
*RegBank
) {
271 return hash_combine(StartIdx
, Length
, RegBank
? RegBank
->getID() : 0);
274 /// Overloaded version of hash_value for a PartialMapping.
276 llvm::hash_value(const RegisterBankInfo::PartialMapping
&PartMapping
) {
277 return hashPartialMapping(PartMapping
.StartIdx
, PartMapping
.Length
,
278 PartMapping
.RegBank
);
281 const RegisterBankInfo::PartialMapping
&
282 RegisterBankInfo::getPartialMapping(unsigned StartIdx
, unsigned Length
,
283 const RegisterBank
&RegBank
) const {
284 ++NumPartialMappingsAccessed
;
286 hash_code Hash
= hashPartialMapping(StartIdx
, Length
, &RegBank
);
287 const auto &It
= MapOfPartialMappings
.find(Hash
);
288 if (It
!= MapOfPartialMappings
.end())
291 ++NumPartialMappingsCreated
;
293 auto &PartMapping
= MapOfPartialMappings
[Hash
];
294 PartMapping
= std::make_unique
<PartialMapping
>(StartIdx
, Length
, RegBank
);
298 const RegisterBankInfo::ValueMapping
&
299 RegisterBankInfo::getValueMapping(unsigned StartIdx
, unsigned Length
,
300 const RegisterBank
&RegBank
) const {
301 return getValueMapping(&getPartialMapping(StartIdx
, Length
, RegBank
), 1);
305 hashValueMapping(const RegisterBankInfo::PartialMapping
*BreakDown
,
306 unsigned NumBreakDowns
) {
307 if (LLVM_LIKELY(NumBreakDowns
== 1))
308 return hash_value(*BreakDown
);
309 SmallVector
<size_t, 8> Hashes(NumBreakDowns
);
310 for (unsigned Idx
= 0; Idx
!= NumBreakDowns
; ++Idx
)
311 Hashes
.push_back(hash_value(BreakDown
[Idx
]));
312 return hash_combine_range(Hashes
.begin(), Hashes
.end());
315 const RegisterBankInfo::ValueMapping
&
316 RegisterBankInfo::getValueMapping(const PartialMapping
*BreakDown
,
317 unsigned NumBreakDowns
) const {
318 ++NumValueMappingsAccessed
;
320 hash_code Hash
= hashValueMapping(BreakDown
, NumBreakDowns
);
321 const auto &It
= MapOfValueMappings
.find(Hash
);
322 if (It
!= MapOfValueMappings
.end())
325 ++NumValueMappingsCreated
;
327 auto &ValMapping
= MapOfValueMappings
[Hash
];
328 ValMapping
= std::make_unique
<ValueMapping
>(BreakDown
, NumBreakDowns
);
332 template <typename Iterator
>
333 const RegisterBankInfo::ValueMapping
*
334 RegisterBankInfo::getOperandsMapping(Iterator Begin
, Iterator End
) const {
336 ++NumOperandsMappingsAccessed
;
338 // The addresses of the value mapping are unique.
339 // Therefore, we can use them directly to hash the operand mapping.
340 hash_code Hash
= hash_combine_range(Begin
, End
);
341 auto &Res
= MapOfOperandsMappings
[Hash
];
345 ++NumOperandsMappingsCreated
;
347 // Create the array of ValueMapping.
348 // Note: this array will not hash to this instance of operands
349 // mapping, because we use the pointer of the ValueMapping
350 // to hash and we expect them to uniquely identify an instance
352 Res
= std::make_unique
<ValueMapping
[]>(std::distance(Begin
, End
));
354 for (Iterator It
= Begin
; It
!= End
; ++It
, ++Idx
) {
355 const ValueMapping
*ValMap
= *It
;
363 const RegisterBankInfo::ValueMapping
*RegisterBankInfo::getOperandsMapping(
364 const SmallVectorImpl
<const RegisterBankInfo::ValueMapping
*> &OpdsMapping
)
366 return getOperandsMapping(OpdsMapping
.begin(), OpdsMapping
.end());
369 const RegisterBankInfo::ValueMapping
*RegisterBankInfo::getOperandsMapping(
370 std::initializer_list
<const RegisterBankInfo::ValueMapping
*> OpdsMapping
)
372 return getOperandsMapping(OpdsMapping
.begin(), OpdsMapping
.end());
376 hashInstructionMapping(unsigned ID
, unsigned Cost
,
377 const RegisterBankInfo::ValueMapping
*OperandsMapping
,
378 unsigned NumOperands
) {
379 return hash_combine(ID
, Cost
, OperandsMapping
, NumOperands
);
382 const RegisterBankInfo::InstructionMapping
&
383 RegisterBankInfo::getInstructionMappingImpl(
384 bool IsInvalid
, unsigned ID
, unsigned Cost
,
385 const RegisterBankInfo::ValueMapping
*OperandsMapping
,
386 unsigned NumOperands
) const {
387 assert(((IsInvalid
&& ID
== InvalidMappingID
&& Cost
== 0 &&
388 OperandsMapping
== nullptr && NumOperands
== 0) ||
390 "Mismatch argument for invalid input");
391 ++NumInstructionMappingsAccessed
;
394 hashInstructionMapping(ID
, Cost
, OperandsMapping
, NumOperands
);
395 const auto &It
= MapOfInstructionMappings
.find(Hash
);
396 if (It
!= MapOfInstructionMappings
.end())
399 ++NumInstructionMappingsCreated
;
401 auto &InstrMapping
= MapOfInstructionMappings
[Hash
];
402 InstrMapping
= std::make_unique
<InstructionMapping
>(
403 ID
, Cost
, OperandsMapping
, NumOperands
);
404 return *InstrMapping
;
407 const RegisterBankInfo::InstructionMapping
&
408 RegisterBankInfo::getInstrMapping(const MachineInstr
&MI
) const {
409 const RegisterBankInfo::InstructionMapping
&Mapping
= getInstrMappingImpl(MI
);
410 if (Mapping
.isValid())
412 llvm_unreachable("The target must implement this");
415 RegisterBankInfo::InstructionMappings
416 RegisterBankInfo::getInstrPossibleMappings(const MachineInstr
&MI
) const {
417 InstructionMappings PossibleMappings
;
418 const auto &Mapping
= getInstrMapping(MI
);
419 if (Mapping
.isValid()) {
420 // Put the default mapping first.
421 PossibleMappings
.push_back(&Mapping
);
424 // Then the alternative mapping, if any.
425 InstructionMappings AltMappings
= getInstrAlternativeMappings(MI
);
426 append_range(PossibleMappings
, AltMappings
);
428 for (const InstructionMapping
*Mapping
: PossibleMappings
)
429 assert(Mapping
->verify(MI
) && "Mapping is invalid");
431 return PossibleMappings
;
434 RegisterBankInfo::InstructionMappings
435 RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr
&MI
) const {
436 // No alternative for MI.
437 return InstructionMappings();
440 void RegisterBankInfo::applyDefaultMapping(const OperandsMapper
&OpdMapper
) {
441 MachineInstr
&MI
= OpdMapper
.getMI();
442 MachineRegisterInfo
&MRI
= OpdMapper
.getMRI();
443 LLVM_DEBUG(dbgs() << "Applying default-like mapping\n");
444 for (unsigned OpIdx
= 0,
445 EndIdx
= OpdMapper
.getInstrMapping().getNumOperands();
446 OpIdx
!= EndIdx
; ++OpIdx
) {
447 LLVM_DEBUG(dbgs() << "OpIdx " << OpIdx
);
448 MachineOperand
&MO
= MI
.getOperand(OpIdx
);
450 LLVM_DEBUG(dbgs() << " is not a register, nothing to be done\n");
454 LLVM_DEBUG(dbgs() << " is $noreg, nothing to be done\n");
457 LLT Ty
= MRI
.getType(MO
.getReg());
460 assert(OpdMapper
.getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
!=
463 assert(OpdMapper
.getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
==
465 "This mapping is too complex for this function");
466 iterator_range
<SmallVectorImpl
<Register
>::const_iterator
> NewRegs
=
467 OpdMapper
.getVRegs(OpIdx
);
468 if (NewRegs
.empty()) {
469 LLVM_DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
472 Register OrigReg
= MO
.getReg();
473 Register NewReg
= *NewRegs
.begin();
474 LLVM_DEBUG(dbgs() << " changed, replace " << printReg(OrigReg
, nullptr));
476 LLVM_DEBUG(dbgs() << " with " << printReg(NewReg
, nullptr));
478 // The OperandsMapper creates plain scalar, we may have to fix that.
479 // Check if the types match and if not, fix that.
480 LLT OrigTy
= MRI
.getType(OrigReg
);
481 LLT NewTy
= MRI
.getType(NewReg
);
482 if (OrigTy
!= NewTy
) {
483 // The default mapping is not supposed to change the size of
484 // the storage. However, right now we don't necessarily bump all
485 // the types to storage size. For instance, we can consider
486 // s16 G_AND legal whereas the storage size is going to be 32.
487 assert(OrigTy
.getSizeInBits() <= NewTy
.getSizeInBits() &&
488 "Types with difference size cannot be handled by the default "
490 LLVM_DEBUG(dbgs() << "\nChange type of new opd from " << NewTy
<< " to "
492 MRI
.setType(NewReg
, OrigTy
);
494 LLVM_DEBUG(dbgs() << '\n');
498 TypeSize
RegisterBankInfo::getSizeInBits(Register Reg
,
499 const MachineRegisterInfo
&MRI
,
500 const TargetRegisterInfo
&TRI
) const {
501 if (Reg
.isPhysical()) {
502 // The size is not directly available for physical registers.
503 // Instead, we need to access a register class that contains Reg and
504 // get the size of that register class.
505 // Because this is expensive, we'll cache the register class by calling
506 auto *RC
= getMinimalPhysRegClass(Reg
, TRI
);
507 assert(RC
&& "Expecting Register class");
508 return TRI
.getRegSizeInBits(*RC
);
510 return TRI
.getRegSizeInBits(Reg
, MRI
);
513 //------------------------------------------------------------------------------
514 // Helper classes implementation.
515 //------------------------------------------------------------------------------
516 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
517 LLVM_DUMP_METHOD
void RegisterBankInfo::PartialMapping::dump() const {
523 bool RegisterBankInfo::PartialMapping::verify(
524 const RegisterBankInfo
&RBI
) const {
525 assert(RegBank
&& "Register bank not set");
526 assert(Length
&& "Empty mapping");
527 assert((StartIdx
<= getHighBitIdx()) && "Overflow, switch to APInt?");
528 // Check if the minimum width fits into RegBank.
529 assert(RBI
.getMaximumSize(RegBank
->getID()) >= Length
&&
530 "Register bank too small for Mask");
534 void RegisterBankInfo::PartialMapping::print(raw_ostream
&OS
) const {
535 OS
<< "[" << StartIdx
<< ", " << getHighBitIdx() << "], RegBank = ";
542 bool RegisterBankInfo::ValueMapping::partsAllUniform() const {
543 if (NumBreakDowns
< 2)
546 const PartialMapping
*First
= begin();
547 for (const PartialMapping
*Part
= First
+ 1; Part
!= end(); ++Part
) {
548 if (Part
->Length
!= First
->Length
|| Part
->RegBank
!= First
->RegBank
)
555 bool RegisterBankInfo::ValueMapping::verify(const RegisterBankInfo
&RBI
,
556 TypeSize MeaningfulBitWidth
) const {
557 assert(NumBreakDowns
&& "Value mapped nowhere?!");
558 unsigned OrigValueBitWidth
= 0;
559 for (const RegisterBankInfo::PartialMapping
&PartMap
: *this) {
560 // Check that each register bank is big enough to hold the partial value:
561 // this check is done by PartialMapping::verify
562 assert(PartMap
.verify(RBI
) && "Partial mapping is invalid");
563 // The original value should completely be mapped.
564 // Thus the maximum accessed index + 1 is the size of the original value.
566 std::max(OrigValueBitWidth
, PartMap
.getHighBitIdx() + 1);
568 assert((MeaningfulBitWidth
.isScalable() ||
569 OrigValueBitWidth
>= MeaningfulBitWidth
) &&
570 "Meaningful bits not covered by the mapping");
571 APInt
ValueMask(OrigValueBitWidth
, 0);
572 for (const RegisterBankInfo::PartialMapping
&PartMap
: *this) {
573 // Check that the union of the partial mappings covers the whole value,
575 // The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
576 APInt PartMapMask
= APInt::getBitsSet(OrigValueBitWidth
, PartMap
.StartIdx
,
577 PartMap
.getHighBitIdx() + 1);
578 ValueMask
^= PartMapMask
;
579 assert((ValueMask
& PartMapMask
) == PartMapMask
&&
580 "Some partial mappings overlap");
582 assert(ValueMask
.isAllOnes() && "Value is not fully mapped");
586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
587 LLVM_DUMP_METHOD
void RegisterBankInfo::ValueMapping::dump() const {
593 void RegisterBankInfo::ValueMapping::print(raw_ostream
&OS
) const {
594 OS
<< "#BreakDown: " << NumBreakDowns
<< " ";
596 for (const PartialMapping
&PartMap
: *this) {
599 OS
<< '[' << PartMap
<< ']';
604 bool RegisterBankInfo::InstructionMapping::verify(
605 const MachineInstr
&MI
) const {
606 // Check that all the register operands are properly mapped.
607 // Check the constructor invariant.
608 // For PHI, we only care about mapping the definition.
609 assert(NumOperands
== (isCopyLike(MI
) ? 1 : MI
.getNumOperands()) &&
610 "NumOperands must match, see constructor");
611 assert(MI
.getParent() && MI
.getMF() &&
612 "MI must be connected to a MachineFunction");
613 const MachineFunction
&MF
= *MI
.getMF();
614 const RegisterBankInfo
*RBI
= MF
.getSubtarget().getRegBankInfo();
616 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
618 for (unsigned Idx
= 0; Idx
< NumOperands
; ++Idx
) {
619 const MachineOperand
&MO
= MI
.getOperand(Idx
);
621 assert(!getOperandMapping(Idx
).isValid() &&
622 "We should not care about non-reg mapping");
625 Register Reg
= MO
.getReg();
628 LLT Ty
= MRI
.getType(Reg
);
631 assert(getOperandMapping(Idx
).isValid() &&
632 "We must have a mapping for reg operands");
633 const RegisterBankInfo::ValueMapping
&MOMapping
= getOperandMapping(Idx
);
635 // Register size in bits.
636 // This size must match what the mapping expects.
637 assert(MOMapping
.verify(*RBI
, RBI
->getSizeInBits(
638 Reg
, MF
.getRegInfo(),
639 *MF
.getSubtarget().getRegisterInfo())) &&
640 "Value mapping is invalid");
645 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
646 LLVM_DUMP_METHOD
void RegisterBankInfo::InstructionMapping::dump() const {
652 void RegisterBankInfo::InstructionMapping::print(raw_ostream
&OS
) const {
653 OS
<< "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";
655 for (unsigned OpIdx
= 0; OpIdx
!= NumOperands
; ++OpIdx
) {
656 const ValueMapping
&ValMapping
= getOperandMapping(OpIdx
);
659 OS
<< "{ Idx: " << OpIdx
<< " Map: " << ValMapping
<< '}';
663 const int RegisterBankInfo::OperandsMapper::DontKnowIdx
= -1;
665 RegisterBankInfo::OperandsMapper::OperandsMapper(
666 MachineInstr
&MI
, const InstructionMapping
&InstrMapping
,
667 MachineRegisterInfo
&MRI
)
668 : MRI(MRI
), MI(MI
), InstrMapping(InstrMapping
) {
669 unsigned NumOpds
= InstrMapping
.getNumOperands();
670 OpToNewVRegIdx
.resize(NumOpds
, OperandsMapper::DontKnowIdx
);
671 assert(InstrMapping
.verify(MI
) && "Invalid mapping for MI");
674 iterator_range
<SmallVectorImpl
<Register
>::iterator
>
675 RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx
) {
676 assert(OpIdx
< getInstrMapping().getNumOperands() && "Out-of-bound access");
677 unsigned NumPartialVal
=
678 getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
;
679 int StartIdx
= OpToNewVRegIdx
[OpIdx
];
681 if (StartIdx
== OperandsMapper::DontKnowIdx
) {
682 // This is the first time we try to access OpIdx.
683 // Create the cells that will hold all the partial values at the
684 // end of the list of NewVReg.
685 StartIdx
= NewVRegs
.size();
686 OpToNewVRegIdx
[OpIdx
] = StartIdx
;
687 for (unsigned i
= 0; i
< NumPartialVal
; ++i
)
688 NewVRegs
.push_back(0);
690 SmallVectorImpl
<Register
>::iterator End
=
691 getNewVRegsEnd(StartIdx
, NumPartialVal
);
693 return make_range(&NewVRegs
[StartIdx
], End
);
696 SmallVectorImpl
<Register
>::const_iterator
697 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx
,
698 unsigned NumVal
) const {
699 return const_cast<OperandsMapper
*>(this)->getNewVRegsEnd(StartIdx
, NumVal
);
701 SmallVectorImpl
<Register
>::iterator
702 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx
,
704 assert((NewVRegs
.size() == StartIdx
+ NumVal
||
705 NewVRegs
.size() > StartIdx
+ NumVal
) &&
706 "NewVRegs too small to contain all the partial mapping");
707 return NewVRegs
.size() <= StartIdx
+ NumVal
? NewVRegs
.end()
708 : &NewVRegs
[StartIdx
+ NumVal
];
711 void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx
) {
712 assert(OpIdx
< getInstrMapping().getNumOperands() && "Out-of-bound access");
713 iterator_range
<SmallVectorImpl
<Register
>::iterator
> NewVRegsForOpIdx
=
715 const ValueMapping
&ValMapping
= getInstrMapping().getOperandMapping(OpIdx
);
716 const PartialMapping
*PartMap
= ValMapping
.begin();
717 for (Register
&NewVReg
: NewVRegsForOpIdx
) {
718 assert(PartMap
!= ValMapping
.end() && "Out-of-bound access");
719 assert(NewVReg
== 0 && "Register has already been created");
720 // The new registers are always bound to scalar with the right size.
721 // The actual type has to be set when the target does the mapping
722 // of the instruction.
723 // The rationale is that this generic code cannot guess how the
724 // target plans to split the input type.
725 NewVReg
= MRI
.createGenericVirtualRegister(LLT::scalar(PartMap
->Length
));
726 MRI
.setRegBank(NewVReg
, *PartMap
->RegBank
);
731 void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx
,
732 unsigned PartialMapIdx
,
734 assert(OpIdx
< getInstrMapping().getNumOperands() && "Out-of-bound access");
735 assert(getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
>
737 "Out-of-bound access for partial mapping");
738 // Make sure the memory is initialized for that operand.
739 (void)getVRegsMem(OpIdx
);
740 assert(NewVRegs
[OpToNewVRegIdx
[OpIdx
] + PartialMapIdx
] == 0 &&
741 "This value is already set");
742 NewVRegs
[OpToNewVRegIdx
[OpIdx
] + PartialMapIdx
] = NewVReg
;
745 iterator_range
<SmallVectorImpl
<Register
>::const_iterator
>
746 RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx
,
747 bool ForDebug
) const {
749 assert(OpIdx
< getInstrMapping().getNumOperands() && "Out-of-bound access");
750 int StartIdx
= OpToNewVRegIdx
[OpIdx
];
752 if (StartIdx
== OperandsMapper::DontKnowIdx
)
753 return make_range(NewVRegs
.end(), NewVRegs
.end());
755 unsigned PartMapSize
=
756 getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
;
757 SmallVectorImpl
<Register
>::const_iterator End
=
758 getNewVRegsEnd(StartIdx
, PartMapSize
);
759 iterator_range
<SmallVectorImpl
<Register
>::const_iterator
> Res
=
760 make_range(&NewVRegs
[StartIdx
], End
);
762 for (Register VReg
: Res
)
763 assert((VReg
|| ForDebug
) && "Some registers are uninitialized");
768 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
769 LLVM_DUMP_METHOD
void RegisterBankInfo::OperandsMapper::dump() const {
775 void RegisterBankInfo::OperandsMapper::print(raw_ostream
&OS
,
776 bool ForDebug
) const {
777 unsigned NumOpds
= getInstrMapping().getNumOperands();
779 OS
<< "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
780 // Print out the internal state of the index table.
781 OS
<< "Populated indices (CellNumber, IndexInNewVRegs): ";
783 for (unsigned Idx
= 0; Idx
!= NumOpds
; ++Idx
) {
784 if (OpToNewVRegIdx
[Idx
] != DontKnowIdx
) {
787 OS
<< '(' << Idx
<< ", " << OpToNewVRegIdx
[Idx
] << ')';
793 OS
<< "Mapping ID: " << getInstrMapping().getID() << ' ';
795 OS
<< "Operand Mapping: ";
796 // If we have a function, we can pretty print the name of the registers.
797 // Otherwise we will print the raw numbers.
798 const TargetRegisterInfo
*TRI
=
799 getMI().getParent() && getMI().getMF()
800 ? getMI().getMF()->getSubtarget().getRegisterInfo()
803 for (unsigned Idx
= 0; Idx
!= NumOpds
; ++Idx
) {
804 if (OpToNewVRegIdx
[Idx
] == DontKnowIdx
)
809 OS
<< '(' << printReg(getMI().getOperand(Idx
).getReg(), TRI
) << ", [";
810 bool IsFirstNewVReg
= true;
811 for (Register VReg
: getVRegs(Idx
)) {
814 IsFirstNewVReg
= false;
815 OS
<< printReg(VReg
, TRI
);