[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / TypePromotion.cpp
blob053caf518bd1f782bef696a6e498275161932280
1 //===----- TypePromotion.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
15 ///
16 //===----------------------------------------------------------------------===//
18 #include "llvm/CodeGen/TypePromotion.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Target/TargetMachine.h"
42 #define DEBUG_TYPE "type-promotion"
43 #define PASS_NAME "Type Promotion"
45 using namespace llvm;
47 static cl::opt<bool> DisablePromotion("disable-type-promotion", cl::Hidden,
48 cl::init(false),
49 cl::desc("Disable type promotion pass"));
51 // The goal of this pass is to enable more efficient code generation for
52 // operations on narrow types (i.e. types with < 32-bits) and this is a
53 // motivating IR code example:
55 // define hidden i32 @cmp(i8 zeroext) {
56 // %2 = add i8 %0, -49
57 // %3 = icmp ult i8 %2, 3
58 // ..
59 // }
61 // The issue here is that i8 is type-legalized to i32 because i8 is not a
62 // legal type. Thus, arithmetic is done in integer-precision, but then the
63 // byte value is masked out as follows:
65 // t19: i32 = add t4, Constant:i32<-49>
66 // t24: i32 = and t19, Constant:i32<255>
68 // Consequently, we generate code like this:
70 // subs r0, #49
71 // uxtb r1, r0
72 // cmp r1, #3
74 // This shows that masking out the byte value results in generation of
75 // the UXTB instruction. This is not optimal as r0 already contains the byte
76 // value we need, and so instead we can just generate:
78 // sub.w r1, r0, #49
79 // cmp r1, #3
81 // We achieve this by type promoting the IR to i32 like so for this example:
83 // define i32 @cmp(i8 zeroext %c) {
84 // %0 = zext i8 %c to i32
85 // %c.off = add i32 %0, -49
86 // %1 = icmp ult i32 %c.off, 3
87 // ..
88 // }
90 // For this to be valid and legal, we need to prove that the i32 add is
91 // producing the same value as the i8 addition, and that e.g. no overflow
92 // happens.
94 // A brief sketch of the algorithm and some terminology.
95 // We pattern match interesting IR patterns:
96 // - which have "sources": instructions producing narrow values (i8, i16), and
97 // - they have "sinks": instructions consuming these narrow values.
99 // We collect all instruction connecting sources and sinks in a worklist, so
100 // that we can mutate these instruction and perform type promotion when it is
101 // legal to do so.
103 namespace {
104 class IRPromoter {
105 LLVMContext &Ctx;
106 unsigned PromotedWidth = 0;
107 SetVector<Value *> &Visited;
108 SetVector<Value *> &Sources;
109 SetVector<Instruction *> &Sinks;
110 SmallPtrSetImpl<Instruction *> &SafeWrap;
111 SmallPtrSetImpl<Instruction *> &InstsToRemove;
112 IntegerType *ExtTy = nullptr;
113 SmallPtrSet<Value *, 8> NewInsts;
114 DenseMap<Value *, SmallVector<Type *, 4>> TruncTysMap;
115 SmallPtrSet<Value *, 8> Promoted;
117 void ReplaceAllUsersOfWith(Value *From, Value *To);
118 void ExtendSources();
119 void ConvertTruncs();
120 void PromoteTree();
121 void TruncateSinks();
122 void Cleanup();
124 public:
125 IRPromoter(LLVMContext &C, unsigned Width, SetVector<Value *> &visited,
126 SetVector<Value *> &sources, SetVector<Instruction *> &sinks,
127 SmallPtrSetImpl<Instruction *> &wrap,
128 SmallPtrSetImpl<Instruction *> &instsToRemove)
129 : Ctx(C), PromotedWidth(Width), Visited(visited), Sources(sources),
130 Sinks(sinks), SafeWrap(wrap), InstsToRemove(instsToRemove) {
131 ExtTy = IntegerType::get(Ctx, PromotedWidth);
134 void Mutate();
137 class TypePromotionImpl {
138 unsigned TypeSize = 0;
139 LLVMContext *Ctx = nullptr;
140 unsigned RegisterBitWidth = 0;
141 SmallPtrSet<Value *, 16> AllVisited;
142 SmallPtrSet<Instruction *, 8> SafeToPromote;
143 SmallPtrSet<Instruction *, 4> SafeWrap;
144 SmallPtrSet<Instruction *, 4> InstsToRemove;
146 // Does V have the same size result type as TypeSize.
147 bool EqualTypeSize(Value *V);
148 // Does V have the same size, or narrower, result type as TypeSize.
149 bool LessOrEqualTypeSize(Value *V);
150 // Does V have a result type that is wider than TypeSize.
151 bool GreaterThanTypeSize(Value *V);
152 // Does V have a result type that is narrower than TypeSize.
153 bool LessThanTypeSize(Value *V);
154 // Should V be a leaf in the promote tree?
155 bool isSource(Value *V);
156 // Should V be a root in the promotion tree?
157 bool isSink(Value *V);
158 // Should we change the result type of V? It will result in the users of V
159 // being visited.
160 bool shouldPromote(Value *V);
161 // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
162 // result won't affect the computation?
163 bool isSafeWrap(Instruction *I);
164 // Can V have its integer type promoted, or can the type be ignored.
165 bool isSupportedType(Value *V);
166 // Is V an instruction with a supported opcode or another value that we can
167 // handle, such as constants and basic blocks.
168 bool isSupportedValue(Value *V);
169 // Is V an instruction thats result can trivially promoted, or has safe
170 // wrapping.
171 bool isLegalToPromote(Value *V);
172 bool TryToPromote(Value *V, unsigned PromotedWidth, const LoopInfo &LI);
174 public:
175 bool run(Function &F, const TargetMachine *TM,
176 const TargetTransformInfo &TTI, const LoopInfo &LI);
179 class TypePromotionLegacy : public FunctionPass {
180 public:
181 static char ID;
183 TypePromotionLegacy() : FunctionPass(ID) {}
185 void getAnalysisUsage(AnalysisUsage &AU) const override {
186 AU.addRequired<LoopInfoWrapperPass>();
187 AU.addRequired<TargetTransformInfoWrapperPass>();
188 AU.addRequired<TargetPassConfig>();
189 AU.setPreservesCFG();
190 AU.addPreserved<LoopInfoWrapperPass>();
193 StringRef getPassName() const override { return PASS_NAME; }
195 bool runOnFunction(Function &F) override;
198 } // namespace
200 static bool GenerateSignBits(Instruction *I) {
201 unsigned Opc = I->getOpcode();
202 return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
203 Opc == Instruction::SRem || Opc == Instruction::SExt;
206 bool TypePromotionImpl::EqualTypeSize(Value *V) {
207 return V->getType()->getScalarSizeInBits() == TypeSize;
210 bool TypePromotionImpl::LessOrEqualTypeSize(Value *V) {
211 return V->getType()->getScalarSizeInBits() <= TypeSize;
214 bool TypePromotionImpl::GreaterThanTypeSize(Value *V) {
215 return V->getType()->getScalarSizeInBits() > TypeSize;
218 bool TypePromotionImpl::LessThanTypeSize(Value *V) {
219 return V->getType()->getScalarSizeInBits() < TypeSize;
222 /// Return true if the given value is a source in the use-def chain, producing
223 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
224 /// of the tree to i32. We guarantee that these won't populate the upper bits
225 /// of the register. ZExt on the loads will be free, and the same for call
226 /// return values because we only accept ones that guarantee a zeroext ret val.
227 /// Many arguments will have the zeroext attribute too, so those would be free
228 /// too.
229 bool TypePromotionImpl::isSource(Value *V) {
230 if (!isa<IntegerType>(V->getType()))
231 return false;
233 // TODO Allow zext to be sources.
234 if (isa<Argument>(V))
235 return true;
236 else if (isa<LoadInst>(V))
237 return true;
238 else if (auto *Call = dyn_cast<CallInst>(V))
239 return Call->hasRetAttr(Attribute::AttrKind::ZExt);
240 else if (auto *Trunc = dyn_cast<TruncInst>(V))
241 return EqualTypeSize(Trunc);
242 return false;
245 /// Return true if V will require any promoted values to be truncated for the
246 /// the IR to remain valid. We can't mutate the value type of these
247 /// instructions.
248 bool TypePromotionImpl::isSink(Value *V) {
249 // TODO The truncate also isn't actually necessary because we would already
250 // proved that the data value is kept within the range of the original data
251 // type. We currently remove any truncs inserted for handling zext sinks.
253 // Sinks are:
254 // - points where the value in the register is being observed, such as an
255 // icmp, switch or store.
256 // - points where value types have to match, such as calls and returns.
257 // - zext are included to ease the transformation and are generally removed
258 // later on.
259 if (auto *Store = dyn_cast<StoreInst>(V))
260 return LessOrEqualTypeSize(Store->getValueOperand());
261 if (auto *Return = dyn_cast<ReturnInst>(V))
262 return LessOrEqualTypeSize(Return->getReturnValue());
263 if (auto *ZExt = dyn_cast<ZExtInst>(V))
264 return GreaterThanTypeSize(ZExt);
265 if (auto *Switch = dyn_cast<SwitchInst>(V))
266 return LessThanTypeSize(Switch->getCondition());
267 if (auto *ICmp = dyn_cast<ICmpInst>(V))
268 return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
270 return isa<CallInst>(V);
273 /// Return whether this instruction can safely wrap.
274 bool TypePromotionImpl::isSafeWrap(Instruction *I) {
275 // We can support a potentially wrapping instruction (I) if:
276 // - It is only used by an unsigned icmp.
277 // - The icmp uses a constant.
278 // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
279 // around zero to become a larger number than before.
280 // - The wrapping instruction (I) also uses a constant.
282 // We can then use the two constants to calculate whether the result would
283 // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
284 // just underflows the range, the icmp would give the same result whether the
285 // result has been truncated or not. We calculate this by:
286 // - Zero extending both constants, if needed, to RegisterBitWidth.
287 // - Take the absolute value of I's constant, adding this to the icmp const.
288 // - Check that this value is not out of range for small type. If it is, it
289 // means that it has underflowed enough to wrap around the icmp constant.
291 // For example:
293 // %sub = sub i8 %a, 2
294 // %cmp = icmp ule i8 %sub, 254
296 // If %a = 0, %sub = -2 == FE == 254
297 // But if this is evalulated as a i32
298 // %sub = -2 == FF FF FF FE == 4294967294
299 // So the unsigned compares (i8 and i32) would not yield the same result.
301 // Another way to look at it is:
302 // %a - 2 <= 254
303 // %a + 2 <= 254 + 2
304 // %a <= 256
305 // And we can't represent 256 in the i8 format, so we don't support it.
307 // Whereas:
309 // %sub i8 %a, 1
310 // %cmp = icmp ule i8 %sub, 254
312 // If %a = 0, %sub = -1 == FF == 255
313 // As i32:
314 // %sub = -1 == FF FF FF FF == 4294967295
316 // In this case, the unsigned compare results would be the same and this
317 // would also be true for ult, uge and ugt:
318 // - (255 < 254) == (0xFFFFFFFF < 254) == false
319 // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
320 // - (255 > 254) == (0xFFFFFFFF > 254) == true
321 // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
323 // To demonstrate why we can't handle increasing values:
325 // %add = add i8 %a, 2
326 // %cmp = icmp ult i8 %add, 127
328 // If %a = 254, %add = 256 == (i8 1)
329 // As i32:
330 // %add = 256
332 // (1 < 127) != (256 < 127)
334 unsigned Opc = I->getOpcode();
335 if (Opc != Instruction::Add && Opc != Instruction::Sub)
336 return false;
338 if (!I->hasOneUse() || !isa<ICmpInst>(*I->user_begin()) ||
339 !isa<ConstantInt>(I->getOperand(1)))
340 return false;
342 // Don't support an icmp that deals with sign bits.
343 auto *CI = cast<ICmpInst>(*I->user_begin());
344 if (CI->isSigned() || CI->isEquality())
345 return false;
347 ConstantInt *ICmpConstant = nullptr;
348 if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
349 ICmpConstant = Const;
350 else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
351 ICmpConstant = Const;
352 else
353 return false;
355 const APInt &ICmpConst = ICmpConstant->getValue();
356 APInt OverflowConst = cast<ConstantInt>(I->getOperand(1))->getValue();
357 if (Opc == Instruction::Sub)
358 OverflowConst = -OverflowConst;
359 if (!OverflowConst.isNonPositive())
360 return false;
362 // Using C1 = OverflowConst and C2 = ICmpConst, we can either prove that:
363 // zext(x) + sext(C1) <u zext(C2) if C1 < 0 and C1 >s C2
364 // zext(x) + sext(C1) <u sext(C2) if C1 < 0 and C1 <=s C2
365 if (OverflowConst.sgt(ICmpConst)) {
366 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
367 << "const of " << *I << "\n");
368 SafeWrap.insert(I);
369 return true;
370 } else {
371 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
372 << "const of " << *I << " and " << *CI << "\n");
373 SafeWrap.insert(I);
374 SafeWrap.insert(CI);
375 return true;
377 return false;
380 bool TypePromotionImpl::shouldPromote(Value *V) {
381 if (!isa<IntegerType>(V->getType()) || isSink(V))
382 return false;
384 if (isSource(V))
385 return true;
387 auto *I = dyn_cast<Instruction>(V);
388 if (!I)
389 return false;
391 if (isa<ICmpInst>(I))
392 return false;
394 return true;
397 /// Return whether we can safely mutate V's type to ExtTy without having to be
398 /// concerned with zero extending or truncation.
399 static bool isPromotedResultSafe(Instruction *I) {
400 if (GenerateSignBits(I))
401 return false;
403 if (!isa<OverflowingBinaryOperator>(I))
404 return true;
406 return I->hasNoUnsignedWrap();
409 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
410 SmallVector<Instruction *, 4> Users;
411 Instruction *InstTo = dyn_cast<Instruction>(To);
412 bool ReplacedAll = true;
414 LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
415 << "\n");
417 for (Use &U : From->uses()) {
418 auto *User = cast<Instruction>(U.getUser());
419 if (InstTo && User->isIdenticalTo(InstTo)) {
420 ReplacedAll = false;
421 continue;
423 Users.push_back(User);
426 for (auto *U : Users)
427 U->replaceUsesOfWith(From, To);
429 if (ReplacedAll)
430 if (auto *I = dyn_cast<Instruction>(From))
431 InstsToRemove.insert(I);
434 void IRPromoter::ExtendSources() {
435 IRBuilder<> Builder{Ctx};
437 auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
438 assert(V->getType() != ExtTy && "zext already extends to i32");
439 LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
440 Builder.SetInsertPoint(InsertPt);
441 if (auto *I = dyn_cast<Instruction>(V))
442 Builder.SetCurrentDebugLocation(I->getDebugLoc());
444 Value *ZExt = Builder.CreateZExt(V, ExtTy);
445 if (auto *I = dyn_cast<Instruction>(ZExt)) {
446 if (isa<Argument>(V))
447 I->moveBefore(InsertPt);
448 else
449 I->moveAfter(InsertPt);
450 NewInsts.insert(I);
453 ReplaceAllUsersOfWith(V, ZExt);
456 // Now, insert extending instructions between the sources and their users.
457 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
458 for (auto *V : Sources) {
459 LLVM_DEBUG(dbgs() << " - " << *V << "\n");
460 if (auto *I = dyn_cast<Instruction>(V))
461 InsertZExt(I, I);
462 else if (auto *Arg = dyn_cast<Argument>(V)) {
463 BasicBlock &BB = Arg->getParent()->front();
464 InsertZExt(Arg, &*BB.getFirstInsertionPt());
465 } else {
466 llvm_unreachable("unhandled source that needs extending");
468 Promoted.insert(V);
472 void IRPromoter::PromoteTree() {
473 LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
475 // Mutate the types of the instructions within the tree. Here we handle
476 // constant operands.
477 for (auto *V : Visited) {
478 if (Sources.count(V))
479 continue;
481 auto *I = cast<Instruction>(V);
482 if (Sinks.count(I))
483 continue;
485 for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
486 Value *Op = I->getOperand(i);
487 if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
488 continue;
490 if (auto *Const = dyn_cast<ConstantInt>(Op)) {
491 // For subtract, we don't need to sext the constant. We only put it in
492 // SafeWrap because SafeWrap.size() is used elsewhere.
493 // For cmp, we need to sign extend a constant appearing in either
494 // operand. For add, we should only sign extend the RHS.
495 Constant *NewConst =
496 ConstantInt::get(Const->getContext(),
497 (SafeWrap.contains(I) &&
498 (I->getOpcode() == Instruction::ICmp || i == 1) &&
499 I->getOpcode() != Instruction::Sub)
500 ? Const->getValue().sext(PromotedWidth)
501 : Const->getValue().zext(PromotedWidth));
502 I->setOperand(i, NewConst);
503 } else if (isa<UndefValue>(Op))
504 I->setOperand(i, ConstantInt::get(ExtTy, 0));
507 // Mutate the result type, unless this is an icmp or switch.
508 if (!isa<ICmpInst>(I) && !isa<SwitchInst>(I)) {
509 I->mutateType(ExtTy);
510 Promoted.insert(I);
515 void IRPromoter::TruncateSinks() {
516 LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
518 IRBuilder<> Builder{Ctx};
520 auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction * {
521 if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
522 return nullptr;
524 if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V))
525 return nullptr;
527 LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
528 << *V << "\n");
529 Builder.SetInsertPoint(cast<Instruction>(V));
530 auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
531 if (Trunc)
532 NewInsts.insert(Trunc);
533 return Trunc;
536 // Fix up any stores or returns that use the results of the promoted
537 // chain.
538 for (auto *I : Sinks) {
539 LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
541 // Handle calls separately as we need to iterate over arg operands.
542 if (auto *Call = dyn_cast<CallInst>(I)) {
543 for (unsigned i = 0; i < Call->arg_size(); ++i) {
544 Value *Arg = Call->getArgOperand(i);
545 Type *Ty = TruncTysMap[Call][i];
546 if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
547 Trunc->moveBefore(Call);
548 Call->setArgOperand(i, Trunc);
551 continue;
554 // Special case switches because we need to truncate the condition.
555 if (auto *Switch = dyn_cast<SwitchInst>(I)) {
556 Type *Ty = TruncTysMap[Switch][0];
557 if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
558 Trunc->moveBefore(Switch);
559 Switch->setCondition(Trunc);
561 continue;
564 // Don't insert a trunc for a zext which can still legally promote.
565 // Nor insert a trunc when the input value to that trunc has the same width
566 // as the zext we are inserting it for. When this happens the input operand
567 // for the zext will be promoted to the same width as the zext's return type
568 // rendering that zext unnecessary. This zext gets removed before the end
569 // of the pass.
570 if (auto ZExt = dyn_cast<ZExtInst>(I))
571 if (ZExt->getType()->getScalarSizeInBits() >= PromotedWidth)
572 continue;
574 // Now handle the others.
575 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
576 Type *Ty = TruncTysMap[I][i];
577 if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
578 Trunc->moveBefore(I);
579 I->setOperand(i, Trunc);
585 void IRPromoter::Cleanup() {
586 LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
587 // Some zexts will now have become redundant, along with their trunc
588 // operands, so remove them.
589 for (auto *V : Visited) {
590 if (!isa<ZExtInst>(V))
591 continue;
593 auto ZExt = cast<ZExtInst>(V);
594 if (ZExt->getDestTy() != ExtTy)
595 continue;
597 Value *Src = ZExt->getOperand(0);
598 if (ZExt->getSrcTy() == ZExt->getDestTy()) {
599 LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
600 << "\n");
601 ReplaceAllUsersOfWith(ZExt, Src);
602 continue;
605 // We've inserted a trunc for a zext sink, but we already know that the
606 // input is in range, negating the need for the trunc.
607 if (NewInsts.count(Src) && isa<TruncInst>(Src)) {
608 auto *Trunc = cast<TruncInst>(Src);
609 assert(Trunc->getOperand(0)->getType() == ExtTy &&
610 "expected inserted trunc to be operating on i32");
611 ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
615 for (auto *I : InstsToRemove) {
616 LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
617 I->dropAllReferences();
621 void IRPromoter::ConvertTruncs() {
622 LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
623 IRBuilder<> Builder{Ctx};
625 for (auto *V : Visited) {
626 if (!isa<TruncInst>(V) || Sources.count(V))
627 continue;
629 auto *Trunc = cast<TruncInst>(V);
630 Builder.SetInsertPoint(Trunc);
631 IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
632 IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
634 unsigned NumBits = DestTy->getScalarSizeInBits();
635 ConstantInt *Mask =
636 ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
637 Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
638 if (SrcTy != ExtTy)
639 Masked = Builder.CreateTrunc(Masked, ExtTy);
641 if (auto *I = dyn_cast<Instruction>(Masked))
642 NewInsts.insert(I);
644 ReplaceAllUsersOfWith(Trunc, Masked);
648 void IRPromoter::Mutate() {
649 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains to "
650 << PromotedWidth << "-bits\n");
652 // Cache original types of the values that will likely need truncating
653 for (auto *I : Sinks) {
654 if (auto *Call = dyn_cast<CallInst>(I)) {
655 for (Value *Arg : Call->args())
656 TruncTysMap[Call].push_back(Arg->getType());
657 } else if (auto *Switch = dyn_cast<SwitchInst>(I))
658 TruncTysMap[I].push_back(Switch->getCondition()->getType());
659 else {
660 for (unsigned i = 0; i < I->getNumOperands(); ++i)
661 TruncTysMap[I].push_back(I->getOperand(i)->getType());
664 for (auto *V : Visited) {
665 if (!isa<TruncInst>(V) || Sources.count(V))
666 continue;
667 auto *Trunc = cast<TruncInst>(V);
668 TruncTysMap[Trunc].push_back(Trunc->getDestTy());
671 // Insert zext instructions between sources and their users.
672 ExtendSources();
674 // Promote visited instructions, mutating their types in place.
675 PromoteTree();
677 // Convert any truncs, that aren't sources, into AND masks.
678 ConvertTruncs();
680 // Insert trunc instructions for use by calls, stores etc...
681 TruncateSinks();
683 // Finally, remove unecessary zexts and truncs, delete old instructions and
684 // clear the data structures.
685 Cleanup();
687 LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
690 /// We disallow booleans to make life easier when dealing with icmps but allow
691 /// any other integer that fits in a scalar register. Void types are accepted
692 /// so we can handle switches.
693 bool TypePromotionImpl::isSupportedType(Value *V) {
694 Type *Ty = V->getType();
696 // Allow voids and pointers, these won't be promoted.
697 if (Ty->isVoidTy() || Ty->isPointerTy())
698 return true;
700 if (!isa<IntegerType>(Ty) || cast<IntegerType>(Ty)->getBitWidth() == 1 ||
701 cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
702 return false;
704 return LessOrEqualTypeSize(V);
707 /// We accept most instructions, as well as Arguments and ConstantInsts. We
708 /// Disallow casts other than zext and truncs and only allow calls if their
709 /// return value is zeroext. We don't allow opcodes that can introduce sign
710 /// bits.
711 bool TypePromotionImpl::isSupportedValue(Value *V) {
712 if (auto *I = dyn_cast<Instruction>(V)) {
713 switch (I->getOpcode()) {
714 default:
715 return isa<BinaryOperator>(I) && isSupportedType(I) &&
716 !GenerateSignBits(I);
717 case Instruction::GetElementPtr:
718 case Instruction::Store:
719 case Instruction::Br:
720 case Instruction::Switch:
721 return true;
722 case Instruction::PHI:
723 case Instruction::Select:
724 case Instruction::Ret:
725 case Instruction::Load:
726 case Instruction::Trunc:
727 return isSupportedType(I);
728 case Instruction::BitCast:
729 return I->getOperand(0)->getType() == I->getType();
730 case Instruction::ZExt:
731 return isSupportedType(I->getOperand(0));
732 case Instruction::ICmp:
733 // Now that we allow small types than TypeSize, only allow icmp of
734 // TypeSize because they will require a trunc to be legalised.
735 // TODO: Allow icmp of smaller types, and calculate at the end
736 // whether the transform would be beneficial.
737 if (isa<PointerType>(I->getOperand(0)->getType()))
738 return true;
739 return EqualTypeSize(I->getOperand(0));
740 case Instruction::Call: {
741 // Special cases for calls as we need to check for zeroext
742 // TODO We should accept calls even if they don't have zeroext, as they
743 // can still be sinks.
744 auto *Call = cast<CallInst>(I);
745 return isSupportedType(Call) &&
746 Call->hasRetAttr(Attribute::AttrKind::ZExt);
749 } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
750 return isSupportedType(V);
751 } else if (isa<Argument>(V))
752 return isSupportedType(V);
754 return isa<BasicBlock>(V);
757 /// Check that the type of V would be promoted and that the original type is
758 /// smaller than the targeted promoted type. Check that we're not trying to
759 /// promote something larger than our base 'TypeSize' type.
760 bool TypePromotionImpl::isLegalToPromote(Value *V) {
761 auto *I = dyn_cast<Instruction>(V);
762 if (!I)
763 return true;
765 if (SafeToPromote.count(I))
766 return true;
768 if (isPromotedResultSafe(I) || isSafeWrap(I)) {
769 SafeToPromote.insert(I);
770 return true;
772 return false;
775 bool TypePromotionImpl::TryToPromote(Value *V, unsigned PromotedWidth,
776 const LoopInfo &LI) {
777 Type *OrigTy = V->getType();
778 TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedValue();
779 SafeToPromote.clear();
780 SafeWrap.clear();
782 if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
783 return false;
785 LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
786 << TypeSize << " bits to " << PromotedWidth << "\n");
788 SetVector<Value *> WorkList;
789 SetVector<Value *> Sources;
790 SetVector<Instruction *> Sinks;
791 SetVector<Value *> CurrentVisited;
792 WorkList.insert(V);
794 // Return true if V was added to the worklist as a supported instruction,
795 // if it was already visited, or if we don't need to explore it (e.g.
796 // pointer values and GEPs), and false otherwise.
797 auto AddLegalInst = [&](Value *V) {
798 if (CurrentVisited.count(V))
799 return true;
801 // Ignore GEPs because they don't need promoting and the constant indices
802 // will prevent the transformation.
803 if (isa<GetElementPtrInst>(V))
804 return true;
806 if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
807 LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
808 return false;
811 WorkList.insert(V);
812 return true;
815 // Iterate through, and add to, a tree of operands and users in the use-def.
816 while (!WorkList.empty()) {
817 Value *V = WorkList.pop_back_val();
818 if (CurrentVisited.count(V))
819 continue;
821 // Ignore non-instructions, other than arguments.
822 if (!isa<Instruction>(V) && !isSource(V))
823 continue;
825 // If we've already visited this value from somewhere, bail now because
826 // the tree has already been explored.
827 // TODO: This could limit the transform, ie if we try to promote something
828 // from an i8 and fail first, before trying an i16.
829 if (AllVisited.count(V))
830 return false;
832 CurrentVisited.insert(V);
833 AllVisited.insert(V);
835 // Calls can be both sources and sinks.
836 if (isSink(V))
837 Sinks.insert(cast<Instruction>(V));
839 if (isSource(V))
840 Sources.insert(V);
842 if (!isSink(V) && !isSource(V)) {
843 if (auto *I = dyn_cast<Instruction>(V)) {
844 // Visit operands of any instruction visited.
845 for (auto &U : I->operands()) {
846 if (!AddLegalInst(U))
847 return false;
852 // Don't visit users of a node which isn't going to be mutated unless its a
853 // source.
854 if (isSource(V) || shouldPromote(V)) {
855 for (Use &U : V->uses()) {
856 if (!AddLegalInst(U.getUser()))
857 return false;
862 LLVM_DEBUG({
863 dbgs() << "IR Promotion: Visited nodes:\n";
864 for (auto *I : CurrentVisited)
865 I->dump();
868 unsigned ToPromote = 0;
869 unsigned NonFreeArgs = 0;
870 unsigned NonLoopSources = 0, LoopSinks = 0;
871 SmallPtrSet<BasicBlock *, 4> Blocks;
872 for (auto *CV : CurrentVisited) {
873 if (auto *I = dyn_cast<Instruction>(CV))
874 Blocks.insert(I->getParent());
876 if (Sources.count(CV)) {
877 if (auto *Arg = dyn_cast<Argument>(CV))
878 if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
879 ++NonFreeArgs;
880 if (!isa<Instruction>(CV) ||
881 !LI.getLoopFor(cast<Instruction>(CV)->getParent()))
882 ++NonLoopSources;
883 continue;
886 if (isa<PHINode>(CV))
887 continue;
888 if (LI.getLoopFor(cast<Instruction>(CV)->getParent()))
889 ++LoopSinks;
890 if (Sinks.count(cast<Instruction>(CV)))
891 continue;
892 ++ToPromote;
895 // DAG optimizations should be able to handle these cases better, especially
896 // for function arguments.
897 if (!isa<PHINode>(V) && !(LoopSinks && NonLoopSources) &&
898 (ToPromote < 2 || (Blocks.size() == 1 && NonFreeArgs > SafeWrap.size())))
899 return false;
901 IRPromoter Promoter(*Ctx, PromotedWidth, CurrentVisited, Sources, Sinks,
902 SafeWrap, InstsToRemove);
903 Promoter.Mutate();
904 return true;
907 bool TypePromotionImpl::run(Function &F, const TargetMachine *TM,
908 const TargetTransformInfo &TTI,
909 const LoopInfo &LI) {
910 if (DisablePromotion)
911 return false;
913 LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
915 AllVisited.clear();
916 SafeToPromote.clear();
917 SafeWrap.clear();
918 bool MadeChange = false;
919 const DataLayout &DL = F.getParent()->getDataLayout();
920 const TargetSubtargetInfo *SubtargetInfo = TM->getSubtargetImpl(F);
921 const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
922 RegisterBitWidth =
923 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedValue();
924 Ctx = &F.getParent()->getContext();
926 // Return the preferred integer width of the instruction, or zero if we
927 // shouldn't try.
928 auto GetPromoteWidth = [&](Instruction *I) -> uint32_t {
929 if (!isa<IntegerType>(I->getType()))
930 return 0;
932 EVT SrcVT = TLI->getValueType(DL, I->getType());
933 if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
934 return 0;
936 if (TLI->getTypeAction(*Ctx, SrcVT) != TargetLowering::TypePromoteInteger)
937 return 0;
939 EVT PromotedVT = TLI->getTypeToTransformTo(*Ctx, SrcVT);
940 if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) {
941 LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
942 << "for promoted type\n");
943 return 0;
946 // TODO: Should we prefer to use RegisterBitWidth instead?
947 return PromotedVT.getFixedSizeInBits();
950 auto BBIsInLoop = [&](BasicBlock *BB) -> bool {
951 for (auto *L : LI)
952 if (L->contains(BB))
953 return true;
954 return false;
957 for (BasicBlock &BB : F) {
958 for (Instruction &I : BB) {
959 if (AllVisited.count(&I))
960 continue;
962 if (isa<ZExtInst>(&I) && isa<PHINode>(I.getOperand(0)) &&
963 isa<IntegerType>(I.getType()) && BBIsInLoop(&BB)) {
964 LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: "
965 << *I.getOperand(0) << "\n");
966 EVT ZExtVT = TLI->getValueType(DL, I.getType());
967 Instruction *Phi = static_cast<Instruction *>(I.getOperand(0));
968 auto PromoteWidth = ZExtVT.getFixedSizeInBits();
969 if (RegisterBitWidth < PromoteWidth) {
970 LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target "
971 << "register for ZExt type\n");
972 continue;
974 MadeChange |= TryToPromote(Phi, PromoteWidth, LI);
975 } else if (auto *ICmp = dyn_cast<ICmpInst>(&I)) {
976 // Search up from icmps to try to promote their operands.
977 // Skip signed or pointer compares
978 if (ICmp->isSigned())
979 continue;
981 LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
983 for (auto &Op : ICmp->operands()) {
984 if (auto *OpI = dyn_cast<Instruction>(Op)) {
985 if (auto PromotedWidth = GetPromoteWidth(OpI)) {
986 MadeChange |= TryToPromote(OpI, PromotedWidth, LI);
987 break;
993 if (!InstsToRemove.empty()) {
994 for (auto *I : InstsToRemove)
995 I->eraseFromParent();
996 InstsToRemove.clear();
1000 AllVisited.clear();
1001 SafeToPromote.clear();
1002 SafeWrap.clear();
1004 return MadeChange;
1007 INITIALIZE_PASS_BEGIN(TypePromotionLegacy, DEBUG_TYPE, PASS_NAME, false, false)
1008 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1009 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1010 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1011 INITIALIZE_PASS_END(TypePromotionLegacy, DEBUG_TYPE, PASS_NAME, false, false)
1013 char TypePromotionLegacy::ID = 0;
1015 bool TypePromotionLegacy::runOnFunction(Function &F) {
1016 if (skipFunction(F))
1017 return false;
1019 auto &TPC = getAnalysis<TargetPassConfig>();
1020 auto *TM = &TPC.getTM<TargetMachine>();
1021 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1022 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1024 TypePromotionImpl TP;
1025 return TP.run(F, TM, TTI, LI);
1028 FunctionPass *llvm::createTypePromotionLegacyPass() {
1029 return new TypePromotionLegacy();
1032 PreservedAnalyses TypePromotionPass::run(Function &F,
1033 FunctionAnalysisManager &AM) {
1034 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1035 auto &LI = AM.getResult<LoopAnalysis>(F);
1036 TypePromotionImpl TP;
1038 bool Changed = TP.run(F, TM, TTI, LI);
1039 if (!Changed)
1040 return PreservedAnalyses::all();
1042 PreservedAnalyses PA;
1043 PA.preserveSet<CFGAnalyses>();
1044 PA.preserve<LoopAnalysis>();
1045 return PA;