[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / DebugInfo / DWARF / DWARFUnit.cpp
blob9f455fa7e96a7efb050a3eb3b56050c38f73e4fb
1 //===- DWARFUnit.cpp ------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/DebugInfo/DWARF/DWARFUnit.h"
10 #include "llvm/ADT/SmallString.h"
11 #include "llvm/ADT/StringRef.h"
12 #include "llvm/BinaryFormat/Dwarf.h"
13 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
14 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
15 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
16 #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
17 #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
18 #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
19 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
20 #include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h"
21 #include "llvm/DebugInfo/DWARF/DWARFDie.h"
22 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
23 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
24 #include "llvm/DebugInfo/DWARF/DWARFListTable.h"
25 #include "llvm/DebugInfo/DWARF/DWARFObject.h"
26 #include "llvm/DebugInfo/DWARF/DWARFSection.h"
27 #include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h"
28 #include "llvm/Object/ObjectFile.h"
29 #include "llvm/Support/DataExtractor.h"
30 #include "llvm/Support/Errc.h"
31 #include "llvm/Support/Path.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstddef>
35 #include <cstdint>
36 #include <utility>
37 #include <vector>
39 using namespace llvm;
40 using namespace dwarf;
42 void DWARFUnitVector::addUnitsForSection(DWARFContext &C,
43 const DWARFSection &Section,
44 DWARFSectionKind SectionKind) {
45 const DWARFObject &D = C.getDWARFObj();
46 addUnitsImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangesSection(),
47 &D.getLocSection(), D.getStrSection(),
48 D.getStrOffsetsSection(), &D.getAddrSection(),
49 D.getLineSection(), D.isLittleEndian(), false, false,
50 SectionKind);
53 void DWARFUnitVector::addUnitsForDWOSection(DWARFContext &C,
54 const DWARFSection &DWOSection,
55 DWARFSectionKind SectionKind,
56 bool Lazy) {
57 const DWARFObject &D = C.getDWARFObj();
58 addUnitsImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangesDWOSection(),
59 &D.getLocDWOSection(), D.getStrDWOSection(),
60 D.getStrOffsetsDWOSection(), &D.getAddrSection(),
61 D.getLineDWOSection(), C.isLittleEndian(), true, Lazy,
62 SectionKind);
65 void DWARFUnitVector::addUnitsImpl(
66 DWARFContext &Context, const DWARFObject &Obj, const DWARFSection &Section,
67 const DWARFDebugAbbrev *DA, const DWARFSection *RS,
68 const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS,
69 const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO,
70 bool Lazy, DWARFSectionKind SectionKind) {
71 DWARFDataExtractor Data(Obj, Section, LE, 0);
72 // Lazy initialization of Parser, now that we have all section info.
73 if (!Parser) {
74 Parser = [=, &Context, &Obj, &Section, &SOS,
75 &LS](uint64_t Offset, DWARFSectionKind SectionKind,
76 const DWARFSection *CurSection,
77 const DWARFUnitIndex::Entry *IndexEntry)
78 -> std::unique_ptr<DWARFUnit> {
79 const DWARFSection &InfoSection = CurSection ? *CurSection : Section;
80 DWARFDataExtractor Data(Obj, InfoSection, LE, 0);
81 if (!Data.isValidOffset(Offset))
82 return nullptr;
83 DWARFUnitHeader Header;
84 if (Error ExtractErr =
85 Header.extract(Context, Data, &Offset, SectionKind)) {
86 Context.getWarningHandler()(std::move(ExtractErr));
87 return nullptr;
89 if (!IndexEntry && IsDWO) {
90 const DWARFUnitIndex &Index = getDWARFUnitIndex(
91 Context, Header.isTypeUnit() ? DW_SECT_EXT_TYPES : DW_SECT_INFO);
92 if (Index) {
93 if (Header.isTypeUnit())
94 IndexEntry = Index.getFromHash(Header.getTypeHash());
95 else if (auto DWOId = Header.getDWOId())
96 IndexEntry = Index.getFromHash(*DWOId);
98 if (!IndexEntry)
99 IndexEntry = Index.getFromOffset(Header.getOffset());
101 if (IndexEntry && !Header.applyIndexEntry(IndexEntry))
102 return nullptr;
103 std::unique_ptr<DWARFUnit> U;
104 if (Header.isTypeUnit())
105 U = std::make_unique<DWARFTypeUnit>(Context, InfoSection, Header, DA,
106 RS, LocSection, SS, SOS, AOS, LS,
107 LE, IsDWO, *this);
108 else
109 U = std::make_unique<DWARFCompileUnit>(Context, InfoSection, Header,
110 DA, RS, LocSection, SS, SOS,
111 AOS, LS, LE, IsDWO, *this);
112 return U;
115 if (Lazy)
116 return;
117 // Find a reasonable insertion point within the vector. We skip over
118 // (a) units from a different section, (b) units from the same section
119 // but with lower offset-within-section. This keeps units in order
120 // within a section, although not necessarily within the object file,
121 // even if we do lazy parsing.
122 auto I = this->begin();
123 uint64_t Offset = 0;
124 while (Data.isValidOffset(Offset)) {
125 if (I != this->end() &&
126 (&(*I)->getInfoSection() != &Section || (*I)->getOffset() == Offset)) {
127 ++I;
128 continue;
130 auto U = Parser(Offset, SectionKind, &Section, nullptr);
131 // If parsing failed, we're done with this section.
132 if (!U)
133 break;
134 Offset = U->getNextUnitOffset();
135 I = std::next(this->insert(I, std::move(U)));
139 DWARFUnit *DWARFUnitVector::addUnit(std::unique_ptr<DWARFUnit> Unit) {
140 auto I = llvm::upper_bound(*this, Unit,
141 [](const std::unique_ptr<DWARFUnit> &LHS,
142 const std::unique_ptr<DWARFUnit> &RHS) {
143 return LHS->getOffset() < RHS->getOffset();
145 return this->insert(I, std::move(Unit))->get();
148 DWARFUnit *DWARFUnitVector::getUnitForOffset(uint64_t Offset) const {
149 auto end = begin() + getNumInfoUnits();
150 auto *CU =
151 std::upper_bound(begin(), end, Offset,
152 [](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) {
153 return LHS < RHS->getNextUnitOffset();
155 if (CU != end && (*CU)->getOffset() <= Offset)
156 return CU->get();
157 return nullptr;
160 DWARFUnit *
161 DWARFUnitVector::getUnitForIndexEntry(const DWARFUnitIndex::Entry &E) {
162 const auto *CUOff = E.getContribution(DW_SECT_INFO);
163 if (!CUOff)
164 return nullptr;
166 uint64_t Offset = CUOff->getOffset();
167 auto end = begin() + getNumInfoUnits();
169 auto *CU =
170 std::upper_bound(begin(), end, CUOff->getOffset(),
171 [](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) {
172 return LHS < RHS->getNextUnitOffset();
174 if (CU != end && (*CU)->getOffset() <= Offset)
175 return CU->get();
177 if (!Parser)
178 return nullptr;
180 auto U = Parser(Offset, DW_SECT_INFO, nullptr, &E);
181 if (!U)
182 return nullptr;
184 auto *NewCU = U.get();
185 this->insert(CU, std::move(U));
186 ++NumInfoUnits;
187 return NewCU;
190 DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section,
191 const DWARFUnitHeader &Header, const DWARFDebugAbbrev *DA,
192 const DWARFSection *RS, const DWARFSection *LocSection,
193 StringRef SS, const DWARFSection &SOS,
194 const DWARFSection *AOS, const DWARFSection &LS, bool LE,
195 bool IsDWO, const DWARFUnitVector &UnitVector)
196 : Context(DC), InfoSection(Section), Header(Header), Abbrev(DA),
197 RangeSection(RS), LineSection(LS), StringSection(SS),
198 StringOffsetSection(SOS), AddrOffsetSection(AOS), IsLittleEndian(LE),
199 IsDWO(IsDWO), UnitVector(UnitVector) {
200 clear();
203 DWARFUnit::~DWARFUnit() = default;
205 DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const {
206 return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, IsLittleEndian,
207 getAddressByteSize());
210 std::optional<object::SectionedAddress>
211 DWARFUnit::getAddrOffsetSectionItem(uint32_t Index) const {
212 if (!AddrOffsetSectionBase) {
213 auto R = Context.info_section_units();
214 // Surprising if a DWO file has more than one skeleton unit in it - this
215 // probably shouldn't be valid, but if a use case is found, here's where to
216 // support it (probably have to linearly search for the matching skeleton CU
217 // here)
218 if (IsDWO && hasSingleElement(R))
219 return (*R.begin())->getAddrOffsetSectionItem(Index);
221 return std::nullopt;
224 uint64_t Offset = *AddrOffsetSectionBase + Index * getAddressByteSize();
225 if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize())
226 return std::nullopt;
227 DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection,
228 IsLittleEndian, getAddressByteSize());
229 uint64_t Section;
230 uint64_t Address = DA.getRelocatedAddress(&Offset, &Section);
231 return {{Address, Section}};
234 Expected<uint64_t> DWARFUnit::getStringOffsetSectionItem(uint32_t Index) const {
235 if (!StringOffsetsTableContribution)
236 return make_error<StringError>(
237 "DW_FORM_strx used without a valid string offsets table",
238 inconvertibleErrorCode());
239 unsigned ItemSize = getDwarfStringOffsetsByteSize();
240 uint64_t Offset = getStringOffsetsBase() + Index * ItemSize;
241 if (StringOffsetSection.Data.size() < Offset + ItemSize)
242 return make_error<StringError>("DW_FORM_strx uses index " + Twine(Index) +
243 ", which is too large",
244 inconvertibleErrorCode());
245 DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
246 IsLittleEndian, 0);
247 return DA.getRelocatedValue(ItemSize, &Offset);
250 Error DWARFUnitHeader::extract(DWARFContext &Context,
251 const DWARFDataExtractor &debug_info,
252 uint64_t *offset_ptr,
253 DWARFSectionKind SectionKind) {
254 Offset = *offset_ptr;
255 Error Err = Error::success();
256 IndexEntry = nullptr;
257 std::tie(Length, FormParams.Format) =
258 debug_info.getInitialLength(offset_ptr, &Err);
259 FormParams.Version = debug_info.getU16(offset_ptr, &Err);
260 if (FormParams.Version >= 5) {
261 UnitType = debug_info.getU8(offset_ptr, &Err);
262 FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err);
263 AbbrOffset = debug_info.getRelocatedValue(
264 FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err);
265 } else {
266 AbbrOffset = debug_info.getRelocatedValue(
267 FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err);
268 FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err);
269 // Fake a unit type based on the section type. This isn't perfect,
270 // but distinguishing compile and type units is generally enough.
271 if (SectionKind == DW_SECT_EXT_TYPES)
272 UnitType = DW_UT_type;
273 else
274 UnitType = DW_UT_compile;
276 if (isTypeUnit()) {
277 TypeHash = debug_info.getU64(offset_ptr, &Err);
278 TypeOffset = debug_info.getUnsigned(
279 offset_ptr, FormParams.getDwarfOffsetByteSize(), &Err);
280 } else if (UnitType == DW_UT_split_compile || UnitType == DW_UT_skeleton)
281 DWOId = debug_info.getU64(offset_ptr, &Err);
283 if (Err)
284 return joinErrors(
285 createStringError(
286 errc::invalid_argument,
287 "DWARF unit at 0x%8.8" PRIx64 " cannot be parsed:", Offset),
288 std::move(Err));
290 // Header fields all parsed, capture the size of this unit header.
291 assert(*offset_ptr - Offset <= 255 && "unexpected header size");
292 Size = uint8_t(*offset_ptr - Offset);
293 uint64_t NextCUOffset = Offset + getUnitLengthFieldByteSize() + getLength();
295 if (!debug_info.isValidOffset(getNextUnitOffset() - 1))
296 return createStringError(errc::invalid_argument,
297 "DWARF unit from offset 0x%8.8" PRIx64 " incl. "
298 "to offset 0x%8.8" PRIx64 " excl. "
299 "extends past section size 0x%8.8zx",
300 Offset, NextCUOffset, debug_info.size());
302 if (!DWARFContext::isSupportedVersion(getVersion()))
303 return createStringError(
304 errc::invalid_argument,
305 "DWARF unit at offset 0x%8.8" PRIx64 " "
306 "has unsupported version %" PRIu16 ", supported are 2-%u",
307 Offset, getVersion(), DWARFContext::getMaxSupportedVersion());
309 // Type offset is unit-relative; should be after the header and before
310 // the end of the current unit.
311 if (isTypeUnit() && TypeOffset < Size)
312 return createStringError(errc::invalid_argument,
313 "DWARF type unit at offset "
314 "0x%8.8" PRIx64 " "
315 "has its relocated type_offset 0x%8.8" PRIx64 " "
316 "pointing inside the header",
317 Offset, Offset + TypeOffset);
319 if (isTypeUnit() && TypeOffset >= getUnitLengthFieldByteSize() + getLength())
320 return createStringError(
321 errc::invalid_argument,
322 "DWARF type unit from offset 0x%8.8" PRIx64 " incl. "
323 "to offset 0x%8.8" PRIx64 " excl. has its "
324 "relocated type_offset 0x%8.8" PRIx64 " pointing past the unit end",
325 Offset, NextCUOffset, Offset + TypeOffset);
327 if (Error SizeErr = DWARFContext::checkAddressSizeSupported(
328 getAddressByteSize(), errc::invalid_argument,
329 "DWARF unit at offset 0x%8.8" PRIx64, Offset))
330 return SizeErr;
332 // Keep track of the highest DWARF version we encounter across all units.
333 Context.setMaxVersionIfGreater(getVersion());
334 return Error::success();
337 bool DWARFUnitHeader::applyIndexEntry(const DWARFUnitIndex::Entry *Entry) {
338 assert(Entry);
339 assert(!IndexEntry);
340 IndexEntry = Entry;
341 if (AbbrOffset)
342 return false;
343 auto *UnitContrib = IndexEntry->getContribution();
344 if (!UnitContrib ||
345 UnitContrib->getLength() != (getLength() + getUnitLengthFieldByteSize()))
346 return false;
347 auto *AbbrEntry = IndexEntry->getContribution(DW_SECT_ABBREV);
348 if (!AbbrEntry)
349 return false;
350 AbbrOffset = AbbrEntry->getOffset();
351 return true;
354 Error DWARFUnit::extractRangeList(uint64_t RangeListOffset,
355 DWARFDebugRangeList &RangeList) const {
356 // Require that compile unit is extracted.
357 assert(!DieArray.empty());
358 DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
359 IsLittleEndian, getAddressByteSize());
360 uint64_t ActualRangeListOffset = RangeSectionBase + RangeListOffset;
361 return RangeList.extract(RangesData, &ActualRangeListOffset);
364 void DWARFUnit::clear() {
365 Abbrevs = nullptr;
366 BaseAddr.reset();
367 RangeSectionBase = 0;
368 LocSectionBase = 0;
369 AddrOffsetSectionBase = std::nullopt;
370 SU = nullptr;
371 clearDIEs(false);
372 AddrDieMap.clear();
373 if (DWO)
374 DWO->clear();
375 DWO.reset();
378 const char *DWARFUnit::getCompilationDir() {
379 return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr);
382 void DWARFUnit::extractDIEsToVector(
383 bool AppendCUDie, bool AppendNonCUDies,
384 std::vector<DWARFDebugInfoEntry> &Dies) const {
385 if (!AppendCUDie && !AppendNonCUDies)
386 return;
388 // Set the offset to that of the first DIE and calculate the start of the
389 // next compilation unit header.
390 uint64_t DIEOffset = getOffset() + getHeaderSize();
391 uint64_t NextCUOffset = getNextUnitOffset();
392 DWARFDebugInfoEntry DIE;
393 DWARFDataExtractor DebugInfoData = getDebugInfoExtractor();
394 // The end offset has been already checked by DWARFUnitHeader::extract.
395 assert(DebugInfoData.isValidOffset(NextCUOffset - 1));
396 std::vector<uint32_t> Parents;
397 std::vector<uint32_t> PrevSiblings;
398 bool IsCUDie = true;
400 assert(
401 ((AppendCUDie && Dies.empty()) || (!AppendCUDie && Dies.size() == 1)) &&
402 "Dies array is not empty");
404 // Fill Parents and Siblings stacks with initial value.
405 Parents.push_back(UINT32_MAX);
406 if (!AppendCUDie)
407 Parents.push_back(0);
408 PrevSiblings.push_back(0);
410 // Start to extract dies.
411 do {
412 assert(Parents.size() > 0 && "Empty parents stack");
413 assert((Parents.back() == UINT32_MAX || Parents.back() <= Dies.size()) &&
414 "Wrong parent index");
416 // Extract die. Stop if any error occurred.
417 if (!DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset,
418 Parents.back()))
419 break;
421 // If previous sibling is remembered then update it`s SiblingIdx field.
422 if (PrevSiblings.back() > 0) {
423 assert(PrevSiblings.back() < Dies.size() &&
424 "Previous sibling index is out of Dies boundaries");
425 Dies[PrevSiblings.back()].setSiblingIdx(Dies.size());
428 // Store die into the Dies vector.
429 if (IsCUDie) {
430 if (AppendCUDie)
431 Dies.push_back(DIE);
432 if (!AppendNonCUDies)
433 break;
434 // The average bytes per DIE entry has been seen to be
435 // around 14-20 so let's pre-reserve the needed memory for
436 // our DIE entries accordingly.
437 Dies.reserve(Dies.size() + getDebugInfoSize() / 14);
438 } else {
439 // Remember last previous sibling.
440 PrevSiblings.back() = Dies.size();
442 Dies.push_back(DIE);
445 // Check for new children scope.
446 if (const DWARFAbbreviationDeclaration *AbbrDecl =
447 DIE.getAbbreviationDeclarationPtr()) {
448 if (AbbrDecl->hasChildren()) {
449 if (AppendCUDie || !IsCUDie) {
450 assert(Dies.size() > 0 && "Dies does not contain any die");
451 Parents.push_back(Dies.size() - 1);
452 PrevSiblings.push_back(0);
454 } else if (IsCUDie)
455 // Stop if we have single compile unit die w/o children.
456 break;
457 } else {
458 // NULL DIE: finishes current children scope.
459 Parents.pop_back();
460 PrevSiblings.pop_back();
463 if (IsCUDie)
464 IsCUDie = false;
466 // Stop when compile unit die is removed from the parents stack.
467 } while (Parents.size() > 1);
470 void DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) {
471 if (Error e = tryExtractDIEsIfNeeded(CUDieOnly))
472 Context.getRecoverableErrorHandler()(std::move(e));
475 Error DWARFUnit::tryExtractDIEsIfNeeded(bool CUDieOnly) {
476 if ((CUDieOnly && !DieArray.empty()) ||
477 DieArray.size() > 1)
478 return Error::success(); // Already parsed.
480 bool HasCUDie = !DieArray.empty();
481 extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray);
483 if (DieArray.empty())
484 return Error::success();
486 // If CU DIE was just parsed, copy several attribute values from it.
487 if (HasCUDie)
488 return Error::success();
490 DWARFDie UnitDie(this, &DieArray[0]);
491 if (std::optional<uint64_t> DWOId =
492 toUnsigned(UnitDie.find(DW_AT_GNU_dwo_id)))
493 Header.setDWOId(*DWOId);
494 if (!IsDWO) {
495 assert(AddrOffsetSectionBase == std::nullopt);
496 assert(RangeSectionBase == 0);
497 assert(LocSectionBase == 0);
498 AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_addr_base));
499 if (!AddrOffsetSectionBase)
500 AddrOffsetSectionBase =
501 toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base));
502 RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0);
503 LocSectionBase = toSectionOffset(UnitDie.find(DW_AT_loclists_base), 0);
506 // In general, in DWARF v5 and beyond we derive the start of the unit's
507 // contribution to the string offsets table from the unit DIE's
508 // DW_AT_str_offsets_base attribute. Split DWARF units do not use this
509 // attribute, so we assume that there is a contribution to the string
510 // offsets table starting at offset 0 of the debug_str_offsets.dwo section.
511 // In both cases we need to determine the format of the contribution,
512 // which may differ from the unit's format.
513 DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
514 IsLittleEndian, 0);
515 if (IsDWO || getVersion() >= 5) {
516 auto StringOffsetOrError =
517 IsDWO ? determineStringOffsetsTableContributionDWO(DA)
518 : determineStringOffsetsTableContribution(DA);
519 if (!StringOffsetOrError)
520 return createStringError(errc::invalid_argument,
521 "invalid reference to or invalid content in "
522 ".debug_str_offsets[.dwo]: " +
523 toString(StringOffsetOrError.takeError()));
525 StringOffsetsTableContribution = *StringOffsetOrError;
528 // DWARF v5 uses the .debug_rnglists and .debug_rnglists.dwo sections to
529 // describe address ranges.
530 if (getVersion() >= 5) {
531 // In case of DWP, the base offset from the index has to be added.
532 if (IsDWO) {
533 uint64_t ContributionBaseOffset = 0;
534 if (auto *IndexEntry = Header.getIndexEntry())
535 if (auto *Contrib = IndexEntry->getContribution(DW_SECT_RNGLISTS))
536 ContributionBaseOffset = Contrib->getOffset();
537 setRangesSection(
538 &Context.getDWARFObj().getRnglistsDWOSection(),
539 ContributionBaseOffset +
540 DWARFListTableHeader::getHeaderSize(Header.getFormat()));
541 } else
542 setRangesSection(&Context.getDWARFObj().getRnglistsSection(),
543 toSectionOffset(UnitDie.find(DW_AT_rnglists_base),
544 DWARFListTableHeader::getHeaderSize(
545 Header.getFormat())));
548 if (IsDWO) {
549 // If we are reading a package file, we need to adjust the location list
550 // data based on the index entries.
551 StringRef Data = Header.getVersion() >= 5
552 ? Context.getDWARFObj().getLoclistsDWOSection().Data
553 : Context.getDWARFObj().getLocDWOSection().Data;
554 if (auto *IndexEntry = Header.getIndexEntry())
555 if (const auto *C = IndexEntry->getContribution(
556 Header.getVersion() >= 5 ? DW_SECT_LOCLISTS : DW_SECT_EXT_LOC))
557 Data = Data.substr(C->getOffset(), C->getLength());
559 DWARFDataExtractor DWARFData(Data, IsLittleEndian, getAddressByteSize());
560 LocTable =
561 std::make_unique<DWARFDebugLoclists>(DWARFData, Header.getVersion());
562 LocSectionBase = DWARFListTableHeader::getHeaderSize(Header.getFormat());
563 } else if (getVersion() >= 5) {
564 LocTable = std::make_unique<DWARFDebugLoclists>(
565 DWARFDataExtractor(Context.getDWARFObj(),
566 Context.getDWARFObj().getLoclistsSection(),
567 IsLittleEndian, getAddressByteSize()),
568 getVersion());
569 } else {
570 LocTable = std::make_unique<DWARFDebugLoc>(DWARFDataExtractor(
571 Context.getDWARFObj(), Context.getDWARFObj().getLocSection(),
572 IsLittleEndian, getAddressByteSize()));
575 // Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for
576 // skeleton CU DIE, so that DWARF users not aware of it are not broken.
577 return Error::success();
580 bool DWARFUnit::parseDWO(StringRef DWOAlternativeLocation) {
581 if (IsDWO)
582 return false;
583 if (DWO)
584 return false;
585 DWARFDie UnitDie = getUnitDIE();
586 if (!UnitDie)
587 return false;
588 auto DWOFileName = getVersion() >= 5
589 ? dwarf::toString(UnitDie.find(DW_AT_dwo_name))
590 : dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name));
591 if (!DWOFileName)
592 return false;
593 auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir));
594 SmallString<16> AbsolutePath;
595 if (sys::path::is_relative(*DWOFileName) && CompilationDir &&
596 *CompilationDir) {
597 sys::path::append(AbsolutePath, *CompilationDir);
599 sys::path::append(AbsolutePath, *DWOFileName);
600 auto DWOId = getDWOId();
601 if (!DWOId)
602 return false;
603 auto DWOContext = Context.getDWOContext(AbsolutePath);
604 if (!DWOContext) {
605 // Use the alternative location to get the DWARF context for the DWO object.
606 if (DWOAlternativeLocation.empty())
607 return false;
608 // If the alternative context does not correspond to the original DWO object
609 // (different hashes), the below 'getDWOCompileUnitForHash' call will catch
610 // the issue, with a returned null context.
611 DWOContext = Context.getDWOContext(DWOAlternativeLocation);
612 if (!DWOContext)
613 return false;
616 DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId);
617 if (!DWOCU)
618 return false;
619 DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU);
620 DWO->setSkeletonUnit(this);
621 // Share .debug_addr and .debug_ranges section with compile unit in .dwo
622 if (AddrOffsetSectionBase)
623 DWO->setAddrOffsetSection(AddrOffsetSection, *AddrOffsetSectionBase);
624 if (getVersion() == 4) {
625 auto DWORangesBase = UnitDie.getRangesBaseAttribute();
626 DWO->setRangesSection(RangeSection, DWORangesBase.value_or(0));
629 return true;
632 void DWARFUnit::clearDIEs(bool KeepCUDie) {
633 // Do not use resize() + shrink_to_fit() to free memory occupied by dies.
634 // shrink_to_fit() is a *non-binding* request to reduce capacity() to size().
635 // It depends on the implementation whether the request is fulfilled.
636 // Create a new vector with a small capacity and assign it to the DieArray to
637 // have previous contents freed.
638 DieArray = (KeepCUDie && !DieArray.empty())
639 ? std::vector<DWARFDebugInfoEntry>({DieArray[0]})
640 : std::vector<DWARFDebugInfoEntry>();
643 Expected<DWARFAddressRangesVector>
644 DWARFUnit::findRnglistFromOffset(uint64_t Offset) {
645 if (getVersion() <= 4) {
646 DWARFDebugRangeList RangeList;
647 if (Error E = extractRangeList(Offset, RangeList))
648 return std::move(E);
649 return RangeList.getAbsoluteRanges(getBaseAddress());
651 DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
652 IsLittleEndian, Header.getAddressByteSize());
653 DWARFDebugRnglistTable RnglistTable;
654 auto RangeListOrError = RnglistTable.findList(RangesData, Offset);
655 if (RangeListOrError)
656 return RangeListOrError.get().getAbsoluteRanges(getBaseAddress(), *this);
657 return RangeListOrError.takeError();
660 Expected<DWARFAddressRangesVector>
661 DWARFUnit::findRnglistFromIndex(uint32_t Index) {
662 if (auto Offset = getRnglistOffset(Index))
663 return findRnglistFromOffset(*Offset);
665 return createStringError(errc::invalid_argument,
666 "invalid range list table index %d (possibly "
667 "missing the entire range list table)",
668 Index);
671 Expected<DWARFAddressRangesVector> DWARFUnit::collectAddressRanges() {
672 DWARFDie UnitDie = getUnitDIE();
673 if (!UnitDie)
674 return createStringError(errc::invalid_argument, "No unit DIE");
676 // First, check if unit DIE describes address ranges for the whole unit.
677 auto CUDIERangesOrError = UnitDie.getAddressRanges();
678 if (!CUDIERangesOrError)
679 return createStringError(errc::invalid_argument,
680 "decoding address ranges: %s",
681 toString(CUDIERangesOrError.takeError()).c_str());
682 return *CUDIERangesOrError;
685 Expected<DWARFLocationExpressionsVector>
686 DWARFUnit::findLoclistFromOffset(uint64_t Offset) {
687 DWARFLocationExpressionsVector Result;
689 Error InterpretationError = Error::success();
691 Error ParseError = getLocationTable().visitAbsoluteLocationList(
692 Offset, getBaseAddress(),
693 [this](uint32_t Index) { return getAddrOffsetSectionItem(Index); },
694 [&](Expected<DWARFLocationExpression> L) {
695 if (L)
696 Result.push_back(std::move(*L));
697 else
698 InterpretationError =
699 joinErrors(L.takeError(), std::move(InterpretationError));
700 return !InterpretationError;
703 if (ParseError || InterpretationError)
704 return joinErrors(std::move(ParseError), std::move(InterpretationError));
706 return Result;
709 void DWARFUnit::updateAddressDieMap(DWARFDie Die) {
710 if (Die.isSubroutineDIE()) {
711 auto DIERangesOrError = Die.getAddressRanges();
712 if (DIERangesOrError) {
713 for (const auto &R : DIERangesOrError.get()) {
714 // Ignore 0-sized ranges.
715 if (R.LowPC == R.HighPC)
716 continue;
717 auto B = AddrDieMap.upper_bound(R.LowPC);
718 if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) {
719 // The range is a sub-range of existing ranges, we need to split the
720 // existing range.
721 if (R.HighPC < B->second.first)
722 AddrDieMap[R.HighPC] = B->second;
723 if (R.LowPC > B->first)
724 AddrDieMap[B->first].first = R.LowPC;
726 AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die);
728 } else
729 llvm::consumeError(DIERangesOrError.takeError());
731 // Parent DIEs are added to the AddrDieMap prior to the Children DIEs to
732 // simplify the logic to update AddrDieMap. The child's range will always
733 // be equal or smaller than the parent's range. With this assumption, when
734 // adding one range into the map, it will at most split a range into 3
735 // sub-ranges.
736 for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling())
737 updateAddressDieMap(Child);
740 DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) {
741 extractDIEsIfNeeded(false);
742 if (AddrDieMap.empty())
743 updateAddressDieMap(getUnitDIE());
744 auto R = AddrDieMap.upper_bound(Address);
745 if (R == AddrDieMap.begin())
746 return DWARFDie();
747 // upper_bound's previous item contains Address.
748 --R;
749 if (Address >= R->second.first)
750 return DWARFDie();
751 return R->second.second;
754 void DWARFUnit::updateVariableDieMap(DWARFDie Die) {
755 for (DWARFDie Child : Die) {
756 if (isType(Child.getTag()))
757 continue;
758 updateVariableDieMap(Child);
761 if (Die.getTag() != DW_TAG_variable)
762 return;
764 Expected<DWARFLocationExpressionsVector> Locations =
765 Die.getLocations(DW_AT_location);
766 if (!Locations) {
767 // Missing DW_AT_location is fine here.
768 consumeError(Locations.takeError());
769 return;
772 uint64_t Address = UINT64_MAX;
774 for (const DWARFLocationExpression &Location : *Locations) {
775 uint8_t AddressSize = getAddressByteSize();
776 DataExtractor Data(Location.Expr, isLittleEndian(), AddressSize);
777 DWARFExpression Expr(Data, AddressSize);
778 auto It = Expr.begin();
779 if (It == Expr.end())
780 continue;
782 // Match exactly the main sequence used to describe global variables:
783 // `DW_OP_addr[x] [+ DW_OP_plus_uconst]`. Currently, this is the sequence
784 // that LLVM produces for DILocalVariables and DIGlobalVariables. If, in
785 // future, the DWARF producer (`DwarfCompileUnit::addLocationAttribute()` is
786 // a good starting point) is extended to use further expressions, this code
787 // needs to be updated.
788 uint64_t LocationAddr;
789 if (It->getCode() == dwarf::DW_OP_addr) {
790 LocationAddr = It->getRawOperand(0);
791 } else if (It->getCode() == dwarf::DW_OP_addrx) {
792 uint64_t DebugAddrOffset = It->getRawOperand(0);
793 if (auto Pointer = getAddrOffsetSectionItem(DebugAddrOffset)) {
794 LocationAddr = Pointer->Address;
796 } else {
797 continue;
800 // Read the optional 2nd operand, a DW_OP_plus_uconst.
801 if (++It != Expr.end()) {
802 if (It->getCode() != dwarf::DW_OP_plus_uconst)
803 continue;
805 LocationAddr += It->getRawOperand(0);
807 // Probe for a 3rd operand, if it exists, bail.
808 if (++It != Expr.end())
809 continue;
812 Address = LocationAddr;
813 break;
816 // Get the size of the global variable. If all else fails (i.e. the global has
817 // no type), then we use a size of one to still allow symbolization of the
818 // exact address.
819 uint64_t GVSize = 1;
820 if (Die.getAttributeValueAsReferencedDie(DW_AT_type))
821 if (std::optional<uint64_t> Size = Die.getTypeSize(getAddressByteSize()))
822 GVSize = *Size;
824 if (Address != UINT64_MAX)
825 VariableDieMap[Address] = {Address + GVSize, Die};
828 DWARFDie DWARFUnit::getVariableForAddress(uint64_t Address) {
829 extractDIEsIfNeeded(false);
831 auto RootDie = getUnitDIE();
833 auto RootLookup = RootsParsedForVariables.insert(RootDie.getOffset());
834 if (RootLookup.second)
835 updateVariableDieMap(RootDie);
837 auto R = VariableDieMap.upper_bound(Address);
838 if (R == VariableDieMap.begin())
839 return DWARFDie();
841 // upper_bound's previous item contains Address.
842 --R;
843 if (Address >= R->second.first)
844 return DWARFDie();
845 return R->second.second;
848 void
849 DWARFUnit::getInlinedChainForAddress(uint64_t Address,
850 SmallVectorImpl<DWARFDie> &InlinedChain) {
851 assert(InlinedChain.empty());
852 // Try to look for subprogram DIEs in the DWO file.
853 parseDWO();
854 // First, find the subroutine that contains the given address (the leaf
855 // of inlined chain).
856 DWARFDie SubroutineDIE =
857 (DWO ? *DWO : *this).getSubroutineForAddress(Address);
859 while (SubroutineDIE) {
860 if (SubroutineDIE.isSubprogramDIE()) {
861 InlinedChain.push_back(SubroutineDIE);
862 return;
864 if (SubroutineDIE.getTag() == DW_TAG_inlined_subroutine)
865 InlinedChain.push_back(SubroutineDIE);
866 SubroutineDIE = SubroutineDIE.getParent();
870 const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context,
871 DWARFSectionKind Kind) {
872 if (Kind == DW_SECT_INFO)
873 return Context.getCUIndex();
874 assert(Kind == DW_SECT_EXT_TYPES);
875 return Context.getTUIndex();
878 DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) {
879 if (const DWARFDebugInfoEntry *Entry = getParentEntry(Die))
880 return DWARFDie(this, Entry);
882 return DWARFDie();
885 const DWARFDebugInfoEntry *
886 DWARFUnit::getParentEntry(const DWARFDebugInfoEntry *Die) const {
887 if (!Die)
888 return nullptr;
889 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
891 if (std::optional<uint32_t> ParentIdx = Die->getParentIdx()) {
892 assert(*ParentIdx < DieArray.size() &&
893 "ParentIdx is out of DieArray boundaries");
894 return getDebugInfoEntry(*ParentIdx);
897 return nullptr;
900 DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) {
901 if (const DWARFDebugInfoEntry *Sibling = getSiblingEntry(Die))
902 return DWARFDie(this, Sibling);
904 return DWARFDie();
907 const DWARFDebugInfoEntry *
908 DWARFUnit::getSiblingEntry(const DWARFDebugInfoEntry *Die) const {
909 if (!Die)
910 return nullptr;
911 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
913 if (std::optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) {
914 assert(*SiblingIdx < DieArray.size() &&
915 "SiblingIdx is out of DieArray boundaries");
916 return &DieArray[*SiblingIdx];
919 return nullptr;
922 DWARFDie DWARFUnit::getPreviousSibling(const DWARFDebugInfoEntry *Die) {
923 if (const DWARFDebugInfoEntry *Sibling = getPreviousSiblingEntry(Die))
924 return DWARFDie(this, Sibling);
926 return DWARFDie();
929 const DWARFDebugInfoEntry *
930 DWARFUnit::getPreviousSiblingEntry(const DWARFDebugInfoEntry *Die) const {
931 if (!Die)
932 return nullptr;
933 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
935 std::optional<uint32_t> ParentIdx = Die->getParentIdx();
936 if (!ParentIdx)
937 // Die is a root die, there is no previous sibling.
938 return nullptr;
940 assert(*ParentIdx < DieArray.size() &&
941 "ParentIdx is out of DieArray boundaries");
942 assert(getDIEIndex(Die) > 0 && "Die is a root die");
944 uint32_t PrevDieIdx = getDIEIndex(Die) - 1;
945 if (PrevDieIdx == *ParentIdx)
946 // Immediately previous node is parent, there is no previous sibling.
947 return nullptr;
949 while (DieArray[PrevDieIdx].getParentIdx() != *ParentIdx) {
950 PrevDieIdx = *DieArray[PrevDieIdx].getParentIdx();
952 assert(PrevDieIdx < DieArray.size() &&
953 "PrevDieIdx is out of DieArray boundaries");
954 assert(PrevDieIdx >= *ParentIdx &&
955 "PrevDieIdx is not a child of parent of Die");
958 return &DieArray[PrevDieIdx];
961 DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) {
962 if (const DWARFDebugInfoEntry *Child = getFirstChildEntry(Die))
963 return DWARFDie(this, Child);
965 return DWARFDie();
968 const DWARFDebugInfoEntry *
969 DWARFUnit::getFirstChildEntry(const DWARFDebugInfoEntry *Die) const {
970 if (!Die)
971 return nullptr;
972 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
974 if (!Die->hasChildren())
975 return nullptr;
977 // TODO: Instead of checking here for invalid die we might reject
978 // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector).
979 // We do not want access out of bounds when parsing corrupted debug data.
980 size_t I = getDIEIndex(Die) + 1;
981 if (I >= DieArray.size())
982 return nullptr;
983 return &DieArray[I];
986 DWARFDie DWARFUnit::getLastChild(const DWARFDebugInfoEntry *Die) {
987 if (const DWARFDebugInfoEntry *Child = getLastChildEntry(Die))
988 return DWARFDie(this, Child);
990 return DWARFDie();
993 const DWARFDebugInfoEntry *
994 DWARFUnit::getLastChildEntry(const DWARFDebugInfoEntry *Die) const {
995 if (!Die)
996 return nullptr;
997 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
999 if (!Die->hasChildren())
1000 return nullptr;
1002 if (std::optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) {
1003 assert(*SiblingIdx < DieArray.size() &&
1004 "SiblingIdx is out of DieArray boundaries");
1005 assert(DieArray[*SiblingIdx - 1].getTag() == dwarf::DW_TAG_null &&
1006 "Bad end of children marker");
1007 return &DieArray[*SiblingIdx - 1];
1010 // If SiblingIdx is set for non-root dies we could be sure that DWARF is
1011 // correct and "end of children marker" must be found. For root die we do not
1012 // have such a guarantee(parsing root die might be stopped if "end of children
1013 // marker" is missing, SiblingIdx is always zero for root die). That is why we
1014 // do not use assertion for checking for "end of children marker" for root
1015 // die.
1017 // TODO: Instead of checking here for invalid die we might reject
1018 // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector).
1019 if (getDIEIndex(Die) == 0 && DieArray.size() > 1 &&
1020 DieArray.back().getTag() == dwarf::DW_TAG_null) {
1021 // For the unit die we might take last item from DieArray.
1022 assert(getDIEIndex(Die) ==
1023 getDIEIndex(const_cast<DWARFUnit *>(this)->getUnitDIE()) &&
1024 "Bad unit die");
1025 return &DieArray.back();
1028 return nullptr;
1031 const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const {
1032 if (!Abbrevs) {
1033 Expected<const DWARFAbbreviationDeclarationSet *> AbbrevsOrError =
1034 Abbrev->getAbbreviationDeclarationSet(getAbbreviationsOffset());
1035 if (!AbbrevsOrError) {
1036 // FIXME: We should propagate this error upwards.
1037 consumeError(AbbrevsOrError.takeError());
1038 return nullptr;
1040 Abbrevs = *AbbrevsOrError;
1042 return Abbrevs;
1045 std::optional<object::SectionedAddress> DWARFUnit::getBaseAddress() {
1046 if (BaseAddr)
1047 return BaseAddr;
1049 DWARFDie UnitDie = (SU ? SU : this)->getUnitDIE();
1050 std::optional<DWARFFormValue> PC =
1051 UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc});
1052 BaseAddr = toSectionedAddress(PC);
1053 return BaseAddr;
1056 Expected<StrOffsetsContributionDescriptor>
1057 StrOffsetsContributionDescriptor::validateContributionSize(
1058 DWARFDataExtractor &DA) {
1059 uint8_t EntrySize = getDwarfOffsetByteSize();
1060 // In order to ensure that we don't read a partial record at the end of
1061 // the section we validate for a multiple of the entry size.
1062 uint64_t ValidationSize = alignTo(Size, EntrySize);
1063 // Guard against overflow.
1064 if (ValidationSize >= Size)
1065 if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize))
1066 return *this;
1067 return createStringError(errc::invalid_argument, "length exceeds section size");
1070 // Look for a DWARF64-formatted contribution to the string offsets table
1071 // starting at a given offset and record it in a descriptor.
1072 static Expected<StrOffsetsContributionDescriptor>
1073 parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) {
1074 if (!DA.isValidOffsetForDataOfSize(Offset, 16))
1075 return createStringError(errc::invalid_argument, "section offset exceeds section size");
1077 if (DA.getU32(&Offset) != dwarf::DW_LENGTH_DWARF64)
1078 return createStringError(errc::invalid_argument, "32 bit contribution referenced from a 64 bit unit");
1080 uint64_t Size = DA.getU64(&Offset);
1081 uint8_t Version = DA.getU16(&Offset);
1082 (void)DA.getU16(&Offset); // padding
1083 // The encoded length includes the 2-byte version field and the 2-byte
1084 // padding, so we need to subtract them out when we populate the descriptor.
1085 return StrOffsetsContributionDescriptor(Offset, Size - 4, Version, DWARF64);
1088 // Look for a DWARF32-formatted contribution to the string offsets table
1089 // starting at a given offset and record it in a descriptor.
1090 static Expected<StrOffsetsContributionDescriptor>
1091 parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) {
1092 if (!DA.isValidOffsetForDataOfSize(Offset, 8))
1093 return createStringError(errc::invalid_argument, "section offset exceeds section size");
1095 uint32_t ContributionSize = DA.getU32(&Offset);
1096 if (ContributionSize >= dwarf::DW_LENGTH_lo_reserved)
1097 return createStringError(errc::invalid_argument, "invalid length");
1099 uint8_t Version = DA.getU16(&Offset);
1100 (void)DA.getU16(&Offset); // padding
1101 // The encoded length includes the 2-byte version field and the 2-byte
1102 // padding, so we need to subtract them out when we populate the descriptor.
1103 return StrOffsetsContributionDescriptor(Offset, ContributionSize - 4, Version,
1104 DWARF32);
1107 static Expected<StrOffsetsContributionDescriptor>
1108 parseDWARFStringOffsetsTableHeader(DWARFDataExtractor &DA,
1109 llvm::dwarf::DwarfFormat Format,
1110 uint64_t Offset) {
1111 StrOffsetsContributionDescriptor Desc;
1112 switch (Format) {
1113 case dwarf::DwarfFormat::DWARF64: {
1114 if (Offset < 16)
1115 return createStringError(errc::invalid_argument, "insufficient space for 64 bit header prefix");
1116 auto DescOrError = parseDWARF64StringOffsetsTableHeader(DA, Offset - 16);
1117 if (!DescOrError)
1118 return DescOrError.takeError();
1119 Desc = *DescOrError;
1120 break;
1122 case dwarf::DwarfFormat::DWARF32: {
1123 if (Offset < 8)
1124 return createStringError(errc::invalid_argument, "insufficient space for 32 bit header prefix");
1125 auto DescOrError = parseDWARF32StringOffsetsTableHeader(DA, Offset - 8);
1126 if (!DescOrError)
1127 return DescOrError.takeError();
1128 Desc = *DescOrError;
1129 break;
1132 return Desc.validateContributionSize(DA);
1135 Expected<std::optional<StrOffsetsContributionDescriptor>>
1136 DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA) {
1137 assert(!IsDWO);
1138 auto OptOffset = toSectionOffset(getUnitDIE().find(DW_AT_str_offsets_base));
1139 if (!OptOffset)
1140 return std::nullopt;
1141 auto DescOrError =
1142 parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), *OptOffset);
1143 if (!DescOrError)
1144 return DescOrError.takeError();
1145 return *DescOrError;
1148 Expected<std::optional<StrOffsetsContributionDescriptor>>
1149 DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor &DA) {
1150 assert(IsDWO);
1151 uint64_t Offset = 0;
1152 auto IndexEntry = Header.getIndexEntry();
1153 const auto *C =
1154 IndexEntry ? IndexEntry->getContribution(DW_SECT_STR_OFFSETS) : nullptr;
1155 if (C)
1156 Offset = C->getOffset();
1157 if (getVersion() >= 5) {
1158 if (DA.getData().data() == nullptr)
1159 return std::nullopt;
1160 Offset += Header.getFormat() == dwarf::DwarfFormat::DWARF32 ? 8 : 16;
1161 // Look for a valid contribution at the given offset.
1162 auto DescOrError = parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), Offset);
1163 if (!DescOrError)
1164 return DescOrError.takeError();
1165 return *DescOrError;
1167 // Prior to DWARF v5, we derive the contribution size from the
1168 // index table (in a package file). In a .dwo file it is simply
1169 // the length of the string offsets section.
1170 StrOffsetsContributionDescriptor Desc;
1171 if (C)
1172 Desc = StrOffsetsContributionDescriptor(C->getOffset(), C->getLength(), 4,
1173 Header.getFormat());
1174 else if (!IndexEntry && !StringOffsetSection.Data.empty())
1175 Desc = StrOffsetsContributionDescriptor(0, StringOffsetSection.Data.size(),
1176 4, Header.getFormat());
1177 else
1178 return std::nullopt;
1179 auto DescOrError = Desc.validateContributionSize(DA);
1180 if (!DescOrError)
1181 return DescOrError.takeError();
1182 return *DescOrError;
1185 std::optional<uint64_t> DWARFUnit::getRnglistOffset(uint32_t Index) {
1186 DataExtractor RangesData(RangeSection->Data, IsLittleEndian,
1187 getAddressByteSize());
1188 DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection,
1189 IsLittleEndian, 0);
1190 if (std::optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry(
1191 RangesData, RangeSectionBase, getFormat(), Index))
1192 return *Off + RangeSectionBase;
1193 return std::nullopt;
1196 std::optional<uint64_t> DWARFUnit::getLoclistOffset(uint32_t Index) {
1197 if (std::optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry(
1198 LocTable->getData(), LocSectionBase, getFormat(), Index))
1199 return *Off + LocSectionBase;
1200 return std::nullopt;