[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / SelectOptimize.cpp
blob9c720864358e090b1a74e8454b8277ad0c50ee30
1 //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts selects to conditional jumps when profitable.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectOptimize.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/BlockFrequencyInfo.h"
17 #include "llvm/Analysis/BranchProbabilityInfo.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/Analysis/ProfileSummaryInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/ProfDataUtils.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/ScaledNumber.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Transforms/Utils/SizeOpts.h"
39 #include <algorithm>
40 #include <memory>
41 #include <queue>
42 #include <stack>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
47 #define DEBUG_TYPE "select-optimize"
49 STATISTIC(NumSelectOptAnalyzed,
50 "Number of select groups considered for conversion to branch");
51 STATISTIC(NumSelectConvertedExpColdOperand,
52 "Number of select groups converted due to expensive cold operand");
53 STATISTIC(NumSelectConvertedHighPred,
54 "Number of select groups converted due to high-predictability");
55 STATISTIC(NumSelectUnPred,
56 "Number of select groups not converted due to unpredictability");
57 STATISTIC(NumSelectColdBB,
58 "Number of select groups not converted due to cold basic block");
59 STATISTIC(NumSelectConvertedLoop,
60 "Number of select groups converted due to loop-level analysis");
61 STATISTIC(NumSelectsConverted, "Number of selects converted");
63 static cl::opt<unsigned> ColdOperandThreshold(
64 "cold-operand-threshold",
65 cl::desc("Maximum frequency of path for an operand to be considered cold."),
66 cl::init(20), cl::Hidden);
68 static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
69 "cold-operand-max-cost-multiplier",
70 cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
71 "slice of a cold operand to be considered inexpensive."),
72 cl::init(1), cl::Hidden);
74 static cl::opt<unsigned>
75 GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
76 cl::desc("Gradient gain threshold (%)."),
77 cl::init(25), cl::Hidden);
79 static cl::opt<unsigned>
80 GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
81 cl::desc("Minimum gain per loop (in cycles) threshold."),
82 cl::init(4), cl::Hidden);
84 static cl::opt<unsigned> GainRelativeThreshold(
85 "select-opti-loop-relative-gain-threshold",
86 cl::desc(
87 "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
88 cl::init(8), cl::Hidden);
90 static cl::opt<unsigned> MispredictDefaultRate(
91 "mispredict-default-rate", cl::Hidden, cl::init(25),
92 cl::desc("Default mispredict rate (initialized to 25%)."));
94 static cl::opt<bool>
95 DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
96 cl::init(false),
97 cl::desc("Disable loop-level heuristics."));
99 namespace {
101 class SelectOptimizeImpl {
102 const TargetMachine *TM = nullptr;
103 const TargetSubtargetInfo *TSI = nullptr;
104 const TargetLowering *TLI = nullptr;
105 const TargetTransformInfo *TTI = nullptr;
106 const LoopInfo *LI = nullptr;
107 BlockFrequencyInfo *BFI;
108 ProfileSummaryInfo *PSI = nullptr;
109 OptimizationRemarkEmitter *ORE = nullptr;
110 TargetSchedModel TSchedModel;
112 public:
113 SelectOptimizeImpl() = default;
114 SelectOptimizeImpl(const TargetMachine *TM) : TM(TM){};
115 PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
116 bool runOnFunction(Function &F, Pass &P);
118 using Scaled64 = ScaledNumber<uint64_t>;
120 struct CostInfo {
121 /// Predicated cost (with selects as conditional moves).
122 Scaled64 PredCost;
123 /// Non-predicated cost (with selects converted to branches).
124 Scaled64 NonPredCost;
127 /// SelectLike is an abstraction over SelectInst and other operations that can
128 /// act like selects. For example Or(Zext(icmp), X) can be treated like
129 /// select(icmp, X|1, X).
130 class SelectLike {
131 SelectLike(Instruction *I) : I(I) {}
133 Instruction *I;
135 public:
136 /// Match a select or select-like instruction, returning a SelectLike.
137 static SelectLike match(Instruction *I) {
138 // Select instruction are what we are usually looking for.
139 if (isa<SelectInst>(I))
140 return SelectLike(I);
142 // An Or(zext(i1 X), Y) can also be treated like a select, with condition
143 // C and values Y|1 and Y.
144 Value *X;
145 if (PatternMatch::match(
146 I, m_c_Or(m_OneUse(m_ZExt(m_Value(X))), m_Value())) &&
147 X->getType()->isIntegerTy(1))
148 return SelectLike(I);
150 return SelectLike(nullptr);
153 bool isValid() { return I; }
154 operator bool() { return isValid(); }
156 Instruction *getI() { return I; }
157 const Instruction *getI() const { return I; }
159 Type *getType() const { return I->getType(); }
161 /// Return the condition for the SelectLike instruction. For example the
162 /// condition of a select or c in `or(zext(c), x)`
163 Value *getCondition() const {
164 if (auto *Sel = dyn_cast<SelectInst>(I))
165 return Sel->getCondition();
166 // Or(zext) case
167 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
168 Value *X;
169 if (PatternMatch::match(BO->getOperand(0),
170 m_OneUse(m_ZExt(m_Value(X)))))
171 return X;
172 if (PatternMatch::match(BO->getOperand(1),
173 m_OneUse(m_ZExt(m_Value(X)))))
174 return X;
177 llvm_unreachable("Unhandled case in getCondition");
180 /// Return the true value for the SelectLike instruction. Note this may not
181 /// exist for all SelectLike instructions. For example, for `or(zext(c), x)`
182 /// the true value would be `or(x,1)`. As this value does not exist, nullptr
183 /// is returned.
184 Value *getTrueValue() const {
185 if (auto *Sel = dyn_cast<SelectInst>(I))
186 return Sel->getTrueValue();
187 // Or(zext) case - The true value is Or(X), so return nullptr as the value
188 // does not yet exist.
189 if (isa<BinaryOperator>(I))
190 return nullptr;
192 llvm_unreachable("Unhandled case in getTrueValue");
195 /// Return the false value for the SelectLike instruction. For example the
196 /// getFalseValue of a select or `x` in `or(zext(c), x)` (which is
197 /// `select(c, x|1, x)`)
198 Value *getFalseValue() const {
199 if (auto *Sel = dyn_cast<SelectInst>(I))
200 return Sel->getFalseValue();
201 // Or(zext) case - return the operand which is not the zext.
202 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
203 Value *X;
204 if (PatternMatch::match(BO->getOperand(0),
205 m_OneUse(m_ZExt(m_Value(X)))))
206 return BO->getOperand(1);
207 if (PatternMatch::match(BO->getOperand(1),
208 m_OneUse(m_ZExt(m_Value(X)))))
209 return BO->getOperand(0);
212 llvm_unreachable("Unhandled case in getFalseValue");
215 /// Return the NonPredCost cost of the true op, given the costs in
216 /// InstCostMap. This may need to be generated for select-like instructions.
217 Scaled64 getTrueOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap,
218 const TargetTransformInfo *TTI) {
219 if (auto *Sel = dyn_cast<SelectInst>(I))
220 if (auto *I = dyn_cast<Instruction>(Sel->getTrueValue()))
221 return InstCostMap.contains(I) ? InstCostMap[I].NonPredCost
222 : Scaled64::getZero();
224 // Or case - add the cost of an extra Or to the cost of the False case.
225 if (isa<BinaryOperator>(I))
226 if (auto I = dyn_cast<Instruction>(getFalseValue()))
227 if (InstCostMap.contains(I)) {
228 InstructionCost OrCost = TTI->getArithmeticInstrCost(
229 Instruction::Or, I->getType(), TargetTransformInfo::TCK_Latency,
230 {TargetTransformInfo::OK_AnyValue,
231 TargetTransformInfo::OP_None},
232 {TTI::OK_UniformConstantValue, TTI::OP_PowerOf2});
233 return InstCostMap[I].NonPredCost +
234 Scaled64::get(*OrCost.getValue());
237 return Scaled64::getZero();
240 /// Return the NonPredCost cost of the false op, given the costs in
241 /// InstCostMap. This may need to be generated for select-like instructions.
242 Scaled64
243 getFalseOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap,
244 const TargetTransformInfo *TTI) {
245 if (auto *Sel = dyn_cast<SelectInst>(I))
246 if (auto *I = dyn_cast<Instruction>(Sel->getFalseValue()))
247 return InstCostMap.contains(I) ? InstCostMap[I].NonPredCost
248 : Scaled64::getZero();
250 // Or case - return the cost of the false case
251 if (isa<BinaryOperator>(I))
252 if (auto I = dyn_cast<Instruction>(getFalseValue()))
253 if (InstCostMap.contains(I))
254 return InstCostMap[I].NonPredCost;
256 return Scaled64::getZero();
260 private:
261 // Select groups consist of consecutive select instructions with the same
262 // condition.
263 using SelectGroup = SmallVector<SelectLike, 2>;
264 using SelectGroups = SmallVector<SelectGroup, 2>;
266 // Converts select instructions of a function to conditional jumps when deemed
267 // profitable. Returns true if at least one select was converted.
268 bool optimizeSelects(Function &F);
270 // Heuristics for determining which select instructions can be profitably
271 // conveted to branches. Separate heuristics for selects in inner-most loops
272 // and the rest of code regions (base heuristics for non-inner-most loop
273 // regions).
274 void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
275 void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
277 // Converts to branches the select groups that were deemed
278 // profitable-to-convert.
279 void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
281 // Splits selects of a given basic block into select groups.
282 void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
284 // Determines for which select groups it is profitable converting to branches
285 // (base and inner-most-loop heuristics).
286 void findProfitableSIGroupsBase(SelectGroups &SIGroups,
287 SelectGroups &ProfSIGroups);
288 void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
289 SelectGroups &ProfSIGroups);
291 // Determines if a select group should be converted to a branch (base
292 // heuristics).
293 bool isConvertToBranchProfitableBase(const SelectGroup &ASI);
295 // Returns true if there are expensive instructions in the cold value
296 // operand's (if any) dependence slice of any of the selects of the given
297 // group.
298 bool hasExpensiveColdOperand(const SelectGroup &ASI);
300 // For a given source instruction, collect its backwards dependence slice
301 // consisting of instructions exclusively computed for producing the operands
302 // of the source instruction.
303 void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
304 Instruction *SI, bool ForSinking = false);
306 // Returns true if the condition of the select is highly predictable.
307 bool isSelectHighlyPredictable(const SelectLike SI);
309 // Loop-level checks to determine if a non-predicated version (with branches)
310 // of the given loop is more profitable than its predicated version.
311 bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
313 // Computes instruction and loop-critical-path costs for both the predicated
314 // and non-predicated version of the given loop.
315 bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
316 DenseMap<const Instruction *, CostInfo> &InstCostMap,
317 CostInfo *LoopCost);
319 // Returns a set of all the select instructions in the given select groups.
320 SmallDenseMap<const Instruction *, SelectLike, 2>
321 getSImap(const SelectGroups &SIGroups);
323 // Returns the latency cost of a given instruction.
324 std::optional<uint64_t> computeInstCost(const Instruction *I);
326 // Returns the misprediction cost of a given select when converted to branch.
327 Scaled64 getMispredictionCost(const SelectLike SI, const Scaled64 CondCost);
329 // Returns the cost of a branch when the prediction is correct.
330 Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
331 const SelectLike SI);
333 // Returns true if the target architecture supports lowering a given select.
334 bool isSelectKindSupported(const SelectLike SI);
337 class SelectOptimize : public FunctionPass {
338 SelectOptimizeImpl Impl;
340 public:
341 static char ID;
343 SelectOptimize() : FunctionPass(ID) {
344 initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
347 bool runOnFunction(Function &F) override {
348 return Impl.runOnFunction(F, *this);
351 void getAnalysisUsage(AnalysisUsage &AU) const override {
352 AU.addRequired<ProfileSummaryInfoWrapperPass>();
353 AU.addRequired<TargetPassConfig>();
354 AU.addRequired<TargetTransformInfoWrapperPass>();
355 AU.addRequired<LoopInfoWrapperPass>();
356 AU.addRequired<BlockFrequencyInfoWrapperPass>();
357 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
361 } // namespace
363 PreservedAnalyses SelectOptimizePass::run(Function &F,
364 FunctionAnalysisManager &FAM) {
365 SelectOptimizeImpl Impl(TM);
366 return Impl.run(F, FAM);
369 char SelectOptimize::ID = 0;
371 INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
372 false)
373 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
374 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
375 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
376 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
377 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
378 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
379 INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
380 false)
382 FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
384 PreservedAnalyses SelectOptimizeImpl::run(Function &F,
385 FunctionAnalysisManager &FAM) {
386 TSI = TM->getSubtargetImpl(F);
387 TLI = TSI->getTargetLowering();
389 // If none of the select types are supported then skip this pass.
390 // This is an optimization pass. Legality issues will be handled by
391 // instruction selection.
392 if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
393 !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
394 !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
395 return PreservedAnalyses::all();
397 TTI = &FAM.getResult<TargetIRAnalysis>(F);
398 if (!TTI->enableSelectOptimize())
399 return PreservedAnalyses::all();
401 PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F)
402 .getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
403 assert(PSI && "This pass requires module analysis pass `profile-summary`!");
404 BFI = &FAM.getResult<BlockFrequencyAnalysis>(F);
406 // When optimizing for size, selects are preferable over branches.
407 if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI))
408 return PreservedAnalyses::all();
410 LI = &FAM.getResult<LoopAnalysis>(F);
411 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
412 TSchedModel.init(TSI);
414 bool Changed = optimizeSelects(F);
415 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
418 bool SelectOptimizeImpl::runOnFunction(Function &F, Pass &P) {
419 TM = &P.getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
420 TSI = TM->getSubtargetImpl(F);
421 TLI = TSI->getTargetLowering();
423 // If none of the select types are supported then skip this pass.
424 // This is an optimization pass. Legality issues will be handled by
425 // instruction selection.
426 if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
427 !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
428 !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
429 return false;
431 TTI = &P.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
433 if (!TTI->enableSelectOptimize())
434 return false;
436 LI = &P.getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
437 BFI = &P.getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
438 PSI = &P.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
439 ORE = &P.getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
440 TSchedModel.init(TSI);
442 // When optimizing for size, selects are preferable over branches.
443 if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI))
444 return false;
446 return optimizeSelects(F);
449 bool SelectOptimizeImpl::optimizeSelects(Function &F) {
450 // Determine for which select groups it is profitable converting to branches.
451 SelectGroups ProfSIGroups;
452 // Base heuristics apply only to non-loops and outer loops.
453 optimizeSelectsBase(F, ProfSIGroups);
454 // Separate heuristics for inner-most loops.
455 optimizeSelectsInnerLoops(F, ProfSIGroups);
457 // Convert to branches the select groups that were deemed
458 // profitable-to-convert.
459 convertProfitableSIGroups(ProfSIGroups);
461 // Code modified if at least one select group was converted.
462 return !ProfSIGroups.empty();
465 void SelectOptimizeImpl::optimizeSelectsBase(Function &F,
466 SelectGroups &ProfSIGroups) {
467 // Collect all the select groups.
468 SelectGroups SIGroups;
469 for (BasicBlock &BB : F) {
470 // Base heuristics apply only to non-loops and outer loops.
471 Loop *L = LI->getLoopFor(&BB);
472 if (L && L->isInnermost())
473 continue;
474 collectSelectGroups(BB, SIGroups);
477 // Determine for which select groups it is profitable converting to branches.
478 findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
481 void SelectOptimizeImpl::optimizeSelectsInnerLoops(Function &F,
482 SelectGroups &ProfSIGroups) {
483 SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
484 // Need to check size on each iteration as we accumulate child loops.
485 for (unsigned long i = 0; i < Loops.size(); ++i)
486 for (Loop *ChildL : Loops[i]->getSubLoops())
487 Loops.push_back(ChildL);
489 for (Loop *L : Loops) {
490 if (!L->isInnermost())
491 continue;
493 SelectGroups SIGroups;
494 for (BasicBlock *BB : L->getBlocks())
495 collectSelectGroups(*BB, SIGroups);
497 findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
501 /// If \p isTrue is true, return the true value of \p SI, otherwise return
502 /// false value of \p SI. If the true/false value of \p SI is defined by any
503 /// select instructions in \p Selects, look through the defining select
504 /// instruction until the true/false value is not defined in \p Selects.
505 static Value *
506 getTrueOrFalseValue(SelectOptimizeImpl::SelectLike SI, bool isTrue,
507 const SmallPtrSet<const Instruction *, 2> &Selects,
508 IRBuilder<> &IB) {
509 Value *V = nullptr;
510 for (SelectInst *DefSI = dyn_cast<SelectInst>(SI.getI());
511 DefSI != nullptr && Selects.count(DefSI);
512 DefSI = dyn_cast<SelectInst>(V)) {
513 assert(DefSI->getCondition() == SI.getCondition() &&
514 "The condition of DefSI does not match with SI");
515 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
518 if (isa<BinaryOperator>(SI.getI())) {
519 assert(SI.getI()->getOpcode() == Instruction::Or &&
520 "Only currently handling Or instructions.");
521 V = SI.getFalseValue();
522 if (isTrue)
523 V = IB.CreateOr(V, ConstantInt::get(V->getType(), 1));
526 assert(V && "Failed to get select true/false value");
527 return V;
530 void SelectOptimizeImpl::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
531 for (SelectGroup &ASI : ProfSIGroups) {
532 // The code transformation here is a modified version of the sinking
533 // transformation in CodeGenPrepare::optimizeSelectInst with a more
534 // aggressive strategy of which instructions to sink.
536 // TODO: eliminate the redundancy of logic transforming selects to branches
537 // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
538 // selects for all cases (with and without profile information).
540 // Transform a sequence like this:
541 // start:
542 // %cmp = cmp uge i32 %a, %b
543 // %sel = select i1 %cmp, i32 %c, i32 %d
545 // Into:
546 // start:
547 // %cmp = cmp uge i32 %a, %b
548 // %cmp.frozen = freeze %cmp
549 // br i1 %cmp.frozen, label %select.true, label %select.false
550 // select.true:
551 // br label %select.end
552 // select.false:
553 // br label %select.end
554 // select.end:
555 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
557 // %cmp should be frozen, otherwise it may introduce undefined behavior.
558 // In addition, we may sink instructions that produce %c or %d into the
559 // destination(s) of the new branch.
560 // If the true or false blocks do not contain a sunken instruction, that
561 // block and its branch may be optimized away. In that case, one side of the
562 // first branch will point directly to select.end, and the corresponding PHI
563 // predecessor block will be the start block.
565 // Find all the instructions that can be soundly sunk to the true/false
566 // blocks. These are instructions that are computed solely for producing the
567 // operands of the select instructions in the group and can be sunk without
568 // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
569 // with side effects).
570 SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
571 typedef std::stack<Instruction *>::size_type StackSizeType;
572 StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
573 for (SelectLike SI : ASI) {
574 // For each select, compute the sinkable dependence chains of the true and
575 // false operands.
576 if (auto *TI = dyn_cast_or_null<Instruction>(SI.getTrueValue())) {
577 std::stack<Instruction *> TrueSlice;
578 getExclBackwardsSlice(TI, TrueSlice, SI.getI(), true);
579 maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
580 TrueSlices.push_back(TrueSlice);
582 if (auto *FI = dyn_cast_or_null<Instruction>(SI.getFalseValue())) {
583 if (isa<SelectInst>(SI.getI()) || !FI->hasOneUse()) {
584 std::stack<Instruction *> FalseSlice;
585 getExclBackwardsSlice(FI, FalseSlice, SI.getI(), true);
586 maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
587 FalseSlices.push_back(FalseSlice);
591 // In the case of multiple select instructions in the same group, the order
592 // of non-dependent instructions (instructions of different dependence
593 // slices) in the true/false blocks appears to affect performance.
594 // Interleaving the slices seems to experimentally be the optimal approach.
595 // This interleaving scheduling allows for more ILP (with a natural downside
596 // of increasing a bit register pressure) compared to a simple ordering of
597 // one whole chain after another. One would expect that this ordering would
598 // not matter since the scheduling in the backend of the compiler would
599 // take care of it, but apparently the scheduler fails to deliver optimal
600 // ILP with a naive ordering here.
601 SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
602 for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
603 for (auto &S : TrueSlices) {
604 if (!S.empty()) {
605 TrueSlicesInterleaved.push_back(S.top());
606 S.pop();
610 for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
611 for (auto &S : FalseSlices) {
612 if (!S.empty()) {
613 FalseSlicesInterleaved.push_back(S.top());
614 S.pop();
619 // We split the block containing the select(s) into two blocks.
620 SelectLike SI = ASI.front();
621 SelectLike LastSI = ASI.back();
622 BasicBlock *StartBlock = SI.getI()->getParent();
623 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI.getI()));
624 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
625 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
626 // Delete the unconditional branch that was just created by the split.
627 StartBlock->getTerminator()->eraseFromParent();
629 // Move any debug/pseudo instructions that were in-between the select
630 // group to the newly-created end block.
631 SmallVector<Instruction *, 2> DebugPseudoINS;
632 auto DIt = SI.getI()->getIterator();
633 while (&*DIt != LastSI.getI()) {
634 if (DIt->isDebugOrPseudoInst())
635 DebugPseudoINS.push_back(&*DIt);
636 DIt++;
638 for (auto *DI : DebugPseudoINS) {
639 DI->moveBeforePreserving(&*EndBlock->getFirstInsertionPt());
642 // Duplicate implementation for DPValues, the non-instruction debug-info
643 // record. Helper lambda for moving DPValues to the end block.
644 auto TransferDPValues = [&](Instruction &I) {
645 for (auto &DPValue : llvm::make_early_inc_range(I.getDbgValueRange())) {
646 DPValue.removeFromParent();
647 EndBlock->insertDPValueBefore(&DPValue,
648 EndBlock->getFirstInsertionPt());
652 // Iterate over all instructions in between SI and LastSI, not including
653 // SI itself. These are all the variable assignments that happen "in the
654 // middle" of the select group.
655 auto R = make_range(std::next(SI.getI()->getIterator()),
656 std::next(LastSI.getI()->getIterator()));
657 llvm::for_each(R, TransferDPValues);
659 // These are the new basic blocks for the conditional branch.
660 // At least one will become an actual new basic block.
661 BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
662 BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
663 if (!TrueSlicesInterleaved.empty()) {
664 TrueBlock = BasicBlock::Create(EndBlock->getContext(), "select.true.sink",
665 EndBlock->getParent(), EndBlock);
666 TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
667 TrueBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
668 for (Instruction *TrueInst : TrueSlicesInterleaved)
669 TrueInst->moveBefore(TrueBranch);
671 if (!FalseSlicesInterleaved.empty()) {
672 FalseBlock =
673 BasicBlock::Create(EndBlock->getContext(), "select.false.sink",
674 EndBlock->getParent(), EndBlock);
675 FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
676 FalseBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
677 for (Instruction *FalseInst : FalseSlicesInterleaved)
678 FalseInst->moveBefore(FalseBranch);
680 // If there was nothing to sink, then arbitrarily choose the 'false' side
681 // for a new input value to the PHI.
682 if (TrueBlock == FalseBlock) {
683 assert(TrueBlock == nullptr &&
684 "Unexpected basic block transform while optimizing select");
686 FalseBlock = BasicBlock::Create(StartBlock->getContext(), "select.false",
687 EndBlock->getParent(), EndBlock);
688 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
689 FalseBranch->setDebugLoc(SI.getI()->getDebugLoc());
692 // Insert the real conditional branch based on the original condition.
693 // If we did not create a new block for one of the 'true' or 'false' paths
694 // of the condition, it means that side of the branch goes to the end block
695 // directly and the path originates from the start block from the point of
696 // view of the new PHI.
697 BasicBlock *TT, *FT;
698 if (TrueBlock == nullptr) {
699 TT = EndBlock;
700 FT = FalseBlock;
701 TrueBlock = StartBlock;
702 } else if (FalseBlock == nullptr) {
703 TT = TrueBlock;
704 FT = EndBlock;
705 FalseBlock = StartBlock;
706 } else {
707 TT = TrueBlock;
708 FT = FalseBlock;
710 IRBuilder<> IB(SI.getI());
711 auto *CondFr = IB.CreateFreeze(SI.getCondition(),
712 SI.getCondition()->getName() + ".frozen");
714 SmallPtrSet<const Instruction *, 2> INS;
715 for (auto SI : ASI)
716 INS.insert(SI.getI());
718 // Use reverse iterator because later select may use the value of the
719 // earlier select, and we need to propagate value through earlier select
720 // to get the PHI operand.
721 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
722 SelectLike SI = *It;
723 // The select itself is replaced with a PHI Node.
724 PHINode *PN = PHINode::Create(SI.getType(), 2, "");
725 PN->insertBefore(EndBlock->begin());
726 PN->takeName(SI.getI());
727 PN->addIncoming(getTrueOrFalseValue(SI, true, INS, IB), TrueBlock);
728 PN->addIncoming(getTrueOrFalseValue(SI, false, INS, IB), FalseBlock);
729 PN->setDebugLoc(SI.getI()->getDebugLoc());
730 SI.getI()->replaceAllUsesWith(PN);
731 INS.erase(SI.getI());
732 ++NumSelectsConverted;
734 IB.CreateCondBr(CondFr, TT, FT, SI.getI());
736 // Remove the old select instructions, now that they are not longer used.
737 for (auto SI : ASI)
738 SI.getI()->eraseFromParent();
742 void SelectOptimizeImpl::collectSelectGroups(BasicBlock &BB,
743 SelectGroups &SIGroups) {
744 BasicBlock::iterator BBIt = BB.begin();
745 while (BBIt != BB.end()) {
746 Instruction *I = &*BBIt++;
747 if (SelectLike SI = SelectLike::match(I)) {
748 if (!TTI->shouldTreatInstructionLikeSelect(I))
749 continue;
751 SelectGroup SIGroup;
752 SIGroup.push_back(SI);
753 while (BBIt != BB.end()) {
754 Instruction *NI = &*BBIt;
755 // Debug/pseudo instructions should be skipped and not prevent the
756 // formation of a select group.
757 if (NI->isDebugOrPseudoInst()) {
758 ++BBIt;
759 continue;
761 // We only allow selects in the same group, not other select-like
762 // instructions.
763 if (!isa<SelectInst>(NI))
764 break;
766 SelectLike NSI = SelectLike::match(NI);
767 if (NSI && SI.getCondition() == NSI.getCondition()) {
768 SIGroup.push_back(NSI);
769 } else
770 break;
771 ++BBIt;
774 // If the select type is not supported, no point optimizing it.
775 // Instruction selection will take care of it.
776 if (!isSelectKindSupported(SI))
777 continue;
779 SIGroups.push_back(SIGroup);
784 void SelectOptimizeImpl::findProfitableSIGroupsBase(
785 SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
786 for (SelectGroup &ASI : SIGroups) {
787 ++NumSelectOptAnalyzed;
788 if (isConvertToBranchProfitableBase(ASI))
789 ProfSIGroups.push_back(ASI);
793 static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE,
794 DiagnosticInfoOptimizationBase &Rem) {
795 LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n");
796 ORE->emit(Rem);
799 void SelectOptimizeImpl::findProfitableSIGroupsInnerLoops(
800 const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
801 NumSelectOptAnalyzed += SIGroups.size();
802 // For each select group in an inner-most loop,
803 // a branch is more preferable than a select/conditional-move if:
804 // i) conversion to branches for all the select groups of the loop satisfies
805 // loop-level heuristics including reducing the loop's critical path by
806 // some threshold (see SelectOptimizeImpl::checkLoopHeuristics); and
807 // ii) the total cost of the select group is cheaper with a branch compared
808 // to its predicated version. The cost is in terms of latency and the cost
809 // of a select group is the cost of its most expensive select instruction
810 // (assuming infinite resources and thus fully leveraging available ILP).
812 DenseMap<const Instruction *, CostInfo> InstCostMap;
813 CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
814 {Scaled64::getZero(), Scaled64::getZero()}};
815 if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
816 !checkLoopHeuristics(L, LoopCost)) {
817 return;
820 for (SelectGroup &ASI : SIGroups) {
821 // Assuming infinite resources, the cost of a group of instructions is the
822 // cost of the most expensive instruction of the group.
823 Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
824 for (SelectLike SI : ASI) {
825 SelectCost = std::max(SelectCost, InstCostMap[SI.getI()].PredCost);
826 BranchCost = std::max(BranchCost, InstCostMap[SI.getI()].NonPredCost);
828 if (BranchCost < SelectCost) {
829 OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front().getI());
830 OR << "Profitable to convert to branch (loop analysis). BranchCost="
831 << BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
832 << ". ";
833 EmitAndPrintRemark(ORE, OR);
834 ++NumSelectConvertedLoop;
835 ProfSIGroups.push_back(ASI);
836 } else {
837 OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
838 ASI.front().getI());
839 ORmiss << "Select is more profitable (loop analysis). BranchCost="
840 << BranchCost.toString()
841 << ", SelectCost=" << SelectCost.toString() << ". ";
842 EmitAndPrintRemark(ORE, ORmiss);
847 bool SelectOptimizeImpl::isConvertToBranchProfitableBase(
848 const SelectGroup &ASI) {
849 SelectLike SI = ASI.front();
850 LLVM_DEBUG(dbgs() << "Analyzing select group containing " << SI.getI()
851 << "\n");
852 OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI.getI());
853 OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI.getI());
855 // Skip cold basic blocks. Better to optimize for size for cold blocks.
856 if (PSI->isColdBlock(SI.getI()->getParent(), BFI)) {
857 ++NumSelectColdBB;
858 ORmiss << "Not converted to branch because of cold basic block. ";
859 EmitAndPrintRemark(ORE, ORmiss);
860 return false;
863 // If unpredictable, branch form is less profitable.
864 if (SI.getI()->getMetadata(LLVMContext::MD_unpredictable)) {
865 ++NumSelectUnPred;
866 ORmiss << "Not converted to branch because of unpredictable branch. ";
867 EmitAndPrintRemark(ORE, ORmiss);
868 return false;
871 // If highly predictable, branch form is more profitable, unless a
872 // predictable select is inexpensive in the target architecture.
873 if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
874 ++NumSelectConvertedHighPred;
875 OR << "Converted to branch because of highly predictable branch. ";
876 EmitAndPrintRemark(ORE, OR);
877 return true;
880 // Look for expensive instructions in the cold operand's (if any) dependence
881 // slice of any of the selects in the group.
882 if (hasExpensiveColdOperand(ASI)) {
883 ++NumSelectConvertedExpColdOperand;
884 OR << "Converted to branch because of expensive cold operand.";
885 EmitAndPrintRemark(ORE, OR);
886 return true;
889 ORmiss << "Not profitable to convert to branch (base heuristic).";
890 EmitAndPrintRemark(ORE, ORmiss);
891 return false;
894 static InstructionCost divideNearest(InstructionCost Numerator,
895 uint64_t Denominator) {
896 return (Numerator + (Denominator / 2)) / Denominator;
899 static bool extractBranchWeights(const SelectOptimizeImpl::SelectLike SI,
900 uint64_t &TrueVal, uint64_t &FalseVal) {
901 if (isa<SelectInst>(SI.getI()))
902 return extractBranchWeights(*SI.getI(), TrueVal, FalseVal);
903 return false;
906 bool SelectOptimizeImpl::hasExpensiveColdOperand(const SelectGroup &ASI) {
907 bool ColdOperand = false;
908 uint64_t TrueWeight, FalseWeight, TotalWeight;
909 if (extractBranchWeights(ASI.front(), TrueWeight, FalseWeight)) {
910 uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
911 TotalWeight = TrueWeight + FalseWeight;
912 // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
913 ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
914 } else if (PSI->hasProfileSummary()) {
915 OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
916 ASI.front().getI());
917 ORmiss << "Profile data available but missing branch-weights metadata for "
918 "select instruction. ";
919 EmitAndPrintRemark(ORE, ORmiss);
921 if (!ColdOperand)
922 return false;
923 // Check if the cold path's dependence slice is expensive for any of the
924 // selects of the group.
925 for (SelectLike SI : ASI) {
926 Instruction *ColdI = nullptr;
927 uint64_t HotWeight;
928 if (TrueWeight < FalseWeight) {
929 ColdI = dyn_cast_or_null<Instruction>(SI.getTrueValue());
930 HotWeight = FalseWeight;
931 } else {
932 ColdI = dyn_cast_or_null<Instruction>(SI.getFalseValue());
933 HotWeight = TrueWeight;
935 if (ColdI) {
936 std::stack<Instruction *> ColdSlice;
937 getExclBackwardsSlice(ColdI, ColdSlice, SI.getI());
938 InstructionCost SliceCost = 0;
939 while (!ColdSlice.empty()) {
940 SliceCost += TTI->getInstructionCost(ColdSlice.top(),
941 TargetTransformInfo::TCK_Latency);
942 ColdSlice.pop();
944 // The colder the cold value operand of the select is the more expensive
945 // the cmov becomes for computing the cold value operand every time. Thus,
946 // the colder the cold operand is the more its cost counts.
947 // Get nearest integer cost adjusted for coldness.
948 InstructionCost AdjSliceCost =
949 divideNearest(SliceCost * HotWeight, TotalWeight);
950 if (AdjSliceCost >=
951 ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
952 return true;
955 return false;
958 // Check if it is safe to move LoadI next to the SI.
959 // Conservatively assume it is safe only if there is no instruction
960 // modifying memory in-between the load and the select instruction.
961 static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) {
962 // Assume loads from different basic blocks are unsafe to move.
963 if (LoadI->getParent() != SI->getParent())
964 return false;
965 auto It = LoadI->getIterator();
966 while (&*It != SI) {
967 if (It->mayWriteToMemory())
968 return false;
969 It++;
971 return true;
974 // For a given source instruction, collect its backwards dependence slice
975 // consisting of instructions exclusively computed for the purpose of producing
976 // the operands of the source instruction. As an approximation
977 // (sufficiently-accurate in practice), we populate this set with the
978 // instructions of the backwards dependence slice that only have one-use and
979 // form an one-use chain that leads to the source instruction.
980 void SelectOptimizeImpl::getExclBackwardsSlice(Instruction *I,
981 std::stack<Instruction *> &Slice,
982 Instruction *SI,
983 bool ForSinking) {
984 SmallPtrSet<Instruction *, 2> Visited;
985 std::queue<Instruction *> Worklist;
986 Worklist.push(I);
987 while (!Worklist.empty()) {
988 Instruction *II = Worklist.front();
989 Worklist.pop();
991 // Avoid cycles.
992 if (!Visited.insert(II).second)
993 continue;
995 if (!II->hasOneUse())
996 continue;
998 // Cannot soundly sink instructions with side-effects.
999 // Terminator or phi instructions cannot be sunk.
1000 // Avoid sinking other select instructions (should be handled separetely).
1001 if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
1002 isa<SelectInst>(II) || isa<PHINode>(II)))
1003 continue;
1005 // Avoid sinking loads in order not to skip state-modifying instructions,
1006 // that may alias with the loaded address.
1007 // Only allow sinking of loads within the same basic block that are
1008 // conservatively proven to be safe.
1009 if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(II, SI))
1010 continue;
1012 // Avoid considering instructions with less frequency than the source
1013 // instruction (i.e., avoid colder code regions of the dependence slice).
1014 if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
1015 continue;
1017 // Eligible one-use instruction added to the dependence slice.
1018 Slice.push(II);
1020 // Explore all the operands of the current instruction to expand the slice.
1021 for (unsigned k = 0; k < II->getNumOperands(); ++k)
1022 if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k)))
1023 Worklist.push(OpI);
1027 bool SelectOptimizeImpl::isSelectHighlyPredictable(const SelectLike SI) {
1028 uint64_t TrueWeight, FalseWeight;
1029 if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
1030 uint64_t Max = std::max(TrueWeight, FalseWeight);
1031 uint64_t Sum = TrueWeight + FalseWeight;
1032 if (Sum != 0) {
1033 auto Probability = BranchProbability::getBranchProbability(Max, Sum);
1034 if (Probability > TTI->getPredictableBranchThreshold())
1035 return true;
1038 return false;
1041 bool SelectOptimizeImpl::checkLoopHeuristics(const Loop *L,
1042 const CostInfo LoopCost[2]) {
1043 // Loop-level checks to determine if a non-predicated version (with branches)
1044 // of the loop is more profitable than its predicated version.
1046 if (DisableLoopLevelHeuristics)
1047 return true;
1049 OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
1050 L->getHeader()->getFirstNonPHI());
1052 if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
1053 LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
1054 ORmissL << "No select conversion in the loop due to no reduction of loop's "
1055 "critical path. ";
1056 EmitAndPrintRemark(ORE, ORmissL);
1057 return false;
1060 Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
1061 LoopCost[1].PredCost - LoopCost[1].NonPredCost};
1063 // Profitably converting to branches need to reduce the loop's critical path
1064 // by at least some threshold (absolute gain of GainCycleThreshold cycles and
1065 // relative gain of 12.5%).
1066 if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
1067 Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
1068 Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
1069 ORmissL << "No select conversion in the loop due to small reduction of "
1070 "loop's critical path. Gain="
1071 << Gain[1].toString()
1072 << ", RelativeGain=" << RelativeGain.toString() << "%. ";
1073 EmitAndPrintRemark(ORE, ORmissL);
1074 return false;
1077 // If the loop's critical path involves loop-carried dependences, the gradient
1078 // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
1079 // This check ensures that the latency reduction for the loop's critical path
1080 // keeps decreasing with sufficient rate beyond the two analyzed loop
1081 // iterations.
1082 if (Gain[1] > Gain[0]) {
1083 Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
1084 (LoopCost[1].PredCost - LoopCost[0].PredCost);
1085 if (GradientGain < Scaled64::get(GainGradientThreshold)) {
1086 ORmissL << "No select conversion in the loop due to small gradient gain. "
1087 "GradientGain="
1088 << GradientGain.toString() << "%. ";
1089 EmitAndPrintRemark(ORE, ORmissL);
1090 return false;
1093 // If the gain decreases it is not profitable to convert.
1094 else if (Gain[1] < Gain[0]) {
1095 ORmissL
1096 << "No select conversion in the loop due to negative gradient gain. ";
1097 EmitAndPrintRemark(ORE, ORmissL);
1098 return false;
1101 // Non-predicated version of the loop is more profitable than its
1102 // predicated version.
1103 return true;
1106 // Computes instruction and loop-critical-path costs for both the predicated
1107 // and non-predicated version of the given loop.
1108 // Returns false if unable to compute these costs due to invalid cost of loop
1109 // instruction(s).
1110 bool SelectOptimizeImpl::computeLoopCosts(
1111 const Loop *L, const SelectGroups &SIGroups,
1112 DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
1113 LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop "
1114 << L->getHeader()->getName() << "\n");
1115 const auto &SImap = getSImap(SIGroups);
1116 // Compute instruction and loop-critical-path costs across two iterations for
1117 // both predicated and non-predicated version.
1118 const unsigned Iterations = 2;
1119 for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
1120 // Cost of the loop's critical path.
1121 CostInfo &MaxCost = LoopCost[Iter];
1122 for (BasicBlock *BB : L->getBlocks()) {
1123 for (const Instruction &I : *BB) {
1124 if (I.isDebugOrPseudoInst())
1125 continue;
1126 // Compute the predicated and non-predicated cost of the instruction.
1127 Scaled64 IPredCost = Scaled64::getZero(),
1128 INonPredCost = Scaled64::getZero();
1130 // Assume infinite resources that allow to fully exploit the available
1131 // instruction-level parallelism.
1132 // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
1133 for (const Use &U : I.operands()) {
1134 auto UI = dyn_cast<Instruction>(U.get());
1135 if (!UI)
1136 continue;
1137 if (InstCostMap.count(UI)) {
1138 IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost);
1139 INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost);
1142 auto ILatency = computeInstCost(&I);
1143 if (!ILatency) {
1144 OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
1145 ORmissL << "Invalid instruction cost preventing analysis and "
1146 "optimization of the inner-most loop containing this "
1147 "instruction. ";
1148 EmitAndPrintRemark(ORE, ORmissL);
1149 return false;
1151 IPredCost += Scaled64::get(*ILatency);
1152 INonPredCost += Scaled64::get(*ILatency);
1154 // For a select that can be converted to branch,
1155 // compute its cost as a branch (non-predicated cost).
1157 // BranchCost = PredictedPathCost + MispredictCost
1158 // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
1159 // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
1160 if (SImap.contains(&I)) {
1161 auto SI = SImap.at(&I);
1162 Scaled64 TrueOpCost = SI.getTrueOpCost(InstCostMap, TTI);
1163 Scaled64 FalseOpCost = SI.getFalseOpCost(InstCostMap, TTI);
1164 Scaled64 PredictedPathCost =
1165 getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
1167 Scaled64 CondCost = Scaled64::getZero();
1168 if (auto *CI = dyn_cast<Instruction>(SI.getCondition()))
1169 if (InstCostMap.count(CI))
1170 CondCost = InstCostMap[CI].NonPredCost;
1171 Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
1173 INonPredCost = PredictedPathCost + MispredictCost;
1175 LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/"
1176 << INonPredCost << " for " << I << "\n");
1178 InstCostMap[&I] = {IPredCost, INonPredCost};
1179 MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
1180 MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
1183 LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1
1184 << " MaxCost = " << MaxCost.PredCost << " "
1185 << MaxCost.NonPredCost << "\n");
1187 return true;
1190 SmallDenseMap<const Instruction *, SelectOptimizeImpl::SelectLike, 2>
1191 SelectOptimizeImpl::getSImap(const SelectGroups &SIGroups) {
1192 SmallDenseMap<const Instruction *, SelectLike, 2> SImap;
1193 for (const SelectGroup &ASI : SIGroups)
1194 for (SelectLike SI : ASI)
1195 SImap.try_emplace(SI.getI(), SI);
1196 return SImap;
1199 std::optional<uint64_t>
1200 SelectOptimizeImpl::computeInstCost(const Instruction *I) {
1201 InstructionCost ICost =
1202 TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
1203 if (auto OC = ICost.getValue())
1204 return std::optional<uint64_t>(*OC);
1205 return std::nullopt;
1208 ScaledNumber<uint64_t>
1209 SelectOptimizeImpl::getMispredictionCost(const SelectLike SI,
1210 const Scaled64 CondCost) {
1211 uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
1213 // Account for the default misprediction rate when using a branch
1214 // (conservatively set to 25% by default).
1215 uint64_t MispredictRate = MispredictDefaultRate;
1216 // If the select condition is obviously predictable, then the misprediction
1217 // rate is zero.
1218 if (isSelectHighlyPredictable(SI))
1219 MispredictRate = 0;
1221 // CondCost is included to account for cases where the computation of the
1222 // condition is part of a long dependence chain (potentially loop-carried)
1223 // that would delay detection of a misprediction and increase its cost.
1224 Scaled64 MispredictCost =
1225 std::max(Scaled64::get(MispredictPenalty), CondCost) *
1226 Scaled64::get(MispredictRate);
1227 MispredictCost /= Scaled64::get(100);
1229 return MispredictCost;
1232 // Returns the cost of a branch when the prediction is correct.
1233 // TrueCost * TrueProbability + FalseCost * FalseProbability.
1234 ScaledNumber<uint64_t>
1235 SelectOptimizeImpl::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
1236 const SelectLike SI) {
1237 Scaled64 PredPathCost;
1238 uint64_t TrueWeight, FalseWeight;
1239 if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
1240 uint64_t SumWeight = TrueWeight + FalseWeight;
1241 if (SumWeight != 0) {
1242 PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
1243 FalseCost * Scaled64::get(FalseWeight);
1244 PredPathCost /= Scaled64::get(SumWeight);
1245 return PredPathCost;
1248 // Without branch weight metadata, we assume 75% for the one path and 25% for
1249 // the other, and pick the result with the biggest cost.
1250 PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
1251 FalseCost * Scaled64::get(3) + TrueCost);
1252 PredPathCost /= Scaled64::get(4);
1253 return PredPathCost;
1256 bool SelectOptimizeImpl::isSelectKindSupported(const SelectLike SI) {
1257 bool VectorCond = !SI.getCondition()->getType()->isIntegerTy(1);
1258 if (VectorCond)
1259 return false;
1260 TargetLowering::SelectSupportKind SelectKind;
1261 if (SI.getType()->isVectorTy())
1262 SelectKind = TargetLowering::ScalarCondVectorVal;
1263 else
1264 SelectKind = TargetLowering::ScalarValSelect;
1265 return TLI->isSelectSupported(SelectKind);