1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
13 //===----------------------------------------------------------------------===//
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
63 #define DEBUG_TYPE "regalloc"
65 STATISTIC(numJoins
, "Number of interval joins performed");
66 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
67 STATISTIC(numCommutes
, "Number of instruction commuting performed");
68 STATISTIC(numExtends
, "Number of copies extended");
69 STATISTIC(NumReMats
, "Number of instructions re-materialized");
70 STATISTIC(NumInflated
, "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts
, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves
, "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses
, "Number of shrinkToUses called");
75 static cl::opt
<bool> EnableJoining("join-liveintervals",
76 cl::desc("Coalesce copies (default=true)"),
77 cl::init(true), cl::Hidden
);
79 static cl::opt
<bool> UseTerminalRule("terminal-rule",
80 cl::desc("Apply the terminal rule"),
81 cl::init(false), cl::Hidden
);
83 /// Temporary flag to test critical edge unsplitting.
85 EnableJoinSplits("join-splitedges",
86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden
);
88 /// Temporary flag to test global copy optimization.
89 static cl::opt
<cl::boolOrDefault
>
90 EnableGlobalCopies("join-globalcopies",
91 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92 cl::init(cl::BOU_UNSET
), cl::Hidden
);
95 VerifyCoalescing("verify-coalescing",
96 cl::desc("Verify machine instrs before and after register coalescing"),
99 static cl::opt
<unsigned> LateRematUpdateThreshold(
100 "late-remat-update-threshold", cl::Hidden
,
101 cl::desc("During rematerialization for a copy, if the def instruction has "
102 "many other copy uses to be rematerialized, delay the multiple "
103 "separate live interval update work and do them all at once after "
104 "all those rematerialization are done. It will save a lot of "
108 static cl::opt
<unsigned> LargeIntervalSizeThreshold(
109 "large-interval-size-threshold", cl::Hidden
,
110 cl::desc("If the valnos size of an interval is larger than the threshold, "
111 "it is regarded as a large interval. "),
114 static cl::opt
<unsigned> LargeIntervalFreqThreshold(
115 "large-interval-freq-threshold", cl::Hidden
,
116 cl::desc("For a large interval, if it is coalesed with other live "
117 "intervals many times more than the threshold, stop its "
118 "coalescing to control the compile time. "),
125 class RegisterCoalescer
: public MachineFunctionPass
,
126 private LiveRangeEdit::Delegate
{
127 MachineFunction
* MF
= nullptr;
128 MachineRegisterInfo
* MRI
= nullptr;
129 const TargetRegisterInfo
* TRI
= nullptr;
130 const TargetInstrInfo
* TII
= nullptr;
131 LiveIntervals
*LIS
= nullptr;
132 const MachineLoopInfo
* Loops
= nullptr;
133 AliasAnalysis
*AA
= nullptr;
134 RegisterClassInfo RegClassInfo
;
136 /// Position and VReg of a PHI instruction during coalescing.
138 SlotIndex SI
; ///< Slot where this PHI occurs.
139 Register Reg
; ///< VReg the PHI occurs in.
140 unsigned SubReg
; ///< Qualifying subregister for Reg.
143 /// Map from debug instruction number to PHI position during coalescing.
144 DenseMap
<unsigned, PHIValPos
> PHIValToPos
;
145 /// Index of, for each VReg, which debug instruction numbers and
146 /// corresponding PHIs are sensitive to coalescing. Each VReg may have
147 /// multiple PHI defs, at different positions.
148 DenseMap
<Register
, SmallVector
<unsigned, 2>> RegToPHIIdx
;
150 /// Debug variable location tracking -- for each VReg, maintain an
151 /// ordered-by-slot-index set of DBG_VALUEs, to help quick
152 /// identification of whether coalescing may change location validity.
153 using DbgValueLoc
= std::pair
<SlotIndex
, MachineInstr
*>;
154 DenseMap
<Register
, std::vector
<DbgValueLoc
>> DbgVRegToValues
;
156 /// A LaneMask to remember on which subregister live ranges we need to call
157 /// shrinkToUses() later.
158 LaneBitmask ShrinkMask
;
160 /// True if the main range of the currently coalesced intervals should be
161 /// checked for smaller live intervals.
162 bool ShrinkMainRange
= false;
164 /// True if the coalescer should aggressively coalesce global copies
165 /// in favor of keeping local copies.
166 bool JoinGlobalCopies
= false;
168 /// True if the coalescer should aggressively coalesce fall-thru
169 /// blocks exclusively containing copies.
170 bool JoinSplitEdges
= false;
172 /// Copy instructions yet to be coalesced.
173 SmallVector
<MachineInstr
*, 8> WorkList
;
174 SmallVector
<MachineInstr
*, 8> LocalWorkList
;
176 /// Set of instruction pointers that have been erased, and
177 /// that may be present in WorkList.
178 SmallPtrSet
<MachineInstr
*, 8> ErasedInstrs
;
180 /// Dead instructions that are about to be deleted.
181 SmallVector
<MachineInstr
*, 8> DeadDefs
;
183 /// Virtual registers to be considered for register class inflation.
184 SmallVector
<Register
, 8> InflateRegs
;
186 /// The collection of live intervals which should have been updated
187 /// immediately after rematerialiation but delayed until
188 /// lateLiveIntervalUpdate is called.
189 DenseSet
<Register
> ToBeUpdated
;
191 /// Record how many times the large live interval with many valnos
192 /// has been tried to join with other live interval.
193 DenseMap
<Register
, unsigned long> LargeLIVisitCounter
;
195 /// Recursively eliminate dead defs in DeadDefs.
196 void eliminateDeadDefs(LiveRangeEdit
*Edit
= nullptr);
198 /// LiveRangeEdit callback for eliminateDeadDefs().
199 void LRE_WillEraseInstruction(MachineInstr
*MI
) override
;
201 /// Coalesce the LocalWorkList.
202 void coalesceLocals();
204 /// Join compatible live intervals
205 void joinAllIntervals();
207 /// Coalesce copies in the specified MBB, putting
208 /// copies that cannot yet be coalesced into WorkList.
209 void copyCoalesceInMBB(MachineBasicBlock
*MBB
);
211 /// Tries to coalesce all copies in CurrList. Returns true if any progress
213 bool copyCoalesceWorkList(MutableArrayRef
<MachineInstr
*> CurrList
);
215 /// If one def has many copy like uses, and those copy uses are all
216 /// rematerialized, the live interval update needed for those
217 /// rematerializations will be delayed and done all at once instead
218 /// of being done multiple times. This is to save compile cost because
219 /// live interval update is costly.
220 void lateLiveIntervalUpdate();
222 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
223 /// has no value defined in the predecessors. If the incoming value is the
224 /// same as defined by the copy itself, the value is considered undefined.
225 bool copyValueUndefInPredecessors(LiveRange
&S
,
226 const MachineBasicBlock
*MBB
,
227 LiveQueryResult SLRQ
);
229 /// Set necessary undef flags on subregister uses after pruning out undef
230 /// lane segments from the subrange.
231 void setUndefOnPrunedSubRegUses(LiveInterval
&LI
, Register Reg
,
232 LaneBitmask PrunedLanes
);
234 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
235 /// src/dst of the copy instruction CopyMI. This returns true if the copy
236 /// was successfully coalesced away. If it is not currently possible to
237 /// coalesce this interval, but it may be possible if other things get
238 /// coalesced, then it returns true by reference in 'Again'.
239 bool joinCopy(MachineInstr
*CopyMI
, bool &Again
,
240 SmallPtrSetImpl
<MachineInstr
*> &CurrentErasedInstrs
);
242 /// Attempt to join these two intervals. On failure, this
243 /// returns false. The output "SrcInt" will not have been modified, so we
244 /// can use this information below to update aliases.
245 bool joinIntervals(CoalescerPair
&CP
);
247 /// Attempt joining two virtual registers. Return true on success.
248 bool joinVirtRegs(CoalescerPair
&CP
);
250 /// If a live interval has many valnos and is coalesced with other
251 /// live intervals many times, we regard such live interval as having
252 /// high compile time cost.
253 bool isHighCostLiveInterval(LiveInterval
&LI
);
255 /// Attempt joining with a reserved physreg.
256 bool joinReservedPhysReg(CoalescerPair
&CP
);
258 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
259 /// Subranges in @p LI which only partially interfere with the desired
260 /// LaneMask are split as necessary. @p LaneMask are the lanes that
261 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
262 /// lanemasks already adjusted to the coalesced register.
263 void mergeSubRangeInto(LiveInterval
&LI
, const LiveRange
&ToMerge
,
264 LaneBitmask LaneMask
, CoalescerPair
&CP
,
267 /// Join the liveranges of two subregisters. Joins @p RRange into
268 /// @p LRange, @p RRange may be invalid afterwards.
269 void joinSubRegRanges(LiveRange
&LRange
, LiveRange
&RRange
,
270 LaneBitmask LaneMask
, const CoalescerPair
&CP
);
272 /// We found a non-trivially-coalescable copy. If the source value number is
273 /// defined by a copy from the destination reg see if we can merge these two
274 /// destination reg valno# into a single value number, eliminating a copy.
275 /// This returns true if an interval was modified.
276 bool adjustCopiesBackFrom(const CoalescerPair
&CP
, MachineInstr
*CopyMI
);
278 /// Return true if there are definitions of IntB
279 /// other than BValNo val# that can reach uses of AValno val# of IntA.
280 bool hasOtherReachingDefs(LiveInterval
&IntA
, LiveInterval
&IntB
,
281 VNInfo
*AValNo
, VNInfo
*BValNo
);
283 /// We found a non-trivially-coalescable copy.
284 /// If the source value number is defined by a commutable instruction and
285 /// its other operand is coalesced to the copy dest register, see if we
286 /// can transform the copy into a noop by commuting the definition.
287 /// This returns a pair of two flags:
288 /// - the first element is true if an interval was modified,
289 /// - the second element is true if the destination interval needs
290 /// to be shrunk after deleting the copy.
291 std::pair
<bool,bool> removeCopyByCommutingDef(const CoalescerPair
&CP
,
292 MachineInstr
*CopyMI
);
294 /// We found a copy which can be moved to its less frequent predecessor.
295 bool removePartialRedundancy(const CoalescerPair
&CP
, MachineInstr
&CopyMI
);
297 /// If the source of a copy is defined by a
298 /// trivial computation, replace the copy by rematerialize the definition.
299 bool reMaterializeTrivialDef(const CoalescerPair
&CP
, MachineInstr
*CopyMI
,
302 /// Return true if a copy involving a physreg should be joined.
303 bool canJoinPhys(const CoalescerPair
&CP
);
305 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
306 /// number if it is not zero. If DstReg is a physical register and the
307 /// existing subregister number of the def / use being updated is not zero,
308 /// make sure to set it to the correct physical subregister.
309 void updateRegDefsUses(Register SrcReg
, Register DstReg
, unsigned SubIdx
);
311 /// If the given machine operand reads only undefined lanes add an undef
313 /// This can happen when undef uses were previously concealed by a copy
314 /// which we coalesced. Example:
315 /// %0:sub0<def,read-undef> = ...
316 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
317 /// = use %1:sub1 <-- hidden undef use
318 void addUndefFlag(const LiveInterval
&Int
, SlotIndex UseIdx
,
319 MachineOperand
&MO
, unsigned SubRegIdx
);
321 /// Handle copies of undef values. If the undef value is an incoming
322 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
323 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
324 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
325 MachineInstr
*eliminateUndefCopy(MachineInstr
*CopyMI
);
327 /// Check whether or not we should apply the terminal rule on the
328 /// destination (Dst) of \p Copy.
329 /// When the terminal rule applies, Copy is not profitable to
331 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
332 /// at least one interference (Dst, Dst2). If Dst is terminal, the
333 /// terminal rule consists in checking that at least one of
334 /// interfering node, say Dst2, has an affinity of equal or greater
336 /// In that case, Dst2 and Dst will not be able to be both coalesced
337 /// with Src. Since Dst2 exposes more coalescing opportunities than
338 /// Dst, we can drop \p Copy.
339 bool applyTerminalRule(const MachineInstr
&Copy
) const;
341 /// Wrapper method for \see LiveIntervals::shrinkToUses.
342 /// This method does the proper fixing of the live-ranges when the afore
343 /// mentioned method returns true.
344 void shrinkToUses(LiveInterval
*LI
,
345 SmallVectorImpl
<MachineInstr
* > *Dead
= nullptr) {
347 if (LIS
->shrinkToUses(LI
, Dead
)) {
348 /// Check whether or not \p LI is composed by multiple connected
349 /// components and if that is the case, fix that.
350 SmallVector
<LiveInterval
*, 8> SplitLIs
;
351 LIS
->splitSeparateComponents(*LI
, SplitLIs
);
355 /// Wrapper Method to do all the necessary work when an Instruction is
357 /// Optimizations should use this to make sure that deleted instructions
358 /// are always accounted for.
359 void deleteInstr(MachineInstr
* MI
) {
360 ErasedInstrs
.insert(MI
);
361 LIS
->RemoveMachineInstrFromMaps(*MI
);
362 MI
->eraseFromParent();
365 /// Walk over function and initialize the DbgVRegToValues map.
366 void buildVRegToDbgValueMap(MachineFunction
&MF
);
368 /// Test whether, after merging, any DBG_VALUEs would refer to a
369 /// different value number than before merging, and whether this can
370 /// be resolved. If not, mark the DBG_VALUE as being undef.
371 void checkMergingChangesDbgValues(CoalescerPair
&CP
, LiveRange
&LHS
,
372 JoinVals
&LHSVals
, LiveRange
&RHS
,
375 void checkMergingChangesDbgValuesImpl(Register Reg
, LiveRange
&OtherRange
,
376 LiveRange
&RegRange
, JoinVals
&Vals2
);
379 static char ID
; ///< Class identification, replacement for typeinfo
381 RegisterCoalescer() : MachineFunctionPass(ID
) {
382 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
385 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
387 MachineFunctionProperties
getClearedProperties() const override
{
388 return MachineFunctionProperties().set(
389 MachineFunctionProperties::Property::IsSSA
);
392 void releaseMemory() override
;
394 /// This is the pass entry point.
395 bool runOnMachineFunction(MachineFunction
&) override
;
397 /// Implement the dump method.
398 void print(raw_ostream
&O
, const Module
* = nullptr) const override
;
401 } // end anonymous namespace
403 char RegisterCoalescer::ID
= 0;
405 char &llvm::RegisterCoalescerID
= RegisterCoalescer::ID
;
407 INITIALIZE_PASS_BEGIN(RegisterCoalescer
, "register-coalescer",
408 "Register Coalescer", false, false)
409 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
410 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
411 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
412 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
413 INITIALIZE_PASS_END(RegisterCoalescer
, "register-coalescer",
414 "Register Coalescer", false, false)
416 [[nodiscard
]] static bool isMoveInstr(const TargetRegisterInfo
&tri
,
417 const MachineInstr
*MI
, Register
&Src
,
418 Register
&Dst
, unsigned &SrcSub
,
421 Dst
= MI
->getOperand(0).getReg();
422 DstSub
= MI
->getOperand(0).getSubReg();
423 Src
= MI
->getOperand(1).getReg();
424 SrcSub
= MI
->getOperand(1).getSubReg();
425 } else if (MI
->isSubregToReg()) {
426 Dst
= MI
->getOperand(0).getReg();
427 DstSub
= tri
.composeSubRegIndices(MI
->getOperand(0).getSubReg(),
428 MI
->getOperand(3).getImm());
429 Src
= MI
->getOperand(2).getReg();
430 SrcSub
= MI
->getOperand(2).getSubReg();
436 /// Return true if this block should be vacated by the coalescer to eliminate
437 /// branches. The important cases to handle in the coalescer are critical edges
438 /// split during phi elimination which contain only copies. Simple blocks that
439 /// contain non-branches should also be vacated, but this can be handled by an
440 /// earlier pass similar to early if-conversion.
441 static bool isSplitEdge(const MachineBasicBlock
*MBB
) {
442 if (MBB
->pred_size() != 1 || MBB
->succ_size() != 1)
445 for (const auto &MI
: *MBB
) {
446 if (!MI
.isCopyLike() && !MI
.isUnconditionalBranch())
452 bool CoalescerPair::setRegisters(const MachineInstr
*MI
) {
453 SrcReg
= DstReg
= Register();
456 Flipped
= CrossClass
= false;
459 unsigned SrcSub
= 0, DstSub
= 0;
460 if (!isMoveInstr(TRI
, MI
, Src
, Dst
, SrcSub
, DstSub
))
462 Partial
= SrcSub
|| DstSub
;
464 // If one register is a physreg, it must be Dst.
465 if (Src
.isPhysical()) {
466 if (Dst
.isPhysical())
469 std::swap(SrcSub
, DstSub
);
473 const MachineRegisterInfo
&MRI
= MI
->getMF()->getRegInfo();
475 if (Dst
.isPhysical()) {
476 // Eliminate DstSub on a physreg.
478 Dst
= TRI
.getSubReg(Dst
, DstSub
);
479 if (!Dst
) return false;
483 // Eliminate SrcSub by picking a corresponding Dst superregister.
485 Dst
= TRI
.getMatchingSuperReg(Dst
, SrcSub
, MRI
.getRegClass(Src
));
486 if (!Dst
) return false;
487 } else if (!MRI
.getRegClass(Src
)->contains(Dst
)) {
491 // Both registers are virtual.
492 const TargetRegisterClass
*SrcRC
= MRI
.getRegClass(Src
);
493 const TargetRegisterClass
*DstRC
= MRI
.getRegClass(Dst
);
495 // Both registers have subreg indices.
496 if (SrcSub
&& DstSub
) {
497 // Copies between different sub-registers are never coalescable.
498 if (Src
== Dst
&& SrcSub
!= DstSub
)
501 NewRC
= TRI
.getCommonSuperRegClass(SrcRC
, SrcSub
, DstRC
, DstSub
,
506 // SrcReg will be merged with a sub-register of DstReg.
508 NewRC
= TRI
.getMatchingSuperRegClass(DstRC
, SrcRC
, DstSub
);
510 // DstReg will be merged with a sub-register of SrcReg.
512 NewRC
= TRI
.getMatchingSuperRegClass(SrcRC
, DstRC
, SrcSub
);
514 // This is a straight copy without sub-registers.
515 NewRC
= TRI
.getCommonSubClass(DstRC
, SrcRC
);
518 // The combined constraint may be impossible to satisfy.
522 // Prefer SrcReg to be a sub-register of DstReg.
523 // FIXME: Coalescer should support subregs symmetrically.
524 if (DstIdx
&& !SrcIdx
) {
526 std::swap(SrcIdx
, DstIdx
);
530 CrossClass
= NewRC
!= DstRC
|| NewRC
!= SrcRC
;
532 // Check our invariants
533 assert(Src
.isVirtual() && "Src must be virtual");
534 assert(!(Dst
.isPhysical() && DstSub
) && "Cannot have a physical SubIdx");
540 bool CoalescerPair::flip() {
541 if (DstReg
.isPhysical())
543 std::swap(SrcReg
, DstReg
);
544 std::swap(SrcIdx
, DstIdx
);
549 bool CoalescerPair::isCoalescable(const MachineInstr
*MI
) const {
553 unsigned SrcSub
= 0, DstSub
= 0;
554 if (!isMoveInstr(TRI
, MI
, Src
, Dst
, SrcSub
, DstSub
))
557 // Find the virtual register that is SrcReg.
560 std::swap(SrcSub
, DstSub
);
561 } else if (Src
!= SrcReg
) {
565 // Now check that Dst matches DstReg.
566 if (DstReg
.isPhysical()) {
567 if (!Dst
.isPhysical())
569 assert(!DstIdx
&& !SrcIdx
&& "Inconsistent CoalescerPair state.");
570 // DstSub could be set for a physreg from INSERT_SUBREG.
572 Dst
= TRI
.getSubReg(Dst
, DstSub
);
575 return DstReg
== Dst
;
576 // This is a partial register copy. Check that the parts match.
577 return Register(TRI
.getSubReg(DstReg
, SrcSub
)) == Dst
;
579 // DstReg is virtual.
582 // Registers match, do the subregisters line up?
583 return TRI
.composeSubRegIndices(SrcIdx
, SrcSub
) ==
584 TRI
.composeSubRegIndices(DstIdx
, DstSub
);
588 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage
&AU
) const {
589 AU
.setPreservesCFG();
590 AU
.addRequired
<AAResultsWrapperPass
>();
591 AU
.addRequired
<LiveIntervals
>();
592 AU
.addPreserved
<LiveIntervals
>();
593 AU
.addPreserved
<SlotIndexes
>();
594 AU
.addRequired
<MachineLoopInfo
>();
595 AU
.addPreserved
<MachineLoopInfo
>();
596 AU
.addPreservedID(MachineDominatorsID
);
597 MachineFunctionPass::getAnalysisUsage(AU
);
600 void RegisterCoalescer::eliminateDeadDefs(LiveRangeEdit
*Edit
) {
602 Edit
->eliminateDeadDefs(DeadDefs
);
605 SmallVector
<Register
, 8> NewRegs
;
606 LiveRangeEdit(nullptr, NewRegs
, *MF
, *LIS
,
607 nullptr, this).eliminateDeadDefs(DeadDefs
);
610 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr
*MI
) {
611 // MI may be in WorkList. Make sure we don't visit it.
612 ErasedInstrs
.insert(MI
);
615 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair
&CP
,
616 MachineInstr
*CopyMI
) {
617 assert(!CP
.isPartial() && "This doesn't work for partial copies.");
618 assert(!CP
.isPhys() && "This doesn't work for physreg copies.");
621 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
623 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
624 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
626 // We have a non-trivially-coalescable copy with IntA being the source and
627 // IntB being the dest, thus this defines a value number in IntB. If the
628 // source value number (in IntA) is defined by a copy from B, see if we can
629 // merge these two pieces of B into a single value number, eliminating a copy.
634 // B1 = A3 <- this copy
636 // In this case, B0 can be extended to where the B1 copy lives, allowing the
637 // B1 value number to be replaced with B0 (which simplifies the B
640 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
641 // the example above.
642 LiveInterval::iterator BS
= IntB
.FindSegmentContaining(CopyIdx
);
643 if (BS
== IntB
.end()) return false;
644 VNInfo
*BValNo
= BS
->valno
;
646 // Get the location that B is defined at. Two options: either this value has
647 // an unknown definition point or it is defined at CopyIdx. If unknown, we
649 if (BValNo
->def
!= CopyIdx
) return false;
651 // AValNo is the value number in A that defines the copy, A3 in the example.
652 SlotIndex CopyUseIdx
= CopyIdx
.getRegSlot(true);
653 LiveInterval::iterator AS
= IntA
.FindSegmentContaining(CopyUseIdx
);
654 // The live segment might not exist after fun with physreg coalescing.
655 if (AS
== IntA
.end()) return false;
656 VNInfo
*AValNo
= AS
->valno
;
658 // If AValNo is defined as a copy from IntB, we can potentially process this.
659 // Get the instruction that defines this value number.
660 MachineInstr
*ACopyMI
= LIS
->getInstructionFromIndex(AValNo
->def
);
661 // Don't allow any partial copies, even if isCoalescable() allows them.
662 if (!CP
.isCoalescable(ACopyMI
) || !ACopyMI
->isFullCopy())
665 // Get the Segment in IntB that this value number starts with.
666 LiveInterval::iterator ValS
=
667 IntB
.FindSegmentContaining(AValNo
->def
.getPrevSlot());
668 if (ValS
== IntB
.end())
671 // Make sure that the end of the live segment is inside the same block as
673 MachineInstr
*ValSEndInst
=
674 LIS
->getInstructionFromIndex(ValS
->end
.getPrevSlot());
675 if (!ValSEndInst
|| ValSEndInst
->getParent() != CopyMI
->getParent())
678 // Okay, we now know that ValS ends in the same block that the CopyMI
679 // live-range starts. If there are no intervening live segments between them
680 // in IntB, we can merge them.
681 if (ValS
+1 != BS
) return false;
683 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB
.reg(), TRI
));
685 SlotIndex FillerStart
= ValS
->end
, FillerEnd
= BS
->start
;
686 // We are about to delete CopyMI, so need to remove it as the 'instruction
687 // that defines this value #'. Update the valnum with the new defining
689 BValNo
->def
= FillerStart
;
691 // Okay, we can merge them. We need to insert a new liverange:
692 // [ValS.end, BS.begin) of either value number, then we merge the
693 // two value numbers.
694 IntB
.addSegment(LiveInterval::Segment(FillerStart
, FillerEnd
, BValNo
));
696 // Okay, merge "B1" into the same value number as "B0".
697 if (BValNo
!= ValS
->valno
)
698 IntB
.MergeValueNumberInto(BValNo
, ValS
->valno
);
700 // Do the same for the subregister segments.
701 for (LiveInterval::SubRange
&S
: IntB
.subranges()) {
702 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
703 // removed to prevent creating bogus SubRange Segments.
704 LiveInterval::iterator SS
= S
.FindSegmentContaining(CopyIdx
);
705 if (SS
!= S
.end() && SlotIndex::isSameInstr(SS
->start
, SS
->end
)) {
706 S
.removeSegment(*SS
, true);
709 // The subrange may have ended before FillerStart. If so, extend it.
710 if (!S
.getVNInfoAt(FillerStart
)) {
712 LIS
->getMBBStartIdx(LIS
->getMBBFromIndex(FillerStart
));
713 S
.extendInBlock(BBStart
, FillerStart
);
715 VNInfo
*SubBValNo
= S
.getVNInfoAt(CopyIdx
);
716 S
.addSegment(LiveInterval::Segment(FillerStart
, FillerEnd
, SubBValNo
));
717 VNInfo
*SubValSNo
= S
.getVNInfoAt(AValNo
->def
.getPrevSlot());
718 if (SubBValNo
!= SubValSNo
)
719 S
.MergeValueNumberInto(SubBValNo
, SubValSNo
);
722 LLVM_DEBUG(dbgs() << " result = " << IntB
<< '\n');
724 // If the source instruction was killing the source register before the
725 // merge, unset the isKill marker given the live range has been extended.
726 int UIdx
= ValSEndInst
->findRegisterUseOperandIdx(IntB
.reg(), true);
728 ValSEndInst
->getOperand(UIdx
).setIsKill(false);
732 CopyMI
->substituteRegister(IntA
.reg(), IntB
.reg(), 0, *TRI
);
733 // If the copy instruction was killing the destination register or any
734 // subrange before the merge trim the live range.
735 bool RecomputeLiveRange
= AS
->end
== CopyIdx
;
736 if (!RecomputeLiveRange
) {
737 for (LiveInterval::SubRange
&S
: IntA
.subranges()) {
738 LiveInterval::iterator SS
= S
.FindSegmentContaining(CopyUseIdx
);
739 if (SS
!= S
.end() && SS
->end
== CopyIdx
) {
740 RecomputeLiveRange
= true;
745 if (RecomputeLiveRange
)
752 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval
&IntA
,
756 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
758 if (LIS
->hasPHIKill(IntA
, AValNo
))
761 for (LiveRange::Segment
&ASeg
: IntA
.segments
) {
762 if (ASeg
.valno
!= AValNo
) continue;
763 LiveInterval::iterator BI
= llvm::upper_bound(IntB
, ASeg
.start
);
764 if (BI
!= IntB
.begin())
766 for (; BI
!= IntB
.end() && ASeg
.end
>= BI
->start
; ++BI
) {
767 if (BI
->valno
== BValNo
)
769 if (BI
->start
<= ASeg
.start
&& BI
->end
> ASeg
.start
)
771 if (BI
->start
> ASeg
.start
&& BI
->start
< ASeg
.end
)
778 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
779 /// range @Dst and use value number @p DstValNo there.
780 static std::pair
<bool,bool>
781 addSegmentsWithValNo(LiveRange
&Dst
, VNInfo
*DstValNo
, const LiveRange
&Src
,
782 const VNInfo
*SrcValNo
) {
783 bool Changed
= false;
784 bool MergedWithDead
= false;
785 for (const LiveRange::Segment
&S
: Src
.segments
) {
786 if (S
.valno
!= SrcValNo
)
788 // This is adding a segment from Src that ends in a copy that is about
789 // to be removed. This segment is going to be merged with a pre-existing
790 // segment in Dst. This works, except in cases when the corresponding
791 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
792 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
793 // Recognized such cases, so that the segments can be shrunk.
794 LiveRange::Segment Added
= LiveRange::Segment(S
.start
, S
.end
, DstValNo
);
795 LiveRange::Segment
&Merged
= *Dst
.addSegment(Added
);
796 if (Merged
.end
.isDead())
797 MergedWithDead
= true;
800 return std::make_pair(Changed
, MergedWithDead
);
804 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair
&CP
,
805 MachineInstr
*CopyMI
) {
806 assert(!CP
.isPhys());
809 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
811 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
813 // We found a non-trivially-coalescable copy with IntA being the source and
814 // IntB being the dest, thus this defines a value number in IntB. If the
815 // source value number (in IntA) is defined by a commutable instruction and
816 // its other operand is coalesced to the copy dest register, see if we can
817 // transform the copy into a noop by commuting the definition. For example,
819 // A3 = op A2 killed B0
821 // B1 = A3 <- this copy
823 // = op A3 <- more uses
827 // B2 = op B0 killed A2
829 // B1 = B2 <- now an identity copy
831 // = op B2 <- more uses
833 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
834 // the example above.
835 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
836 VNInfo
*BValNo
= IntB
.getVNInfoAt(CopyIdx
);
837 assert(BValNo
!= nullptr && BValNo
->def
== CopyIdx
);
839 // AValNo is the value number in A that defines the copy, A3 in the example.
840 VNInfo
*AValNo
= IntA
.getVNInfoAt(CopyIdx
.getRegSlot(true));
841 assert(AValNo
&& !AValNo
->isUnused() && "COPY source not live");
842 if (AValNo
->isPHIDef())
843 return { false, false };
844 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(AValNo
->def
);
846 return { false, false };
847 if (!DefMI
->isCommutable())
848 return { false, false };
849 // If DefMI is a two-address instruction then commuting it will change the
850 // destination register.
851 int DefIdx
= DefMI
->findRegisterDefOperandIdx(IntA
.reg());
852 assert(DefIdx
!= -1);
854 if (!DefMI
->isRegTiedToUseOperand(DefIdx
, &UseOpIdx
))
855 return { false, false };
857 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
858 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
859 // passed to the method. That _other_ operand is chosen by
860 // the findCommutedOpIndices() method.
862 // That is obviously an area for improvement in case of instructions having
863 // more than 2 operands. For example, if some instruction has 3 commutable
864 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
865 // op#2<->op#3) of commute transformation should be considered/tried here.
866 unsigned NewDstIdx
= TargetInstrInfo::CommuteAnyOperandIndex
;
867 if (!TII
->findCommutedOpIndices(*DefMI
, UseOpIdx
, NewDstIdx
))
868 return { false, false };
870 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
871 Register NewReg
= NewDstMO
.getReg();
872 if (NewReg
!= IntB
.reg() || !IntB
.Query(AValNo
->def
).isKill())
873 return { false, false };
875 // Make sure there are no other definitions of IntB that would reach the
876 // uses which the new definition can reach.
877 if (hasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
878 return { false, false };
880 // If some of the uses of IntA.reg is already coalesced away, return false.
881 // It's not possible to determine whether it's safe to perform the coalescing.
882 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(IntA
.reg())) {
883 MachineInstr
*UseMI
= MO
.getParent();
884 unsigned OpNo
= &MO
- &UseMI
->getOperand(0);
885 SlotIndex UseIdx
= LIS
->getInstructionIndex(*UseMI
);
886 LiveInterval::iterator US
= IntA
.FindSegmentContaining(UseIdx
);
887 if (US
== IntA
.end() || US
->valno
!= AValNo
)
889 // If this use is tied to a def, we can't rewrite the register.
890 if (UseMI
->isRegTiedToDefOperand(OpNo
))
891 return { false, false };
894 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo
->def
<< '\t'
897 // At this point we have decided that it is legal to do this
898 // transformation. Start by commuting the instruction.
899 MachineBasicBlock
*MBB
= DefMI
->getParent();
900 MachineInstr
*NewMI
=
901 TII
->commuteInstruction(*DefMI
, false, UseOpIdx
, NewDstIdx
);
903 return { false, false };
904 if (IntA
.reg().isVirtual() && IntB
.reg().isVirtual() &&
905 !MRI
->constrainRegClass(IntB
.reg(), MRI
->getRegClass(IntA
.reg())))
906 return { false, false };
907 if (NewMI
!= DefMI
) {
908 LIS
->ReplaceMachineInstrInMaps(*DefMI
, *NewMI
);
909 MachineBasicBlock::iterator Pos
= DefMI
;
910 MBB
->insert(Pos
, NewMI
);
914 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
923 // Update uses of IntA of the specific Val# with IntB.
924 for (MachineOperand
&UseMO
:
925 llvm::make_early_inc_range(MRI
->use_operands(IntA
.reg()))) {
928 MachineInstr
*UseMI
= UseMO
.getParent();
929 if (UseMI
->isDebugInstr()) {
930 // FIXME These don't have an instruction index. Not clear we have enough
931 // info to decide whether to do this replacement or not. For now do it.
932 UseMO
.setReg(NewReg
);
935 SlotIndex UseIdx
= LIS
->getInstructionIndex(*UseMI
).getRegSlot(true);
936 LiveInterval::iterator US
= IntA
.FindSegmentContaining(UseIdx
);
937 assert(US
!= IntA
.end() && "Use must be live");
938 if (US
->valno
!= AValNo
)
940 // Kill flags are no longer accurate. They are recomputed after RA.
941 UseMO
.setIsKill(false);
942 if (NewReg
.isPhysical())
943 UseMO
.substPhysReg(NewReg
, *TRI
);
945 UseMO
.setReg(NewReg
);
948 if (!UseMI
->isCopy())
950 if (UseMI
->getOperand(0).getReg() != IntB
.reg() ||
951 UseMI
->getOperand(0).getSubReg())
954 // This copy will become a noop. If it's defining a new val#, merge it into
956 SlotIndex DefIdx
= UseIdx
.getRegSlot();
957 VNInfo
*DVNI
= IntB
.getVNInfoAt(DefIdx
);
960 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx
<< '\t' << *UseMI
);
961 assert(DVNI
->def
== DefIdx
);
962 BValNo
= IntB
.MergeValueNumberInto(DVNI
, BValNo
);
963 for (LiveInterval::SubRange
&S
: IntB
.subranges()) {
964 VNInfo
*SubDVNI
= S
.getVNInfoAt(DefIdx
);
967 VNInfo
*SubBValNo
= S
.getVNInfoAt(CopyIdx
);
968 assert(SubBValNo
->def
== CopyIdx
);
969 S
.MergeValueNumberInto(SubDVNI
, SubBValNo
);
975 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
977 bool ShrinkB
= false;
978 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
979 if (IntA
.hasSubRanges() || IntB
.hasSubRanges()) {
980 if (!IntA
.hasSubRanges()) {
981 LaneBitmask Mask
= MRI
->getMaxLaneMaskForVReg(IntA
.reg());
982 IntA
.createSubRangeFrom(Allocator
, Mask
, IntA
);
983 } else if (!IntB
.hasSubRanges()) {
984 LaneBitmask Mask
= MRI
->getMaxLaneMaskForVReg(IntB
.reg());
985 IntB
.createSubRangeFrom(Allocator
, Mask
, IntB
);
987 SlotIndex AIdx
= CopyIdx
.getRegSlot(true);
989 const SlotIndexes
&Indexes
= *LIS
->getSlotIndexes();
990 for (LiveInterval::SubRange
&SA
: IntA
.subranges()) {
991 VNInfo
*ASubValNo
= SA
.getVNInfoAt(AIdx
);
992 // Even if we are dealing with a full copy, some lanes can
993 // still be undefined.
995 // undef A.subLow = ...
996 // B = COPY A <== A.subHigh is undefined here and does
997 // not have a value number.
1000 MaskA
|= SA
.LaneMask
;
1002 IntB
.refineSubRanges(
1003 Allocator
, SA
.LaneMask
,
1004 [&Allocator
, &SA
, CopyIdx
, ASubValNo
,
1005 &ShrinkB
](LiveInterval::SubRange
&SR
) {
1006 VNInfo
*BSubValNo
= SR
.empty() ? SR
.getNextValue(CopyIdx
, Allocator
)
1007 : SR
.getVNInfoAt(CopyIdx
);
1008 assert(BSubValNo
!= nullptr);
1009 auto P
= addSegmentsWithValNo(SR
, BSubValNo
, SA
, ASubValNo
);
1010 ShrinkB
|= P
.second
;
1012 BSubValNo
->def
= ASubValNo
->def
;
1016 // Go over all subranges of IntB that have not been covered by IntA,
1017 // and delete the segments starting at CopyIdx. This can happen if
1018 // IntA has undef lanes that are defined in IntB.
1019 for (LiveInterval::SubRange
&SB
: IntB
.subranges()) {
1020 if ((SB
.LaneMask
& MaskA
).any())
1022 if (LiveRange::Segment
*S
= SB
.getSegmentContaining(CopyIdx
))
1023 if (S
->start
.getBaseIndex() == CopyIdx
.getBaseIndex())
1024 SB
.removeSegment(*S
, true);
1028 BValNo
->def
= AValNo
->def
;
1029 auto P
= addSegmentsWithValNo(IntB
, BValNo
, IntA
, AValNo
);
1030 ShrinkB
|= P
.second
;
1031 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB
<< '\n');
1033 LIS
->removeVRegDefAt(IntA
, AValNo
->def
);
1035 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA
<< '\n');
1037 return { true, ShrinkB
};
1040 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1041 /// predecessor of BB2, and if B is not redefined on the way from A = B
1042 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1043 /// execution goes through the path from BB0 to BB2. We may move B = A
1044 /// to the predecessor without such reversed copy.
1045 /// So we will transform the program from:
1063 /// A special case is when BB0 and BB2 are the same BB which is the only
1073 /// We may hoist B = A from BB0/BB2 to BB1.
1075 /// The major preconditions for correctness to remove such partial
1076 /// redundancy include:
1077 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1078 /// the PHI is defined by the reversed copy A = B in BB0.
1079 /// 2. No B is referenced from the start of BB2 to B = A.
1080 /// 3. No B is defined from A = B to the end of BB0.
1081 /// 4. BB1 has only one successor.
1083 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1084 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1085 /// colder place, which not only prevent endless loop, but also make sure
1086 /// the movement of copy is beneficial.
1087 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair
&CP
,
1088 MachineInstr
&CopyMI
) {
1089 assert(!CP
.isPhys());
1090 if (!CopyMI
.isFullCopy())
1093 MachineBasicBlock
&MBB
= *CopyMI
.getParent();
1094 // If this block is the target of an invoke/inlineasm_br, moving the copy into
1095 // the predecessor is tricker, and we don't handle it.
1096 if (MBB
.isEHPad() || MBB
.isInlineAsmBrIndirectTarget())
1099 if (MBB
.pred_size() != 2)
1102 LiveInterval
&IntA
=
1103 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
1104 LiveInterval
&IntB
=
1105 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
1107 // A is defined by PHI at the entry of MBB.
1108 SlotIndex CopyIdx
= LIS
->getInstructionIndex(CopyMI
).getRegSlot(true);
1109 VNInfo
*AValNo
= IntA
.getVNInfoAt(CopyIdx
);
1110 assert(AValNo
&& !AValNo
->isUnused() && "COPY source not live");
1111 if (!AValNo
->isPHIDef())
1114 // No B is referenced before CopyMI in MBB.
1115 if (IntB
.overlaps(LIS
->getMBBStartIdx(&MBB
), CopyIdx
))
1118 // MBB has two predecessors: one contains A = B so no copy will be inserted
1119 // for it. The other one will have a copy moved from MBB.
1120 bool FoundReverseCopy
= false;
1121 MachineBasicBlock
*CopyLeftBB
= nullptr;
1122 for (MachineBasicBlock
*Pred
: MBB
.predecessors()) {
1123 VNInfo
*PVal
= IntA
.getVNInfoBefore(LIS
->getMBBEndIdx(Pred
));
1124 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(PVal
->def
);
1125 if (!DefMI
|| !DefMI
->isFullCopy()) {
1129 // Check DefMI is a reverse copy and it is in BB Pred.
1130 if (DefMI
->getOperand(0).getReg() != IntA
.reg() ||
1131 DefMI
->getOperand(1).getReg() != IntB
.reg() ||
1132 DefMI
->getParent() != Pred
) {
1136 // If there is any other def of B after DefMI and before the end of Pred,
1137 // we need to keep the copy of B = A at the end of Pred if we remove
1139 bool ValB_Changed
= false;
1140 for (auto *VNI
: IntB
.valnos
) {
1141 if (VNI
->isUnused())
1143 if (PVal
->def
< VNI
->def
&& VNI
->def
< LIS
->getMBBEndIdx(Pred
)) {
1144 ValB_Changed
= true;
1152 FoundReverseCopy
= true;
1155 // If no reverse copy is found in predecessors, nothing to do.
1156 if (!FoundReverseCopy
)
1159 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1160 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1161 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1162 // update IntA/IntB.
1164 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1165 // MBB is hotter than CopyLeftBB.
1166 if (CopyLeftBB
&& CopyLeftBB
->succ_size() > 1)
1169 // Now (almost sure it's) ok to move copy.
1171 // Position in CopyLeftBB where we should insert new copy.
1172 auto InsPos
= CopyLeftBB
->getFirstTerminator();
1174 // Make sure that B isn't referenced in the terminators (if any) at the end
1175 // of the predecessor since we're about to insert a new definition of B
1177 if (InsPos
!= CopyLeftBB
->end()) {
1178 SlotIndex InsPosIdx
= LIS
->getInstructionIndex(*InsPos
).getRegSlot(true);
1179 if (IntB
.overlaps(InsPosIdx
, LIS
->getMBBEndIdx(CopyLeftBB
)))
1183 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1184 << printMBBReference(*CopyLeftBB
) << '\t' << CopyMI
);
1186 // Insert new copy to CopyLeftBB.
1187 MachineInstr
*NewCopyMI
= BuildMI(*CopyLeftBB
, InsPos
, CopyMI
.getDebugLoc(),
1188 TII
->get(TargetOpcode::COPY
), IntB
.reg())
1189 .addReg(IntA
.reg());
1190 SlotIndex NewCopyIdx
=
1191 LIS
->InsertMachineInstrInMaps(*NewCopyMI
).getRegSlot();
1192 IntB
.createDeadDef(NewCopyIdx
, LIS
->getVNInfoAllocator());
1193 for (LiveInterval::SubRange
&SR
: IntB
.subranges())
1194 SR
.createDeadDef(NewCopyIdx
, LIS
->getVNInfoAllocator());
1196 // If the newly created Instruction has an address of an instruction that was
1197 // deleted before (object recycled by the allocator) it needs to be removed from
1198 // the deleted list.
1199 ErasedInstrs
.erase(NewCopyMI
);
1201 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1202 << printMBBReference(MBB
) << '\t' << CopyMI
);
1205 const bool IsUndefCopy
= CopyMI
.getOperand(1).isUndef();
1208 // Note: This is fine to remove the copy before updating the live-ranges.
1209 // While updating the live-ranges, we only look at slot indices and
1210 // never go back to the instruction.
1211 // Mark instructions as deleted.
1212 deleteInstr(&CopyMI
);
1214 // Update the liveness.
1215 SmallVector
<SlotIndex
, 8> EndPoints
;
1216 VNInfo
*BValNo
= IntB
.Query(CopyIdx
).valueOutOrDead();
1217 LIS
->pruneValue(*static_cast<LiveRange
*>(&IntB
), CopyIdx
.getRegSlot(),
1219 BValNo
->markUnused();
1222 // We're introducing an undef phi def, and need to set undef on any users of
1223 // the previously local def to avoid artifically extending the lifetime
1224 // through the block.
1225 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(IntB
.reg())) {
1226 const MachineInstr
&MI
= *MO
.getParent();
1227 SlotIndex UseIdx
= LIS
->getInstructionIndex(MI
);
1228 if (!IntB
.liveAt(UseIdx
))
1229 MO
.setIsUndef(true);
1233 // Extend IntB to the EndPoints of its original live interval.
1234 LIS
->extendToIndices(IntB
, EndPoints
);
1236 // Now, do the same for its subranges.
1237 for (LiveInterval::SubRange
&SR
: IntB
.subranges()) {
1239 VNInfo
*BValNo
= SR
.Query(CopyIdx
).valueOutOrDead();
1240 assert(BValNo
&& "All sublanes should be live");
1241 LIS
->pruneValue(SR
, CopyIdx
.getRegSlot(), &EndPoints
);
1242 BValNo
->markUnused();
1243 // We can have a situation where the result of the original copy is live,
1244 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1245 // the copy appear as an endpoint from pruneValue(), but we don't want it
1246 // to because the copy has been removed. We can go ahead and remove that
1247 // endpoint; there is no other situation here that there could be a use at
1248 // the same place as we know that the copy is a full copy.
1249 for (unsigned I
= 0; I
!= EndPoints
.size(); ) {
1250 if (SlotIndex::isSameInstr(EndPoints
[I
], CopyIdx
)) {
1251 EndPoints
[I
] = EndPoints
.back();
1252 EndPoints
.pop_back();
1257 SmallVector
<SlotIndex
, 8> Undefs
;
1258 IntB
.computeSubRangeUndefs(Undefs
, SR
.LaneMask
, *MRI
,
1259 *LIS
->getSlotIndexes());
1260 LIS
->extendToIndices(SR
, EndPoints
, Undefs
);
1262 // If any dead defs were extended, truncate them.
1263 shrinkToUses(&IntB
);
1265 // Finally, update the live-range of IntA.
1266 shrinkToUses(&IntA
);
1270 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1271 /// defining a subregister.
1272 static bool definesFullReg(const MachineInstr
&MI
, Register Reg
) {
1273 assert(!Reg
.isPhysical() && "This code cannot handle physreg aliasing");
1275 for (const MachineOperand
&Op
: MI
.all_defs()) {
1276 if (Op
.getReg() != Reg
)
1278 // Return true if we define the full register or don't care about the value
1279 // inside other subregisters.
1280 if (Op
.getSubReg() == 0 || Op
.isUndef())
1286 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair
&CP
,
1287 MachineInstr
*CopyMI
,
1290 Register SrcReg
= CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg();
1291 unsigned SrcIdx
= CP
.isFlipped() ? CP
.getDstIdx() : CP
.getSrcIdx();
1292 Register DstReg
= CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg();
1293 unsigned DstIdx
= CP
.isFlipped() ? CP
.getSrcIdx() : CP
.getDstIdx();
1294 if (SrcReg
.isPhysical())
1297 LiveInterval
&SrcInt
= LIS
->getInterval(SrcReg
);
1298 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
);
1299 VNInfo
*ValNo
= SrcInt
.Query(CopyIdx
).valueIn();
1302 if (ValNo
->isPHIDef() || ValNo
->isUnused())
1304 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(ValNo
->def
);
1307 if (DefMI
->isCopyLike()) {
1311 if (!TII
->isAsCheapAsAMove(*DefMI
))
1314 SmallVector
<Register
, 8> NewRegs
;
1315 LiveRangeEdit
Edit(&SrcInt
, NewRegs
, *MF
, *LIS
, nullptr, this);
1316 if (!Edit
.checkRematerializable(ValNo
, DefMI
))
1319 if (!definesFullReg(*DefMI
, SrcReg
))
1321 bool SawStore
= false;
1322 if (!DefMI
->isSafeToMove(AA
, SawStore
))
1324 const MCInstrDesc
&MCID
= DefMI
->getDesc();
1325 if (MCID
.getNumDefs() != 1)
1327 // Only support subregister destinations when the def is read-undef.
1328 MachineOperand
&DstOperand
= CopyMI
->getOperand(0);
1329 Register CopyDstReg
= DstOperand
.getReg();
1330 if (DstOperand
.getSubReg() && !DstOperand
.isUndef())
1333 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1334 // the register substantially (beyond both source and dest size). This is bad
1335 // for performance since it can cascade through a function, introducing many
1336 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1337 // around after a few subreg copies).
1338 if (SrcIdx
&& DstIdx
)
1341 [[maybe_unused
]] const unsigned DefSubIdx
= DefMI
->getOperand(0).getSubReg();
1342 const TargetRegisterClass
*DefRC
= TII
->getRegClass(MCID
, 0, TRI
, *MF
);
1343 if (!DefMI
->isImplicitDef()) {
1344 if (DstReg
.isPhysical()) {
1345 Register NewDstReg
= DstReg
;
1347 unsigned NewDstIdx
= TRI
->composeSubRegIndices(CP
.getSrcIdx(),
1348 DefMI
->getOperand(0).getSubReg());
1350 NewDstReg
= TRI
->getSubReg(DstReg
, NewDstIdx
);
1352 // Finally, make sure that the physical subregister that will be
1353 // constructed later is permitted for the instruction.
1354 if (!DefRC
->contains(NewDstReg
))
1357 // Theoretically, some stack frame reference could exist. Just make sure
1358 // it hasn't actually happened.
1359 assert(DstReg
.isVirtual() &&
1360 "Only expect to deal with virtual or physical registers");
1364 LiveRangeEdit::Remat
RM(ValNo
);
1366 if (!Edit
.canRematerializeAt(RM
, ValNo
, CopyIdx
, true))
1369 DebugLoc DL
= CopyMI
->getDebugLoc();
1370 MachineBasicBlock
*MBB
= CopyMI
->getParent();
1371 MachineBasicBlock::iterator MII
=
1372 std::next(MachineBasicBlock::iterator(CopyMI
));
1373 Edit
.rematerializeAt(*MBB
, MII
, DstReg
, RM
, *TRI
, false, SrcIdx
, CopyMI
);
1374 MachineInstr
&NewMI
= *std::prev(MII
);
1375 NewMI
.setDebugLoc(DL
);
1377 // In a situation like the following:
1378 // %0:subreg = instr ; DefMI, subreg = DstIdx
1379 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1380 // instead of widening %1 to the register class of %0 simply do:
1382 const TargetRegisterClass
*NewRC
= CP
.getNewRC();
1384 MachineOperand
&DefMO
= NewMI
.getOperand(0);
1385 if (DefMO
.getSubReg() == DstIdx
) {
1386 assert(SrcIdx
== 0 && CP
.isFlipped()
1387 && "Shouldn't have SrcIdx+DstIdx at this point");
1388 const TargetRegisterClass
*DstRC
= MRI
->getRegClass(DstReg
);
1389 const TargetRegisterClass
*CommonRC
=
1390 TRI
->getCommonSubClass(DefRC
, DstRC
);
1391 if (CommonRC
!= nullptr) {
1394 // Instruction might contain "undef %0:subreg" as use operand:
1395 // %0:subreg = instr op_1, ..., op_N, undef %0:subreg, op_N+2, ...
1397 // Need to check all operands.
1398 for (MachineOperand
&MO
: NewMI
.operands()) {
1399 if (MO
.isReg() && MO
.getReg() == DstReg
&& MO
.getSubReg() == DstIdx
) {
1405 DefMO
.setIsUndef(false); // Only subregs can have def+undef.
1410 // CopyMI may have implicit operands, save them so that we can transfer them
1411 // over to the newly materialized instruction after CopyMI is removed.
1412 SmallVector
<MachineOperand
, 4> ImplicitOps
;
1413 ImplicitOps
.reserve(CopyMI
->getNumOperands() -
1414 CopyMI
->getDesc().getNumOperands());
1415 for (unsigned I
= CopyMI
->getDesc().getNumOperands(),
1416 E
= CopyMI
->getNumOperands();
1418 MachineOperand
&MO
= CopyMI
->getOperand(I
);
1420 assert(MO
.isImplicit() && "No explicit operands after implicit operands.");
1421 assert((MO
.getReg().isPhysical() ||
1422 (MO
.getSubReg() == 0 && MO
.getReg() == DstOperand
.getReg())) &&
1423 "unexpected implicit virtual register def");
1424 ImplicitOps
.push_back(MO
);
1428 CopyMI
->eraseFromParent();
1429 ErasedInstrs
.insert(CopyMI
);
1431 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1432 // We need to remember these so we can add intervals once we insert
1433 // NewMI into SlotIndexes.
1435 // We also expect to have tied implicit-defs of super registers originating
1436 // from SUBREG_TO_REG, such as:
1437 // $edi = MOV32r0 implicit-def dead $eflags, implicit-def $rdi
1438 // undef %0.sub_32bit = MOV32r0 implicit-def dead $eflags, implicit-def %0
1440 // The implicit-def of the super register may have been reduced to
1441 // subregisters depending on the uses.
1443 bool NewMIDefinesFullReg
= false;
1445 SmallVector
<MCRegister
, 4> NewMIImplDefs
;
1446 for (unsigned i
= NewMI
.getDesc().getNumOperands(),
1447 e
= NewMI
.getNumOperands();
1449 MachineOperand
&MO
= NewMI
.getOperand(i
);
1450 if (MO
.isReg() && MO
.isDef()) {
1451 assert(MO
.isImplicit());
1452 if (MO
.getReg().isPhysical()) {
1453 if (MO
.getReg() == DstReg
)
1454 NewMIDefinesFullReg
= true;
1456 assert(MO
.isImplicit() && MO
.getReg().isPhysical() &&
1459 ((TRI
->getSubReg(MO
.getReg(), DefSubIdx
) ==
1460 MCRegister((unsigned)NewMI
.getOperand(0).getReg())) ||
1461 TRI
->isSubRegisterEq(NewMI
.getOperand(0).getReg(),
1463 NewMIImplDefs
.push_back(MO
.getReg().asMCReg());
1465 assert(MO
.getReg() == NewMI
.getOperand(0).getReg());
1467 // We're only expecting another def of the main output, so the range
1468 // should get updated with the regular output range.
1470 // FIXME: The range updating below probably needs updating to look at
1471 // the super register if subranges are tracked.
1472 assert(!MRI
->shouldTrackSubRegLiveness(DstReg
) &&
1473 "subrange update for implicit-def of super register may not be "
1474 "properly handled");
1479 if (DstReg
.isVirtual()) {
1480 unsigned NewIdx
= NewMI
.getOperand(0).getSubReg();
1482 if (DefRC
!= nullptr) {
1484 NewRC
= TRI
->getMatchingSuperRegClass(NewRC
, DefRC
, NewIdx
);
1486 NewRC
= TRI
->getCommonSubClass(NewRC
, DefRC
);
1487 assert(NewRC
&& "subreg chosen for remat incompatible with instruction");
1489 // Remap subranges to new lanemask and change register class.
1490 LiveInterval
&DstInt
= LIS
->getInterval(DstReg
);
1491 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1492 SR
.LaneMask
= TRI
->composeSubRegIndexLaneMask(DstIdx
, SR
.LaneMask
);
1494 MRI
->setRegClass(DstReg
, NewRC
);
1496 // Update machine operands and add flags.
1497 updateRegDefsUses(DstReg
, DstReg
, DstIdx
);
1498 NewMI
.getOperand(0).setSubReg(NewIdx
);
1499 // updateRegDefUses can add an "undef" flag to the definition, since
1500 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1501 // sure that "undef" is not set.
1503 NewMI
.getOperand(0).setIsUndef(false);
1504 // Add dead subregister definitions if we are defining the whole register
1505 // but only part of it is live.
1506 // This could happen if the rematerialization instruction is rematerializing
1507 // more than actually is used in the register.
1508 // An example would be:
1509 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1510 // ; Copying only part of the register here, but the rest is undef.
1511 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1513 // ; Materialize all the constants but only using one
1514 // %2 = LOAD_CONSTANTS 5, 8
1516 // at this point for the part that wasn't defined before we could have
1517 // subranges missing the definition.
1518 if (NewIdx
== 0 && DstInt
.hasSubRanges()) {
1519 SlotIndex CurrIdx
= LIS
->getInstructionIndex(NewMI
);
1520 SlotIndex DefIndex
=
1521 CurrIdx
.getRegSlot(NewMI
.getOperand(0).isEarlyClobber());
1522 LaneBitmask MaxMask
= MRI
->getMaxLaneMaskForVReg(DstReg
);
1523 VNInfo::Allocator
& Alloc
= LIS
->getVNInfoAllocator();
1524 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1525 if (!SR
.liveAt(DefIndex
))
1526 SR
.createDeadDef(DefIndex
, Alloc
);
1527 MaxMask
&= ~SR
.LaneMask
;
1529 if (MaxMask
.any()) {
1530 LiveInterval::SubRange
*SR
= DstInt
.createSubRange(Alloc
, MaxMask
);
1531 SR
->createDeadDef(DefIndex
, Alloc
);
1535 // Make sure that the subrange for resultant undef is removed
1537 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1540 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1541 // ; Correct but need to remove the subrange for %2:sub0
1542 // ; as it is now undef
1543 if (NewIdx
!= 0 && DstInt
.hasSubRanges()) {
1544 // The affected subregister segments can be removed.
1545 SlotIndex CurrIdx
= LIS
->getInstructionIndex(NewMI
);
1546 LaneBitmask DstMask
= TRI
->getSubRegIndexLaneMask(NewIdx
);
1547 bool UpdatedSubRanges
= false;
1548 SlotIndex DefIndex
=
1549 CurrIdx
.getRegSlot(NewMI
.getOperand(0).isEarlyClobber());
1550 VNInfo::Allocator
&Alloc
= LIS
->getVNInfoAllocator();
1551 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1552 if ((SR
.LaneMask
& DstMask
).none()) {
1554 << "Removing undefined SubRange "
1555 << PrintLaneMask(SR
.LaneMask
) << " : " << SR
<< "\n");
1557 if (VNInfo
*RmValNo
= SR
.getVNInfoAt(CurrIdx
.getRegSlot())) {
1558 // VNI is in ValNo - remove any segments in this SubRange that have
1560 SR
.removeValNo(RmValNo
);
1563 // We may not have a defined value at this point, but still need to
1564 // clear out any empty subranges tentatively created by
1565 // updateRegDefUses. The original subrange def may have only undefed
1567 UpdatedSubRanges
= true;
1569 // We know that this lane is defined by this instruction,
1570 // but at this point it may be empty because it is not used by
1571 // anything. This happens when updateRegDefUses adds the missing
1572 // lanes. Assign that lane a dead def so that the interferences
1573 // are properly modeled.
1575 SR
.createDeadDef(DefIndex
, Alloc
);
1578 if (UpdatedSubRanges
)
1579 DstInt
.removeEmptySubRanges();
1581 } else if (NewMI
.getOperand(0).getReg() != CopyDstReg
) {
1582 // The New instruction may be defining a sub-register of what's actually
1583 // been asked for. If so it must implicitly define the whole thing.
1584 assert(DstReg
.isPhysical() &&
1585 "Only expect virtual or physical registers in remat");
1586 NewMI
.getOperand(0).setIsDead(true);
1588 if (!NewMIDefinesFullReg
) {
1589 NewMI
.addOperand(MachineOperand::CreateReg(
1590 CopyDstReg
, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1593 // Record small dead def live-ranges for all the subregisters
1594 // of the destination register.
1595 // Otherwise, variables that live through may miss some
1596 // interferences, thus creating invalid allocation.
1598 // %1 = somedef ; %1 GR8
1599 // %2 = remat ; %2 GR32
1600 // CL = COPY %2.sub_8bit
1601 // = somedef %1 ; %1 GR8
1603 // %1 = somedef ; %1 GR8
1604 // dead ECX = remat ; implicit-def CL
1605 // = somedef %1 ; %1 GR8
1606 // %1 will see the interferences with CL but not with CH since
1607 // no live-ranges would have been created for ECX.
1609 SlotIndex NewMIIdx
= LIS
->getInstructionIndex(NewMI
);
1610 for (MCRegUnit Unit
: TRI
->regunits(NewMI
.getOperand(0).getReg()))
1611 if (LiveRange
*LR
= LIS
->getCachedRegUnit(Unit
))
1612 LR
->createDeadDef(NewMIIdx
.getRegSlot(), LIS
->getVNInfoAllocator());
1615 NewMI
.setRegisterDefReadUndef(NewMI
.getOperand(0).getReg());
1617 // Transfer over implicit operands to the rematerialized instruction.
1618 for (MachineOperand
&MO
: ImplicitOps
)
1619 NewMI
.addOperand(MO
);
1621 SlotIndex NewMIIdx
= LIS
->getInstructionIndex(NewMI
);
1622 for (MCRegister Reg
: NewMIImplDefs
) {
1623 for (MCRegUnit Unit
: TRI
->regunits(Reg
))
1624 if (LiveRange
*LR
= LIS
->getCachedRegUnit(Unit
))
1625 LR
->createDeadDef(NewMIIdx
.getRegSlot(), LIS
->getVNInfoAllocator());
1628 LLVM_DEBUG(dbgs() << "Remat: " << NewMI
);
1631 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1632 // to describe DstReg instead.
1633 if (MRI
->use_nodbg_empty(SrcReg
)) {
1634 for (MachineOperand
&UseMO
:
1635 llvm::make_early_inc_range(MRI
->use_operands(SrcReg
))) {
1636 MachineInstr
*UseMI
= UseMO
.getParent();
1637 if (UseMI
->isDebugInstr()) {
1638 if (DstReg
.isPhysical())
1639 UseMO
.substPhysReg(DstReg
, *TRI
);
1641 UseMO
.setReg(DstReg
);
1642 // Move the debug value directly after the def of the rematerialized
1644 MBB
->splice(std::next(NewMI
.getIterator()), UseMI
->getParent(), UseMI
);
1645 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI
);
1650 if (ToBeUpdated
.count(SrcReg
))
1653 unsigned NumCopyUses
= 0;
1654 for (MachineOperand
&UseMO
: MRI
->use_nodbg_operands(SrcReg
)) {
1655 if (UseMO
.getParent()->isCopyLike())
1658 if (NumCopyUses
< LateRematUpdateThreshold
) {
1659 // The source interval can become smaller because we removed a use.
1660 shrinkToUses(&SrcInt
, &DeadDefs
);
1661 if (!DeadDefs
.empty())
1662 eliminateDeadDefs(&Edit
);
1664 ToBeUpdated
.insert(SrcReg
);
1669 MachineInstr
*RegisterCoalescer::eliminateUndefCopy(MachineInstr
*CopyMI
) {
1670 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1671 // removes local variables. When we have a copy like:
1673 // %1 = COPY undef %2
1675 // We delete the copy and remove the corresponding value number from %1.
1676 // Any uses of that value number are marked as <undef>.
1678 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1679 // CoalescerPair may have a new register class with adjusted subreg indices
1681 Register SrcReg
, DstReg
;
1682 unsigned SrcSubIdx
= 0, DstSubIdx
= 0;
1683 if(!isMoveInstr(*TRI
, CopyMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
1686 SlotIndex Idx
= LIS
->getInstructionIndex(*CopyMI
);
1687 const LiveInterval
&SrcLI
= LIS
->getInterval(SrcReg
);
1688 // CopyMI is undef iff SrcReg is not live before the instruction.
1689 if (SrcSubIdx
!= 0 && SrcLI
.hasSubRanges()) {
1690 LaneBitmask SrcMask
= TRI
->getSubRegIndexLaneMask(SrcSubIdx
);
1691 for (const LiveInterval::SubRange
&SR
: SrcLI
.subranges()) {
1692 if ((SR
.LaneMask
& SrcMask
).none())
1697 } else if (SrcLI
.liveAt(Idx
))
1700 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1701 // then replace it with an IMPLICIT_DEF.
1702 LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
1703 SlotIndex RegIndex
= Idx
.getRegSlot();
1704 LiveRange::Segment
*Seg
= DstLI
.getSegmentContaining(RegIndex
);
1705 assert(Seg
!= nullptr && "No segment for defining instruction");
1706 VNInfo
*V
= DstLI
.getVNInfoAt(Seg
->end
);
1708 // The source interval may also have been on an undef use, in which case the
1709 // copy introduced a live value.
1710 if (((V
&& V
->isPHIDef()) || (!V
&& !DstLI
.liveAt(Idx
)))) {
1711 for (unsigned i
= CopyMI
->getNumOperands(); i
!= 0; --i
) {
1712 MachineOperand
&MO
= CopyMI
->getOperand(i
-1);
1715 CopyMI
->removeOperand(i
- 1);
1717 assert(MO
.isImm() &&
1718 CopyMI
->getOpcode() == TargetOpcode::SUBREG_TO_REG
);
1719 CopyMI
->removeOperand(i
-1);
1723 CopyMI
->setDesc(TII
->get(TargetOpcode::IMPLICIT_DEF
));
1724 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1729 // Remove any DstReg segments starting at the instruction.
1730 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1732 // Remove value or merge with previous one in case of a subregister def.
1733 if (VNInfo
*PrevVNI
= DstLI
.getVNInfoAt(Idx
)) {
1734 VNInfo
*VNI
= DstLI
.getVNInfoAt(RegIndex
);
1735 DstLI
.MergeValueNumberInto(VNI
, PrevVNI
);
1737 // The affected subregister segments can be removed.
1738 LaneBitmask DstMask
= TRI
->getSubRegIndexLaneMask(DstSubIdx
);
1739 for (LiveInterval::SubRange
&SR
: DstLI
.subranges()) {
1740 if ((SR
.LaneMask
& DstMask
).none())
1743 VNInfo
*SVNI
= SR
.getVNInfoAt(RegIndex
);
1744 assert(SVNI
!= nullptr && SlotIndex::isSameInstr(SVNI
->def
, RegIndex
));
1745 SR
.removeValNo(SVNI
);
1747 DstLI
.removeEmptySubRanges();
1749 LIS
->removeVRegDefAt(DstLI
, RegIndex
);
1751 // Mark uses as undef.
1752 for (MachineOperand
&MO
: MRI
->reg_nodbg_operands(DstReg
)) {
1753 if (MO
.isDef() /*|| MO.isUndef()*/)
1755 const MachineInstr
&MI
= *MO
.getParent();
1756 SlotIndex UseIdx
= LIS
->getInstructionIndex(MI
);
1757 LaneBitmask UseMask
= TRI
->getSubRegIndexLaneMask(MO
.getSubReg());
1759 if (!UseMask
.all() && DstLI
.hasSubRanges()) {
1761 for (const LiveInterval::SubRange
&SR
: DstLI
.subranges()) {
1762 if ((SR
.LaneMask
& UseMask
).none())
1764 if (SR
.liveAt(UseIdx
)) {
1770 isLive
= DstLI
.liveAt(UseIdx
);
1773 MO
.setIsUndef(true);
1774 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx
<< '\t' << MI
);
1777 // A def of a subregister may be a use of the other subregisters, so
1778 // deleting a def of a subregister may also remove uses. Since CopyMI
1779 // is still part of the function (but about to be erased), mark all
1780 // defs of DstReg in it as <undef>, so that shrinkToUses would
1782 for (MachineOperand
&MO
: CopyMI
->all_defs())
1783 if (MO
.getReg() == DstReg
)
1784 MO
.setIsUndef(true);
1785 LIS
->shrinkToUses(&DstLI
);
1790 void RegisterCoalescer::addUndefFlag(const LiveInterval
&Int
, SlotIndex UseIdx
,
1791 MachineOperand
&MO
, unsigned SubRegIdx
) {
1792 LaneBitmask Mask
= TRI
->getSubRegIndexLaneMask(SubRegIdx
);
1795 bool IsUndef
= true;
1796 for (const LiveInterval::SubRange
&S
: Int
.subranges()) {
1797 if ((S
.LaneMask
& Mask
).none())
1799 if (S
.liveAt(UseIdx
)) {
1805 MO
.setIsUndef(true);
1806 // We found out some subregister use is actually reading an undefined
1807 // value. In some cases the whole vreg has become undefined at this
1808 // point so we have to potentially shrink the main range if the
1809 // use was ending a live segment there.
1810 LiveQueryResult Q
= Int
.Query(UseIdx
);
1811 if (Q
.valueOut() == nullptr)
1812 ShrinkMainRange
= true;
1816 void RegisterCoalescer::updateRegDefsUses(Register SrcReg
, Register DstReg
,
1818 bool DstIsPhys
= DstReg
.isPhysical();
1819 LiveInterval
*DstInt
= DstIsPhys
? nullptr : &LIS
->getInterval(DstReg
);
1821 if (DstInt
&& DstInt
->hasSubRanges() && DstReg
!= SrcReg
) {
1822 for (MachineOperand
&MO
: MRI
->reg_operands(DstReg
)) {
1823 unsigned SubReg
= MO
.getSubReg();
1824 if (SubReg
== 0 || MO
.isUndef())
1826 MachineInstr
&MI
= *MO
.getParent();
1827 if (MI
.isDebugInstr())
1829 SlotIndex UseIdx
= LIS
->getInstructionIndex(MI
).getRegSlot(true);
1830 addUndefFlag(*DstInt
, UseIdx
, MO
, SubReg
);
1834 SmallPtrSet
<MachineInstr
*, 8> Visited
;
1835 for (MachineRegisterInfo::reg_instr_iterator
1836 I
= MRI
->reg_instr_begin(SrcReg
), E
= MRI
->reg_instr_end();
1838 MachineInstr
*UseMI
= &*(I
++);
1840 // Each instruction can only be rewritten once because sub-register
1841 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1842 // the UseMI operands removes them from the SrcReg use-def chain, but when
1843 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1844 // operands mentioning the virtual register.
1845 if (SrcReg
== DstReg
&& !Visited
.insert(UseMI
).second
)
1848 SmallVector
<unsigned,8> Ops
;
1850 std::tie(Reads
, Writes
) = UseMI
->readsWritesVirtualRegister(SrcReg
, &Ops
);
1852 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1853 // because SrcReg is a sub-register.
1854 if (DstInt
&& !Reads
&& SubIdx
&& !UseMI
->isDebugInstr())
1855 Reads
= DstInt
->liveAt(LIS
->getInstructionIndex(*UseMI
));
1857 // Replace SrcReg with DstReg in all UseMI operands.
1858 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1859 MachineOperand
&MO
= UseMI
->getOperand(Ops
[i
]);
1861 // Adjust <undef> flags in case of sub-register joins. We don't want to
1862 // turn a full def into a read-modify-write sub-register def and vice
1864 if (SubIdx
&& MO
.isDef())
1865 MO
.setIsUndef(!Reads
);
1867 // A subreg use of a partially undef (super) register may be a complete
1868 // undef use now and then has to be marked that way.
1869 if (MO
.isUse() && !DstIsPhys
) {
1870 unsigned SubUseIdx
= TRI
->composeSubRegIndices(SubIdx
, MO
.getSubReg());
1871 if (SubUseIdx
!= 0 && MRI
->shouldTrackSubRegLiveness(DstReg
)) {
1872 if (!DstInt
->hasSubRanges()) {
1873 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
1874 LaneBitmask FullMask
= MRI
->getMaxLaneMaskForVReg(DstInt
->reg());
1875 LaneBitmask UsedLanes
= TRI
->getSubRegIndexLaneMask(SubIdx
);
1876 LaneBitmask UnusedLanes
= FullMask
& ~UsedLanes
;
1877 DstInt
->createSubRangeFrom(Allocator
, UsedLanes
, *DstInt
);
1878 // The unused lanes are just empty live-ranges at this point.
1879 // It is the caller responsibility to set the proper
1880 // dead segments if there is an actual dead def of the
1881 // unused lanes. This may happen with rematerialization.
1882 DstInt
->createSubRange(Allocator
, UnusedLanes
);
1884 SlotIndex MIIdx
= UseMI
->isDebugInstr()
1885 ? LIS
->getSlotIndexes()->getIndexBefore(*UseMI
)
1886 : LIS
->getInstructionIndex(*UseMI
);
1887 SlotIndex UseIdx
= MIIdx
.getRegSlot(true);
1888 addUndefFlag(*DstInt
, UseIdx
, MO
, SubUseIdx
);
1893 MO
.substPhysReg(DstReg
, *TRI
);
1895 MO
.substVirtReg(DstReg
, SubIdx
, *TRI
);
1899 dbgs() << "\t\tupdated: ";
1900 if (!UseMI
->isDebugInstr())
1901 dbgs() << LIS
->getInstructionIndex(*UseMI
) << "\t";
1907 bool RegisterCoalescer::canJoinPhys(const CoalescerPair
&CP
) {
1908 // Always join simple intervals that are defined by a single copy from a
1909 // reserved register. This doesn't increase register pressure, so it is
1910 // always beneficial.
1911 if (!MRI
->isReserved(CP
.getDstReg())) {
1912 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1916 LiveInterval
&JoinVInt
= LIS
->getInterval(CP
.getSrcReg());
1917 if (JoinVInt
.containsOneValue())
1921 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1925 bool RegisterCoalescer::copyValueUndefInPredecessors(
1926 LiveRange
&S
, const MachineBasicBlock
*MBB
, LiveQueryResult SLRQ
) {
1927 for (const MachineBasicBlock
*Pred
: MBB
->predecessors()) {
1928 SlotIndex PredEnd
= LIS
->getMBBEndIdx(Pred
);
1929 if (VNInfo
*V
= S
.getVNInfoAt(PredEnd
.getPrevSlot())) {
1930 // If this is a self loop, we may be reading the same value.
1931 if (V
->id
!= SLRQ
.valueOutOrDead()->id
)
1939 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval
&LI
,
1941 LaneBitmask PrunedLanes
) {
1942 // If we had other instructions in the segment reading the undef sublane
1943 // value, we need to mark them with undef.
1944 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(Reg
)) {
1945 unsigned SubRegIdx
= MO
.getSubReg();
1946 if (SubRegIdx
== 0 || MO
.isUndef())
1949 LaneBitmask SubRegMask
= TRI
->getSubRegIndexLaneMask(SubRegIdx
);
1950 SlotIndex Pos
= LIS
->getInstructionIndex(*MO
.getParent());
1951 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1952 if (!S
.liveAt(Pos
) && (PrunedLanes
& SubRegMask
).any()) {
1959 LI
.removeEmptySubRanges();
1961 // A def of a subregister may be a use of other register lanes. Replacing
1962 // such a def with a def of a different register will eliminate the use,
1963 // and may cause the recorded live range to be larger than the actual
1964 // liveness in the program IR.
1965 LIS
->shrinkToUses(&LI
);
1968 bool RegisterCoalescer::joinCopy(
1969 MachineInstr
*CopyMI
, bool &Again
,
1970 SmallPtrSetImpl
<MachineInstr
*> &CurrentErasedInstrs
) {
1972 LLVM_DEBUG(dbgs() << LIS
->getInstructionIndex(*CopyMI
) << '\t' << *CopyMI
);
1974 CoalescerPair
CP(*TRI
);
1975 if (!CP
.setRegisters(CopyMI
)) {
1976 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1980 if (CP
.getNewRC()) {
1981 auto SrcRC
= MRI
->getRegClass(CP
.getSrcReg());
1982 auto DstRC
= MRI
->getRegClass(CP
.getDstReg());
1983 unsigned SrcIdx
= CP
.getSrcIdx();
1984 unsigned DstIdx
= CP
.getDstIdx();
1985 if (CP
.isFlipped()) {
1986 std::swap(SrcIdx
, DstIdx
);
1987 std::swap(SrcRC
, DstRC
);
1989 if (!TRI
->shouldCoalesce(CopyMI
, SrcRC
, SrcIdx
, DstRC
, DstIdx
,
1990 CP
.getNewRC(), *LIS
)) {
1991 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1996 // Dead code elimination. This really should be handled by MachineDCE, but
1997 // sometimes dead copies slip through, and we can't generate invalid live
1999 if (!CP
.isPhys() && CopyMI
->allDefsAreDead()) {
2000 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
2001 DeadDefs
.push_back(CopyMI
);
2002 eliminateDeadDefs();
2006 // Eliminate undefs.
2008 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
2009 if (MachineInstr
*UndefMI
= eliminateUndefCopy(CopyMI
)) {
2010 if (UndefMI
->isImplicitDef())
2012 deleteInstr(CopyMI
);
2013 return false; // Not coalescable.
2017 // Coalesced copies are normally removed immediately, but transformations
2018 // like removeCopyByCommutingDef() can inadvertently create identity copies.
2019 // When that happens, just join the values and remove the copy.
2020 if (CP
.getSrcReg() == CP
.getDstReg()) {
2021 LiveInterval
&LI
= LIS
->getInterval(CP
.getSrcReg());
2022 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI
<< '\n');
2023 const SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
);
2024 LiveQueryResult LRQ
= LI
.Query(CopyIdx
);
2025 if (VNInfo
*DefVNI
= LRQ
.valueDefined()) {
2026 VNInfo
*ReadVNI
= LRQ
.valueIn();
2027 assert(ReadVNI
&& "No value before copy and no <undef> flag.");
2028 assert(ReadVNI
!= DefVNI
&& "Cannot read and define the same value.");
2030 // Track incoming undef lanes we need to eliminate from the subrange.
2031 LaneBitmask PrunedLanes
;
2032 MachineBasicBlock
*MBB
= CopyMI
->getParent();
2034 // Process subregister liveranges.
2035 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
2036 LiveQueryResult SLRQ
= S
.Query(CopyIdx
);
2037 if (VNInfo
*SDefVNI
= SLRQ
.valueDefined()) {
2038 if (VNInfo
*SReadVNI
= SLRQ
.valueIn())
2039 SDefVNI
= S
.MergeValueNumberInto(SDefVNI
, SReadVNI
);
2041 // If this copy introduced an undef subrange from an incoming value,
2042 // we need to eliminate the undef live in values from the subrange.
2043 if (copyValueUndefInPredecessors(S
, MBB
, SLRQ
)) {
2044 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
2045 PrunedLanes
|= S
.LaneMask
;
2046 S
.removeValNo(SDefVNI
);
2051 LI
.MergeValueNumberInto(DefVNI
, ReadVNI
);
2052 if (PrunedLanes
.any()) {
2053 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "
2054 << PrunedLanes
<< '\n');
2055 setUndefOnPrunedSubRegUses(LI
, CP
.getSrcReg(), PrunedLanes
);
2058 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI
<< '\n');
2060 deleteInstr(CopyMI
);
2064 // Enforce policies.
2066 LLVM_DEBUG(dbgs() << "\tConsidering merging "
2067 << printReg(CP
.getSrcReg(), TRI
) << " with "
2068 << printReg(CP
.getDstReg(), TRI
, CP
.getSrcIdx()) << '\n');
2069 if (!canJoinPhys(CP
)) {
2070 // Before giving up coalescing, if definition of source is defined by
2071 // trivial computation, try rematerializing it.
2072 bool IsDefCopy
= false;
2073 if (reMaterializeTrivialDef(CP
, CopyMI
, IsDefCopy
))
2076 Again
= true; // May be possible to coalesce later.
2080 // When possible, let DstReg be the larger interval.
2081 if (!CP
.isPartial() && LIS
->getInterval(CP
.getSrcReg()).size() >
2082 LIS
->getInterval(CP
.getDstReg()).size())
2086 dbgs() << "\tConsidering merging to "
2087 << TRI
->getRegClassName(CP
.getNewRC()) << " with ";
2088 if (CP
.getDstIdx() && CP
.getSrcIdx())
2089 dbgs() << printReg(CP
.getDstReg()) << " in "
2090 << TRI
->getSubRegIndexName(CP
.getDstIdx()) << " and "
2091 << printReg(CP
.getSrcReg()) << " in "
2092 << TRI
->getSubRegIndexName(CP
.getSrcIdx()) << '\n';
2094 dbgs() << printReg(CP
.getSrcReg(), TRI
) << " in "
2095 << printReg(CP
.getDstReg(), TRI
, CP
.getSrcIdx()) << '\n';
2099 ShrinkMask
= LaneBitmask::getNone();
2100 ShrinkMainRange
= false;
2102 // Okay, attempt to join these two intervals. On failure, this returns false.
2103 // Otherwise, if one of the intervals being joined is a physreg, this method
2104 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
2105 // been modified, so we can use this information below to update aliases.
2106 if (!joinIntervals(CP
)) {
2107 // Coalescing failed.
2109 // If definition of source is defined by trivial computation, try
2110 // rematerializing it.
2111 bool IsDefCopy
= false;
2112 if (reMaterializeTrivialDef(CP
, CopyMI
, IsDefCopy
))
2115 // If we can eliminate the copy without merging the live segments, do so
2117 if (!CP
.isPartial() && !CP
.isPhys()) {
2118 bool Changed
= adjustCopiesBackFrom(CP
, CopyMI
);
2119 bool Shrink
= false;
2121 std::tie(Changed
, Shrink
) = removeCopyByCommutingDef(CP
, CopyMI
);
2123 deleteInstr(CopyMI
);
2125 Register DstReg
= CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg();
2126 LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
2127 shrinkToUses(&DstLI
);
2128 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI
<< '\n');
2130 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
2135 // Try and see if we can partially eliminate the copy by moving the copy to
2137 if (!CP
.isPartial() && !CP
.isPhys())
2138 if (removePartialRedundancy(CP
, *CopyMI
))
2141 // Otherwise, we are unable to join the intervals.
2142 LLVM_DEBUG(dbgs() << "\tInterference!\n");
2143 Again
= true; // May be possible to coalesce later.
2147 // Coalescing to a virtual register that is of a sub-register class of the
2148 // other. Make sure the resulting register is set to the right register class.
2149 if (CP
.isCrossClass()) {
2151 MRI
->setRegClass(CP
.getDstReg(), CP
.getNewRC());
2154 // Removing sub-register copies can ease the register class constraints.
2155 // Make sure we attempt to inflate the register class of DstReg.
2156 if (!CP
.isPhys() && RegClassInfo
.isProperSubClass(CP
.getNewRC()))
2157 InflateRegs
.push_back(CP
.getDstReg());
2159 // CopyMI has been erased by joinIntervals at this point. Remove it from
2160 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2161 // to the work list. This keeps ErasedInstrs from growing needlessly.
2162 if (ErasedInstrs
.erase(CopyMI
))
2163 // But we may encounter the instruction again in this iteration.
2164 CurrentErasedInstrs
.insert(CopyMI
);
2166 // Rewrite all SrcReg operands to DstReg.
2167 // Also update DstReg operands to include DstIdx if it is set.
2169 updateRegDefsUses(CP
.getDstReg(), CP
.getDstReg(), CP
.getDstIdx());
2170 updateRegDefsUses(CP
.getSrcReg(), CP
.getDstReg(), CP
.getSrcIdx());
2172 // Shrink subregister ranges if necessary.
2173 if (ShrinkMask
.any()) {
2174 LiveInterval
&LI
= LIS
->getInterval(CP
.getDstReg());
2175 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
2176 if ((S
.LaneMask
& ShrinkMask
).none())
2178 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S
.LaneMask
)
2180 LIS
->shrinkToUses(S
, LI
.reg());
2181 ShrinkMainRange
= true;
2183 LI
.removeEmptySubRanges();
2186 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2187 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2188 // is not up-to-date, need to update the merged live interval here.
2189 if (ToBeUpdated
.count(CP
.getSrcReg()))
2190 ShrinkMainRange
= true;
2192 if (ShrinkMainRange
) {
2193 LiveInterval
&LI
= LIS
->getInterval(CP
.getDstReg());
2197 // SrcReg is guaranteed to be the register whose live interval that is
2199 LIS
->removeInterval(CP
.getSrcReg());
2201 // Update regalloc hint.
2202 TRI
->updateRegAllocHint(CP
.getSrcReg(), CP
.getDstReg(), *MF
);
2205 dbgs() << "\tSuccess: " << printReg(CP
.getSrcReg(), TRI
, CP
.getSrcIdx())
2206 << " -> " << printReg(CP
.getDstReg(), TRI
, CP
.getDstIdx()) << '\n';
2207 dbgs() << "\tResult = ";
2209 dbgs() << printReg(CP
.getDstReg(), TRI
);
2211 dbgs() << LIS
->getInterval(CP
.getDstReg());
2219 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair
&CP
) {
2220 Register DstReg
= CP
.getDstReg();
2221 Register SrcReg
= CP
.getSrcReg();
2222 assert(CP
.isPhys() && "Must be a physreg copy");
2223 assert(MRI
->isReserved(DstReg
) && "Not a reserved register");
2224 LiveInterval
&RHS
= LIS
->getInterval(SrcReg
);
2225 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS
<< '\n');
2227 assert(RHS
.containsOneValue() && "Invalid join with reserved register");
2229 // Optimization for reserved registers like ESP. We can only merge with a
2230 // reserved physreg if RHS has a single value that is a copy of DstReg.
2231 // The live range of the reserved register will look like a set of dead defs
2232 // - we don't properly track the live range of reserved registers.
2234 // Deny any overlapping intervals. This depends on all the reserved
2235 // register live ranges to look like dead defs.
2236 if (!MRI
->isConstantPhysReg(DstReg
)) {
2237 for (MCRegUnit Unit
: TRI
->regunits(DstReg
)) {
2238 // Abort if not all the regunits are reserved.
2239 for (MCRegUnitRootIterator
RI(Unit
, TRI
); RI
.isValid(); ++RI
) {
2240 if (!MRI
->isReserved(*RI
))
2243 if (RHS
.overlaps(LIS
->getRegUnit(Unit
))) {
2244 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(Unit
, TRI
)
2250 // We must also check for overlaps with regmask clobbers.
2251 BitVector RegMaskUsable
;
2252 if (LIS
->checkRegMaskInterference(RHS
, RegMaskUsable
) &&
2253 !RegMaskUsable
.test(DstReg
)) {
2254 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2259 // Skip any value computations, we are not adding new values to the
2260 // reserved register. Also skip merging the live ranges, the reserved
2261 // register live range doesn't need to be accurate as long as all the
2264 // Delete the identity copy.
2265 MachineInstr
*CopyMI
;
2266 if (CP
.isFlipped()) {
2267 // Physreg is copied into vreg
2268 // %y = COPY %physreg_x
2269 // ... //< no other def of %physreg_x here
2274 CopyMI
= MRI
->getVRegDef(SrcReg
);
2275 deleteInstr(CopyMI
);
2277 // VReg is copied into physreg:
2279 // ... //< no other def or use of %physreg_x here
2280 // %physreg_x = COPY %y
2284 if (!MRI
->hasOneNonDBGUse(SrcReg
)) {
2285 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2289 if (!LIS
->intervalIsInOneMBB(RHS
)) {
2290 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2294 MachineInstr
&DestMI
= *MRI
->getVRegDef(SrcReg
);
2295 CopyMI
= &*MRI
->use_instr_nodbg_begin(SrcReg
);
2296 SlotIndex CopyRegIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
2297 SlotIndex DestRegIdx
= LIS
->getInstructionIndex(DestMI
).getRegSlot();
2299 if (!MRI
->isConstantPhysReg(DstReg
)) {
2300 // We checked above that there are no interfering defs of the physical
2301 // register. However, for this case, where we intend to move up the def of
2302 // the physical register, we also need to check for interfering uses.
2303 SlotIndexes
*Indexes
= LIS
->getSlotIndexes();
2304 for (SlotIndex SI
= Indexes
->getNextNonNullIndex(DestRegIdx
);
2305 SI
!= CopyRegIdx
; SI
= Indexes
->getNextNonNullIndex(SI
)) {
2306 MachineInstr
*MI
= LIS
->getInstructionFromIndex(SI
);
2307 if (MI
->readsRegister(DstReg
, TRI
)) {
2308 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI
);
2314 // We're going to remove the copy which defines a physical reserved
2315 // register, so remove its valno, etc.
2316 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2317 << printReg(DstReg
, TRI
) << " at " << CopyRegIdx
<< "\n");
2319 LIS
->removePhysRegDefAt(DstReg
.asMCReg(), CopyRegIdx
);
2320 deleteInstr(CopyMI
);
2322 // Create a new dead def at the new def location.
2323 for (MCRegUnit Unit
: TRI
->regunits(DstReg
)) {
2324 LiveRange
&LR
= LIS
->getRegUnit(Unit
);
2325 LR
.createDeadDef(DestRegIdx
, LIS
->getVNInfoAllocator());
2329 // We don't track kills for reserved registers.
2330 MRI
->clearKillFlags(CP
.getSrcReg());
2335 //===----------------------------------------------------------------------===//
2336 // Interference checking and interval joining
2337 //===----------------------------------------------------------------------===//
2339 // In the easiest case, the two live ranges being joined are disjoint, and
2340 // there is no interference to consider. It is quite common, though, to have
2341 // overlapping live ranges, and we need to check if the interference can be
2344 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2345 // This means that two SSA values overlap if and only if the def of one value
2346 // is contained in the live range of the other value. As a special case, the
2347 // overlapping values can be defined at the same index.
2349 // The interference from an overlapping def can be resolved in these cases:
2351 // 1. Coalescable copies. The value is defined by a copy that would become an
2352 // identity copy after joining SrcReg and DstReg. The copy instruction will
2353 // be removed, and the value will be merged with the source value.
2355 // There can be several copies back and forth, causing many values to be
2356 // merged into one. We compute a list of ultimate values in the joined live
2357 // range as well as a mappings from the old value numbers.
2359 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2360 // predecessors have a live out value. It doesn't cause real interference,
2361 // and can be merged into the value it overlaps. Like a coalescable copy, it
2362 // can be erased after joining.
2364 // 3. Copy of external value. The overlapping def may be a copy of a value that
2365 // is already in the other register. This is like a coalescable copy, but
2366 // the live range of the source register must be trimmed after erasing the
2367 // copy instruction:
2370 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2372 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2373 // defining one lane at a time:
2375 // %dst:ssub0<def,read-undef> = FOO
2377 // %dst:ssub1 = COPY %src
2379 // The live range of %src overlaps the %dst value defined by FOO, but
2380 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2381 // which was undef anyway.
2383 // The value mapping is more complicated in this case. The final live range
2384 // will have different value numbers for both FOO and BAR, but there is no
2385 // simple mapping from old to new values. It may even be necessary to add
2388 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2389 // is live, but never read. This can happen because we don't compute
2390 // individual live ranges per lane.
2394 // %dst:ssub1 = COPY %src
2396 // This kind of interference is only resolved locally. If the clobbered
2397 // lane value escapes the block, the join is aborted.
2401 /// Track information about values in a single virtual register about to be
2402 /// joined. Objects of this class are always created in pairs - one for each
2403 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2406 /// Live range we work on.
2409 /// (Main) register we work on.
2412 /// Reg (and therefore the values in this liverange) will end up as
2413 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2415 const unsigned SubIdx
;
2417 /// The LaneMask that this liverange will occupy the coalesced register. May
2418 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2419 const LaneBitmask LaneMask
;
2421 /// This is true when joining sub register ranges, false when joining main
2423 const bool SubRangeJoin
;
2425 /// Whether the current LiveInterval tracks subregister liveness.
2426 const bool TrackSubRegLiveness
;
2428 /// Values that will be present in the final live range.
2429 SmallVectorImpl
<VNInfo
*> &NewVNInfo
;
2431 const CoalescerPair
&CP
;
2433 SlotIndexes
*Indexes
;
2434 const TargetRegisterInfo
*TRI
;
2436 /// Value number assignments. Maps value numbers in LI to entries in
2437 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2438 SmallVector
<int, 8> Assignments
;
2441 /// Conflict resolution for overlapping values.
2442 enum ConflictResolution
{
2443 /// No overlap, simply keep this value.
2446 /// Merge this value into OtherVNI and erase the defining instruction.
2447 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2451 /// Merge this value into OtherVNI but keep the defining instruction.
2452 /// This is for the special case where OtherVNI is defined by the same
2456 /// Keep this value, and have it replace OtherVNI where possible. This
2457 /// complicates value mapping since OtherVNI maps to two different values
2458 /// before and after this def.
2459 /// Used when clobbering undefined or dead lanes.
2462 /// Unresolved conflict. Visit later when all values have been mapped.
2465 /// Unresolvable conflict. Abort the join.
2470 /// Per-value info for LI. The lane bit masks are all relative to the final
2471 /// joined register, so they can be compared directly between SrcReg and
2474 ConflictResolution Resolution
= CR_Keep
;
2476 /// Lanes written by this def, 0 for unanalyzed values.
2477 LaneBitmask WriteLanes
;
2479 /// Lanes with defined values in this register. Other lanes are undef and
2480 /// safe to clobber.
2481 LaneBitmask ValidLanes
;
2483 /// Value in LI being redefined by this def.
2484 VNInfo
*RedefVNI
= nullptr;
2486 /// Value in the other live range that overlaps this def, if any.
2487 VNInfo
*OtherVNI
= nullptr;
2489 /// Is this value an IMPLICIT_DEF that can be erased?
2491 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2492 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2493 /// safely erased if they are overlapping a live value in the other live
2496 /// Weird control flow graphs and incomplete PHI handling in
2497 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2498 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2500 bool ErasableImplicitDef
= false;
2502 /// True when the live range of this value will be pruned because of an
2503 /// overlapping CR_Replace value in the other live range.
2504 bool Pruned
= false;
2506 /// True once Pruned above has been computed.
2507 bool PrunedComputed
= false;
2509 /// True if this value is determined to be identical to OtherVNI
2510 /// (in valuesIdentical). This is used with CR_Erase where the erased
2511 /// copy is redundant, i.e. the source value is already the same as
2512 /// the destination. In such cases the subranges need to be updated
2513 /// properly. See comment at pruneSubRegValues for more info.
2514 bool Identical
= false;
2518 bool isAnalyzed() const { return WriteLanes
.any(); }
2520 /// Mark this value as an IMPLICIT_DEF which must be kept as if it were an
2522 void mustKeepImplicitDef(const TargetRegisterInfo
&TRI
,
2523 const MachineInstr
&ImpDef
) {
2524 assert(ImpDef
.isImplicitDef());
2525 ErasableImplicitDef
= false;
2526 ValidLanes
= TRI
.getSubRegIndexLaneMask(ImpDef
.getOperand(0).getSubReg());
2530 /// One entry per value number in LI.
2531 SmallVector
<Val
, 8> Vals
;
2533 /// Compute the bitmask of lanes actually written by DefMI.
2534 /// Set Redef if there are any partial register definitions that depend on the
2535 /// previous value of the register.
2536 LaneBitmask
computeWriteLanes(const MachineInstr
*DefMI
, bool &Redef
) const;
2538 /// Find the ultimate value that VNI was copied from.
2539 std::pair
<const VNInfo
*, Register
> followCopyChain(const VNInfo
*VNI
) const;
2541 bool valuesIdentical(VNInfo
*Value0
, VNInfo
*Value1
, const JoinVals
&Other
) const;
2543 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2544 /// Return a conflict resolution when possible, but leave the hard cases as
2546 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2547 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2548 /// The recursion always goes upwards in the dominator tree, making loops
2550 ConflictResolution
analyzeValue(unsigned ValNo
, JoinVals
&Other
);
2552 /// Compute the value assignment for ValNo in RI.
2553 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2555 void computeAssignment(unsigned ValNo
, JoinVals
&Other
);
2557 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2558 /// the extent of the tainted lanes in the block.
2560 /// Multiple values in Other.LR can be affected since partial redefinitions
2561 /// can preserve previously tainted lanes.
2563 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2564 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2565 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2566 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2568 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2569 /// entry to TaintedVals.
2571 /// Returns false if the tainted lanes extend beyond the basic block.
2573 taintExtent(unsigned ValNo
, LaneBitmask TaintedLanes
, JoinVals
&Other
,
2574 SmallVectorImpl
<std::pair
<SlotIndex
, LaneBitmask
>> &TaintExtent
);
2576 /// Return true if MI uses any of the given Lanes from Reg.
2577 /// This does not include partial redefinitions of Reg.
2578 bool usesLanes(const MachineInstr
&MI
, Register
, unsigned, LaneBitmask
) const;
2580 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2583 /// %dst = COPY %src
2584 /// %src = COPY %dst <-- This value to be pruned.
2585 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2586 bool isPrunedValue(unsigned ValNo
, JoinVals
&Other
);
2589 JoinVals(LiveRange
&LR
, Register Reg
, unsigned SubIdx
, LaneBitmask LaneMask
,
2590 SmallVectorImpl
<VNInfo
*> &newVNInfo
, const CoalescerPair
&cp
,
2591 LiveIntervals
*lis
, const TargetRegisterInfo
*TRI
, bool SubRangeJoin
,
2592 bool TrackSubRegLiveness
)
2593 : LR(LR
), Reg(Reg
), SubIdx(SubIdx
), LaneMask(LaneMask
),
2594 SubRangeJoin(SubRangeJoin
), TrackSubRegLiveness(TrackSubRegLiveness
),
2595 NewVNInfo(newVNInfo
), CP(cp
), LIS(lis
), Indexes(LIS
->getSlotIndexes()),
2596 TRI(TRI
), Assignments(LR
.getNumValNums(), -1),
2597 Vals(LR
.getNumValNums()) {}
2599 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2600 /// Returns false if any conflicts were impossible to resolve.
2601 bool mapValues(JoinVals
&Other
);
2603 /// Try to resolve conflicts that require all values to be mapped.
2604 /// Returns false if any conflicts were impossible to resolve.
2605 bool resolveConflicts(JoinVals
&Other
);
2607 /// Prune the live range of values in Other.LR where they would conflict with
2608 /// CR_Replace values in LR. Collect end points for restoring the live range
2610 void pruneValues(JoinVals
&Other
, SmallVectorImpl
<SlotIndex
> &EndPoints
,
2613 /// Removes subranges starting at copies that get removed. This sometimes
2614 /// happens when undefined subranges are copied around. These ranges contain
2615 /// no useful information and can be removed.
2616 void pruneSubRegValues(LiveInterval
&LI
, LaneBitmask
&ShrinkMask
);
2618 /// Pruning values in subranges can lead to removing segments in these
2619 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2620 /// the main range also need to be removed. This function will mark
2621 /// the corresponding values in the main range as pruned, so that
2622 /// eraseInstrs can do the final cleanup.
2623 /// The parameter @p LI must be the interval whose main range is the
2625 void pruneMainSegments(LiveInterval
&LI
, bool &ShrinkMainRange
);
2627 /// Erase any machine instructions that have been coalesced away.
2628 /// Add erased instructions to ErasedInstrs.
2629 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2630 /// the erased instrs.
2631 void eraseInstrs(SmallPtrSetImpl
<MachineInstr
*> &ErasedInstrs
,
2632 SmallVectorImpl
<Register
> &ShrinkRegs
,
2633 LiveInterval
*LI
= nullptr);
2635 /// Remove liverange defs at places where implicit defs will be removed.
2636 void removeImplicitDefs();
2638 /// Get the value assignments suitable for passing to LiveInterval::join.
2639 const int *getAssignments() const { return Assignments
.data(); }
2641 /// Get the conflict resolution for a value number.
2642 ConflictResolution
getResolution(unsigned Num
) const {
2643 return Vals
[Num
].Resolution
;
2647 } // end anonymous namespace
2649 LaneBitmask
JoinVals::computeWriteLanes(const MachineInstr
*DefMI
, bool &Redef
)
2652 for (const MachineOperand
&MO
: DefMI
->all_defs()) {
2653 if (MO
.getReg() != Reg
)
2655 L
|= TRI
->getSubRegIndexLaneMask(
2656 TRI
->composeSubRegIndices(SubIdx
, MO
.getSubReg()));
2663 std::pair
<const VNInfo
*, Register
>
2664 JoinVals::followCopyChain(const VNInfo
*VNI
) const {
2665 Register TrackReg
= Reg
;
2667 while (!VNI
->isPHIDef()) {
2668 SlotIndex Def
= VNI
->def
;
2669 MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Def
);
2670 assert(MI
&& "No defining instruction");
2671 if (!MI
->isFullCopy())
2672 return std::make_pair(VNI
, TrackReg
);
2673 Register SrcReg
= MI
->getOperand(1).getReg();
2674 if (!SrcReg
.isVirtual())
2675 return std::make_pair(VNI
, TrackReg
);
2677 const LiveInterval
&LI
= LIS
->getInterval(SrcReg
);
2678 const VNInfo
*ValueIn
;
2679 // No subrange involved.
2680 if (!SubRangeJoin
|| !LI
.hasSubRanges()) {
2681 LiveQueryResult LRQ
= LI
.Query(Def
);
2682 ValueIn
= LRQ
.valueIn();
2684 // Query subranges. Ensure that all matching ones take us to the same def
2685 // (allowing some of them to be undef).
2687 for (const LiveInterval::SubRange
&S
: LI
.subranges()) {
2688 // Transform lanemask to a mask in the joined live interval.
2689 LaneBitmask SMask
= TRI
->composeSubRegIndexLaneMask(SubIdx
, S
.LaneMask
);
2690 if ((SMask
& LaneMask
).none())
2692 LiveQueryResult LRQ
= S
.Query(Def
);
2694 ValueIn
= LRQ
.valueIn();
2697 if (LRQ
.valueIn() && ValueIn
!= LRQ
.valueIn())
2698 return std::make_pair(VNI
, TrackReg
);
2701 if (ValueIn
== nullptr) {
2702 // Reaching an undefined value is legitimate, for example:
2704 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2705 // 2 %1 = COPY %0 ;; %1 is defined here.
2706 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2707 // ;; but it's equivalent to "undef".
2708 return std::make_pair(nullptr, SrcReg
);
2713 return std::make_pair(VNI
, TrackReg
);
2716 bool JoinVals::valuesIdentical(VNInfo
*Value0
, VNInfo
*Value1
,
2717 const JoinVals
&Other
) const {
2718 const VNInfo
*Orig0
;
2720 std::tie(Orig0
, Reg0
) = followCopyChain(Value0
);
2721 if (Orig0
== Value1
&& Reg0
== Other
.Reg
)
2724 const VNInfo
*Orig1
;
2726 std::tie(Orig1
, Reg1
) = Other
.followCopyChain(Value1
);
2727 // If both values are undefined, and the source registers are the same
2728 // register, the values are identical. Filter out cases where only one
2729 // value is defined.
2730 if (Orig0
== nullptr || Orig1
== nullptr)
2731 return Orig0
== Orig1
&& Reg0
== Reg1
;
2733 // The values are equal if they are defined at the same place and use the
2734 // same register. Note that we cannot compare VNInfos directly as some of
2735 // them might be from a copy created in mergeSubRangeInto() while the other
2736 // is from the original LiveInterval.
2737 return Orig0
->def
== Orig1
->def
&& Reg0
== Reg1
;
2740 JoinVals::ConflictResolution
2741 JoinVals::analyzeValue(unsigned ValNo
, JoinVals
&Other
) {
2742 Val
&V
= Vals
[ValNo
];
2743 assert(!V
.isAnalyzed() && "Value has already been analyzed!");
2744 VNInfo
*VNI
= LR
.getValNumInfo(ValNo
);
2745 if (VNI
->isUnused()) {
2746 V
.WriteLanes
= LaneBitmask::getAll();
2750 // Get the instruction defining this value, compute the lanes written.
2751 const MachineInstr
*DefMI
= nullptr;
2752 if (VNI
->isPHIDef()) {
2753 // Conservatively assume that all lanes in a PHI are valid.
2754 LaneBitmask Lanes
= SubRangeJoin
? LaneBitmask::getLane(0)
2755 : TRI
->getSubRegIndexLaneMask(SubIdx
);
2756 V
.ValidLanes
= V
.WriteLanes
= Lanes
;
2758 DefMI
= Indexes
->getInstructionFromIndex(VNI
->def
);
2759 assert(DefMI
!= nullptr);
2761 // We don't care about the lanes when joining subregister ranges.
2762 V
.WriteLanes
= V
.ValidLanes
= LaneBitmask::getLane(0);
2763 if (DefMI
->isImplicitDef()) {
2764 V
.ValidLanes
= LaneBitmask::getNone();
2765 V
.ErasableImplicitDef
= true;
2769 V
.ValidLanes
= V
.WriteLanes
= computeWriteLanes(DefMI
, Redef
);
2771 // If this is a read-modify-write instruction, there may be more valid
2772 // lanes than the ones written by this instruction.
2773 // This only covers partial redef operands. DefMI may have normal use
2774 // operands reading the register. They don't contribute valid lanes.
2776 // This adds ssub1 to the set of valid lanes in %src:
2780 // This leaves only ssub1 valid, making any other lanes undef:
2782 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2784 // The <read-undef> flag on the def operand means that old lane values are
2787 V
.RedefVNI
= LR
.Query(VNI
->def
).valueIn();
2788 assert((TrackSubRegLiveness
|| V
.RedefVNI
) &&
2789 "Instruction is reading nonexistent value");
2790 if (V
.RedefVNI
!= nullptr) {
2791 computeAssignment(V
.RedefVNI
->id
, Other
);
2792 V
.ValidLanes
|= Vals
[V
.RedefVNI
->id
].ValidLanes
;
2796 // An IMPLICIT_DEF writes undef values.
2797 if (DefMI
->isImplicitDef()) {
2798 // We normally expect IMPLICIT_DEF values to be live only until the end
2799 // of their block. If the value is really live longer and gets pruned in
2800 // another block, this flag is cleared again.
2802 // Clearing the valid lanes is deferred until it is sure this can be
2804 V
.ErasableImplicitDef
= true;
2809 // Find the value in Other that overlaps VNI->def, if any.
2810 LiveQueryResult OtherLRQ
= Other
.LR
.Query(VNI
->def
);
2812 // It is possible that both values are defined by the same instruction, or
2813 // the values are PHIs defined in the same block. When that happens, the two
2814 // values should be merged into one, but not into any preceding value.
2815 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2816 if (VNInfo
*OtherVNI
= OtherLRQ
.valueDefined()) {
2817 assert(SlotIndex::isSameInstr(VNI
->def
, OtherVNI
->def
) && "Broken LRQ");
2819 // One value stays, the other is merged. Keep the earlier one, or the first
2821 if (OtherVNI
->def
< VNI
->def
)
2822 Other
.computeAssignment(OtherVNI
->id
, *this);
2823 else if (VNI
->def
< OtherVNI
->def
&& OtherLRQ
.valueIn()) {
2824 // This is an early-clobber def overlapping a live-in value in the other
2825 // register. Not mergeable.
2826 V
.OtherVNI
= OtherLRQ
.valueIn();
2827 return CR_Impossible
;
2829 V
.OtherVNI
= OtherVNI
;
2830 Val
&OtherV
= Other
.Vals
[OtherVNI
->id
];
2831 // Keep this value, check for conflicts when analyzing OtherVNI. Avoid
2832 // revisiting OtherVNI->id in JoinVals::computeAssignment() below before it
2834 if (!OtherV
.isAnalyzed() || Other
.Assignments
[OtherVNI
->id
] == -1)
2836 // Both sides have been analyzed now.
2837 // Allow overlapping PHI values. Any real interference would show up in a
2838 // predecessor, the PHI itself can't introduce any conflicts.
2839 if (VNI
->isPHIDef())
2841 if ((V
.ValidLanes
& OtherV
.ValidLanes
).any())
2842 // Overlapping lanes can't be resolved.
2843 return CR_Impossible
;
2848 // No simultaneous def. Is Other live at the def?
2849 V
.OtherVNI
= OtherLRQ
.valueIn();
2851 // No overlap, no conflict.
2854 assert(!SlotIndex::isSameInstr(VNI
->def
, V
.OtherVNI
->def
) && "Broken LRQ");
2856 // We have overlapping values, or possibly a kill of Other.
2857 // Recursively compute assignments up the dominator tree.
2858 Other
.computeAssignment(V
.OtherVNI
->id
, *this);
2859 Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
2861 if (OtherV
.ErasableImplicitDef
) {
2862 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2863 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2864 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2867 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2868 // to erase the IMPLICIT_DEF instruction.
2870 // Additionally we must keep an IMPLICIT_DEF if we're redefining an incoming
2873 MachineInstr
*OtherImpDef
=
2874 Indexes
->getInstructionFromIndex(V
.OtherVNI
->def
);
2875 MachineBasicBlock
*OtherMBB
= OtherImpDef
->getParent();
2877 (DefMI
->getParent() != OtherMBB
|| LIS
->isLiveInToMBB(LR
, OtherMBB
))) {
2878 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V
.OtherVNI
->def
2880 << printMBBReference(*DefMI
->getParent())
2881 << ", keeping it.\n");
2882 OtherV
.mustKeepImplicitDef(*TRI
, *OtherImpDef
);
2883 } else if (OtherMBB
->hasEHPadSuccessor()) {
2884 // If OtherV is defined in a basic block that has EH pad successors then
2885 // we get the same problem not just if OtherV is live beyond its basic
2886 // block, but beyond the last call instruction in its basic block. Handle
2887 // this case conservatively.
2889 dbgs() << "IMPLICIT_DEF defined at " << V
.OtherVNI
->def
2890 << " may be live into EH pad successors, keeping it.\n");
2891 OtherV
.mustKeepImplicitDef(*TRI
, *OtherImpDef
);
2893 // We deferred clearing these lanes in case we needed to save them
2894 OtherV
.ValidLanes
&= ~OtherV
.WriteLanes
;
2898 // Allow overlapping PHI values. Any real interference would show up in a
2899 // predecessor, the PHI itself can't introduce any conflicts.
2900 if (VNI
->isPHIDef())
2903 // Check for simple erasable conflicts.
2904 if (DefMI
->isImplicitDef())
2907 // Include the non-conflict where DefMI is a coalescable copy that kills
2908 // OtherVNI. We still want the copy erased and value numbers merged.
2909 if (CP
.isCoalescable(DefMI
)) {
2910 // Some of the lanes copied from OtherVNI may be undef, making them undef
2912 V
.ValidLanes
&= ~V
.WriteLanes
| OtherV
.ValidLanes
;
2916 // This may not be a real conflict if DefMI simply kills Other and defines
2918 if (OtherLRQ
.isKill() && OtherLRQ
.endPoint() <= VNI
->def
)
2921 // Handle the case where VNI and OtherVNI can be proven to be identical:
2923 // %other = COPY %ext
2924 // %this = COPY %ext <-- Erase this copy
2926 if (DefMI
->isFullCopy() && !CP
.isPartial() &&
2927 valuesIdentical(VNI
, V
.OtherVNI
, Other
)) {
2932 // The remaining checks apply to the lanes, which aren't tracked here. This
2933 // was already decided to be OK via the following CR_Replace condition.
2938 // If the lanes written by this instruction were all undef in OtherVNI, it is
2939 // still safe to join the live ranges. This can't be done with a simple value
2940 // mapping, though - OtherVNI will map to multiple values:
2942 // 1 %dst:ssub0 = FOO <-- OtherVNI
2943 // 2 %src = BAR <-- VNI
2944 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2945 // 4 BAZ killed %dst
2946 // 5 QUUX killed %src
2948 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2949 // handles this complex value mapping.
2950 if ((V
.WriteLanes
& OtherV
.ValidLanes
).none())
2953 // If the other live range is killed by DefMI and the live ranges are still
2954 // overlapping, it must be because we're looking at an early clobber def:
2956 // %dst<def,early-clobber> = ASM killed %src
2958 // In this case, it is illegal to merge the two live ranges since the early
2959 // clobber def would clobber %src before it was read.
2960 if (OtherLRQ
.isKill()) {
2961 // This case where the def doesn't overlap the kill is handled above.
2962 assert(VNI
->def
.isEarlyClobber() &&
2963 "Only early clobber defs can overlap a kill");
2964 return CR_Impossible
;
2967 // VNI is clobbering live lanes in OtherVNI, but there is still the
2968 // possibility that no instructions actually read the clobbered lanes.
2969 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2970 // Otherwise Other.RI wouldn't be live here.
2971 if ((TRI
->getSubRegIndexLaneMask(Other
.SubIdx
) & ~V
.WriteLanes
).none())
2972 return CR_Impossible
;
2974 if (TrackSubRegLiveness
) {
2975 auto &OtherLI
= LIS
->getInterval(Other
.Reg
);
2976 // If OtherVNI does not have subranges, it means all the lanes of OtherVNI
2977 // share the same live range, so we just need to check whether they have
2978 // any conflict bit in their LaneMask.
2979 if (!OtherLI
.hasSubRanges()) {
2980 LaneBitmask OtherMask
= TRI
->getSubRegIndexLaneMask(Other
.SubIdx
);
2981 return (OtherMask
& V
.WriteLanes
).none() ? CR_Replace
: CR_Impossible
;
2984 // If we are clobbering some active lanes of OtherVNI at VNI->def, it is
2985 // impossible to resolve the conflict. Otherwise, we can just replace
2986 // OtherVNI because of no real conflict.
2987 for (LiveInterval::SubRange
&OtherSR
: OtherLI
.subranges()) {
2988 LaneBitmask OtherMask
=
2989 TRI
->composeSubRegIndexLaneMask(Other
.SubIdx
, OtherSR
.LaneMask
);
2990 if ((OtherMask
& V
.WriteLanes
).none())
2993 auto OtherSRQ
= OtherSR
.Query(VNI
->def
);
2994 if (OtherSRQ
.valueIn() && OtherSRQ
.endPoint() > VNI
->def
) {
2995 // VNI is clobbering some lanes of OtherVNI, they have real conflict.
2996 return CR_Impossible
;
3000 // VNI is NOT clobbering any lane of OtherVNI, just replace OtherVNI.
3004 // We need to verify that no instructions are reading the clobbered lanes.
3005 // To save compile time, we'll only check that locally. Don't allow the
3006 // tainted value to escape the basic block.
3007 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
3008 if (OtherLRQ
.endPoint() >= Indexes
->getMBBEndIdx(MBB
))
3009 return CR_Impossible
;
3011 // There are still some things that could go wrong besides clobbered lanes
3012 // being read, for example OtherVNI may be only partially redefined in MBB,
3013 // and some clobbered lanes could escape the block. Save this analysis for
3014 // resolveConflicts() when all values have been mapped. We need to know
3015 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
3016 // that now - the recursive analyzeValue() calls must go upwards in the
3018 return CR_Unresolved
;
3021 void JoinVals::computeAssignment(unsigned ValNo
, JoinVals
&Other
) {
3022 Val
&V
= Vals
[ValNo
];
3023 if (V
.isAnalyzed()) {
3024 // Recursion should always move up the dominator tree, so ValNo is not
3025 // supposed to reappear before it has been assigned.
3026 assert(Assignments
[ValNo
] != -1 && "Bad recursion?");
3029 switch ((V
.Resolution
= analyzeValue(ValNo
, Other
))) {
3032 // Merge this ValNo into OtherVNI.
3033 assert(V
.OtherVNI
&& "OtherVNI not assigned, can't merge.");
3034 assert(Other
.Vals
[V
.OtherVNI
->id
].isAnalyzed() && "Missing recursion");
3035 Assignments
[ValNo
] = Other
.Assignments
[V
.OtherVNI
->id
];
3036 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg
) << ':' << ValNo
<< '@'
3037 << LR
.getValNumInfo(ValNo
)->def
<< " into "
3038 << printReg(Other
.Reg
) << ':' << V
.OtherVNI
->id
<< '@'
3039 << V
.OtherVNI
->def
<< " --> @"
3040 << NewVNInfo
[Assignments
[ValNo
]]->def
<< '\n');
3043 case CR_Unresolved
: {
3044 // The other value is going to be pruned if this join is successful.
3045 assert(V
.OtherVNI
&& "OtherVNI not assigned, can't prune");
3046 Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
3047 OtherV
.Pruned
= true;
3051 // This value number needs to go in the final joined live range.
3052 Assignments
[ValNo
] = NewVNInfo
.size();
3053 NewVNInfo
.push_back(LR
.getValNumInfo(ValNo
));
3058 bool JoinVals::mapValues(JoinVals
&Other
) {
3059 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3060 computeAssignment(i
, Other
);
3061 if (Vals
[i
].Resolution
== CR_Impossible
) {
3062 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg
) << ':' << i
3063 << '@' << LR
.getValNumInfo(i
)->def
<< '\n');
3071 taintExtent(unsigned ValNo
, LaneBitmask TaintedLanes
, JoinVals
&Other
,
3072 SmallVectorImpl
<std::pair
<SlotIndex
, LaneBitmask
>> &TaintExtent
) {
3073 VNInfo
*VNI
= LR
.getValNumInfo(ValNo
);
3074 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
3075 SlotIndex MBBEnd
= Indexes
->getMBBEndIdx(MBB
);
3077 // Scan Other.LR from VNI.def to MBBEnd.
3078 LiveInterval::iterator OtherI
= Other
.LR
.find(VNI
->def
);
3079 assert(OtherI
!= Other
.LR
.end() && "No conflict?");
3081 // OtherI is pointing to a tainted value. Abort the join if the tainted
3082 // lanes escape the block.
3083 SlotIndex End
= OtherI
->end
;
3084 if (End
>= MBBEnd
) {
3085 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other
.Reg
) << ':'
3086 << OtherI
->valno
->id
<< '@' << OtherI
->start
<< '\n');
3089 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other
.Reg
) << ':'
3090 << OtherI
->valno
->id
<< '@' << OtherI
->start
<< " to "
3092 // A dead def is not a problem.
3095 TaintExtent
.push_back(std::make_pair(End
, TaintedLanes
));
3097 // Check for another def in the MBB.
3098 if (++OtherI
== Other
.LR
.end() || OtherI
->start
>= MBBEnd
)
3101 // Lanes written by the new def are no longer tainted.
3102 const Val
&OV
= Other
.Vals
[OtherI
->valno
->id
];
3103 TaintedLanes
&= ~OV
.WriteLanes
;
3106 } while (TaintedLanes
.any());
3110 bool JoinVals::usesLanes(const MachineInstr
&MI
, Register Reg
, unsigned SubIdx
,
3111 LaneBitmask Lanes
) const {
3112 if (MI
.isDebugOrPseudoInstr())
3114 for (const MachineOperand
&MO
: MI
.all_uses()) {
3115 if (MO
.getReg() != Reg
)
3119 unsigned S
= TRI
->composeSubRegIndices(SubIdx
, MO
.getSubReg());
3120 if ((Lanes
& TRI
->getSubRegIndexLaneMask(S
)).any())
3126 bool JoinVals::resolveConflicts(JoinVals
&Other
) {
3127 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3129 assert(V
.Resolution
!= CR_Impossible
&& "Unresolvable conflict");
3130 if (V
.Resolution
!= CR_Unresolved
)
3132 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg
) << ':' << i
<< '@'
3133 << LR
.getValNumInfo(i
)->def
3134 << ' ' << PrintLaneMask(LaneMask
) << '\n');
3139 assert(V
.OtherVNI
&& "Inconsistent conflict resolution.");
3140 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3141 const Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
3143 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
3144 // join, those lanes will be tainted with a wrong value. Get the extent of
3145 // the tainted lanes.
3146 LaneBitmask TaintedLanes
= V
.WriteLanes
& OtherV
.ValidLanes
;
3147 SmallVector
<std::pair
<SlotIndex
, LaneBitmask
>, 8> TaintExtent
;
3148 if (!taintExtent(i
, TaintedLanes
, Other
, TaintExtent
))
3149 // Tainted lanes would extend beyond the basic block.
3152 assert(!TaintExtent
.empty() && "There should be at least one conflict.");
3154 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3155 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
3156 MachineBasicBlock::iterator MI
= MBB
->begin();
3157 if (!VNI
->isPHIDef()) {
3158 MI
= Indexes
->getInstructionFromIndex(VNI
->def
);
3159 if (!VNI
->def
.isEarlyClobber()) {
3160 // No need to check the instruction defining VNI for reads.
3164 assert(!SlotIndex::isSameInstr(VNI
->def
, TaintExtent
.front().first
) &&
3165 "Interference ends on VNI->def. Should have been handled earlier");
3166 MachineInstr
*LastMI
=
3167 Indexes
->getInstructionFromIndex(TaintExtent
.front().first
);
3168 assert(LastMI
&& "Range must end at a proper instruction");
3169 unsigned TaintNum
= 0;
3171 assert(MI
!= MBB
->end() && "Bad LastMI");
3172 if (usesLanes(*MI
, Other
.Reg
, Other
.SubIdx
, TaintedLanes
)) {
3173 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI
);
3176 // LastMI is the last instruction to use the current value.
3177 if (&*MI
== LastMI
) {
3178 if (++TaintNum
== TaintExtent
.size())
3180 LastMI
= Indexes
->getInstructionFromIndex(TaintExtent
[TaintNum
].first
);
3181 assert(LastMI
&& "Range must end at a proper instruction");
3182 TaintedLanes
= TaintExtent
[TaintNum
].second
;
3187 // The tainted lanes are unused.
3188 V
.Resolution
= CR_Replace
;
3194 bool JoinVals::isPrunedValue(unsigned ValNo
, JoinVals
&Other
) {
3195 Val
&V
= Vals
[ValNo
];
3196 if (V
.Pruned
|| V
.PrunedComputed
)
3199 if (V
.Resolution
!= CR_Erase
&& V
.Resolution
!= CR_Merge
)
3202 // Follow copies up the dominator tree and check if any intermediate value
3204 V
.PrunedComputed
= true;
3205 V
.Pruned
= Other
.isPrunedValue(V
.OtherVNI
->id
, *this);
3209 void JoinVals::pruneValues(JoinVals
&Other
,
3210 SmallVectorImpl
<SlotIndex
> &EndPoints
,
3211 bool changeInstrs
) {
3212 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3213 SlotIndex Def
= LR
.getValNumInfo(i
)->def
;
3214 switch (Vals
[i
].Resolution
) {
3218 // This value takes precedence over the value in Other.LR.
3219 LIS
->pruneValue(Other
.LR
, Def
, &EndPoints
);
3220 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3221 // instructions are only inserted to provide a live-out value for PHI
3222 // predecessors, so the instruction should simply go away once its value
3223 // has been replaced.
3224 Val
&OtherV
= Other
.Vals
[Vals
[i
].OtherVNI
->id
];
3225 bool EraseImpDef
= OtherV
.ErasableImplicitDef
&&
3226 OtherV
.Resolution
== CR_Keep
;
3227 if (!Def
.isBlock()) {
3229 // Remove <def,read-undef> flags. This def is now a partial redef.
3230 // Also remove dead flags since the joined live range will
3231 // continue past this instruction.
3232 for (MachineOperand
&MO
:
3233 Indexes
->getInstructionFromIndex(Def
)->operands()) {
3234 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == Reg
) {
3235 if (MO
.getSubReg() != 0 && MO
.isUndef() && !EraseImpDef
)
3236 MO
.setIsUndef(false);
3237 MO
.setIsDead(false);
3241 // This value will reach instructions below, but we need to make sure
3242 // the live range also reaches the instruction at Def.
3244 EndPoints
.push_back(Def
);
3246 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other
.Reg
) << " at " << Def
3247 << ": " << Other
.LR
<< '\n');
3252 if (isPrunedValue(i
, Other
)) {
3253 // This value is ultimately a copy of a pruned value in LR or Other.LR.
3254 // We can no longer trust the value mapping computed by
3255 // computeAssignment(), the value that was originally copied could have
3257 LIS
->pruneValue(LR
, Def
, &EndPoints
);
3258 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg
) << " at "
3259 << Def
<< ": " << LR
<< '\n');
3264 llvm_unreachable("Unresolved conflicts");
3269 // Check if the segment consists of a copied live-through value (i.e. the copy
3270 // in the block only extended the liveness, of an undef value which we may need
3272 static bool isLiveThrough(const LiveQueryResult Q
) {
3273 return Q
.valueIn() && Q
.valueIn()->isPHIDef() && Q
.valueIn() == Q
.valueOut();
3276 /// Consider the following situation when coalescing the copy between
3277 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3279 /// Main range Subrange 0004 (sub2)
3281 /// 544 %45 = COPY %28 + +
3284 /// 624 = %45.sub2 | v2 | v2
3285 /// 800 %31 = COPY %45 + + + +
3287 /// 816 %31.sub1 = ... + |
3288 /// 880 %30 = COPY %31 | v1 +
3289 /// 928 %45 = COPY %30 | + +
3290 /// | | v0 | v0 <--+
3291 /// 992B ; backedge -> bb.1 | + + |
3292 /// 1040 = %31.sub0 + |
3293 /// This value must remain
3296 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3297 /// redundant, since it copies the value from %45 back into it. The
3298 /// conflict resolution for the main range determines that %45.v0 is
3299 /// to be erased, which is ok since %31.v1 is identical to it.
3300 /// The problem happens with the subrange for sub2: it has to be live
3301 /// on exit from the block, but since 928 was actually a point of
3302 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3303 /// to that definition. As a result, when 928 was erased, the value v0
3304 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3305 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3306 /// providing an incorrect value to the use at 624.
3308 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3309 /// identical, the corresponding values in subranges must also be the
3310 /// same. A redundant copy is removed because it's not needed, and not
3311 /// because it copied an undefined value, so any liveness that originated
3312 /// from that copy cannot disappear. When pruning a value that started
3313 /// at the removed copy, the corresponding identical value must be
3314 /// extended to replace it.
3315 void JoinVals::pruneSubRegValues(LiveInterval
&LI
, LaneBitmask
&ShrinkMask
) {
3316 // Look for values being erased.
3317 bool DidPrune
= false;
3318 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3320 // We should trigger in all cases in which eraseInstrs() does something.
3321 // match what eraseInstrs() is doing, print a message so
3322 if (V
.Resolution
!= CR_Erase
&&
3323 (V
.Resolution
!= CR_Keep
|| !V
.ErasableImplicitDef
|| !V
.Pruned
))
3326 // Check subranges at the point where the copy will be removed.
3327 SlotIndex Def
= LR
.getValNumInfo(i
)->def
;
3330 OtherDef
= V
.OtherVNI
->def
;
3332 // Print message so mismatches with eraseInstrs() can be diagnosed.
3333 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3335 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
3336 LiveQueryResult Q
= S
.Query(Def
);
3338 // If a subrange starts at the copy then an undefined value has been
3339 // copied and we must remove that subrange value as well.
3340 VNInfo
*ValueOut
= Q
.valueOutOrDead();
3341 if (ValueOut
!= nullptr && (Q
.valueIn() == nullptr ||
3342 (V
.Identical
&& V
.Resolution
== CR_Erase
&&
3343 ValueOut
->def
== Def
))) {
3344 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S
.LaneMask
)
3345 << " at " << Def
<< "\n");
3346 SmallVector
<SlotIndex
,8> EndPoints
;
3347 LIS
->pruneValue(S
, Def
, &EndPoints
);
3349 // Mark value number as unused.
3350 ValueOut
->markUnused();
3352 if (V
.Identical
&& S
.Query(OtherDef
).valueOutOrDead()) {
3353 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3354 // then we can't simply prune V from S. V needs to be replaced
3356 LIS
->extendToIndices(S
, EndPoints
);
3359 // We may need to eliminate the subrange if the copy introduced a live
3361 if (ValueOut
->isPHIDef())
3362 ShrinkMask
|= S
.LaneMask
;
3366 // If a subrange ends at the copy, then a value was copied but only
3367 // partially used later. Shrink the subregister range appropriately.
3369 // Ultimately this calls shrinkToUses, so assuming ShrinkMask is
3370 // conservatively correct.
3371 if ((Q
.valueIn() != nullptr && Q
.valueOut() == nullptr) ||
3372 (V
.Resolution
== CR_Erase
&& isLiveThrough(Q
))) {
3373 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3374 << PrintLaneMask(S
.LaneMask
) << " at " << Def
3376 ShrinkMask
|= S
.LaneMask
;
3381 LI
.removeEmptySubRanges();
3384 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3385 static bool isDefInSubRange(LiveInterval
&LI
, SlotIndex Def
) {
3386 for (LiveInterval::SubRange
&SR
: LI
.subranges()) {
3387 if (VNInfo
*VNI
= SR
.Query(Def
).valueOutOrDead())
3388 if (VNI
->def
== Def
)
3394 void JoinVals::pruneMainSegments(LiveInterval
&LI
, bool &ShrinkMainRange
) {
3395 assert(&static_cast<LiveRange
&>(LI
) == &LR
);
3397 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3398 if (Vals
[i
].Resolution
!= CR_Keep
)
3400 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3401 if (VNI
->isUnused() || VNI
->isPHIDef() || isDefInSubRange(LI
, VNI
->def
))
3403 Vals
[i
].Pruned
= true;
3404 ShrinkMainRange
= true;
3408 void JoinVals::removeImplicitDefs() {
3409 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3411 if (V
.Resolution
!= CR_Keep
|| !V
.ErasableImplicitDef
|| !V
.Pruned
)
3414 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3416 LR
.removeValNo(VNI
);
3420 void JoinVals::eraseInstrs(SmallPtrSetImpl
<MachineInstr
*> &ErasedInstrs
,
3421 SmallVectorImpl
<Register
> &ShrinkRegs
,
3423 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3424 // Get the def location before markUnused() below invalidates it.
3425 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3426 SlotIndex Def
= VNI
->def
;
3427 switch (Vals
[i
].Resolution
) {
3429 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3430 // longer. The IMPLICIT_DEF instructions are only inserted by
3431 // PHIElimination to guarantee that all PHI predecessors have a value.
3432 if (!Vals
[i
].ErasableImplicitDef
|| !Vals
[i
].Pruned
)
3434 // Remove value number i from LR.
3435 // For intervals with subranges, removing a segment from the main range
3436 // may require extending the previous segment: for each definition of
3437 // a subregister, there will be a corresponding def in the main range.
3438 // That def may fall in the middle of a segment from another subrange.
3439 // In such cases, removing this def from the main range must be
3440 // complemented by extending the main range to account for the liveness
3441 // of the other subrange.
3442 // The new end point of the main range segment to be extended.
3444 if (LI
!= nullptr) {
3445 LiveRange::iterator I
= LR
.FindSegmentContaining(Def
);
3446 assert(I
!= LR
.end());
3447 // Do not extend beyond the end of the segment being removed.
3448 // The segment may have been pruned in preparation for joining
3453 LR
.removeValNo(VNI
);
3454 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3455 // make it appear like an unused value number.
3458 if (LI
!= nullptr && LI
->hasSubRanges()) {
3459 assert(static_cast<LiveRange
*>(LI
) == &LR
);
3460 // Determine the end point based on the subrange information:
3461 // minimum of (earliest def of next segment,
3462 // latest end point of containing segment)
3464 for (LiveInterval::SubRange
&SR
: LI
->subranges()) {
3465 LiveRange::iterator I
= SR
.find(Def
);
3469 ED
= ED
.isValid() ? std::min(ED
, I
->start
) : I
->start
;
3471 LE
= LE
.isValid() ? std::max(LE
, I
->end
) : I
->end
;
3474 NewEnd
= std::min(NewEnd
, LE
);
3476 NewEnd
= std::min(NewEnd
, ED
);
3478 // We only want to do the extension if there was a subrange that
3479 // was live across Def.
3481 LiveRange::iterator S
= LR
.find(Def
);
3482 if (S
!= LR
.begin())
3483 std::prev(S
)->end
= NewEnd
;
3487 dbgs() << "\t\tremoved " << i
<< '@' << Def
<< ": " << LR
<< '\n';
3489 dbgs() << "\t\t LHS = " << *LI
<< '\n';
3495 MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Def
);
3496 assert(MI
&& "No instruction to erase");
3498 Register Reg
= MI
->getOperand(1).getReg();
3499 if (Reg
.isVirtual() && Reg
!= CP
.getSrcReg() && Reg
!= CP
.getDstReg())
3500 ShrinkRegs
.push_back(Reg
);
3502 ErasedInstrs
.insert(MI
);
3503 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def
<< '\t' << *MI
);
3504 LIS
->RemoveMachineInstrFromMaps(*MI
);
3505 MI
->eraseFromParent();
3514 void RegisterCoalescer::joinSubRegRanges(LiveRange
&LRange
, LiveRange
&RRange
,
3515 LaneBitmask LaneMask
,
3516 const CoalescerPair
&CP
) {
3517 SmallVector
<VNInfo
*, 16> NewVNInfo
;
3518 JoinVals
RHSVals(RRange
, CP
.getSrcReg(), CP
.getSrcIdx(), LaneMask
,
3519 NewVNInfo
, CP
, LIS
, TRI
, true, true);
3520 JoinVals
LHSVals(LRange
, CP
.getDstReg(), CP
.getDstIdx(), LaneMask
,
3521 NewVNInfo
, CP
, LIS
, TRI
, true, true);
3523 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3524 // We should be able to resolve all conflicts here as we could successfully do
3525 // it on the mainrange already. There is however a problem when multiple
3526 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3528 if (!LHSVals
.mapValues(RHSVals
) || !RHSVals
.mapValues(LHSVals
)) {
3529 // We already determined that it is legal to merge the intervals, so this
3530 // should never fail.
3531 llvm_unreachable("*** Couldn't join subrange!\n");
3533 if (!LHSVals
.resolveConflicts(RHSVals
) ||
3534 !RHSVals
.resolveConflicts(LHSVals
)) {
3535 // We already determined that it is legal to merge the intervals, so this
3536 // should never fail.
3537 llvm_unreachable("*** Couldn't join subrange!\n");
3540 // The merging algorithm in LiveInterval::join() can't handle conflicting
3541 // value mappings, so we need to remove any live ranges that overlap a
3542 // CR_Replace resolution. Collect a set of end points that can be used to
3543 // restore the live range after joining.
3544 SmallVector
<SlotIndex
, 8> EndPoints
;
3545 LHSVals
.pruneValues(RHSVals
, EndPoints
, false);
3546 RHSVals
.pruneValues(LHSVals
, EndPoints
, false);
3548 LHSVals
.removeImplicitDefs();
3549 RHSVals
.removeImplicitDefs();
3554 // Join RRange into LHS.
3555 LRange
.join(RRange
, LHSVals
.getAssignments(), RHSVals
.getAssignments(),
3558 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask
)
3559 << ' ' << LRange
<< "\n");
3560 if (EndPoints
.empty())
3563 // Recompute the parts of the live range we had to remove because of
3564 // CR_Replace conflicts.
3566 dbgs() << "\t\trestoring liveness to " << EndPoints
.size() << " points: ";
3567 for (unsigned i
= 0, n
= EndPoints
.size(); i
!= n
; ++i
) {
3568 dbgs() << EndPoints
[i
];
3572 dbgs() << ": " << LRange
<< '\n';
3574 LIS
->extendToIndices(LRange
, EndPoints
);
3577 void RegisterCoalescer::mergeSubRangeInto(LiveInterval
&LI
,
3578 const LiveRange
&ToMerge
,
3579 LaneBitmask LaneMask
,
3581 unsigned ComposeSubRegIdx
) {
3582 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
3584 Allocator
, LaneMask
,
3585 [this, &Allocator
, &ToMerge
, &CP
](LiveInterval::SubRange
&SR
) {
3587 SR
.assign(ToMerge
, Allocator
);
3589 // joinSubRegRange() destroys the merged range, so we need a copy.
3590 LiveRange
RangeCopy(ToMerge
, Allocator
);
3591 joinSubRegRanges(SR
, RangeCopy
, SR
.LaneMask
, CP
);
3594 *LIS
->getSlotIndexes(), *TRI
, ComposeSubRegIdx
);
3597 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval
&LI
) {
3598 if (LI
.valnos
.size() < LargeIntervalSizeThreshold
)
3600 auto &Counter
= LargeLIVisitCounter
[LI
.reg()];
3601 if (Counter
< LargeIntervalFreqThreshold
) {
3608 bool RegisterCoalescer::joinVirtRegs(CoalescerPair
&CP
) {
3609 SmallVector
<VNInfo
*, 16> NewVNInfo
;
3610 LiveInterval
&RHS
= LIS
->getInterval(CP
.getSrcReg());
3611 LiveInterval
&LHS
= LIS
->getInterval(CP
.getDstReg());
3612 bool TrackSubRegLiveness
= MRI
->shouldTrackSubRegLiveness(*CP
.getNewRC());
3613 JoinVals
RHSVals(RHS
, CP
.getSrcReg(), CP
.getSrcIdx(), LaneBitmask::getNone(),
3614 NewVNInfo
, CP
, LIS
, TRI
, false, TrackSubRegLiveness
);
3615 JoinVals
LHSVals(LHS
, CP
.getDstReg(), CP
.getDstIdx(), LaneBitmask::getNone(),
3616 NewVNInfo
, CP
, LIS
, TRI
, false, TrackSubRegLiveness
);
3618 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS
<< "\n\t\tLHS = " << LHS
<< '\n');
3620 if (isHighCostLiveInterval(LHS
) || isHighCostLiveInterval(RHS
))
3623 // First compute NewVNInfo and the simple value mappings.
3624 // Detect impossible conflicts early.
3625 if (!LHSVals
.mapValues(RHSVals
) || !RHSVals
.mapValues(LHSVals
))
3628 // Some conflicts can only be resolved after all values have been mapped.
3629 if (!LHSVals
.resolveConflicts(RHSVals
) || !RHSVals
.resolveConflicts(LHSVals
))
3632 // All clear, the live ranges can be merged.
3633 if (RHS
.hasSubRanges() || LHS
.hasSubRanges()) {
3634 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
3636 // Transform lanemasks from the LHS to masks in the coalesced register and
3637 // create initial subranges if necessary.
3638 unsigned DstIdx
= CP
.getDstIdx();
3639 if (!LHS
.hasSubRanges()) {
3640 LaneBitmask Mask
= DstIdx
== 0 ? CP
.getNewRC()->getLaneMask()
3641 : TRI
->getSubRegIndexLaneMask(DstIdx
);
3642 // LHS must support subregs or we wouldn't be in this codepath.
3644 LHS
.createSubRangeFrom(Allocator
, Mask
, LHS
);
3645 } else if (DstIdx
!= 0) {
3646 // Transform LHS lanemasks to new register class if necessary.
3647 for (LiveInterval::SubRange
&R
: LHS
.subranges()) {
3648 LaneBitmask Mask
= TRI
->composeSubRegIndexLaneMask(DstIdx
, R
.LaneMask
);
3652 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP
.getDstReg()) << ' ' << LHS
3655 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3656 unsigned SrcIdx
= CP
.getSrcIdx();
3657 if (!RHS
.hasSubRanges()) {
3658 LaneBitmask Mask
= SrcIdx
== 0 ? CP
.getNewRC()->getLaneMask()
3659 : TRI
->getSubRegIndexLaneMask(SrcIdx
);
3660 mergeSubRangeInto(LHS
, RHS
, Mask
, CP
, DstIdx
);
3662 // Pair up subranges and merge.
3663 for (LiveInterval::SubRange
&R
: RHS
.subranges()) {
3664 LaneBitmask Mask
= TRI
->composeSubRegIndexLaneMask(SrcIdx
, R
.LaneMask
);
3665 mergeSubRangeInto(LHS
, R
, Mask
, CP
, DstIdx
);
3668 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS
<< "\n");
3670 // Pruning implicit defs from subranges may result in the main range
3671 // having stale segments.
3672 LHSVals
.pruneMainSegments(LHS
, ShrinkMainRange
);
3674 LHSVals
.pruneSubRegValues(LHS
, ShrinkMask
);
3675 RHSVals
.pruneSubRegValues(LHS
, ShrinkMask
);
3678 // The merging algorithm in LiveInterval::join() can't handle conflicting
3679 // value mappings, so we need to remove any live ranges that overlap a
3680 // CR_Replace resolution. Collect a set of end points that can be used to
3681 // restore the live range after joining.
3682 SmallVector
<SlotIndex
, 8> EndPoints
;
3683 LHSVals
.pruneValues(RHSVals
, EndPoints
, true);
3684 RHSVals
.pruneValues(LHSVals
, EndPoints
, true);
3686 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3687 // registers to require trimming.
3688 SmallVector
<Register
, 8> ShrinkRegs
;
3689 LHSVals
.eraseInstrs(ErasedInstrs
, ShrinkRegs
, &LHS
);
3690 RHSVals
.eraseInstrs(ErasedInstrs
, ShrinkRegs
);
3691 while (!ShrinkRegs
.empty())
3692 shrinkToUses(&LIS
->getInterval(ShrinkRegs
.pop_back_val()));
3694 // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3695 checkMergingChangesDbgValues(CP
, LHS
, LHSVals
, RHS
, RHSVals
);
3697 // If the RHS covers any PHI locations that were tracked for debug-info, we
3698 // must update tracking information to reflect the join.
3699 auto RegIt
= RegToPHIIdx
.find(CP
.getSrcReg());
3700 if (RegIt
!= RegToPHIIdx
.end()) {
3701 // Iterate over all the debug instruction numbers assigned this register.
3702 for (unsigned InstID
: RegIt
->second
) {
3703 auto PHIIt
= PHIValToPos
.find(InstID
);
3704 assert(PHIIt
!= PHIValToPos
.end());
3705 const SlotIndex
&SI
= PHIIt
->second
.SI
;
3707 // Does the RHS cover the position of this PHI?
3708 auto LII
= RHS
.find(SI
);
3709 if (LII
== RHS
.end() || LII
->start
> SI
)
3712 // Accept two kinds of subregister movement:
3713 // * When we merge from one register class into a larger register:
3714 // %1:gr16 = some-inst
3716 // %2:gr32.sub_16bit = some-inst
3717 // * When the PHI is already in a subregister, and the larger class
3719 // %2:gr32.sub_16bit = some-inst
3720 // %3:gr32 = COPY %2
3722 // %3:gr32.sub_16bit = some-inst
3723 // Test for subregister move:
3724 if (CP
.getSrcIdx() != 0 || CP
.getDstIdx() != 0)
3725 // If we're moving between different subregisters, ignore this join.
3726 // The PHI will not get a location, dropping variable locations.
3727 if (PHIIt
->second
.SubReg
&& PHIIt
->second
.SubReg
!= CP
.getSrcIdx())
3730 // Update our tracking of where the PHI is.
3731 PHIIt
->second
.Reg
= CP
.getDstReg();
3733 // If we merge into a sub-register of a larger class (test above),
3735 if (CP
.getSrcIdx() != 0)
3736 PHIIt
->second
.SubReg
= CP
.getSrcIdx();
3739 // Rebuild the register index in RegToPHIIdx to account for PHIs tracking
3740 // different VRegs now. Copy old collection of debug instruction numbers and
3741 // erase the old one:
3742 auto InstrNums
= RegIt
->second
;
3743 RegToPHIIdx
.erase(RegIt
);
3745 // There might already be PHIs being tracked in the destination VReg. Insert
3746 // into an existing tracking collection, or insert a new one.
3747 RegIt
= RegToPHIIdx
.find(CP
.getDstReg());
3748 if (RegIt
!= RegToPHIIdx
.end())
3749 RegIt
->second
.insert(RegIt
->second
.end(), InstrNums
.begin(),
3752 RegToPHIIdx
.insert({CP
.getDstReg(), InstrNums
});
3755 // Join RHS into LHS.
3756 LHS
.join(RHS
, LHSVals
.getAssignments(), RHSVals
.getAssignments(), NewVNInfo
);
3758 // Kill flags are going to be wrong if the live ranges were overlapping.
3759 // Eventually, we should simply clear all kill flags when computing live
3760 // ranges. They are reinserted after register allocation.
3761 MRI
->clearKillFlags(LHS
.reg());
3762 MRI
->clearKillFlags(RHS
.reg());
3764 if (!EndPoints
.empty()) {
3765 // Recompute the parts of the live range we had to remove because of
3766 // CR_Replace conflicts.
3768 dbgs() << "\t\trestoring liveness to " << EndPoints
.size() << " points: ";
3769 for (unsigned i
= 0, n
= EndPoints
.size(); i
!= n
; ++i
) {
3770 dbgs() << EndPoints
[i
];
3774 dbgs() << ": " << LHS
<< '\n';
3776 LIS
->extendToIndices((LiveRange
&)LHS
, EndPoints
);
3782 bool RegisterCoalescer::joinIntervals(CoalescerPair
&CP
) {
3783 return CP
.isPhys() ? joinReservedPhysReg(CP
) : joinVirtRegs(CP
);
3786 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction
&MF
)
3788 const SlotIndexes
&Slots
= *LIS
->getSlotIndexes();
3789 SmallVector
<MachineInstr
*, 8> ToInsert
;
3791 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3792 // vreg => DbgValueLoc map.
3793 auto CloseNewDVRange
= [this, &ToInsert
](SlotIndex Slot
) {
3794 for (auto *X
: ToInsert
) {
3795 for (const auto &Op
: X
->debug_operands()) {
3796 if (Op
.isReg() && Op
.getReg().isVirtual())
3797 DbgVRegToValues
[Op
.getReg()].push_back({Slot
, X
});
3804 // Iterate over all instructions, collecting them into the ToInsert vector.
3805 // Once a non-debug instruction is found, record the slot index of the
3806 // collected DBG_VALUEs.
3807 for (auto &MBB
: MF
) {
3808 SlotIndex CurrentSlot
= Slots
.getMBBStartIdx(&MBB
);
3810 for (auto &MI
: MBB
) {
3811 if (MI
.isDebugValue()) {
3812 if (any_of(MI
.debug_operands(), [](const MachineOperand
&MO
) {
3813 return MO
.isReg() && MO
.getReg().isVirtual();
3815 ToInsert
.push_back(&MI
);
3816 } else if (!MI
.isDebugOrPseudoInstr()) {
3817 CurrentSlot
= Slots
.getInstructionIndex(MI
);
3818 CloseNewDVRange(CurrentSlot
);
3822 // Close range of DBG_VALUEs at the end of blocks.
3823 CloseNewDVRange(Slots
.getMBBEndIdx(&MBB
));
3826 // Sort all DBG_VALUEs we've seen by slot number.
3827 for (auto &Pair
: DbgVRegToValues
)
3828 llvm::sort(Pair
.second
);
3831 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair
&CP
,
3835 JoinVals
&RHSVals
) {
3836 auto ScanForDstReg
= [&](Register Reg
) {
3837 checkMergingChangesDbgValuesImpl(Reg
, RHS
, LHS
, LHSVals
);
3840 auto ScanForSrcReg
= [&](Register Reg
) {
3841 checkMergingChangesDbgValuesImpl(Reg
, LHS
, RHS
, RHSVals
);
3844 // Scan for unsound updates of both the source and destination register.
3845 ScanForSrcReg(CP
.getSrcReg());
3846 ScanForDstReg(CP
.getDstReg());
3849 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg
,
3852 JoinVals
&RegVals
) {
3853 // Are there any DBG_VALUEs to examine?
3854 auto VRegMapIt
= DbgVRegToValues
.find(Reg
);
3855 if (VRegMapIt
== DbgVRegToValues
.end())
3858 auto &DbgValueSet
= VRegMapIt
->second
;
3859 auto DbgValueSetIt
= DbgValueSet
.begin();
3860 auto SegmentIt
= OtherLR
.begin();
3862 bool LastUndefResult
= false;
3863 SlotIndex LastUndefIdx
;
3865 // If the "Other" register is live at a slot Idx, test whether Reg can
3866 // safely be merged with it, or should be marked undef.
3867 auto ShouldUndef
= [&RegVals
, &RegLR
, &LastUndefResult
,
3868 &LastUndefIdx
](SlotIndex Idx
) -> bool {
3869 // Our worst-case performance typically happens with asan, causing very
3870 // many DBG_VALUEs of the same location. Cache a copy of the most recent
3871 // result for this edge-case.
3872 if (LastUndefIdx
== Idx
)
3873 return LastUndefResult
;
3875 // If the other range was live, and Reg's was not, the register coalescer
3876 // will not have tried to resolve any conflicts. We don't know whether
3877 // the DBG_VALUE will refer to the same value number, so it must be made
3879 auto OtherIt
= RegLR
.find(Idx
);
3880 if (OtherIt
== RegLR
.end())
3883 // Both the registers were live: examine the conflict resolution record for
3884 // the value number Reg refers to. CR_Keep meant that this value number
3885 // "won" and the merged register definitely refers to that value. CR_Erase
3886 // means the value number was a redundant copy of the other value, which
3887 // was coalesced and Reg deleted. It's safe to refer to the other register
3888 // (which will be the source of the copy).
3889 auto Resolution
= RegVals
.getResolution(OtherIt
->valno
->id
);
3890 LastUndefResult
= Resolution
!= JoinVals::CR_Keep
&&
3891 Resolution
!= JoinVals::CR_Erase
;
3893 return LastUndefResult
;
3896 // Iterate over both the live-range of the "Other" register, and the set of
3897 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3898 // slot index. This relies on the DbgValueSet being ordered.
3899 while (DbgValueSetIt
!= DbgValueSet
.end() && SegmentIt
!= OtherLR
.end()) {
3900 if (DbgValueSetIt
->first
< SegmentIt
->end
) {
3901 // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3903 if (DbgValueSetIt
->first
>= SegmentIt
->start
) {
3904 bool HasReg
= DbgValueSetIt
->second
->hasDebugOperandForReg(Reg
);
3905 bool ShouldUndefReg
= ShouldUndef(DbgValueSetIt
->first
);
3906 if (HasReg
&& ShouldUndefReg
) {
3907 // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3908 DbgValueSetIt
->second
->setDebugValueUndef();
3921 /// Information concerning MBB coalescing priority.
3922 struct MBBPriorityInfo
{
3923 MachineBasicBlock
*MBB
;
3927 MBBPriorityInfo(MachineBasicBlock
*mbb
, unsigned depth
, bool issplit
)
3928 : MBB(mbb
), Depth(depth
), IsSplit(issplit
) {}
3931 } // end anonymous namespace
3933 /// C-style comparator that sorts first based on the loop depth of the basic
3934 /// block (the unsigned), and then on the MBB number.
3936 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3937 static int compareMBBPriority(const MBBPriorityInfo
*LHS
,
3938 const MBBPriorityInfo
*RHS
) {
3939 // Deeper loops first
3940 if (LHS
->Depth
!= RHS
->Depth
)
3941 return LHS
->Depth
> RHS
->Depth
? -1 : 1;
3943 // Try to unsplit critical edges next.
3944 if (LHS
->IsSplit
!= RHS
->IsSplit
)
3945 return LHS
->IsSplit
? -1 : 1;
3947 // Prefer blocks that are more connected in the CFG. This takes care of
3948 // the most difficult copies first while intervals are short.
3949 unsigned cl
= LHS
->MBB
->pred_size() + LHS
->MBB
->succ_size();
3950 unsigned cr
= RHS
->MBB
->pred_size() + RHS
->MBB
->succ_size();
3952 return cl
> cr
? -1 : 1;
3954 // As a last resort, sort by block number.
3955 return LHS
->MBB
->getNumber() < RHS
->MBB
->getNumber() ? -1 : 1;
3958 /// \returns true if the given copy uses or defines a local live range.
3959 static bool isLocalCopy(MachineInstr
*Copy
, const LiveIntervals
*LIS
) {
3960 if (!Copy
->isCopy())
3963 if (Copy
->getOperand(1).isUndef())
3966 Register SrcReg
= Copy
->getOperand(1).getReg();
3967 Register DstReg
= Copy
->getOperand(0).getReg();
3968 if (SrcReg
.isPhysical() || DstReg
.isPhysical())
3971 return LIS
->intervalIsInOneMBB(LIS
->getInterval(SrcReg
))
3972 || LIS
->intervalIsInOneMBB(LIS
->getInterval(DstReg
));
3975 void RegisterCoalescer::lateLiveIntervalUpdate() {
3976 for (Register reg
: ToBeUpdated
) {
3977 if (!LIS
->hasInterval(reg
))
3979 LiveInterval
&LI
= LIS
->getInterval(reg
);
3980 shrinkToUses(&LI
, &DeadDefs
);
3981 if (!DeadDefs
.empty())
3982 eliminateDeadDefs();
3984 ToBeUpdated
.clear();
3987 bool RegisterCoalescer::
3988 copyCoalesceWorkList(MutableArrayRef
<MachineInstr
*> CurrList
) {
3989 bool Progress
= false;
3990 SmallPtrSet
<MachineInstr
*, 4> CurrentErasedInstrs
;
3991 for (MachineInstr
*&MI
: CurrList
) {
3994 // Skip instruction pointers that have already been erased, for example by
3995 // dead code elimination.
3996 if (ErasedInstrs
.count(MI
) || CurrentErasedInstrs
.count(MI
)) {
4001 bool Success
= joinCopy(MI
, Again
, CurrentErasedInstrs
);
4002 Progress
|= Success
;
4003 if (Success
|| !Again
)
4006 // Clear instructions not recorded in `ErasedInstrs` but erased.
4007 if (!CurrentErasedInstrs
.empty()) {
4008 for (MachineInstr
*&MI
: CurrList
) {
4009 if (MI
&& CurrentErasedInstrs
.count(MI
))
4012 for (MachineInstr
*&MI
: WorkList
) {
4013 if (MI
&& CurrentErasedInstrs
.count(MI
))
4020 /// Check if DstReg is a terminal node.
4021 /// I.e., it does not have any affinity other than \p Copy.
4022 static bool isTerminalReg(Register DstReg
, const MachineInstr
&Copy
,
4023 const MachineRegisterInfo
*MRI
) {
4024 assert(Copy
.isCopyLike());
4025 // Check if the destination of this copy as any other affinity.
4026 for (const MachineInstr
&MI
: MRI
->reg_nodbg_instructions(DstReg
))
4027 if (&MI
!= &Copy
&& MI
.isCopyLike())
4032 bool RegisterCoalescer::applyTerminalRule(const MachineInstr
&Copy
) const {
4033 assert(Copy
.isCopyLike());
4034 if (!UseTerminalRule
)
4036 Register SrcReg
, DstReg
;
4037 unsigned SrcSubReg
= 0, DstSubReg
= 0;
4038 if (!isMoveInstr(*TRI
, &Copy
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
))
4040 // Check if the destination of this copy has any other affinity.
4041 if (DstReg
.isPhysical() ||
4042 // If SrcReg is a physical register, the copy won't be coalesced.
4043 // Ignoring it may have other side effect (like missing
4044 // rematerialization). So keep it.
4045 SrcReg
.isPhysical() || !isTerminalReg(DstReg
, Copy
, MRI
))
4048 // DstReg is a terminal node. Check if it interferes with any other
4049 // copy involving SrcReg.
4050 const MachineBasicBlock
*OrigBB
= Copy
.getParent();
4051 const LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
4052 for (const MachineInstr
&MI
: MRI
->reg_nodbg_instructions(SrcReg
)) {
4053 // Technically we should check if the weight of the new copy is
4054 // interesting compared to the other one and update the weight
4055 // of the copies accordingly. However, this would only work if
4056 // we would gather all the copies first then coalesce, whereas
4057 // right now we interleave both actions.
4058 // For now, just consider the copies that are in the same block.
4059 if (&MI
== &Copy
|| !MI
.isCopyLike() || MI
.getParent() != OrigBB
)
4061 Register OtherSrcReg
, OtherReg
;
4062 unsigned OtherSrcSubReg
= 0, OtherSubReg
= 0;
4063 if (!isMoveInstr(*TRI
, &Copy
, OtherSrcReg
, OtherReg
, OtherSrcSubReg
,
4066 if (OtherReg
== SrcReg
)
4067 OtherReg
= OtherSrcReg
;
4068 // Check if OtherReg is a non-terminal.
4069 if (OtherReg
.isPhysical() || isTerminalReg(OtherReg
, MI
, MRI
))
4071 // Check that OtherReg interfere with DstReg.
4072 if (LIS
->getInterval(OtherReg
).overlaps(DstLI
)) {
4073 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg
)
4082 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock
*MBB
) {
4083 LLVM_DEBUG(dbgs() << MBB
->getName() << ":\n");
4085 // Collect all copy-like instructions in MBB. Don't start coalescing anything
4086 // yet, it might invalidate the iterator.
4087 const unsigned PrevSize
= WorkList
.size();
4088 if (JoinGlobalCopies
) {
4089 SmallVector
<MachineInstr
*, 2> LocalTerminals
;
4090 SmallVector
<MachineInstr
*, 2> GlobalTerminals
;
4091 // Coalesce copies bottom-up to coalesce local defs before local uses. They
4092 // are not inherently easier to resolve, but slightly preferable until we
4093 // have local live range splitting. In particular this is required by
4094 // cmp+jmp macro fusion.
4095 for (MachineInstr
&MI
: *MBB
) {
4096 if (!MI
.isCopyLike())
4098 bool ApplyTerminalRule
= applyTerminalRule(MI
);
4099 if (isLocalCopy(&MI
, LIS
)) {
4100 if (ApplyTerminalRule
)
4101 LocalTerminals
.push_back(&MI
);
4103 LocalWorkList
.push_back(&MI
);
4105 if (ApplyTerminalRule
)
4106 GlobalTerminals
.push_back(&MI
);
4108 WorkList
.push_back(&MI
);
4111 // Append the copies evicted by the terminal rule at the end of the list.
4112 LocalWorkList
.append(LocalTerminals
.begin(), LocalTerminals
.end());
4113 WorkList
.append(GlobalTerminals
.begin(), GlobalTerminals
.end());
4116 SmallVector
<MachineInstr
*, 2> Terminals
;
4117 for (MachineInstr
&MII
: *MBB
)
4118 if (MII
.isCopyLike()) {
4119 if (applyTerminalRule(MII
))
4120 Terminals
.push_back(&MII
);
4122 WorkList
.push_back(&MII
);
4124 // Append the copies evicted by the terminal rule at the end of the list.
4125 WorkList
.append(Terminals
.begin(), Terminals
.end());
4127 // Try coalescing the collected copies immediately, and remove the nulls.
4128 // This prevents the WorkList from getting too large since most copies are
4129 // joinable on the first attempt.
4130 MutableArrayRef
<MachineInstr
*>
4131 CurrList(WorkList
.begin() + PrevSize
, WorkList
.end());
4132 if (copyCoalesceWorkList(CurrList
))
4133 WorkList
.erase(std::remove(WorkList
.begin() + PrevSize
, WorkList
.end(),
4134 nullptr), WorkList
.end());
4137 void RegisterCoalescer::coalesceLocals() {
4138 copyCoalesceWorkList(LocalWorkList
);
4139 for (unsigned j
= 0, je
= LocalWorkList
.size(); j
!= je
; ++j
) {
4140 if (LocalWorkList
[j
])
4141 WorkList
.push_back(LocalWorkList
[j
]);
4143 LocalWorkList
.clear();
4146 void RegisterCoalescer::joinAllIntervals() {
4147 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
4148 assert(WorkList
.empty() && LocalWorkList
.empty() && "Old data still around.");
4150 std::vector
<MBBPriorityInfo
> MBBs
;
4151 MBBs
.reserve(MF
->size());
4152 for (MachineBasicBlock
&MBB
: *MF
) {
4153 MBBs
.push_back(MBBPriorityInfo(&MBB
, Loops
->getLoopDepth(&MBB
),
4154 JoinSplitEdges
&& isSplitEdge(&MBB
)));
4156 array_pod_sort(MBBs
.begin(), MBBs
.end(), compareMBBPriority
);
4158 // Coalesce intervals in MBB priority order.
4159 unsigned CurrDepth
= std::numeric_limits
<unsigned>::max();
4160 for (MBBPriorityInfo
&MBB
: MBBs
) {
4161 // Try coalescing the collected local copies for deeper loops.
4162 if (JoinGlobalCopies
&& MBB
.Depth
< CurrDepth
) {
4164 CurrDepth
= MBB
.Depth
;
4166 copyCoalesceInMBB(MBB
.MBB
);
4168 lateLiveIntervalUpdate();
4171 // Joining intervals can allow other intervals to be joined. Iteratively join
4172 // until we make no progress.
4173 while (copyCoalesceWorkList(WorkList
))
4175 lateLiveIntervalUpdate();
4178 void RegisterCoalescer::releaseMemory() {
4179 ErasedInstrs
.clear();
4182 InflateRegs
.clear();
4183 LargeLIVisitCounter
.clear();
4186 bool RegisterCoalescer::runOnMachineFunction(MachineFunction
&fn
) {
4187 LLVM_DEBUG(dbgs() << "********** REGISTER COALESCER **********\n"
4188 << "********** Function: " << fn
.getName() << '\n');
4190 // Variables changed between a setjmp and a longjump can have undefined value
4191 // after the longjmp. This behaviour can be observed if such a variable is
4192 // spilled, so longjmp won't restore the value in the spill slot.
4193 // RegisterCoalescer should not run in functions with a setjmp to avoid
4194 // merging such undefined variables with predictable ones.
4196 // TODO: Could specifically disable coalescing registers live across setjmp
4198 if (fn
.exposesReturnsTwice()) {
4200 dbgs() << "* Skipped as it exposes functions that returns twice.\n");
4205 MRI
= &fn
.getRegInfo();
4206 const TargetSubtargetInfo
&STI
= fn
.getSubtarget();
4207 TRI
= STI
.getRegisterInfo();
4208 TII
= STI
.getInstrInfo();
4209 LIS
= &getAnalysis
<LiveIntervals
>();
4210 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
4211 Loops
= &getAnalysis
<MachineLoopInfo
>();
4212 if (EnableGlobalCopies
== cl::BOU_UNSET
)
4213 JoinGlobalCopies
= STI
.enableJoinGlobalCopies();
4215 JoinGlobalCopies
= (EnableGlobalCopies
== cl::BOU_TRUE
);
4217 // If there are PHIs tracked by debug-info, they will need updating during
4218 // coalescing. Build an index of those PHIs to ease updating.
4219 SlotIndexes
*Slots
= LIS
->getSlotIndexes();
4220 for (const auto &DebugPHI
: MF
->DebugPHIPositions
) {
4221 MachineBasicBlock
*MBB
= DebugPHI
.second
.MBB
;
4222 Register Reg
= DebugPHI
.second
.Reg
;
4223 unsigned SubReg
= DebugPHI
.second
.SubReg
;
4224 SlotIndex SI
= Slots
->getMBBStartIdx(MBB
);
4225 PHIValPos P
= {SI
, Reg
, SubReg
};
4226 PHIValToPos
.insert(std::make_pair(DebugPHI
.first
, P
));
4227 RegToPHIIdx
[Reg
].push_back(DebugPHI
.first
);
4230 // The MachineScheduler does not currently require JoinSplitEdges. This will
4231 // either be enabled unconditionally or replaced by a more general live range
4232 // splitting optimization.
4233 JoinSplitEdges
= EnableJoinSplits
;
4235 if (VerifyCoalescing
)
4236 MF
->verify(this, "Before register coalescing");
4238 DbgVRegToValues
.clear();
4239 buildVRegToDbgValueMap(fn
);
4241 RegClassInfo
.runOnMachineFunction(fn
);
4243 // Join (coalesce) intervals if requested.
4247 // After deleting a lot of copies, register classes may be less constrained.
4248 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4250 array_pod_sort(InflateRegs
.begin(), InflateRegs
.end());
4251 InflateRegs
.erase(std::unique(InflateRegs
.begin(), InflateRegs
.end()),
4253 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs
.size()
4255 for (Register Reg
: InflateRegs
) {
4256 if (MRI
->reg_nodbg_empty(Reg
))
4258 if (MRI
->recomputeRegClass(Reg
)) {
4259 LLVM_DEBUG(dbgs() << printReg(Reg
) << " inflated to "
4260 << TRI
->getRegClassName(MRI
->getRegClass(Reg
)) << '\n');
4263 LiveInterval
&LI
= LIS
->getInterval(Reg
);
4264 if (LI
.hasSubRanges()) {
4265 // If the inflated register class does not support subregisters anymore
4266 // remove the subranges.
4267 if (!MRI
->shouldTrackSubRegLiveness(Reg
)) {
4268 LI
.clearSubRanges();
4271 LaneBitmask MaxMask
= MRI
->getMaxLaneMaskForVReg(Reg
);
4272 // If subranges are still supported, then the same subregs
4273 // should still be supported.
4274 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
4275 assert((S
.LaneMask
& ~MaxMask
).none());
4283 // After coalescing, update any PHIs that are being tracked by debug-info
4284 // with their new VReg locations.
4285 for (auto &p
: MF
->DebugPHIPositions
) {
4286 auto it
= PHIValToPos
.find(p
.first
);
4287 assert(it
!= PHIValToPos
.end());
4288 p
.second
.Reg
= it
->second
.Reg
;
4289 p
.second
.SubReg
= it
->second
.SubReg
;
4292 PHIValToPos
.clear();
4293 RegToPHIIdx
.clear();
4296 if (VerifyCoalescing
)
4297 MF
->verify(this, "After register coalescing");
4301 void RegisterCoalescer::print(raw_ostream
&O
, const Module
* m
) const {