[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Frontend / OpenMP / OMPIRBuilder.cpp
blob211281452de22d889596084e2c4ab6e1af9a6fb2
1 //===- OpenMPIRBuilder.cpp - Builder for LLVM-IR for OpenMP directives ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file implements the OpenMPIRBuilder class, which is used as a
11 /// convenient way to create LLVM instructions for OpenMP directives.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Bitcode/BitcodeReader.h"
26 #include "llvm/Frontend/Offloading/Utility.h"
27 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/MC/TargetRegistry.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Cloning.h"
52 #include "llvm/Transforms/Utils/CodeExtractor.h"
53 #include "llvm/Transforms/Utils/LoopPeel.h"
54 #include "llvm/Transforms/Utils/UnrollLoop.h"
56 #include <cstdint>
57 #include <optional>
59 #define DEBUG_TYPE "openmp-ir-builder"
61 using namespace llvm;
62 using namespace omp;
64 static cl::opt<bool>
65 OptimisticAttributes("openmp-ir-builder-optimistic-attributes", cl::Hidden,
66 cl::desc("Use optimistic attributes describing "
67 "'as-if' properties of runtime calls."),
68 cl::init(false));
70 static cl::opt<double> UnrollThresholdFactor(
71 "openmp-ir-builder-unroll-threshold-factor", cl::Hidden,
72 cl::desc("Factor for the unroll threshold to account for code "
73 "simplifications still taking place"),
74 cl::init(1.5));
76 #ifndef NDEBUG
77 /// Return whether IP1 and IP2 are ambiguous, i.e. that inserting instructions
78 /// at position IP1 may change the meaning of IP2 or vice-versa. This is because
79 /// an InsertPoint stores the instruction before something is inserted. For
80 /// instance, if both point to the same instruction, two IRBuilders alternating
81 /// creating instruction will cause the instructions to be interleaved.
82 static bool isConflictIP(IRBuilder<>::InsertPoint IP1,
83 IRBuilder<>::InsertPoint IP2) {
84 if (!IP1.isSet() || !IP2.isSet())
85 return false;
86 return IP1.getBlock() == IP2.getBlock() && IP1.getPoint() == IP2.getPoint();
89 static bool isValidWorkshareLoopScheduleType(OMPScheduleType SchedType) {
90 // Valid ordered/unordered and base algorithm combinations.
91 switch (SchedType & ~OMPScheduleType::MonotonicityMask) {
92 case OMPScheduleType::UnorderedStaticChunked:
93 case OMPScheduleType::UnorderedStatic:
94 case OMPScheduleType::UnorderedDynamicChunked:
95 case OMPScheduleType::UnorderedGuidedChunked:
96 case OMPScheduleType::UnorderedRuntime:
97 case OMPScheduleType::UnorderedAuto:
98 case OMPScheduleType::UnorderedTrapezoidal:
99 case OMPScheduleType::UnorderedGreedy:
100 case OMPScheduleType::UnorderedBalanced:
101 case OMPScheduleType::UnorderedGuidedIterativeChunked:
102 case OMPScheduleType::UnorderedGuidedAnalyticalChunked:
103 case OMPScheduleType::UnorderedSteal:
104 case OMPScheduleType::UnorderedStaticBalancedChunked:
105 case OMPScheduleType::UnorderedGuidedSimd:
106 case OMPScheduleType::UnorderedRuntimeSimd:
107 case OMPScheduleType::OrderedStaticChunked:
108 case OMPScheduleType::OrderedStatic:
109 case OMPScheduleType::OrderedDynamicChunked:
110 case OMPScheduleType::OrderedGuidedChunked:
111 case OMPScheduleType::OrderedRuntime:
112 case OMPScheduleType::OrderedAuto:
113 case OMPScheduleType::OrderdTrapezoidal:
114 case OMPScheduleType::NomergeUnorderedStaticChunked:
115 case OMPScheduleType::NomergeUnorderedStatic:
116 case OMPScheduleType::NomergeUnorderedDynamicChunked:
117 case OMPScheduleType::NomergeUnorderedGuidedChunked:
118 case OMPScheduleType::NomergeUnorderedRuntime:
119 case OMPScheduleType::NomergeUnorderedAuto:
120 case OMPScheduleType::NomergeUnorderedTrapezoidal:
121 case OMPScheduleType::NomergeUnorderedGreedy:
122 case OMPScheduleType::NomergeUnorderedBalanced:
123 case OMPScheduleType::NomergeUnorderedGuidedIterativeChunked:
124 case OMPScheduleType::NomergeUnorderedGuidedAnalyticalChunked:
125 case OMPScheduleType::NomergeUnorderedSteal:
126 case OMPScheduleType::NomergeOrderedStaticChunked:
127 case OMPScheduleType::NomergeOrderedStatic:
128 case OMPScheduleType::NomergeOrderedDynamicChunked:
129 case OMPScheduleType::NomergeOrderedGuidedChunked:
130 case OMPScheduleType::NomergeOrderedRuntime:
131 case OMPScheduleType::NomergeOrderedAuto:
132 case OMPScheduleType::NomergeOrderedTrapezoidal:
133 break;
134 default:
135 return false;
138 // Must not set both monotonicity modifiers at the same time.
139 OMPScheduleType MonotonicityFlags =
140 SchedType & OMPScheduleType::MonotonicityMask;
141 if (MonotonicityFlags == OMPScheduleType::MonotonicityMask)
142 return false;
144 return true;
146 #endif
148 static const omp::GV &getGridValue(const Triple &T, Function *Kernel) {
149 if (T.isAMDGPU()) {
150 StringRef Features =
151 Kernel->getFnAttribute("target-features").getValueAsString();
152 if (Features.count("+wavefrontsize64"))
153 return omp::getAMDGPUGridValues<64>();
154 return omp::getAMDGPUGridValues<32>();
156 if (T.isNVPTX())
157 return omp::NVPTXGridValues;
158 llvm_unreachable("No grid value available for this architecture!");
161 /// Determine which scheduling algorithm to use, determined from schedule clause
162 /// arguments.
163 static OMPScheduleType
164 getOpenMPBaseScheduleType(llvm::omp::ScheduleKind ClauseKind, bool HasChunks,
165 bool HasSimdModifier) {
166 // Currently, the default schedule it static.
167 switch (ClauseKind) {
168 case OMP_SCHEDULE_Default:
169 case OMP_SCHEDULE_Static:
170 return HasChunks ? OMPScheduleType::BaseStaticChunked
171 : OMPScheduleType::BaseStatic;
172 case OMP_SCHEDULE_Dynamic:
173 return OMPScheduleType::BaseDynamicChunked;
174 case OMP_SCHEDULE_Guided:
175 return HasSimdModifier ? OMPScheduleType::BaseGuidedSimd
176 : OMPScheduleType::BaseGuidedChunked;
177 case OMP_SCHEDULE_Auto:
178 return llvm::omp::OMPScheduleType::BaseAuto;
179 case OMP_SCHEDULE_Runtime:
180 return HasSimdModifier ? OMPScheduleType::BaseRuntimeSimd
181 : OMPScheduleType::BaseRuntime;
183 llvm_unreachable("unhandled schedule clause argument");
186 /// Adds ordering modifier flags to schedule type.
187 static OMPScheduleType
188 getOpenMPOrderingScheduleType(OMPScheduleType BaseScheduleType,
189 bool HasOrderedClause) {
190 assert((BaseScheduleType & OMPScheduleType::ModifierMask) ==
191 OMPScheduleType::None &&
192 "Must not have ordering nor monotonicity flags already set");
194 OMPScheduleType OrderingModifier = HasOrderedClause
195 ? OMPScheduleType::ModifierOrdered
196 : OMPScheduleType::ModifierUnordered;
197 OMPScheduleType OrderingScheduleType = BaseScheduleType | OrderingModifier;
199 // Unsupported combinations
200 if (OrderingScheduleType ==
201 (OMPScheduleType::BaseGuidedSimd | OMPScheduleType::ModifierOrdered))
202 return OMPScheduleType::OrderedGuidedChunked;
203 else if (OrderingScheduleType == (OMPScheduleType::BaseRuntimeSimd |
204 OMPScheduleType::ModifierOrdered))
205 return OMPScheduleType::OrderedRuntime;
207 return OrderingScheduleType;
210 /// Adds monotonicity modifier flags to schedule type.
211 static OMPScheduleType
212 getOpenMPMonotonicityScheduleType(OMPScheduleType ScheduleType,
213 bool HasSimdModifier, bool HasMonotonic,
214 bool HasNonmonotonic, bool HasOrderedClause) {
215 assert((ScheduleType & OMPScheduleType::MonotonicityMask) ==
216 OMPScheduleType::None &&
217 "Must not have monotonicity flags already set");
218 assert((!HasMonotonic || !HasNonmonotonic) &&
219 "Monotonic and Nonmonotonic are contradicting each other");
221 if (HasMonotonic) {
222 return ScheduleType | OMPScheduleType::ModifierMonotonic;
223 } else if (HasNonmonotonic) {
224 return ScheduleType | OMPScheduleType::ModifierNonmonotonic;
225 } else {
226 // OpenMP 5.1, 2.11.4 Worksharing-Loop Construct, Description.
227 // If the static schedule kind is specified or if the ordered clause is
228 // specified, and if the nonmonotonic modifier is not specified, the
229 // effect is as if the monotonic modifier is specified. Otherwise, unless
230 // the monotonic modifier is specified, the effect is as if the
231 // nonmonotonic modifier is specified.
232 OMPScheduleType BaseScheduleType =
233 ScheduleType & ~OMPScheduleType::ModifierMask;
234 if ((BaseScheduleType == OMPScheduleType::BaseStatic) ||
235 (BaseScheduleType == OMPScheduleType::BaseStaticChunked) ||
236 HasOrderedClause) {
237 // The monotonic is used by default in openmp runtime library, so no need
238 // to set it.
239 return ScheduleType;
240 } else {
241 return ScheduleType | OMPScheduleType::ModifierNonmonotonic;
246 /// Determine the schedule type using schedule and ordering clause arguments.
247 static OMPScheduleType
248 computeOpenMPScheduleType(ScheduleKind ClauseKind, bool HasChunks,
249 bool HasSimdModifier, bool HasMonotonicModifier,
250 bool HasNonmonotonicModifier, bool HasOrderedClause) {
251 OMPScheduleType BaseSchedule =
252 getOpenMPBaseScheduleType(ClauseKind, HasChunks, HasSimdModifier);
253 OMPScheduleType OrderedSchedule =
254 getOpenMPOrderingScheduleType(BaseSchedule, HasOrderedClause);
255 OMPScheduleType Result = getOpenMPMonotonicityScheduleType(
256 OrderedSchedule, HasSimdModifier, HasMonotonicModifier,
257 HasNonmonotonicModifier, HasOrderedClause);
259 assert(isValidWorkshareLoopScheduleType(Result));
260 return Result;
263 /// Make \p Source branch to \p Target.
265 /// Handles two situations:
266 /// * \p Source already has an unconditional branch.
267 /// * \p Source is a degenerate block (no terminator because the BB is
268 /// the current head of the IR construction).
269 static void redirectTo(BasicBlock *Source, BasicBlock *Target, DebugLoc DL) {
270 if (Instruction *Term = Source->getTerminator()) {
271 auto *Br = cast<BranchInst>(Term);
272 assert(!Br->isConditional() &&
273 "BB's terminator must be an unconditional branch (or degenerate)");
274 BasicBlock *Succ = Br->getSuccessor(0);
275 Succ->removePredecessor(Source, /*KeepOneInputPHIs=*/true);
276 Br->setSuccessor(0, Target);
277 return;
280 auto *NewBr = BranchInst::Create(Target, Source);
281 NewBr->setDebugLoc(DL);
284 void llvm::spliceBB(IRBuilderBase::InsertPoint IP, BasicBlock *New,
285 bool CreateBranch) {
286 assert(New->getFirstInsertionPt() == New->begin() &&
287 "Target BB must not have PHI nodes");
289 // Move instructions to new block.
290 BasicBlock *Old = IP.getBlock();
291 New->splice(New->begin(), Old, IP.getPoint(), Old->end());
293 if (CreateBranch)
294 BranchInst::Create(New, Old);
297 void llvm::spliceBB(IRBuilder<> &Builder, BasicBlock *New, bool CreateBranch) {
298 DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
299 BasicBlock *Old = Builder.GetInsertBlock();
301 spliceBB(Builder.saveIP(), New, CreateBranch);
302 if (CreateBranch)
303 Builder.SetInsertPoint(Old->getTerminator());
304 else
305 Builder.SetInsertPoint(Old);
307 // SetInsertPoint also updates the Builder's debug location, but we want to
308 // keep the one the Builder was configured to use.
309 Builder.SetCurrentDebugLocation(DebugLoc);
312 BasicBlock *llvm::splitBB(IRBuilderBase::InsertPoint IP, bool CreateBranch,
313 llvm::Twine Name) {
314 BasicBlock *Old = IP.getBlock();
315 BasicBlock *New = BasicBlock::Create(
316 Old->getContext(), Name.isTriviallyEmpty() ? Old->getName() : Name,
317 Old->getParent(), Old->getNextNode());
318 spliceBB(IP, New, CreateBranch);
319 New->replaceSuccessorsPhiUsesWith(Old, New);
320 return New;
323 BasicBlock *llvm::splitBB(IRBuilderBase &Builder, bool CreateBranch,
324 llvm::Twine Name) {
325 DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
326 BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name);
327 if (CreateBranch)
328 Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator());
329 else
330 Builder.SetInsertPoint(Builder.GetInsertBlock());
331 // SetInsertPoint also updates the Builder's debug location, but we want to
332 // keep the one the Builder was configured to use.
333 Builder.SetCurrentDebugLocation(DebugLoc);
334 return New;
337 BasicBlock *llvm::splitBB(IRBuilder<> &Builder, bool CreateBranch,
338 llvm::Twine Name) {
339 DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
340 BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name);
341 if (CreateBranch)
342 Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator());
343 else
344 Builder.SetInsertPoint(Builder.GetInsertBlock());
345 // SetInsertPoint also updates the Builder's debug location, but we want to
346 // keep the one the Builder was configured to use.
347 Builder.SetCurrentDebugLocation(DebugLoc);
348 return New;
351 BasicBlock *llvm::splitBBWithSuffix(IRBuilderBase &Builder, bool CreateBranch,
352 llvm::Twine Suffix) {
353 BasicBlock *Old = Builder.GetInsertBlock();
354 return splitBB(Builder, CreateBranch, Old->getName() + Suffix);
357 // This function creates a fake integer value and a fake use for the integer
358 // value. It returns the fake value created. This is useful in modeling the
359 // extra arguments to the outlined functions.
360 Value *createFakeIntVal(IRBuilder<> &Builder,
361 OpenMPIRBuilder::InsertPointTy OuterAllocaIP,
362 std::stack<Instruction *> &ToBeDeleted,
363 OpenMPIRBuilder::InsertPointTy InnerAllocaIP,
364 const Twine &Name = "", bool AsPtr = true) {
365 Builder.restoreIP(OuterAllocaIP);
366 Instruction *FakeVal;
367 AllocaInst *FakeValAddr =
368 Builder.CreateAlloca(Builder.getInt32Ty(), nullptr, Name + ".addr");
369 ToBeDeleted.push(FakeValAddr);
371 if (AsPtr) {
372 FakeVal = FakeValAddr;
373 } else {
374 FakeVal =
375 Builder.CreateLoad(Builder.getInt32Ty(), FakeValAddr, Name + ".val");
376 ToBeDeleted.push(FakeVal);
379 // Generate a fake use of this value
380 Builder.restoreIP(InnerAllocaIP);
381 Instruction *UseFakeVal;
382 if (AsPtr) {
383 UseFakeVal =
384 Builder.CreateLoad(Builder.getInt32Ty(), FakeVal, Name + ".use");
385 } else {
386 UseFakeVal =
387 cast<BinaryOperator>(Builder.CreateAdd(FakeVal, Builder.getInt32(10)));
389 ToBeDeleted.push(UseFakeVal);
390 return FakeVal;
393 //===----------------------------------------------------------------------===//
394 // OpenMPIRBuilderConfig
395 //===----------------------------------------------------------------------===//
397 namespace {
398 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
399 /// Values for bit flags for marking which requires clauses have been used.
400 enum OpenMPOffloadingRequiresDirFlags {
401 /// flag undefined.
402 OMP_REQ_UNDEFINED = 0x000,
403 /// no requires directive present.
404 OMP_REQ_NONE = 0x001,
405 /// reverse_offload clause.
406 OMP_REQ_REVERSE_OFFLOAD = 0x002,
407 /// unified_address clause.
408 OMP_REQ_UNIFIED_ADDRESS = 0x004,
409 /// unified_shared_memory clause.
410 OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008,
411 /// dynamic_allocators clause.
412 OMP_REQ_DYNAMIC_ALLOCATORS = 0x010,
413 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
416 } // anonymous namespace
418 OpenMPIRBuilderConfig::OpenMPIRBuilderConfig()
419 : RequiresFlags(OMP_REQ_UNDEFINED) {}
421 OpenMPIRBuilderConfig::OpenMPIRBuilderConfig(
422 bool IsTargetDevice, bool IsGPU, bool OpenMPOffloadMandatory,
423 bool HasRequiresReverseOffload, bool HasRequiresUnifiedAddress,
424 bool HasRequiresUnifiedSharedMemory, bool HasRequiresDynamicAllocators)
425 : IsTargetDevice(IsTargetDevice), IsGPU(IsGPU),
426 OpenMPOffloadMandatory(OpenMPOffloadMandatory),
427 RequiresFlags(OMP_REQ_UNDEFINED) {
428 if (HasRequiresReverseOffload)
429 RequiresFlags |= OMP_REQ_REVERSE_OFFLOAD;
430 if (HasRequiresUnifiedAddress)
431 RequiresFlags |= OMP_REQ_UNIFIED_ADDRESS;
432 if (HasRequiresUnifiedSharedMemory)
433 RequiresFlags |= OMP_REQ_UNIFIED_SHARED_MEMORY;
434 if (HasRequiresDynamicAllocators)
435 RequiresFlags |= OMP_REQ_DYNAMIC_ALLOCATORS;
438 bool OpenMPIRBuilderConfig::hasRequiresReverseOffload() const {
439 return RequiresFlags & OMP_REQ_REVERSE_OFFLOAD;
442 bool OpenMPIRBuilderConfig::hasRequiresUnifiedAddress() const {
443 return RequiresFlags & OMP_REQ_UNIFIED_ADDRESS;
446 bool OpenMPIRBuilderConfig::hasRequiresUnifiedSharedMemory() const {
447 return RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY;
450 bool OpenMPIRBuilderConfig::hasRequiresDynamicAllocators() const {
451 return RequiresFlags & OMP_REQ_DYNAMIC_ALLOCATORS;
454 int64_t OpenMPIRBuilderConfig::getRequiresFlags() const {
455 return hasRequiresFlags() ? RequiresFlags
456 : static_cast<int64_t>(OMP_REQ_NONE);
459 void OpenMPIRBuilderConfig::setHasRequiresReverseOffload(bool Value) {
460 if (Value)
461 RequiresFlags |= OMP_REQ_REVERSE_OFFLOAD;
462 else
463 RequiresFlags &= ~OMP_REQ_REVERSE_OFFLOAD;
466 void OpenMPIRBuilderConfig::setHasRequiresUnifiedAddress(bool Value) {
467 if (Value)
468 RequiresFlags |= OMP_REQ_UNIFIED_ADDRESS;
469 else
470 RequiresFlags &= ~OMP_REQ_UNIFIED_ADDRESS;
473 void OpenMPIRBuilderConfig::setHasRequiresUnifiedSharedMemory(bool Value) {
474 if (Value)
475 RequiresFlags |= OMP_REQ_UNIFIED_SHARED_MEMORY;
476 else
477 RequiresFlags &= ~OMP_REQ_UNIFIED_SHARED_MEMORY;
480 void OpenMPIRBuilderConfig::setHasRequiresDynamicAllocators(bool Value) {
481 if (Value)
482 RequiresFlags |= OMP_REQ_DYNAMIC_ALLOCATORS;
483 else
484 RequiresFlags &= ~OMP_REQ_DYNAMIC_ALLOCATORS;
487 //===----------------------------------------------------------------------===//
488 // OpenMPIRBuilder
489 //===----------------------------------------------------------------------===//
491 void OpenMPIRBuilder::getKernelArgsVector(TargetKernelArgs &KernelArgs,
492 IRBuilderBase &Builder,
493 SmallVector<Value *> &ArgsVector) {
494 Value *Version = Builder.getInt32(OMP_KERNEL_ARG_VERSION);
495 Value *PointerNum = Builder.getInt32(KernelArgs.NumTargetItems);
496 auto Int32Ty = Type::getInt32Ty(Builder.getContext());
497 Value *ZeroArray = Constant::getNullValue(ArrayType::get(Int32Ty, 3));
498 Value *Flags = Builder.getInt64(KernelArgs.HasNoWait);
500 Value *NumTeams3D =
501 Builder.CreateInsertValue(ZeroArray, KernelArgs.NumTeams, {0});
502 Value *NumThreads3D =
503 Builder.CreateInsertValue(ZeroArray, KernelArgs.NumThreads, {0});
505 ArgsVector = {Version,
506 PointerNum,
507 KernelArgs.RTArgs.BasePointersArray,
508 KernelArgs.RTArgs.PointersArray,
509 KernelArgs.RTArgs.SizesArray,
510 KernelArgs.RTArgs.MapTypesArray,
511 KernelArgs.RTArgs.MapNamesArray,
512 KernelArgs.RTArgs.MappersArray,
513 KernelArgs.NumIterations,
514 Flags,
515 NumTeams3D,
516 NumThreads3D,
517 KernelArgs.DynCGGroupMem};
520 void OpenMPIRBuilder::addAttributes(omp::RuntimeFunction FnID, Function &Fn) {
521 LLVMContext &Ctx = Fn.getContext();
523 // Get the function's current attributes.
524 auto Attrs = Fn.getAttributes();
525 auto FnAttrs = Attrs.getFnAttrs();
526 auto RetAttrs = Attrs.getRetAttrs();
527 SmallVector<AttributeSet, 4> ArgAttrs;
528 for (size_t ArgNo = 0; ArgNo < Fn.arg_size(); ++ArgNo)
529 ArgAttrs.emplace_back(Attrs.getParamAttrs(ArgNo));
531 // Add AS to FnAS while taking special care with integer extensions.
532 auto addAttrSet = [&](AttributeSet &FnAS, const AttributeSet &AS,
533 bool Param = true) -> void {
534 bool HasSignExt = AS.hasAttribute(Attribute::SExt);
535 bool HasZeroExt = AS.hasAttribute(Attribute::ZExt);
536 if (HasSignExt || HasZeroExt) {
537 assert(AS.getNumAttributes() == 1 &&
538 "Currently not handling extension attr combined with others.");
539 if (Param) {
540 if (auto AK = TargetLibraryInfo::getExtAttrForI32Param(T, HasSignExt))
541 FnAS = FnAS.addAttribute(Ctx, AK);
542 } else if (auto AK =
543 TargetLibraryInfo::getExtAttrForI32Return(T, HasSignExt))
544 FnAS = FnAS.addAttribute(Ctx, AK);
545 } else {
546 FnAS = FnAS.addAttributes(Ctx, AS);
550 #define OMP_ATTRS_SET(VarName, AttrSet) AttributeSet VarName = AttrSet;
551 #include "llvm/Frontend/OpenMP/OMPKinds.def"
553 // Add attributes to the function declaration.
554 switch (FnID) {
555 #define OMP_RTL_ATTRS(Enum, FnAttrSet, RetAttrSet, ArgAttrSets) \
556 case Enum: \
557 FnAttrs = FnAttrs.addAttributes(Ctx, FnAttrSet); \
558 addAttrSet(RetAttrs, RetAttrSet, /*Param*/ false); \
559 for (size_t ArgNo = 0; ArgNo < ArgAttrSets.size(); ++ArgNo) \
560 addAttrSet(ArgAttrs[ArgNo], ArgAttrSets[ArgNo]); \
561 Fn.setAttributes(AttributeList::get(Ctx, FnAttrs, RetAttrs, ArgAttrs)); \
562 break;
563 #include "llvm/Frontend/OpenMP/OMPKinds.def"
564 default:
565 // Attributes are optional.
566 break;
570 FunctionCallee
571 OpenMPIRBuilder::getOrCreateRuntimeFunction(Module &M, RuntimeFunction FnID) {
572 FunctionType *FnTy = nullptr;
573 Function *Fn = nullptr;
575 // Try to find the declation in the module first.
576 switch (FnID) {
577 #define OMP_RTL(Enum, Str, IsVarArg, ReturnType, ...) \
578 case Enum: \
579 FnTy = FunctionType::get(ReturnType, ArrayRef<Type *>{__VA_ARGS__}, \
580 IsVarArg); \
581 Fn = M.getFunction(Str); \
582 break;
583 #include "llvm/Frontend/OpenMP/OMPKinds.def"
586 if (!Fn) {
587 // Create a new declaration if we need one.
588 switch (FnID) {
589 #define OMP_RTL(Enum, Str, ...) \
590 case Enum: \
591 Fn = Function::Create(FnTy, GlobalValue::ExternalLinkage, Str, M); \
592 break;
593 #include "llvm/Frontend/OpenMP/OMPKinds.def"
596 // Add information if the runtime function takes a callback function
597 if (FnID == OMPRTL___kmpc_fork_call || FnID == OMPRTL___kmpc_fork_teams) {
598 if (!Fn->hasMetadata(LLVMContext::MD_callback)) {
599 LLVMContext &Ctx = Fn->getContext();
600 MDBuilder MDB(Ctx);
601 // Annotate the callback behavior of the runtime function:
602 // - The callback callee is argument number 2 (microtask).
603 // - The first two arguments of the callback callee are unknown (-1).
604 // - All variadic arguments to the runtime function are passed to the
605 // callback callee.
606 Fn->addMetadata(
607 LLVMContext::MD_callback,
608 *MDNode::get(Ctx, {MDB.createCallbackEncoding(
609 2, {-1, -1}, /* VarArgsArePassed */ true)}));
613 LLVM_DEBUG(dbgs() << "Created OpenMP runtime function " << Fn->getName()
614 << " with type " << *Fn->getFunctionType() << "\n");
615 addAttributes(FnID, *Fn);
617 } else {
618 LLVM_DEBUG(dbgs() << "Found OpenMP runtime function " << Fn->getName()
619 << " with type " << *Fn->getFunctionType() << "\n");
622 assert(Fn && "Failed to create OpenMP runtime function");
624 return {FnTy, Fn};
627 Function *OpenMPIRBuilder::getOrCreateRuntimeFunctionPtr(RuntimeFunction FnID) {
628 FunctionCallee RTLFn = getOrCreateRuntimeFunction(M, FnID);
629 auto *Fn = dyn_cast<llvm::Function>(RTLFn.getCallee());
630 assert(Fn && "Failed to create OpenMP runtime function pointer");
631 return Fn;
634 void OpenMPIRBuilder::initialize() { initializeTypes(M); }
636 void OpenMPIRBuilder::finalize(Function *Fn) {
637 SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
638 SmallVector<BasicBlock *, 32> Blocks;
639 SmallVector<OutlineInfo, 16> DeferredOutlines;
640 for (OutlineInfo &OI : OutlineInfos) {
641 // Skip functions that have not finalized yet; may happen with nested
642 // function generation.
643 if (Fn && OI.getFunction() != Fn) {
644 DeferredOutlines.push_back(OI);
645 continue;
648 ParallelRegionBlockSet.clear();
649 Blocks.clear();
650 OI.collectBlocks(ParallelRegionBlockSet, Blocks);
652 Function *OuterFn = OI.getFunction();
653 CodeExtractorAnalysisCache CEAC(*OuterFn);
654 // If we generate code for the target device, we need to allocate
655 // struct for aggregate params in the device default alloca address space.
656 // OpenMP runtime requires that the params of the extracted functions are
657 // passed as zero address space pointers. This flag ensures that
658 // CodeExtractor generates correct code for extracted functions
659 // which are used by OpenMP runtime.
660 bool ArgsInZeroAddressSpace = Config.isTargetDevice();
661 CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr,
662 /* AggregateArgs */ true,
663 /* BlockFrequencyInfo */ nullptr,
664 /* BranchProbabilityInfo */ nullptr,
665 /* AssumptionCache */ nullptr,
666 /* AllowVarArgs */ true,
667 /* AllowAlloca */ true,
668 /* AllocaBlock*/ OI.OuterAllocaBB,
669 /* Suffix */ ".omp_par", ArgsInZeroAddressSpace);
671 LLVM_DEBUG(dbgs() << "Before outlining: " << *OuterFn << "\n");
672 LLVM_DEBUG(dbgs() << "Entry " << OI.EntryBB->getName()
673 << " Exit: " << OI.ExitBB->getName() << "\n");
674 assert(Extractor.isEligible() &&
675 "Expected OpenMP outlining to be possible!");
677 for (auto *V : OI.ExcludeArgsFromAggregate)
678 Extractor.excludeArgFromAggregate(V);
680 Function *OutlinedFn = Extractor.extractCodeRegion(CEAC);
682 LLVM_DEBUG(dbgs() << "After outlining: " << *OuterFn << "\n");
683 LLVM_DEBUG(dbgs() << " Outlined function: " << *OutlinedFn << "\n");
684 assert(OutlinedFn->getReturnType()->isVoidTy() &&
685 "OpenMP outlined functions should not return a value!");
687 // For compability with the clang CG we move the outlined function after the
688 // one with the parallel region.
689 OutlinedFn->removeFromParent();
690 M.getFunctionList().insertAfter(OuterFn->getIterator(), OutlinedFn);
692 // Remove the artificial entry introduced by the extractor right away, we
693 // made our own entry block after all.
695 BasicBlock &ArtificialEntry = OutlinedFn->getEntryBlock();
696 assert(ArtificialEntry.getUniqueSuccessor() == OI.EntryBB);
697 assert(OI.EntryBB->getUniquePredecessor() == &ArtificialEntry);
698 // Move instructions from the to-be-deleted ArtificialEntry to the entry
699 // basic block of the parallel region. CodeExtractor generates
700 // instructions to unwrap the aggregate argument and may sink
701 // allocas/bitcasts for values that are solely used in the outlined region
702 // and do not escape.
703 assert(!ArtificialEntry.empty() &&
704 "Expected instructions to add in the outlined region entry");
705 for (BasicBlock::reverse_iterator It = ArtificialEntry.rbegin(),
706 End = ArtificialEntry.rend();
707 It != End;) {
708 Instruction &I = *It;
709 It++;
711 if (I.isTerminator())
712 continue;
714 I.moveBeforePreserving(*OI.EntryBB, OI.EntryBB->getFirstInsertionPt());
717 OI.EntryBB->moveBefore(&ArtificialEntry);
718 ArtificialEntry.eraseFromParent();
720 assert(&OutlinedFn->getEntryBlock() == OI.EntryBB);
721 assert(OutlinedFn && OutlinedFn->getNumUses() == 1);
723 // Run a user callback, e.g. to add attributes.
724 if (OI.PostOutlineCB)
725 OI.PostOutlineCB(*OutlinedFn);
728 // Remove work items that have been completed.
729 OutlineInfos = std::move(DeferredOutlines);
731 EmitMetadataErrorReportFunctionTy &&ErrorReportFn =
732 [](EmitMetadataErrorKind Kind,
733 const TargetRegionEntryInfo &EntryInfo) -> void {
734 errs() << "Error of kind: " << Kind
735 << " when emitting offload entries and metadata during "
736 "OMPIRBuilder finalization \n";
739 if (!OffloadInfoManager.empty())
740 createOffloadEntriesAndInfoMetadata(ErrorReportFn);
743 OpenMPIRBuilder::~OpenMPIRBuilder() {
744 assert(OutlineInfos.empty() && "There must be no outstanding outlinings");
747 GlobalValue *OpenMPIRBuilder::createGlobalFlag(unsigned Value, StringRef Name) {
748 IntegerType *I32Ty = Type::getInt32Ty(M.getContext());
749 auto *GV =
750 new GlobalVariable(M, I32Ty,
751 /* isConstant = */ true, GlobalValue::WeakODRLinkage,
752 ConstantInt::get(I32Ty, Value), Name);
753 GV->setVisibility(GlobalValue::HiddenVisibility);
755 return GV;
758 Constant *OpenMPIRBuilder::getOrCreateIdent(Constant *SrcLocStr,
759 uint32_t SrcLocStrSize,
760 IdentFlag LocFlags,
761 unsigned Reserve2Flags) {
762 // Enable "C-mode".
763 LocFlags |= OMP_IDENT_FLAG_KMPC;
765 Constant *&Ident =
766 IdentMap[{SrcLocStr, uint64_t(LocFlags) << 31 | Reserve2Flags}];
767 if (!Ident) {
768 Constant *I32Null = ConstantInt::getNullValue(Int32);
769 Constant *IdentData[] = {I32Null,
770 ConstantInt::get(Int32, uint32_t(LocFlags)),
771 ConstantInt::get(Int32, Reserve2Flags),
772 ConstantInt::get(Int32, SrcLocStrSize), SrcLocStr};
773 Constant *Initializer =
774 ConstantStruct::get(OpenMPIRBuilder::Ident, IdentData);
776 // Look for existing encoding of the location + flags, not needed but
777 // minimizes the difference to the existing solution while we transition.
778 for (GlobalVariable &GV : M.globals())
779 if (GV.getValueType() == OpenMPIRBuilder::Ident && GV.hasInitializer())
780 if (GV.getInitializer() == Initializer)
781 Ident = &GV;
783 if (!Ident) {
784 auto *GV = new GlobalVariable(
785 M, OpenMPIRBuilder::Ident,
786 /* isConstant = */ true, GlobalValue::PrivateLinkage, Initializer, "",
787 nullptr, GlobalValue::NotThreadLocal,
788 M.getDataLayout().getDefaultGlobalsAddressSpace());
789 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
790 GV->setAlignment(Align(8));
791 Ident = GV;
795 return ConstantExpr::getPointerBitCastOrAddrSpaceCast(Ident, IdentPtr);
798 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef LocStr,
799 uint32_t &SrcLocStrSize) {
800 SrcLocStrSize = LocStr.size();
801 Constant *&SrcLocStr = SrcLocStrMap[LocStr];
802 if (!SrcLocStr) {
803 Constant *Initializer =
804 ConstantDataArray::getString(M.getContext(), LocStr);
806 // Look for existing encoding of the location, not needed but minimizes the
807 // difference to the existing solution while we transition.
808 for (GlobalVariable &GV : M.globals())
809 if (GV.isConstant() && GV.hasInitializer() &&
810 GV.getInitializer() == Initializer)
811 return SrcLocStr = ConstantExpr::getPointerCast(&GV, Int8Ptr);
813 SrcLocStr = Builder.CreateGlobalStringPtr(LocStr, /* Name */ "",
814 /* AddressSpace */ 0, &M);
816 return SrcLocStr;
819 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef FunctionName,
820 StringRef FileName,
821 unsigned Line, unsigned Column,
822 uint32_t &SrcLocStrSize) {
823 SmallString<128> Buffer;
824 Buffer.push_back(';');
825 Buffer.append(FileName);
826 Buffer.push_back(';');
827 Buffer.append(FunctionName);
828 Buffer.push_back(';');
829 Buffer.append(std::to_string(Line));
830 Buffer.push_back(';');
831 Buffer.append(std::to_string(Column));
832 Buffer.push_back(';');
833 Buffer.push_back(';');
834 return getOrCreateSrcLocStr(Buffer.str(), SrcLocStrSize);
837 Constant *
838 OpenMPIRBuilder::getOrCreateDefaultSrcLocStr(uint32_t &SrcLocStrSize) {
839 StringRef UnknownLoc = ";unknown;unknown;0;0;;";
840 return getOrCreateSrcLocStr(UnknownLoc, SrcLocStrSize);
843 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(DebugLoc DL,
844 uint32_t &SrcLocStrSize,
845 Function *F) {
846 DILocation *DIL = DL.get();
847 if (!DIL)
848 return getOrCreateDefaultSrcLocStr(SrcLocStrSize);
849 StringRef FileName = M.getName();
850 if (DIFile *DIF = DIL->getFile())
851 if (std::optional<StringRef> Source = DIF->getSource())
852 FileName = *Source;
853 StringRef Function = DIL->getScope()->getSubprogram()->getName();
854 if (Function.empty() && F)
855 Function = F->getName();
856 return getOrCreateSrcLocStr(Function, FileName, DIL->getLine(),
857 DIL->getColumn(), SrcLocStrSize);
860 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(const LocationDescription &Loc,
861 uint32_t &SrcLocStrSize) {
862 return getOrCreateSrcLocStr(Loc.DL, SrcLocStrSize,
863 Loc.IP.getBlock()->getParent());
866 Value *OpenMPIRBuilder::getOrCreateThreadID(Value *Ident) {
867 return Builder.CreateCall(
868 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num), Ident,
869 "omp_global_thread_num");
872 OpenMPIRBuilder::InsertPointTy
873 OpenMPIRBuilder::createBarrier(const LocationDescription &Loc, Directive DK,
874 bool ForceSimpleCall, bool CheckCancelFlag) {
875 if (!updateToLocation(Loc))
876 return Loc.IP;
877 return emitBarrierImpl(Loc, DK, ForceSimpleCall, CheckCancelFlag);
880 OpenMPIRBuilder::InsertPointTy
881 OpenMPIRBuilder::emitBarrierImpl(const LocationDescription &Loc, Directive Kind,
882 bool ForceSimpleCall, bool CheckCancelFlag) {
883 // Build call __kmpc_cancel_barrier(loc, thread_id) or
884 // __kmpc_barrier(loc, thread_id);
886 IdentFlag BarrierLocFlags;
887 switch (Kind) {
888 case OMPD_for:
889 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_FOR;
890 break;
891 case OMPD_sections:
892 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SECTIONS;
893 break;
894 case OMPD_single:
895 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SINGLE;
896 break;
897 case OMPD_barrier:
898 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_EXPL;
899 break;
900 default:
901 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL;
902 break;
905 uint32_t SrcLocStrSize;
906 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
907 Value *Args[] = {
908 getOrCreateIdent(SrcLocStr, SrcLocStrSize, BarrierLocFlags),
909 getOrCreateThreadID(getOrCreateIdent(SrcLocStr, SrcLocStrSize))};
911 // If we are in a cancellable parallel region, barriers are cancellation
912 // points.
913 // TODO: Check why we would force simple calls or to ignore the cancel flag.
914 bool UseCancelBarrier =
915 !ForceSimpleCall && isLastFinalizationInfoCancellable(OMPD_parallel);
917 Value *Result =
918 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(
919 UseCancelBarrier ? OMPRTL___kmpc_cancel_barrier
920 : OMPRTL___kmpc_barrier),
921 Args);
923 if (UseCancelBarrier && CheckCancelFlag)
924 emitCancelationCheckImpl(Result, OMPD_parallel);
926 return Builder.saveIP();
929 OpenMPIRBuilder::InsertPointTy
930 OpenMPIRBuilder::createCancel(const LocationDescription &Loc,
931 Value *IfCondition,
932 omp::Directive CanceledDirective) {
933 if (!updateToLocation(Loc))
934 return Loc.IP;
936 // LLVM utilities like blocks with terminators.
937 auto *UI = Builder.CreateUnreachable();
939 Instruction *ThenTI = UI, *ElseTI = nullptr;
940 if (IfCondition)
941 SplitBlockAndInsertIfThenElse(IfCondition, UI, &ThenTI, &ElseTI);
942 Builder.SetInsertPoint(ThenTI);
944 Value *CancelKind = nullptr;
945 switch (CanceledDirective) {
946 #define OMP_CANCEL_KIND(Enum, Str, DirectiveEnum, Value) \
947 case DirectiveEnum: \
948 CancelKind = Builder.getInt32(Value); \
949 break;
950 #include "llvm/Frontend/OpenMP/OMPKinds.def"
951 default:
952 llvm_unreachable("Unknown cancel kind!");
955 uint32_t SrcLocStrSize;
956 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
957 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
958 Value *Args[] = {Ident, getOrCreateThreadID(Ident), CancelKind};
959 Value *Result = Builder.CreateCall(
960 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_cancel), Args);
961 auto ExitCB = [this, CanceledDirective, Loc](InsertPointTy IP) {
962 if (CanceledDirective == OMPD_parallel) {
963 IRBuilder<>::InsertPointGuard IPG(Builder);
964 Builder.restoreIP(IP);
965 createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
966 omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false,
967 /* CheckCancelFlag */ false);
971 // The actual cancel logic is shared with others, e.g., cancel_barriers.
972 emitCancelationCheckImpl(Result, CanceledDirective, ExitCB);
974 // Update the insertion point and remove the terminator we introduced.
975 Builder.SetInsertPoint(UI->getParent());
976 UI->eraseFromParent();
978 return Builder.saveIP();
981 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitTargetKernel(
982 const LocationDescription &Loc, InsertPointTy AllocaIP, Value *&Return,
983 Value *Ident, Value *DeviceID, Value *NumTeams, Value *NumThreads,
984 Value *HostPtr, ArrayRef<Value *> KernelArgs) {
985 if (!updateToLocation(Loc))
986 return Loc.IP;
988 Builder.restoreIP(AllocaIP);
989 auto *KernelArgsPtr =
990 Builder.CreateAlloca(OpenMPIRBuilder::KernelArgs, nullptr, "kernel_args");
991 Builder.restoreIP(Loc.IP);
993 for (unsigned I = 0, Size = KernelArgs.size(); I != Size; ++I) {
994 llvm::Value *Arg =
995 Builder.CreateStructGEP(OpenMPIRBuilder::KernelArgs, KernelArgsPtr, I);
996 Builder.CreateAlignedStore(
997 KernelArgs[I], Arg,
998 M.getDataLayout().getPrefTypeAlign(KernelArgs[I]->getType()));
1001 SmallVector<Value *> OffloadingArgs{Ident, DeviceID, NumTeams,
1002 NumThreads, HostPtr, KernelArgsPtr};
1004 Return = Builder.CreateCall(
1005 getOrCreateRuntimeFunction(M, OMPRTL___tgt_target_kernel),
1006 OffloadingArgs);
1008 return Builder.saveIP();
1011 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitKernelLaunch(
1012 const LocationDescription &Loc, Function *OutlinedFn, Value *OutlinedFnID,
1013 EmitFallbackCallbackTy emitTargetCallFallbackCB, TargetKernelArgs &Args,
1014 Value *DeviceID, Value *RTLoc, InsertPointTy AllocaIP) {
1016 if (!updateToLocation(Loc))
1017 return Loc.IP;
1019 Builder.restoreIP(Loc.IP);
1020 // On top of the arrays that were filled up, the target offloading call
1021 // takes as arguments the device id as well as the host pointer. The host
1022 // pointer is used by the runtime library to identify the current target
1023 // region, so it only has to be unique and not necessarily point to
1024 // anything. It could be the pointer to the outlined function that
1025 // implements the target region, but we aren't using that so that the
1026 // compiler doesn't need to keep that, and could therefore inline the host
1027 // function if proven worthwhile during optimization.
1029 // From this point on, we need to have an ID of the target region defined.
1030 assert(OutlinedFnID && "Invalid outlined function ID!");
1031 (void)OutlinedFnID;
1033 // Return value of the runtime offloading call.
1034 Value *Return = nullptr;
1036 // Arguments for the target kernel.
1037 SmallVector<Value *> ArgsVector;
1038 getKernelArgsVector(Args, Builder, ArgsVector);
1040 // The target region is an outlined function launched by the runtime
1041 // via calls to __tgt_target_kernel().
1043 // Note that on the host and CPU targets, the runtime implementation of
1044 // these calls simply call the outlined function without forking threads.
1045 // The outlined functions themselves have runtime calls to
1046 // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
1047 // the compiler in emitTeamsCall() and emitParallelCall().
1049 // In contrast, on the NVPTX target, the implementation of
1050 // __tgt_target_teams() launches a GPU kernel with the requested number
1051 // of teams and threads so no additional calls to the runtime are required.
1052 // Check the error code and execute the host version if required.
1053 Builder.restoreIP(emitTargetKernel(Builder, AllocaIP, Return, RTLoc, DeviceID,
1054 Args.NumTeams, Args.NumThreads,
1055 OutlinedFnID, ArgsVector));
1057 BasicBlock *OffloadFailedBlock =
1058 BasicBlock::Create(Builder.getContext(), "omp_offload.failed");
1059 BasicBlock *OffloadContBlock =
1060 BasicBlock::Create(Builder.getContext(), "omp_offload.cont");
1061 Value *Failed = Builder.CreateIsNotNull(Return);
1062 Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
1064 auto CurFn = Builder.GetInsertBlock()->getParent();
1065 emitBlock(OffloadFailedBlock, CurFn);
1066 Builder.restoreIP(emitTargetCallFallbackCB(Builder.saveIP()));
1067 emitBranch(OffloadContBlock);
1068 emitBlock(OffloadContBlock, CurFn, /*IsFinished=*/true);
1069 return Builder.saveIP();
1072 void OpenMPIRBuilder::emitCancelationCheckImpl(Value *CancelFlag,
1073 omp::Directive CanceledDirective,
1074 FinalizeCallbackTy ExitCB) {
1075 assert(isLastFinalizationInfoCancellable(CanceledDirective) &&
1076 "Unexpected cancellation!");
1078 // For a cancel barrier we create two new blocks.
1079 BasicBlock *BB = Builder.GetInsertBlock();
1080 BasicBlock *NonCancellationBlock;
1081 if (Builder.GetInsertPoint() == BB->end()) {
1082 // TODO: This branch will not be needed once we moved to the
1083 // OpenMPIRBuilder codegen completely.
1084 NonCancellationBlock = BasicBlock::Create(
1085 BB->getContext(), BB->getName() + ".cont", BB->getParent());
1086 } else {
1087 NonCancellationBlock = SplitBlock(BB, &*Builder.GetInsertPoint());
1088 BB->getTerminator()->eraseFromParent();
1089 Builder.SetInsertPoint(BB);
1091 BasicBlock *CancellationBlock = BasicBlock::Create(
1092 BB->getContext(), BB->getName() + ".cncl", BB->getParent());
1094 // Jump to them based on the return value.
1095 Value *Cmp = Builder.CreateIsNull(CancelFlag);
1096 Builder.CreateCondBr(Cmp, NonCancellationBlock, CancellationBlock,
1097 /* TODO weight */ nullptr, nullptr);
1099 // From the cancellation block we finalize all variables and go to the
1100 // post finalization block that is known to the FiniCB callback.
1101 Builder.SetInsertPoint(CancellationBlock);
1102 if (ExitCB)
1103 ExitCB(Builder.saveIP());
1104 auto &FI = FinalizationStack.back();
1105 FI.FiniCB(Builder.saveIP());
1107 // The continuation block is where code generation continues.
1108 Builder.SetInsertPoint(NonCancellationBlock, NonCancellationBlock->begin());
1111 // Callback used to create OpenMP runtime calls to support
1112 // omp parallel clause for the device.
1113 // We need to use this callback to replace call to the OutlinedFn in OuterFn
1114 // by the call to the OpenMP DeviceRTL runtime function (kmpc_parallel_51)
1115 static void targetParallelCallback(
1116 OpenMPIRBuilder *OMPIRBuilder, Function &OutlinedFn, Function *OuterFn,
1117 BasicBlock *OuterAllocaBB, Value *Ident, Value *IfCondition,
1118 Value *NumThreads, Instruction *PrivTID, AllocaInst *PrivTIDAddr,
1119 Value *ThreadID, const SmallVector<Instruction *, 4> &ToBeDeleted) {
1120 // Add some known attributes.
1121 IRBuilder<> &Builder = OMPIRBuilder->Builder;
1122 OutlinedFn.addParamAttr(0, Attribute::NoAlias);
1123 OutlinedFn.addParamAttr(1, Attribute::NoAlias);
1124 OutlinedFn.addParamAttr(0, Attribute::NoUndef);
1125 OutlinedFn.addParamAttr(1, Attribute::NoUndef);
1126 OutlinedFn.addFnAttr(Attribute::NoUnwind);
1128 assert(OutlinedFn.arg_size() >= 2 &&
1129 "Expected at least tid and bounded tid as arguments");
1130 unsigned NumCapturedVars = OutlinedFn.arg_size() - /* tid & bounded tid */ 2;
1132 CallInst *CI = cast<CallInst>(OutlinedFn.user_back());
1133 assert(CI && "Expected call instruction to outlined function");
1134 CI->getParent()->setName("omp_parallel");
1136 Builder.SetInsertPoint(CI);
1137 Type *PtrTy = OMPIRBuilder->VoidPtr;
1138 Value *NullPtrValue = Constant::getNullValue(PtrTy);
1140 // Add alloca for kernel args
1141 OpenMPIRBuilder ::InsertPointTy CurrentIP = Builder.saveIP();
1142 Builder.SetInsertPoint(OuterAllocaBB, OuterAllocaBB->getFirstInsertionPt());
1143 AllocaInst *ArgsAlloca =
1144 Builder.CreateAlloca(ArrayType::get(PtrTy, NumCapturedVars));
1145 Value *Args = ArgsAlloca;
1146 // Add address space cast if array for storing arguments is not allocated
1147 // in address space 0
1148 if (ArgsAlloca->getAddressSpace())
1149 Args = Builder.CreatePointerCast(ArgsAlloca, PtrTy);
1150 Builder.restoreIP(CurrentIP);
1152 // Store captured vars which are used by kmpc_parallel_51
1153 for (unsigned Idx = 0; Idx < NumCapturedVars; Idx++) {
1154 Value *V = *(CI->arg_begin() + 2 + Idx);
1155 Value *StoreAddress = Builder.CreateConstInBoundsGEP2_64(
1156 ArrayType::get(PtrTy, NumCapturedVars), Args, 0, Idx);
1157 Builder.CreateStore(V, StoreAddress);
1160 Value *Cond =
1161 IfCondition ? Builder.CreateSExtOrTrunc(IfCondition, OMPIRBuilder->Int32)
1162 : Builder.getInt32(1);
1164 // Build kmpc_parallel_51 call
1165 Value *Parallel51CallArgs[] = {
1166 /* identifier*/ Ident,
1167 /* global thread num*/ ThreadID,
1168 /* if expression */ Cond,
1169 /* number of threads */ NumThreads ? NumThreads : Builder.getInt32(-1),
1170 /* Proc bind */ Builder.getInt32(-1),
1171 /* outlined function */
1172 Builder.CreateBitCast(&OutlinedFn, OMPIRBuilder->ParallelTaskPtr),
1173 /* wrapper function */ NullPtrValue,
1174 /* arguments of the outlined funciton*/ Args,
1175 /* number of arguments */ Builder.getInt64(NumCapturedVars)};
1177 FunctionCallee RTLFn =
1178 OMPIRBuilder->getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_parallel_51);
1180 Builder.CreateCall(RTLFn, Parallel51CallArgs);
1182 LLVM_DEBUG(dbgs() << "With kmpc_parallel_51 placed: "
1183 << *Builder.GetInsertBlock()->getParent() << "\n");
1185 // Initialize the local TID stack location with the argument value.
1186 Builder.SetInsertPoint(PrivTID);
1187 Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin();
1188 Builder.CreateStore(Builder.CreateLoad(OMPIRBuilder->Int32, OutlinedAI),
1189 PrivTIDAddr);
1191 // Remove redundant call to the outlined function.
1192 CI->eraseFromParent();
1194 for (Instruction *I : ToBeDeleted) {
1195 I->eraseFromParent();
1199 // Callback used to create OpenMP runtime calls to support
1200 // omp parallel clause for the host.
1201 // We need to use this callback to replace call to the OutlinedFn in OuterFn
1202 // by the call to the OpenMP host runtime function ( __kmpc_fork_call[_if])
1203 static void
1204 hostParallelCallback(OpenMPIRBuilder *OMPIRBuilder, Function &OutlinedFn,
1205 Function *OuterFn, Value *Ident, Value *IfCondition,
1206 Instruction *PrivTID, AllocaInst *PrivTIDAddr,
1207 const SmallVector<Instruction *, 4> &ToBeDeleted) {
1208 IRBuilder<> &Builder = OMPIRBuilder->Builder;
1209 FunctionCallee RTLFn;
1210 if (IfCondition) {
1211 RTLFn =
1212 OMPIRBuilder->getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call_if);
1213 } else {
1214 RTLFn =
1215 OMPIRBuilder->getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call);
1217 if (auto *F = dyn_cast<Function>(RTLFn.getCallee())) {
1218 if (!F->hasMetadata(LLVMContext::MD_callback)) {
1219 LLVMContext &Ctx = F->getContext();
1220 MDBuilder MDB(Ctx);
1221 // Annotate the callback behavior of the __kmpc_fork_call:
1222 // - The callback callee is argument number 2 (microtask).
1223 // - The first two arguments of the callback callee are unknown (-1).
1224 // - All variadic arguments to the __kmpc_fork_call are passed to the
1225 // callback callee.
1226 F->addMetadata(LLVMContext::MD_callback,
1227 *MDNode::get(Ctx, {MDB.createCallbackEncoding(
1228 2, {-1, -1},
1229 /* VarArgsArePassed */ true)}));
1232 // Add some known attributes.
1233 OutlinedFn.addParamAttr(0, Attribute::NoAlias);
1234 OutlinedFn.addParamAttr(1, Attribute::NoAlias);
1235 OutlinedFn.addFnAttr(Attribute::NoUnwind);
1237 assert(OutlinedFn.arg_size() >= 2 &&
1238 "Expected at least tid and bounded tid as arguments");
1239 unsigned NumCapturedVars = OutlinedFn.arg_size() - /* tid & bounded tid */ 2;
1241 CallInst *CI = cast<CallInst>(OutlinedFn.user_back());
1242 CI->getParent()->setName("omp_parallel");
1243 Builder.SetInsertPoint(CI);
1245 // Build call __kmpc_fork_call[_if](Ident, n, microtask, var1, .., varn);
1246 Value *ForkCallArgs[] = {
1247 Ident, Builder.getInt32(NumCapturedVars),
1248 Builder.CreateBitCast(&OutlinedFn, OMPIRBuilder->ParallelTaskPtr)};
1250 SmallVector<Value *, 16> RealArgs;
1251 RealArgs.append(std::begin(ForkCallArgs), std::end(ForkCallArgs));
1252 if (IfCondition) {
1253 Value *Cond = Builder.CreateSExtOrTrunc(IfCondition, OMPIRBuilder->Int32);
1254 RealArgs.push_back(Cond);
1256 RealArgs.append(CI->arg_begin() + /* tid & bound tid */ 2, CI->arg_end());
1258 // __kmpc_fork_call_if always expects a void ptr as the last argument
1259 // If there are no arguments, pass a null pointer.
1260 auto PtrTy = OMPIRBuilder->VoidPtr;
1261 if (IfCondition && NumCapturedVars == 0) {
1262 Value *NullPtrValue = Constant::getNullValue(PtrTy);
1263 RealArgs.push_back(NullPtrValue);
1265 if (IfCondition && RealArgs.back()->getType() != PtrTy)
1266 RealArgs.back() = Builder.CreateBitCast(RealArgs.back(), PtrTy);
1268 Builder.CreateCall(RTLFn, RealArgs);
1270 LLVM_DEBUG(dbgs() << "With fork_call placed: "
1271 << *Builder.GetInsertBlock()->getParent() << "\n");
1273 // Initialize the local TID stack location with the argument value.
1274 Builder.SetInsertPoint(PrivTID);
1275 Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin();
1276 Builder.CreateStore(Builder.CreateLoad(OMPIRBuilder->Int32, OutlinedAI),
1277 PrivTIDAddr);
1279 // Remove redundant call to the outlined function.
1280 CI->eraseFromParent();
1282 for (Instruction *I : ToBeDeleted) {
1283 I->eraseFromParent();
1287 IRBuilder<>::InsertPoint OpenMPIRBuilder::createParallel(
1288 const LocationDescription &Loc, InsertPointTy OuterAllocaIP,
1289 BodyGenCallbackTy BodyGenCB, PrivatizeCallbackTy PrivCB,
1290 FinalizeCallbackTy FiniCB, Value *IfCondition, Value *NumThreads,
1291 omp::ProcBindKind ProcBind, bool IsCancellable) {
1292 assert(!isConflictIP(Loc.IP, OuterAllocaIP) && "IPs must not be ambiguous");
1294 if (!updateToLocation(Loc))
1295 return Loc.IP;
1297 uint32_t SrcLocStrSize;
1298 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1299 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1300 Value *ThreadID = getOrCreateThreadID(Ident);
1301 // If we generate code for the target device, we need to allocate
1302 // struct for aggregate params in the device default alloca address space.
1303 // OpenMP runtime requires that the params of the extracted functions are
1304 // passed as zero address space pointers. This flag ensures that extracted
1305 // function arguments are declared in zero address space
1306 bool ArgsInZeroAddressSpace = Config.isTargetDevice();
1308 // Build call __kmpc_push_num_threads(&Ident, global_tid, num_threads)
1309 // only if we compile for host side.
1310 if (NumThreads && !Config.isTargetDevice()) {
1311 Value *Args[] = {
1312 Ident, ThreadID,
1313 Builder.CreateIntCast(NumThreads, Int32, /*isSigned*/ false)};
1314 Builder.CreateCall(
1315 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_num_threads), Args);
1318 if (ProcBind != OMP_PROC_BIND_default) {
1319 // Build call __kmpc_push_proc_bind(&Ident, global_tid, proc_bind)
1320 Value *Args[] = {
1321 Ident, ThreadID,
1322 ConstantInt::get(Int32, unsigned(ProcBind), /*isSigned=*/true)};
1323 Builder.CreateCall(
1324 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_proc_bind), Args);
1327 BasicBlock *InsertBB = Builder.GetInsertBlock();
1328 Function *OuterFn = InsertBB->getParent();
1330 // Save the outer alloca block because the insertion iterator may get
1331 // invalidated and we still need this later.
1332 BasicBlock *OuterAllocaBlock = OuterAllocaIP.getBlock();
1334 // Vector to remember instructions we used only during the modeling but which
1335 // we want to delete at the end.
1336 SmallVector<Instruction *, 4> ToBeDeleted;
1338 // Change the location to the outer alloca insertion point to create and
1339 // initialize the allocas we pass into the parallel region.
1340 Builder.restoreIP(OuterAllocaIP);
1341 AllocaInst *TIDAddrAlloca = Builder.CreateAlloca(Int32, nullptr, "tid.addr");
1342 AllocaInst *ZeroAddrAlloca =
1343 Builder.CreateAlloca(Int32, nullptr, "zero.addr");
1344 Instruction *TIDAddr = TIDAddrAlloca;
1345 Instruction *ZeroAddr = ZeroAddrAlloca;
1346 if (ArgsInZeroAddressSpace && M.getDataLayout().getAllocaAddrSpace() != 0) {
1347 // Add additional casts to enforce pointers in zero address space
1348 TIDAddr = new AddrSpaceCastInst(
1349 TIDAddrAlloca, PointerType ::get(M.getContext(), 0), "tid.addr.ascast");
1350 TIDAddr->insertAfter(TIDAddrAlloca);
1351 ToBeDeleted.push_back(TIDAddr);
1352 ZeroAddr = new AddrSpaceCastInst(ZeroAddrAlloca,
1353 PointerType ::get(M.getContext(), 0),
1354 "zero.addr.ascast");
1355 ZeroAddr->insertAfter(ZeroAddrAlloca);
1356 ToBeDeleted.push_back(ZeroAddr);
1359 // We only need TIDAddr and ZeroAddr for modeling purposes to get the
1360 // associated arguments in the outlined function, so we delete them later.
1361 ToBeDeleted.push_back(TIDAddrAlloca);
1362 ToBeDeleted.push_back(ZeroAddrAlloca);
1364 // Create an artificial insertion point that will also ensure the blocks we
1365 // are about to split are not degenerated.
1366 auto *UI = new UnreachableInst(Builder.getContext(), InsertBB);
1368 BasicBlock *EntryBB = UI->getParent();
1369 BasicBlock *PRegEntryBB = EntryBB->splitBasicBlock(UI, "omp.par.entry");
1370 BasicBlock *PRegBodyBB = PRegEntryBB->splitBasicBlock(UI, "omp.par.region");
1371 BasicBlock *PRegPreFiniBB =
1372 PRegBodyBB->splitBasicBlock(UI, "omp.par.pre_finalize");
1373 BasicBlock *PRegExitBB = PRegPreFiniBB->splitBasicBlock(UI, "omp.par.exit");
1375 auto FiniCBWrapper = [&](InsertPointTy IP) {
1376 // Hide "open-ended" blocks from the given FiniCB by setting the right jump
1377 // target to the region exit block.
1378 if (IP.getBlock()->end() == IP.getPoint()) {
1379 IRBuilder<>::InsertPointGuard IPG(Builder);
1380 Builder.restoreIP(IP);
1381 Instruction *I = Builder.CreateBr(PRegExitBB);
1382 IP = InsertPointTy(I->getParent(), I->getIterator());
1384 assert(IP.getBlock()->getTerminator()->getNumSuccessors() == 1 &&
1385 IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB &&
1386 "Unexpected insertion point for finalization call!");
1387 return FiniCB(IP);
1390 FinalizationStack.push_back({FiniCBWrapper, OMPD_parallel, IsCancellable});
1392 // Generate the privatization allocas in the block that will become the entry
1393 // of the outlined function.
1394 Builder.SetInsertPoint(PRegEntryBB->getTerminator());
1395 InsertPointTy InnerAllocaIP = Builder.saveIP();
1397 AllocaInst *PrivTIDAddr =
1398 Builder.CreateAlloca(Int32, nullptr, "tid.addr.local");
1399 Instruction *PrivTID = Builder.CreateLoad(Int32, PrivTIDAddr, "tid");
1401 // Add some fake uses for OpenMP provided arguments.
1402 ToBeDeleted.push_back(Builder.CreateLoad(Int32, TIDAddr, "tid.addr.use"));
1403 Instruction *ZeroAddrUse =
1404 Builder.CreateLoad(Int32, ZeroAddr, "zero.addr.use");
1405 ToBeDeleted.push_back(ZeroAddrUse);
1407 // EntryBB
1408 // |
1409 // V
1410 // PRegionEntryBB <- Privatization allocas are placed here.
1411 // |
1412 // V
1413 // PRegionBodyBB <- BodeGen is invoked here.
1414 // |
1415 // V
1416 // PRegPreFiniBB <- The block we will start finalization from.
1417 // |
1418 // V
1419 // PRegionExitBB <- A common exit to simplify block collection.
1422 LLVM_DEBUG(dbgs() << "Before body codegen: " << *OuterFn << "\n");
1424 // Let the caller create the body.
1425 assert(BodyGenCB && "Expected body generation callback!");
1426 InsertPointTy CodeGenIP(PRegBodyBB, PRegBodyBB->begin());
1427 BodyGenCB(InnerAllocaIP, CodeGenIP);
1429 LLVM_DEBUG(dbgs() << "After body codegen: " << *OuterFn << "\n");
1431 OutlineInfo OI;
1432 if (Config.isTargetDevice()) {
1433 // Generate OpenMP target specific runtime call
1434 OI.PostOutlineCB = [=, ToBeDeletedVec =
1435 std::move(ToBeDeleted)](Function &OutlinedFn) {
1436 targetParallelCallback(this, OutlinedFn, OuterFn, OuterAllocaBlock, Ident,
1437 IfCondition, NumThreads, PrivTID, PrivTIDAddr,
1438 ThreadID, ToBeDeletedVec);
1440 } else {
1441 // Generate OpenMP host runtime call
1442 OI.PostOutlineCB = [=, ToBeDeletedVec =
1443 std::move(ToBeDeleted)](Function &OutlinedFn) {
1444 hostParallelCallback(this, OutlinedFn, OuterFn, Ident, IfCondition,
1445 PrivTID, PrivTIDAddr, ToBeDeletedVec);
1449 // Adjust the finalization stack, verify the adjustment, and call the
1450 // finalize function a last time to finalize values between the pre-fini
1451 // block and the exit block if we left the parallel "the normal way".
1452 auto FiniInfo = FinalizationStack.pop_back_val();
1453 (void)FiniInfo;
1454 assert(FiniInfo.DK == OMPD_parallel &&
1455 "Unexpected finalization stack state!");
1457 Instruction *PRegPreFiniTI = PRegPreFiniBB->getTerminator();
1459 InsertPointTy PreFiniIP(PRegPreFiniBB, PRegPreFiniTI->getIterator());
1460 FiniCB(PreFiniIP);
1462 OI.OuterAllocaBB = OuterAllocaBlock;
1463 OI.EntryBB = PRegEntryBB;
1464 OI.ExitBB = PRegExitBB;
1466 SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
1467 SmallVector<BasicBlock *, 32> Blocks;
1468 OI.collectBlocks(ParallelRegionBlockSet, Blocks);
1470 // Ensure a single exit node for the outlined region by creating one.
1471 // We might have multiple incoming edges to the exit now due to finalizations,
1472 // e.g., cancel calls that cause the control flow to leave the region.
1473 BasicBlock *PRegOutlinedExitBB = PRegExitBB;
1474 PRegExitBB = SplitBlock(PRegExitBB, &*PRegExitBB->getFirstInsertionPt());
1475 PRegOutlinedExitBB->setName("omp.par.outlined.exit");
1476 Blocks.push_back(PRegOutlinedExitBB);
1478 CodeExtractorAnalysisCache CEAC(*OuterFn);
1479 CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr,
1480 /* AggregateArgs */ false,
1481 /* BlockFrequencyInfo */ nullptr,
1482 /* BranchProbabilityInfo */ nullptr,
1483 /* AssumptionCache */ nullptr,
1484 /* AllowVarArgs */ true,
1485 /* AllowAlloca */ true,
1486 /* AllocationBlock */ OuterAllocaBlock,
1487 /* Suffix */ ".omp_par", ArgsInZeroAddressSpace);
1489 // Find inputs to, outputs from the code region.
1490 BasicBlock *CommonExit = nullptr;
1491 SetVector<Value *> Inputs, Outputs, SinkingCands, HoistingCands;
1492 Extractor.findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1493 Extractor.findInputsOutputs(Inputs, Outputs, SinkingCands);
1495 LLVM_DEBUG(dbgs() << "Before privatization: " << *OuterFn << "\n");
1497 FunctionCallee TIDRTLFn =
1498 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num);
1500 auto PrivHelper = [&](Value &V) {
1501 if (&V == TIDAddr || &V == ZeroAddr) {
1502 OI.ExcludeArgsFromAggregate.push_back(&V);
1503 return;
1506 SetVector<Use *> Uses;
1507 for (Use &U : V.uses())
1508 if (auto *UserI = dyn_cast<Instruction>(U.getUser()))
1509 if (ParallelRegionBlockSet.count(UserI->getParent()))
1510 Uses.insert(&U);
1512 // __kmpc_fork_call expects extra arguments as pointers. If the input
1513 // already has a pointer type, everything is fine. Otherwise, store the
1514 // value onto stack and load it back inside the to-be-outlined region. This
1515 // will ensure only the pointer will be passed to the function.
1516 // FIXME: if there are more than 15 trailing arguments, they must be
1517 // additionally packed in a struct.
1518 Value *Inner = &V;
1519 if (!V.getType()->isPointerTy()) {
1520 IRBuilder<>::InsertPointGuard Guard(Builder);
1521 LLVM_DEBUG(llvm::dbgs() << "Forwarding input as pointer: " << V << "\n");
1523 Builder.restoreIP(OuterAllocaIP);
1524 Value *Ptr =
1525 Builder.CreateAlloca(V.getType(), nullptr, V.getName() + ".reloaded");
1527 // Store to stack at end of the block that currently branches to the entry
1528 // block of the to-be-outlined region.
1529 Builder.SetInsertPoint(InsertBB,
1530 InsertBB->getTerminator()->getIterator());
1531 Builder.CreateStore(&V, Ptr);
1533 // Load back next to allocations in the to-be-outlined region.
1534 Builder.restoreIP(InnerAllocaIP);
1535 Inner = Builder.CreateLoad(V.getType(), Ptr);
1538 Value *ReplacementValue = nullptr;
1539 CallInst *CI = dyn_cast<CallInst>(&V);
1540 if (CI && CI->getCalledFunction() == TIDRTLFn.getCallee()) {
1541 ReplacementValue = PrivTID;
1542 } else {
1543 Builder.restoreIP(
1544 PrivCB(InnerAllocaIP, Builder.saveIP(), V, *Inner, ReplacementValue));
1545 assert(ReplacementValue &&
1546 "Expected copy/create callback to set replacement value!");
1547 if (ReplacementValue == &V)
1548 return;
1551 for (Use *UPtr : Uses)
1552 UPtr->set(ReplacementValue);
1555 // Reset the inner alloca insertion as it will be used for loading the values
1556 // wrapped into pointers before passing them into the to-be-outlined region.
1557 // Configure it to insert immediately after the fake use of zero address so
1558 // that they are available in the generated body and so that the
1559 // OpenMP-related values (thread ID and zero address pointers) remain leading
1560 // in the argument list.
1561 InnerAllocaIP = IRBuilder<>::InsertPoint(
1562 ZeroAddrUse->getParent(), ZeroAddrUse->getNextNode()->getIterator());
1564 // Reset the outer alloca insertion point to the entry of the relevant block
1565 // in case it was invalidated.
1566 OuterAllocaIP = IRBuilder<>::InsertPoint(
1567 OuterAllocaBlock, OuterAllocaBlock->getFirstInsertionPt());
1569 for (Value *Input : Inputs) {
1570 LLVM_DEBUG(dbgs() << "Captured input: " << *Input << "\n");
1571 PrivHelper(*Input);
1573 LLVM_DEBUG({
1574 for (Value *Output : Outputs)
1575 LLVM_DEBUG(dbgs() << "Captured output: " << *Output << "\n");
1577 assert(Outputs.empty() &&
1578 "OpenMP outlining should not produce live-out values!");
1580 LLVM_DEBUG(dbgs() << "After privatization: " << *OuterFn << "\n");
1581 LLVM_DEBUG({
1582 for (auto *BB : Blocks)
1583 dbgs() << " PBR: " << BB->getName() << "\n";
1586 // Register the outlined info.
1587 addOutlineInfo(std::move(OI));
1589 InsertPointTy AfterIP(UI->getParent(), UI->getParent()->end());
1590 UI->eraseFromParent();
1592 return AfterIP;
1595 void OpenMPIRBuilder::emitFlush(const LocationDescription &Loc) {
1596 // Build call void __kmpc_flush(ident_t *loc)
1597 uint32_t SrcLocStrSize;
1598 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1599 Value *Args[] = {getOrCreateIdent(SrcLocStr, SrcLocStrSize)};
1601 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_flush), Args);
1604 void OpenMPIRBuilder::createFlush(const LocationDescription &Loc) {
1605 if (!updateToLocation(Loc))
1606 return;
1607 emitFlush(Loc);
1610 void OpenMPIRBuilder::emitTaskwaitImpl(const LocationDescription &Loc) {
1611 // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
1612 // global_tid);
1613 uint32_t SrcLocStrSize;
1614 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1615 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1616 Value *Args[] = {Ident, getOrCreateThreadID(Ident)};
1618 // Ignore return result until untied tasks are supported.
1619 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskwait),
1620 Args);
1623 void OpenMPIRBuilder::createTaskwait(const LocationDescription &Loc) {
1624 if (!updateToLocation(Loc))
1625 return;
1626 emitTaskwaitImpl(Loc);
1629 void OpenMPIRBuilder::emitTaskyieldImpl(const LocationDescription &Loc) {
1630 // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
1631 uint32_t SrcLocStrSize;
1632 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1633 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1634 Constant *I32Null = ConstantInt::getNullValue(Int32);
1635 Value *Args[] = {Ident, getOrCreateThreadID(Ident), I32Null};
1637 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskyield),
1638 Args);
1641 void OpenMPIRBuilder::createTaskyield(const LocationDescription &Loc) {
1642 if (!updateToLocation(Loc))
1643 return;
1644 emitTaskyieldImpl(Loc);
1647 OpenMPIRBuilder::InsertPointTy
1648 OpenMPIRBuilder::createTask(const LocationDescription &Loc,
1649 InsertPointTy AllocaIP, BodyGenCallbackTy BodyGenCB,
1650 bool Tied, Value *Final, Value *IfCondition,
1651 SmallVector<DependData> Dependencies) {
1653 if (!updateToLocation(Loc))
1654 return InsertPointTy();
1656 uint32_t SrcLocStrSize;
1657 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1658 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1659 // The current basic block is split into four basic blocks. After outlining,
1660 // they will be mapped as follows:
1661 // ```
1662 // def current_fn() {
1663 // current_basic_block:
1664 // br label %task.exit
1665 // task.exit:
1666 // ; instructions after task
1667 // }
1668 // def outlined_fn() {
1669 // task.alloca:
1670 // br label %task.body
1671 // task.body:
1672 // ret void
1673 // }
1674 // ```
1675 BasicBlock *TaskExitBB = splitBB(Builder, /*CreateBranch=*/true, "task.exit");
1676 BasicBlock *TaskBodyBB = splitBB(Builder, /*CreateBranch=*/true, "task.body");
1677 BasicBlock *TaskAllocaBB =
1678 splitBB(Builder, /*CreateBranch=*/true, "task.alloca");
1680 InsertPointTy TaskAllocaIP =
1681 InsertPointTy(TaskAllocaBB, TaskAllocaBB->begin());
1682 InsertPointTy TaskBodyIP = InsertPointTy(TaskBodyBB, TaskBodyBB->begin());
1683 BodyGenCB(TaskAllocaIP, TaskBodyIP);
1685 OutlineInfo OI;
1686 OI.EntryBB = TaskAllocaBB;
1687 OI.OuterAllocaBB = AllocaIP.getBlock();
1688 OI.ExitBB = TaskExitBB;
1690 // Add the thread ID argument.
1691 std::stack<Instruction *> ToBeDeleted;
1692 OI.ExcludeArgsFromAggregate.push_back(createFakeIntVal(
1693 Builder, AllocaIP, ToBeDeleted, TaskAllocaIP, "global.tid", false));
1695 OI.PostOutlineCB = [this, Ident, Tied, Final, IfCondition, Dependencies,
1696 TaskAllocaBB, ToBeDeleted](Function &OutlinedFn) mutable {
1697 // Replace the Stale CI by appropriate RTL function call.
1698 assert(OutlinedFn.getNumUses() == 1 &&
1699 "there must be a single user for the outlined function");
1700 CallInst *StaleCI = cast<CallInst>(OutlinedFn.user_back());
1702 // HasShareds is true if any variables are captured in the outlined region,
1703 // false otherwise.
1704 bool HasShareds = StaleCI->arg_size() > 1;
1705 Builder.SetInsertPoint(StaleCI);
1707 // Gather the arguments for emitting the runtime call for
1708 // @__kmpc_omp_task_alloc
1709 Function *TaskAllocFn =
1710 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_alloc);
1712 // Arguments - `loc_ref` (Ident) and `gtid` (ThreadID)
1713 // call.
1714 Value *ThreadID = getOrCreateThreadID(Ident);
1716 // Argument - `flags`
1717 // Task is tied iff (Flags & 1) == 1.
1718 // Task is untied iff (Flags & 1) == 0.
1719 // Task is final iff (Flags & 2) == 2.
1720 // Task is not final iff (Flags & 2) == 0.
1721 // TODO: Handle the other flags.
1722 Value *Flags = Builder.getInt32(Tied);
1723 if (Final) {
1724 Value *FinalFlag =
1725 Builder.CreateSelect(Final, Builder.getInt32(2), Builder.getInt32(0));
1726 Flags = Builder.CreateOr(FinalFlag, Flags);
1729 // Argument - `sizeof_kmp_task_t` (TaskSize)
1730 // Tasksize refers to the size in bytes of kmp_task_t data structure
1731 // including private vars accessed in task.
1732 // TODO: add kmp_task_t_with_privates (privates)
1733 Value *TaskSize = Builder.getInt64(
1734 divideCeil(M.getDataLayout().getTypeSizeInBits(Task), 8));
1736 // Argument - `sizeof_shareds` (SharedsSize)
1737 // SharedsSize refers to the shareds array size in the kmp_task_t data
1738 // structure.
1739 Value *SharedsSize = Builder.getInt64(0);
1740 if (HasShareds) {
1741 AllocaInst *ArgStructAlloca =
1742 dyn_cast<AllocaInst>(StaleCI->getArgOperand(1));
1743 assert(ArgStructAlloca &&
1744 "Unable to find the alloca instruction corresponding to arguments "
1745 "for extracted function");
1746 StructType *ArgStructType =
1747 dyn_cast<StructType>(ArgStructAlloca->getAllocatedType());
1748 assert(ArgStructType && "Unable to find struct type corresponding to "
1749 "arguments for extracted function");
1750 SharedsSize =
1751 Builder.getInt64(M.getDataLayout().getTypeStoreSize(ArgStructType));
1753 // Emit the @__kmpc_omp_task_alloc runtime call
1754 // The runtime call returns a pointer to an area where the task captured
1755 // variables must be copied before the task is run (TaskData)
1756 CallInst *TaskData = Builder.CreateCall(
1757 TaskAllocFn, {/*loc_ref=*/Ident, /*gtid=*/ThreadID, /*flags=*/Flags,
1758 /*sizeof_task=*/TaskSize, /*sizeof_shared=*/SharedsSize,
1759 /*task_func=*/&OutlinedFn});
1761 // Copy the arguments for outlined function
1762 if (HasShareds) {
1763 Value *Shareds = StaleCI->getArgOperand(1);
1764 Align Alignment = TaskData->getPointerAlignment(M.getDataLayout());
1765 Value *TaskShareds = Builder.CreateLoad(VoidPtr, TaskData);
1766 Builder.CreateMemCpy(TaskShareds, Alignment, Shareds, Alignment,
1767 SharedsSize);
1770 Value *DepArray = nullptr;
1771 if (Dependencies.size()) {
1772 InsertPointTy OldIP = Builder.saveIP();
1773 Builder.SetInsertPoint(
1774 &OldIP.getBlock()->getParent()->getEntryBlock().back());
1776 Type *DepArrayTy = ArrayType::get(DependInfo, Dependencies.size());
1777 DepArray = Builder.CreateAlloca(DepArrayTy, nullptr, ".dep.arr.addr");
1779 unsigned P = 0;
1780 for (const DependData &Dep : Dependencies) {
1781 Value *Base =
1782 Builder.CreateConstInBoundsGEP2_64(DepArrayTy, DepArray, 0, P);
1783 // Store the pointer to the variable
1784 Value *Addr = Builder.CreateStructGEP(
1785 DependInfo, Base,
1786 static_cast<unsigned int>(RTLDependInfoFields::BaseAddr));
1787 Value *DepValPtr =
1788 Builder.CreatePtrToInt(Dep.DepVal, Builder.getInt64Ty());
1789 Builder.CreateStore(DepValPtr, Addr);
1790 // Store the size of the variable
1791 Value *Size = Builder.CreateStructGEP(
1792 DependInfo, Base,
1793 static_cast<unsigned int>(RTLDependInfoFields::Len));
1794 Builder.CreateStore(Builder.getInt64(M.getDataLayout().getTypeStoreSize(
1795 Dep.DepValueType)),
1796 Size);
1797 // Store the dependency kind
1798 Value *Flags = Builder.CreateStructGEP(
1799 DependInfo, Base,
1800 static_cast<unsigned int>(RTLDependInfoFields::Flags));
1801 Builder.CreateStore(
1802 ConstantInt::get(Builder.getInt8Ty(),
1803 static_cast<unsigned int>(Dep.DepKind)),
1804 Flags);
1805 ++P;
1808 Builder.restoreIP(OldIP);
1811 // In the presence of the `if` clause, the following IR is generated:
1812 // ...
1813 // %data = call @__kmpc_omp_task_alloc(...)
1814 // br i1 %if_condition, label %then, label %else
1815 // then:
1816 // call @__kmpc_omp_task(...)
1817 // br label %exit
1818 // else:
1819 // call @__kmpc_omp_task_begin_if0(...)
1820 // call @outlined_fn(...)
1821 // call @__kmpc_omp_task_complete_if0(...)
1822 // br label %exit
1823 // exit:
1824 // ...
1825 if (IfCondition) {
1826 // `SplitBlockAndInsertIfThenElse` requires the block to have a
1827 // terminator.
1828 splitBB(Builder, /*CreateBranch=*/true, "if.end");
1829 Instruction *IfTerminator =
1830 Builder.GetInsertPoint()->getParent()->getTerminator();
1831 Instruction *ThenTI = IfTerminator, *ElseTI = nullptr;
1832 Builder.SetInsertPoint(IfTerminator);
1833 SplitBlockAndInsertIfThenElse(IfCondition, IfTerminator, &ThenTI,
1834 &ElseTI);
1835 Builder.SetInsertPoint(ElseTI);
1836 Function *TaskBeginFn =
1837 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_begin_if0);
1838 Function *TaskCompleteFn =
1839 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_complete_if0);
1840 Builder.CreateCall(TaskBeginFn, {Ident, ThreadID, TaskData});
1841 CallInst *CI = nullptr;
1842 if (HasShareds)
1843 CI = Builder.CreateCall(&OutlinedFn, {ThreadID, TaskData});
1844 else
1845 CI = Builder.CreateCall(&OutlinedFn, {ThreadID});
1846 CI->setDebugLoc(StaleCI->getDebugLoc());
1847 Builder.CreateCall(TaskCompleteFn, {Ident, ThreadID, TaskData});
1848 Builder.SetInsertPoint(ThenTI);
1851 if (Dependencies.size()) {
1852 Function *TaskFn =
1853 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_with_deps);
1854 Builder.CreateCall(
1855 TaskFn,
1856 {Ident, ThreadID, TaskData, Builder.getInt32(Dependencies.size()),
1857 DepArray, ConstantInt::get(Builder.getInt32Ty(), 0),
1858 ConstantPointerNull::get(PointerType::getUnqual(M.getContext()))});
1860 } else {
1861 // Emit the @__kmpc_omp_task runtime call to spawn the task
1862 Function *TaskFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task);
1863 Builder.CreateCall(TaskFn, {Ident, ThreadID, TaskData});
1866 StaleCI->eraseFromParent();
1868 Builder.SetInsertPoint(TaskAllocaBB, TaskAllocaBB->begin());
1869 if (HasShareds) {
1870 LoadInst *Shareds = Builder.CreateLoad(VoidPtr, OutlinedFn.getArg(1));
1871 OutlinedFn.getArg(1)->replaceUsesWithIf(
1872 Shareds, [Shareds](Use &U) { return U.getUser() != Shareds; });
1875 while (!ToBeDeleted.empty()) {
1876 ToBeDeleted.top()->eraseFromParent();
1877 ToBeDeleted.pop();
1881 addOutlineInfo(std::move(OI));
1882 Builder.SetInsertPoint(TaskExitBB, TaskExitBB->begin());
1884 return Builder.saveIP();
1887 OpenMPIRBuilder::InsertPointTy
1888 OpenMPIRBuilder::createTaskgroup(const LocationDescription &Loc,
1889 InsertPointTy AllocaIP,
1890 BodyGenCallbackTy BodyGenCB) {
1891 if (!updateToLocation(Loc))
1892 return InsertPointTy();
1894 uint32_t SrcLocStrSize;
1895 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1896 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1897 Value *ThreadID = getOrCreateThreadID(Ident);
1899 // Emit the @__kmpc_taskgroup runtime call to start the taskgroup
1900 Function *TaskgroupFn =
1901 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_taskgroup);
1902 Builder.CreateCall(TaskgroupFn, {Ident, ThreadID});
1904 BasicBlock *TaskgroupExitBB = splitBB(Builder, true, "taskgroup.exit");
1905 BodyGenCB(AllocaIP, Builder.saveIP());
1907 Builder.SetInsertPoint(TaskgroupExitBB);
1908 // Emit the @__kmpc_end_taskgroup runtime call to end the taskgroup
1909 Function *EndTaskgroupFn =
1910 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_taskgroup);
1911 Builder.CreateCall(EndTaskgroupFn, {Ident, ThreadID});
1913 return Builder.saveIP();
1916 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSections(
1917 const LocationDescription &Loc, InsertPointTy AllocaIP,
1918 ArrayRef<StorableBodyGenCallbackTy> SectionCBs, PrivatizeCallbackTy PrivCB,
1919 FinalizeCallbackTy FiniCB, bool IsCancellable, bool IsNowait) {
1920 assert(!isConflictIP(AllocaIP, Loc.IP) && "Dedicated IP allocas required");
1922 if (!updateToLocation(Loc))
1923 return Loc.IP;
1925 auto FiniCBWrapper = [&](InsertPointTy IP) {
1926 if (IP.getBlock()->end() != IP.getPoint())
1927 return FiniCB(IP);
1928 // This must be done otherwise any nested constructs using FinalizeOMPRegion
1929 // will fail because that function requires the Finalization Basic Block to
1930 // have a terminator, which is already removed by EmitOMPRegionBody.
1931 // IP is currently at cancelation block.
1932 // We need to backtrack to the condition block to fetch
1933 // the exit block and create a branch from cancelation
1934 // to exit block.
1935 IRBuilder<>::InsertPointGuard IPG(Builder);
1936 Builder.restoreIP(IP);
1937 auto *CaseBB = IP.getBlock()->getSinglePredecessor();
1938 auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor();
1939 auto *ExitBB = CondBB->getTerminator()->getSuccessor(1);
1940 Instruction *I = Builder.CreateBr(ExitBB);
1941 IP = InsertPointTy(I->getParent(), I->getIterator());
1942 return FiniCB(IP);
1945 FinalizationStack.push_back({FiniCBWrapper, OMPD_sections, IsCancellable});
1947 // Each section is emitted as a switch case
1948 // Each finalization callback is handled from clang.EmitOMPSectionDirective()
1949 // -> OMP.createSection() which generates the IR for each section
1950 // Iterate through all sections and emit a switch construct:
1951 // switch (IV) {
1952 // case 0:
1953 // <SectionStmt[0]>;
1954 // break;
1955 // ...
1956 // case <NumSection> - 1:
1957 // <SectionStmt[<NumSection> - 1]>;
1958 // break;
1959 // }
1960 // ...
1961 // section_loop.after:
1962 // <FiniCB>;
1963 auto LoopBodyGenCB = [&](InsertPointTy CodeGenIP, Value *IndVar) {
1964 Builder.restoreIP(CodeGenIP);
1965 BasicBlock *Continue =
1966 splitBBWithSuffix(Builder, /*CreateBranch=*/false, ".sections.after");
1967 Function *CurFn = Continue->getParent();
1968 SwitchInst *SwitchStmt = Builder.CreateSwitch(IndVar, Continue);
1970 unsigned CaseNumber = 0;
1971 for (auto SectionCB : SectionCBs) {
1972 BasicBlock *CaseBB = BasicBlock::Create(
1973 M.getContext(), "omp_section_loop.body.case", CurFn, Continue);
1974 SwitchStmt->addCase(Builder.getInt32(CaseNumber), CaseBB);
1975 Builder.SetInsertPoint(CaseBB);
1976 BranchInst *CaseEndBr = Builder.CreateBr(Continue);
1977 SectionCB(InsertPointTy(),
1978 {CaseEndBr->getParent(), CaseEndBr->getIterator()});
1979 CaseNumber++;
1981 // remove the existing terminator from body BB since there can be no
1982 // terminators after switch/case
1984 // Loop body ends here
1985 // LowerBound, UpperBound, and STride for createCanonicalLoop
1986 Type *I32Ty = Type::getInt32Ty(M.getContext());
1987 Value *LB = ConstantInt::get(I32Ty, 0);
1988 Value *UB = ConstantInt::get(I32Ty, SectionCBs.size());
1989 Value *ST = ConstantInt::get(I32Ty, 1);
1990 llvm::CanonicalLoopInfo *LoopInfo = createCanonicalLoop(
1991 Loc, LoopBodyGenCB, LB, UB, ST, true, false, AllocaIP, "section_loop");
1992 InsertPointTy AfterIP =
1993 applyStaticWorkshareLoop(Loc.DL, LoopInfo, AllocaIP, !IsNowait);
1995 // Apply the finalization callback in LoopAfterBB
1996 auto FiniInfo = FinalizationStack.pop_back_val();
1997 assert(FiniInfo.DK == OMPD_sections &&
1998 "Unexpected finalization stack state!");
1999 if (FinalizeCallbackTy &CB = FiniInfo.FiniCB) {
2000 Builder.restoreIP(AfterIP);
2001 BasicBlock *FiniBB =
2002 splitBBWithSuffix(Builder, /*CreateBranch=*/true, "sections.fini");
2003 CB(Builder.saveIP());
2004 AfterIP = {FiniBB, FiniBB->begin()};
2007 return AfterIP;
2010 OpenMPIRBuilder::InsertPointTy
2011 OpenMPIRBuilder::createSection(const LocationDescription &Loc,
2012 BodyGenCallbackTy BodyGenCB,
2013 FinalizeCallbackTy FiniCB) {
2014 if (!updateToLocation(Loc))
2015 return Loc.IP;
2017 auto FiniCBWrapper = [&](InsertPointTy IP) {
2018 if (IP.getBlock()->end() != IP.getPoint())
2019 return FiniCB(IP);
2020 // This must be done otherwise any nested constructs using FinalizeOMPRegion
2021 // will fail because that function requires the Finalization Basic Block to
2022 // have a terminator, which is already removed by EmitOMPRegionBody.
2023 // IP is currently at cancelation block.
2024 // We need to backtrack to the condition block to fetch
2025 // the exit block and create a branch from cancelation
2026 // to exit block.
2027 IRBuilder<>::InsertPointGuard IPG(Builder);
2028 Builder.restoreIP(IP);
2029 auto *CaseBB = Loc.IP.getBlock();
2030 auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor();
2031 auto *ExitBB = CondBB->getTerminator()->getSuccessor(1);
2032 Instruction *I = Builder.CreateBr(ExitBB);
2033 IP = InsertPointTy(I->getParent(), I->getIterator());
2034 return FiniCB(IP);
2037 Directive OMPD = Directive::OMPD_sections;
2038 // Since we are using Finalization Callback here, HasFinalize
2039 // and IsCancellable have to be true
2040 return EmitOMPInlinedRegion(OMPD, nullptr, nullptr, BodyGenCB, FiniCBWrapper,
2041 /*Conditional*/ false, /*hasFinalize*/ true,
2042 /*IsCancellable*/ true);
2045 /// Create a function with a unique name and a "void (i8*, i8*)" signature in
2046 /// the given module and return it.
2047 Function *getFreshReductionFunc(Module &M) {
2048 Type *VoidTy = Type::getVoidTy(M.getContext());
2049 Type *Int8PtrTy = PointerType::getUnqual(M.getContext());
2050 auto *FuncTy =
2051 FunctionType::get(VoidTy, {Int8PtrTy, Int8PtrTy}, /* IsVarArg */ false);
2052 return Function::Create(FuncTy, GlobalVariable::InternalLinkage,
2053 M.getDataLayout().getDefaultGlobalsAddressSpace(),
2054 ".omp.reduction.func", &M);
2057 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createReductions(
2058 const LocationDescription &Loc, InsertPointTy AllocaIP,
2059 ArrayRef<ReductionInfo> ReductionInfos, bool IsNoWait) {
2060 for (const ReductionInfo &RI : ReductionInfos) {
2061 (void)RI;
2062 assert(RI.Variable && "expected non-null variable");
2063 assert(RI.PrivateVariable && "expected non-null private variable");
2064 assert(RI.ReductionGen && "expected non-null reduction generator callback");
2065 assert(RI.Variable->getType() == RI.PrivateVariable->getType() &&
2066 "expected variables and their private equivalents to have the same "
2067 "type");
2068 assert(RI.Variable->getType()->isPointerTy() &&
2069 "expected variables to be pointers");
2072 if (!updateToLocation(Loc))
2073 return InsertPointTy();
2075 BasicBlock *InsertBlock = Loc.IP.getBlock();
2076 BasicBlock *ContinuationBlock =
2077 InsertBlock->splitBasicBlock(Loc.IP.getPoint(), "reduce.finalize");
2078 InsertBlock->getTerminator()->eraseFromParent();
2080 // Create and populate array of type-erased pointers to private reduction
2081 // values.
2082 unsigned NumReductions = ReductionInfos.size();
2083 Type *RedArrayTy = ArrayType::get(Builder.getPtrTy(), NumReductions);
2084 Builder.restoreIP(AllocaIP);
2085 Value *RedArray = Builder.CreateAlloca(RedArrayTy, nullptr, "red.array");
2087 Builder.SetInsertPoint(InsertBlock, InsertBlock->end());
2089 for (auto En : enumerate(ReductionInfos)) {
2090 unsigned Index = En.index();
2091 const ReductionInfo &RI = En.value();
2092 Value *RedArrayElemPtr = Builder.CreateConstInBoundsGEP2_64(
2093 RedArrayTy, RedArray, 0, Index, "red.array.elem." + Twine(Index));
2094 Builder.CreateStore(RI.PrivateVariable, RedArrayElemPtr);
2097 // Emit a call to the runtime function that orchestrates the reduction.
2098 // Declare the reduction function in the process.
2099 Function *Func = Builder.GetInsertBlock()->getParent();
2100 Module *Module = Func->getParent();
2101 uint32_t SrcLocStrSize;
2102 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
2103 bool CanGenerateAtomic =
2104 llvm::all_of(ReductionInfos, [](const ReductionInfo &RI) {
2105 return RI.AtomicReductionGen;
2107 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize,
2108 CanGenerateAtomic
2109 ? IdentFlag::OMP_IDENT_FLAG_ATOMIC_REDUCE
2110 : IdentFlag(0));
2111 Value *ThreadId = getOrCreateThreadID(Ident);
2112 Constant *NumVariables = Builder.getInt32(NumReductions);
2113 const DataLayout &DL = Module->getDataLayout();
2114 unsigned RedArrayByteSize = DL.getTypeStoreSize(RedArrayTy);
2115 Constant *RedArraySize = Builder.getInt64(RedArrayByteSize);
2116 Function *ReductionFunc = getFreshReductionFunc(*Module);
2117 Value *Lock = getOMPCriticalRegionLock(".reduction");
2118 Function *ReduceFunc = getOrCreateRuntimeFunctionPtr(
2119 IsNoWait ? RuntimeFunction::OMPRTL___kmpc_reduce_nowait
2120 : RuntimeFunction::OMPRTL___kmpc_reduce);
2121 CallInst *ReduceCall =
2122 Builder.CreateCall(ReduceFunc,
2123 {Ident, ThreadId, NumVariables, RedArraySize, RedArray,
2124 ReductionFunc, Lock},
2125 "reduce");
2127 // Create final reduction entry blocks for the atomic and non-atomic case.
2128 // Emit IR that dispatches control flow to one of the blocks based on the
2129 // reduction supporting the atomic mode.
2130 BasicBlock *NonAtomicRedBlock =
2131 BasicBlock::Create(Module->getContext(), "reduce.switch.nonatomic", Func);
2132 BasicBlock *AtomicRedBlock =
2133 BasicBlock::Create(Module->getContext(), "reduce.switch.atomic", Func);
2134 SwitchInst *Switch =
2135 Builder.CreateSwitch(ReduceCall, ContinuationBlock, /* NumCases */ 2);
2136 Switch->addCase(Builder.getInt32(1), NonAtomicRedBlock);
2137 Switch->addCase(Builder.getInt32(2), AtomicRedBlock);
2139 // Populate the non-atomic reduction using the elementwise reduction function.
2140 // This loads the elements from the global and private variables and reduces
2141 // them before storing back the result to the global variable.
2142 Builder.SetInsertPoint(NonAtomicRedBlock);
2143 for (auto En : enumerate(ReductionInfos)) {
2144 const ReductionInfo &RI = En.value();
2145 Type *ValueType = RI.ElementType;
2146 Value *RedValue = Builder.CreateLoad(ValueType, RI.Variable,
2147 "red.value." + Twine(En.index()));
2148 Value *PrivateRedValue =
2149 Builder.CreateLoad(ValueType, RI.PrivateVariable,
2150 "red.private.value." + Twine(En.index()));
2151 Value *Reduced;
2152 Builder.restoreIP(
2153 RI.ReductionGen(Builder.saveIP(), RedValue, PrivateRedValue, Reduced));
2154 if (!Builder.GetInsertBlock())
2155 return InsertPointTy();
2156 Builder.CreateStore(Reduced, RI.Variable);
2158 Function *EndReduceFunc = getOrCreateRuntimeFunctionPtr(
2159 IsNoWait ? RuntimeFunction::OMPRTL___kmpc_end_reduce_nowait
2160 : RuntimeFunction::OMPRTL___kmpc_end_reduce);
2161 Builder.CreateCall(EndReduceFunc, {Ident, ThreadId, Lock});
2162 Builder.CreateBr(ContinuationBlock);
2164 // Populate the atomic reduction using the atomic elementwise reduction
2165 // function. There are no loads/stores here because they will be happening
2166 // inside the atomic elementwise reduction.
2167 Builder.SetInsertPoint(AtomicRedBlock);
2168 if (CanGenerateAtomic) {
2169 for (const ReductionInfo &RI : ReductionInfos) {
2170 Builder.restoreIP(RI.AtomicReductionGen(Builder.saveIP(), RI.ElementType,
2171 RI.Variable, RI.PrivateVariable));
2172 if (!Builder.GetInsertBlock())
2173 return InsertPointTy();
2175 Builder.CreateBr(ContinuationBlock);
2176 } else {
2177 Builder.CreateUnreachable();
2180 // Populate the outlined reduction function using the elementwise reduction
2181 // function. Partial values are extracted from the type-erased array of
2182 // pointers to private variables.
2183 BasicBlock *ReductionFuncBlock =
2184 BasicBlock::Create(Module->getContext(), "", ReductionFunc);
2185 Builder.SetInsertPoint(ReductionFuncBlock);
2186 Value *LHSArrayPtr = ReductionFunc->getArg(0);
2187 Value *RHSArrayPtr = ReductionFunc->getArg(1);
2189 for (auto En : enumerate(ReductionInfos)) {
2190 const ReductionInfo &RI = En.value();
2191 Value *LHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64(
2192 RedArrayTy, LHSArrayPtr, 0, En.index());
2193 Value *LHSI8Ptr = Builder.CreateLoad(Builder.getPtrTy(), LHSI8PtrPtr);
2194 Value *LHSPtr = Builder.CreateBitCast(LHSI8Ptr, RI.Variable->getType());
2195 Value *LHS = Builder.CreateLoad(RI.ElementType, LHSPtr);
2196 Value *RHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64(
2197 RedArrayTy, RHSArrayPtr, 0, En.index());
2198 Value *RHSI8Ptr = Builder.CreateLoad(Builder.getPtrTy(), RHSI8PtrPtr);
2199 Value *RHSPtr =
2200 Builder.CreateBitCast(RHSI8Ptr, RI.PrivateVariable->getType());
2201 Value *RHS = Builder.CreateLoad(RI.ElementType, RHSPtr);
2202 Value *Reduced;
2203 Builder.restoreIP(RI.ReductionGen(Builder.saveIP(), LHS, RHS, Reduced));
2204 if (!Builder.GetInsertBlock())
2205 return InsertPointTy();
2206 Builder.CreateStore(Reduced, LHSPtr);
2208 Builder.CreateRetVoid();
2210 Builder.SetInsertPoint(ContinuationBlock);
2211 return Builder.saveIP();
2214 OpenMPIRBuilder::InsertPointTy
2215 OpenMPIRBuilder::createMaster(const LocationDescription &Loc,
2216 BodyGenCallbackTy BodyGenCB,
2217 FinalizeCallbackTy FiniCB) {
2219 if (!updateToLocation(Loc))
2220 return Loc.IP;
2222 Directive OMPD = Directive::OMPD_master;
2223 uint32_t SrcLocStrSize;
2224 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
2225 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2226 Value *ThreadId = getOrCreateThreadID(Ident);
2227 Value *Args[] = {Ident, ThreadId};
2229 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_master);
2230 Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
2232 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_master);
2233 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
2235 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
2236 /*Conditional*/ true, /*hasFinalize*/ true);
2239 OpenMPIRBuilder::InsertPointTy
2240 OpenMPIRBuilder::createMasked(const LocationDescription &Loc,
2241 BodyGenCallbackTy BodyGenCB,
2242 FinalizeCallbackTy FiniCB, Value *Filter) {
2243 if (!updateToLocation(Loc))
2244 return Loc.IP;
2246 Directive OMPD = Directive::OMPD_masked;
2247 uint32_t SrcLocStrSize;
2248 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
2249 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2250 Value *ThreadId = getOrCreateThreadID(Ident);
2251 Value *Args[] = {Ident, ThreadId, Filter};
2252 Value *ArgsEnd[] = {Ident, ThreadId};
2254 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_masked);
2255 Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
2257 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_masked);
2258 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, ArgsEnd);
2260 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
2261 /*Conditional*/ true, /*hasFinalize*/ true);
2264 CanonicalLoopInfo *OpenMPIRBuilder::createLoopSkeleton(
2265 DebugLoc DL, Value *TripCount, Function *F, BasicBlock *PreInsertBefore,
2266 BasicBlock *PostInsertBefore, const Twine &Name) {
2267 Module *M = F->getParent();
2268 LLVMContext &Ctx = M->getContext();
2269 Type *IndVarTy = TripCount->getType();
2271 // Create the basic block structure.
2272 BasicBlock *Preheader =
2273 BasicBlock::Create(Ctx, "omp_" + Name + ".preheader", F, PreInsertBefore);
2274 BasicBlock *Header =
2275 BasicBlock::Create(Ctx, "omp_" + Name + ".header", F, PreInsertBefore);
2276 BasicBlock *Cond =
2277 BasicBlock::Create(Ctx, "omp_" + Name + ".cond", F, PreInsertBefore);
2278 BasicBlock *Body =
2279 BasicBlock::Create(Ctx, "omp_" + Name + ".body", F, PreInsertBefore);
2280 BasicBlock *Latch =
2281 BasicBlock::Create(Ctx, "omp_" + Name + ".inc", F, PostInsertBefore);
2282 BasicBlock *Exit =
2283 BasicBlock::Create(Ctx, "omp_" + Name + ".exit", F, PostInsertBefore);
2284 BasicBlock *After =
2285 BasicBlock::Create(Ctx, "omp_" + Name + ".after", F, PostInsertBefore);
2287 // Use specified DebugLoc for new instructions.
2288 Builder.SetCurrentDebugLocation(DL);
2290 Builder.SetInsertPoint(Preheader);
2291 Builder.CreateBr(Header);
2293 Builder.SetInsertPoint(Header);
2294 PHINode *IndVarPHI = Builder.CreatePHI(IndVarTy, 2, "omp_" + Name + ".iv");
2295 IndVarPHI->addIncoming(ConstantInt::get(IndVarTy, 0), Preheader);
2296 Builder.CreateBr(Cond);
2298 Builder.SetInsertPoint(Cond);
2299 Value *Cmp =
2300 Builder.CreateICmpULT(IndVarPHI, TripCount, "omp_" + Name + ".cmp");
2301 Builder.CreateCondBr(Cmp, Body, Exit);
2303 Builder.SetInsertPoint(Body);
2304 Builder.CreateBr(Latch);
2306 Builder.SetInsertPoint(Latch);
2307 Value *Next = Builder.CreateAdd(IndVarPHI, ConstantInt::get(IndVarTy, 1),
2308 "omp_" + Name + ".next", /*HasNUW=*/true);
2309 Builder.CreateBr(Header);
2310 IndVarPHI->addIncoming(Next, Latch);
2312 Builder.SetInsertPoint(Exit);
2313 Builder.CreateBr(After);
2315 // Remember and return the canonical control flow.
2316 LoopInfos.emplace_front();
2317 CanonicalLoopInfo *CL = &LoopInfos.front();
2319 CL->Header = Header;
2320 CL->Cond = Cond;
2321 CL->Latch = Latch;
2322 CL->Exit = Exit;
2324 #ifndef NDEBUG
2325 CL->assertOK();
2326 #endif
2327 return CL;
2330 CanonicalLoopInfo *
2331 OpenMPIRBuilder::createCanonicalLoop(const LocationDescription &Loc,
2332 LoopBodyGenCallbackTy BodyGenCB,
2333 Value *TripCount, const Twine &Name) {
2334 BasicBlock *BB = Loc.IP.getBlock();
2335 BasicBlock *NextBB = BB->getNextNode();
2337 CanonicalLoopInfo *CL = createLoopSkeleton(Loc.DL, TripCount, BB->getParent(),
2338 NextBB, NextBB, Name);
2339 BasicBlock *After = CL->getAfter();
2341 // If location is not set, don't connect the loop.
2342 if (updateToLocation(Loc)) {
2343 // Split the loop at the insertion point: Branch to the preheader and move
2344 // every following instruction to after the loop (the After BB). Also, the
2345 // new successor is the loop's after block.
2346 spliceBB(Builder, After, /*CreateBranch=*/false);
2347 Builder.CreateBr(CL->getPreheader());
2350 // Emit the body content. We do it after connecting the loop to the CFG to
2351 // avoid that the callback encounters degenerate BBs.
2352 BodyGenCB(CL->getBodyIP(), CL->getIndVar());
2354 #ifndef NDEBUG
2355 CL->assertOK();
2356 #endif
2357 return CL;
2360 CanonicalLoopInfo *OpenMPIRBuilder::createCanonicalLoop(
2361 const LocationDescription &Loc, LoopBodyGenCallbackTy BodyGenCB,
2362 Value *Start, Value *Stop, Value *Step, bool IsSigned, bool InclusiveStop,
2363 InsertPointTy ComputeIP, const Twine &Name) {
2365 // Consider the following difficulties (assuming 8-bit signed integers):
2366 // * Adding \p Step to the loop counter which passes \p Stop may overflow:
2367 // DO I = 1, 100, 50
2368 /// * A \p Step of INT_MIN cannot not be normalized to a positive direction:
2369 // DO I = 100, 0, -128
2371 // Start, Stop and Step must be of the same integer type.
2372 auto *IndVarTy = cast<IntegerType>(Start->getType());
2373 assert(IndVarTy == Stop->getType() && "Stop type mismatch");
2374 assert(IndVarTy == Step->getType() && "Step type mismatch");
2376 LocationDescription ComputeLoc =
2377 ComputeIP.isSet() ? LocationDescription(ComputeIP, Loc.DL) : Loc;
2378 updateToLocation(ComputeLoc);
2380 ConstantInt *Zero = ConstantInt::get(IndVarTy, 0);
2381 ConstantInt *One = ConstantInt::get(IndVarTy, 1);
2383 // Like Step, but always positive.
2384 Value *Incr = Step;
2386 // Distance between Start and Stop; always positive.
2387 Value *Span;
2389 // Condition whether there are no iterations are executed at all, e.g. because
2390 // UB < LB.
2391 Value *ZeroCmp;
2393 if (IsSigned) {
2394 // Ensure that increment is positive. If not, negate and invert LB and UB.
2395 Value *IsNeg = Builder.CreateICmpSLT(Step, Zero);
2396 Incr = Builder.CreateSelect(IsNeg, Builder.CreateNeg(Step), Step);
2397 Value *LB = Builder.CreateSelect(IsNeg, Stop, Start);
2398 Value *UB = Builder.CreateSelect(IsNeg, Start, Stop);
2399 Span = Builder.CreateSub(UB, LB, "", false, true);
2400 ZeroCmp = Builder.CreateICmp(
2401 InclusiveStop ? CmpInst::ICMP_SLT : CmpInst::ICMP_SLE, UB, LB);
2402 } else {
2403 Span = Builder.CreateSub(Stop, Start, "", true);
2404 ZeroCmp = Builder.CreateICmp(
2405 InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Stop, Start);
2408 Value *CountIfLooping;
2409 if (InclusiveStop) {
2410 CountIfLooping = Builder.CreateAdd(Builder.CreateUDiv(Span, Incr), One);
2411 } else {
2412 // Avoid incrementing past stop since it could overflow.
2413 Value *CountIfTwo = Builder.CreateAdd(
2414 Builder.CreateUDiv(Builder.CreateSub(Span, One), Incr), One);
2415 Value *OneCmp = Builder.CreateICmp(CmpInst::ICMP_ULE, Span, Incr);
2416 CountIfLooping = Builder.CreateSelect(OneCmp, One, CountIfTwo);
2418 Value *TripCount = Builder.CreateSelect(ZeroCmp, Zero, CountIfLooping,
2419 "omp_" + Name + ".tripcount");
2421 auto BodyGen = [=](InsertPointTy CodeGenIP, Value *IV) {
2422 Builder.restoreIP(CodeGenIP);
2423 Value *Span = Builder.CreateMul(IV, Step);
2424 Value *IndVar = Builder.CreateAdd(Span, Start);
2425 BodyGenCB(Builder.saveIP(), IndVar);
2427 LocationDescription LoopLoc = ComputeIP.isSet() ? Loc.IP : Builder.saveIP();
2428 return createCanonicalLoop(LoopLoc, BodyGen, TripCount, Name);
2431 // Returns an LLVM function to call for initializing loop bounds using OpenMP
2432 // static scheduling depending on `type`. Only i32 and i64 are supported by the
2433 // runtime. Always interpret integers as unsigned similarly to
2434 // CanonicalLoopInfo.
2435 static FunctionCallee getKmpcForStaticInitForType(Type *Ty, Module &M,
2436 OpenMPIRBuilder &OMPBuilder) {
2437 unsigned Bitwidth = Ty->getIntegerBitWidth();
2438 if (Bitwidth == 32)
2439 return OMPBuilder.getOrCreateRuntimeFunction(
2440 M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_4u);
2441 if (Bitwidth == 64)
2442 return OMPBuilder.getOrCreateRuntimeFunction(
2443 M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_8u);
2444 llvm_unreachable("unknown OpenMP loop iterator bitwidth");
2447 OpenMPIRBuilder::InsertPointTy
2448 OpenMPIRBuilder::applyStaticWorkshareLoop(DebugLoc DL, CanonicalLoopInfo *CLI,
2449 InsertPointTy AllocaIP,
2450 bool NeedsBarrier) {
2451 assert(CLI->isValid() && "Requires a valid canonical loop");
2452 assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) &&
2453 "Require dedicated allocate IP");
2455 // Set up the source location value for OpenMP runtime.
2456 Builder.restoreIP(CLI->getPreheaderIP());
2457 Builder.SetCurrentDebugLocation(DL);
2459 uint32_t SrcLocStrSize;
2460 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
2461 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2463 // Declare useful OpenMP runtime functions.
2464 Value *IV = CLI->getIndVar();
2465 Type *IVTy = IV->getType();
2466 FunctionCallee StaticInit = getKmpcForStaticInitForType(IVTy, M, *this);
2467 FunctionCallee StaticFini =
2468 getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini);
2470 // Allocate space for computed loop bounds as expected by the "init" function.
2471 Builder.restoreIP(AllocaIP);
2472 Type *I32Type = Type::getInt32Ty(M.getContext());
2473 Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
2474 Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound");
2475 Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound");
2476 Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride");
2478 // At the end of the preheader, prepare for calling the "init" function by
2479 // storing the current loop bounds into the allocated space. A canonical loop
2480 // always iterates from 0 to trip-count with step 1. Note that "init" expects
2481 // and produces an inclusive upper bound.
2482 Builder.SetInsertPoint(CLI->getPreheader()->getTerminator());
2483 Constant *Zero = ConstantInt::get(IVTy, 0);
2484 Constant *One = ConstantInt::get(IVTy, 1);
2485 Builder.CreateStore(Zero, PLowerBound);
2486 Value *UpperBound = Builder.CreateSub(CLI->getTripCount(), One);
2487 Builder.CreateStore(UpperBound, PUpperBound);
2488 Builder.CreateStore(One, PStride);
2490 Value *ThreadNum = getOrCreateThreadID(SrcLoc);
2492 Constant *SchedulingType = ConstantInt::get(
2493 I32Type, static_cast<int>(OMPScheduleType::UnorderedStatic));
2495 // Call the "init" function and update the trip count of the loop with the
2496 // value it produced.
2497 Builder.CreateCall(StaticInit,
2498 {SrcLoc, ThreadNum, SchedulingType, PLastIter, PLowerBound,
2499 PUpperBound, PStride, One, Zero});
2500 Value *LowerBound = Builder.CreateLoad(IVTy, PLowerBound);
2501 Value *InclusiveUpperBound = Builder.CreateLoad(IVTy, PUpperBound);
2502 Value *TripCountMinusOne = Builder.CreateSub(InclusiveUpperBound, LowerBound);
2503 Value *TripCount = Builder.CreateAdd(TripCountMinusOne, One);
2504 CLI->setTripCount(TripCount);
2506 // Update all uses of the induction variable except the one in the condition
2507 // block that compares it with the actual upper bound, and the increment in
2508 // the latch block.
2510 CLI->mapIndVar([&](Instruction *OldIV) -> Value * {
2511 Builder.SetInsertPoint(CLI->getBody(),
2512 CLI->getBody()->getFirstInsertionPt());
2513 Builder.SetCurrentDebugLocation(DL);
2514 return Builder.CreateAdd(OldIV, LowerBound);
2517 // In the "exit" block, call the "fini" function.
2518 Builder.SetInsertPoint(CLI->getExit(),
2519 CLI->getExit()->getTerminator()->getIterator());
2520 Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum});
2522 // Add the barrier if requested.
2523 if (NeedsBarrier)
2524 createBarrier(LocationDescription(Builder.saveIP(), DL),
2525 omp::Directive::OMPD_for, /* ForceSimpleCall */ false,
2526 /* CheckCancelFlag */ false);
2528 InsertPointTy AfterIP = CLI->getAfterIP();
2529 CLI->invalidate();
2531 return AfterIP;
2534 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyStaticChunkedWorkshareLoop(
2535 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
2536 bool NeedsBarrier, Value *ChunkSize) {
2537 assert(CLI->isValid() && "Requires a valid canonical loop");
2538 assert(ChunkSize && "Chunk size is required");
2540 LLVMContext &Ctx = CLI->getFunction()->getContext();
2541 Value *IV = CLI->getIndVar();
2542 Value *OrigTripCount = CLI->getTripCount();
2543 Type *IVTy = IV->getType();
2544 assert(IVTy->getIntegerBitWidth() <= 64 &&
2545 "Max supported tripcount bitwidth is 64 bits");
2546 Type *InternalIVTy = IVTy->getIntegerBitWidth() <= 32 ? Type::getInt32Ty(Ctx)
2547 : Type::getInt64Ty(Ctx);
2548 Type *I32Type = Type::getInt32Ty(M.getContext());
2549 Constant *Zero = ConstantInt::get(InternalIVTy, 0);
2550 Constant *One = ConstantInt::get(InternalIVTy, 1);
2552 // Declare useful OpenMP runtime functions.
2553 FunctionCallee StaticInit =
2554 getKmpcForStaticInitForType(InternalIVTy, M, *this);
2555 FunctionCallee StaticFini =
2556 getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini);
2558 // Allocate space for computed loop bounds as expected by the "init" function.
2559 Builder.restoreIP(AllocaIP);
2560 Builder.SetCurrentDebugLocation(DL);
2561 Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
2562 Value *PLowerBound =
2563 Builder.CreateAlloca(InternalIVTy, nullptr, "p.lowerbound");
2564 Value *PUpperBound =
2565 Builder.CreateAlloca(InternalIVTy, nullptr, "p.upperbound");
2566 Value *PStride = Builder.CreateAlloca(InternalIVTy, nullptr, "p.stride");
2568 // Set up the source location value for the OpenMP runtime.
2569 Builder.restoreIP(CLI->getPreheaderIP());
2570 Builder.SetCurrentDebugLocation(DL);
2572 // TODO: Detect overflow in ubsan or max-out with current tripcount.
2573 Value *CastedChunkSize =
2574 Builder.CreateZExtOrTrunc(ChunkSize, InternalIVTy, "chunksize");
2575 Value *CastedTripCount =
2576 Builder.CreateZExt(OrigTripCount, InternalIVTy, "tripcount");
2578 Constant *SchedulingType = ConstantInt::get(
2579 I32Type, static_cast<int>(OMPScheduleType::UnorderedStaticChunked));
2580 Builder.CreateStore(Zero, PLowerBound);
2581 Value *OrigUpperBound = Builder.CreateSub(CastedTripCount, One);
2582 Builder.CreateStore(OrigUpperBound, PUpperBound);
2583 Builder.CreateStore(One, PStride);
2585 // Call the "init" function and update the trip count of the loop with the
2586 // value it produced.
2587 uint32_t SrcLocStrSize;
2588 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
2589 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2590 Value *ThreadNum = getOrCreateThreadID(SrcLoc);
2591 Builder.CreateCall(StaticInit,
2592 {/*loc=*/SrcLoc, /*global_tid=*/ThreadNum,
2593 /*schedtype=*/SchedulingType, /*plastiter=*/PLastIter,
2594 /*plower=*/PLowerBound, /*pupper=*/PUpperBound,
2595 /*pstride=*/PStride, /*incr=*/One,
2596 /*chunk=*/CastedChunkSize});
2598 // Load values written by the "init" function.
2599 Value *FirstChunkStart =
2600 Builder.CreateLoad(InternalIVTy, PLowerBound, "omp_firstchunk.lb");
2601 Value *FirstChunkStop =
2602 Builder.CreateLoad(InternalIVTy, PUpperBound, "omp_firstchunk.ub");
2603 Value *FirstChunkEnd = Builder.CreateAdd(FirstChunkStop, One);
2604 Value *ChunkRange =
2605 Builder.CreateSub(FirstChunkEnd, FirstChunkStart, "omp_chunk.range");
2606 Value *NextChunkStride =
2607 Builder.CreateLoad(InternalIVTy, PStride, "omp_dispatch.stride");
2609 // Create outer "dispatch" loop for enumerating the chunks.
2610 BasicBlock *DispatchEnter = splitBB(Builder, true);
2611 Value *DispatchCounter;
2612 CanonicalLoopInfo *DispatchCLI = createCanonicalLoop(
2613 {Builder.saveIP(), DL},
2614 [&](InsertPointTy BodyIP, Value *Counter) { DispatchCounter = Counter; },
2615 FirstChunkStart, CastedTripCount, NextChunkStride,
2616 /*IsSigned=*/false, /*InclusiveStop=*/false, /*ComputeIP=*/{},
2617 "dispatch");
2619 // Remember the BasicBlocks of the dispatch loop we need, then invalidate to
2620 // not have to preserve the canonical invariant.
2621 BasicBlock *DispatchBody = DispatchCLI->getBody();
2622 BasicBlock *DispatchLatch = DispatchCLI->getLatch();
2623 BasicBlock *DispatchExit = DispatchCLI->getExit();
2624 BasicBlock *DispatchAfter = DispatchCLI->getAfter();
2625 DispatchCLI->invalidate();
2627 // Rewire the original loop to become the chunk loop inside the dispatch loop.
2628 redirectTo(DispatchAfter, CLI->getAfter(), DL);
2629 redirectTo(CLI->getExit(), DispatchLatch, DL);
2630 redirectTo(DispatchBody, DispatchEnter, DL);
2632 // Prepare the prolog of the chunk loop.
2633 Builder.restoreIP(CLI->getPreheaderIP());
2634 Builder.SetCurrentDebugLocation(DL);
2636 // Compute the number of iterations of the chunk loop.
2637 Builder.SetInsertPoint(CLI->getPreheader()->getTerminator());
2638 Value *ChunkEnd = Builder.CreateAdd(DispatchCounter, ChunkRange);
2639 Value *IsLastChunk =
2640 Builder.CreateICmpUGE(ChunkEnd, CastedTripCount, "omp_chunk.is_last");
2641 Value *CountUntilOrigTripCount =
2642 Builder.CreateSub(CastedTripCount, DispatchCounter);
2643 Value *ChunkTripCount = Builder.CreateSelect(
2644 IsLastChunk, CountUntilOrigTripCount, ChunkRange, "omp_chunk.tripcount");
2645 Value *BackcastedChunkTC =
2646 Builder.CreateTrunc(ChunkTripCount, IVTy, "omp_chunk.tripcount.trunc");
2647 CLI->setTripCount(BackcastedChunkTC);
2649 // Update all uses of the induction variable except the one in the condition
2650 // block that compares it with the actual upper bound, and the increment in
2651 // the latch block.
2652 Value *BackcastedDispatchCounter =
2653 Builder.CreateTrunc(DispatchCounter, IVTy, "omp_dispatch.iv.trunc");
2654 CLI->mapIndVar([&](Instruction *) -> Value * {
2655 Builder.restoreIP(CLI->getBodyIP());
2656 return Builder.CreateAdd(IV, BackcastedDispatchCounter);
2659 // In the "exit" block, call the "fini" function.
2660 Builder.SetInsertPoint(DispatchExit, DispatchExit->getFirstInsertionPt());
2661 Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum});
2663 // Add the barrier if requested.
2664 if (NeedsBarrier)
2665 createBarrier(LocationDescription(Builder.saveIP(), DL), OMPD_for,
2666 /*ForceSimpleCall=*/false, /*CheckCancelFlag=*/false);
2668 #ifndef NDEBUG
2669 // Even though we currently do not support applying additional methods to it,
2670 // the chunk loop should remain a canonical loop.
2671 CLI->assertOK();
2672 #endif
2674 return {DispatchAfter, DispatchAfter->getFirstInsertionPt()};
2677 // Returns an LLVM function to call for executing an OpenMP static worksharing
2678 // for loop depending on `type`. Only i32 and i64 are supported by the runtime.
2679 // Always interpret integers as unsigned similarly to CanonicalLoopInfo.
2680 static FunctionCallee
2681 getKmpcForStaticLoopForType(Type *Ty, OpenMPIRBuilder *OMPBuilder,
2682 WorksharingLoopType LoopType) {
2683 unsigned Bitwidth = Ty->getIntegerBitWidth();
2684 Module &M = OMPBuilder->M;
2685 switch (LoopType) {
2686 case WorksharingLoopType::ForStaticLoop:
2687 if (Bitwidth == 32)
2688 return OMPBuilder->getOrCreateRuntimeFunction(
2689 M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_loop_4u);
2690 if (Bitwidth == 64)
2691 return OMPBuilder->getOrCreateRuntimeFunction(
2692 M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_loop_8u);
2693 break;
2694 case WorksharingLoopType::DistributeStaticLoop:
2695 if (Bitwidth == 32)
2696 return OMPBuilder->getOrCreateRuntimeFunction(
2697 M, omp::RuntimeFunction::OMPRTL___kmpc_distribute_static_loop_4u);
2698 if (Bitwidth == 64)
2699 return OMPBuilder->getOrCreateRuntimeFunction(
2700 M, omp::RuntimeFunction::OMPRTL___kmpc_distribute_static_loop_8u);
2701 break;
2702 case WorksharingLoopType::DistributeForStaticLoop:
2703 if (Bitwidth == 32)
2704 return OMPBuilder->getOrCreateRuntimeFunction(
2705 M, omp::RuntimeFunction::OMPRTL___kmpc_distribute_for_static_loop_4u);
2706 if (Bitwidth == 64)
2707 return OMPBuilder->getOrCreateRuntimeFunction(
2708 M, omp::RuntimeFunction::OMPRTL___kmpc_distribute_for_static_loop_8u);
2709 break;
2711 if (Bitwidth != 32 && Bitwidth != 64) {
2712 llvm_unreachable("Unknown OpenMP loop iterator bitwidth");
2714 llvm_unreachable("Unknown type of OpenMP worksharing loop");
2717 // Inserts a call to proper OpenMP Device RTL function which handles
2718 // loop worksharing.
2719 static void createTargetLoopWorkshareCall(
2720 OpenMPIRBuilder *OMPBuilder, WorksharingLoopType LoopType,
2721 BasicBlock *InsertBlock, Value *Ident, Value *LoopBodyArg,
2722 Type *ParallelTaskPtr, Value *TripCount, Function &LoopBodyFn) {
2723 Type *TripCountTy = TripCount->getType();
2724 Module &M = OMPBuilder->M;
2725 IRBuilder<> &Builder = OMPBuilder->Builder;
2726 FunctionCallee RTLFn =
2727 getKmpcForStaticLoopForType(TripCountTy, OMPBuilder, LoopType);
2728 SmallVector<Value *, 8> RealArgs;
2729 RealArgs.push_back(Ident);
2730 RealArgs.push_back(Builder.CreateBitCast(&LoopBodyFn, ParallelTaskPtr));
2731 RealArgs.push_back(LoopBodyArg);
2732 RealArgs.push_back(TripCount);
2733 if (LoopType == WorksharingLoopType::DistributeStaticLoop) {
2734 RealArgs.push_back(ConstantInt::get(TripCountTy, 0));
2735 Builder.CreateCall(RTLFn, RealArgs);
2736 return;
2738 FunctionCallee RTLNumThreads = OMPBuilder->getOrCreateRuntimeFunction(
2739 M, omp::RuntimeFunction::OMPRTL_omp_get_num_threads);
2740 Builder.restoreIP({InsertBlock, std::prev(InsertBlock->end())});
2741 Value *NumThreads = Builder.CreateCall(RTLNumThreads, {});
2743 RealArgs.push_back(
2744 Builder.CreateZExtOrTrunc(NumThreads, TripCountTy, "num.threads.cast"));
2745 RealArgs.push_back(ConstantInt::get(TripCountTy, 0));
2746 if (LoopType == WorksharingLoopType::DistributeForStaticLoop) {
2747 RealArgs.push_back(ConstantInt::get(TripCountTy, 0));
2750 Builder.CreateCall(RTLFn, RealArgs);
2753 static void
2754 workshareLoopTargetCallback(OpenMPIRBuilder *OMPIRBuilder,
2755 CanonicalLoopInfo *CLI, Value *Ident,
2756 Function &OutlinedFn, Type *ParallelTaskPtr,
2757 const SmallVector<Instruction *, 4> &ToBeDeleted,
2758 WorksharingLoopType LoopType) {
2759 IRBuilder<> &Builder = OMPIRBuilder->Builder;
2760 BasicBlock *Preheader = CLI->getPreheader();
2761 Value *TripCount = CLI->getTripCount();
2763 // After loop body outling, the loop body contains only set up
2764 // of loop body argument structure and the call to the outlined
2765 // loop body function. Firstly, we need to move setup of loop body args
2766 // into loop preheader.
2767 Preheader->splice(std::prev(Preheader->end()), CLI->getBody(),
2768 CLI->getBody()->begin(), std::prev(CLI->getBody()->end()));
2770 // The next step is to remove the whole loop. We do not it need anymore.
2771 // That's why make an unconditional branch from loop preheader to loop
2772 // exit block
2773 Builder.restoreIP({Preheader, Preheader->end()});
2774 Preheader->getTerminator()->eraseFromParent();
2775 Builder.CreateBr(CLI->getExit());
2777 // Delete dead loop blocks
2778 OpenMPIRBuilder::OutlineInfo CleanUpInfo;
2779 SmallPtrSet<BasicBlock *, 32> RegionBlockSet;
2780 SmallVector<BasicBlock *, 32> BlocksToBeRemoved;
2781 CleanUpInfo.EntryBB = CLI->getHeader();
2782 CleanUpInfo.ExitBB = CLI->getExit();
2783 CleanUpInfo.collectBlocks(RegionBlockSet, BlocksToBeRemoved);
2784 DeleteDeadBlocks(BlocksToBeRemoved);
2786 // Find the instruction which corresponds to loop body argument structure
2787 // and remove the call to loop body function instruction.
2788 Value *LoopBodyArg;
2789 User *OutlinedFnUser = OutlinedFn.getUniqueUndroppableUser();
2790 assert(OutlinedFnUser &&
2791 "Expected unique undroppable user of outlined function");
2792 CallInst *OutlinedFnCallInstruction = dyn_cast<CallInst>(OutlinedFnUser);
2793 assert(OutlinedFnCallInstruction && "Expected outlined function call");
2794 assert((OutlinedFnCallInstruction->getParent() == Preheader) &&
2795 "Expected outlined function call to be located in loop preheader");
2796 // Check in case no argument structure has been passed.
2797 if (OutlinedFnCallInstruction->arg_size() > 1)
2798 LoopBodyArg = OutlinedFnCallInstruction->getArgOperand(1);
2799 else
2800 LoopBodyArg = Constant::getNullValue(Builder.getPtrTy());
2801 OutlinedFnCallInstruction->eraseFromParent();
2803 createTargetLoopWorkshareCall(OMPIRBuilder, LoopType, Preheader, Ident,
2804 LoopBodyArg, ParallelTaskPtr, TripCount,
2805 OutlinedFn);
2807 for (auto &ToBeDeletedItem : ToBeDeleted)
2808 ToBeDeletedItem->eraseFromParent();
2809 CLI->invalidate();
2812 OpenMPIRBuilder::InsertPointTy
2813 OpenMPIRBuilder::applyWorkshareLoopTarget(DebugLoc DL, CanonicalLoopInfo *CLI,
2814 InsertPointTy AllocaIP,
2815 WorksharingLoopType LoopType) {
2816 uint32_t SrcLocStrSize;
2817 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
2818 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2820 OutlineInfo OI;
2821 OI.OuterAllocaBB = CLI->getPreheader();
2822 Function *OuterFn = CLI->getPreheader()->getParent();
2824 // Instructions which need to be deleted at the end of code generation
2825 SmallVector<Instruction *, 4> ToBeDeleted;
2827 OI.OuterAllocaBB = AllocaIP.getBlock();
2829 // Mark the body loop as region which needs to be extracted
2830 OI.EntryBB = CLI->getBody();
2831 OI.ExitBB = CLI->getLatch()->splitBasicBlock(CLI->getLatch()->begin(),
2832 "omp.prelatch", true);
2834 // Prepare loop body for extraction
2835 Builder.restoreIP({CLI->getPreheader(), CLI->getPreheader()->begin()});
2837 // Insert new loop counter variable which will be used only in loop
2838 // body.
2839 AllocaInst *NewLoopCnt = Builder.CreateAlloca(CLI->getIndVarType(), 0, "");
2840 Instruction *NewLoopCntLoad =
2841 Builder.CreateLoad(CLI->getIndVarType(), NewLoopCnt);
2842 // New loop counter instructions are redundant in the loop preheader when
2843 // code generation for workshare loop is finshed. That's why mark them as
2844 // ready for deletion.
2845 ToBeDeleted.push_back(NewLoopCntLoad);
2846 ToBeDeleted.push_back(NewLoopCnt);
2848 // Analyse loop body region. Find all input variables which are used inside
2849 // loop body region.
2850 SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
2851 SmallVector<BasicBlock *, 32> Blocks;
2852 OI.collectBlocks(ParallelRegionBlockSet, Blocks);
2853 SmallVector<BasicBlock *, 32> BlocksT(ParallelRegionBlockSet.begin(),
2854 ParallelRegionBlockSet.end());
2856 CodeExtractorAnalysisCache CEAC(*OuterFn);
2857 CodeExtractor Extractor(Blocks,
2858 /* DominatorTree */ nullptr,
2859 /* AggregateArgs */ true,
2860 /* BlockFrequencyInfo */ nullptr,
2861 /* BranchProbabilityInfo */ nullptr,
2862 /* AssumptionCache */ nullptr,
2863 /* AllowVarArgs */ true,
2864 /* AllowAlloca */ true,
2865 /* AllocationBlock */ CLI->getPreheader(),
2866 /* Suffix */ ".omp_wsloop",
2867 /* AggrArgsIn0AddrSpace */ true);
2869 BasicBlock *CommonExit = nullptr;
2870 SetVector<Value *> Inputs, Outputs, SinkingCands, HoistingCands;
2872 // Find allocas outside the loop body region which are used inside loop
2873 // body
2874 Extractor.findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
2876 // We need to model loop body region as the function f(cnt, loop_arg).
2877 // That's why we replace loop induction variable by the new counter
2878 // which will be one of loop body function argument
2879 SmallVector<User *> Users(CLI->getIndVar()->user_begin(),
2880 CLI->getIndVar()->user_end());
2881 for (auto Use : Users) {
2882 if (Instruction *Inst = dyn_cast<Instruction>(Use)) {
2883 if (ParallelRegionBlockSet.count(Inst->getParent())) {
2884 Inst->replaceUsesOfWith(CLI->getIndVar(), NewLoopCntLoad);
2888 // Make sure that loop counter variable is not merged into loop body
2889 // function argument structure and it is passed as separate variable
2890 OI.ExcludeArgsFromAggregate.push_back(NewLoopCntLoad);
2892 // PostOutline CB is invoked when loop body function is outlined and
2893 // loop body is replaced by call to outlined function. We need to add
2894 // call to OpenMP device rtl inside loop preheader. OpenMP device rtl
2895 // function will handle loop control logic.
2897 OI.PostOutlineCB = [=, ToBeDeletedVec =
2898 std::move(ToBeDeleted)](Function &OutlinedFn) {
2899 workshareLoopTargetCallback(this, CLI, Ident, OutlinedFn, ParallelTaskPtr,
2900 ToBeDeletedVec, LoopType);
2902 addOutlineInfo(std::move(OI));
2903 return CLI->getAfterIP();
2906 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyWorkshareLoop(
2907 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
2908 bool NeedsBarrier, omp::ScheduleKind SchedKind, Value *ChunkSize,
2909 bool HasSimdModifier, bool HasMonotonicModifier,
2910 bool HasNonmonotonicModifier, bool HasOrderedClause,
2911 WorksharingLoopType LoopType) {
2912 if (Config.isTargetDevice())
2913 return applyWorkshareLoopTarget(DL, CLI, AllocaIP, LoopType);
2914 OMPScheduleType EffectiveScheduleType = computeOpenMPScheduleType(
2915 SchedKind, ChunkSize, HasSimdModifier, HasMonotonicModifier,
2916 HasNonmonotonicModifier, HasOrderedClause);
2918 bool IsOrdered = (EffectiveScheduleType & OMPScheduleType::ModifierOrdered) ==
2919 OMPScheduleType::ModifierOrdered;
2920 switch (EffectiveScheduleType & ~OMPScheduleType::ModifierMask) {
2921 case OMPScheduleType::BaseStatic:
2922 assert(!ChunkSize && "No chunk size with static-chunked schedule");
2923 if (IsOrdered)
2924 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType,
2925 NeedsBarrier, ChunkSize);
2926 // FIXME: Monotonicity ignored?
2927 return applyStaticWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier);
2929 case OMPScheduleType::BaseStaticChunked:
2930 if (IsOrdered)
2931 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType,
2932 NeedsBarrier, ChunkSize);
2933 // FIXME: Monotonicity ignored?
2934 return applyStaticChunkedWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier,
2935 ChunkSize);
2937 case OMPScheduleType::BaseRuntime:
2938 case OMPScheduleType::BaseAuto:
2939 case OMPScheduleType::BaseGreedy:
2940 case OMPScheduleType::BaseBalanced:
2941 case OMPScheduleType::BaseSteal:
2942 case OMPScheduleType::BaseGuidedSimd:
2943 case OMPScheduleType::BaseRuntimeSimd:
2944 assert(!ChunkSize &&
2945 "schedule type does not support user-defined chunk sizes");
2946 [[fallthrough]];
2947 case OMPScheduleType::BaseDynamicChunked:
2948 case OMPScheduleType::BaseGuidedChunked:
2949 case OMPScheduleType::BaseGuidedIterativeChunked:
2950 case OMPScheduleType::BaseGuidedAnalyticalChunked:
2951 case OMPScheduleType::BaseStaticBalancedChunked:
2952 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType,
2953 NeedsBarrier, ChunkSize);
2955 default:
2956 llvm_unreachable("Unknown/unimplemented schedule kind");
2960 /// Returns an LLVM function to call for initializing loop bounds using OpenMP
2961 /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by
2962 /// the runtime. Always interpret integers as unsigned similarly to
2963 /// CanonicalLoopInfo.
2964 static FunctionCallee
2965 getKmpcForDynamicInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
2966 unsigned Bitwidth = Ty->getIntegerBitWidth();
2967 if (Bitwidth == 32)
2968 return OMPBuilder.getOrCreateRuntimeFunction(
2969 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_4u);
2970 if (Bitwidth == 64)
2971 return OMPBuilder.getOrCreateRuntimeFunction(
2972 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_8u);
2973 llvm_unreachable("unknown OpenMP loop iterator bitwidth");
2976 /// Returns an LLVM function to call for updating the next loop using OpenMP
2977 /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by
2978 /// the runtime. Always interpret integers as unsigned similarly to
2979 /// CanonicalLoopInfo.
2980 static FunctionCallee
2981 getKmpcForDynamicNextForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
2982 unsigned Bitwidth = Ty->getIntegerBitWidth();
2983 if (Bitwidth == 32)
2984 return OMPBuilder.getOrCreateRuntimeFunction(
2985 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_4u);
2986 if (Bitwidth == 64)
2987 return OMPBuilder.getOrCreateRuntimeFunction(
2988 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_8u);
2989 llvm_unreachable("unknown OpenMP loop iterator bitwidth");
2992 /// Returns an LLVM function to call for finalizing the dynamic loop using
2993 /// depending on `type`. Only i32 and i64 are supported by the runtime. Always
2994 /// interpret integers as unsigned similarly to CanonicalLoopInfo.
2995 static FunctionCallee
2996 getKmpcForDynamicFiniForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
2997 unsigned Bitwidth = Ty->getIntegerBitWidth();
2998 if (Bitwidth == 32)
2999 return OMPBuilder.getOrCreateRuntimeFunction(
3000 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_4u);
3001 if (Bitwidth == 64)
3002 return OMPBuilder.getOrCreateRuntimeFunction(
3003 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_8u);
3004 llvm_unreachable("unknown OpenMP loop iterator bitwidth");
3007 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyDynamicWorkshareLoop(
3008 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
3009 OMPScheduleType SchedType, bool NeedsBarrier, Value *Chunk) {
3010 assert(CLI->isValid() && "Requires a valid canonical loop");
3011 assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) &&
3012 "Require dedicated allocate IP");
3013 assert(isValidWorkshareLoopScheduleType(SchedType) &&
3014 "Require valid schedule type");
3016 bool Ordered = (SchedType & OMPScheduleType::ModifierOrdered) ==
3017 OMPScheduleType::ModifierOrdered;
3019 // Set up the source location value for OpenMP runtime.
3020 Builder.SetCurrentDebugLocation(DL);
3022 uint32_t SrcLocStrSize;
3023 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
3024 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3026 // Declare useful OpenMP runtime functions.
3027 Value *IV = CLI->getIndVar();
3028 Type *IVTy = IV->getType();
3029 FunctionCallee DynamicInit = getKmpcForDynamicInitForType(IVTy, M, *this);
3030 FunctionCallee DynamicNext = getKmpcForDynamicNextForType(IVTy, M, *this);
3032 // Allocate space for computed loop bounds as expected by the "init" function.
3033 Builder.restoreIP(AllocaIP);
3034 Type *I32Type = Type::getInt32Ty(M.getContext());
3035 Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
3036 Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound");
3037 Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound");
3038 Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride");
3040 // At the end of the preheader, prepare for calling the "init" function by
3041 // storing the current loop bounds into the allocated space. A canonical loop
3042 // always iterates from 0 to trip-count with step 1. Note that "init" expects
3043 // and produces an inclusive upper bound.
3044 BasicBlock *PreHeader = CLI->getPreheader();
3045 Builder.SetInsertPoint(PreHeader->getTerminator());
3046 Constant *One = ConstantInt::get(IVTy, 1);
3047 Builder.CreateStore(One, PLowerBound);
3048 Value *UpperBound = CLI->getTripCount();
3049 Builder.CreateStore(UpperBound, PUpperBound);
3050 Builder.CreateStore(One, PStride);
3052 BasicBlock *Header = CLI->getHeader();
3053 BasicBlock *Exit = CLI->getExit();
3054 BasicBlock *Cond = CLI->getCond();
3055 BasicBlock *Latch = CLI->getLatch();
3056 InsertPointTy AfterIP = CLI->getAfterIP();
3058 // The CLI will be "broken" in the code below, as the loop is no longer
3059 // a valid canonical loop.
3061 if (!Chunk)
3062 Chunk = One;
3064 Value *ThreadNum = getOrCreateThreadID(SrcLoc);
3066 Constant *SchedulingType =
3067 ConstantInt::get(I32Type, static_cast<int>(SchedType));
3069 // Call the "init" function.
3070 Builder.CreateCall(DynamicInit,
3071 {SrcLoc, ThreadNum, SchedulingType, /* LowerBound */ One,
3072 UpperBound, /* step */ One, Chunk});
3074 // An outer loop around the existing one.
3075 BasicBlock *OuterCond = BasicBlock::Create(
3076 PreHeader->getContext(), Twine(PreHeader->getName()) + ".outer.cond",
3077 PreHeader->getParent());
3078 // This needs to be 32-bit always, so can't use the IVTy Zero above.
3079 Builder.SetInsertPoint(OuterCond, OuterCond->getFirstInsertionPt());
3080 Value *Res =
3081 Builder.CreateCall(DynamicNext, {SrcLoc, ThreadNum, PLastIter,
3082 PLowerBound, PUpperBound, PStride});
3083 Constant *Zero32 = ConstantInt::get(I32Type, 0);
3084 Value *MoreWork = Builder.CreateCmp(CmpInst::ICMP_NE, Res, Zero32);
3085 Value *LowerBound =
3086 Builder.CreateSub(Builder.CreateLoad(IVTy, PLowerBound), One, "lb");
3087 Builder.CreateCondBr(MoreWork, Header, Exit);
3089 // Change PHI-node in loop header to use outer cond rather than preheader,
3090 // and set IV to the LowerBound.
3091 Instruction *Phi = &Header->front();
3092 auto *PI = cast<PHINode>(Phi);
3093 PI->setIncomingBlock(0, OuterCond);
3094 PI->setIncomingValue(0, LowerBound);
3096 // Then set the pre-header to jump to the OuterCond
3097 Instruction *Term = PreHeader->getTerminator();
3098 auto *Br = cast<BranchInst>(Term);
3099 Br->setSuccessor(0, OuterCond);
3101 // Modify the inner condition:
3102 // * Use the UpperBound returned from the DynamicNext call.
3103 // * jump to the loop outer loop when done with one of the inner loops.
3104 Builder.SetInsertPoint(Cond, Cond->getFirstInsertionPt());
3105 UpperBound = Builder.CreateLoad(IVTy, PUpperBound, "ub");
3106 Instruction *Comp = &*Builder.GetInsertPoint();
3107 auto *CI = cast<CmpInst>(Comp);
3108 CI->setOperand(1, UpperBound);
3109 // Redirect the inner exit to branch to outer condition.
3110 Instruction *Branch = &Cond->back();
3111 auto *BI = cast<BranchInst>(Branch);
3112 assert(BI->getSuccessor(1) == Exit);
3113 BI->setSuccessor(1, OuterCond);
3115 // Call the "fini" function if "ordered" is present in wsloop directive.
3116 if (Ordered) {
3117 Builder.SetInsertPoint(&Latch->back());
3118 FunctionCallee DynamicFini = getKmpcForDynamicFiniForType(IVTy, M, *this);
3119 Builder.CreateCall(DynamicFini, {SrcLoc, ThreadNum});
3122 // Add the barrier if requested.
3123 if (NeedsBarrier) {
3124 Builder.SetInsertPoint(&Exit->back());
3125 createBarrier(LocationDescription(Builder.saveIP(), DL),
3126 omp::Directive::OMPD_for, /* ForceSimpleCall */ false,
3127 /* CheckCancelFlag */ false);
3130 CLI->invalidate();
3131 return AfterIP;
3134 /// Redirect all edges that branch to \p OldTarget to \p NewTarget. That is,
3135 /// after this \p OldTarget will be orphaned.
3136 static void redirectAllPredecessorsTo(BasicBlock *OldTarget,
3137 BasicBlock *NewTarget, DebugLoc DL) {
3138 for (BasicBlock *Pred : make_early_inc_range(predecessors(OldTarget)))
3139 redirectTo(Pred, NewTarget, DL);
3142 /// Determine which blocks in \p BBs are reachable from outside and remove the
3143 /// ones that are not reachable from the function.
3144 static void removeUnusedBlocksFromParent(ArrayRef<BasicBlock *> BBs) {
3145 SmallPtrSet<BasicBlock *, 6> BBsToErase{BBs.begin(), BBs.end()};
3146 auto HasRemainingUses = [&BBsToErase](BasicBlock *BB) {
3147 for (Use &U : BB->uses()) {
3148 auto *UseInst = dyn_cast<Instruction>(U.getUser());
3149 if (!UseInst)
3150 continue;
3151 if (BBsToErase.count(UseInst->getParent()))
3152 continue;
3153 return true;
3155 return false;
3158 while (true) {
3159 bool Changed = false;
3160 for (BasicBlock *BB : make_early_inc_range(BBsToErase)) {
3161 if (HasRemainingUses(BB)) {
3162 BBsToErase.erase(BB);
3163 Changed = true;
3166 if (!Changed)
3167 break;
3170 SmallVector<BasicBlock *, 7> BBVec(BBsToErase.begin(), BBsToErase.end());
3171 DeleteDeadBlocks(BBVec);
3174 CanonicalLoopInfo *
3175 OpenMPIRBuilder::collapseLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops,
3176 InsertPointTy ComputeIP) {
3177 assert(Loops.size() >= 1 && "At least one loop required");
3178 size_t NumLoops = Loops.size();
3180 // Nothing to do if there is already just one loop.
3181 if (NumLoops == 1)
3182 return Loops.front();
3184 CanonicalLoopInfo *Outermost = Loops.front();
3185 CanonicalLoopInfo *Innermost = Loops.back();
3186 BasicBlock *OrigPreheader = Outermost->getPreheader();
3187 BasicBlock *OrigAfter = Outermost->getAfter();
3188 Function *F = OrigPreheader->getParent();
3190 // Loop control blocks that may become orphaned later.
3191 SmallVector<BasicBlock *, 12> OldControlBBs;
3192 OldControlBBs.reserve(6 * Loops.size());
3193 for (CanonicalLoopInfo *Loop : Loops)
3194 Loop->collectControlBlocks(OldControlBBs);
3196 // Setup the IRBuilder for inserting the trip count computation.
3197 Builder.SetCurrentDebugLocation(DL);
3198 if (ComputeIP.isSet())
3199 Builder.restoreIP(ComputeIP);
3200 else
3201 Builder.restoreIP(Outermost->getPreheaderIP());
3203 // Derive the collapsed' loop trip count.
3204 // TODO: Find common/largest indvar type.
3205 Value *CollapsedTripCount = nullptr;
3206 for (CanonicalLoopInfo *L : Loops) {
3207 assert(L->isValid() &&
3208 "All loops to collapse must be valid canonical loops");
3209 Value *OrigTripCount = L->getTripCount();
3210 if (!CollapsedTripCount) {
3211 CollapsedTripCount = OrigTripCount;
3212 continue;
3215 // TODO: Enable UndefinedSanitizer to diagnose an overflow here.
3216 CollapsedTripCount = Builder.CreateMul(CollapsedTripCount, OrigTripCount,
3217 {}, /*HasNUW=*/true);
3220 // Create the collapsed loop control flow.
3221 CanonicalLoopInfo *Result =
3222 createLoopSkeleton(DL, CollapsedTripCount, F,
3223 OrigPreheader->getNextNode(), OrigAfter, "collapsed");
3225 // Build the collapsed loop body code.
3226 // Start with deriving the input loop induction variables from the collapsed
3227 // one, using a divmod scheme. To preserve the original loops' order, the
3228 // innermost loop use the least significant bits.
3229 Builder.restoreIP(Result->getBodyIP());
3231 Value *Leftover = Result->getIndVar();
3232 SmallVector<Value *> NewIndVars;
3233 NewIndVars.resize(NumLoops);
3234 for (int i = NumLoops - 1; i >= 1; --i) {
3235 Value *OrigTripCount = Loops[i]->getTripCount();
3237 Value *NewIndVar = Builder.CreateURem(Leftover, OrigTripCount);
3238 NewIndVars[i] = NewIndVar;
3240 Leftover = Builder.CreateUDiv(Leftover, OrigTripCount);
3242 // Outermost loop gets all the remaining bits.
3243 NewIndVars[0] = Leftover;
3245 // Construct the loop body control flow.
3246 // We progressively construct the branch structure following in direction of
3247 // the control flow, from the leading in-between code, the loop nest body, the
3248 // trailing in-between code, and rejoining the collapsed loop's latch.
3249 // ContinueBlock and ContinuePred keep track of the source(s) of next edge. If
3250 // the ContinueBlock is set, continue with that block. If ContinuePred, use
3251 // its predecessors as sources.
3252 BasicBlock *ContinueBlock = Result->getBody();
3253 BasicBlock *ContinuePred = nullptr;
3254 auto ContinueWith = [&ContinueBlock, &ContinuePred, DL](BasicBlock *Dest,
3255 BasicBlock *NextSrc) {
3256 if (ContinueBlock)
3257 redirectTo(ContinueBlock, Dest, DL);
3258 else
3259 redirectAllPredecessorsTo(ContinuePred, Dest, DL);
3261 ContinueBlock = nullptr;
3262 ContinuePred = NextSrc;
3265 // The code before the nested loop of each level.
3266 // Because we are sinking it into the nest, it will be executed more often
3267 // that the original loop. More sophisticated schemes could keep track of what
3268 // the in-between code is and instantiate it only once per thread.
3269 for (size_t i = 0; i < NumLoops - 1; ++i)
3270 ContinueWith(Loops[i]->getBody(), Loops[i + 1]->getHeader());
3272 // Connect the loop nest body.
3273 ContinueWith(Innermost->getBody(), Innermost->getLatch());
3275 // The code after the nested loop at each level.
3276 for (size_t i = NumLoops - 1; i > 0; --i)
3277 ContinueWith(Loops[i]->getAfter(), Loops[i - 1]->getLatch());
3279 // Connect the finished loop to the collapsed loop latch.
3280 ContinueWith(Result->getLatch(), nullptr);
3282 // Replace the input loops with the new collapsed loop.
3283 redirectTo(Outermost->getPreheader(), Result->getPreheader(), DL);
3284 redirectTo(Result->getAfter(), Outermost->getAfter(), DL);
3286 // Replace the input loop indvars with the derived ones.
3287 for (size_t i = 0; i < NumLoops; ++i)
3288 Loops[i]->getIndVar()->replaceAllUsesWith(NewIndVars[i]);
3290 // Remove unused parts of the input loops.
3291 removeUnusedBlocksFromParent(OldControlBBs);
3293 for (CanonicalLoopInfo *L : Loops)
3294 L->invalidate();
3296 #ifndef NDEBUG
3297 Result->assertOK();
3298 #endif
3299 return Result;
3302 std::vector<CanonicalLoopInfo *>
3303 OpenMPIRBuilder::tileLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops,
3304 ArrayRef<Value *> TileSizes) {
3305 assert(TileSizes.size() == Loops.size() &&
3306 "Must pass as many tile sizes as there are loops");
3307 int NumLoops = Loops.size();
3308 assert(NumLoops >= 1 && "At least one loop to tile required");
3310 CanonicalLoopInfo *OutermostLoop = Loops.front();
3311 CanonicalLoopInfo *InnermostLoop = Loops.back();
3312 Function *F = OutermostLoop->getBody()->getParent();
3313 BasicBlock *InnerEnter = InnermostLoop->getBody();
3314 BasicBlock *InnerLatch = InnermostLoop->getLatch();
3316 // Loop control blocks that may become orphaned later.
3317 SmallVector<BasicBlock *, 12> OldControlBBs;
3318 OldControlBBs.reserve(6 * Loops.size());
3319 for (CanonicalLoopInfo *Loop : Loops)
3320 Loop->collectControlBlocks(OldControlBBs);
3322 // Collect original trip counts and induction variable to be accessible by
3323 // index. Also, the structure of the original loops is not preserved during
3324 // the construction of the tiled loops, so do it before we scavenge the BBs of
3325 // any original CanonicalLoopInfo.
3326 SmallVector<Value *, 4> OrigTripCounts, OrigIndVars;
3327 for (CanonicalLoopInfo *L : Loops) {
3328 assert(L->isValid() && "All input loops must be valid canonical loops");
3329 OrigTripCounts.push_back(L->getTripCount());
3330 OrigIndVars.push_back(L->getIndVar());
3333 // Collect the code between loop headers. These may contain SSA definitions
3334 // that are used in the loop nest body. To be usable with in the innermost
3335 // body, these BasicBlocks will be sunk into the loop nest body. That is,
3336 // these instructions may be executed more often than before the tiling.
3337 // TODO: It would be sufficient to only sink them into body of the
3338 // corresponding tile loop.
3339 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> InbetweenCode;
3340 for (int i = 0; i < NumLoops - 1; ++i) {
3341 CanonicalLoopInfo *Surrounding = Loops[i];
3342 CanonicalLoopInfo *Nested = Loops[i + 1];
3344 BasicBlock *EnterBB = Surrounding->getBody();
3345 BasicBlock *ExitBB = Nested->getHeader();
3346 InbetweenCode.emplace_back(EnterBB, ExitBB);
3349 // Compute the trip counts of the floor loops.
3350 Builder.SetCurrentDebugLocation(DL);
3351 Builder.restoreIP(OutermostLoop->getPreheaderIP());
3352 SmallVector<Value *, 4> FloorCount, FloorRems;
3353 for (int i = 0; i < NumLoops; ++i) {
3354 Value *TileSize = TileSizes[i];
3355 Value *OrigTripCount = OrigTripCounts[i];
3356 Type *IVType = OrigTripCount->getType();
3358 Value *FloorTripCount = Builder.CreateUDiv(OrigTripCount, TileSize);
3359 Value *FloorTripRem = Builder.CreateURem(OrigTripCount, TileSize);
3361 // 0 if tripcount divides the tilesize, 1 otherwise.
3362 // 1 means we need an additional iteration for a partial tile.
3364 // Unfortunately we cannot just use the roundup-formula
3365 // (tripcount + tilesize - 1)/tilesize
3366 // because the summation might overflow. We do not want introduce undefined
3367 // behavior when the untiled loop nest did not.
3368 Value *FloorTripOverflow =
3369 Builder.CreateICmpNE(FloorTripRem, ConstantInt::get(IVType, 0));
3371 FloorTripOverflow = Builder.CreateZExt(FloorTripOverflow, IVType);
3372 FloorTripCount =
3373 Builder.CreateAdd(FloorTripCount, FloorTripOverflow,
3374 "omp_floor" + Twine(i) + ".tripcount", true);
3376 // Remember some values for later use.
3377 FloorCount.push_back(FloorTripCount);
3378 FloorRems.push_back(FloorTripRem);
3381 // Generate the new loop nest, from the outermost to the innermost.
3382 std::vector<CanonicalLoopInfo *> Result;
3383 Result.reserve(NumLoops * 2);
3385 // The basic block of the surrounding loop that enters the nest generated
3386 // loop.
3387 BasicBlock *Enter = OutermostLoop->getPreheader();
3389 // The basic block of the surrounding loop where the inner code should
3390 // continue.
3391 BasicBlock *Continue = OutermostLoop->getAfter();
3393 // Where the next loop basic block should be inserted.
3394 BasicBlock *OutroInsertBefore = InnermostLoop->getExit();
3396 auto EmbeddNewLoop =
3397 [this, DL, F, InnerEnter, &Enter, &Continue, &OutroInsertBefore](
3398 Value *TripCount, const Twine &Name) -> CanonicalLoopInfo * {
3399 CanonicalLoopInfo *EmbeddedLoop = createLoopSkeleton(
3400 DL, TripCount, F, InnerEnter, OutroInsertBefore, Name);
3401 redirectTo(Enter, EmbeddedLoop->getPreheader(), DL);
3402 redirectTo(EmbeddedLoop->getAfter(), Continue, DL);
3404 // Setup the position where the next embedded loop connects to this loop.
3405 Enter = EmbeddedLoop->getBody();
3406 Continue = EmbeddedLoop->getLatch();
3407 OutroInsertBefore = EmbeddedLoop->getLatch();
3408 return EmbeddedLoop;
3411 auto EmbeddNewLoops = [&Result, &EmbeddNewLoop](ArrayRef<Value *> TripCounts,
3412 const Twine &NameBase) {
3413 for (auto P : enumerate(TripCounts)) {
3414 CanonicalLoopInfo *EmbeddedLoop =
3415 EmbeddNewLoop(P.value(), NameBase + Twine(P.index()));
3416 Result.push_back(EmbeddedLoop);
3420 EmbeddNewLoops(FloorCount, "floor");
3422 // Within the innermost floor loop, emit the code that computes the tile
3423 // sizes.
3424 Builder.SetInsertPoint(Enter->getTerminator());
3425 SmallVector<Value *, 4> TileCounts;
3426 for (int i = 0; i < NumLoops; ++i) {
3427 CanonicalLoopInfo *FloorLoop = Result[i];
3428 Value *TileSize = TileSizes[i];
3430 Value *FloorIsEpilogue =
3431 Builder.CreateICmpEQ(FloorLoop->getIndVar(), FloorCount[i]);
3432 Value *TileTripCount =
3433 Builder.CreateSelect(FloorIsEpilogue, FloorRems[i], TileSize);
3435 TileCounts.push_back(TileTripCount);
3438 // Create the tile loops.
3439 EmbeddNewLoops(TileCounts, "tile");
3441 // Insert the inbetween code into the body.
3442 BasicBlock *BodyEnter = Enter;
3443 BasicBlock *BodyEntered = nullptr;
3444 for (std::pair<BasicBlock *, BasicBlock *> P : InbetweenCode) {
3445 BasicBlock *EnterBB = P.first;
3446 BasicBlock *ExitBB = P.second;
3448 if (BodyEnter)
3449 redirectTo(BodyEnter, EnterBB, DL);
3450 else
3451 redirectAllPredecessorsTo(BodyEntered, EnterBB, DL);
3453 BodyEnter = nullptr;
3454 BodyEntered = ExitBB;
3457 // Append the original loop nest body into the generated loop nest body.
3458 if (BodyEnter)
3459 redirectTo(BodyEnter, InnerEnter, DL);
3460 else
3461 redirectAllPredecessorsTo(BodyEntered, InnerEnter, DL);
3462 redirectAllPredecessorsTo(InnerLatch, Continue, DL);
3464 // Replace the original induction variable with an induction variable computed
3465 // from the tile and floor induction variables.
3466 Builder.restoreIP(Result.back()->getBodyIP());
3467 for (int i = 0; i < NumLoops; ++i) {
3468 CanonicalLoopInfo *FloorLoop = Result[i];
3469 CanonicalLoopInfo *TileLoop = Result[NumLoops + i];
3470 Value *OrigIndVar = OrigIndVars[i];
3471 Value *Size = TileSizes[i];
3473 Value *Scale =
3474 Builder.CreateMul(Size, FloorLoop->getIndVar(), {}, /*HasNUW=*/true);
3475 Value *Shift =
3476 Builder.CreateAdd(Scale, TileLoop->getIndVar(), {}, /*HasNUW=*/true);
3477 OrigIndVar->replaceAllUsesWith(Shift);
3480 // Remove unused parts of the original loops.
3481 removeUnusedBlocksFromParent(OldControlBBs);
3483 for (CanonicalLoopInfo *L : Loops)
3484 L->invalidate();
3486 #ifndef NDEBUG
3487 for (CanonicalLoopInfo *GenL : Result)
3488 GenL->assertOK();
3489 #endif
3490 return Result;
3493 /// Attach metadata \p Properties to the basic block described by \p BB. If the
3494 /// basic block already has metadata, the basic block properties are appended.
3495 static void addBasicBlockMetadata(BasicBlock *BB,
3496 ArrayRef<Metadata *> Properties) {
3497 // Nothing to do if no property to attach.
3498 if (Properties.empty())
3499 return;
3501 LLVMContext &Ctx = BB->getContext();
3502 SmallVector<Metadata *> NewProperties;
3503 NewProperties.push_back(nullptr);
3505 // If the basic block already has metadata, prepend it to the new metadata.
3506 MDNode *Existing = BB->getTerminator()->getMetadata(LLVMContext::MD_loop);
3507 if (Existing)
3508 append_range(NewProperties, drop_begin(Existing->operands(), 1));
3510 append_range(NewProperties, Properties);
3511 MDNode *BasicBlockID = MDNode::getDistinct(Ctx, NewProperties);
3512 BasicBlockID->replaceOperandWith(0, BasicBlockID);
3514 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, BasicBlockID);
3517 /// Attach loop metadata \p Properties to the loop described by \p Loop. If the
3518 /// loop already has metadata, the loop properties are appended.
3519 static void addLoopMetadata(CanonicalLoopInfo *Loop,
3520 ArrayRef<Metadata *> Properties) {
3521 assert(Loop->isValid() && "Expecting a valid CanonicalLoopInfo");
3523 // Attach metadata to the loop's latch
3524 BasicBlock *Latch = Loop->getLatch();
3525 assert(Latch && "A valid CanonicalLoopInfo must have a unique latch");
3526 addBasicBlockMetadata(Latch, Properties);
3529 /// Attach llvm.access.group metadata to the memref instructions of \p Block
3530 static void addSimdMetadata(BasicBlock *Block, MDNode *AccessGroup,
3531 LoopInfo &LI) {
3532 for (Instruction &I : *Block) {
3533 if (I.mayReadOrWriteMemory()) {
3534 // TODO: This instruction may already have access group from
3535 // other pragmas e.g. #pragma clang loop vectorize. Append
3536 // so that the existing metadata is not overwritten.
3537 I.setMetadata(LLVMContext::MD_access_group, AccessGroup);
3542 void OpenMPIRBuilder::unrollLoopFull(DebugLoc, CanonicalLoopInfo *Loop) {
3543 LLVMContext &Ctx = Builder.getContext();
3544 addLoopMetadata(
3545 Loop, {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")),
3546 MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.full"))});
3549 void OpenMPIRBuilder::unrollLoopHeuristic(DebugLoc, CanonicalLoopInfo *Loop) {
3550 LLVMContext &Ctx = Builder.getContext();
3551 addLoopMetadata(
3552 Loop, {
3553 MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")),
3557 void OpenMPIRBuilder::createIfVersion(CanonicalLoopInfo *CanonicalLoop,
3558 Value *IfCond, ValueToValueMapTy &VMap,
3559 const Twine &NamePrefix) {
3560 Function *F = CanonicalLoop->getFunction();
3562 // Define where if branch should be inserted
3563 Instruction *SplitBefore;
3564 if (Instruction::classof(IfCond)) {
3565 SplitBefore = dyn_cast<Instruction>(IfCond);
3566 } else {
3567 SplitBefore = CanonicalLoop->getPreheader()->getTerminator();
3570 // TODO: We should not rely on pass manager. Currently we use pass manager
3571 // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo
3572 // object. We should have a method which returns all blocks between
3573 // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter()
3574 FunctionAnalysisManager FAM;
3575 FAM.registerPass([]() { return DominatorTreeAnalysis(); });
3576 FAM.registerPass([]() { return LoopAnalysis(); });
3577 FAM.registerPass([]() { return PassInstrumentationAnalysis(); });
3579 // Get the loop which needs to be cloned
3580 LoopAnalysis LIA;
3581 LoopInfo &&LI = LIA.run(*F, FAM);
3582 Loop *L = LI.getLoopFor(CanonicalLoop->getHeader());
3584 // Create additional blocks for the if statement
3585 BasicBlock *Head = SplitBefore->getParent();
3586 Instruction *HeadOldTerm = Head->getTerminator();
3587 llvm::LLVMContext &C = Head->getContext();
3588 llvm::BasicBlock *ThenBlock = llvm::BasicBlock::Create(
3589 C, NamePrefix + ".if.then", Head->getParent(), Head->getNextNode());
3590 llvm::BasicBlock *ElseBlock = llvm::BasicBlock::Create(
3591 C, NamePrefix + ".if.else", Head->getParent(), CanonicalLoop->getExit());
3593 // Create if condition branch.
3594 Builder.SetInsertPoint(HeadOldTerm);
3595 Instruction *BrInstr =
3596 Builder.CreateCondBr(IfCond, ThenBlock, /*ifFalse*/ ElseBlock);
3597 InsertPointTy IP{BrInstr->getParent(), ++BrInstr->getIterator()};
3598 // Then block contains branch to omp loop which needs to be vectorized
3599 spliceBB(IP, ThenBlock, false);
3600 ThenBlock->replaceSuccessorsPhiUsesWith(Head, ThenBlock);
3602 Builder.SetInsertPoint(ElseBlock);
3604 // Clone loop for the else branch
3605 SmallVector<BasicBlock *, 8> NewBlocks;
3607 VMap[CanonicalLoop->getPreheader()] = ElseBlock;
3608 for (BasicBlock *Block : L->getBlocks()) {
3609 BasicBlock *NewBB = CloneBasicBlock(Block, VMap, "", F);
3610 NewBB->moveBefore(CanonicalLoop->getExit());
3611 VMap[Block] = NewBB;
3612 NewBlocks.push_back(NewBB);
3614 remapInstructionsInBlocks(NewBlocks, VMap);
3615 Builder.CreateBr(NewBlocks.front());
3618 unsigned
3619 OpenMPIRBuilder::getOpenMPDefaultSimdAlign(const Triple &TargetTriple,
3620 const StringMap<bool> &Features) {
3621 if (TargetTriple.isX86()) {
3622 if (Features.lookup("avx512f"))
3623 return 512;
3624 else if (Features.lookup("avx"))
3625 return 256;
3626 return 128;
3628 if (TargetTriple.isPPC())
3629 return 128;
3630 if (TargetTriple.isWasm())
3631 return 128;
3632 return 0;
3635 void OpenMPIRBuilder::applySimd(CanonicalLoopInfo *CanonicalLoop,
3636 MapVector<Value *, Value *> AlignedVars,
3637 Value *IfCond, OrderKind Order,
3638 ConstantInt *Simdlen, ConstantInt *Safelen) {
3639 LLVMContext &Ctx = Builder.getContext();
3641 Function *F = CanonicalLoop->getFunction();
3643 // TODO: We should not rely on pass manager. Currently we use pass manager
3644 // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo
3645 // object. We should have a method which returns all blocks between
3646 // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter()
3647 FunctionAnalysisManager FAM;
3648 FAM.registerPass([]() { return DominatorTreeAnalysis(); });
3649 FAM.registerPass([]() { return LoopAnalysis(); });
3650 FAM.registerPass([]() { return PassInstrumentationAnalysis(); });
3652 LoopAnalysis LIA;
3653 LoopInfo &&LI = LIA.run(*F, FAM);
3655 Loop *L = LI.getLoopFor(CanonicalLoop->getHeader());
3656 if (AlignedVars.size()) {
3657 InsertPointTy IP = Builder.saveIP();
3658 Builder.SetInsertPoint(CanonicalLoop->getPreheader()->getTerminator());
3659 for (auto &AlignedItem : AlignedVars) {
3660 Value *AlignedPtr = AlignedItem.first;
3661 Value *Alignment = AlignedItem.second;
3662 Builder.CreateAlignmentAssumption(F->getParent()->getDataLayout(),
3663 AlignedPtr, Alignment);
3665 Builder.restoreIP(IP);
3668 if (IfCond) {
3669 ValueToValueMapTy VMap;
3670 createIfVersion(CanonicalLoop, IfCond, VMap, "simd");
3671 // Add metadata to the cloned loop which disables vectorization
3672 Value *MappedLatch = VMap.lookup(CanonicalLoop->getLatch());
3673 assert(MappedLatch &&
3674 "Cannot find value which corresponds to original loop latch");
3675 assert(isa<BasicBlock>(MappedLatch) &&
3676 "Cannot cast mapped latch block value to BasicBlock");
3677 BasicBlock *NewLatchBlock = dyn_cast<BasicBlock>(MappedLatch);
3678 ConstantAsMetadata *BoolConst =
3679 ConstantAsMetadata::get(ConstantInt::getFalse(Type::getInt1Ty(Ctx)));
3680 addBasicBlockMetadata(
3681 NewLatchBlock,
3682 {MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"),
3683 BoolConst})});
3686 SmallSet<BasicBlock *, 8> Reachable;
3688 // Get the basic blocks from the loop in which memref instructions
3689 // can be found.
3690 // TODO: Generalize getting all blocks inside a CanonicalizeLoopInfo,
3691 // preferably without running any passes.
3692 for (BasicBlock *Block : L->getBlocks()) {
3693 if (Block == CanonicalLoop->getCond() ||
3694 Block == CanonicalLoop->getHeader())
3695 continue;
3696 Reachable.insert(Block);
3699 SmallVector<Metadata *> LoopMDList;
3701 // In presence of finite 'safelen', it may be unsafe to mark all
3702 // the memory instructions parallel, because loop-carried
3703 // dependences of 'safelen' iterations are possible.
3704 // If clause order(concurrent) is specified then the memory instructions
3705 // are marked parallel even if 'safelen' is finite.
3706 if ((Safelen == nullptr) || (Order == OrderKind::OMP_ORDER_concurrent)) {
3707 // Add access group metadata to memory-access instructions.
3708 MDNode *AccessGroup = MDNode::getDistinct(Ctx, {});
3709 for (BasicBlock *BB : Reachable)
3710 addSimdMetadata(BB, AccessGroup, LI);
3711 // TODO: If the loop has existing parallel access metadata, have
3712 // to combine two lists.
3713 LoopMDList.push_back(MDNode::get(
3714 Ctx, {MDString::get(Ctx, "llvm.loop.parallel_accesses"), AccessGroup}));
3717 // Use the above access group metadata to create loop level
3718 // metadata, which should be distinct for each loop.
3719 ConstantAsMetadata *BoolConst =
3720 ConstantAsMetadata::get(ConstantInt::getTrue(Type::getInt1Ty(Ctx)));
3721 LoopMDList.push_back(MDNode::get(
3722 Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"), BoolConst}));
3724 if (Simdlen || Safelen) {
3725 // If both simdlen and safelen clauses are specified, the value of the
3726 // simdlen parameter must be less than or equal to the value of the safelen
3727 // parameter. Therefore, use safelen only in the absence of simdlen.
3728 ConstantInt *VectorizeWidth = Simdlen == nullptr ? Safelen : Simdlen;
3729 LoopMDList.push_back(
3730 MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.width"),
3731 ConstantAsMetadata::get(VectorizeWidth)}));
3734 addLoopMetadata(CanonicalLoop, LoopMDList);
3737 /// Create the TargetMachine object to query the backend for optimization
3738 /// preferences.
3740 /// Ideally, this would be passed from the front-end to the OpenMPBuilder, but
3741 /// e.g. Clang does not pass it to its CodeGen layer and creates it only when
3742 /// needed for the LLVM pass pipline. We use some default options to avoid
3743 /// having to pass too many settings from the frontend that probably do not
3744 /// matter.
3746 /// Currently, TargetMachine is only used sometimes by the unrollLoopPartial
3747 /// method. If we are going to use TargetMachine for more purposes, especially
3748 /// those that are sensitive to TargetOptions, RelocModel and CodeModel, it
3749 /// might become be worth requiring front-ends to pass on their TargetMachine,
3750 /// or at least cache it between methods. Note that while fontends such as Clang
3751 /// have just a single main TargetMachine per translation unit, "target-cpu" and
3752 /// "target-features" that determine the TargetMachine are per-function and can
3753 /// be overrided using __attribute__((target("OPTIONS"))).
3754 static std::unique_ptr<TargetMachine>
3755 createTargetMachine(Function *F, CodeGenOptLevel OptLevel) {
3756 Module *M = F->getParent();
3758 StringRef CPU = F->getFnAttribute("target-cpu").getValueAsString();
3759 StringRef Features = F->getFnAttribute("target-features").getValueAsString();
3760 const std::string &Triple = M->getTargetTriple();
3762 std::string Error;
3763 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
3764 if (!TheTarget)
3765 return {};
3767 llvm::TargetOptions Options;
3768 return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine(
3769 Triple, CPU, Features, Options, /*RelocModel=*/std::nullopt,
3770 /*CodeModel=*/std::nullopt, OptLevel));
3773 /// Heuristically determine the best-performant unroll factor for \p CLI. This
3774 /// depends on the target processor. We are re-using the same heuristics as the
3775 /// LoopUnrollPass.
3776 static int32_t computeHeuristicUnrollFactor(CanonicalLoopInfo *CLI) {
3777 Function *F = CLI->getFunction();
3779 // Assume the user requests the most aggressive unrolling, even if the rest of
3780 // the code is optimized using a lower setting.
3781 CodeGenOptLevel OptLevel = CodeGenOptLevel::Aggressive;
3782 std::unique_ptr<TargetMachine> TM = createTargetMachine(F, OptLevel);
3784 FunctionAnalysisManager FAM;
3785 FAM.registerPass([]() { return TargetLibraryAnalysis(); });
3786 FAM.registerPass([]() { return AssumptionAnalysis(); });
3787 FAM.registerPass([]() { return DominatorTreeAnalysis(); });
3788 FAM.registerPass([]() { return LoopAnalysis(); });
3789 FAM.registerPass([]() { return ScalarEvolutionAnalysis(); });
3790 FAM.registerPass([]() { return PassInstrumentationAnalysis(); });
3791 TargetIRAnalysis TIRA;
3792 if (TM)
3793 TIRA = TargetIRAnalysis(
3794 [&](const Function &F) { return TM->getTargetTransformInfo(F); });
3795 FAM.registerPass([&]() { return TIRA; });
3797 TargetIRAnalysis::Result &&TTI = TIRA.run(*F, FAM);
3798 ScalarEvolutionAnalysis SEA;
3799 ScalarEvolution &&SE = SEA.run(*F, FAM);
3800 DominatorTreeAnalysis DTA;
3801 DominatorTree &&DT = DTA.run(*F, FAM);
3802 LoopAnalysis LIA;
3803 LoopInfo &&LI = LIA.run(*F, FAM);
3804 AssumptionAnalysis ACT;
3805 AssumptionCache &&AC = ACT.run(*F, FAM);
3806 OptimizationRemarkEmitter ORE{F};
3808 Loop *L = LI.getLoopFor(CLI->getHeader());
3809 assert(L && "Expecting CanonicalLoopInfo to be recognized as a loop");
3811 TargetTransformInfo::UnrollingPreferences UP =
3812 gatherUnrollingPreferences(L, SE, TTI,
3813 /*BlockFrequencyInfo=*/nullptr,
3814 /*ProfileSummaryInfo=*/nullptr, ORE, static_cast<int>(OptLevel),
3815 /*UserThreshold=*/std::nullopt,
3816 /*UserCount=*/std::nullopt,
3817 /*UserAllowPartial=*/true,
3818 /*UserAllowRuntime=*/true,
3819 /*UserUpperBound=*/std::nullopt,
3820 /*UserFullUnrollMaxCount=*/std::nullopt);
3822 UP.Force = true;
3824 // Account for additional optimizations taking place before the LoopUnrollPass
3825 // would unroll the loop.
3826 UP.Threshold *= UnrollThresholdFactor;
3827 UP.PartialThreshold *= UnrollThresholdFactor;
3829 // Use normal unroll factors even if the rest of the code is optimized for
3830 // size.
3831 UP.OptSizeThreshold = UP.Threshold;
3832 UP.PartialOptSizeThreshold = UP.PartialThreshold;
3834 LLVM_DEBUG(dbgs() << "Unroll heuristic thresholds:\n"
3835 << " Threshold=" << UP.Threshold << "\n"
3836 << " PartialThreshold=" << UP.PartialThreshold << "\n"
3837 << " OptSizeThreshold=" << UP.OptSizeThreshold << "\n"
3838 << " PartialOptSizeThreshold="
3839 << UP.PartialOptSizeThreshold << "\n");
3841 // Disable peeling.
3842 TargetTransformInfo::PeelingPreferences PP =
3843 gatherPeelingPreferences(L, SE, TTI,
3844 /*UserAllowPeeling=*/false,
3845 /*UserAllowProfileBasedPeeling=*/false,
3846 /*UnrollingSpecficValues=*/false);
3848 SmallPtrSet<const Value *, 32> EphValues;
3849 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
3851 // Assume that reads and writes to stack variables can be eliminated by
3852 // Mem2Reg, SROA or LICM. That is, don't count them towards the loop body's
3853 // size.
3854 for (BasicBlock *BB : L->blocks()) {
3855 for (Instruction &I : *BB) {
3856 Value *Ptr;
3857 if (auto *Load = dyn_cast<LoadInst>(&I)) {
3858 Ptr = Load->getPointerOperand();
3859 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
3860 Ptr = Store->getPointerOperand();
3861 } else
3862 continue;
3864 Ptr = Ptr->stripPointerCasts();
3866 if (auto *Alloca = dyn_cast<AllocaInst>(Ptr)) {
3867 if (Alloca->getParent() == &F->getEntryBlock())
3868 EphValues.insert(&I);
3873 UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns);
3875 // Loop is not unrollable if the loop contains certain instructions.
3876 if (!UCE.canUnroll() || UCE.Convergent) {
3877 LLVM_DEBUG(dbgs() << "Loop not considered unrollable\n");
3878 return 1;
3881 LLVM_DEBUG(dbgs() << "Estimated loop size is " << UCE.getRolledLoopSize()
3882 << "\n");
3884 // TODO: Determine trip count of \p CLI if constant, computeUnrollCount might
3885 // be able to use it.
3886 int TripCount = 0;
3887 int MaxTripCount = 0;
3888 bool MaxOrZero = false;
3889 unsigned TripMultiple = 0;
3891 bool UseUpperBound = false;
3892 computeUnrollCount(L, TTI, DT, &LI, &AC, SE, EphValues, &ORE, TripCount,
3893 MaxTripCount, MaxOrZero, TripMultiple, UCE, UP, PP,
3894 UseUpperBound);
3895 unsigned Factor = UP.Count;
3896 LLVM_DEBUG(dbgs() << "Suggesting unroll factor of " << Factor << "\n");
3898 // This function returns 1 to signal to not unroll a loop.
3899 if (Factor == 0)
3900 return 1;
3901 return Factor;
3904 void OpenMPIRBuilder::unrollLoopPartial(DebugLoc DL, CanonicalLoopInfo *Loop,
3905 int32_t Factor,
3906 CanonicalLoopInfo **UnrolledCLI) {
3907 assert(Factor >= 0 && "Unroll factor must not be negative");
3909 Function *F = Loop->getFunction();
3910 LLVMContext &Ctx = F->getContext();
3912 // If the unrolled loop is not used for another loop-associated directive, it
3913 // is sufficient to add metadata for the LoopUnrollPass.
3914 if (!UnrolledCLI) {
3915 SmallVector<Metadata *, 2> LoopMetadata;
3916 LoopMetadata.push_back(
3917 MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")));
3919 if (Factor >= 1) {
3920 ConstantAsMetadata *FactorConst = ConstantAsMetadata::get(
3921 ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor)));
3922 LoopMetadata.push_back(MDNode::get(
3923 Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst}));
3926 addLoopMetadata(Loop, LoopMetadata);
3927 return;
3930 // Heuristically determine the unroll factor.
3931 if (Factor == 0)
3932 Factor = computeHeuristicUnrollFactor(Loop);
3934 // No change required with unroll factor 1.
3935 if (Factor == 1) {
3936 *UnrolledCLI = Loop;
3937 return;
3940 assert(Factor >= 2 &&
3941 "unrolling only makes sense with a factor of 2 or larger");
3943 Type *IndVarTy = Loop->getIndVarType();
3945 // Apply partial unrolling by tiling the loop by the unroll-factor, then fully
3946 // unroll the inner loop.
3947 Value *FactorVal =
3948 ConstantInt::get(IndVarTy, APInt(IndVarTy->getIntegerBitWidth(), Factor,
3949 /*isSigned=*/false));
3950 std::vector<CanonicalLoopInfo *> LoopNest =
3951 tileLoops(DL, {Loop}, {FactorVal});
3952 assert(LoopNest.size() == 2 && "Expect 2 loops after tiling");
3953 *UnrolledCLI = LoopNest[0];
3954 CanonicalLoopInfo *InnerLoop = LoopNest[1];
3956 // LoopUnrollPass can only fully unroll loops with constant trip count.
3957 // Unroll by the unroll factor with a fallback epilog for the remainder
3958 // iterations if necessary.
3959 ConstantAsMetadata *FactorConst = ConstantAsMetadata::get(
3960 ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor)));
3961 addLoopMetadata(
3962 InnerLoop,
3963 {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")),
3964 MDNode::get(
3965 Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})});
3967 #ifndef NDEBUG
3968 (*UnrolledCLI)->assertOK();
3969 #endif
3972 OpenMPIRBuilder::InsertPointTy
3973 OpenMPIRBuilder::createCopyPrivate(const LocationDescription &Loc,
3974 llvm::Value *BufSize, llvm::Value *CpyBuf,
3975 llvm::Value *CpyFn, llvm::Value *DidIt) {
3976 if (!updateToLocation(Loc))
3977 return Loc.IP;
3979 uint32_t SrcLocStrSize;
3980 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3981 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3982 Value *ThreadId = getOrCreateThreadID(Ident);
3984 llvm::Value *DidItLD = Builder.CreateLoad(Builder.getInt32Ty(), DidIt);
3986 Value *Args[] = {Ident, ThreadId, BufSize, CpyBuf, CpyFn, DidItLD};
3988 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_copyprivate);
3989 Builder.CreateCall(Fn, Args);
3991 return Builder.saveIP();
3994 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSingle(
3995 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
3996 FinalizeCallbackTy FiniCB, bool IsNowait, llvm::Value *DidIt) {
3998 if (!updateToLocation(Loc))
3999 return Loc.IP;
4001 // If needed (i.e. not null), initialize `DidIt` with 0
4002 if (DidIt) {
4003 Builder.CreateStore(Builder.getInt32(0), DidIt);
4006 Directive OMPD = Directive::OMPD_single;
4007 uint32_t SrcLocStrSize;
4008 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4009 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4010 Value *ThreadId = getOrCreateThreadID(Ident);
4011 Value *Args[] = {Ident, ThreadId};
4013 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_single);
4014 Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
4016 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_single);
4017 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
4019 // generates the following:
4020 // if (__kmpc_single()) {
4021 // .... single region ...
4022 // __kmpc_end_single
4023 // }
4024 // __kmpc_barrier
4026 EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
4027 /*Conditional*/ true,
4028 /*hasFinalize*/ true);
4029 if (!IsNowait)
4030 createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
4031 omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false,
4032 /* CheckCancelFlag */ false);
4033 return Builder.saveIP();
4036 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCritical(
4037 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
4038 FinalizeCallbackTy FiniCB, StringRef CriticalName, Value *HintInst) {
4040 if (!updateToLocation(Loc))
4041 return Loc.IP;
4043 Directive OMPD = Directive::OMPD_critical;
4044 uint32_t SrcLocStrSize;
4045 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4046 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4047 Value *ThreadId = getOrCreateThreadID(Ident);
4048 Value *LockVar = getOMPCriticalRegionLock(CriticalName);
4049 Value *Args[] = {Ident, ThreadId, LockVar};
4051 SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args), std::end(Args));
4052 Function *RTFn = nullptr;
4053 if (HintInst) {
4054 // Add Hint to entry Args and create call
4055 EnterArgs.push_back(HintInst);
4056 RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical_with_hint);
4057 } else {
4058 RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical);
4060 Instruction *EntryCall = Builder.CreateCall(RTFn, EnterArgs);
4062 Function *ExitRTLFn =
4063 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_critical);
4064 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
4066 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
4067 /*Conditional*/ false, /*hasFinalize*/ true);
4070 OpenMPIRBuilder::InsertPointTy
4071 OpenMPIRBuilder::createOrderedDepend(const LocationDescription &Loc,
4072 InsertPointTy AllocaIP, unsigned NumLoops,
4073 ArrayRef<llvm::Value *> StoreValues,
4074 const Twine &Name, bool IsDependSource) {
4075 assert(
4076 llvm::all_of(StoreValues,
4077 [](Value *SV) { return SV->getType()->isIntegerTy(64); }) &&
4078 "OpenMP runtime requires depend vec with i64 type");
4080 if (!updateToLocation(Loc))
4081 return Loc.IP;
4083 // Allocate space for vector and generate alloc instruction.
4084 auto *ArrI64Ty = ArrayType::get(Int64, NumLoops);
4085 Builder.restoreIP(AllocaIP);
4086 AllocaInst *ArgsBase = Builder.CreateAlloca(ArrI64Ty, nullptr, Name);
4087 ArgsBase->setAlignment(Align(8));
4088 Builder.restoreIP(Loc.IP);
4090 // Store the index value with offset in depend vector.
4091 for (unsigned I = 0; I < NumLoops; ++I) {
4092 Value *DependAddrGEPIter = Builder.CreateInBoundsGEP(
4093 ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(I)});
4094 StoreInst *STInst = Builder.CreateStore(StoreValues[I], DependAddrGEPIter);
4095 STInst->setAlignment(Align(8));
4098 Value *DependBaseAddrGEP = Builder.CreateInBoundsGEP(
4099 ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(0)});
4101 uint32_t SrcLocStrSize;
4102 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4103 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4104 Value *ThreadId = getOrCreateThreadID(Ident);
4105 Value *Args[] = {Ident, ThreadId, DependBaseAddrGEP};
4107 Function *RTLFn = nullptr;
4108 if (IsDependSource)
4109 RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_post);
4110 else
4111 RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_wait);
4112 Builder.CreateCall(RTLFn, Args);
4114 return Builder.saveIP();
4117 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createOrderedThreadsSimd(
4118 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
4119 FinalizeCallbackTy FiniCB, bool IsThreads) {
4120 if (!updateToLocation(Loc))
4121 return Loc.IP;
4123 Directive OMPD = Directive::OMPD_ordered;
4124 Instruction *EntryCall = nullptr;
4125 Instruction *ExitCall = nullptr;
4127 if (IsThreads) {
4128 uint32_t SrcLocStrSize;
4129 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4130 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4131 Value *ThreadId = getOrCreateThreadID(Ident);
4132 Value *Args[] = {Ident, ThreadId};
4134 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_ordered);
4135 EntryCall = Builder.CreateCall(EntryRTLFn, Args);
4137 Function *ExitRTLFn =
4138 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_ordered);
4139 ExitCall = Builder.CreateCall(ExitRTLFn, Args);
4142 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
4143 /*Conditional*/ false, /*hasFinalize*/ true);
4146 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::EmitOMPInlinedRegion(
4147 Directive OMPD, Instruction *EntryCall, Instruction *ExitCall,
4148 BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool Conditional,
4149 bool HasFinalize, bool IsCancellable) {
4151 if (HasFinalize)
4152 FinalizationStack.push_back({FiniCB, OMPD, IsCancellable});
4154 // Create inlined region's entry and body blocks, in preparation
4155 // for conditional creation
4156 BasicBlock *EntryBB = Builder.GetInsertBlock();
4157 Instruction *SplitPos = EntryBB->getTerminator();
4158 if (!isa_and_nonnull<BranchInst>(SplitPos))
4159 SplitPos = new UnreachableInst(Builder.getContext(), EntryBB);
4160 BasicBlock *ExitBB = EntryBB->splitBasicBlock(SplitPos, "omp_region.end");
4161 BasicBlock *FiniBB =
4162 EntryBB->splitBasicBlock(EntryBB->getTerminator(), "omp_region.finalize");
4164 Builder.SetInsertPoint(EntryBB->getTerminator());
4165 emitCommonDirectiveEntry(OMPD, EntryCall, ExitBB, Conditional);
4167 // generate body
4168 BodyGenCB(/* AllocaIP */ InsertPointTy(),
4169 /* CodeGenIP */ Builder.saveIP());
4171 // emit exit call and do any needed finalization.
4172 auto FinIP = InsertPointTy(FiniBB, FiniBB->getFirstInsertionPt());
4173 assert(FiniBB->getTerminator()->getNumSuccessors() == 1 &&
4174 FiniBB->getTerminator()->getSuccessor(0) == ExitBB &&
4175 "Unexpected control flow graph state!!");
4176 emitCommonDirectiveExit(OMPD, FinIP, ExitCall, HasFinalize);
4177 assert(FiniBB->getUniquePredecessor()->getUniqueSuccessor() == FiniBB &&
4178 "Unexpected Control Flow State!");
4179 MergeBlockIntoPredecessor(FiniBB);
4181 // If we are skipping the region of a non conditional, remove the exit
4182 // block, and clear the builder's insertion point.
4183 assert(SplitPos->getParent() == ExitBB &&
4184 "Unexpected Insertion point location!");
4185 auto merged = MergeBlockIntoPredecessor(ExitBB);
4186 BasicBlock *ExitPredBB = SplitPos->getParent();
4187 auto InsertBB = merged ? ExitPredBB : ExitBB;
4188 if (!isa_and_nonnull<BranchInst>(SplitPos))
4189 SplitPos->eraseFromParent();
4190 Builder.SetInsertPoint(InsertBB);
4192 return Builder.saveIP();
4195 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveEntry(
4196 Directive OMPD, Value *EntryCall, BasicBlock *ExitBB, bool Conditional) {
4197 // if nothing to do, Return current insertion point.
4198 if (!Conditional || !EntryCall)
4199 return Builder.saveIP();
4201 BasicBlock *EntryBB = Builder.GetInsertBlock();
4202 Value *CallBool = Builder.CreateIsNotNull(EntryCall);
4203 auto *ThenBB = BasicBlock::Create(M.getContext(), "omp_region.body");
4204 auto *UI = new UnreachableInst(Builder.getContext(), ThenBB);
4206 // Emit thenBB and set the Builder's insertion point there for
4207 // body generation next. Place the block after the current block.
4208 Function *CurFn = EntryBB->getParent();
4209 CurFn->insert(std::next(EntryBB->getIterator()), ThenBB);
4211 // Move Entry branch to end of ThenBB, and replace with conditional
4212 // branch (If-stmt)
4213 Instruction *EntryBBTI = EntryBB->getTerminator();
4214 Builder.CreateCondBr(CallBool, ThenBB, ExitBB);
4215 EntryBBTI->removeFromParent();
4216 Builder.SetInsertPoint(UI);
4217 Builder.Insert(EntryBBTI);
4218 UI->eraseFromParent();
4219 Builder.SetInsertPoint(ThenBB->getTerminator());
4221 // return an insertion point to ExitBB.
4222 return IRBuilder<>::InsertPoint(ExitBB, ExitBB->getFirstInsertionPt());
4225 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveExit(
4226 omp::Directive OMPD, InsertPointTy FinIP, Instruction *ExitCall,
4227 bool HasFinalize) {
4229 Builder.restoreIP(FinIP);
4231 // If there is finalization to do, emit it before the exit call
4232 if (HasFinalize) {
4233 assert(!FinalizationStack.empty() &&
4234 "Unexpected finalization stack state!");
4236 FinalizationInfo Fi = FinalizationStack.pop_back_val();
4237 assert(Fi.DK == OMPD && "Unexpected Directive for Finalization call!");
4239 Fi.FiniCB(FinIP);
4241 BasicBlock *FiniBB = FinIP.getBlock();
4242 Instruction *FiniBBTI = FiniBB->getTerminator();
4244 // set Builder IP for call creation
4245 Builder.SetInsertPoint(FiniBBTI);
4248 if (!ExitCall)
4249 return Builder.saveIP();
4251 // place the Exitcall as last instruction before Finalization block terminator
4252 ExitCall->removeFromParent();
4253 Builder.Insert(ExitCall);
4255 return IRBuilder<>::InsertPoint(ExitCall->getParent(),
4256 ExitCall->getIterator());
4259 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCopyinClauseBlocks(
4260 InsertPointTy IP, Value *MasterAddr, Value *PrivateAddr,
4261 llvm::IntegerType *IntPtrTy, bool BranchtoEnd) {
4262 if (!IP.isSet())
4263 return IP;
4265 IRBuilder<>::InsertPointGuard IPG(Builder);
4267 // creates the following CFG structure
4268 // OMP_Entry : (MasterAddr != PrivateAddr)?
4269 // F T
4270 // | \
4271 // | copin.not.master
4272 // | /
4273 // v /
4274 // copyin.not.master.end
4275 // |
4276 // v
4277 // OMP.Entry.Next
4279 BasicBlock *OMP_Entry = IP.getBlock();
4280 Function *CurFn = OMP_Entry->getParent();
4281 BasicBlock *CopyBegin =
4282 BasicBlock::Create(M.getContext(), "copyin.not.master", CurFn);
4283 BasicBlock *CopyEnd = nullptr;
4285 // If entry block is terminated, split to preserve the branch to following
4286 // basic block (i.e. OMP.Entry.Next), otherwise, leave everything as is.
4287 if (isa_and_nonnull<BranchInst>(OMP_Entry->getTerminator())) {
4288 CopyEnd = OMP_Entry->splitBasicBlock(OMP_Entry->getTerminator(),
4289 "copyin.not.master.end");
4290 OMP_Entry->getTerminator()->eraseFromParent();
4291 } else {
4292 CopyEnd =
4293 BasicBlock::Create(M.getContext(), "copyin.not.master.end", CurFn);
4296 Builder.SetInsertPoint(OMP_Entry);
4297 Value *MasterPtr = Builder.CreatePtrToInt(MasterAddr, IntPtrTy);
4298 Value *PrivatePtr = Builder.CreatePtrToInt(PrivateAddr, IntPtrTy);
4299 Value *cmp = Builder.CreateICmpNE(MasterPtr, PrivatePtr);
4300 Builder.CreateCondBr(cmp, CopyBegin, CopyEnd);
4302 Builder.SetInsertPoint(CopyBegin);
4303 if (BranchtoEnd)
4304 Builder.SetInsertPoint(Builder.CreateBr(CopyEnd));
4306 return Builder.saveIP();
4309 CallInst *OpenMPIRBuilder::createOMPAlloc(const LocationDescription &Loc,
4310 Value *Size, Value *Allocator,
4311 std::string Name) {
4312 IRBuilder<>::InsertPointGuard IPG(Builder);
4313 Builder.restoreIP(Loc.IP);
4315 uint32_t SrcLocStrSize;
4316 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4317 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4318 Value *ThreadId = getOrCreateThreadID(Ident);
4319 Value *Args[] = {ThreadId, Size, Allocator};
4321 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_alloc);
4323 return Builder.CreateCall(Fn, Args, Name);
4326 CallInst *OpenMPIRBuilder::createOMPFree(const LocationDescription &Loc,
4327 Value *Addr, Value *Allocator,
4328 std::string Name) {
4329 IRBuilder<>::InsertPointGuard IPG(Builder);
4330 Builder.restoreIP(Loc.IP);
4332 uint32_t SrcLocStrSize;
4333 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4334 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4335 Value *ThreadId = getOrCreateThreadID(Ident);
4336 Value *Args[] = {ThreadId, Addr, Allocator};
4337 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_free);
4338 return Builder.CreateCall(Fn, Args, Name);
4341 CallInst *OpenMPIRBuilder::createOMPInteropInit(
4342 const LocationDescription &Loc, Value *InteropVar,
4343 omp::OMPInteropType InteropType, Value *Device, Value *NumDependences,
4344 Value *DependenceAddress, bool HaveNowaitClause) {
4345 IRBuilder<>::InsertPointGuard IPG(Builder);
4346 Builder.restoreIP(Loc.IP);
4348 uint32_t SrcLocStrSize;
4349 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4350 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4351 Value *ThreadId = getOrCreateThreadID(Ident);
4352 if (Device == nullptr)
4353 Device = ConstantInt::get(Int32, -1);
4354 Constant *InteropTypeVal = ConstantInt::get(Int32, (int)InteropType);
4355 if (NumDependences == nullptr) {
4356 NumDependences = ConstantInt::get(Int32, 0);
4357 PointerType *PointerTypeVar = PointerType::getUnqual(M.getContext());
4358 DependenceAddress = ConstantPointerNull::get(PointerTypeVar);
4360 Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause);
4361 Value *Args[] = {
4362 Ident, ThreadId, InteropVar, InteropTypeVal,
4363 Device, NumDependences, DependenceAddress, HaveNowaitClauseVal};
4365 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_init);
4367 return Builder.CreateCall(Fn, Args);
4370 CallInst *OpenMPIRBuilder::createOMPInteropDestroy(
4371 const LocationDescription &Loc, Value *InteropVar, Value *Device,
4372 Value *NumDependences, Value *DependenceAddress, bool HaveNowaitClause) {
4373 IRBuilder<>::InsertPointGuard IPG(Builder);
4374 Builder.restoreIP(Loc.IP);
4376 uint32_t SrcLocStrSize;
4377 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4378 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4379 Value *ThreadId = getOrCreateThreadID(Ident);
4380 if (Device == nullptr)
4381 Device = ConstantInt::get(Int32, -1);
4382 if (NumDependences == nullptr) {
4383 NumDependences = ConstantInt::get(Int32, 0);
4384 PointerType *PointerTypeVar = PointerType::getUnqual(M.getContext());
4385 DependenceAddress = ConstantPointerNull::get(PointerTypeVar);
4387 Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause);
4388 Value *Args[] = {
4389 Ident, ThreadId, InteropVar, Device,
4390 NumDependences, DependenceAddress, HaveNowaitClauseVal};
4392 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_destroy);
4394 return Builder.CreateCall(Fn, Args);
4397 CallInst *OpenMPIRBuilder::createOMPInteropUse(const LocationDescription &Loc,
4398 Value *InteropVar, Value *Device,
4399 Value *NumDependences,
4400 Value *DependenceAddress,
4401 bool HaveNowaitClause) {
4402 IRBuilder<>::InsertPointGuard IPG(Builder);
4403 Builder.restoreIP(Loc.IP);
4404 uint32_t SrcLocStrSize;
4405 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4406 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4407 Value *ThreadId = getOrCreateThreadID(Ident);
4408 if (Device == nullptr)
4409 Device = ConstantInt::get(Int32, -1);
4410 if (NumDependences == nullptr) {
4411 NumDependences = ConstantInt::get(Int32, 0);
4412 PointerType *PointerTypeVar = PointerType::getUnqual(M.getContext());
4413 DependenceAddress = ConstantPointerNull::get(PointerTypeVar);
4415 Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause);
4416 Value *Args[] = {
4417 Ident, ThreadId, InteropVar, Device,
4418 NumDependences, DependenceAddress, HaveNowaitClauseVal};
4420 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_use);
4422 return Builder.CreateCall(Fn, Args);
4425 CallInst *OpenMPIRBuilder::createCachedThreadPrivate(
4426 const LocationDescription &Loc, llvm::Value *Pointer,
4427 llvm::ConstantInt *Size, const llvm::Twine &Name) {
4428 IRBuilder<>::InsertPointGuard IPG(Builder);
4429 Builder.restoreIP(Loc.IP);
4431 uint32_t SrcLocStrSize;
4432 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4433 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4434 Value *ThreadId = getOrCreateThreadID(Ident);
4435 Constant *ThreadPrivateCache =
4436 getOrCreateInternalVariable(Int8PtrPtr, Name.str());
4437 llvm::Value *Args[] = {Ident, ThreadId, Pointer, Size, ThreadPrivateCache};
4439 Function *Fn =
4440 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_threadprivate_cached);
4442 return Builder.CreateCall(Fn, Args);
4445 OpenMPIRBuilder::InsertPointTy
4446 OpenMPIRBuilder::createTargetInit(const LocationDescription &Loc, bool IsSPMD,
4447 int32_t MinThreadsVal, int32_t MaxThreadsVal,
4448 int32_t MinTeamsVal, int32_t MaxTeamsVal) {
4449 if (!updateToLocation(Loc))
4450 return Loc.IP;
4452 uint32_t SrcLocStrSize;
4453 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4454 Constant *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4455 Constant *IsSPMDVal = ConstantInt::getSigned(
4456 Int8, IsSPMD ? OMP_TGT_EXEC_MODE_SPMD : OMP_TGT_EXEC_MODE_GENERIC);
4457 Constant *UseGenericStateMachineVal = ConstantInt::getSigned(Int8, !IsSPMD);
4458 Constant *MayUseNestedParallelismVal = ConstantInt::getSigned(Int8, true);
4459 Constant *DebugIndentionLevelVal = ConstantInt::getSigned(Int16, 0);
4461 Function *Kernel = Builder.GetInsertBlock()->getParent();
4463 // Manifest the launch configuration in the metadata matching the kernel
4464 // environment.
4465 if (MinTeamsVal > 1 || MaxTeamsVal > 0)
4466 writeTeamsForKernel(T, *Kernel, MinTeamsVal, MaxTeamsVal);
4468 // For max values, < 0 means unset, == 0 means set but unknown.
4469 if (MaxThreadsVal < 0)
4470 MaxThreadsVal = std::max(
4471 int32_t(getGridValue(T, Kernel).GV_Default_WG_Size), MinThreadsVal);
4473 if (MaxThreadsVal > 0)
4474 writeThreadBoundsForKernel(T, *Kernel, MinThreadsVal, MaxThreadsVal);
4476 Constant *MinThreads = ConstantInt::getSigned(Int32, MinThreadsVal);
4477 Constant *MaxThreads = ConstantInt::getSigned(Int32, MaxThreadsVal);
4478 Constant *MinTeams = ConstantInt::getSigned(Int32, MinTeamsVal);
4479 Constant *MaxTeams = ConstantInt::getSigned(Int32, MaxTeamsVal);
4480 Constant *ReductionDataSize = ConstantInt::getSigned(Int32, 0);
4481 Constant *ReductionBufferLength = ConstantInt::getSigned(Int32, 0);
4483 // We need to strip the debug prefix to get the correct kernel name.
4484 StringRef KernelName = Kernel->getName();
4485 const std::string DebugPrefix = "_debug__";
4486 if (KernelName.ends_with(DebugPrefix))
4487 KernelName = KernelName.drop_back(DebugPrefix.length());
4489 Function *Fn = getOrCreateRuntimeFunctionPtr(
4490 omp::RuntimeFunction::OMPRTL___kmpc_target_init);
4491 const DataLayout &DL = Fn->getParent()->getDataLayout();
4493 Twine DynamicEnvironmentName = KernelName + "_dynamic_environment";
4494 Constant *DynamicEnvironmentInitializer =
4495 ConstantStruct::get(DynamicEnvironment, {DebugIndentionLevelVal});
4496 GlobalVariable *DynamicEnvironmentGV = new GlobalVariable(
4497 M, DynamicEnvironment, /*IsConstant=*/false, GlobalValue::WeakODRLinkage,
4498 DynamicEnvironmentInitializer, DynamicEnvironmentName,
4499 /*InsertBefore=*/nullptr, GlobalValue::NotThreadLocal,
4500 DL.getDefaultGlobalsAddressSpace());
4501 DynamicEnvironmentGV->setVisibility(GlobalValue::ProtectedVisibility);
4503 Constant *DynamicEnvironment =
4504 DynamicEnvironmentGV->getType() == DynamicEnvironmentPtr
4505 ? DynamicEnvironmentGV
4506 : ConstantExpr::getAddrSpaceCast(DynamicEnvironmentGV,
4507 DynamicEnvironmentPtr);
4509 Constant *ConfigurationEnvironmentInitializer = ConstantStruct::get(
4510 ConfigurationEnvironment, {
4511 UseGenericStateMachineVal,
4512 MayUseNestedParallelismVal,
4513 IsSPMDVal,
4514 MinThreads,
4515 MaxThreads,
4516 MinTeams,
4517 MaxTeams,
4518 ReductionDataSize,
4519 ReductionBufferLength,
4521 Constant *KernelEnvironmentInitializer = ConstantStruct::get(
4522 KernelEnvironment, {
4523 ConfigurationEnvironmentInitializer,
4524 Ident,
4525 DynamicEnvironment,
4527 Twine KernelEnvironmentName = KernelName + "_kernel_environment";
4528 GlobalVariable *KernelEnvironmentGV = new GlobalVariable(
4529 M, KernelEnvironment, /*IsConstant=*/true, GlobalValue::WeakODRLinkage,
4530 KernelEnvironmentInitializer, KernelEnvironmentName,
4531 /*InsertBefore=*/nullptr, GlobalValue::NotThreadLocal,
4532 DL.getDefaultGlobalsAddressSpace());
4533 KernelEnvironmentGV->setVisibility(GlobalValue::ProtectedVisibility);
4535 Constant *KernelEnvironment =
4536 KernelEnvironmentGV->getType() == KernelEnvironmentPtr
4537 ? KernelEnvironmentGV
4538 : ConstantExpr::getAddrSpaceCast(KernelEnvironmentGV,
4539 KernelEnvironmentPtr);
4540 Value *KernelLaunchEnvironment = Kernel->getArg(0);
4541 CallInst *ThreadKind =
4542 Builder.CreateCall(Fn, {KernelEnvironment, KernelLaunchEnvironment});
4544 Value *ExecUserCode = Builder.CreateICmpEQ(
4545 ThreadKind, ConstantInt::get(ThreadKind->getType(), -1),
4546 "exec_user_code");
4548 // ThreadKind = __kmpc_target_init(...)
4549 // if (ThreadKind == -1)
4550 // user_code
4551 // else
4552 // return;
4554 auto *UI = Builder.CreateUnreachable();
4555 BasicBlock *CheckBB = UI->getParent();
4556 BasicBlock *UserCodeEntryBB = CheckBB->splitBasicBlock(UI, "user_code.entry");
4558 BasicBlock *WorkerExitBB = BasicBlock::Create(
4559 CheckBB->getContext(), "worker.exit", CheckBB->getParent());
4560 Builder.SetInsertPoint(WorkerExitBB);
4561 Builder.CreateRetVoid();
4563 auto *CheckBBTI = CheckBB->getTerminator();
4564 Builder.SetInsertPoint(CheckBBTI);
4565 Builder.CreateCondBr(ExecUserCode, UI->getParent(), WorkerExitBB);
4567 CheckBBTI->eraseFromParent();
4568 UI->eraseFromParent();
4570 // Continue in the "user_code" block, see diagram above and in
4571 // openmp/libomptarget/deviceRTLs/common/include/target.h .
4572 return InsertPointTy(UserCodeEntryBB, UserCodeEntryBB->getFirstInsertionPt());
4575 void OpenMPIRBuilder::createTargetDeinit(const LocationDescription &Loc,
4576 int32_t TeamsReductionDataSize,
4577 int32_t TeamsReductionBufferLength) {
4578 if (!updateToLocation(Loc))
4579 return;
4581 Function *Fn = getOrCreateRuntimeFunctionPtr(
4582 omp::RuntimeFunction::OMPRTL___kmpc_target_deinit);
4584 Builder.CreateCall(Fn, {});
4586 if (!TeamsReductionBufferLength || !TeamsReductionDataSize)
4587 return;
4589 Function *Kernel = Builder.GetInsertBlock()->getParent();
4590 // We need to strip the debug prefix to get the correct kernel name.
4591 StringRef KernelName = Kernel->getName();
4592 const std::string DebugPrefix = "_debug__";
4593 if (KernelName.ends_with(DebugPrefix))
4594 KernelName = KernelName.drop_back(DebugPrefix.length());
4595 auto *KernelEnvironmentGV =
4596 M.getNamedGlobal((KernelName + "_kernel_environment").str());
4597 assert(KernelEnvironmentGV && "Expected kernel environment global\n");
4598 auto *KernelEnvironmentInitializer = KernelEnvironmentGV->getInitializer();
4599 auto *NewInitializer = ConstantFoldInsertValueInstruction(
4600 KernelEnvironmentInitializer,
4601 ConstantInt::get(Int32, TeamsReductionDataSize), {0, 7});
4602 NewInitializer = ConstantFoldInsertValueInstruction(
4603 NewInitializer, ConstantInt::get(Int32, TeamsReductionBufferLength),
4604 {0, 8});
4605 KernelEnvironmentGV->setInitializer(NewInitializer);
4608 static MDNode *getNVPTXMDNode(Function &Kernel, StringRef Name) {
4609 Module &M = *Kernel.getParent();
4610 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
4611 for (auto *Op : MD->operands()) {
4612 if (Op->getNumOperands() != 3)
4613 continue;
4614 auto *KernelOp = dyn_cast<ConstantAsMetadata>(Op->getOperand(0));
4615 if (!KernelOp || KernelOp->getValue() != &Kernel)
4616 continue;
4617 auto *Prop = dyn_cast<MDString>(Op->getOperand(1));
4618 if (!Prop || Prop->getString() != Name)
4619 continue;
4620 return Op;
4622 return nullptr;
4625 static void updateNVPTXMetadata(Function &Kernel, StringRef Name, int32_t Value,
4626 bool Min) {
4627 // Update the "maxntidx" metadata for NVIDIA, or add it.
4628 MDNode *ExistingOp = getNVPTXMDNode(Kernel, Name);
4629 if (ExistingOp) {
4630 auto *OldVal = cast<ConstantAsMetadata>(ExistingOp->getOperand(2));
4631 int32_t OldLimit = cast<ConstantInt>(OldVal->getValue())->getZExtValue();
4632 ExistingOp->replaceOperandWith(
4633 2, ConstantAsMetadata::get(ConstantInt::get(
4634 OldVal->getValue()->getType(),
4635 Min ? std::min(OldLimit, Value) : std::max(OldLimit, Value))));
4636 } else {
4637 LLVMContext &Ctx = Kernel.getContext();
4638 Metadata *MDVals[] = {ConstantAsMetadata::get(&Kernel),
4639 MDString::get(Ctx, Name),
4640 ConstantAsMetadata::get(
4641 ConstantInt::get(Type::getInt32Ty(Ctx), Value))};
4642 // Append metadata to nvvm.annotations
4643 Module &M = *Kernel.getParent();
4644 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
4645 MD->addOperand(MDNode::get(Ctx, MDVals));
4649 std::pair<int32_t, int32_t>
4650 OpenMPIRBuilder::readThreadBoundsForKernel(const Triple &T, Function &Kernel) {
4651 int32_t ThreadLimit =
4652 Kernel.getFnAttributeAsParsedInteger("omp_target_thread_limit");
4654 if (T.isAMDGPU()) {
4655 const auto &Attr = Kernel.getFnAttribute("amdgpu-flat-work-group-size");
4656 if (!Attr.isValid() || !Attr.isStringAttribute())
4657 return {0, ThreadLimit};
4658 auto [LBStr, UBStr] = Attr.getValueAsString().split(',');
4659 int32_t LB, UB;
4660 if (!llvm::to_integer(UBStr, UB, 10))
4661 return {0, ThreadLimit};
4662 UB = ThreadLimit ? std::min(ThreadLimit, UB) : UB;
4663 if (!llvm::to_integer(LBStr, LB, 10))
4664 return {0, UB};
4665 return {LB, UB};
4668 if (MDNode *ExistingOp = getNVPTXMDNode(Kernel, "maxntidx")) {
4669 auto *OldVal = cast<ConstantAsMetadata>(ExistingOp->getOperand(2));
4670 int32_t UB = cast<ConstantInt>(OldVal->getValue())->getZExtValue();
4671 return {0, ThreadLimit ? std::min(ThreadLimit, UB) : UB};
4673 return {0, ThreadLimit};
4676 void OpenMPIRBuilder::writeThreadBoundsForKernel(const Triple &T,
4677 Function &Kernel, int32_t LB,
4678 int32_t UB) {
4679 Kernel.addFnAttr("omp_target_thread_limit", std::to_string(UB));
4681 if (T.isAMDGPU()) {
4682 Kernel.addFnAttr("amdgpu-flat-work-group-size",
4683 llvm::utostr(LB) + "," + llvm::utostr(UB));
4684 return;
4687 updateNVPTXMetadata(Kernel, "maxntidx", UB, true);
4690 std::pair<int32_t, int32_t>
4691 OpenMPIRBuilder::readTeamBoundsForKernel(const Triple &, Function &Kernel) {
4692 // TODO: Read from backend annotations if available.
4693 return {0, Kernel.getFnAttributeAsParsedInteger("omp_target_num_teams")};
4696 void OpenMPIRBuilder::writeTeamsForKernel(const Triple &T, Function &Kernel,
4697 int32_t LB, int32_t UB) {
4698 if (T.isNVPTX()) {
4699 if (UB > 0)
4700 updateNVPTXMetadata(Kernel, "maxclusterrank", UB, true);
4701 updateNVPTXMetadata(Kernel, "minctasm", LB, false);
4703 Kernel.addFnAttr("omp_target_num_teams", std::to_string(LB));
4706 void OpenMPIRBuilder::setOutlinedTargetRegionFunctionAttributes(
4707 Function *OutlinedFn) {
4708 if (Config.isTargetDevice()) {
4709 OutlinedFn->setLinkage(GlobalValue::WeakODRLinkage);
4710 // TODO: Determine if DSO local can be set to true.
4711 OutlinedFn->setDSOLocal(false);
4712 OutlinedFn->setVisibility(GlobalValue::ProtectedVisibility);
4713 if (T.isAMDGCN())
4714 OutlinedFn->setCallingConv(CallingConv::AMDGPU_KERNEL);
4718 Constant *OpenMPIRBuilder::createOutlinedFunctionID(Function *OutlinedFn,
4719 StringRef EntryFnIDName) {
4720 if (Config.isTargetDevice()) {
4721 assert(OutlinedFn && "The outlined function must exist if embedded");
4722 return OutlinedFn;
4725 return new GlobalVariable(
4726 M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::WeakAnyLinkage,
4727 Constant::getNullValue(Builder.getInt8Ty()), EntryFnIDName);
4730 Constant *OpenMPIRBuilder::createTargetRegionEntryAddr(Function *OutlinedFn,
4731 StringRef EntryFnName) {
4732 if (OutlinedFn)
4733 return OutlinedFn;
4735 assert(!M.getGlobalVariable(EntryFnName, true) &&
4736 "Named kernel already exists?");
4737 return new GlobalVariable(
4738 M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::InternalLinkage,
4739 Constant::getNullValue(Builder.getInt8Ty()), EntryFnName);
4742 void OpenMPIRBuilder::emitTargetRegionFunction(
4743 TargetRegionEntryInfo &EntryInfo,
4744 FunctionGenCallback &GenerateFunctionCallback, bool IsOffloadEntry,
4745 Function *&OutlinedFn, Constant *&OutlinedFnID) {
4747 SmallString<64> EntryFnName;
4748 OffloadInfoManager.getTargetRegionEntryFnName(EntryFnName, EntryInfo);
4750 OutlinedFn = Config.isTargetDevice() || !Config.openMPOffloadMandatory()
4751 ? GenerateFunctionCallback(EntryFnName)
4752 : nullptr;
4754 // If this target outline function is not an offload entry, we don't need to
4755 // register it. This may be in the case of a false if clause, or if there are
4756 // no OpenMP targets.
4757 if (!IsOffloadEntry)
4758 return;
4760 std::string EntryFnIDName =
4761 Config.isTargetDevice()
4762 ? std::string(EntryFnName)
4763 : createPlatformSpecificName({EntryFnName, "region_id"});
4765 OutlinedFnID = registerTargetRegionFunction(EntryInfo, OutlinedFn,
4766 EntryFnName, EntryFnIDName);
4769 Constant *OpenMPIRBuilder::registerTargetRegionFunction(
4770 TargetRegionEntryInfo &EntryInfo, Function *OutlinedFn,
4771 StringRef EntryFnName, StringRef EntryFnIDName) {
4772 if (OutlinedFn)
4773 setOutlinedTargetRegionFunctionAttributes(OutlinedFn);
4774 auto OutlinedFnID = createOutlinedFunctionID(OutlinedFn, EntryFnIDName);
4775 auto EntryAddr = createTargetRegionEntryAddr(OutlinedFn, EntryFnName);
4776 OffloadInfoManager.registerTargetRegionEntryInfo(
4777 EntryInfo, EntryAddr, OutlinedFnID,
4778 OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion);
4779 return OutlinedFnID;
4782 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTargetData(
4783 const LocationDescription &Loc, InsertPointTy AllocaIP,
4784 InsertPointTy CodeGenIP, Value *DeviceID, Value *IfCond,
4785 TargetDataInfo &Info, GenMapInfoCallbackTy GenMapInfoCB,
4786 omp::RuntimeFunction *MapperFunc,
4787 function_ref<InsertPointTy(InsertPointTy CodeGenIP, BodyGenTy BodyGenType)>
4788 BodyGenCB,
4789 function_ref<void(unsigned int, Value *)> DeviceAddrCB,
4790 function_ref<Value *(unsigned int)> CustomMapperCB, Value *SrcLocInfo) {
4791 if (!updateToLocation(Loc))
4792 return InsertPointTy();
4794 // Disable TargetData CodeGen on Device pass.
4795 if (Config.IsTargetDevice.value_or(false))
4796 return Builder.saveIP();
4798 Builder.restoreIP(CodeGenIP);
4799 bool IsStandAlone = !BodyGenCB;
4800 MapInfosTy *MapInfo;
4801 // Generate the code for the opening of the data environment. Capture all the
4802 // arguments of the runtime call by reference because they are used in the
4803 // closing of the region.
4804 auto BeginThenGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
4805 MapInfo = &GenMapInfoCB(Builder.saveIP());
4806 emitOffloadingArrays(AllocaIP, Builder.saveIP(), *MapInfo, Info,
4807 /*IsNonContiguous=*/true, DeviceAddrCB,
4808 CustomMapperCB);
4810 TargetDataRTArgs RTArgs;
4811 emitOffloadingArraysArgument(Builder, RTArgs, Info,
4812 !MapInfo->Names.empty());
4814 // Emit the number of elements in the offloading arrays.
4815 Value *PointerNum = Builder.getInt32(Info.NumberOfPtrs);
4817 // Source location for the ident struct
4818 if (!SrcLocInfo) {
4819 uint32_t SrcLocStrSize;
4820 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4821 SrcLocInfo = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4824 Value *OffloadingArgs[] = {SrcLocInfo, DeviceID,
4825 PointerNum, RTArgs.BasePointersArray,
4826 RTArgs.PointersArray, RTArgs.SizesArray,
4827 RTArgs.MapTypesArray, RTArgs.MapNamesArray,
4828 RTArgs.MappersArray};
4830 if (IsStandAlone) {
4831 assert(MapperFunc && "MapperFunc missing for standalone target data");
4832 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(*MapperFunc),
4833 OffloadingArgs);
4834 } else {
4835 Function *BeginMapperFunc = getOrCreateRuntimeFunctionPtr(
4836 omp::OMPRTL___tgt_target_data_begin_mapper);
4838 Builder.CreateCall(BeginMapperFunc, OffloadingArgs);
4840 for (auto DeviceMap : Info.DevicePtrInfoMap) {
4841 if (isa<AllocaInst>(DeviceMap.second.second)) {
4842 auto *LI =
4843 Builder.CreateLoad(Builder.getPtrTy(), DeviceMap.second.first);
4844 Builder.CreateStore(LI, DeviceMap.second.second);
4848 // If device pointer privatization is required, emit the body of the
4849 // region here. It will have to be duplicated: with and without
4850 // privatization.
4851 Builder.restoreIP(BodyGenCB(Builder.saveIP(), BodyGenTy::Priv));
4855 // If we need device pointer privatization, we need to emit the body of the
4856 // region with no privatization in the 'else' branch of the conditional.
4857 // Otherwise, we don't have to do anything.
4858 auto BeginElseGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
4859 Builder.restoreIP(BodyGenCB(Builder.saveIP(), BodyGenTy::DupNoPriv));
4862 // Generate code for the closing of the data region.
4863 auto EndThenGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
4864 TargetDataRTArgs RTArgs;
4865 emitOffloadingArraysArgument(Builder, RTArgs, Info, !MapInfo->Names.empty(),
4866 /*ForEndCall=*/true);
4868 // Emit the number of elements in the offloading arrays.
4869 Value *PointerNum = Builder.getInt32(Info.NumberOfPtrs);
4871 // Source location for the ident struct
4872 if (!SrcLocInfo) {
4873 uint32_t SrcLocStrSize;
4874 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4875 SrcLocInfo = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4878 Value *OffloadingArgs[] = {SrcLocInfo, DeviceID,
4879 PointerNum, RTArgs.BasePointersArray,
4880 RTArgs.PointersArray, RTArgs.SizesArray,
4881 RTArgs.MapTypesArray, RTArgs.MapNamesArray,
4882 RTArgs.MappersArray};
4883 Function *EndMapperFunc =
4884 getOrCreateRuntimeFunctionPtr(omp::OMPRTL___tgt_target_data_end_mapper);
4886 Builder.CreateCall(EndMapperFunc, OffloadingArgs);
4889 // We don't have to do anything to close the region if the if clause evaluates
4890 // to false.
4891 auto EndElseGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {};
4893 if (BodyGenCB) {
4894 if (IfCond) {
4895 emitIfClause(IfCond, BeginThenGen, BeginElseGen, AllocaIP);
4896 } else {
4897 BeginThenGen(AllocaIP, Builder.saveIP());
4900 // If we don't require privatization of device pointers, we emit the body in
4901 // between the runtime calls. This avoids duplicating the body code.
4902 Builder.restoreIP(BodyGenCB(Builder.saveIP(), BodyGenTy::NoPriv));
4904 if (IfCond) {
4905 emitIfClause(IfCond, EndThenGen, EndElseGen, AllocaIP);
4906 } else {
4907 EndThenGen(AllocaIP, Builder.saveIP());
4909 } else {
4910 if (IfCond) {
4911 emitIfClause(IfCond, BeginThenGen, EndElseGen, AllocaIP);
4912 } else {
4913 BeginThenGen(AllocaIP, Builder.saveIP());
4917 return Builder.saveIP();
4920 FunctionCallee
4921 OpenMPIRBuilder::createForStaticInitFunction(unsigned IVSize, bool IVSigned,
4922 bool IsGPUDistribute) {
4923 assert((IVSize == 32 || IVSize == 64) &&
4924 "IV size is not compatible with the omp runtime");
4925 RuntimeFunction Name;
4926 if (IsGPUDistribute)
4927 Name = IVSize == 32
4928 ? (IVSigned ? omp::OMPRTL___kmpc_distribute_static_init_4
4929 : omp::OMPRTL___kmpc_distribute_static_init_4u)
4930 : (IVSigned ? omp::OMPRTL___kmpc_distribute_static_init_8
4931 : omp::OMPRTL___kmpc_distribute_static_init_8u);
4932 else
4933 Name = IVSize == 32 ? (IVSigned ? omp::OMPRTL___kmpc_for_static_init_4
4934 : omp::OMPRTL___kmpc_for_static_init_4u)
4935 : (IVSigned ? omp::OMPRTL___kmpc_for_static_init_8
4936 : omp::OMPRTL___kmpc_for_static_init_8u);
4938 return getOrCreateRuntimeFunction(M, Name);
4941 FunctionCallee OpenMPIRBuilder::createDispatchInitFunction(unsigned IVSize,
4942 bool IVSigned) {
4943 assert((IVSize == 32 || IVSize == 64) &&
4944 "IV size is not compatible with the omp runtime");
4945 RuntimeFunction Name = IVSize == 32
4946 ? (IVSigned ? omp::OMPRTL___kmpc_dispatch_init_4
4947 : omp::OMPRTL___kmpc_dispatch_init_4u)
4948 : (IVSigned ? omp::OMPRTL___kmpc_dispatch_init_8
4949 : omp::OMPRTL___kmpc_dispatch_init_8u);
4951 return getOrCreateRuntimeFunction(M, Name);
4954 FunctionCallee OpenMPIRBuilder::createDispatchNextFunction(unsigned IVSize,
4955 bool IVSigned) {
4956 assert((IVSize == 32 || IVSize == 64) &&
4957 "IV size is not compatible with the omp runtime");
4958 RuntimeFunction Name = IVSize == 32
4959 ? (IVSigned ? omp::OMPRTL___kmpc_dispatch_next_4
4960 : omp::OMPRTL___kmpc_dispatch_next_4u)
4961 : (IVSigned ? omp::OMPRTL___kmpc_dispatch_next_8
4962 : omp::OMPRTL___kmpc_dispatch_next_8u);
4964 return getOrCreateRuntimeFunction(M, Name);
4967 FunctionCallee OpenMPIRBuilder::createDispatchFiniFunction(unsigned IVSize,
4968 bool IVSigned) {
4969 assert((IVSize == 32 || IVSize == 64) &&
4970 "IV size is not compatible with the omp runtime");
4971 RuntimeFunction Name = IVSize == 32
4972 ? (IVSigned ? omp::OMPRTL___kmpc_dispatch_fini_4
4973 : omp::OMPRTL___kmpc_dispatch_fini_4u)
4974 : (IVSigned ? omp::OMPRTL___kmpc_dispatch_fini_8
4975 : omp::OMPRTL___kmpc_dispatch_fini_8u);
4977 return getOrCreateRuntimeFunction(M, Name);
4980 static void replaceConstatExprUsesInFuncWithInstr(ConstantExpr *ConstExpr,
4981 Function *Func) {
4982 for (User *User : make_early_inc_range(ConstExpr->users()))
4983 if (auto *Instr = dyn_cast<Instruction>(User))
4984 if (Instr->getFunction() == Func)
4985 Instr->replaceUsesOfWith(ConstExpr, ConstExpr->getAsInstruction(Instr));
4988 static void replaceConstantValueUsesInFuncWithInstr(llvm::Value *Input,
4989 Function *Func) {
4990 for (User *User : make_early_inc_range(Input->users()))
4991 if (auto *Const = dyn_cast<Constant>(User))
4992 if (auto *ConstExpr = dyn_cast<ConstantExpr>(Const))
4993 replaceConstatExprUsesInFuncWithInstr(ConstExpr, Func);
4996 static Function *createOutlinedFunction(
4997 OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder, StringRef FuncName,
4998 SmallVectorImpl<Value *> &Inputs,
4999 OpenMPIRBuilder::TargetBodyGenCallbackTy &CBFunc,
5000 OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy &ArgAccessorFuncCB) {
5001 SmallVector<Type *> ParameterTypes;
5002 if (OMPBuilder.Config.isTargetDevice()) {
5003 // Add the "implicit" runtime argument we use to provide launch specific
5004 // information for target devices.
5005 auto *Int8PtrTy = PointerType::getUnqual(Builder.getContext());
5006 ParameterTypes.push_back(Int8PtrTy);
5008 // All parameters to target devices are passed as pointers
5009 // or i64. This assumes 64-bit address spaces/pointers.
5010 for (auto &Arg : Inputs)
5011 ParameterTypes.push_back(Arg->getType()->isPointerTy()
5012 ? Arg->getType()
5013 : Type::getInt64Ty(Builder.getContext()));
5014 } else {
5015 for (auto &Arg : Inputs)
5016 ParameterTypes.push_back(Arg->getType());
5019 auto FuncType = FunctionType::get(Builder.getVoidTy(), ParameterTypes,
5020 /*isVarArg*/ false);
5021 auto Func = Function::Create(FuncType, GlobalValue::InternalLinkage, FuncName,
5022 Builder.GetInsertBlock()->getModule());
5024 // Save insert point.
5025 auto OldInsertPoint = Builder.saveIP();
5027 // Generate the region into the function.
5028 BasicBlock *EntryBB = BasicBlock::Create(Builder.getContext(), "entry", Func);
5029 Builder.SetInsertPoint(EntryBB);
5031 // Insert target init call in the device compilation pass.
5032 if (OMPBuilder.Config.isTargetDevice())
5033 Builder.restoreIP(OMPBuilder.createTargetInit(Builder, /*IsSPMD*/ false));
5035 BasicBlock *UserCodeEntryBB = Builder.GetInsertBlock();
5037 // Insert target deinit call in the device compilation pass.
5038 Builder.restoreIP(CBFunc(Builder.saveIP(), Builder.saveIP()));
5039 if (OMPBuilder.Config.isTargetDevice())
5040 OMPBuilder.createTargetDeinit(Builder);
5042 // Insert return instruction.
5043 Builder.CreateRetVoid();
5045 // New Alloca IP at entry point of created device function.
5046 Builder.SetInsertPoint(EntryBB->getFirstNonPHI());
5047 auto AllocaIP = Builder.saveIP();
5049 Builder.SetInsertPoint(UserCodeEntryBB->getFirstNonPHIOrDbg());
5051 // Skip the artificial dyn_ptr on the device.
5052 const auto &ArgRange =
5053 OMPBuilder.Config.isTargetDevice()
5054 ? make_range(Func->arg_begin() + 1, Func->arg_end())
5055 : Func->args();
5057 // Rewrite uses of input valus to parameters.
5058 for (auto InArg : zip(Inputs, ArgRange)) {
5059 Value *Input = std::get<0>(InArg);
5060 Argument &Arg = std::get<1>(InArg);
5061 Value *InputCopy = nullptr;
5063 Builder.restoreIP(
5064 ArgAccessorFuncCB(Arg, Input, InputCopy, AllocaIP, Builder.saveIP()));
5066 // Things like GEP's can come in the form of Constants. Constants and
5067 // ConstantExpr's do not have access to the knowledge of what they're
5068 // contained in, so we must dig a little to find an instruction so we can
5069 // tell if they're used inside of the function we're outlining. We also
5070 // replace the original constant expression with a new instruction
5071 // equivalent; an instruction as it allows easy modification in the
5072 // following loop, as we can now know the constant (instruction) is owned by
5073 // our target function and replaceUsesOfWith can now be invoked on it
5074 // (cannot do this with constants it seems). A brand new one also allows us
5075 // to be cautious as it is perhaps possible the old expression was used
5076 // inside of the function but exists and is used externally (unlikely by the
5077 // nature of a Constant, but still).
5078 replaceConstantValueUsesInFuncWithInstr(Input, Func);
5080 // Collect all the instructions
5081 for (User *User : make_early_inc_range(Input->users()))
5082 if (auto *Instr = dyn_cast<Instruction>(User))
5083 if (Instr->getFunction() == Func)
5084 Instr->replaceUsesOfWith(Input, InputCopy);
5087 // Restore insert point.
5088 Builder.restoreIP(OldInsertPoint);
5090 return Func;
5093 static void emitTargetOutlinedFunction(
5094 OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder,
5095 TargetRegionEntryInfo &EntryInfo, Function *&OutlinedFn,
5096 Constant *&OutlinedFnID, SmallVectorImpl<Value *> &Inputs,
5097 OpenMPIRBuilder::TargetBodyGenCallbackTy &CBFunc,
5098 OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy &ArgAccessorFuncCB) {
5100 OpenMPIRBuilder::FunctionGenCallback &&GenerateOutlinedFunction =
5101 [&OMPBuilder, &Builder, &Inputs, &CBFunc,
5102 &ArgAccessorFuncCB](StringRef EntryFnName) {
5103 return createOutlinedFunction(OMPBuilder, Builder, EntryFnName, Inputs,
5104 CBFunc, ArgAccessorFuncCB);
5107 OMPBuilder.emitTargetRegionFunction(EntryInfo, GenerateOutlinedFunction, true,
5108 OutlinedFn, OutlinedFnID);
5111 static void emitTargetCall(OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder,
5112 OpenMPIRBuilder::InsertPointTy AllocaIP,
5113 Function *OutlinedFn, Constant *OutlinedFnID,
5114 int32_t NumTeams, int32_t NumThreads,
5115 SmallVectorImpl<Value *> &Args,
5116 OpenMPIRBuilder::GenMapInfoCallbackTy GenMapInfoCB) {
5118 OpenMPIRBuilder::TargetDataInfo Info(
5119 /*RequiresDevicePointerInfo=*/false,
5120 /*SeparateBeginEndCalls=*/true);
5122 OpenMPIRBuilder::MapInfosTy &MapInfo = GenMapInfoCB(Builder.saveIP());
5123 OMPBuilder.emitOffloadingArrays(AllocaIP, Builder.saveIP(), MapInfo, Info,
5124 /*IsNonContiguous=*/true);
5126 OpenMPIRBuilder::TargetDataRTArgs RTArgs;
5127 OMPBuilder.emitOffloadingArraysArgument(Builder, RTArgs, Info,
5128 !MapInfo.Names.empty());
5130 // emitKernelLaunch
5131 auto &&EmitTargetCallFallbackCB =
5132 [&](OpenMPIRBuilder::InsertPointTy IP) -> OpenMPIRBuilder::InsertPointTy {
5133 Builder.restoreIP(IP);
5134 Builder.CreateCall(OutlinedFn, Args);
5135 return Builder.saveIP();
5138 unsigned NumTargetItems = MapInfo.BasePointers.size();
5139 // TODO: Use correct device ID
5140 Value *DeviceID = Builder.getInt64(OMP_DEVICEID_UNDEF);
5141 Value *NumTeamsVal = Builder.getInt32(NumTeams);
5142 Value *NumThreadsVal = Builder.getInt32(NumThreads);
5143 uint32_t SrcLocStrSize;
5144 Constant *SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
5145 Value *RTLoc = OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize,
5146 llvm::omp::IdentFlag(0), 0);
5147 // TODO: Use correct NumIterations
5148 Value *NumIterations = Builder.getInt64(0);
5149 // TODO: Use correct DynCGGroupMem
5150 Value *DynCGGroupMem = Builder.getInt32(0);
5152 bool HasNoWait = false;
5154 OpenMPIRBuilder::TargetKernelArgs KArgs(NumTargetItems, RTArgs, NumIterations,
5155 NumTeamsVal, NumThreadsVal,
5156 DynCGGroupMem, HasNoWait);
5158 Builder.restoreIP(OMPBuilder.emitKernelLaunch(
5159 Builder, OutlinedFn, OutlinedFnID, EmitTargetCallFallbackCB, KArgs,
5160 DeviceID, RTLoc, AllocaIP));
5163 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTarget(
5164 const LocationDescription &Loc, InsertPointTy AllocaIP,
5165 InsertPointTy CodeGenIP, TargetRegionEntryInfo &EntryInfo, int32_t NumTeams,
5166 int32_t NumThreads, SmallVectorImpl<Value *> &Args,
5167 GenMapInfoCallbackTy GenMapInfoCB,
5168 OpenMPIRBuilder::TargetBodyGenCallbackTy CBFunc,
5169 OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy ArgAccessorFuncCB) {
5170 if (!updateToLocation(Loc))
5171 return InsertPointTy();
5173 Builder.restoreIP(CodeGenIP);
5175 Function *OutlinedFn;
5176 Constant *OutlinedFnID;
5177 emitTargetOutlinedFunction(*this, Builder, EntryInfo, OutlinedFn,
5178 OutlinedFnID, Args, CBFunc, ArgAccessorFuncCB);
5179 if (!Config.isTargetDevice())
5180 emitTargetCall(*this, Builder, AllocaIP, OutlinedFn, OutlinedFnID, NumTeams,
5181 NumThreads, Args, GenMapInfoCB);
5183 return Builder.saveIP();
5186 std::string OpenMPIRBuilder::getNameWithSeparators(ArrayRef<StringRef> Parts,
5187 StringRef FirstSeparator,
5188 StringRef Separator) {
5189 SmallString<128> Buffer;
5190 llvm::raw_svector_ostream OS(Buffer);
5191 StringRef Sep = FirstSeparator;
5192 for (StringRef Part : Parts) {
5193 OS << Sep << Part;
5194 Sep = Separator;
5196 return OS.str().str();
5199 std::string
5200 OpenMPIRBuilder::createPlatformSpecificName(ArrayRef<StringRef> Parts) const {
5201 return OpenMPIRBuilder::getNameWithSeparators(Parts, Config.firstSeparator(),
5202 Config.separator());
5205 GlobalVariable *
5206 OpenMPIRBuilder::getOrCreateInternalVariable(Type *Ty, const StringRef &Name,
5207 unsigned AddressSpace) {
5208 auto &Elem = *InternalVars.try_emplace(Name, nullptr).first;
5209 if (Elem.second) {
5210 assert(Elem.second->getValueType() == Ty &&
5211 "OMP internal variable has different type than requested");
5212 } else {
5213 // TODO: investigate the appropriate linkage type used for the global
5214 // variable for possibly changing that to internal or private, or maybe
5215 // create different versions of the function for different OMP internal
5216 // variables.
5217 auto Linkage = this->M.getTargetTriple().rfind("wasm32") == 0
5218 ? GlobalValue::ExternalLinkage
5219 : GlobalValue::CommonLinkage;
5220 auto *GV = new GlobalVariable(M, Ty, /*IsConstant=*/false, Linkage,
5221 Constant::getNullValue(Ty), Elem.first(),
5222 /*InsertBefore=*/nullptr,
5223 GlobalValue::NotThreadLocal, AddressSpace);
5224 const DataLayout &DL = M.getDataLayout();
5225 const llvm::Align TypeAlign = DL.getABITypeAlign(Ty);
5226 const llvm::Align PtrAlign = DL.getPointerABIAlignment(AddressSpace);
5227 GV->setAlignment(std::max(TypeAlign, PtrAlign));
5228 Elem.second = GV;
5231 return Elem.second;
5234 Value *OpenMPIRBuilder::getOMPCriticalRegionLock(StringRef CriticalName) {
5235 std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
5236 std::string Name = getNameWithSeparators({Prefix, "var"}, ".", ".");
5237 return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
5240 Value *OpenMPIRBuilder::getSizeInBytes(Value *BasePtr) {
5241 LLVMContext &Ctx = Builder.getContext();
5242 Value *Null =
5243 Constant::getNullValue(PointerType::getUnqual(BasePtr->getContext()));
5244 Value *SizeGep =
5245 Builder.CreateGEP(BasePtr->getType(), Null, Builder.getInt32(1));
5246 Value *SizePtrToInt = Builder.CreatePtrToInt(SizeGep, Type::getInt64Ty(Ctx));
5247 return SizePtrToInt;
5250 GlobalVariable *
5251 OpenMPIRBuilder::createOffloadMaptypes(SmallVectorImpl<uint64_t> &Mappings,
5252 std::string VarName) {
5253 llvm::Constant *MaptypesArrayInit =
5254 llvm::ConstantDataArray::get(M.getContext(), Mappings);
5255 auto *MaptypesArrayGlobal = new llvm::GlobalVariable(
5256 M, MaptypesArrayInit->getType(),
5257 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MaptypesArrayInit,
5258 VarName);
5259 MaptypesArrayGlobal->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5260 return MaptypesArrayGlobal;
5263 void OpenMPIRBuilder::createMapperAllocas(const LocationDescription &Loc,
5264 InsertPointTy AllocaIP,
5265 unsigned NumOperands,
5266 struct MapperAllocas &MapperAllocas) {
5267 if (!updateToLocation(Loc))
5268 return;
5270 auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands);
5271 auto *ArrI64Ty = ArrayType::get(Int64, NumOperands);
5272 Builder.restoreIP(AllocaIP);
5273 AllocaInst *ArgsBase = Builder.CreateAlloca(
5274 ArrI8PtrTy, /* ArraySize = */ nullptr, ".offload_baseptrs");
5275 AllocaInst *Args = Builder.CreateAlloca(ArrI8PtrTy, /* ArraySize = */ nullptr,
5276 ".offload_ptrs");
5277 AllocaInst *ArgSizes = Builder.CreateAlloca(
5278 ArrI64Ty, /* ArraySize = */ nullptr, ".offload_sizes");
5279 Builder.restoreIP(Loc.IP);
5280 MapperAllocas.ArgsBase = ArgsBase;
5281 MapperAllocas.Args = Args;
5282 MapperAllocas.ArgSizes = ArgSizes;
5285 void OpenMPIRBuilder::emitMapperCall(const LocationDescription &Loc,
5286 Function *MapperFunc, Value *SrcLocInfo,
5287 Value *MaptypesArg, Value *MapnamesArg,
5288 struct MapperAllocas &MapperAllocas,
5289 int64_t DeviceID, unsigned NumOperands) {
5290 if (!updateToLocation(Loc))
5291 return;
5293 auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands);
5294 auto *ArrI64Ty = ArrayType::get(Int64, NumOperands);
5295 Value *ArgsBaseGEP =
5296 Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.ArgsBase,
5297 {Builder.getInt32(0), Builder.getInt32(0)});
5298 Value *ArgsGEP =
5299 Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.Args,
5300 {Builder.getInt32(0), Builder.getInt32(0)});
5301 Value *ArgSizesGEP =
5302 Builder.CreateInBoundsGEP(ArrI64Ty, MapperAllocas.ArgSizes,
5303 {Builder.getInt32(0), Builder.getInt32(0)});
5304 Value *NullPtr =
5305 Constant::getNullValue(PointerType::getUnqual(Int8Ptr->getContext()));
5306 Builder.CreateCall(MapperFunc,
5307 {SrcLocInfo, Builder.getInt64(DeviceID),
5308 Builder.getInt32(NumOperands), ArgsBaseGEP, ArgsGEP,
5309 ArgSizesGEP, MaptypesArg, MapnamesArg, NullPtr});
5312 void OpenMPIRBuilder::emitOffloadingArraysArgument(IRBuilderBase &Builder,
5313 TargetDataRTArgs &RTArgs,
5314 TargetDataInfo &Info,
5315 bool EmitDebug,
5316 bool ForEndCall) {
5317 assert((!ForEndCall || Info.separateBeginEndCalls()) &&
5318 "expected region end call to runtime only when end call is separate");
5319 auto UnqualPtrTy = PointerType::getUnqual(M.getContext());
5320 auto VoidPtrTy = UnqualPtrTy;
5321 auto VoidPtrPtrTy = UnqualPtrTy;
5322 auto Int64Ty = Type::getInt64Ty(M.getContext());
5323 auto Int64PtrTy = UnqualPtrTy;
5325 if (!Info.NumberOfPtrs) {
5326 RTArgs.BasePointersArray = ConstantPointerNull::get(VoidPtrPtrTy);
5327 RTArgs.PointersArray = ConstantPointerNull::get(VoidPtrPtrTy);
5328 RTArgs.SizesArray = ConstantPointerNull::get(Int64PtrTy);
5329 RTArgs.MapTypesArray = ConstantPointerNull::get(Int64PtrTy);
5330 RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy);
5331 RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy);
5332 return;
5335 RTArgs.BasePointersArray = Builder.CreateConstInBoundsGEP2_32(
5336 ArrayType::get(VoidPtrTy, Info.NumberOfPtrs),
5337 Info.RTArgs.BasePointersArray,
5338 /*Idx0=*/0, /*Idx1=*/0);
5339 RTArgs.PointersArray = Builder.CreateConstInBoundsGEP2_32(
5340 ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.PointersArray,
5341 /*Idx0=*/0,
5342 /*Idx1=*/0);
5343 RTArgs.SizesArray = Builder.CreateConstInBoundsGEP2_32(
5344 ArrayType::get(Int64Ty, Info.NumberOfPtrs), Info.RTArgs.SizesArray,
5345 /*Idx0=*/0, /*Idx1=*/0);
5346 RTArgs.MapTypesArray = Builder.CreateConstInBoundsGEP2_32(
5347 ArrayType::get(Int64Ty, Info.NumberOfPtrs),
5348 ForEndCall && Info.RTArgs.MapTypesArrayEnd ? Info.RTArgs.MapTypesArrayEnd
5349 : Info.RTArgs.MapTypesArray,
5350 /*Idx0=*/0,
5351 /*Idx1=*/0);
5353 // Only emit the mapper information arrays if debug information is
5354 // requested.
5355 if (!EmitDebug)
5356 RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy);
5357 else
5358 RTArgs.MapNamesArray = Builder.CreateConstInBoundsGEP2_32(
5359 ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.MapNamesArray,
5360 /*Idx0=*/0,
5361 /*Idx1=*/0);
5362 // If there is no user-defined mapper, set the mapper array to nullptr to
5363 // avoid an unnecessary data privatization
5364 if (!Info.HasMapper)
5365 RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy);
5366 else
5367 RTArgs.MappersArray =
5368 Builder.CreatePointerCast(Info.RTArgs.MappersArray, VoidPtrPtrTy);
5371 void OpenMPIRBuilder::emitNonContiguousDescriptor(InsertPointTy AllocaIP,
5372 InsertPointTy CodeGenIP,
5373 MapInfosTy &CombinedInfo,
5374 TargetDataInfo &Info) {
5375 MapInfosTy::StructNonContiguousInfo &NonContigInfo =
5376 CombinedInfo.NonContigInfo;
5378 // Build an array of struct descriptor_dim and then assign it to
5379 // offload_args.
5381 // struct descriptor_dim {
5382 // uint64_t offset;
5383 // uint64_t count;
5384 // uint64_t stride
5385 // };
5386 Type *Int64Ty = Builder.getInt64Ty();
5387 StructType *DimTy = StructType::create(
5388 M.getContext(), ArrayRef<Type *>({Int64Ty, Int64Ty, Int64Ty}),
5389 "struct.descriptor_dim");
5391 enum { OffsetFD = 0, CountFD, StrideFD };
5392 // We need two index variable here since the size of "Dims" is the same as
5393 // the size of Components, however, the size of offset, count, and stride is
5394 // equal to the size of base declaration that is non-contiguous.
5395 for (unsigned I = 0, L = 0, E = NonContigInfo.Dims.size(); I < E; ++I) {
5396 // Skip emitting ir if dimension size is 1 since it cannot be
5397 // non-contiguous.
5398 if (NonContigInfo.Dims[I] == 1)
5399 continue;
5400 Builder.restoreIP(AllocaIP);
5401 ArrayType *ArrayTy = ArrayType::get(DimTy, NonContigInfo.Dims[I]);
5402 AllocaInst *DimsAddr =
5403 Builder.CreateAlloca(ArrayTy, /* ArraySize = */ nullptr, "dims");
5404 Builder.restoreIP(CodeGenIP);
5405 for (unsigned II = 0, EE = NonContigInfo.Dims[I]; II < EE; ++II) {
5406 unsigned RevIdx = EE - II - 1;
5407 Value *DimsLVal = Builder.CreateInBoundsGEP(
5408 DimsAddr->getAllocatedType(), DimsAddr,
5409 {Builder.getInt64(0), Builder.getInt64(II)});
5410 // Offset
5411 Value *OffsetLVal = Builder.CreateStructGEP(DimTy, DimsLVal, OffsetFD);
5412 Builder.CreateAlignedStore(
5413 NonContigInfo.Offsets[L][RevIdx], OffsetLVal,
5414 M.getDataLayout().getPrefTypeAlign(OffsetLVal->getType()));
5415 // Count
5416 Value *CountLVal = Builder.CreateStructGEP(DimTy, DimsLVal, CountFD);
5417 Builder.CreateAlignedStore(
5418 NonContigInfo.Counts[L][RevIdx], CountLVal,
5419 M.getDataLayout().getPrefTypeAlign(CountLVal->getType()));
5420 // Stride
5421 Value *StrideLVal = Builder.CreateStructGEP(DimTy, DimsLVal, StrideFD);
5422 Builder.CreateAlignedStore(
5423 NonContigInfo.Strides[L][RevIdx], StrideLVal,
5424 M.getDataLayout().getPrefTypeAlign(CountLVal->getType()));
5426 // args[I] = &dims
5427 Builder.restoreIP(CodeGenIP);
5428 Value *DAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(
5429 DimsAddr, Builder.getPtrTy());
5430 Value *P = Builder.CreateConstInBoundsGEP2_32(
5431 ArrayType::get(Builder.getPtrTy(), Info.NumberOfPtrs),
5432 Info.RTArgs.PointersArray, 0, I);
5433 Builder.CreateAlignedStore(
5434 DAddr, P, M.getDataLayout().getPrefTypeAlign(Builder.getPtrTy()));
5435 ++L;
5439 void OpenMPIRBuilder::emitOffloadingArrays(
5440 InsertPointTy AllocaIP, InsertPointTy CodeGenIP, MapInfosTy &CombinedInfo,
5441 TargetDataInfo &Info, bool IsNonContiguous,
5442 function_ref<void(unsigned int, Value *)> DeviceAddrCB,
5443 function_ref<Value *(unsigned int)> CustomMapperCB) {
5445 // Reset the array information.
5446 Info.clearArrayInfo();
5447 Info.NumberOfPtrs = CombinedInfo.BasePointers.size();
5449 if (Info.NumberOfPtrs == 0)
5450 return;
5452 Builder.restoreIP(AllocaIP);
5453 // Detect if we have any capture size requiring runtime evaluation of the
5454 // size so that a constant array could be eventually used.
5455 ArrayType *PointerArrayType =
5456 ArrayType::get(Builder.getPtrTy(), Info.NumberOfPtrs);
5458 Info.RTArgs.BasePointersArray = Builder.CreateAlloca(
5459 PointerArrayType, /* ArraySize = */ nullptr, ".offload_baseptrs");
5461 Info.RTArgs.PointersArray = Builder.CreateAlloca(
5462 PointerArrayType, /* ArraySize = */ nullptr, ".offload_ptrs");
5463 AllocaInst *MappersArray = Builder.CreateAlloca(
5464 PointerArrayType, /* ArraySize = */ nullptr, ".offload_mappers");
5465 Info.RTArgs.MappersArray = MappersArray;
5467 // If we don't have any VLA types or other types that require runtime
5468 // evaluation, we can use a constant array for the map sizes, otherwise we
5469 // need to fill up the arrays as we do for the pointers.
5470 Type *Int64Ty = Builder.getInt64Ty();
5471 SmallVector<Constant *> ConstSizes(CombinedInfo.Sizes.size(),
5472 ConstantInt::get(Int64Ty, 0));
5473 SmallBitVector RuntimeSizes(CombinedInfo.Sizes.size());
5474 for (unsigned I = 0, E = CombinedInfo.Sizes.size(); I < E; ++I) {
5475 if (auto *CI = dyn_cast<Constant>(CombinedInfo.Sizes[I])) {
5476 if (!isa<ConstantExpr>(CI) && !isa<GlobalValue>(CI)) {
5477 if (IsNonContiguous &&
5478 static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
5479 CombinedInfo.Types[I] &
5480 OpenMPOffloadMappingFlags::OMP_MAP_NON_CONTIG))
5481 ConstSizes[I] =
5482 ConstantInt::get(Int64Ty, CombinedInfo.NonContigInfo.Dims[I]);
5483 else
5484 ConstSizes[I] = CI;
5485 continue;
5488 RuntimeSizes.set(I);
5491 if (RuntimeSizes.all()) {
5492 ArrayType *SizeArrayType = ArrayType::get(Int64Ty, Info.NumberOfPtrs);
5493 Info.RTArgs.SizesArray = Builder.CreateAlloca(
5494 SizeArrayType, /* ArraySize = */ nullptr, ".offload_sizes");
5495 Builder.restoreIP(CodeGenIP);
5496 } else {
5497 auto *SizesArrayInit = ConstantArray::get(
5498 ArrayType::get(Int64Ty, ConstSizes.size()), ConstSizes);
5499 std::string Name = createPlatformSpecificName({"offload_sizes"});
5500 auto *SizesArrayGbl =
5501 new GlobalVariable(M, SizesArrayInit->getType(), /*isConstant=*/true,
5502 GlobalValue::PrivateLinkage, SizesArrayInit, Name);
5503 SizesArrayGbl->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5505 if (!RuntimeSizes.any()) {
5506 Info.RTArgs.SizesArray = SizesArrayGbl;
5507 } else {
5508 unsigned IndexSize = M.getDataLayout().getIndexSizeInBits(0);
5509 Align OffloadSizeAlign = M.getDataLayout().getABIIntegerTypeAlignment(64);
5510 ArrayType *SizeArrayType = ArrayType::get(Int64Ty, Info.NumberOfPtrs);
5511 AllocaInst *Buffer = Builder.CreateAlloca(
5512 SizeArrayType, /* ArraySize = */ nullptr, ".offload_sizes");
5513 Buffer->setAlignment(OffloadSizeAlign);
5514 Builder.restoreIP(CodeGenIP);
5515 Builder.CreateMemCpy(
5516 Buffer, M.getDataLayout().getPrefTypeAlign(Buffer->getType()),
5517 SizesArrayGbl, OffloadSizeAlign,
5518 Builder.getIntN(
5519 IndexSize,
5520 Buffer->getAllocationSize(M.getDataLayout())->getFixedValue()));
5522 Info.RTArgs.SizesArray = Buffer;
5524 Builder.restoreIP(CodeGenIP);
5527 // The map types are always constant so we don't need to generate code to
5528 // fill arrays. Instead, we create an array constant.
5529 SmallVector<uint64_t, 4> Mapping;
5530 for (auto mapFlag : CombinedInfo.Types)
5531 Mapping.push_back(
5532 static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
5533 mapFlag));
5534 std::string MaptypesName = createPlatformSpecificName({"offload_maptypes"});
5535 auto *MapTypesArrayGbl = createOffloadMaptypes(Mapping, MaptypesName);
5536 Info.RTArgs.MapTypesArray = MapTypesArrayGbl;
5538 // The information types are only built if provided.
5539 if (!CombinedInfo.Names.empty()) {
5540 std::string MapnamesName = createPlatformSpecificName({"offload_mapnames"});
5541 auto *MapNamesArrayGbl =
5542 createOffloadMapnames(CombinedInfo.Names, MapnamesName);
5543 Info.RTArgs.MapNamesArray = MapNamesArrayGbl;
5544 } else {
5545 Info.RTArgs.MapNamesArray =
5546 Constant::getNullValue(PointerType::getUnqual(Builder.getContext()));
5549 // If there's a present map type modifier, it must not be applied to the end
5550 // of a region, so generate a separate map type array in that case.
5551 if (Info.separateBeginEndCalls()) {
5552 bool EndMapTypesDiffer = false;
5553 for (uint64_t &Type : Mapping) {
5554 if (Type & static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
5555 OpenMPOffloadMappingFlags::OMP_MAP_PRESENT)) {
5556 Type &= ~static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
5557 OpenMPOffloadMappingFlags::OMP_MAP_PRESENT);
5558 EndMapTypesDiffer = true;
5561 if (EndMapTypesDiffer) {
5562 MapTypesArrayGbl = createOffloadMaptypes(Mapping, MaptypesName);
5563 Info.RTArgs.MapTypesArrayEnd = MapTypesArrayGbl;
5567 PointerType *PtrTy = Builder.getPtrTy();
5568 for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
5569 Value *BPVal = CombinedInfo.BasePointers[I];
5570 Value *BP = Builder.CreateConstInBoundsGEP2_32(
5571 ArrayType::get(PtrTy, Info.NumberOfPtrs), Info.RTArgs.BasePointersArray,
5572 0, I);
5573 Builder.CreateAlignedStore(BPVal, BP,
5574 M.getDataLayout().getPrefTypeAlign(PtrTy));
5576 if (Info.requiresDevicePointerInfo()) {
5577 if (CombinedInfo.DevicePointers[I] == DeviceInfoTy::Pointer) {
5578 CodeGenIP = Builder.saveIP();
5579 Builder.restoreIP(AllocaIP);
5580 Info.DevicePtrInfoMap[BPVal] = {BP, Builder.CreateAlloca(PtrTy)};
5581 Builder.restoreIP(CodeGenIP);
5582 if (DeviceAddrCB)
5583 DeviceAddrCB(I, Info.DevicePtrInfoMap[BPVal].second);
5584 } else if (CombinedInfo.DevicePointers[I] == DeviceInfoTy::Address) {
5585 Info.DevicePtrInfoMap[BPVal] = {BP, BP};
5586 if (DeviceAddrCB)
5587 DeviceAddrCB(I, BP);
5591 Value *PVal = CombinedInfo.Pointers[I];
5592 Value *P = Builder.CreateConstInBoundsGEP2_32(
5593 ArrayType::get(PtrTy, Info.NumberOfPtrs), Info.RTArgs.PointersArray, 0,
5595 // TODO: Check alignment correct.
5596 Builder.CreateAlignedStore(PVal, P,
5597 M.getDataLayout().getPrefTypeAlign(PtrTy));
5599 if (RuntimeSizes.test(I)) {
5600 Value *S = Builder.CreateConstInBoundsGEP2_32(
5601 ArrayType::get(Int64Ty, Info.NumberOfPtrs), Info.RTArgs.SizesArray,
5602 /*Idx0=*/0,
5603 /*Idx1=*/I);
5604 Builder.CreateAlignedStore(Builder.CreateIntCast(CombinedInfo.Sizes[I],
5605 Int64Ty,
5606 /*isSigned=*/true),
5607 S, M.getDataLayout().getPrefTypeAlign(PtrTy));
5609 // Fill up the mapper array.
5610 unsigned IndexSize = M.getDataLayout().getIndexSizeInBits(0);
5611 Value *MFunc = ConstantPointerNull::get(PtrTy);
5612 if (CustomMapperCB)
5613 if (Value *CustomMFunc = CustomMapperCB(I))
5614 MFunc = Builder.CreatePointerCast(CustomMFunc, PtrTy);
5615 Value *MAddr = Builder.CreateInBoundsGEP(
5616 MappersArray->getAllocatedType(), MappersArray,
5617 {Builder.getIntN(IndexSize, 0), Builder.getIntN(IndexSize, I)});
5618 Builder.CreateAlignedStore(
5619 MFunc, MAddr, M.getDataLayout().getPrefTypeAlign(MAddr->getType()));
5622 if (!IsNonContiguous || CombinedInfo.NonContigInfo.Offsets.empty() ||
5623 Info.NumberOfPtrs == 0)
5624 return;
5625 emitNonContiguousDescriptor(AllocaIP, CodeGenIP, CombinedInfo, Info);
5628 void OpenMPIRBuilder::emitBranch(BasicBlock *Target) {
5629 BasicBlock *CurBB = Builder.GetInsertBlock();
5631 if (!CurBB || CurBB->getTerminator()) {
5632 // If there is no insert point or the previous block is already
5633 // terminated, don't touch it.
5634 } else {
5635 // Otherwise, create a fall-through branch.
5636 Builder.CreateBr(Target);
5639 Builder.ClearInsertionPoint();
5642 void OpenMPIRBuilder::emitBlock(BasicBlock *BB, Function *CurFn,
5643 bool IsFinished) {
5644 BasicBlock *CurBB = Builder.GetInsertBlock();
5646 // Fall out of the current block (if necessary).
5647 emitBranch(BB);
5649 if (IsFinished && BB->use_empty()) {
5650 BB->eraseFromParent();
5651 return;
5654 // Place the block after the current block, if possible, or else at
5655 // the end of the function.
5656 if (CurBB && CurBB->getParent())
5657 CurFn->insert(std::next(CurBB->getIterator()), BB);
5658 else
5659 CurFn->insert(CurFn->end(), BB);
5660 Builder.SetInsertPoint(BB);
5663 void OpenMPIRBuilder::emitIfClause(Value *Cond, BodyGenCallbackTy ThenGen,
5664 BodyGenCallbackTy ElseGen,
5665 InsertPointTy AllocaIP) {
5666 // If the condition constant folds and can be elided, try to avoid emitting
5667 // the condition and the dead arm of the if/else.
5668 if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
5669 auto CondConstant = CI->getSExtValue();
5670 if (CondConstant)
5671 ThenGen(AllocaIP, Builder.saveIP());
5672 else
5673 ElseGen(AllocaIP, Builder.saveIP());
5674 return;
5677 Function *CurFn = Builder.GetInsertBlock()->getParent();
5679 // Otherwise, the condition did not fold, or we couldn't elide it. Just
5680 // emit the conditional branch.
5681 BasicBlock *ThenBlock = BasicBlock::Create(M.getContext(), "omp_if.then");
5682 BasicBlock *ElseBlock = BasicBlock::Create(M.getContext(), "omp_if.else");
5683 BasicBlock *ContBlock = BasicBlock::Create(M.getContext(), "omp_if.end");
5684 Builder.CreateCondBr(Cond, ThenBlock, ElseBlock);
5685 // Emit the 'then' code.
5686 emitBlock(ThenBlock, CurFn);
5687 ThenGen(AllocaIP, Builder.saveIP());
5688 emitBranch(ContBlock);
5689 // Emit the 'else' code if present.
5690 // There is no need to emit line number for unconditional branch.
5691 emitBlock(ElseBlock, CurFn);
5692 ElseGen(AllocaIP, Builder.saveIP());
5693 // There is no need to emit line number for unconditional branch.
5694 emitBranch(ContBlock);
5695 // Emit the continuation block for code after the if.
5696 emitBlock(ContBlock, CurFn, /*IsFinished=*/true);
5699 bool OpenMPIRBuilder::checkAndEmitFlushAfterAtomic(
5700 const LocationDescription &Loc, llvm::AtomicOrdering AO, AtomicKind AK) {
5701 assert(!(AO == AtomicOrdering::NotAtomic ||
5702 AO == llvm::AtomicOrdering::Unordered) &&
5703 "Unexpected Atomic Ordering.");
5705 bool Flush = false;
5706 llvm::AtomicOrdering FlushAO = AtomicOrdering::Monotonic;
5708 switch (AK) {
5709 case Read:
5710 if (AO == AtomicOrdering::Acquire || AO == AtomicOrdering::AcquireRelease ||
5711 AO == AtomicOrdering::SequentiallyConsistent) {
5712 FlushAO = AtomicOrdering::Acquire;
5713 Flush = true;
5715 break;
5716 case Write:
5717 case Compare:
5718 case Update:
5719 if (AO == AtomicOrdering::Release || AO == AtomicOrdering::AcquireRelease ||
5720 AO == AtomicOrdering::SequentiallyConsistent) {
5721 FlushAO = AtomicOrdering::Release;
5722 Flush = true;
5724 break;
5725 case Capture:
5726 switch (AO) {
5727 case AtomicOrdering::Acquire:
5728 FlushAO = AtomicOrdering::Acquire;
5729 Flush = true;
5730 break;
5731 case AtomicOrdering::Release:
5732 FlushAO = AtomicOrdering::Release;
5733 Flush = true;
5734 break;
5735 case AtomicOrdering::AcquireRelease:
5736 case AtomicOrdering::SequentiallyConsistent:
5737 FlushAO = AtomicOrdering::AcquireRelease;
5738 Flush = true;
5739 break;
5740 default:
5741 // do nothing - leave silently.
5742 break;
5746 if (Flush) {
5747 // Currently Flush RT call still doesn't take memory_ordering, so for when
5748 // that happens, this tries to do the resolution of which atomic ordering
5749 // to use with but issue the flush call
5750 // TODO: pass `FlushAO` after memory ordering support is added
5751 (void)FlushAO;
5752 emitFlush(Loc);
5755 // for AO == AtomicOrdering::Monotonic and all other case combinations
5756 // do nothing
5757 return Flush;
5760 OpenMPIRBuilder::InsertPointTy
5761 OpenMPIRBuilder::createAtomicRead(const LocationDescription &Loc,
5762 AtomicOpValue &X, AtomicOpValue &V,
5763 AtomicOrdering AO) {
5764 if (!updateToLocation(Loc))
5765 return Loc.IP;
5767 assert(X.Var->getType()->isPointerTy() &&
5768 "OMP Atomic expects a pointer to target memory");
5769 Type *XElemTy = X.ElemTy;
5770 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
5771 XElemTy->isPointerTy()) &&
5772 "OMP atomic read expected a scalar type");
5774 Value *XRead = nullptr;
5776 if (XElemTy->isIntegerTy()) {
5777 LoadInst *XLD =
5778 Builder.CreateLoad(XElemTy, X.Var, X.IsVolatile, "omp.atomic.read");
5779 XLD->setAtomic(AO);
5780 XRead = cast<Value>(XLD);
5781 } else {
5782 // We need to perform atomic op as integer
5783 IntegerType *IntCastTy =
5784 IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
5785 LoadInst *XLoad =
5786 Builder.CreateLoad(IntCastTy, X.Var, X.IsVolatile, "omp.atomic.load");
5787 XLoad->setAtomic(AO);
5788 if (XElemTy->isFloatingPointTy()) {
5789 XRead = Builder.CreateBitCast(XLoad, XElemTy, "atomic.flt.cast");
5790 } else {
5791 XRead = Builder.CreateIntToPtr(XLoad, XElemTy, "atomic.ptr.cast");
5794 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Read);
5795 Builder.CreateStore(XRead, V.Var, V.IsVolatile);
5796 return Builder.saveIP();
5799 OpenMPIRBuilder::InsertPointTy
5800 OpenMPIRBuilder::createAtomicWrite(const LocationDescription &Loc,
5801 AtomicOpValue &X, Value *Expr,
5802 AtomicOrdering AO) {
5803 if (!updateToLocation(Loc))
5804 return Loc.IP;
5806 assert(X.Var->getType()->isPointerTy() &&
5807 "OMP Atomic expects a pointer to target memory");
5808 Type *XElemTy = X.ElemTy;
5809 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
5810 XElemTy->isPointerTy()) &&
5811 "OMP atomic write expected a scalar type");
5813 if (XElemTy->isIntegerTy()) {
5814 StoreInst *XSt = Builder.CreateStore(Expr, X.Var, X.IsVolatile);
5815 XSt->setAtomic(AO);
5816 } else {
5817 // We need to bitcast and perform atomic op as integers
5818 IntegerType *IntCastTy =
5819 IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
5820 Value *ExprCast =
5821 Builder.CreateBitCast(Expr, IntCastTy, "atomic.src.int.cast");
5822 StoreInst *XSt = Builder.CreateStore(ExprCast, X.Var, X.IsVolatile);
5823 XSt->setAtomic(AO);
5826 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Write);
5827 return Builder.saveIP();
5830 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicUpdate(
5831 const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X,
5832 Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp,
5833 AtomicUpdateCallbackTy &UpdateOp, bool IsXBinopExpr) {
5834 assert(!isConflictIP(Loc.IP, AllocaIP) && "IPs must not be ambiguous");
5835 if (!updateToLocation(Loc))
5836 return Loc.IP;
5838 LLVM_DEBUG({
5839 Type *XTy = X.Var->getType();
5840 assert(XTy->isPointerTy() &&
5841 "OMP Atomic expects a pointer to target memory");
5842 Type *XElemTy = X.ElemTy;
5843 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
5844 XElemTy->isPointerTy()) &&
5845 "OMP atomic update expected a scalar type");
5846 assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) &&
5847 (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) &&
5848 "OpenMP atomic does not support LT or GT operations");
5851 emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, RMWOp, UpdateOp,
5852 X.IsVolatile, IsXBinopExpr);
5853 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Update);
5854 return Builder.saveIP();
5857 // FIXME: Duplicating AtomicExpand
5858 Value *OpenMPIRBuilder::emitRMWOpAsInstruction(Value *Src1, Value *Src2,
5859 AtomicRMWInst::BinOp RMWOp) {
5860 switch (RMWOp) {
5861 case AtomicRMWInst::Add:
5862 return Builder.CreateAdd(Src1, Src2);
5863 case AtomicRMWInst::Sub:
5864 return Builder.CreateSub(Src1, Src2);
5865 case AtomicRMWInst::And:
5866 return Builder.CreateAnd(Src1, Src2);
5867 case AtomicRMWInst::Nand:
5868 return Builder.CreateNeg(Builder.CreateAnd(Src1, Src2));
5869 case AtomicRMWInst::Or:
5870 return Builder.CreateOr(Src1, Src2);
5871 case AtomicRMWInst::Xor:
5872 return Builder.CreateXor(Src1, Src2);
5873 case AtomicRMWInst::Xchg:
5874 case AtomicRMWInst::FAdd:
5875 case AtomicRMWInst::FSub:
5876 case AtomicRMWInst::BAD_BINOP:
5877 case AtomicRMWInst::Max:
5878 case AtomicRMWInst::Min:
5879 case AtomicRMWInst::UMax:
5880 case AtomicRMWInst::UMin:
5881 case AtomicRMWInst::FMax:
5882 case AtomicRMWInst::FMin:
5883 case AtomicRMWInst::UIncWrap:
5884 case AtomicRMWInst::UDecWrap:
5885 llvm_unreachable("Unsupported atomic update operation");
5887 llvm_unreachable("Unsupported atomic update operation");
5890 std::pair<Value *, Value *> OpenMPIRBuilder::emitAtomicUpdate(
5891 InsertPointTy AllocaIP, Value *X, Type *XElemTy, Value *Expr,
5892 AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp,
5893 AtomicUpdateCallbackTy &UpdateOp, bool VolatileX, bool IsXBinopExpr) {
5894 // TODO: handle the case where XElemTy is not byte-sized or not a power of 2
5895 // or a complex datatype.
5896 bool emitRMWOp = false;
5897 switch (RMWOp) {
5898 case AtomicRMWInst::Add:
5899 case AtomicRMWInst::And:
5900 case AtomicRMWInst::Nand:
5901 case AtomicRMWInst::Or:
5902 case AtomicRMWInst::Xor:
5903 case AtomicRMWInst::Xchg:
5904 emitRMWOp = XElemTy;
5905 break;
5906 case AtomicRMWInst::Sub:
5907 emitRMWOp = (IsXBinopExpr && XElemTy);
5908 break;
5909 default:
5910 emitRMWOp = false;
5912 emitRMWOp &= XElemTy->isIntegerTy();
5914 std::pair<Value *, Value *> Res;
5915 if (emitRMWOp) {
5916 Res.first = Builder.CreateAtomicRMW(RMWOp, X, Expr, llvm::MaybeAlign(), AO);
5917 // not needed except in case of postfix captures. Generate anyway for
5918 // consistency with the else part. Will be removed with any DCE pass.
5919 // AtomicRMWInst::Xchg does not have a coressponding instruction.
5920 if (RMWOp == AtomicRMWInst::Xchg)
5921 Res.second = Res.first;
5922 else
5923 Res.second = emitRMWOpAsInstruction(Res.first, Expr, RMWOp);
5924 } else {
5925 IntegerType *IntCastTy =
5926 IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
5927 LoadInst *OldVal =
5928 Builder.CreateLoad(IntCastTy, X, X->getName() + ".atomic.load");
5929 OldVal->setAtomic(AO);
5930 // CurBB
5931 // | /---\
5932 // ContBB |
5933 // | \---/
5934 // ExitBB
5935 BasicBlock *CurBB = Builder.GetInsertBlock();
5936 Instruction *CurBBTI = CurBB->getTerminator();
5937 CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable();
5938 BasicBlock *ExitBB =
5939 CurBB->splitBasicBlock(CurBBTI, X->getName() + ".atomic.exit");
5940 BasicBlock *ContBB = CurBB->splitBasicBlock(CurBB->getTerminator(),
5941 X->getName() + ".atomic.cont");
5942 ContBB->getTerminator()->eraseFromParent();
5943 Builder.restoreIP(AllocaIP);
5944 AllocaInst *NewAtomicAddr = Builder.CreateAlloca(XElemTy);
5945 NewAtomicAddr->setName(X->getName() + "x.new.val");
5946 Builder.SetInsertPoint(ContBB);
5947 llvm::PHINode *PHI = Builder.CreatePHI(OldVal->getType(), 2);
5948 PHI->addIncoming(OldVal, CurBB);
5949 bool IsIntTy = XElemTy->isIntegerTy();
5950 Value *OldExprVal = PHI;
5951 if (!IsIntTy) {
5952 if (XElemTy->isFloatingPointTy()) {
5953 OldExprVal = Builder.CreateBitCast(PHI, XElemTy,
5954 X->getName() + ".atomic.fltCast");
5955 } else {
5956 OldExprVal = Builder.CreateIntToPtr(PHI, XElemTy,
5957 X->getName() + ".atomic.ptrCast");
5961 Value *Upd = UpdateOp(OldExprVal, Builder);
5962 Builder.CreateStore(Upd, NewAtomicAddr);
5963 LoadInst *DesiredVal = Builder.CreateLoad(IntCastTy, NewAtomicAddr);
5964 AtomicOrdering Failure =
5965 llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
5966 AtomicCmpXchgInst *Result = Builder.CreateAtomicCmpXchg(
5967 X, PHI, DesiredVal, llvm::MaybeAlign(), AO, Failure);
5968 Result->setVolatile(VolatileX);
5969 Value *PreviousVal = Builder.CreateExtractValue(Result, /*Idxs=*/0);
5970 Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1);
5971 PHI->addIncoming(PreviousVal, Builder.GetInsertBlock());
5972 Builder.CreateCondBr(SuccessFailureVal, ExitBB, ContBB);
5974 Res.first = OldExprVal;
5975 Res.second = Upd;
5977 // set Insertion point in exit block
5978 if (UnreachableInst *ExitTI =
5979 dyn_cast<UnreachableInst>(ExitBB->getTerminator())) {
5980 CurBBTI->eraseFromParent();
5981 Builder.SetInsertPoint(ExitBB);
5982 } else {
5983 Builder.SetInsertPoint(ExitTI);
5987 return Res;
5990 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCapture(
5991 const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X,
5992 AtomicOpValue &V, Value *Expr, AtomicOrdering AO,
5993 AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp,
5994 bool UpdateExpr, bool IsPostfixUpdate, bool IsXBinopExpr) {
5995 if (!updateToLocation(Loc))
5996 return Loc.IP;
5998 LLVM_DEBUG({
5999 Type *XTy = X.Var->getType();
6000 assert(XTy->isPointerTy() &&
6001 "OMP Atomic expects a pointer to target memory");
6002 Type *XElemTy = X.ElemTy;
6003 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
6004 XElemTy->isPointerTy()) &&
6005 "OMP atomic capture expected a scalar type");
6006 assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) &&
6007 "OpenMP atomic does not support LT or GT operations");
6010 // If UpdateExpr is 'x' updated with some `expr` not based on 'x',
6011 // 'x' is simply atomically rewritten with 'expr'.
6012 AtomicRMWInst::BinOp AtomicOp = (UpdateExpr ? RMWOp : AtomicRMWInst::Xchg);
6013 std::pair<Value *, Value *> Result =
6014 emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, AtomicOp, UpdateOp,
6015 X.IsVolatile, IsXBinopExpr);
6017 Value *CapturedVal = (IsPostfixUpdate ? Result.first : Result.second);
6018 Builder.CreateStore(CapturedVal, V.Var, V.IsVolatile);
6020 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Capture);
6021 return Builder.saveIP();
6024 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCompare(
6025 const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V,
6026 AtomicOpValue &R, Value *E, Value *D, AtomicOrdering AO,
6027 omp::OMPAtomicCompareOp Op, bool IsXBinopExpr, bool IsPostfixUpdate,
6028 bool IsFailOnly) {
6030 AtomicOrdering Failure = AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
6031 return createAtomicCompare(Loc, X, V, R, E, D, AO, Op, IsXBinopExpr,
6032 IsPostfixUpdate, IsFailOnly, Failure);
6035 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCompare(
6036 const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V,
6037 AtomicOpValue &R, Value *E, Value *D, AtomicOrdering AO,
6038 omp::OMPAtomicCompareOp Op, bool IsXBinopExpr, bool IsPostfixUpdate,
6039 bool IsFailOnly, AtomicOrdering Failure) {
6041 if (!updateToLocation(Loc))
6042 return Loc.IP;
6044 assert(X.Var->getType()->isPointerTy() &&
6045 "OMP atomic expects a pointer to target memory");
6046 // compare capture
6047 if (V.Var) {
6048 assert(V.Var->getType()->isPointerTy() && "v.var must be of pointer type");
6049 assert(V.ElemTy == X.ElemTy && "x and v must be of same type");
6052 bool IsInteger = E->getType()->isIntegerTy();
6054 if (Op == OMPAtomicCompareOp::EQ) {
6055 AtomicCmpXchgInst *Result = nullptr;
6056 if (!IsInteger) {
6057 IntegerType *IntCastTy =
6058 IntegerType::get(M.getContext(), X.ElemTy->getScalarSizeInBits());
6059 Value *EBCast = Builder.CreateBitCast(E, IntCastTy);
6060 Value *DBCast = Builder.CreateBitCast(D, IntCastTy);
6061 Result = Builder.CreateAtomicCmpXchg(X.Var, EBCast, DBCast, MaybeAlign(),
6062 AO, Failure);
6063 } else {
6064 Result =
6065 Builder.CreateAtomicCmpXchg(X.Var, E, D, MaybeAlign(), AO, Failure);
6068 if (V.Var) {
6069 Value *OldValue = Builder.CreateExtractValue(Result, /*Idxs=*/0);
6070 if (!IsInteger)
6071 OldValue = Builder.CreateBitCast(OldValue, X.ElemTy);
6072 assert(OldValue->getType() == V.ElemTy &&
6073 "OldValue and V must be of same type");
6074 if (IsPostfixUpdate) {
6075 Builder.CreateStore(OldValue, V.Var, V.IsVolatile);
6076 } else {
6077 Value *SuccessOrFail = Builder.CreateExtractValue(Result, /*Idxs=*/1);
6078 if (IsFailOnly) {
6079 // CurBB----
6080 // | |
6081 // v |
6082 // ContBB |
6083 // | |
6084 // v |
6085 // ExitBB <-
6087 // where ContBB only contains the store of old value to 'v'.
6088 BasicBlock *CurBB = Builder.GetInsertBlock();
6089 Instruction *CurBBTI = CurBB->getTerminator();
6090 CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable();
6091 BasicBlock *ExitBB = CurBB->splitBasicBlock(
6092 CurBBTI, X.Var->getName() + ".atomic.exit");
6093 BasicBlock *ContBB = CurBB->splitBasicBlock(
6094 CurBB->getTerminator(), X.Var->getName() + ".atomic.cont");
6095 ContBB->getTerminator()->eraseFromParent();
6096 CurBB->getTerminator()->eraseFromParent();
6098 Builder.CreateCondBr(SuccessOrFail, ExitBB, ContBB);
6100 Builder.SetInsertPoint(ContBB);
6101 Builder.CreateStore(OldValue, V.Var);
6102 Builder.CreateBr(ExitBB);
6104 if (UnreachableInst *ExitTI =
6105 dyn_cast<UnreachableInst>(ExitBB->getTerminator())) {
6106 CurBBTI->eraseFromParent();
6107 Builder.SetInsertPoint(ExitBB);
6108 } else {
6109 Builder.SetInsertPoint(ExitTI);
6111 } else {
6112 Value *CapturedValue =
6113 Builder.CreateSelect(SuccessOrFail, E, OldValue);
6114 Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile);
6118 // The comparison result has to be stored.
6119 if (R.Var) {
6120 assert(R.Var->getType()->isPointerTy() &&
6121 "r.var must be of pointer type");
6122 assert(R.ElemTy->isIntegerTy() && "r must be of integral type");
6124 Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1);
6125 Value *ResultCast = R.IsSigned
6126 ? Builder.CreateSExt(SuccessFailureVal, R.ElemTy)
6127 : Builder.CreateZExt(SuccessFailureVal, R.ElemTy);
6128 Builder.CreateStore(ResultCast, R.Var, R.IsVolatile);
6130 } else {
6131 assert((Op == OMPAtomicCompareOp::MAX || Op == OMPAtomicCompareOp::MIN) &&
6132 "Op should be either max or min at this point");
6133 assert(!IsFailOnly && "IsFailOnly is only valid when the comparison is ==");
6135 // Reverse the ordop as the OpenMP forms are different from LLVM forms.
6136 // Let's take max as example.
6137 // OpenMP form:
6138 // x = x > expr ? expr : x;
6139 // LLVM form:
6140 // *ptr = *ptr > val ? *ptr : val;
6141 // We need to transform to LLVM form.
6142 // x = x <= expr ? x : expr;
6143 AtomicRMWInst::BinOp NewOp;
6144 if (IsXBinopExpr) {
6145 if (IsInteger) {
6146 if (X.IsSigned)
6147 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Min
6148 : AtomicRMWInst::Max;
6149 else
6150 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMin
6151 : AtomicRMWInst::UMax;
6152 } else {
6153 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMin
6154 : AtomicRMWInst::FMax;
6156 } else {
6157 if (IsInteger) {
6158 if (X.IsSigned)
6159 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Max
6160 : AtomicRMWInst::Min;
6161 else
6162 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMax
6163 : AtomicRMWInst::UMin;
6164 } else {
6165 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMax
6166 : AtomicRMWInst::FMin;
6170 AtomicRMWInst *OldValue =
6171 Builder.CreateAtomicRMW(NewOp, X.Var, E, MaybeAlign(), AO);
6172 if (V.Var) {
6173 Value *CapturedValue = nullptr;
6174 if (IsPostfixUpdate) {
6175 CapturedValue = OldValue;
6176 } else {
6177 CmpInst::Predicate Pred;
6178 switch (NewOp) {
6179 case AtomicRMWInst::Max:
6180 Pred = CmpInst::ICMP_SGT;
6181 break;
6182 case AtomicRMWInst::UMax:
6183 Pred = CmpInst::ICMP_UGT;
6184 break;
6185 case AtomicRMWInst::FMax:
6186 Pred = CmpInst::FCMP_OGT;
6187 break;
6188 case AtomicRMWInst::Min:
6189 Pred = CmpInst::ICMP_SLT;
6190 break;
6191 case AtomicRMWInst::UMin:
6192 Pred = CmpInst::ICMP_ULT;
6193 break;
6194 case AtomicRMWInst::FMin:
6195 Pred = CmpInst::FCMP_OLT;
6196 break;
6197 default:
6198 llvm_unreachable("unexpected comparison op");
6200 Value *NonAtomicCmp = Builder.CreateCmp(Pred, OldValue, E);
6201 CapturedValue = Builder.CreateSelect(NonAtomicCmp, E, OldValue);
6203 Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile);
6207 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Compare);
6209 return Builder.saveIP();
6212 OpenMPIRBuilder::InsertPointTy
6213 OpenMPIRBuilder::createTeams(const LocationDescription &Loc,
6214 BodyGenCallbackTy BodyGenCB, Value *NumTeamsLower,
6215 Value *NumTeamsUpper, Value *ThreadLimit,
6216 Value *IfExpr) {
6217 if (!updateToLocation(Loc))
6218 return InsertPointTy();
6220 uint32_t SrcLocStrSize;
6221 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
6222 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
6223 Function *CurrentFunction = Builder.GetInsertBlock()->getParent();
6225 // Outer allocation basicblock is the entry block of the current function.
6226 BasicBlock &OuterAllocaBB = CurrentFunction->getEntryBlock();
6227 if (&OuterAllocaBB == Builder.GetInsertBlock()) {
6228 BasicBlock *BodyBB = splitBB(Builder, /*CreateBranch=*/true, "teams.entry");
6229 Builder.SetInsertPoint(BodyBB, BodyBB->begin());
6232 // The current basic block is split into four basic blocks. After outlining,
6233 // they will be mapped as follows:
6234 // ```
6235 // def current_fn() {
6236 // current_basic_block:
6237 // br label %teams.exit
6238 // teams.exit:
6239 // ; instructions after teams
6240 // }
6242 // def outlined_fn() {
6243 // teams.alloca:
6244 // br label %teams.body
6245 // teams.body:
6246 // ; instructions within teams body
6247 // }
6248 // ```
6249 BasicBlock *ExitBB = splitBB(Builder, /*CreateBranch=*/true, "teams.exit");
6250 BasicBlock *BodyBB = splitBB(Builder, /*CreateBranch=*/true, "teams.body");
6251 BasicBlock *AllocaBB =
6252 splitBB(Builder, /*CreateBranch=*/true, "teams.alloca");
6254 // Push num_teams
6255 if (NumTeamsLower || NumTeamsUpper || ThreadLimit || IfExpr) {
6256 assert((NumTeamsLower == nullptr || NumTeamsUpper != nullptr) &&
6257 "if lowerbound is non-null, then upperbound must also be non-null "
6258 "for bounds on num_teams");
6260 if (NumTeamsUpper == nullptr)
6261 NumTeamsUpper = Builder.getInt32(0);
6263 if (NumTeamsLower == nullptr)
6264 NumTeamsLower = NumTeamsUpper;
6266 if (IfExpr) {
6267 assert(IfExpr->getType()->isIntegerTy() &&
6268 "argument to if clause must be an integer value");
6270 // upper = ifexpr ? upper : 1
6271 if (IfExpr->getType() != Int1)
6272 IfExpr = Builder.CreateICmpNE(IfExpr,
6273 ConstantInt::get(IfExpr->getType(), 0));
6274 NumTeamsUpper = Builder.CreateSelect(
6275 IfExpr, NumTeamsUpper, Builder.getInt32(1), "numTeamsUpper");
6277 // lower = ifexpr ? lower : 1
6278 NumTeamsLower = Builder.CreateSelect(
6279 IfExpr, NumTeamsLower, Builder.getInt32(1), "numTeamsLower");
6282 if (ThreadLimit == nullptr)
6283 ThreadLimit = Builder.getInt32(0);
6285 Value *ThreadNum = getOrCreateThreadID(Ident);
6286 Builder.CreateCall(
6287 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_num_teams_51),
6288 {Ident, ThreadNum, NumTeamsLower, NumTeamsUpper, ThreadLimit});
6290 // Generate the body of teams.
6291 InsertPointTy AllocaIP(AllocaBB, AllocaBB->begin());
6292 InsertPointTy CodeGenIP(BodyBB, BodyBB->begin());
6293 BodyGenCB(AllocaIP, CodeGenIP);
6295 OutlineInfo OI;
6296 OI.EntryBB = AllocaBB;
6297 OI.ExitBB = ExitBB;
6298 OI.OuterAllocaBB = &OuterAllocaBB;
6300 // Insert fake values for global tid and bound tid.
6301 std::stack<Instruction *> ToBeDeleted;
6302 InsertPointTy OuterAllocaIP(&OuterAllocaBB, OuterAllocaBB.begin());
6303 OI.ExcludeArgsFromAggregate.push_back(createFakeIntVal(
6304 Builder, OuterAllocaIP, ToBeDeleted, AllocaIP, "gid", true));
6305 OI.ExcludeArgsFromAggregate.push_back(createFakeIntVal(
6306 Builder, OuterAllocaIP, ToBeDeleted, AllocaIP, "tid", true));
6308 OI.PostOutlineCB = [this, Ident, ToBeDeleted](Function &OutlinedFn) mutable {
6309 // The stale call instruction will be replaced with a new call instruction
6310 // for runtime call with the outlined function.
6312 assert(OutlinedFn.getNumUses() == 1 &&
6313 "there must be a single user for the outlined function");
6314 CallInst *StaleCI = cast<CallInst>(OutlinedFn.user_back());
6315 ToBeDeleted.push(StaleCI);
6317 assert((OutlinedFn.arg_size() == 2 || OutlinedFn.arg_size() == 3) &&
6318 "Outlined function must have two or three arguments only");
6320 bool HasShared = OutlinedFn.arg_size() == 3;
6322 OutlinedFn.getArg(0)->setName("global.tid.ptr");
6323 OutlinedFn.getArg(1)->setName("bound.tid.ptr");
6324 if (HasShared)
6325 OutlinedFn.getArg(2)->setName("data");
6327 // Call to the runtime function for teams in the current function.
6328 assert(StaleCI && "Error while outlining - no CallInst user found for the "
6329 "outlined function.");
6330 Builder.SetInsertPoint(StaleCI);
6331 SmallVector<Value *> Args = {
6332 Ident, Builder.getInt32(StaleCI->arg_size() - 2), &OutlinedFn};
6333 if (HasShared)
6334 Args.push_back(StaleCI->getArgOperand(2));
6335 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(
6336 omp::RuntimeFunction::OMPRTL___kmpc_fork_teams),
6337 Args);
6339 while (!ToBeDeleted.empty()) {
6340 ToBeDeleted.top()->eraseFromParent();
6341 ToBeDeleted.pop();
6345 addOutlineInfo(std::move(OI));
6347 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
6349 return Builder.saveIP();
6352 GlobalVariable *
6353 OpenMPIRBuilder::createOffloadMapnames(SmallVectorImpl<llvm::Constant *> &Names,
6354 std::string VarName) {
6355 llvm::Constant *MapNamesArrayInit = llvm::ConstantArray::get(
6356 llvm::ArrayType::get(llvm::PointerType::getUnqual(M.getContext()),
6357 Names.size()),
6358 Names);
6359 auto *MapNamesArrayGlobal = new llvm::GlobalVariable(
6360 M, MapNamesArrayInit->getType(),
6361 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MapNamesArrayInit,
6362 VarName);
6363 return MapNamesArrayGlobal;
6366 // Create all simple and struct types exposed by the runtime and remember
6367 // the llvm::PointerTypes of them for easy access later.
6368 void OpenMPIRBuilder::initializeTypes(Module &M) {
6369 LLVMContext &Ctx = M.getContext();
6370 StructType *T;
6371 #define OMP_TYPE(VarName, InitValue) VarName = InitValue;
6372 #define OMP_ARRAY_TYPE(VarName, ElemTy, ArraySize) \
6373 VarName##Ty = ArrayType::get(ElemTy, ArraySize); \
6374 VarName##PtrTy = PointerType::getUnqual(VarName##Ty);
6375 #define OMP_FUNCTION_TYPE(VarName, IsVarArg, ReturnType, ...) \
6376 VarName = FunctionType::get(ReturnType, {__VA_ARGS__}, IsVarArg); \
6377 VarName##Ptr = PointerType::getUnqual(VarName);
6378 #define OMP_STRUCT_TYPE(VarName, StructName, Packed, ...) \
6379 T = StructType::getTypeByName(Ctx, StructName); \
6380 if (!T) \
6381 T = StructType::create(Ctx, {__VA_ARGS__}, StructName, Packed); \
6382 VarName = T; \
6383 VarName##Ptr = PointerType::getUnqual(T);
6384 #include "llvm/Frontend/OpenMP/OMPKinds.def"
6387 void OpenMPIRBuilder::OutlineInfo::collectBlocks(
6388 SmallPtrSetImpl<BasicBlock *> &BlockSet,
6389 SmallVectorImpl<BasicBlock *> &BlockVector) {
6390 SmallVector<BasicBlock *, 32> Worklist;
6391 BlockSet.insert(EntryBB);
6392 BlockSet.insert(ExitBB);
6394 Worklist.push_back(EntryBB);
6395 while (!Worklist.empty()) {
6396 BasicBlock *BB = Worklist.pop_back_val();
6397 BlockVector.push_back(BB);
6398 for (BasicBlock *SuccBB : successors(BB))
6399 if (BlockSet.insert(SuccBB).second)
6400 Worklist.push_back(SuccBB);
6404 void OpenMPIRBuilder::createOffloadEntry(Constant *ID, Constant *Addr,
6405 uint64_t Size, int32_t Flags,
6406 GlobalValue::LinkageTypes,
6407 StringRef Name) {
6408 if (!Config.isGPU()) {
6409 llvm::offloading::emitOffloadingEntry(
6410 M, ID, Name.empty() ? Addr->getName() : Name, Size, Flags, /*Data=*/0,
6411 "omp_offloading_entries");
6412 return;
6414 // TODO: Add support for global variables on the device after declare target
6415 // support.
6416 Function *Fn = dyn_cast<Function>(Addr);
6417 if (!Fn)
6418 return;
6420 Module &M = *(Fn->getParent());
6421 LLVMContext &Ctx = M.getContext();
6423 // Get "nvvm.annotations" metadata node.
6424 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
6426 Metadata *MDVals[] = {
6427 ConstantAsMetadata::get(Fn), MDString::get(Ctx, "kernel"),
6428 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Ctx), 1))};
6429 // Append metadata to nvvm.annotations.
6430 MD->addOperand(MDNode::get(Ctx, MDVals));
6432 // Add a function attribute for the kernel.
6433 Fn->addFnAttr(Attribute::get(Ctx, "kernel"));
6434 if (T.isAMDGCN())
6435 Fn->addFnAttr("uniform-work-group-size", "true");
6436 Fn->addFnAttr(Attribute::MustProgress);
6439 // We only generate metadata for function that contain target regions.
6440 void OpenMPIRBuilder::createOffloadEntriesAndInfoMetadata(
6441 EmitMetadataErrorReportFunctionTy &ErrorFn) {
6443 // If there are no entries, we don't need to do anything.
6444 if (OffloadInfoManager.empty())
6445 return;
6447 LLVMContext &C = M.getContext();
6448 SmallVector<std::pair<const OffloadEntriesInfoManager::OffloadEntryInfo *,
6449 TargetRegionEntryInfo>,
6451 OrderedEntries(OffloadInfoManager.size());
6453 // Auxiliary methods to create metadata values and strings.
6454 auto &&GetMDInt = [this](unsigned V) {
6455 return ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), V));
6458 auto &&GetMDString = [&C](StringRef V) { return MDString::get(C, V); };
6460 // Create the offloading info metadata node.
6461 NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
6462 auto &&TargetRegionMetadataEmitter =
6463 [&C, MD, &OrderedEntries, &GetMDInt, &GetMDString](
6464 const TargetRegionEntryInfo &EntryInfo,
6465 const OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion &E) {
6466 // Generate metadata for target regions. Each entry of this metadata
6467 // contains:
6468 // - Entry 0 -> Kind of this type of metadata (0).
6469 // - Entry 1 -> Device ID of the file where the entry was identified.
6470 // - Entry 2 -> File ID of the file where the entry was identified.
6471 // - Entry 3 -> Mangled name of the function where the entry was
6472 // identified.
6473 // - Entry 4 -> Line in the file where the entry was identified.
6474 // - Entry 5 -> Count of regions at this DeviceID/FilesID/Line.
6475 // - Entry 6 -> Order the entry was created.
6476 // The first element of the metadata node is the kind.
6477 Metadata *Ops[] = {
6478 GetMDInt(E.getKind()), GetMDInt(EntryInfo.DeviceID),
6479 GetMDInt(EntryInfo.FileID), GetMDString(EntryInfo.ParentName),
6480 GetMDInt(EntryInfo.Line), GetMDInt(EntryInfo.Count),
6481 GetMDInt(E.getOrder())};
6483 // Save this entry in the right position of the ordered entries array.
6484 OrderedEntries[E.getOrder()] = std::make_pair(&E, EntryInfo);
6486 // Add metadata to the named metadata node.
6487 MD->addOperand(MDNode::get(C, Ops));
6490 OffloadInfoManager.actOnTargetRegionEntriesInfo(TargetRegionMetadataEmitter);
6492 // Create function that emits metadata for each device global variable entry;
6493 auto &&DeviceGlobalVarMetadataEmitter =
6494 [&C, &OrderedEntries, &GetMDInt, &GetMDString, MD](
6495 StringRef MangledName,
6496 const OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar &E) {
6497 // Generate metadata for global variables. Each entry of this metadata
6498 // contains:
6499 // - Entry 0 -> Kind of this type of metadata (1).
6500 // - Entry 1 -> Mangled name of the variable.
6501 // - Entry 2 -> Declare target kind.
6502 // - Entry 3 -> Order the entry was created.
6503 // The first element of the metadata node is the kind.
6504 Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDString(MangledName),
6505 GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
6507 // Save this entry in the right position of the ordered entries array.
6508 TargetRegionEntryInfo varInfo(MangledName, 0, 0, 0);
6509 OrderedEntries[E.getOrder()] = std::make_pair(&E, varInfo);
6511 // Add metadata to the named metadata node.
6512 MD->addOperand(MDNode::get(C, Ops));
6515 OffloadInfoManager.actOnDeviceGlobalVarEntriesInfo(
6516 DeviceGlobalVarMetadataEmitter);
6518 for (const auto &E : OrderedEntries) {
6519 assert(E.first && "All ordered entries must exist!");
6520 if (const auto *CE =
6521 dyn_cast<OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion>(
6522 E.first)) {
6523 if (!CE->getID() || !CE->getAddress()) {
6524 // Do not blame the entry if the parent funtion is not emitted.
6525 TargetRegionEntryInfo EntryInfo = E.second;
6526 StringRef FnName = EntryInfo.ParentName;
6527 if (!M.getNamedValue(FnName))
6528 continue;
6529 ErrorFn(EMIT_MD_TARGET_REGION_ERROR, EntryInfo);
6530 continue;
6532 createOffloadEntry(CE->getID(), CE->getAddress(),
6533 /*Size=*/0, CE->getFlags(),
6534 GlobalValue::WeakAnyLinkage);
6535 } else if (const auto *CE = dyn_cast<
6536 OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar>(
6537 E.first)) {
6538 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags =
6539 static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>(
6540 CE->getFlags());
6541 switch (Flags) {
6542 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter:
6543 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo:
6544 if (Config.isTargetDevice() && Config.hasRequiresUnifiedSharedMemory())
6545 continue;
6546 if (!CE->getAddress()) {
6547 ErrorFn(EMIT_MD_DECLARE_TARGET_ERROR, E.second);
6548 continue;
6550 // The vaiable has no definition - no need to add the entry.
6551 if (CE->getVarSize() == 0)
6552 continue;
6553 break;
6554 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink:
6555 assert(((Config.isTargetDevice() && !CE->getAddress()) ||
6556 (!Config.isTargetDevice() && CE->getAddress())) &&
6557 "Declaret target link address is set.");
6558 if (Config.isTargetDevice())
6559 continue;
6560 if (!CE->getAddress()) {
6561 ErrorFn(EMIT_MD_GLOBAL_VAR_LINK_ERROR, TargetRegionEntryInfo());
6562 continue;
6564 break;
6565 default:
6566 break;
6569 // Hidden or internal symbols on the device are not externally visible.
6570 // We should not attempt to register them by creating an offloading
6571 // entry. Indirect variables are handled separately on the device.
6572 if (auto *GV = dyn_cast<GlobalValue>(CE->getAddress()))
6573 if ((GV->hasLocalLinkage() || GV->hasHiddenVisibility()) &&
6574 Flags != OffloadEntriesInfoManager::OMPTargetGlobalVarEntryIndirect)
6575 continue;
6577 // Indirect globals need to use a special name that doesn't match the name
6578 // of the associated host global.
6579 if (Flags == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryIndirect)
6580 createOffloadEntry(CE->getAddress(), CE->getAddress(), CE->getVarSize(),
6581 Flags, CE->getLinkage(), CE->getVarName());
6582 else
6583 createOffloadEntry(CE->getAddress(), CE->getAddress(), CE->getVarSize(),
6584 Flags, CE->getLinkage());
6586 } else {
6587 llvm_unreachable("Unsupported entry kind.");
6592 void TargetRegionEntryInfo::getTargetRegionEntryFnName(
6593 SmallVectorImpl<char> &Name, StringRef ParentName, unsigned DeviceID,
6594 unsigned FileID, unsigned Line, unsigned Count) {
6595 raw_svector_ostream OS(Name);
6596 OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
6597 << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
6598 if (Count)
6599 OS << "_" << Count;
6602 void OffloadEntriesInfoManager::getTargetRegionEntryFnName(
6603 SmallVectorImpl<char> &Name, const TargetRegionEntryInfo &EntryInfo) {
6604 unsigned NewCount = getTargetRegionEntryInfoCount(EntryInfo);
6605 TargetRegionEntryInfo::getTargetRegionEntryFnName(
6606 Name, EntryInfo.ParentName, EntryInfo.DeviceID, EntryInfo.FileID,
6607 EntryInfo.Line, NewCount);
6610 TargetRegionEntryInfo
6611 OpenMPIRBuilder::getTargetEntryUniqueInfo(FileIdentifierInfoCallbackTy CallBack,
6612 StringRef ParentName) {
6613 sys::fs::UniqueID ID;
6614 auto FileIDInfo = CallBack();
6615 if (auto EC = sys::fs::getUniqueID(std::get<0>(FileIDInfo), ID)) {
6616 report_fatal_error(("Unable to get unique ID for file, during "
6617 "getTargetEntryUniqueInfo, error message: " +
6618 EC.message())
6619 .c_str());
6622 return TargetRegionEntryInfo(ParentName, ID.getDevice(), ID.getFile(),
6623 std::get<1>(FileIDInfo));
6626 unsigned OpenMPIRBuilder::getFlagMemberOffset() {
6627 unsigned Offset = 0;
6628 for (uint64_t Remain =
6629 static_cast<std::underlying_type_t<omp::OpenMPOffloadMappingFlags>>(
6630 omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF);
6631 !(Remain & 1); Remain = Remain >> 1)
6632 Offset++;
6633 return Offset;
6636 omp::OpenMPOffloadMappingFlags
6637 OpenMPIRBuilder::getMemberOfFlag(unsigned Position) {
6638 // Rotate by getFlagMemberOffset() bits.
6639 return static_cast<omp::OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
6640 << getFlagMemberOffset());
6643 void OpenMPIRBuilder::setCorrectMemberOfFlag(
6644 omp::OpenMPOffloadMappingFlags &Flags,
6645 omp::OpenMPOffloadMappingFlags MemberOfFlag) {
6646 // If the entry is PTR_AND_OBJ but has not been marked with the special
6647 // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
6648 // marked as MEMBER_OF.
6649 if (static_cast<std::underlying_type_t<omp::OpenMPOffloadMappingFlags>>(
6650 Flags & omp::OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ) &&
6651 static_cast<std::underlying_type_t<omp::OpenMPOffloadMappingFlags>>(
6652 (Flags & omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF) !=
6653 omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF))
6654 return;
6656 // Reset the placeholder value to prepare the flag for the assignment of the
6657 // proper MEMBER_OF value.
6658 Flags &= ~omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF;
6659 Flags |= MemberOfFlag;
6662 Constant *OpenMPIRBuilder::getAddrOfDeclareTargetVar(
6663 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind CaptureClause,
6664 OffloadEntriesInfoManager::OMPTargetDeviceClauseKind DeviceClause,
6665 bool IsDeclaration, bool IsExternallyVisible,
6666 TargetRegionEntryInfo EntryInfo, StringRef MangledName,
6667 std::vector<GlobalVariable *> &GeneratedRefs, bool OpenMPSIMD,
6668 std::vector<Triple> TargetTriple, Type *LlvmPtrTy,
6669 std::function<Constant *()> GlobalInitializer,
6670 std::function<GlobalValue::LinkageTypes()> VariableLinkage) {
6671 // TODO: convert this to utilise the IRBuilder Config rather than
6672 // a passed down argument.
6673 if (OpenMPSIMD)
6674 return nullptr;
6676 if (CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink ||
6677 ((CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo ||
6678 CaptureClause ==
6679 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter) &&
6680 Config.hasRequiresUnifiedSharedMemory())) {
6681 SmallString<64> PtrName;
6683 raw_svector_ostream OS(PtrName);
6684 OS << MangledName;
6685 if (!IsExternallyVisible)
6686 OS << format("_%x", EntryInfo.FileID);
6687 OS << "_decl_tgt_ref_ptr";
6690 Value *Ptr = M.getNamedValue(PtrName);
6692 if (!Ptr) {
6693 GlobalValue *GlobalValue = M.getNamedValue(MangledName);
6694 Ptr = getOrCreateInternalVariable(LlvmPtrTy, PtrName);
6696 auto *GV = cast<GlobalVariable>(Ptr);
6697 GV->setLinkage(GlobalValue::WeakAnyLinkage);
6699 if (!Config.isTargetDevice()) {
6700 if (GlobalInitializer)
6701 GV->setInitializer(GlobalInitializer());
6702 else
6703 GV->setInitializer(GlobalValue);
6706 registerTargetGlobalVariable(
6707 CaptureClause, DeviceClause, IsDeclaration, IsExternallyVisible,
6708 EntryInfo, MangledName, GeneratedRefs, OpenMPSIMD, TargetTriple,
6709 GlobalInitializer, VariableLinkage, LlvmPtrTy, cast<Constant>(Ptr));
6712 return cast<Constant>(Ptr);
6715 return nullptr;
6718 void OpenMPIRBuilder::registerTargetGlobalVariable(
6719 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind CaptureClause,
6720 OffloadEntriesInfoManager::OMPTargetDeviceClauseKind DeviceClause,
6721 bool IsDeclaration, bool IsExternallyVisible,
6722 TargetRegionEntryInfo EntryInfo, StringRef MangledName,
6723 std::vector<GlobalVariable *> &GeneratedRefs, bool OpenMPSIMD,
6724 std::vector<Triple> TargetTriple,
6725 std::function<Constant *()> GlobalInitializer,
6726 std::function<GlobalValue::LinkageTypes()> VariableLinkage, Type *LlvmPtrTy,
6727 Constant *Addr) {
6728 if (DeviceClause != OffloadEntriesInfoManager::OMPTargetDeviceClauseAny ||
6729 (TargetTriple.empty() && !Config.isTargetDevice()))
6730 return;
6732 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags;
6733 StringRef VarName;
6734 int64_t VarSize;
6735 GlobalValue::LinkageTypes Linkage;
6737 if ((CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo ||
6738 CaptureClause ==
6739 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter) &&
6740 !Config.hasRequiresUnifiedSharedMemory()) {
6741 Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo;
6742 VarName = MangledName;
6743 GlobalValue *LlvmVal = M.getNamedValue(VarName);
6745 if (!IsDeclaration)
6746 VarSize = divideCeil(
6747 M.getDataLayout().getTypeSizeInBits(LlvmVal->getValueType()), 8);
6748 else
6749 VarSize = 0;
6750 Linkage = (VariableLinkage) ? VariableLinkage() : LlvmVal->getLinkage();
6752 // This is a workaround carried over from Clang which prevents undesired
6753 // optimisation of internal variables.
6754 if (Config.isTargetDevice() &&
6755 (!IsExternallyVisible || Linkage == GlobalValue::LinkOnceODRLinkage)) {
6756 // Do not create a "ref-variable" if the original is not also available
6757 // on the host.
6758 if (!OffloadInfoManager.hasDeviceGlobalVarEntryInfo(VarName))
6759 return;
6761 std::string RefName = createPlatformSpecificName({VarName, "ref"});
6763 if (!M.getNamedValue(RefName)) {
6764 Constant *AddrRef =
6765 getOrCreateInternalVariable(Addr->getType(), RefName);
6766 auto *GvAddrRef = cast<GlobalVariable>(AddrRef);
6767 GvAddrRef->setConstant(true);
6768 GvAddrRef->setLinkage(GlobalValue::InternalLinkage);
6769 GvAddrRef->setInitializer(Addr);
6770 GeneratedRefs.push_back(GvAddrRef);
6773 } else {
6774 if (CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink)
6775 Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink;
6776 else
6777 Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo;
6779 if (Config.isTargetDevice()) {
6780 VarName = (Addr) ? Addr->getName() : "";
6781 Addr = nullptr;
6782 } else {
6783 Addr = getAddrOfDeclareTargetVar(
6784 CaptureClause, DeviceClause, IsDeclaration, IsExternallyVisible,
6785 EntryInfo, MangledName, GeneratedRefs, OpenMPSIMD, TargetTriple,
6786 LlvmPtrTy, GlobalInitializer, VariableLinkage);
6787 VarName = (Addr) ? Addr->getName() : "";
6789 VarSize = M.getDataLayout().getPointerSize();
6790 Linkage = GlobalValue::WeakAnyLinkage;
6793 OffloadInfoManager.registerDeviceGlobalVarEntryInfo(VarName, Addr, VarSize,
6794 Flags, Linkage);
6797 /// Loads all the offload entries information from the host IR
6798 /// metadata.
6799 void OpenMPIRBuilder::loadOffloadInfoMetadata(Module &M) {
6800 // If we are in target mode, load the metadata from the host IR. This code has
6801 // to match the metadata creation in createOffloadEntriesAndInfoMetadata().
6803 NamedMDNode *MD = M.getNamedMetadata(ompOffloadInfoName);
6804 if (!MD)
6805 return;
6807 for (MDNode *MN : MD->operands()) {
6808 auto &&GetMDInt = [MN](unsigned Idx) {
6809 auto *V = cast<ConstantAsMetadata>(MN->getOperand(Idx));
6810 return cast<ConstantInt>(V->getValue())->getZExtValue();
6813 auto &&GetMDString = [MN](unsigned Idx) {
6814 auto *V = cast<MDString>(MN->getOperand(Idx));
6815 return V->getString();
6818 switch (GetMDInt(0)) {
6819 default:
6820 llvm_unreachable("Unexpected metadata!");
6821 break;
6822 case OffloadEntriesInfoManager::OffloadEntryInfo::
6823 OffloadingEntryInfoTargetRegion: {
6824 TargetRegionEntryInfo EntryInfo(/*ParentName=*/GetMDString(3),
6825 /*DeviceID=*/GetMDInt(1),
6826 /*FileID=*/GetMDInt(2),
6827 /*Line=*/GetMDInt(4),
6828 /*Count=*/GetMDInt(5));
6829 OffloadInfoManager.initializeTargetRegionEntryInfo(EntryInfo,
6830 /*Order=*/GetMDInt(6));
6831 break;
6833 case OffloadEntriesInfoManager::OffloadEntryInfo::
6834 OffloadingEntryInfoDeviceGlobalVar:
6835 OffloadInfoManager.initializeDeviceGlobalVarEntryInfo(
6836 /*MangledName=*/GetMDString(1),
6837 static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>(
6838 /*Flags=*/GetMDInt(2)),
6839 /*Order=*/GetMDInt(3));
6840 break;
6845 void OpenMPIRBuilder::loadOffloadInfoMetadata(StringRef HostFilePath) {
6846 if (HostFilePath.empty())
6847 return;
6849 auto Buf = MemoryBuffer::getFile(HostFilePath);
6850 if (std::error_code Err = Buf.getError()) {
6851 report_fatal_error(("error opening host file from host file path inside of "
6852 "OpenMPIRBuilder: " +
6853 Err.message())
6854 .c_str());
6857 LLVMContext Ctx;
6858 auto M = expectedToErrorOrAndEmitErrors(
6859 Ctx, parseBitcodeFile(Buf.get()->getMemBufferRef(), Ctx));
6860 if (std::error_code Err = M.getError()) {
6861 report_fatal_error(
6862 ("error parsing host file inside of OpenMPIRBuilder: " + Err.message())
6863 .c_str());
6866 loadOffloadInfoMetadata(*M.get());
6869 Function *OpenMPIRBuilder::createRegisterRequires(StringRef Name) {
6870 // Skip the creation of the registration function if this is device codegen
6871 if (Config.isTargetDevice())
6872 return nullptr;
6874 Builder.ClearInsertionPoint();
6876 // Create registration function prototype
6877 auto *RegFnTy = FunctionType::get(Builder.getVoidTy(), {});
6878 auto *RegFn = Function::Create(
6879 RegFnTy, GlobalVariable::LinkageTypes::InternalLinkage, Name, M);
6880 RegFn->setSection(".text.startup");
6881 RegFn->addFnAttr(Attribute::NoInline);
6882 RegFn->addFnAttr(Attribute::NoUnwind);
6884 // Create registration function body
6885 auto *BB = BasicBlock::Create(M.getContext(), "entry", RegFn);
6886 ConstantInt *FlagsVal =
6887 ConstantInt::getSigned(Builder.getInt64Ty(), Config.getRequiresFlags());
6888 Function *RTLRegFn = getOrCreateRuntimeFunctionPtr(
6889 omp::RuntimeFunction::OMPRTL___tgt_register_requires);
6891 Builder.SetInsertPoint(BB);
6892 Builder.CreateCall(RTLRegFn, {FlagsVal});
6893 Builder.CreateRetVoid();
6895 return RegFn;
6898 //===----------------------------------------------------------------------===//
6899 // OffloadEntriesInfoManager
6900 //===----------------------------------------------------------------------===//
6902 bool OffloadEntriesInfoManager::empty() const {
6903 return OffloadEntriesTargetRegion.empty() &&
6904 OffloadEntriesDeviceGlobalVar.empty();
6907 unsigned OffloadEntriesInfoManager::getTargetRegionEntryInfoCount(
6908 const TargetRegionEntryInfo &EntryInfo) const {
6909 auto It = OffloadEntriesTargetRegionCount.find(
6910 getTargetRegionEntryCountKey(EntryInfo));
6911 if (It == OffloadEntriesTargetRegionCount.end())
6912 return 0;
6913 return It->second;
6916 void OffloadEntriesInfoManager::incrementTargetRegionEntryInfoCount(
6917 const TargetRegionEntryInfo &EntryInfo) {
6918 OffloadEntriesTargetRegionCount[getTargetRegionEntryCountKey(EntryInfo)] =
6919 EntryInfo.Count + 1;
6922 /// Initialize target region entry.
6923 void OffloadEntriesInfoManager::initializeTargetRegionEntryInfo(
6924 const TargetRegionEntryInfo &EntryInfo, unsigned Order) {
6925 OffloadEntriesTargetRegion[EntryInfo] =
6926 OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
6927 OMPTargetRegionEntryTargetRegion);
6928 ++OffloadingEntriesNum;
6931 void OffloadEntriesInfoManager::registerTargetRegionEntryInfo(
6932 TargetRegionEntryInfo EntryInfo, Constant *Addr, Constant *ID,
6933 OMPTargetRegionEntryKind Flags) {
6934 assert(EntryInfo.Count == 0 && "expected default EntryInfo");
6936 // Update the EntryInfo with the next available count for this location.
6937 EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo);
6939 // If we are emitting code for a target, the entry is already initialized,
6940 // only has to be registered.
6941 if (OMPBuilder->Config.isTargetDevice()) {
6942 // This could happen if the device compilation is invoked standalone.
6943 if (!hasTargetRegionEntryInfo(EntryInfo)) {
6944 return;
6946 auto &Entry = OffloadEntriesTargetRegion[EntryInfo];
6947 Entry.setAddress(Addr);
6948 Entry.setID(ID);
6949 Entry.setFlags(Flags);
6950 } else {
6951 if (Flags == OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion &&
6952 hasTargetRegionEntryInfo(EntryInfo, /*IgnoreAddressId*/ true))
6953 return;
6954 assert(!hasTargetRegionEntryInfo(EntryInfo) &&
6955 "Target region entry already registered!");
6956 OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
6957 OffloadEntriesTargetRegion[EntryInfo] = Entry;
6958 ++OffloadingEntriesNum;
6960 incrementTargetRegionEntryInfoCount(EntryInfo);
6963 bool OffloadEntriesInfoManager::hasTargetRegionEntryInfo(
6964 TargetRegionEntryInfo EntryInfo, bool IgnoreAddressId) const {
6966 // Update the EntryInfo with the next available count for this location.
6967 EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo);
6969 auto It = OffloadEntriesTargetRegion.find(EntryInfo);
6970 if (It == OffloadEntriesTargetRegion.end()) {
6971 return false;
6973 // Fail if this entry is already registered.
6974 if (!IgnoreAddressId && (It->second.getAddress() || It->second.getID()))
6975 return false;
6976 return true;
6979 void OffloadEntriesInfoManager::actOnTargetRegionEntriesInfo(
6980 const OffloadTargetRegionEntryInfoActTy &Action) {
6981 // Scan all target region entries and perform the provided action.
6982 for (const auto &It : OffloadEntriesTargetRegion) {
6983 Action(It.first, It.second);
6987 void OffloadEntriesInfoManager::initializeDeviceGlobalVarEntryInfo(
6988 StringRef Name, OMPTargetGlobalVarEntryKind Flags, unsigned Order) {
6989 OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
6990 ++OffloadingEntriesNum;
6993 void OffloadEntriesInfoManager::registerDeviceGlobalVarEntryInfo(
6994 StringRef VarName, Constant *Addr, int64_t VarSize,
6995 OMPTargetGlobalVarEntryKind Flags, GlobalValue::LinkageTypes Linkage) {
6996 if (OMPBuilder->Config.isTargetDevice()) {
6997 // This could happen if the device compilation is invoked standalone.
6998 if (!hasDeviceGlobalVarEntryInfo(VarName))
6999 return;
7000 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
7001 if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
7002 if (Entry.getVarSize() == 0) {
7003 Entry.setVarSize(VarSize);
7004 Entry.setLinkage(Linkage);
7006 return;
7008 Entry.setVarSize(VarSize);
7009 Entry.setLinkage(Linkage);
7010 Entry.setAddress(Addr);
7011 } else {
7012 if (hasDeviceGlobalVarEntryInfo(VarName)) {
7013 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
7014 assert(Entry.isValid() && Entry.getFlags() == Flags &&
7015 "Entry not initialized!");
7016 if (Entry.getVarSize() == 0) {
7017 Entry.setVarSize(VarSize);
7018 Entry.setLinkage(Linkage);
7020 return;
7022 if (Flags == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryIndirect)
7023 OffloadEntriesDeviceGlobalVar.try_emplace(VarName, OffloadingEntriesNum,
7024 Addr, VarSize, Flags, Linkage,
7025 VarName.str());
7026 else
7027 OffloadEntriesDeviceGlobalVar.try_emplace(
7028 VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage, "");
7029 ++OffloadingEntriesNum;
7033 void OffloadEntriesInfoManager::actOnDeviceGlobalVarEntriesInfo(
7034 const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
7035 // Scan all target region entries and perform the provided action.
7036 for (const auto &E : OffloadEntriesDeviceGlobalVar)
7037 Action(E.getKey(), E.getValue());
7040 //===----------------------------------------------------------------------===//
7041 // CanonicalLoopInfo
7042 //===----------------------------------------------------------------------===//
7044 void CanonicalLoopInfo::collectControlBlocks(
7045 SmallVectorImpl<BasicBlock *> &BBs) {
7046 // We only count those BBs as control block for which we do not need to
7047 // reverse the CFG, i.e. not the loop body which can contain arbitrary control
7048 // flow. For consistency, this also means we do not add the Body block, which
7049 // is just the entry to the body code.
7050 BBs.reserve(BBs.size() + 6);
7051 BBs.append({getPreheader(), Header, Cond, Latch, Exit, getAfter()});
7054 BasicBlock *CanonicalLoopInfo::getPreheader() const {
7055 assert(isValid() && "Requires a valid canonical loop");
7056 for (BasicBlock *Pred : predecessors(Header)) {
7057 if (Pred != Latch)
7058 return Pred;
7060 llvm_unreachable("Missing preheader");
7063 void CanonicalLoopInfo::setTripCount(Value *TripCount) {
7064 assert(isValid() && "Requires a valid canonical loop");
7066 Instruction *CmpI = &getCond()->front();
7067 assert(isa<CmpInst>(CmpI) && "First inst must compare IV with TripCount");
7068 CmpI->setOperand(1, TripCount);
7070 #ifndef NDEBUG
7071 assertOK();
7072 #endif
7075 void CanonicalLoopInfo::mapIndVar(
7076 llvm::function_ref<Value *(Instruction *)> Updater) {
7077 assert(isValid() && "Requires a valid canonical loop");
7079 Instruction *OldIV = getIndVar();
7081 // Record all uses excluding those introduced by the updater. Uses by the
7082 // CanonicalLoopInfo itself to keep track of the number of iterations are
7083 // excluded.
7084 SmallVector<Use *> ReplacableUses;
7085 for (Use &U : OldIV->uses()) {
7086 auto *User = dyn_cast<Instruction>(U.getUser());
7087 if (!User)
7088 continue;
7089 if (User->getParent() == getCond())
7090 continue;
7091 if (User->getParent() == getLatch())
7092 continue;
7093 ReplacableUses.push_back(&U);
7096 // Run the updater that may introduce new uses
7097 Value *NewIV = Updater(OldIV);
7099 // Replace the old uses with the value returned by the updater.
7100 for (Use *U : ReplacableUses)
7101 U->set(NewIV);
7103 #ifndef NDEBUG
7104 assertOK();
7105 #endif
7108 void CanonicalLoopInfo::assertOK() const {
7109 #ifndef NDEBUG
7110 // No constraints if this object currently does not describe a loop.
7111 if (!isValid())
7112 return;
7114 BasicBlock *Preheader = getPreheader();
7115 BasicBlock *Body = getBody();
7116 BasicBlock *After = getAfter();
7118 // Verify standard control-flow we use for OpenMP loops.
7119 assert(Preheader);
7120 assert(isa<BranchInst>(Preheader->getTerminator()) &&
7121 "Preheader must terminate with unconditional branch");
7122 assert(Preheader->getSingleSuccessor() == Header &&
7123 "Preheader must jump to header");
7125 assert(Header);
7126 assert(isa<BranchInst>(Header->getTerminator()) &&
7127 "Header must terminate with unconditional branch");
7128 assert(Header->getSingleSuccessor() == Cond &&
7129 "Header must jump to exiting block");
7131 assert(Cond);
7132 assert(Cond->getSinglePredecessor() == Header &&
7133 "Exiting block only reachable from header");
7135 assert(isa<BranchInst>(Cond->getTerminator()) &&
7136 "Exiting block must terminate with conditional branch");
7137 assert(size(successors(Cond)) == 2 &&
7138 "Exiting block must have two successors");
7139 assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(0) == Body &&
7140 "Exiting block's first successor jump to the body");
7141 assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(1) == Exit &&
7142 "Exiting block's second successor must exit the loop");
7144 assert(Body);
7145 assert(Body->getSinglePredecessor() == Cond &&
7146 "Body only reachable from exiting block");
7147 assert(!isa<PHINode>(Body->front()));
7149 assert(Latch);
7150 assert(isa<BranchInst>(Latch->getTerminator()) &&
7151 "Latch must terminate with unconditional branch");
7152 assert(Latch->getSingleSuccessor() == Header && "Latch must jump to header");
7153 // TODO: To support simple redirecting of the end of the body code that has
7154 // multiple; introduce another auxiliary basic block like preheader and after.
7155 assert(Latch->getSinglePredecessor() != nullptr);
7156 assert(!isa<PHINode>(Latch->front()));
7158 assert(Exit);
7159 assert(isa<BranchInst>(Exit->getTerminator()) &&
7160 "Exit block must terminate with unconditional branch");
7161 assert(Exit->getSingleSuccessor() == After &&
7162 "Exit block must jump to after block");
7164 assert(After);
7165 assert(After->getSinglePredecessor() == Exit &&
7166 "After block only reachable from exit block");
7167 assert(After->empty() || !isa<PHINode>(After->front()));
7169 Instruction *IndVar = getIndVar();
7170 assert(IndVar && "Canonical induction variable not found?");
7171 assert(isa<IntegerType>(IndVar->getType()) &&
7172 "Induction variable must be an integer");
7173 assert(cast<PHINode>(IndVar)->getParent() == Header &&
7174 "Induction variable must be a PHI in the loop header");
7175 assert(cast<PHINode>(IndVar)->getIncomingBlock(0) == Preheader);
7176 assert(
7177 cast<ConstantInt>(cast<PHINode>(IndVar)->getIncomingValue(0))->isZero());
7178 assert(cast<PHINode>(IndVar)->getIncomingBlock(1) == Latch);
7180 auto *NextIndVar = cast<PHINode>(IndVar)->getIncomingValue(1);
7181 assert(cast<Instruction>(NextIndVar)->getParent() == Latch);
7182 assert(cast<BinaryOperator>(NextIndVar)->getOpcode() == BinaryOperator::Add);
7183 assert(cast<BinaryOperator>(NextIndVar)->getOperand(0) == IndVar);
7184 assert(cast<ConstantInt>(cast<BinaryOperator>(NextIndVar)->getOperand(1))
7185 ->isOne());
7187 Value *TripCount = getTripCount();
7188 assert(TripCount && "Loop trip count not found?");
7189 assert(IndVar->getType() == TripCount->getType() &&
7190 "Trip count and induction variable must have the same type");
7192 auto *CmpI = cast<CmpInst>(&Cond->front());
7193 assert(CmpI->getPredicate() == CmpInst::ICMP_ULT &&
7194 "Exit condition must be a signed less-than comparison");
7195 assert(CmpI->getOperand(0) == IndVar &&
7196 "Exit condition must compare the induction variable");
7197 assert(CmpI->getOperand(1) == TripCount &&
7198 "Exit condition must compare with the trip count");
7199 #endif
7202 void CanonicalLoopInfo::invalidate() {
7203 Header = nullptr;
7204 Cond = nullptr;
7205 Latch = nullptr;
7206 Exit = nullptr;