1 //===- SpillPlacement.h - Optimal Spill Code Placement ---------*- C++ -*--===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This analysis computes the optimal spill code placement between basic blocks.
11 // The runOnMachineFunction() method only precomputes some profiling information
12 // about the CFG. The real work is done by prepare(), addConstraints(), and
13 // finish() which are called by the register allocator.
15 // Given a variable that is live across multiple basic blocks, and given
16 // constraints on the basic blocks where the variable is live, determine which
17 // edge bundles should have the variable in a register and which edge bundles
18 // should have the variable in a stack slot.
20 // The returned bit vector can be used to place optimal spill code at basic
21 // block entries and exits. Spill code placement inside a basic block is not
24 //===----------------------------------------------------------------------===//
26 #ifndef LLVM_LIB_CODEGEN_SPILLPLACEMENT_H
27 #define LLVM_LIB_CODEGEN_SPILLPLACEMENT_H
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/SparseSet.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/Support/BlockFrequency.h"
39 class MachineBlockFrequencyInfo
;
40 class MachineFunction
;
42 class SpillPlacement
: public MachineFunctionPass
{
44 const MachineFunction
*MF
= nullptr;
45 const EdgeBundles
*bundles
= nullptr;
46 const MachineBlockFrequencyInfo
*MBFI
= nullptr;
47 Node
*nodes
= nullptr;
49 // Nodes that are active in the current computation. Owned by the prepare()
51 BitVector
*ActiveNodes
= nullptr;
53 // Nodes with active links. Populated by scanActiveBundles.
54 SmallVector
<unsigned, 8> Linked
;
56 // Nodes that went positive during the last call to scanActiveBundles or
58 SmallVector
<unsigned, 8> RecentPositive
;
60 // Block frequencies are computed once. Indexed by block number.
61 SmallVector
<BlockFrequency
, 8> BlockFrequencies
;
63 /// Decision threshold. A node gets the output value 0 if the weighted sum of
64 /// its inputs falls in the open interval (-Threshold;Threshold).
65 BlockFrequency Threshold
;
67 /// List of nodes that need to be updated in ::iterate.
68 SparseSet
<unsigned> TodoList
;
71 static char ID
; // Pass identification, replacement for typeid.
73 SpillPlacement() : MachineFunctionPass(ID
) {}
74 ~SpillPlacement() override
{ releaseMemory(); }
76 /// BorderConstraint - A basic block has separate constraints for entry and
78 enum BorderConstraint
{
79 DontCare
, ///< Block doesn't care / variable not live.
80 PrefReg
, ///< Block entry/exit prefers a register.
81 PrefSpill
, ///< Block entry/exit prefers a stack slot.
82 PrefBoth
, ///< Block entry prefers both register and stack.
83 MustSpill
///< A register is impossible, variable must be spilled.
86 /// BlockConstraint - Entry and exit constraints for a basic block.
87 struct BlockConstraint
{
88 unsigned Number
; ///< Basic block number (from MBB::getNumber()).
89 BorderConstraint Entry
: 8; ///< Constraint on block entry.
90 BorderConstraint Exit
: 8; ///< Constraint on block exit.
92 /// True when this block changes the value of the live range. This means
93 /// the block has a non-PHI def. When this is false, a live-in value on
94 /// the stack can be live-out on the stack without inserting a spill.
97 void print(raw_ostream
&OS
) const;
101 /// prepare - Reset state and prepare for a new spill placement computation.
102 /// @param RegBundles Bit vector to receive the edge bundles where the
103 /// variable should be kept in a register. Each bit
104 /// corresponds to an edge bundle, a set bit means the
105 /// variable should be kept in a register through the
106 /// bundle. A clear bit means the variable should be
107 /// spilled. This vector is retained.
108 void prepare(BitVector
&RegBundles
);
110 /// addConstraints - Add constraints and biases. This method may be called
111 /// more than once to accumulate constraints.
112 /// @param LiveBlocks Constraints for blocks that have the variable live in or
114 void addConstraints(ArrayRef
<BlockConstraint
> LiveBlocks
);
116 /// addPrefSpill - Add PrefSpill constraints to all blocks listed. This is
117 /// equivalent to calling addConstraint with identical BlockConstraints with
118 /// Entry = Exit = PrefSpill, and ChangesValue = false.
120 /// @param Blocks Array of block numbers that prefer to spill in and out.
121 /// @param Strong When true, double the negative bias for these blocks.
122 void addPrefSpill(ArrayRef
<unsigned> Blocks
, bool Strong
);
124 /// addLinks - Add transparent blocks with the given numbers.
125 void addLinks(ArrayRef
<unsigned> Links
);
127 /// scanActiveBundles - Perform an initial scan of all bundles activated by
128 /// addConstraints and addLinks, updating their state. Add all the bundles
129 /// that now prefer a register to RecentPositive.
130 /// Prepare internal data structures for iterate.
131 /// Return true is there are any positive nodes.
132 bool scanActiveBundles();
134 /// iterate - Update the network iteratively until convergence, or new bundles
138 /// getRecentPositive - Return an array of bundles that became positive during
139 /// the previous call to scanActiveBundles or iterate.
140 ArrayRef
<unsigned> getRecentPositive() { return RecentPositive
; }
142 /// finish - Compute the optimal spill code placement given the
143 /// constraints. No MustSpill constraints will be violated, and the smallest
144 /// possible number of PrefX constraints will be violated, weighted by
145 /// expected execution frequencies.
146 /// The selected bundles are returned in the bitvector passed to prepare().
147 /// @return True if a perfect solution was found, allowing the variable to be
148 /// in a register through all relevant bundles.
151 /// getBlockFrequency - Return the estimated block execution frequency per
152 /// function invocation.
153 BlockFrequency
getBlockFrequency(unsigned Number
) const {
154 return BlockFrequencies
[Number
];
158 bool runOnMachineFunction(MachineFunction
&mf
) override
;
159 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
160 void releaseMemory() override
;
162 void activate(unsigned n
);
163 void setThreshold(BlockFrequency Entry
);
165 bool update(unsigned n
);
168 } // end namespace llvm
170 #endif // LLVM_LIB_CODEGEN_SPILLPLACEMENT_H