1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Linker/IRMover.h"
10 #include "LinkDiagnosticInfo.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/IR/AutoUpgrade.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/DebugInfoMetadata.h"
17 #include "llvm/IR/DiagnosticPrinter.h"
18 #include "llvm/IR/Function.h"
19 #include "llvm/IR/GVMaterializer.h"
20 #include "llvm/IR/GlobalValue.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/PseudoProbe.h"
26 #include "llvm/IR/TypeFinder.h"
27 #include "llvm/Object/ModuleSymbolTable.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/TargetParser/Triple.h"
31 #include "llvm/Transforms/Utils/ValueMapper.h"
36 //===----------------------------------------------------------------------===//
37 // TypeMap implementation.
38 //===----------------------------------------------------------------------===//
41 class TypeMapTy
: public ValueMapTypeRemapper
{
42 /// This is a mapping from a source type to a destination type to use.
43 DenseMap
<Type
*, Type
*> MappedTypes
;
45 /// When checking to see if two subgraphs are isomorphic, we speculatively
46 /// add types to MappedTypes, but keep track of them here in case we need to
48 SmallVector
<Type
*, 16> SpeculativeTypes
;
50 SmallVector
<StructType
*, 16> SpeculativeDstOpaqueTypes
;
52 /// This is a list of non-opaque structs in the source module that are mapped
53 /// to an opaque struct in the destination module.
54 SmallVector
<StructType
*, 16> SrcDefinitionsToResolve
;
56 /// This is the set of opaque types in the destination modules who are
57 /// getting a body from the source module.
58 SmallPtrSet
<StructType
*, 16> DstResolvedOpaqueTypes
;
61 TypeMapTy(IRMover::IdentifiedStructTypeSet
&DstStructTypesSet
)
62 : DstStructTypesSet(DstStructTypesSet
) {}
64 IRMover::IdentifiedStructTypeSet
&DstStructTypesSet
;
65 /// Indicate that the specified type in the destination module is conceptually
66 /// equivalent to the specified type in the source module.
67 void addTypeMapping(Type
*DstTy
, Type
*SrcTy
);
69 /// Produce a body for an opaque type in the dest module from a type
70 /// definition in the source module.
71 void linkDefinedTypeBodies();
73 /// Return the mapped type to use for the specified input type from the
75 Type
*get(Type
*SrcTy
);
76 Type
*get(Type
*SrcTy
, SmallPtrSet
<StructType
*, 8> &Visited
);
78 void finishType(StructType
*DTy
, StructType
*STy
, ArrayRef
<Type
*> ETypes
);
80 FunctionType
*get(FunctionType
*T
) {
81 return cast
<FunctionType
>(get((Type
*)T
));
85 Type
*remapType(Type
*SrcTy
) override
{ return get(SrcTy
); }
87 bool areTypesIsomorphic(Type
*DstTy
, Type
*SrcTy
);
91 void TypeMapTy::addTypeMapping(Type
*DstTy
, Type
*SrcTy
) {
92 assert(SpeculativeTypes
.empty());
93 assert(SpeculativeDstOpaqueTypes
.empty());
95 // Check to see if these types are recursively isomorphic and establish a
96 // mapping between them if so.
97 if (!areTypesIsomorphic(DstTy
, SrcTy
)) {
98 // Oops, they aren't isomorphic. Just discard this request by rolling out
99 // any speculative mappings we've established.
100 for (Type
*Ty
: SpeculativeTypes
)
101 MappedTypes
.erase(Ty
);
103 SrcDefinitionsToResolve
.resize(SrcDefinitionsToResolve
.size() -
104 SpeculativeDstOpaqueTypes
.size());
105 for (StructType
*Ty
: SpeculativeDstOpaqueTypes
)
106 DstResolvedOpaqueTypes
.erase(Ty
);
108 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
109 // and all its descendants to lower amount of renaming in LLVM context
110 // Renaming occurs because we load all source modules to the same context
111 // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
112 // As a result we may get several different types in the destination
113 // module, which are in fact the same.
114 for (Type
*Ty
: SpeculativeTypes
)
115 if (auto *STy
= dyn_cast
<StructType
>(Ty
))
119 SpeculativeTypes
.clear();
120 SpeculativeDstOpaqueTypes
.clear();
123 /// Recursively walk this pair of types, returning true if they are isomorphic,
124 /// false if they are not.
125 bool TypeMapTy::areTypesIsomorphic(Type
*DstTy
, Type
*SrcTy
) {
126 // Two types with differing kinds are clearly not isomorphic.
127 if (DstTy
->getTypeID() != SrcTy
->getTypeID())
130 // If we have an entry in the MappedTypes table, then we have our answer.
131 Type
*&Entry
= MappedTypes
[SrcTy
];
133 return Entry
== DstTy
;
135 // Two identical types are clearly isomorphic. Remember this
136 // non-speculatively.
137 if (DstTy
== SrcTy
) {
142 // Okay, we have two types with identical kinds that we haven't seen before.
144 // If this is an opaque struct type, special case it.
145 if (StructType
*SSTy
= dyn_cast
<StructType
>(SrcTy
)) {
146 // Mapping an opaque type to any struct, just keep the dest struct.
147 if (SSTy
->isOpaque()) {
149 SpeculativeTypes
.push_back(SrcTy
);
153 // Mapping a non-opaque source type to an opaque dest. If this is the first
154 // type that we're mapping onto this destination type then we succeed. Keep
155 // the dest, but fill it in later. If this is the second (different) type
156 // that we're trying to map onto the same opaque type then we fail.
157 if (cast
<StructType
>(DstTy
)->isOpaque()) {
158 // We can only map one source type onto the opaque destination type.
159 if (!DstResolvedOpaqueTypes
.insert(cast
<StructType
>(DstTy
)).second
)
161 SrcDefinitionsToResolve
.push_back(SSTy
);
162 SpeculativeTypes
.push_back(SrcTy
);
163 SpeculativeDstOpaqueTypes
.push_back(cast
<StructType
>(DstTy
));
169 // If the number of subtypes disagree between the two types, then we fail.
170 if (SrcTy
->getNumContainedTypes() != DstTy
->getNumContainedTypes())
173 // Fail if any of the extra properties (e.g. array size) of the type disagree.
174 if (isa
<IntegerType
>(DstTy
))
175 return false; // bitwidth disagrees.
176 if (PointerType
*PT
= dyn_cast
<PointerType
>(DstTy
)) {
177 if (PT
->getAddressSpace() != cast
<PointerType
>(SrcTy
)->getAddressSpace())
179 } else if (FunctionType
*FT
= dyn_cast
<FunctionType
>(DstTy
)) {
180 if (FT
->isVarArg() != cast
<FunctionType
>(SrcTy
)->isVarArg())
182 } else if (StructType
*DSTy
= dyn_cast
<StructType
>(DstTy
)) {
183 StructType
*SSTy
= cast
<StructType
>(SrcTy
);
184 if (DSTy
->isLiteral() != SSTy
->isLiteral() ||
185 DSTy
->isPacked() != SSTy
->isPacked())
187 } else if (auto *DArrTy
= dyn_cast
<ArrayType
>(DstTy
)) {
188 if (DArrTy
->getNumElements() != cast
<ArrayType
>(SrcTy
)->getNumElements())
190 } else if (auto *DVecTy
= dyn_cast
<VectorType
>(DstTy
)) {
191 if (DVecTy
->getElementCount() != cast
<VectorType
>(SrcTy
)->getElementCount())
195 // Otherwise, we speculate that these two types will line up and recursively
196 // check the subelements.
198 SpeculativeTypes
.push_back(SrcTy
);
200 for (unsigned I
= 0, E
= SrcTy
->getNumContainedTypes(); I
!= E
; ++I
)
201 if (!areTypesIsomorphic(DstTy
->getContainedType(I
),
202 SrcTy
->getContainedType(I
)))
205 // If everything seems to have lined up, then everything is great.
209 void TypeMapTy::linkDefinedTypeBodies() {
210 SmallVector
<Type
*, 16> Elements
;
211 for (StructType
*SrcSTy
: SrcDefinitionsToResolve
) {
212 StructType
*DstSTy
= cast
<StructType
>(MappedTypes
[SrcSTy
]);
213 assert(DstSTy
->isOpaque());
215 // Map the body of the source type over to a new body for the dest type.
216 Elements
.resize(SrcSTy
->getNumElements());
217 for (unsigned I
= 0, E
= Elements
.size(); I
!= E
; ++I
)
218 Elements
[I
] = get(SrcSTy
->getElementType(I
));
220 DstSTy
->setBody(Elements
, SrcSTy
->isPacked());
221 DstStructTypesSet
.switchToNonOpaque(DstSTy
);
223 SrcDefinitionsToResolve
.clear();
224 DstResolvedOpaqueTypes
.clear();
227 void TypeMapTy::finishType(StructType
*DTy
, StructType
*STy
,
228 ArrayRef
<Type
*> ETypes
) {
229 DTy
->setBody(ETypes
, STy
->isPacked());
232 if (STy
->hasName()) {
233 SmallString
<16> TmpName
= STy
->getName();
235 DTy
->setName(TmpName
);
238 DstStructTypesSet
.addNonOpaque(DTy
);
241 Type
*TypeMapTy::get(Type
*Ty
) {
242 SmallPtrSet
<StructType
*, 8> Visited
;
243 return get(Ty
, Visited
);
246 Type
*TypeMapTy::get(Type
*Ty
, SmallPtrSet
<StructType
*, 8> &Visited
) {
247 // If we already have an entry for this type, return it.
248 Type
**Entry
= &MappedTypes
[Ty
];
252 // These are types that LLVM itself will unique.
253 bool IsUniqued
= !isa
<StructType
>(Ty
) || cast
<StructType
>(Ty
)->isLiteral();
257 for (auto &Pair
: MappedTypes
) {
258 assert(!(Pair
.first
!= Ty
&& Pair
.second
== Ty
) &&
259 "mapping to a source type");
263 if (!Visited
.insert(cast
<StructType
>(Ty
)).second
) {
264 StructType
*DTy
= StructType::create(Ty
->getContext());
269 // If this is not a recursive type, then just map all of the elements and
270 // then rebuild the type from inside out.
271 SmallVector
<Type
*, 4> ElementTypes
;
273 // If there are no element types to map, then the type is itself. This is
274 // true for the anonymous {} struct, things like 'float', integers, etc.
275 if (Ty
->getNumContainedTypes() == 0 && IsUniqued
)
278 // Remap all of the elements, keeping track of whether any of them change.
279 bool AnyChange
= false;
280 ElementTypes
.resize(Ty
->getNumContainedTypes());
281 for (unsigned I
= 0, E
= Ty
->getNumContainedTypes(); I
!= E
; ++I
) {
282 ElementTypes
[I
] = get(Ty
->getContainedType(I
), Visited
);
283 AnyChange
|= ElementTypes
[I
] != Ty
->getContainedType(I
);
286 // If we found our type while recursively processing stuff, just use it.
287 Entry
= &MappedTypes
[Ty
];
289 if (auto *DTy
= dyn_cast
<StructType
>(*Entry
)) {
290 if (DTy
->isOpaque()) {
291 auto *STy
= cast
<StructType
>(Ty
);
292 finishType(DTy
, STy
, ElementTypes
);
298 // If all of the element types mapped directly over and the type is not
299 // a named struct, then the type is usable as-is.
300 if (!AnyChange
&& IsUniqued
)
303 // Otherwise, rebuild a modified type.
304 switch (Ty
->getTypeID()) {
306 llvm_unreachable("unknown derived type to remap");
307 case Type::ArrayTyID
:
308 return *Entry
= ArrayType::get(ElementTypes
[0],
309 cast
<ArrayType
>(Ty
)->getNumElements());
310 case Type::ScalableVectorTyID
:
311 case Type::FixedVectorTyID
:
312 return *Entry
= VectorType::get(ElementTypes
[0],
313 cast
<VectorType
>(Ty
)->getElementCount());
314 case Type::PointerTyID
:
315 return *Entry
= PointerType::get(ElementTypes
[0],
316 cast
<PointerType
>(Ty
)->getAddressSpace());
317 case Type::FunctionTyID
:
318 return *Entry
= FunctionType::get(ElementTypes
[0],
319 ArrayRef(ElementTypes
).slice(1),
320 cast
<FunctionType
>(Ty
)->isVarArg());
321 case Type::StructTyID
: {
322 auto *STy
= cast
<StructType
>(Ty
);
323 bool IsPacked
= STy
->isPacked();
325 return *Entry
= StructType::get(Ty
->getContext(), ElementTypes
, IsPacked
);
327 // If the type is opaque, we can just use it directly.
328 if (STy
->isOpaque()) {
329 DstStructTypesSet
.addOpaque(STy
);
333 if (StructType
*OldT
=
334 DstStructTypesSet
.findNonOpaque(ElementTypes
, IsPacked
)) {
336 return *Entry
= OldT
;
340 DstStructTypesSet
.addNonOpaque(STy
);
344 StructType
*DTy
= StructType::create(Ty
->getContext());
345 finishType(DTy
, STy
, ElementTypes
);
351 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity
,
353 : DiagnosticInfo(DK_Linker
, Severity
), Msg(Msg
) {}
354 void LinkDiagnosticInfo::print(DiagnosticPrinter
&DP
) const { DP
<< Msg
; }
356 //===----------------------------------------------------------------------===//
357 // IRLinker implementation.
358 //===----------------------------------------------------------------------===//
363 /// Creates prototypes for functions that are lazily linked on the fly. This
364 /// speeds up linking for modules with many/ lazily linked functions of which
366 class GlobalValueMaterializer final
: public ValueMaterializer
{
367 IRLinker
&TheIRLinker
;
370 GlobalValueMaterializer(IRLinker
&TheIRLinker
) : TheIRLinker(TheIRLinker
) {}
371 Value
*materialize(Value
*V
) override
;
374 class LocalValueMaterializer final
: public ValueMaterializer
{
375 IRLinker
&TheIRLinker
;
378 LocalValueMaterializer(IRLinker
&TheIRLinker
) : TheIRLinker(TheIRLinker
) {}
379 Value
*materialize(Value
*V
) override
;
382 /// Type of the Metadata map in \a ValueToValueMapTy.
383 typedef DenseMap
<const Metadata
*, TrackingMDRef
> MDMapT
;
385 /// This is responsible for keeping track of the state used for moving data
386 /// from SrcM to DstM.
389 std::unique_ptr
<Module
> SrcM
;
391 /// See IRMover::move().
392 IRMover::LazyCallback AddLazyFor
;
395 GlobalValueMaterializer GValMaterializer
;
396 LocalValueMaterializer LValMaterializer
;
398 /// A metadata map that's shared between IRLinker instances.
401 /// Mapping of values from what they used to be in Src, to what they are now
402 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
403 /// due to the use of Value handles which the Linker doesn't actually need,
404 /// but this allows us to reuse the ValueMapper code.
405 ValueToValueMapTy ValueMap
;
406 ValueToValueMapTy IndirectSymbolValueMap
;
408 DenseSet
<GlobalValue
*> ValuesToLink
;
409 std::vector
<GlobalValue
*> Worklist
;
410 std::vector
<std::pair
<GlobalValue
*, Value
*>> RAUWWorklist
;
412 /// Set of globals with eagerly copied metadata that may require remapping.
413 /// This remapping is performed after metadata linking.
414 DenseSet
<GlobalObject
*> UnmappedMetadata
;
416 void maybeAdd(GlobalValue
*GV
) {
417 if (ValuesToLink
.insert(GV
).second
)
418 Worklist
.push_back(GV
);
421 /// Whether we are importing globals for ThinLTO, as opposed to linking the
422 /// source module. If this flag is set, it means that we can rely on some
423 /// other object file to define any non-GlobalValue entities defined by the
424 /// source module. This currently causes us to not link retained types in
425 /// debug info metadata and module inline asm.
426 bool IsPerformingImport
;
428 /// Set to true when all global value body linking is complete (including
429 /// lazy linking). Used to prevent metadata linking from creating new
431 bool DoneLinkingBodies
= false;
433 /// The Error encountered during materialization. We use an Optional here to
434 /// avoid needing to manage an unconsumed success value.
435 std::optional
<Error
> FoundError
;
436 void setError(Error E
) {
438 FoundError
= std::move(E
);
441 /// Most of the errors produced by this module are inconvertible StringErrors.
442 /// This convenience function lets us return one of those more easily.
443 Error
stringErr(const Twine
&T
) {
444 return make_error
<StringError
>(T
, inconvertibleErrorCode());
447 /// Entry point for mapping values and alternate context for mapping aliases.
449 unsigned IndirectSymbolMCID
;
451 /// Handles cloning of a global values from the source module into
452 /// the destination module, including setting the attributes and visibility.
453 GlobalValue
*copyGlobalValueProto(const GlobalValue
*SGV
, bool ForDefinition
);
455 void emitWarning(const Twine
&Message
) {
456 SrcM
->getContext().diagnose(LinkDiagnosticInfo(DS_Warning
, Message
));
459 /// Given a global in the source module, return the global in the
460 /// destination module that is being linked to, if any.
461 GlobalValue
*getLinkedToGlobal(const GlobalValue
*SrcGV
) {
462 // If the source has no name it can't link. If it has local linkage,
463 // there is no name match-up going on.
464 if (!SrcGV
->hasName() || SrcGV
->hasLocalLinkage())
467 // Otherwise see if we have a match in the destination module's symtab.
468 GlobalValue
*DGV
= DstM
.getNamedValue(SrcGV
->getName());
472 // If we found a global with the same name in the dest module, but it has
473 // internal linkage, we are really not doing any linkage here.
474 if (DGV
->hasLocalLinkage())
477 // If we found an intrinsic declaration with mismatching prototypes, we
478 // probably had a nameclash. Don't use that version.
479 if (auto *FDGV
= dyn_cast
<Function
>(DGV
))
480 if (FDGV
->isIntrinsic())
481 if (const auto *FSrcGV
= dyn_cast
<Function
>(SrcGV
))
482 if (FDGV
->getFunctionType() != TypeMap
.get(FSrcGV
->getFunctionType()))
485 // Otherwise, we do in fact link to the destination global.
489 void computeTypeMapping();
491 Expected
<Constant
*> linkAppendingVarProto(GlobalVariable
*DstGV
,
492 const GlobalVariable
*SrcGV
);
494 /// Given the GlobaValue \p SGV in the source module, and the matching
495 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
496 /// into the destination module.
498 /// Note this code may call the client-provided \p AddLazyFor.
499 bool shouldLink(GlobalValue
*DGV
, GlobalValue
&SGV
);
500 Expected
<Constant
*> linkGlobalValueProto(GlobalValue
*GV
,
501 bool ForIndirectSymbol
);
503 Error
linkModuleFlagsMetadata();
505 void linkGlobalVariable(GlobalVariable
&Dst
, GlobalVariable
&Src
);
506 Error
linkFunctionBody(Function
&Dst
, Function
&Src
);
507 void linkAliasAliasee(GlobalAlias
&Dst
, GlobalAlias
&Src
);
508 void linkIFuncResolver(GlobalIFunc
&Dst
, GlobalIFunc
&Src
);
509 Error
linkGlobalValueBody(GlobalValue
&Dst
, GlobalValue
&Src
);
511 /// Replace all types in the source AttributeList with the
512 /// corresponding destination type.
513 AttributeList
mapAttributeTypes(LLVMContext
&C
, AttributeList Attrs
);
515 /// Functions that take care of cloning a specific global value type
516 /// into the destination module.
517 GlobalVariable
*copyGlobalVariableProto(const GlobalVariable
*SGVar
);
518 Function
*copyFunctionProto(const Function
*SF
);
519 GlobalValue
*copyIndirectSymbolProto(const GlobalValue
*SGV
);
521 /// Perform "replace all uses with" operations. These work items need to be
522 /// performed as part of materialization, but we postpone them to happen after
523 /// materialization is done. The materializer called by ValueMapper is not
524 /// expected to delete constants, as ValueMapper is holding pointers to some
525 /// of them, but constant destruction may be indirectly triggered by RAUW.
526 /// Hence, the need to move this out of the materialization call chain.
527 void flushRAUWWorklist();
529 /// When importing for ThinLTO, prevent importing of types listed on
530 /// the DICompileUnit that we don't need a copy of in the importing
532 void prepareCompileUnitsForImport();
533 void linkNamedMDNodes();
535 /// Update attributes while linking.
536 void updateAttributes(GlobalValue
&GV
);
539 IRLinker(Module
&DstM
, MDMapT
&SharedMDs
,
540 IRMover::IdentifiedStructTypeSet
&Set
, std::unique_ptr
<Module
> SrcM
,
541 ArrayRef
<GlobalValue
*> ValuesToLink
,
542 IRMover::LazyCallback AddLazyFor
, bool IsPerformingImport
)
543 : DstM(DstM
), SrcM(std::move(SrcM
)), AddLazyFor(std::move(AddLazyFor
)),
544 TypeMap(Set
), GValMaterializer(*this), LValMaterializer(*this),
545 SharedMDs(SharedMDs
), IsPerformingImport(IsPerformingImport
),
546 Mapper(ValueMap
, RF_ReuseAndMutateDistinctMDs
| RF_IgnoreMissingLocals
,
547 &TypeMap
, &GValMaterializer
),
548 IndirectSymbolMCID(Mapper
.registerAlternateMappingContext(
549 IndirectSymbolValueMap
, &LValMaterializer
)) {
550 ValueMap
.getMDMap() = std::move(SharedMDs
);
551 for (GlobalValue
*GV
: ValuesToLink
)
553 if (IsPerformingImport
)
554 prepareCompileUnitsForImport();
556 ~IRLinker() { SharedMDs
= std::move(*ValueMap
.getMDMap()); }
559 Value
*materialize(Value
*V
, bool ForIndirectSymbol
);
563 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
564 /// table. This is good for all clients except for us. Go through the trouble
565 /// to force this back.
566 static void forceRenaming(GlobalValue
*GV
, StringRef Name
) {
567 // If the global doesn't force its name or if it already has the right name,
568 // there is nothing for us to do.
569 if (GV
->hasLocalLinkage() || GV
->getName() == Name
)
572 Module
*M
= GV
->getParent();
574 // If there is a conflict, rename the conflict.
575 if (GlobalValue
*ConflictGV
= M
->getNamedValue(Name
)) {
576 GV
->takeName(ConflictGV
);
577 ConflictGV
->setName(Name
); // This will cause ConflictGV to get renamed
578 assert(ConflictGV
->getName() != Name
&& "forceRenaming didn't work");
580 GV
->setName(Name
); // Force the name back
584 Value
*GlobalValueMaterializer::materialize(Value
*SGV
) {
585 return TheIRLinker
.materialize(SGV
, false);
588 Value
*LocalValueMaterializer::materialize(Value
*SGV
) {
589 return TheIRLinker
.materialize(SGV
, true);
592 Value
*IRLinker::materialize(Value
*V
, bool ForIndirectSymbol
) {
593 auto *SGV
= dyn_cast
<GlobalValue
>(V
);
597 // When linking a global from other modules than source & dest, skip
598 // materializing it because it would be mapped later when its containing
599 // module is linked. Linking it now would potentially pull in many types that
600 // may not be mapped properly.
601 if (SGV
->getParent() != &DstM
&& SGV
->getParent() != SrcM
.get())
604 Expected
<Constant
*> NewProto
= linkGlobalValueProto(SGV
, ForIndirectSymbol
);
606 setError(NewProto
.takeError());
612 GlobalValue
*New
= dyn_cast
<GlobalValue
>(*NewProto
);
616 // If we already created the body, just return.
617 if (auto *F
= dyn_cast
<Function
>(New
)) {
618 if (!F
->isDeclaration())
620 } else if (auto *V
= dyn_cast
<GlobalVariable
>(New
)) {
621 if (V
->hasInitializer() || V
->hasAppendingLinkage())
623 } else if (auto *GA
= dyn_cast
<GlobalAlias
>(New
)) {
624 if (GA
->getAliasee())
626 } else if (auto *GI
= dyn_cast
<GlobalIFunc
>(New
)) {
627 if (GI
->getResolver())
630 llvm_unreachable("Invalid GlobalValue type");
633 // If the global is being linked for an indirect symbol, it may have already
634 // been scheduled to satisfy a regular symbol. Similarly, a global being linked
635 // for a regular symbol may have already been scheduled for an indirect
636 // symbol. Check for these cases by looking in the other value map and
637 // confirming the same value has been scheduled. If there is an entry in the
638 // ValueMap but the value is different, it means that the value already had a
639 // definition in the destination module (linkonce for instance), but we need a
640 // new definition for the indirect symbol ("New" will be different).
641 if ((ForIndirectSymbol
&& ValueMap
.lookup(SGV
) == New
) ||
642 (!ForIndirectSymbol
&& IndirectSymbolValueMap
.lookup(SGV
) == New
))
645 if (ForIndirectSymbol
|| shouldLink(New
, *SGV
))
646 setError(linkGlobalValueBody(*New
, *SGV
));
648 updateAttributes(*New
);
652 /// Loop through the global variables in the src module and merge them into the
654 GlobalVariable
*IRLinker::copyGlobalVariableProto(const GlobalVariable
*SGVar
) {
655 // No linking to be performed or linking from the source: simply create an
656 // identical version of the symbol over in the dest module... the
657 // initializer will be filled in later by LinkGlobalInits.
658 GlobalVariable
*NewDGV
=
659 new GlobalVariable(DstM
, TypeMap
.get(SGVar
->getValueType()),
660 SGVar
->isConstant(), GlobalValue::ExternalLinkage
,
661 /*init*/ nullptr, SGVar
->getName(),
662 /*insertbefore*/ nullptr, SGVar
->getThreadLocalMode(),
663 SGVar
->getAddressSpace());
664 NewDGV
->setAlignment(SGVar
->getAlign());
665 NewDGV
->copyAttributesFrom(SGVar
);
669 AttributeList
IRLinker::mapAttributeTypes(LLVMContext
&C
, AttributeList Attrs
) {
670 for (unsigned i
= 0; i
< Attrs
.getNumAttrSets(); ++i
) {
671 for (int AttrIdx
= Attribute::FirstTypeAttr
;
672 AttrIdx
<= Attribute::LastTypeAttr
; AttrIdx
++) {
673 Attribute::AttrKind TypedAttr
= (Attribute::AttrKind
)AttrIdx
;
674 if (Attrs
.hasAttributeAtIndex(i
, TypedAttr
)) {
676 Attrs
.getAttributeAtIndex(i
, TypedAttr
).getValueAsType()) {
677 Attrs
= Attrs
.replaceAttributeTypeAtIndex(C
, i
, TypedAttr
,
687 /// Link the function in the source module into the destination module if
688 /// needed, setting up mapping information.
689 Function
*IRLinker::copyFunctionProto(const Function
*SF
) {
690 // If there is no linkage to be performed or we are linking from the source,
692 auto *F
= Function::Create(TypeMap
.get(SF
->getFunctionType()),
693 GlobalValue::ExternalLinkage
,
694 SF
->getAddressSpace(), SF
->getName(), &DstM
);
695 F
->copyAttributesFrom(SF
);
696 F
->setAttributes(mapAttributeTypes(F
->getContext(), F
->getAttributes()));
700 /// Set up prototypes for any indirect symbols that come over from the source
702 GlobalValue
*IRLinker::copyIndirectSymbolProto(const GlobalValue
*SGV
) {
703 // If there is no linkage to be performed or we're linking from the source,
705 auto *Ty
= TypeMap
.get(SGV
->getValueType());
707 if (auto *GA
= dyn_cast
<GlobalAlias
>(SGV
)) {
708 auto *DGA
= GlobalAlias::create(Ty
, SGV
->getAddressSpace(),
709 GlobalValue::ExternalLinkage
,
710 SGV
->getName(), &DstM
);
711 DGA
->copyAttributesFrom(GA
);
715 if (auto *GI
= dyn_cast
<GlobalIFunc
>(SGV
)) {
716 auto *DGI
= GlobalIFunc::create(Ty
, SGV
->getAddressSpace(),
717 GlobalValue::ExternalLinkage
,
718 SGV
->getName(), nullptr, &DstM
);
719 DGI
->copyAttributesFrom(GI
);
723 llvm_unreachable("Invalid source global value type");
726 GlobalValue
*IRLinker::copyGlobalValueProto(const GlobalValue
*SGV
,
727 bool ForDefinition
) {
729 if (auto *SGVar
= dyn_cast
<GlobalVariable
>(SGV
)) {
730 NewGV
= copyGlobalVariableProto(SGVar
);
731 } else if (auto *SF
= dyn_cast
<Function
>(SGV
)) {
732 NewGV
= copyFunctionProto(SF
);
735 NewGV
= copyIndirectSymbolProto(SGV
);
736 else if (SGV
->getValueType()->isFunctionTy())
738 Function::Create(cast
<FunctionType
>(TypeMap
.get(SGV
->getValueType())),
739 GlobalValue::ExternalLinkage
, SGV
->getAddressSpace(),
740 SGV
->getName(), &DstM
);
743 new GlobalVariable(DstM
, TypeMap
.get(SGV
->getValueType()),
744 /*isConstant*/ false, GlobalValue::ExternalLinkage
,
745 /*init*/ nullptr, SGV
->getName(),
746 /*insertbefore*/ nullptr,
747 SGV
->getThreadLocalMode(), SGV
->getAddressSpace());
751 NewGV
->setLinkage(SGV
->getLinkage());
752 else if (SGV
->hasExternalWeakLinkage())
753 NewGV
->setLinkage(GlobalValue::ExternalWeakLinkage
);
755 if (auto *NewGO
= dyn_cast
<GlobalObject
>(NewGV
)) {
756 // Metadata for global variables and function declarations is copied eagerly.
757 if (isa
<GlobalVariable
>(SGV
) || SGV
->isDeclaration()) {
758 NewGO
->copyMetadata(cast
<GlobalObject
>(SGV
), 0);
759 if (SGV
->isDeclaration() && NewGO
->hasMetadata())
760 UnmappedMetadata
.insert(NewGO
);
764 // Remove these copied constants in case this stays a declaration, since
765 // they point to the source module. If the def is linked the values will
766 // be mapped in during linkFunctionBody.
767 if (auto *NewF
= dyn_cast
<Function
>(NewGV
)) {
768 NewF
->setPersonalityFn(nullptr);
769 NewF
->setPrefixData(nullptr);
770 NewF
->setPrologueData(nullptr);
776 static StringRef
getTypeNamePrefix(StringRef Name
) {
777 size_t DotPos
= Name
.rfind('.');
778 return (DotPos
== 0 || DotPos
== StringRef::npos
|| Name
.back() == '.' ||
779 !isdigit(static_cast<unsigned char>(Name
[DotPos
+ 1])))
781 : Name
.substr(0, DotPos
);
784 /// Loop over all of the linked values to compute type mappings. For example,
785 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
786 /// types 'Foo' but one got renamed when the module was loaded into the same
788 void IRLinker::computeTypeMapping() {
789 for (GlobalValue
&SGV
: SrcM
->globals()) {
790 GlobalValue
*DGV
= getLinkedToGlobal(&SGV
);
794 if (!DGV
->hasAppendingLinkage() || !SGV
.hasAppendingLinkage()) {
795 TypeMap
.addTypeMapping(DGV
->getType(), SGV
.getType());
799 // Unify the element type of appending arrays.
800 ArrayType
*DAT
= cast
<ArrayType
>(DGV
->getValueType());
801 ArrayType
*SAT
= cast
<ArrayType
>(SGV
.getValueType());
802 TypeMap
.addTypeMapping(DAT
->getElementType(), SAT
->getElementType());
805 for (GlobalValue
&SGV
: *SrcM
)
806 if (GlobalValue
*DGV
= getLinkedToGlobal(&SGV
)) {
807 if (DGV
->getType() == SGV
.getType()) {
808 // If the types of DGV and SGV are the same, it means that DGV is from
809 // the source module and got added to DstM from a shared metadata. We
810 // shouldn't map this type to itself in case the type's components get
811 // remapped to a new type from DstM (for instance, during the loop over
812 // SrcM->getIdentifiedStructTypes() below).
816 TypeMap
.addTypeMapping(DGV
->getType(), SGV
.getType());
819 for (GlobalValue
&SGV
: SrcM
->aliases())
820 if (GlobalValue
*DGV
= getLinkedToGlobal(&SGV
))
821 TypeMap
.addTypeMapping(DGV
->getType(), SGV
.getType());
823 // Incorporate types by name, scanning all the types in the source module.
824 // At this point, the destination module may have a type "%foo = { i32 }" for
825 // example. When the source module got loaded into the same LLVMContext, if
826 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
827 std::vector
<StructType
*> Types
= SrcM
->getIdentifiedStructTypes();
828 for (StructType
*ST
: Types
) {
832 if (TypeMap
.DstStructTypesSet
.hasType(ST
)) {
833 // This is actually a type from the destination module.
834 // getIdentifiedStructTypes() can have found it by walking debug info
835 // metadata nodes, some of which get linked by name when ODR Type Uniquing
836 // is enabled on the Context, from the source to the destination module.
840 auto STTypePrefix
= getTypeNamePrefix(ST
->getName());
841 if (STTypePrefix
.size() == ST
->getName().size())
844 // Check to see if the destination module has a struct with the prefix name.
845 StructType
*DST
= StructType::getTypeByName(ST
->getContext(), STTypePrefix
);
849 // Don't use it if this actually came from the source module. They're in
850 // the same LLVMContext after all. Also don't use it unless the type is
851 // actually used in the destination module. This can happen in situations
856 // %Z = type { %A } %B = type { %C.1 }
857 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
858 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
859 // %C = type { i8* } %B.3 = type { %C.1 }
861 // When we link Module B with Module A, the '%B' in Module B is
862 // used. However, that would then use '%C.1'. But when we process '%C.1',
863 // we prefer to take the '%C' version. So we are then left with both
864 // '%C.1' and '%C' being used for the same types. This leads to some
865 // variables using one type and some using the other.
866 if (TypeMap
.DstStructTypesSet
.hasType(DST
))
867 TypeMap
.addTypeMapping(DST
, ST
);
870 // Now that we have discovered all of the type equivalences, get a body for
871 // any 'opaque' types in the dest module that are now resolved.
872 TypeMap
.linkDefinedTypeBodies();
875 static void getArrayElements(const Constant
*C
,
876 SmallVectorImpl
<Constant
*> &Dest
) {
877 unsigned NumElements
= cast
<ArrayType
>(C
->getType())->getNumElements();
879 for (unsigned i
= 0; i
!= NumElements
; ++i
)
880 Dest
.push_back(C
->getAggregateElement(i
));
883 /// If there were any appending global variables, link them together now.
885 IRLinker::linkAppendingVarProto(GlobalVariable
*DstGV
,
886 const GlobalVariable
*SrcGV
) {
887 // Check that both variables have compatible properties.
888 if (DstGV
&& !DstGV
->isDeclaration() && !SrcGV
->isDeclaration()) {
889 if (!SrcGV
->hasAppendingLinkage() || !DstGV
->hasAppendingLinkage())
891 "Linking globals named '" + SrcGV
->getName() +
892 "': can only link appending global with another appending "
895 if (DstGV
->isConstant() != SrcGV
->isConstant())
896 return stringErr("Appending variables linked with different const'ness!");
898 if (DstGV
->getAlign() != SrcGV
->getAlign())
900 "Appending variables with different alignment need to be linked!");
902 if (DstGV
->getVisibility() != SrcGV
->getVisibility())
904 "Appending variables with different visibility need to be linked!");
906 if (DstGV
->hasGlobalUnnamedAddr() != SrcGV
->hasGlobalUnnamedAddr())
908 "Appending variables with different unnamed_addr need to be linked!");
910 if (DstGV
->getSection() != SrcGV
->getSection())
912 "Appending variables with different section name need to be linked!");
914 if (DstGV
->getAddressSpace() != SrcGV
->getAddressSpace())
915 return stringErr("Appending variables with different address spaces need "
919 // Do not need to do anything if source is a declaration.
920 if (SrcGV
->isDeclaration())
923 Type
*EltTy
= cast
<ArrayType
>(TypeMap
.get(SrcGV
->getValueType()))
926 // FIXME: This upgrade is done during linking to support the C API. Once the
927 // old form is deprecated, we should move this upgrade to
928 // llvm::UpgradeGlobalVariable() and simplify the logic here and in
929 // Mapper::mapAppendingVariable() in ValueMapper.cpp.
930 StringRef Name
= SrcGV
->getName();
931 bool IsNewStructor
= false;
932 bool IsOldStructor
= false;
933 if (Name
== "llvm.global_ctors" || Name
== "llvm.global_dtors") {
934 if (cast
<StructType
>(EltTy
)->getNumElements() == 3)
935 IsNewStructor
= true;
937 IsOldStructor
= true;
940 PointerType
*VoidPtrTy
= PointerType::get(SrcGV
->getContext(), 0);
942 auto &ST
= *cast
<StructType
>(EltTy
);
943 Type
*Tys
[3] = {ST
.getElementType(0), ST
.getElementType(1), VoidPtrTy
};
944 EltTy
= StructType::get(SrcGV
->getContext(), Tys
, false);
947 uint64_t DstNumElements
= 0;
948 if (DstGV
&& !DstGV
->isDeclaration()) {
949 ArrayType
*DstTy
= cast
<ArrayType
>(DstGV
->getValueType());
950 DstNumElements
= DstTy
->getNumElements();
952 // Check to see that they two arrays agree on type.
953 if (EltTy
!= DstTy
->getElementType())
954 return stringErr("Appending variables with different element types!");
957 SmallVector
<Constant
*, 16> SrcElements
;
958 getArrayElements(SrcGV
->getInitializer(), SrcElements
);
961 erase_if(SrcElements
, [this](Constant
*E
) {
963 dyn_cast
<GlobalValue
>(E
->getAggregateElement(2)->stripPointerCasts());
966 GlobalValue
*DGV
= getLinkedToGlobal(Key
);
967 return !shouldLink(DGV
, *Key
);
970 uint64_t NewSize
= DstNumElements
+ SrcElements
.size();
971 ArrayType
*NewType
= ArrayType::get(EltTy
, NewSize
);
973 // Create the new global variable.
974 GlobalVariable
*NG
= new GlobalVariable(
975 DstM
, NewType
, SrcGV
->isConstant(), SrcGV
->getLinkage(),
976 /*init*/ nullptr, /*name*/ "", DstGV
, SrcGV
->getThreadLocalMode(),
977 SrcGV
->getAddressSpace());
979 NG
->copyAttributesFrom(SrcGV
);
980 forceRenaming(NG
, SrcGV
->getName());
982 Constant
*Ret
= ConstantExpr::getBitCast(NG
, TypeMap
.get(SrcGV
->getType()));
984 Mapper
.scheduleMapAppendingVariable(
986 (DstGV
&& !DstGV
->isDeclaration()) ? DstGV
->getInitializer() : nullptr,
987 IsOldStructor
, SrcElements
);
989 // Replace any uses of the two global variables with uses of the new
992 RAUWWorklist
.push_back(std::make_pair(DstGV
, NG
));
998 bool IRLinker::shouldLink(GlobalValue
*DGV
, GlobalValue
&SGV
) {
999 if (ValuesToLink
.count(&SGV
) || SGV
.hasLocalLinkage())
1002 if (DGV
&& !DGV
->isDeclarationForLinker())
1005 if (SGV
.isDeclaration() || DoneLinkingBodies
)
1008 // Callback to the client to give a chance to lazily add the Global to the
1009 // list of value to link.
1010 bool LazilyAdded
= false;
1012 AddLazyFor(SGV
, [this, &LazilyAdded
](GlobalValue
&GV
) {
1019 Expected
<Constant
*> IRLinker::linkGlobalValueProto(GlobalValue
*SGV
,
1020 bool ForIndirectSymbol
) {
1021 GlobalValue
*DGV
= getLinkedToGlobal(SGV
);
1023 bool ShouldLink
= shouldLink(DGV
, *SGV
);
1025 // just missing from map
1027 auto I
= ValueMap
.find(SGV
);
1028 if (I
!= ValueMap
.end())
1029 return cast
<Constant
>(I
->second
);
1031 I
= IndirectSymbolValueMap
.find(SGV
);
1032 if (I
!= IndirectSymbolValueMap
.end())
1033 return cast
<Constant
>(I
->second
);
1036 if (!ShouldLink
&& ForIndirectSymbol
)
1039 // Handle the ultra special appending linkage case first.
1040 if (SGV
->hasAppendingLinkage() || (DGV
&& DGV
->hasAppendingLinkage()))
1041 return linkAppendingVarProto(cast_or_null
<GlobalVariable
>(DGV
),
1042 cast
<GlobalVariable
>(SGV
));
1044 bool NeedsRenaming
= false;
1046 if (DGV
&& !ShouldLink
) {
1049 // If we are done linking global value bodies (i.e. we are performing
1050 // metadata linking), don't link in the global value due to this
1051 // reference, simply map it to null.
1052 if (DoneLinkingBodies
)
1055 NewGV
= copyGlobalValueProto(SGV
, ShouldLink
|| ForIndirectSymbol
);
1056 if (ShouldLink
|| !ForIndirectSymbol
)
1057 NeedsRenaming
= true;
1060 // Overloaded intrinsics have overloaded types names as part of their
1061 // names. If we renamed overloaded types we should rename the intrinsic
1063 if (Function
*F
= dyn_cast
<Function
>(NewGV
))
1064 if (auto Remangled
= Intrinsic::remangleIntrinsicFunction(F
)) {
1065 // Note: remangleIntrinsicFunction does not copy metadata and as such
1066 // F should not occur in the set of objects with unmapped metadata.
1067 // If this assertion fails then remangleIntrinsicFunction needs updating.
1068 assert(!UnmappedMetadata
.count(F
) && "intrinsic has unmapped metadata");
1069 NewGV
->eraseFromParent();
1071 NeedsRenaming
= false;
1075 forceRenaming(NewGV
, SGV
->getName());
1077 if (ShouldLink
|| ForIndirectSymbol
) {
1078 if (const Comdat
*SC
= SGV
->getComdat()) {
1079 if (auto *GO
= dyn_cast
<GlobalObject
>(NewGV
)) {
1080 Comdat
*DC
= DstM
.getOrInsertComdat(SC
->getName());
1081 DC
->setSelectionKind(SC
->getSelectionKind());
1087 if (!ShouldLink
&& ForIndirectSymbol
)
1088 NewGV
->setLinkage(GlobalValue::InternalLinkage
);
1090 Constant
*C
= NewGV
;
1091 // Only create a bitcast if necessary. In particular, with
1092 // DebugTypeODRUniquing we may reach metadata in the destination module
1093 // containing a GV from the source module, in which case SGV will be
1094 // the same as DGV and NewGV, and TypeMap.get() will assert since it
1095 // assumes it is being invoked on a type in the source module.
1096 if (DGV
&& NewGV
!= SGV
) {
1097 C
= ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1098 NewGV
, TypeMap
.get(SGV
->getType()));
1101 if (DGV
&& NewGV
!= DGV
) {
1102 // Schedule "replace all uses with" to happen after materializing is
1103 // done. It is not safe to do it now, since ValueMapper may be holding
1104 // pointers to constants that will get deleted if RAUW runs.
1105 RAUWWorklist
.push_back(std::make_pair(
1107 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV
, DGV
->getType())));
1113 /// Update the initializers in the Dest module now that all globals that may be
1114 /// referenced are in Dest.
1115 void IRLinker::linkGlobalVariable(GlobalVariable
&Dst
, GlobalVariable
&Src
) {
1116 // Figure out what the initializer looks like in the dest module.
1117 Mapper
.scheduleMapGlobalInitializer(Dst
, *Src
.getInitializer());
1120 /// Copy the source function over into the dest function and fix up references
1121 /// to values. At this point we know that Dest is an external function, and
1122 /// that Src is not.
1123 Error
IRLinker::linkFunctionBody(Function
&Dst
, Function
&Src
) {
1124 assert(Dst
.isDeclaration() && !Src
.isDeclaration());
1126 // Materialize if needed.
1127 if (Error Err
= Src
.materialize())
1130 // Link in the operands without remapping.
1131 if (Src
.hasPrefixData())
1132 Dst
.setPrefixData(Src
.getPrefixData());
1133 if (Src
.hasPrologueData())
1134 Dst
.setPrologueData(Src
.getPrologueData());
1135 if (Src
.hasPersonalityFn())
1136 Dst
.setPersonalityFn(Src
.getPersonalityFn());
1137 assert(Src
.IsNewDbgInfoFormat
== Dst
.IsNewDbgInfoFormat
);
1139 // Copy over the metadata attachments without remapping.
1140 Dst
.copyMetadata(&Src
, 0);
1142 // Steal arguments and splice the body of Src into Dst.
1143 Dst
.stealArgumentListFrom(Src
);
1144 Dst
.splice(Dst
.end(), &Src
);
1146 // Everything has been moved over. Remap it.
1147 Mapper
.scheduleRemapFunction(Dst
);
1148 return Error::success();
1151 void IRLinker::linkAliasAliasee(GlobalAlias
&Dst
, GlobalAlias
&Src
) {
1152 Mapper
.scheduleMapGlobalAlias(Dst
, *Src
.getAliasee(), IndirectSymbolMCID
);
1155 void IRLinker::linkIFuncResolver(GlobalIFunc
&Dst
, GlobalIFunc
&Src
) {
1156 Mapper
.scheduleMapGlobalIFunc(Dst
, *Src
.getResolver(), IndirectSymbolMCID
);
1159 Error
IRLinker::linkGlobalValueBody(GlobalValue
&Dst
, GlobalValue
&Src
) {
1160 if (auto *F
= dyn_cast
<Function
>(&Src
))
1161 return linkFunctionBody(cast
<Function
>(Dst
), *F
);
1162 if (auto *GVar
= dyn_cast
<GlobalVariable
>(&Src
)) {
1163 linkGlobalVariable(cast
<GlobalVariable
>(Dst
), *GVar
);
1164 return Error::success();
1166 if (auto *GA
= dyn_cast
<GlobalAlias
>(&Src
)) {
1167 linkAliasAliasee(cast
<GlobalAlias
>(Dst
), *GA
);
1168 return Error::success();
1170 linkIFuncResolver(cast
<GlobalIFunc
>(Dst
), cast
<GlobalIFunc
>(Src
));
1171 return Error::success();
1174 void IRLinker::flushRAUWWorklist() {
1175 for (const auto &Elem
: RAUWWorklist
) {
1178 std::tie(Old
, New
) = Elem
;
1180 Old
->replaceAllUsesWith(New
);
1181 Old
->eraseFromParent();
1183 RAUWWorklist
.clear();
1186 void IRLinker::prepareCompileUnitsForImport() {
1187 NamedMDNode
*SrcCompileUnits
= SrcM
->getNamedMetadata("llvm.dbg.cu");
1188 if (!SrcCompileUnits
)
1190 // When importing for ThinLTO, prevent importing of types listed on
1191 // the DICompileUnit that we don't need a copy of in the importing
1192 // module. They will be emitted by the originating module.
1193 for (unsigned I
= 0, E
= SrcCompileUnits
->getNumOperands(); I
!= E
; ++I
) {
1194 auto *CU
= cast
<DICompileUnit
>(SrcCompileUnits
->getOperand(I
));
1195 assert(CU
&& "Expected valid compile unit");
1196 // Enums, macros, and retained types don't need to be listed on the
1197 // imported DICompileUnit. This means they will only be imported
1198 // if reached from the mapped IR.
1199 CU
->replaceEnumTypes(nullptr);
1200 CU
->replaceMacros(nullptr);
1201 CU
->replaceRetainedTypes(nullptr);
1203 // The original definition (or at least its debug info - if the variable is
1204 // internalized and optimized away) will remain in the source module, so
1205 // there's no need to import them.
1206 // If LLVM ever does more advanced optimizations on global variables
1207 // (removing/localizing write operations, for instance) that can track
1208 // through debug info, this decision may need to be revisited - but do so
1209 // with care when it comes to debug info size. Emitting small CUs containing
1210 // only a few imported entities into every destination module may be very
1211 // size inefficient.
1212 CU
->replaceGlobalVariables(nullptr);
1214 CU
->replaceImportedEntities(nullptr);
1218 /// Insert all of the named MDNodes in Src into the Dest module.
1219 void IRLinker::linkNamedMDNodes() {
1220 const NamedMDNode
*SrcModFlags
= SrcM
->getModuleFlagsMetadata();
1221 for (const NamedMDNode
&NMD
: SrcM
->named_metadata()) {
1222 // Don't link module flags here. Do them separately.
1223 if (&NMD
== SrcModFlags
)
1225 // Don't import pseudo probe descriptors here for thinLTO. They will be
1226 // emitted by the originating module.
1227 if (IsPerformingImport
&& NMD
.getName() == PseudoProbeDescMetadataName
) {
1228 if (!DstM
.getNamedMetadata(NMD
.getName()))
1229 emitWarning("Pseudo-probe ignored: source module '" +
1230 SrcM
->getModuleIdentifier() +
1231 "' is compiled with -fpseudo-probe-for-profiling while "
1232 "destination module '" +
1233 DstM
.getModuleIdentifier() + "' is not\n");
1236 // The stats are computed per module and will all be merged in the binary.
1237 // Importing the metadata will cause duplication of the stats.
1238 if (IsPerformingImport
&& NMD
.getName() == "llvm.stats")
1241 NamedMDNode
*DestNMD
= DstM
.getOrInsertNamedMetadata(NMD
.getName());
1242 // Add Src elements into Dest node.
1243 for (const MDNode
*Op
: NMD
.operands())
1244 DestNMD
->addOperand(Mapper
.mapMDNode(*Op
));
1248 /// Merge the linker flags in Src into the Dest module.
1249 Error
IRLinker::linkModuleFlagsMetadata() {
1250 // If the source module has no module flags, we are done.
1251 const NamedMDNode
*SrcModFlags
= SrcM
->getModuleFlagsMetadata();
1253 return Error::success();
1255 // Check for module flag for updates before do anything.
1256 UpgradeModuleFlags(*SrcM
);
1258 // If the destination module doesn't have module flags yet, then just copy
1259 // over the source module's flags.
1260 NamedMDNode
*DstModFlags
= DstM
.getOrInsertModuleFlagsMetadata();
1261 if (DstModFlags
->getNumOperands() == 0) {
1262 for (unsigned I
= 0, E
= SrcModFlags
->getNumOperands(); I
!= E
; ++I
)
1263 DstModFlags
->addOperand(SrcModFlags
->getOperand(I
));
1265 return Error::success();
1268 // First build a map of the existing module flags and requirements.
1269 DenseMap
<MDString
*, std::pair
<MDNode
*, unsigned>> Flags
;
1270 SmallSetVector
<MDNode
*, 16> Requirements
;
1271 SmallVector
<unsigned, 0> Mins
;
1272 DenseSet
<MDString
*> SeenMin
;
1273 for (unsigned I
= 0, E
= DstModFlags
->getNumOperands(); I
!= E
; ++I
) {
1274 MDNode
*Op
= DstModFlags
->getOperand(I
);
1276 mdconst::extract
<ConstantInt
>(Op
->getOperand(0))->getZExtValue();
1277 MDString
*ID
= cast
<MDString
>(Op
->getOperand(1));
1279 if (Behavior
== Module::Require
) {
1280 Requirements
.insert(cast
<MDNode
>(Op
->getOperand(2)));
1282 if (Behavior
== Module::Min
)
1284 Flags
[ID
] = std::make_pair(Op
, I
);
1288 // Merge in the flags from the source module, and also collect its set of
1290 for (unsigned I
= 0, E
= SrcModFlags
->getNumOperands(); I
!= E
; ++I
) {
1291 MDNode
*SrcOp
= SrcModFlags
->getOperand(I
);
1292 ConstantInt
*SrcBehavior
=
1293 mdconst::extract
<ConstantInt
>(SrcOp
->getOperand(0));
1294 MDString
*ID
= cast
<MDString
>(SrcOp
->getOperand(1));
1297 std::tie(DstOp
, DstIndex
) = Flags
.lookup(ID
);
1298 unsigned SrcBehaviorValue
= SrcBehavior
->getZExtValue();
1301 // If this is a requirement, add it and continue.
1302 if (SrcBehaviorValue
== Module::Require
) {
1303 // If the destination module does not already have this requirement, add
1305 if (Requirements
.insert(cast
<MDNode
>(SrcOp
->getOperand(2)))) {
1306 DstModFlags
->addOperand(SrcOp
);
1311 // If there is no existing flag with this ID, just add it.
1313 if (SrcBehaviorValue
== Module::Min
) {
1314 Mins
.push_back(DstModFlags
->getNumOperands());
1317 Flags
[ID
] = std::make_pair(SrcOp
, DstModFlags
->getNumOperands());
1318 DstModFlags
->addOperand(SrcOp
);
1322 // Otherwise, perform a merge.
1323 ConstantInt
*DstBehavior
=
1324 mdconst::extract
<ConstantInt
>(DstOp
->getOperand(0));
1325 unsigned DstBehaviorValue
= DstBehavior
->getZExtValue();
1327 auto overrideDstValue
= [&]() {
1328 DstModFlags
->setOperand(DstIndex
, SrcOp
);
1329 Flags
[ID
].first
= SrcOp
;
1332 // If either flag has override behavior, handle it first.
1333 if (DstBehaviorValue
== Module::Override
) {
1334 // Diagnose inconsistent flags which both have override behavior.
1335 if (SrcBehaviorValue
== Module::Override
&&
1336 SrcOp
->getOperand(2) != DstOp
->getOperand(2))
1337 return stringErr("linking module flags '" + ID
->getString() +
1338 "': IDs have conflicting override values in '" +
1339 SrcM
->getModuleIdentifier() + "' and '" +
1340 DstM
.getModuleIdentifier() + "'");
1342 } else if (SrcBehaviorValue
== Module::Override
) {
1343 // Update the destination flag to that of the source.
1348 // Diagnose inconsistent merge behavior types.
1349 if (SrcBehaviorValue
!= DstBehaviorValue
) {
1350 bool MinAndWarn
= (SrcBehaviorValue
== Module::Min
&&
1351 DstBehaviorValue
== Module::Warning
) ||
1352 (DstBehaviorValue
== Module::Min
&&
1353 SrcBehaviorValue
== Module::Warning
);
1354 bool MaxAndWarn
= (SrcBehaviorValue
== Module::Max
&&
1355 DstBehaviorValue
== Module::Warning
) ||
1356 (DstBehaviorValue
== Module::Max
&&
1357 SrcBehaviorValue
== Module::Warning
);
1358 if (!(MaxAndWarn
|| MinAndWarn
))
1359 return stringErr("linking module flags '" + ID
->getString() +
1360 "': IDs have conflicting behaviors in '" +
1361 SrcM
->getModuleIdentifier() + "' and '" +
1362 DstM
.getModuleIdentifier() + "'");
1365 auto ensureDistinctOp
= [&](MDNode
*DstValue
) {
1366 assert(isa
<MDTuple
>(DstValue
) &&
1367 "Expected MDTuple when appending module flags");
1368 if (DstValue
->isDistinct())
1369 return dyn_cast
<MDTuple
>(DstValue
);
1370 ArrayRef
<MDOperand
> DstOperands
= DstValue
->operands();
1371 MDTuple
*New
= MDTuple::getDistinct(
1373 SmallVector
<Metadata
*, 4>(DstOperands
.begin(), DstOperands
.end()));
1374 Metadata
*FlagOps
[] = {DstOp
->getOperand(0), ID
, New
};
1375 MDNode
*Flag
= MDTuple::getDistinct(DstM
.getContext(), FlagOps
);
1376 DstModFlags
->setOperand(DstIndex
, Flag
);
1377 Flags
[ID
].first
= Flag
;
1381 // Emit a warning if the values differ and either source or destination
1382 // request Warning behavior.
1383 if ((DstBehaviorValue
== Module::Warning
||
1384 SrcBehaviorValue
== Module::Warning
) &&
1385 SrcOp
->getOperand(2) != DstOp
->getOperand(2)) {
1387 raw_string_ostream(Str
)
1388 << "linking module flags '" << ID
->getString()
1389 << "': IDs have conflicting values ('" << *SrcOp
->getOperand(2)
1390 << "' from " << SrcM
->getModuleIdentifier() << " with '"
1391 << *DstOp
->getOperand(2) << "' from " << DstM
.getModuleIdentifier()
1396 // Choose the minimum if either source or destination request Min behavior.
1397 if (DstBehaviorValue
== Module::Min
|| SrcBehaviorValue
== Module::Min
) {
1398 ConstantInt
*DstValue
=
1399 mdconst::extract
<ConstantInt
>(DstOp
->getOperand(2));
1400 ConstantInt
*SrcValue
=
1401 mdconst::extract
<ConstantInt
>(SrcOp
->getOperand(2));
1403 // The resulting flag should have a Min behavior, and contain the minimum
1404 // value from between the source and destination values.
1405 Metadata
*FlagOps
[] = {
1406 (DstBehaviorValue
!= Module::Min
? SrcOp
: DstOp
)->getOperand(0), ID
,
1407 (SrcValue
->getZExtValue() < DstValue
->getZExtValue() ? SrcOp
: DstOp
)
1409 MDNode
*Flag
= MDNode::get(DstM
.getContext(), FlagOps
);
1410 DstModFlags
->setOperand(DstIndex
, Flag
);
1411 Flags
[ID
].first
= Flag
;
1415 // Choose the maximum if either source or destination request Max behavior.
1416 if (DstBehaviorValue
== Module::Max
|| SrcBehaviorValue
== Module::Max
) {
1417 ConstantInt
*DstValue
=
1418 mdconst::extract
<ConstantInt
>(DstOp
->getOperand(2));
1419 ConstantInt
*SrcValue
=
1420 mdconst::extract
<ConstantInt
>(SrcOp
->getOperand(2));
1422 // The resulting flag should have a Max behavior, and contain the maximum
1423 // value from between the source and destination values.
1424 Metadata
*FlagOps
[] = {
1425 (DstBehaviorValue
!= Module::Max
? SrcOp
: DstOp
)->getOperand(0), ID
,
1426 (SrcValue
->getZExtValue() > DstValue
->getZExtValue() ? SrcOp
: DstOp
)
1428 MDNode
*Flag
= MDNode::get(DstM
.getContext(), FlagOps
);
1429 DstModFlags
->setOperand(DstIndex
, Flag
);
1430 Flags
[ID
].first
= Flag
;
1434 // Perform the merge for standard behavior types.
1435 switch (SrcBehaviorValue
) {
1436 case Module::Require
:
1437 case Module::Override
:
1438 llvm_unreachable("not possible");
1439 case Module::Error
: {
1440 // Emit an error if the values differ.
1441 if (SrcOp
->getOperand(2) != DstOp
->getOperand(2))
1442 return stringErr("linking module flags '" + ID
->getString() +
1443 "': IDs have conflicting values in '" +
1444 SrcM
->getModuleIdentifier() + "' and '" +
1445 DstM
.getModuleIdentifier() + "'");
1448 case Module::Warning
: {
1454 case Module::Append
: {
1455 MDTuple
*DstValue
= ensureDistinctOp(cast
<MDNode
>(DstOp
->getOperand(2)));
1456 MDNode
*SrcValue
= cast
<MDNode
>(SrcOp
->getOperand(2));
1457 for (const auto &O
: SrcValue
->operands())
1458 DstValue
->push_back(O
);
1461 case Module::AppendUnique
: {
1462 SmallSetVector
<Metadata
*, 16> Elts
;
1463 MDTuple
*DstValue
= ensureDistinctOp(cast
<MDNode
>(DstOp
->getOperand(2)));
1464 MDNode
*SrcValue
= cast
<MDNode
>(SrcOp
->getOperand(2));
1465 Elts
.insert(DstValue
->op_begin(), DstValue
->op_end());
1466 Elts
.insert(SrcValue
->op_begin(), SrcValue
->op_end());
1467 for (auto I
= DstValue
->getNumOperands(); I
< Elts
.size(); I
++)
1468 DstValue
->push_back(Elts
[I
]);
1475 // For the Min behavior, set the value to 0 if either module does not have the
1477 for (auto Idx
: Mins
) {
1478 MDNode
*Op
= DstModFlags
->getOperand(Idx
);
1479 MDString
*ID
= cast
<MDString
>(Op
->getOperand(1));
1480 if (!SeenMin
.count(ID
)) {
1481 ConstantInt
*V
= mdconst::extract
<ConstantInt
>(Op
->getOperand(2));
1482 Metadata
*FlagOps
[] = {
1483 Op
->getOperand(0), ID
,
1484 ConstantAsMetadata::get(ConstantInt::get(V
->getType(), 0))};
1485 DstModFlags
->setOperand(Idx
, MDNode::get(DstM
.getContext(), FlagOps
));
1489 // Check all of the requirements.
1490 for (unsigned I
= 0, E
= Requirements
.size(); I
!= E
; ++I
) {
1491 MDNode
*Requirement
= Requirements
[I
];
1492 MDString
*Flag
= cast
<MDString
>(Requirement
->getOperand(0));
1493 Metadata
*ReqValue
= Requirement
->getOperand(1);
1495 MDNode
*Op
= Flags
[Flag
].first
;
1496 if (!Op
|| Op
->getOperand(2) != ReqValue
)
1497 return stringErr("linking module flags '" + Flag
->getString() +
1498 "': does not have the required value");
1500 return Error::success();
1503 /// Return InlineAsm adjusted with target-specific directives if required.
1504 /// For ARM and Thumb, we have to add directives to select the appropriate ISA
1505 /// to support mixing module-level inline assembly from ARM and Thumb modules.
1506 static std::string
adjustInlineAsm(const std::string
&InlineAsm
,
1507 const Triple
&Triple
) {
1508 if (Triple
.getArch() == Triple::thumb
|| Triple
.getArch() == Triple::thumbeb
)
1509 return ".text\n.balign 2\n.thumb\n" + InlineAsm
;
1510 if (Triple
.getArch() == Triple::arm
|| Triple
.getArch() == Triple::armeb
)
1511 return ".text\n.balign 4\n.arm\n" + InlineAsm
;
1515 void IRLinker::updateAttributes(GlobalValue
&GV
) {
1516 /// Remove nocallback attribute while linking, because nocallback attribute
1517 /// indicates that the function is only allowed to jump back into caller's
1518 /// module only by a return or an exception. When modules are linked, this
1519 /// property cannot be guaranteed anymore. For example, the nocallback
1520 /// function may contain a call to another module. But if we merge its caller
1521 /// and callee module here, and not the module containing the nocallback
1522 /// function definition itself, the nocallback property will be violated
1523 /// (since the nocallback function will call back into the newly merged module
1524 /// containing both its caller and callee). This could happen if the module
1525 /// containing the nocallback function definition is native code, so it does
1526 /// not participate in the LTO link. Note if the nocallback function does
1527 /// participate in the LTO link, and thus ends up in the merged module
1528 /// containing its caller and callee, removing the attribute doesn't hurt as
1529 /// it has no effect on definitions in the same module.
1530 if (auto *F
= dyn_cast
<Function
>(&GV
)) {
1531 if (!F
->isIntrinsic())
1532 F
->removeFnAttr(llvm::Attribute::NoCallback
);
1534 // Remove nocallback attribute when it is on a call-site.
1535 for (BasicBlock
&BB
: *F
)
1536 for (Instruction
&I
: BB
)
1537 if (CallBase
*CI
= dyn_cast
<CallBase
>(&I
))
1538 CI
->removeFnAttr(Attribute::NoCallback
);
1542 Error
IRLinker::run() {
1543 // Ensure metadata materialized before value mapping.
1544 if (SrcM
->getMaterializer())
1545 if (Error Err
= SrcM
->getMaterializer()->materializeMetadata())
1548 DstM
.IsNewDbgInfoFormat
= SrcM
->IsNewDbgInfoFormat
;
1550 // Inherit the target data from the source module if the destination module
1551 // doesn't have one already.
1552 if (DstM
.getDataLayout().isDefault())
1553 DstM
.setDataLayout(SrcM
->getDataLayout());
1555 // Copy the target triple from the source to dest if the dest's is empty.
1556 if (DstM
.getTargetTriple().empty() && !SrcM
->getTargetTriple().empty())
1557 DstM
.setTargetTriple(SrcM
->getTargetTriple());
1559 Triple
SrcTriple(SrcM
->getTargetTriple()), DstTriple(DstM
.getTargetTriple());
1561 // During CUDA compilation we have to link with the bitcode supplied with
1562 // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has
1563 // the layout that is different from the one used by LLVM/clang (it does not
1564 // include i128). Issuing a warning is not very helpful as there's not much
1565 // the user can do about it.
1566 bool EnableDLWarning
= true;
1567 bool EnableTripleWarning
= true;
1568 if (SrcTriple
.isNVPTX() && DstTriple
.isNVPTX()) {
1569 std::string ModuleId
= SrcM
->getModuleIdentifier();
1570 StringRef FileName
= llvm::sys::path::filename(ModuleId
);
1571 bool SrcIsLibDevice
=
1572 FileName
.starts_with("libdevice") && FileName
.ends_with(".10.bc");
1573 bool SrcHasLibDeviceDL
=
1574 (SrcM
->getDataLayoutStr().empty() ||
1575 SrcM
->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64");
1576 // libdevice bitcode uses nvptx64-nvidia-gpulibs or just
1577 // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with
1578 // all NVPTX variants.
1579 bool SrcHasLibDeviceTriple
= (SrcTriple
.getVendor() == Triple::NVIDIA
&&
1580 SrcTriple
.getOSName() == "gpulibs") ||
1581 (SrcTriple
.getVendorName() == "unknown" &&
1582 SrcTriple
.getOSName() == "unknown");
1583 EnableTripleWarning
= !(SrcIsLibDevice
&& SrcHasLibDeviceTriple
);
1584 EnableDLWarning
= !(SrcIsLibDevice
&& SrcHasLibDeviceDL
);
1587 if (EnableDLWarning
&& (SrcM
->getDataLayout() != DstM
.getDataLayout())) {
1588 emitWarning("Linking two modules of different data layouts: '" +
1589 SrcM
->getModuleIdentifier() + "' is '" +
1590 SrcM
->getDataLayoutStr() + "' whereas '" +
1591 DstM
.getModuleIdentifier() + "' is '" +
1592 DstM
.getDataLayoutStr() + "'\n");
1595 if (EnableTripleWarning
&& !SrcM
->getTargetTriple().empty() &&
1596 !SrcTriple
.isCompatibleWith(DstTriple
))
1597 emitWarning("Linking two modules of different target triples: '" +
1598 SrcM
->getModuleIdentifier() + "' is '" +
1599 SrcM
->getTargetTriple() + "' whereas '" +
1600 DstM
.getModuleIdentifier() + "' is '" + DstM
.getTargetTriple() +
1603 DstM
.setTargetTriple(SrcTriple
.merge(DstTriple
));
1605 // Loop over all of the linked values to compute type mappings.
1606 computeTypeMapping();
1608 std::reverse(Worklist
.begin(), Worklist
.end());
1609 while (!Worklist
.empty()) {
1610 GlobalValue
*GV
= Worklist
.back();
1611 Worklist
.pop_back();
1614 if (ValueMap
.find(GV
) != ValueMap
.end() ||
1615 IndirectSymbolValueMap
.find(GV
) != IndirectSymbolValueMap
.end())
1618 assert(!GV
->isDeclaration());
1619 Mapper
.mapValue(*GV
);
1621 return std::move(*FoundError
);
1622 flushRAUWWorklist();
1625 // Note that we are done linking global value bodies. This prevents
1626 // metadata linking from creating new references.
1627 DoneLinkingBodies
= true;
1628 Mapper
.addFlags(RF_NullMapMissingGlobalValues
);
1630 // Remap all of the named MDNodes in Src into the DstM module. We do this
1631 // after linking GlobalValues so that MDNodes that reference GlobalValues
1632 // are properly remapped.
1635 // Clean up any global objects with potentially unmapped metadata.
1636 // Specifically declarations which did not become definitions.
1637 for (GlobalObject
*NGO
: UnmappedMetadata
) {
1638 if (NGO
->isDeclaration())
1639 Mapper
.remapGlobalObjectMetadata(*NGO
);
1642 if (!IsPerformingImport
&& !SrcM
->getModuleInlineAsm().empty()) {
1643 // Append the module inline asm string.
1644 DstM
.appendModuleInlineAsm(adjustInlineAsm(SrcM
->getModuleInlineAsm(),
1646 } else if (IsPerformingImport
) {
1647 // Import any symver directives for symbols in DstM.
1648 ModuleSymbolTable::CollectAsmSymvers(*SrcM
,
1649 [&](StringRef Name
, StringRef Alias
) {
1650 if (DstM
.getNamedValue(Name
)) {
1651 SmallString
<256> S(".symver ");
1655 DstM
.appendModuleInlineAsm(S
);
1660 // Reorder the globals just added to the destination module to match their
1661 // original order in the source module.
1662 for (GlobalVariable
&GV
: SrcM
->globals()) {
1663 if (GV
.hasAppendingLinkage())
1665 Value
*NewValue
= Mapper
.mapValue(GV
);
1667 auto *NewGV
= dyn_cast
<GlobalVariable
>(NewValue
->stripPointerCasts());
1669 NewGV
->removeFromParent();
1670 DstM
.insertGlobalVariable(NewGV
);
1675 // Merge the module flags into the DstM module.
1676 return linkModuleFlagsMetadata();
1679 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef
<Type
*> E
, bool P
)
1680 : ETypes(E
), IsPacked(P
) {}
1682 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType
*ST
)
1683 : ETypes(ST
->elements()), IsPacked(ST
->isPacked()) {}
1685 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy
&That
) const {
1686 return IsPacked
== That
.IsPacked
&& ETypes
== That
.ETypes
;
1689 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy
&That
) const {
1690 return !this->operator==(That
);
1693 StructType
*IRMover::StructTypeKeyInfo::getEmptyKey() {
1694 return DenseMapInfo
<StructType
*>::getEmptyKey();
1697 StructType
*IRMover::StructTypeKeyInfo::getTombstoneKey() {
1698 return DenseMapInfo
<StructType
*>::getTombstoneKey();
1701 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy
&Key
) {
1702 return hash_combine(hash_combine_range(Key
.ETypes
.begin(), Key
.ETypes
.end()),
1706 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType
*ST
) {
1707 return getHashValue(KeyTy(ST
));
1710 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy
&LHS
,
1711 const StructType
*RHS
) {
1712 if (RHS
== getEmptyKey() || RHS
== getTombstoneKey())
1714 return LHS
== KeyTy(RHS
);
1717 bool IRMover::StructTypeKeyInfo::isEqual(const StructType
*LHS
,
1718 const StructType
*RHS
) {
1719 if (RHS
== getEmptyKey() || RHS
== getTombstoneKey())
1721 return KeyTy(LHS
) == KeyTy(RHS
);
1724 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType
*Ty
) {
1725 assert(!Ty
->isOpaque());
1726 NonOpaqueStructTypes
.insert(Ty
);
1729 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType
*Ty
) {
1730 assert(!Ty
->isOpaque());
1731 NonOpaqueStructTypes
.insert(Ty
);
1732 bool Removed
= OpaqueStructTypes
.erase(Ty
);
1737 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType
*Ty
) {
1738 assert(Ty
->isOpaque());
1739 OpaqueStructTypes
.insert(Ty
);
1743 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef
<Type
*> ETypes
,
1745 IRMover::StructTypeKeyInfo::KeyTy
Key(ETypes
, IsPacked
);
1746 auto I
= NonOpaqueStructTypes
.find_as(Key
);
1747 return I
== NonOpaqueStructTypes
.end() ? nullptr : *I
;
1750 bool IRMover::IdentifiedStructTypeSet::hasType(StructType
*Ty
) {
1752 return OpaqueStructTypes
.count(Ty
);
1753 auto I
= NonOpaqueStructTypes
.find(Ty
);
1754 return I
== NonOpaqueStructTypes
.end() ? false : *I
== Ty
;
1757 IRMover::IRMover(Module
&M
) : Composite(M
) {
1758 TypeFinder StructTypes
;
1759 StructTypes
.run(M
, /* OnlyNamed */ false);
1760 for (StructType
*Ty
: StructTypes
) {
1762 IdentifiedStructTypes
.addOpaque(Ty
);
1764 IdentifiedStructTypes
.addNonOpaque(Ty
);
1766 // Self-map metadatas in the destination module. This is needed when
1767 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1768 // destination module may be reached from the source module.
1769 for (const auto *MD
: StructTypes
.getVisitedMetadata()) {
1770 SharedMDs
[MD
].reset(const_cast<MDNode
*>(MD
));
1774 Error
IRMover::move(std::unique_ptr
<Module
> Src
,
1775 ArrayRef
<GlobalValue
*> ValuesToLink
,
1776 LazyCallback AddLazyFor
, bool IsPerformingImport
) {
1777 IRLinker
TheIRLinker(Composite
, SharedMDs
, IdentifiedStructTypes
,
1778 std::move(Src
), ValuesToLink
, std::move(AddLazyFor
),
1779 IsPerformingImport
);
1780 Error E
= TheIRLinker
.run();
1781 Composite
.dropTriviallyDeadConstantArrays();