[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Linker / IRMover.cpp
blob1bd562d1e8ae2bc0708763ea55053ffec4d35dc6
1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Linker/IRMover.h"
10 #include "LinkDiagnosticInfo.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/IR/AutoUpgrade.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/DebugInfoMetadata.h"
17 #include "llvm/IR/DiagnosticPrinter.h"
18 #include "llvm/IR/Function.h"
19 #include "llvm/IR/GVMaterializer.h"
20 #include "llvm/IR/GlobalValue.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/PseudoProbe.h"
26 #include "llvm/IR/TypeFinder.h"
27 #include "llvm/Object/ModuleSymbolTable.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/TargetParser/Triple.h"
31 #include "llvm/Transforms/Utils/ValueMapper.h"
32 #include <optional>
33 #include <utility>
34 using namespace llvm;
36 //===----------------------------------------------------------------------===//
37 // TypeMap implementation.
38 //===----------------------------------------------------------------------===//
40 namespace {
41 class TypeMapTy : public ValueMapTypeRemapper {
42 /// This is a mapping from a source type to a destination type to use.
43 DenseMap<Type *, Type *> MappedTypes;
45 /// When checking to see if two subgraphs are isomorphic, we speculatively
46 /// add types to MappedTypes, but keep track of them here in case we need to
47 /// roll back.
48 SmallVector<Type *, 16> SpeculativeTypes;
50 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
52 /// This is a list of non-opaque structs in the source module that are mapped
53 /// to an opaque struct in the destination module.
54 SmallVector<StructType *, 16> SrcDefinitionsToResolve;
56 /// This is the set of opaque types in the destination modules who are
57 /// getting a body from the source module.
58 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
60 public:
61 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
62 : DstStructTypesSet(DstStructTypesSet) {}
64 IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
65 /// Indicate that the specified type in the destination module is conceptually
66 /// equivalent to the specified type in the source module.
67 void addTypeMapping(Type *DstTy, Type *SrcTy);
69 /// Produce a body for an opaque type in the dest module from a type
70 /// definition in the source module.
71 void linkDefinedTypeBodies();
73 /// Return the mapped type to use for the specified input type from the
74 /// source module.
75 Type *get(Type *SrcTy);
76 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
78 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
80 FunctionType *get(FunctionType *T) {
81 return cast<FunctionType>(get((Type *)T));
84 private:
85 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
87 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
91 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
92 assert(SpeculativeTypes.empty());
93 assert(SpeculativeDstOpaqueTypes.empty());
95 // Check to see if these types are recursively isomorphic and establish a
96 // mapping between them if so.
97 if (!areTypesIsomorphic(DstTy, SrcTy)) {
98 // Oops, they aren't isomorphic. Just discard this request by rolling out
99 // any speculative mappings we've established.
100 for (Type *Ty : SpeculativeTypes)
101 MappedTypes.erase(Ty);
103 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
104 SpeculativeDstOpaqueTypes.size());
105 for (StructType *Ty : SpeculativeDstOpaqueTypes)
106 DstResolvedOpaqueTypes.erase(Ty);
107 } else {
108 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
109 // and all its descendants to lower amount of renaming in LLVM context
110 // Renaming occurs because we load all source modules to the same context
111 // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
112 // As a result we may get several different types in the destination
113 // module, which are in fact the same.
114 for (Type *Ty : SpeculativeTypes)
115 if (auto *STy = dyn_cast<StructType>(Ty))
116 if (STy->hasName())
117 STy->setName("");
119 SpeculativeTypes.clear();
120 SpeculativeDstOpaqueTypes.clear();
123 /// Recursively walk this pair of types, returning true if they are isomorphic,
124 /// false if they are not.
125 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
126 // Two types with differing kinds are clearly not isomorphic.
127 if (DstTy->getTypeID() != SrcTy->getTypeID())
128 return false;
130 // If we have an entry in the MappedTypes table, then we have our answer.
131 Type *&Entry = MappedTypes[SrcTy];
132 if (Entry)
133 return Entry == DstTy;
135 // Two identical types are clearly isomorphic. Remember this
136 // non-speculatively.
137 if (DstTy == SrcTy) {
138 Entry = DstTy;
139 return true;
142 // Okay, we have two types with identical kinds that we haven't seen before.
144 // If this is an opaque struct type, special case it.
145 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
146 // Mapping an opaque type to any struct, just keep the dest struct.
147 if (SSTy->isOpaque()) {
148 Entry = DstTy;
149 SpeculativeTypes.push_back(SrcTy);
150 return true;
153 // Mapping a non-opaque source type to an opaque dest. If this is the first
154 // type that we're mapping onto this destination type then we succeed. Keep
155 // the dest, but fill it in later. If this is the second (different) type
156 // that we're trying to map onto the same opaque type then we fail.
157 if (cast<StructType>(DstTy)->isOpaque()) {
158 // We can only map one source type onto the opaque destination type.
159 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
160 return false;
161 SrcDefinitionsToResolve.push_back(SSTy);
162 SpeculativeTypes.push_back(SrcTy);
163 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
164 Entry = DstTy;
165 return true;
169 // If the number of subtypes disagree between the two types, then we fail.
170 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
171 return false;
173 // Fail if any of the extra properties (e.g. array size) of the type disagree.
174 if (isa<IntegerType>(DstTy))
175 return false; // bitwidth disagrees.
176 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
177 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
178 return false;
179 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
180 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
181 return false;
182 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
183 StructType *SSTy = cast<StructType>(SrcTy);
184 if (DSTy->isLiteral() != SSTy->isLiteral() ||
185 DSTy->isPacked() != SSTy->isPacked())
186 return false;
187 } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) {
188 if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
189 return false;
190 } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) {
191 if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount())
192 return false;
195 // Otherwise, we speculate that these two types will line up and recursively
196 // check the subelements.
197 Entry = DstTy;
198 SpeculativeTypes.push_back(SrcTy);
200 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
201 if (!areTypesIsomorphic(DstTy->getContainedType(I),
202 SrcTy->getContainedType(I)))
203 return false;
205 // If everything seems to have lined up, then everything is great.
206 return true;
209 void TypeMapTy::linkDefinedTypeBodies() {
210 SmallVector<Type *, 16> Elements;
211 for (StructType *SrcSTy : SrcDefinitionsToResolve) {
212 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
213 assert(DstSTy->isOpaque());
215 // Map the body of the source type over to a new body for the dest type.
216 Elements.resize(SrcSTy->getNumElements());
217 for (unsigned I = 0, E = Elements.size(); I != E; ++I)
218 Elements[I] = get(SrcSTy->getElementType(I));
220 DstSTy->setBody(Elements, SrcSTy->isPacked());
221 DstStructTypesSet.switchToNonOpaque(DstSTy);
223 SrcDefinitionsToResolve.clear();
224 DstResolvedOpaqueTypes.clear();
227 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
228 ArrayRef<Type *> ETypes) {
229 DTy->setBody(ETypes, STy->isPacked());
231 // Steal STy's name.
232 if (STy->hasName()) {
233 SmallString<16> TmpName = STy->getName();
234 STy->setName("");
235 DTy->setName(TmpName);
238 DstStructTypesSet.addNonOpaque(DTy);
241 Type *TypeMapTy::get(Type *Ty) {
242 SmallPtrSet<StructType *, 8> Visited;
243 return get(Ty, Visited);
246 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
247 // If we already have an entry for this type, return it.
248 Type **Entry = &MappedTypes[Ty];
249 if (*Entry)
250 return *Entry;
252 // These are types that LLVM itself will unique.
253 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
255 if (!IsUniqued) {
256 #ifndef NDEBUG
257 for (auto &Pair : MappedTypes) {
258 assert(!(Pair.first != Ty && Pair.second == Ty) &&
259 "mapping to a source type");
261 #endif
263 if (!Visited.insert(cast<StructType>(Ty)).second) {
264 StructType *DTy = StructType::create(Ty->getContext());
265 return *Entry = DTy;
269 // If this is not a recursive type, then just map all of the elements and
270 // then rebuild the type from inside out.
271 SmallVector<Type *, 4> ElementTypes;
273 // If there are no element types to map, then the type is itself. This is
274 // true for the anonymous {} struct, things like 'float', integers, etc.
275 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
276 return *Entry = Ty;
278 // Remap all of the elements, keeping track of whether any of them change.
279 bool AnyChange = false;
280 ElementTypes.resize(Ty->getNumContainedTypes());
281 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
282 ElementTypes[I] = get(Ty->getContainedType(I), Visited);
283 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
286 // If we found our type while recursively processing stuff, just use it.
287 Entry = &MappedTypes[Ty];
288 if (*Entry) {
289 if (auto *DTy = dyn_cast<StructType>(*Entry)) {
290 if (DTy->isOpaque()) {
291 auto *STy = cast<StructType>(Ty);
292 finishType(DTy, STy, ElementTypes);
295 return *Entry;
298 // If all of the element types mapped directly over and the type is not
299 // a named struct, then the type is usable as-is.
300 if (!AnyChange && IsUniqued)
301 return *Entry = Ty;
303 // Otherwise, rebuild a modified type.
304 switch (Ty->getTypeID()) {
305 default:
306 llvm_unreachable("unknown derived type to remap");
307 case Type::ArrayTyID:
308 return *Entry = ArrayType::get(ElementTypes[0],
309 cast<ArrayType>(Ty)->getNumElements());
310 case Type::ScalableVectorTyID:
311 case Type::FixedVectorTyID:
312 return *Entry = VectorType::get(ElementTypes[0],
313 cast<VectorType>(Ty)->getElementCount());
314 case Type::PointerTyID:
315 return *Entry = PointerType::get(ElementTypes[0],
316 cast<PointerType>(Ty)->getAddressSpace());
317 case Type::FunctionTyID:
318 return *Entry = FunctionType::get(ElementTypes[0],
319 ArrayRef(ElementTypes).slice(1),
320 cast<FunctionType>(Ty)->isVarArg());
321 case Type::StructTyID: {
322 auto *STy = cast<StructType>(Ty);
323 bool IsPacked = STy->isPacked();
324 if (IsUniqued)
325 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
327 // If the type is opaque, we can just use it directly.
328 if (STy->isOpaque()) {
329 DstStructTypesSet.addOpaque(STy);
330 return *Entry = Ty;
333 if (StructType *OldT =
334 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
335 STy->setName("");
336 return *Entry = OldT;
339 if (!AnyChange) {
340 DstStructTypesSet.addNonOpaque(STy);
341 return *Entry = Ty;
344 StructType *DTy = StructType::create(Ty->getContext());
345 finishType(DTy, STy, ElementTypes);
346 return *Entry = DTy;
351 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
352 const Twine &Msg)
353 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
354 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
356 //===----------------------------------------------------------------------===//
357 // IRLinker implementation.
358 //===----------------------------------------------------------------------===//
360 namespace {
361 class IRLinker;
363 /// Creates prototypes for functions that are lazily linked on the fly. This
364 /// speeds up linking for modules with many/ lazily linked functions of which
365 /// few get used.
366 class GlobalValueMaterializer final : public ValueMaterializer {
367 IRLinker &TheIRLinker;
369 public:
370 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
371 Value *materialize(Value *V) override;
374 class LocalValueMaterializer final : public ValueMaterializer {
375 IRLinker &TheIRLinker;
377 public:
378 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
379 Value *materialize(Value *V) override;
382 /// Type of the Metadata map in \a ValueToValueMapTy.
383 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
385 /// This is responsible for keeping track of the state used for moving data
386 /// from SrcM to DstM.
387 class IRLinker {
388 Module &DstM;
389 std::unique_ptr<Module> SrcM;
391 /// See IRMover::move().
392 IRMover::LazyCallback AddLazyFor;
394 TypeMapTy TypeMap;
395 GlobalValueMaterializer GValMaterializer;
396 LocalValueMaterializer LValMaterializer;
398 /// A metadata map that's shared between IRLinker instances.
399 MDMapT &SharedMDs;
401 /// Mapping of values from what they used to be in Src, to what they are now
402 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
403 /// due to the use of Value handles which the Linker doesn't actually need,
404 /// but this allows us to reuse the ValueMapper code.
405 ValueToValueMapTy ValueMap;
406 ValueToValueMapTy IndirectSymbolValueMap;
408 DenseSet<GlobalValue *> ValuesToLink;
409 std::vector<GlobalValue *> Worklist;
410 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
412 /// Set of globals with eagerly copied metadata that may require remapping.
413 /// This remapping is performed after metadata linking.
414 DenseSet<GlobalObject *> UnmappedMetadata;
416 void maybeAdd(GlobalValue *GV) {
417 if (ValuesToLink.insert(GV).second)
418 Worklist.push_back(GV);
421 /// Whether we are importing globals for ThinLTO, as opposed to linking the
422 /// source module. If this flag is set, it means that we can rely on some
423 /// other object file to define any non-GlobalValue entities defined by the
424 /// source module. This currently causes us to not link retained types in
425 /// debug info metadata and module inline asm.
426 bool IsPerformingImport;
428 /// Set to true when all global value body linking is complete (including
429 /// lazy linking). Used to prevent metadata linking from creating new
430 /// references.
431 bool DoneLinkingBodies = false;
433 /// The Error encountered during materialization. We use an Optional here to
434 /// avoid needing to manage an unconsumed success value.
435 std::optional<Error> FoundError;
436 void setError(Error E) {
437 if (E)
438 FoundError = std::move(E);
441 /// Most of the errors produced by this module are inconvertible StringErrors.
442 /// This convenience function lets us return one of those more easily.
443 Error stringErr(const Twine &T) {
444 return make_error<StringError>(T, inconvertibleErrorCode());
447 /// Entry point for mapping values and alternate context for mapping aliases.
448 ValueMapper Mapper;
449 unsigned IndirectSymbolMCID;
451 /// Handles cloning of a global values from the source module into
452 /// the destination module, including setting the attributes and visibility.
453 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
455 void emitWarning(const Twine &Message) {
456 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
459 /// Given a global in the source module, return the global in the
460 /// destination module that is being linked to, if any.
461 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
462 // If the source has no name it can't link. If it has local linkage,
463 // there is no name match-up going on.
464 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
465 return nullptr;
467 // Otherwise see if we have a match in the destination module's symtab.
468 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
469 if (!DGV)
470 return nullptr;
472 // If we found a global with the same name in the dest module, but it has
473 // internal linkage, we are really not doing any linkage here.
474 if (DGV->hasLocalLinkage())
475 return nullptr;
477 // If we found an intrinsic declaration with mismatching prototypes, we
478 // probably had a nameclash. Don't use that version.
479 if (auto *FDGV = dyn_cast<Function>(DGV))
480 if (FDGV->isIntrinsic())
481 if (const auto *FSrcGV = dyn_cast<Function>(SrcGV))
482 if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType()))
483 return nullptr;
485 // Otherwise, we do in fact link to the destination global.
486 return DGV;
489 void computeTypeMapping();
491 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
492 const GlobalVariable *SrcGV);
494 /// Given the GlobaValue \p SGV in the source module, and the matching
495 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
496 /// into the destination module.
498 /// Note this code may call the client-provided \p AddLazyFor.
499 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
500 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV,
501 bool ForIndirectSymbol);
503 Error linkModuleFlagsMetadata();
505 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
506 Error linkFunctionBody(Function &Dst, Function &Src);
507 void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src);
508 void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src);
509 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
511 /// Replace all types in the source AttributeList with the
512 /// corresponding destination type.
513 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
515 /// Functions that take care of cloning a specific global value type
516 /// into the destination module.
517 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
518 Function *copyFunctionProto(const Function *SF);
519 GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV);
521 /// Perform "replace all uses with" operations. These work items need to be
522 /// performed as part of materialization, but we postpone them to happen after
523 /// materialization is done. The materializer called by ValueMapper is not
524 /// expected to delete constants, as ValueMapper is holding pointers to some
525 /// of them, but constant destruction may be indirectly triggered by RAUW.
526 /// Hence, the need to move this out of the materialization call chain.
527 void flushRAUWWorklist();
529 /// When importing for ThinLTO, prevent importing of types listed on
530 /// the DICompileUnit that we don't need a copy of in the importing
531 /// module.
532 void prepareCompileUnitsForImport();
533 void linkNamedMDNodes();
535 /// Update attributes while linking.
536 void updateAttributes(GlobalValue &GV);
538 public:
539 IRLinker(Module &DstM, MDMapT &SharedMDs,
540 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
541 ArrayRef<GlobalValue *> ValuesToLink,
542 IRMover::LazyCallback AddLazyFor, bool IsPerformingImport)
543 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
544 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
545 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
546 Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals,
547 &TypeMap, &GValMaterializer),
548 IndirectSymbolMCID(Mapper.registerAlternateMappingContext(
549 IndirectSymbolValueMap, &LValMaterializer)) {
550 ValueMap.getMDMap() = std::move(SharedMDs);
551 for (GlobalValue *GV : ValuesToLink)
552 maybeAdd(GV);
553 if (IsPerformingImport)
554 prepareCompileUnitsForImport();
556 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
558 Error run();
559 Value *materialize(Value *V, bool ForIndirectSymbol);
563 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
564 /// table. This is good for all clients except for us. Go through the trouble
565 /// to force this back.
566 static void forceRenaming(GlobalValue *GV, StringRef Name) {
567 // If the global doesn't force its name or if it already has the right name,
568 // there is nothing for us to do.
569 if (GV->hasLocalLinkage() || GV->getName() == Name)
570 return;
572 Module *M = GV->getParent();
574 // If there is a conflict, rename the conflict.
575 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
576 GV->takeName(ConflictGV);
577 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
578 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
579 } else {
580 GV->setName(Name); // Force the name back
584 Value *GlobalValueMaterializer::materialize(Value *SGV) {
585 return TheIRLinker.materialize(SGV, false);
588 Value *LocalValueMaterializer::materialize(Value *SGV) {
589 return TheIRLinker.materialize(SGV, true);
592 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) {
593 auto *SGV = dyn_cast<GlobalValue>(V);
594 if (!SGV)
595 return nullptr;
597 // When linking a global from other modules than source & dest, skip
598 // materializing it because it would be mapped later when its containing
599 // module is linked. Linking it now would potentially pull in many types that
600 // may not be mapped properly.
601 if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get())
602 return nullptr;
604 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol);
605 if (!NewProto) {
606 setError(NewProto.takeError());
607 return nullptr;
609 if (!*NewProto)
610 return nullptr;
612 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
613 if (!New)
614 return *NewProto;
616 // If we already created the body, just return.
617 if (auto *F = dyn_cast<Function>(New)) {
618 if (!F->isDeclaration())
619 return New;
620 } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
621 if (V->hasInitializer() || V->hasAppendingLinkage())
622 return New;
623 } else if (auto *GA = dyn_cast<GlobalAlias>(New)) {
624 if (GA->getAliasee())
625 return New;
626 } else if (auto *GI = dyn_cast<GlobalIFunc>(New)) {
627 if (GI->getResolver())
628 return New;
629 } else {
630 llvm_unreachable("Invalid GlobalValue type");
633 // If the global is being linked for an indirect symbol, it may have already
634 // been scheduled to satisfy a regular symbol. Similarly, a global being linked
635 // for a regular symbol may have already been scheduled for an indirect
636 // symbol. Check for these cases by looking in the other value map and
637 // confirming the same value has been scheduled. If there is an entry in the
638 // ValueMap but the value is different, it means that the value already had a
639 // definition in the destination module (linkonce for instance), but we need a
640 // new definition for the indirect symbol ("New" will be different).
641 if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) ||
642 (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New))
643 return New;
645 if (ForIndirectSymbol || shouldLink(New, *SGV))
646 setError(linkGlobalValueBody(*New, *SGV));
648 updateAttributes(*New);
649 return New;
652 /// Loop through the global variables in the src module and merge them into the
653 /// dest module.
654 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
655 // No linking to be performed or linking from the source: simply create an
656 // identical version of the symbol over in the dest module... the
657 // initializer will be filled in later by LinkGlobalInits.
658 GlobalVariable *NewDGV =
659 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
660 SGVar->isConstant(), GlobalValue::ExternalLinkage,
661 /*init*/ nullptr, SGVar->getName(),
662 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
663 SGVar->getAddressSpace());
664 NewDGV->setAlignment(SGVar->getAlign());
665 NewDGV->copyAttributesFrom(SGVar);
666 return NewDGV;
669 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
670 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
671 for (int AttrIdx = Attribute::FirstTypeAttr;
672 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
673 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
674 if (Attrs.hasAttributeAtIndex(i, TypedAttr)) {
675 if (Type *Ty =
676 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) {
677 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr,
678 TypeMap.get(Ty));
679 break;
684 return Attrs;
687 /// Link the function in the source module into the destination module if
688 /// needed, setting up mapping information.
689 Function *IRLinker::copyFunctionProto(const Function *SF) {
690 // If there is no linkage to be performed or we are linking from the source,
691 // bring SF over.
692 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()),
693 GlobalValue::ExternalLinkage,
694 SF->getAddressSpace(), SF->getName(), &DstM);
695 F->copyAttributesFrom(SF);
696 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
697 return F;
700 /// Set up prototypes for any indirect symbols that come over from the source
701 /// module.
702 GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) {
703 // If there is no linkage to be performed or we're linking from the source,
704 // bring over SGA.
705 auto *Ty = TypeMap.get(SGV->getValueType());
707 if (auto *GA = dyn_cast<GlobalAlias>(SGV)) {
708 auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(),
709 GlobalValue::ExternalLinkage,
710 SGV->getName(), &DstM);
711 DGA->copyAttributesFrom(GA);
712 return DGA;
715 if (auto *GI = dyn_cast<GlobalIFunc>(SGV)) {
716 auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(),
717 GlobalValue::ExternalLinkage,
718 SGV->getName(), nullptr, &DstM);
719 DGI->copyAttributesFrom(GI);
720 return DGI;
723 llvm_unreachable("Invalid source global value type");
726 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
727 bool ForDefinition) {
728 GlobalValue *NewGV;
729 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
730 NewGV = copyGlobalVariableProto(SGVar);
731 } else if (auto *SF = dyn_cast<Function>(SGV)) {
732 NewGV = copyFunctionProto(SF);
733 } else {
734 if (ForDefinition)
735 NewGV = copyIndirectSymbolProto(SGV);
736 else if (SGV->getValueType()->isFunctionTy())
737 NewGV =
738 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
739 GlobalValue::ExternalLinkage, SGV->getAddressSpace(),
740 SGV->getName(), &DstM);
741 else
742 NewGV =
743 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()),
744 /*isConstant*/ false, GlobalValue::ExternalLinkage,
745 /*init*/ nullptr, SGV->getName(),
746 /*insertbefore*/ nullptr,
747 SGV->getThreadLocalMode(), SGV->getAddressSpace());
750 if (ForDefinition)
751 NewGV->setLinkage(SGV->getLinkage());
752 else if (SGV->hasExternalWeakLinkage())
753 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
755 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
756 // Metadata for global variables and function declarations is copied eagerly.
757 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) {
758 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
759 if (SGV->isDeclaration() && NewGO->hasMetadata())
760 UnmappedMetadata.insert(NewGO);
764 // Remove these copied constants in case this stays a declaration, since
765 // they point to the source module. If the def is linked the values will
766 // be mapped in during linkFunctionBody.
767 if (auto *NewF = dyn_cast<Function>(NewGV)) {
768 NewF->setPersonalityFn(nullptr);
769 NewF->setPrefixData(nullptr);
770 NewF->setPrologueData(nullptr);
773 return NewGV;
776 static StringRef getTypeNamePrefix(StringRef Name) {
777 size_t DotPos = Name.rfind('.');
778 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
779 !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
780 ? Name
781 : Name.substr(0, DotPos);
784 /// Loop over all of the linked values to compute type mappings. For example,
785 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
786 /// types 'Foo' but one got renamed when the module was loaded into the same
787 /// LLVMContext.
788 void IRLinker::computeTypeMapping() {
789 for (GlobalValue &SGV : SrcM->globals()) {
790 GlobalValue *DGV = getLinkedToGlobal(&SGV);
791 if (!DGV)
792 continue;
794 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
795 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
796 continue;
799 // Unify the element type of appending arrays.
800 ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
801 ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
802 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
805 for (GlobalValue &SGV : *SrcM)
806 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) {
807 if (DGV->getType() == SGV.getType()) {
808 // If the types of DGV and SGV are the same, it means that DGV is from
809 // the source module and got added to DstM from a shared metadata. We
810 // shouldn't map this type to itself in case the type's components get
811 // remapped to a new type from DstM (for instance, during the loop over
812 // SrcM->getIdentifiedStructTypes() below).
813 continue;
816 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
819 for (GlobalValue &SGV : SrcM->aliases())
820 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
821 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
823 // Incorporate types by name, scanning all the types in the source module.
824 // At this point, the destination module may have a type "%foo = { i32 }" for
825 // example. When the source module got loaded into the same LLVMContext, if
826 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
827 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
828 for (StructType *ST : Types) {
829 if (!ST->hasName())
830 continue;
832 if (TypeMap.DstStructTypesSet.hasType(ST)) {
833 // This is actually a type from the destination module.
834 // getIdentifiedStructTypes() can have found it by walking debug info
835 // metadata nodes, some of which get linked by name when ODR Type Uniquing
836 // is enabled on the Context, from the source to the destination module.
837 continue;
840 auto STTypePrefix = getTypeNamePrefix(ST->getName());
841 if (STTypePrefix.size() == ST->getName().size())
842 continue;
844 // Check to see if the destination module has a struct with the prefix name.
845 StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix);
846 if (!DST)
847 continue;
849 // Don't use it if this actually came from the source module. They're in
850 // the same LLVMContext after all. Also don't use it unless the type is
851 // actually used in the destination module. This can happen in situations
852 // like this:
854 // Module A Module B
855 // -------- --------
856 // %Z = type { %A } %B = type { %C.1 }
857 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
858 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
859 // %C = type { i8* } %B.3 = type { %C.1 }
861 // When we link Module B with Module A, the '%B' in Module B is
862 // used. However, that would then use '%C.1'. But when we process '%C.1',
863 // we prefer to take the '%C' version. So we are then left with both
864 // '%C.1' and '%C' being used for the same types. This leads to some
865 // variables using one type and some using the other.
866 if (TypeMap.DstStructTypesSet.hasType(DST))
867 TypeMap.addTypeMapping(DST, ST);
870 // Now that we have discovered all of the type equivalences, get a body for
871 // any 'opaque' types in the dest module that are now resolved.
872 TypeMap.linkDefinedTypeBodies();
875 static void getArrayElements(const Constant *C,
876 SmallVectorImpl<Constant *> &Dest) {
877 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
879 for (unsigned i = 0; i != NumElements; ++i)
880 Dest.push_back(C->getAggregateElement(i));
883 /// If there were any appending global variables, link them together now.
884 Expected<Constant *>
885 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
886 const GlobalVariable *SrcGV) {
887 // Check that both variables have compatible properties.
888 if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) {
889 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
890 return stringErr(
891 "Linking globals named '" + SrcGV->getName() +
892 "': can only link appending global with another appending "
893 "global!");
895 if (DstGV->isConstant() != SrcGV->isConstant())
896 return stringErr("Appending variables linked with different const'ness!");
898 if (DstGV->getAlign() != SrcGV->getAlign())
899 return stringErr(
900 "Appending variables with different alignment need to be linked!");
902 if (DstGV->getVisibility() != SrcGV->getVisibility())
903 return stringErr(
904 "Appending variables with different visibility need to be linked!");
906 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
907 return stringErr(
908 "Appending variables with different unnamed_addr need to be linked!");
910 if (DstGV->getSection() != SrcGV->getSection())
911 return stringErr(
912 "Appending variables with different section name need to be linked!");
914 if (DstGV->getAddressSpace() != SrcGV->getAddressSpace())
915 return stringErr("Appending variables with different address spaces need "
916 "to be linked!");
919 // Do not need to do anything if source is a declaration.
920 if (SrcGV->isDeclaration())
921 return DstGV;
923 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
924 ->getElementType();
926 // FIXME: This upgrade is done during linking to support the C API. Once the
927 // old form is deprecated, we should move this upgrade to
928 // llvm::UpgradeGlobalVariable() and simplify the logic here and in
929 // Mapper::mapAppendingVariable() in ValueMapper.cpp.
930 StringRef Name = SrcGV->getName();
931 bool IsNewStructor = false;
932 bool IsOldStructor = false;
933 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
934 if (cast<StructType>(EltTy)->getNumElements() == 3)
935 IsNewStructor = true;
936 else
937 IsOldStructor = true;
940 PointerType *VoidPtrTy = PointerType::get(SrcGV->getContext(), 0);
941 if (IsOldStructor) {
942 auto &ST = *cast<StructType>(EltTy);
943 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
944 EltTy = StructType::get(SrcGV->getContext(), Tys, false);
947 uint64_t DstNumElements = 0;
948 if (DstGV && !DstGV->isDeclaration()) {
949 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
950 DstNumElements = DstTy->getNumElements();
952 // Check to see that they two arrays agree on type.
953 if (EltTy != DstTy->getElementType())
954 return stringErr("Appending variables with different element types!");
957 SmallVector<Constant *, 16> SrcElements;
958 getArrayElements(SrcGV->getInitializer(), SrcElements);
960 if (IsNewStructor) {
961 erase_if(SrcElements, [this](Constant *E) {
962 auto *Key =
963 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
964 if (!Key)
965 return false;
966 GlobalValue *DGV = getLinkedToGlobal(Key);
967 return !shouldLink(DGV, *Key);
970 uint64_t NewSize = DstNumElements + SrcElements.size();
971 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
973 // Create the new global variable.
974 GlobalVariable *NG = new GlobalVariable(
975 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
976 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
977 SrcGV->getAddressSpace());
979 NG->copyAttributesFrom(SrcGV);
980 forceRenaming(NG, SrcGV->getName());
982 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
984 Mapper.scheduleMapAppendingVariable(
985 *NG,
986 (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr,
987 IsOldStructor, SrcElements);
989 // Replace any uses of the two global variables with uses of the new
990 // global.
991 if (DstGV) {
992 RAUWWorklist.push_back(std::make_pair(DstGV, NG));
995 return Ret;
998 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
999 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
1000 return true;
1002 if (DGV && !DGV->isDeclarationForLinker())
1003 return false;
1005 if (SGV.isDeclaration() || DoneLinkingBodies)
1006 return false;
1008 // Callback to the client to give a chance to lazily add the Global to the
1009 // list of value to link.
1010 bool LazilyAdded = false;
1011 if (AddLazyFor)
1012 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
1013 maybeAdd(&GV);
1014 LazilyAdded = true;
1016 return LazilyAdded;
1019 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
1020 bool ForIndirectSymbol) {
1021 GlobalValue *DGV = getLinkedToGlobal(SGV);
1023 bool ShouldLink = shouldLink(DGV, *SGV);
1025 // just missing from map
1026 if (ShouldLink) {
1027 auto I = ValueMap.find(SGV);
1028 if (I != ValueMap.end())
1029 return cast<Constant>(I->second);
1031 I = IndirectSymbolValueMap.find(SGV);
1032 if (I != IndirectSymbolValueMap.end())
1033 return cast<Constant>(I->second);
1036 if (!ShouldLink && ForIndirectSymbol)
1037 DGV = nullptr;
1039 // Handle the ultra special appending linkage case first.
1040 if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage()))
1041 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
1042 cast<GlobalVariable>(SGV));
1044 bool NeedsRenaming = false;
1045 GlobalValue *NewGV;
1046 if (DGV && !ShouldLink) {
1047 NewGV = DGV;
1048 } else {
1049 // If we are done linking global value bodies (i.e. we are performing
1050 // metadata linking), don't link in the global value due to this
1051 // reference, simply map it to null.
1052 if (DoneLinkingBodies)
1053 return nullptr;
1055 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol);
1056 if (ShouldLink || !ForIndirectSymbol)
1057 NeedsRenaming = true;
1060 // Overloaded intrinsics have overloaded types names as part of their
1061 // names. If we renamed overloaded types we should rename the intrinsic
1062 // as well.
1063 if (Function *F = dyn_cast<Function>(NewGV))
1064 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
1065 // Note: remangleIntrinsicFunction does not copy metadata and as such
1066 // F should not occur in the set of objects with unmapped metadata.
1067 // If this assertion fails then remangleIntrinsicFunction needs updating.
1068 assert(!UnmappedMetadata.count(F) && "intrinsic has unmapped metadata");
1069 NewGV->eraseFromParent();
1070 NewGV = *Remangled;
1071 NeedsRenaming = false;
1074 if (NeedsRenaming)
1075 forceRenaming(NewGV, SGV->getName());
1077 if (ShouldLink || ForIndirectSymbol) {
1078 if (const Comdat *SC = SGV->getComdat()) {
1079 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
1080 Comdat *DC = DstM.getOrInsertComdat(SC->getName());
1081 DC->setSelectionKind(SC->getSelectionKind());
1082 GO->setComdat(DC);
1087 if (!ShouldLink && ForIndirectSymbol)
1088 NewGV->setLinkage(GlobalValue::InternalLinkage);
1090 Constant *C = NewGV;
1091 // Only create a bitcast if necessary. In particular, with
1092 // DebugTypeODRUniquing we may reach metadata in the destination module
1093 // containing a GV from the source module, in which case SGV will be
1094 // the same as DGV and NewGV, and TypeMap.get() will assert since it
1095 // assumes it is being invoked on a type in the source module.
1096 if (DGV && NewGV != SGV) {
1097 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1098 NewGV, TypeMap.get(SGV->getType()));
1101 if (DGV && NewGV != DGV) {
1102 // Schedule "replace all uses with" to happen after materializing is
1103 // done. It is not safe to do it now, since ValueMapper may be holding
1104 // pointers to constants that will get deleted if RAUW runs.
1105 RAUWWorklist.push_back(std::make_pair(
1106 DGV,
1107 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
1110 return C;
1113 /// Update the initializers in the Dest module now that all globals that may be
1114 /// referenced are in Dest.
1115 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
1116 // Figure out what the initializer looks like in the dest module.
1117 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
1120 /// Copy the source function over into the dest function and fix up references
1121 /// to values. At this point we know that Dest is an external function, and
1122 /// that Src is not.
1123 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
1124 assert(Dst.isDeclaration() && !Src.isDeclaration());
1126 // Materialize if needed.
1127 if (Error Err = Src.materialize())
1128 return Err;
1130 // Link in the operands without remapping.
1131 if (Src.hasPrefixData())
1132 Dst.setPrefixData(Src.getPrefixData());
1133 if (Src.hasPrologueData())
1134 Dst.setPrologueData(Src.getPrologueData());
1135 if (Src.hasPersonalityFn())
1136 Dst.setPersonalityFn(Src.getPersonalityFn());
1137 assert(Src.IsNewDbgInfoFormat == Dst.IsNewDbgInfoFormat);
1139 // Copy over the metadata attachments without remapping.
1140 Dst.copyMetadata(&Src, 0);
1142 // Steal arguments and splice the body of Src into Dst.
1143 Dst.stealArgumentListFrom(Src);
1144 Dst.splice(Dst.end(), &Src);
1146 // Everything has been moved over. Remap it.
1147 Mapper.scheduleRemapFunction(Dst);
1148 return Error::success();
1151 void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) {
1152 Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID);
1155 void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) {
1156 Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID);
1159 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1160 if (auto *F = dyn_cast<Function>(&Src))
1161 return linkFunctionBody(cast<Function>(Dst), *F);
1162 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1163 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1164 return Error::success();
1166 if (auto *GA = dyn_cast<GlobalAlias>(&Src)) {
1167 linkAliasAliasee(cast<GlobalAlias>(Dst), *GA);
1168 return Error::success();
1170 linkIFuncResolver(cast<GlobalIFunc>(Dst), cast<GlobalIFunc>(Src));
1171 return Error::success();
1174 void IRLinker::flushRAUWWorklist() {
1175 for (const auto &Elem : RAUWWorklist) {
1176 GlobalValue *Old;
1177 Value *New;
1178 std::tie(Old, New) = Elem;
1180 Old->replaceAllUsesWith(New);
1181 Old->eraseFromParent();
1183 RAUWWorklist.clear();
1186 void IRLinker::prepareCompileUnitsForImport() {
1187 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1188 if (!SrcCompileUnits)
1189 return;
1190 // When importing for ThinLTO, prevent importing of types listed on
1191 // the DICompileUnit that we don't need a copy of in the importing
1192 // module. They will be emitted by the originating module.
1193 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
1194 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
1195 assert(CU && "Expected valid compile unit");
1196 // Enums, macros, and retained types don't need to be listed on the
1197 // imported DICompileUnit. This means they will only be imported
1198 // if reached from the mapped IR.
1199 CU->replaceEnumTypes(nullptr);
1200 CU->replaceMacros(nullptr);
1201 CU->replaceRetainedTypes(nullptr);
1203 // The original definition (or at least its debug info - if the variable is
1204 // internalized and optimized away) will remain in the source module, so
1205 // there's no need to import them.
1206 // If LLVM ever does more advanced optimizations on global variables
1207 // (removing/localizing write operations, for instance) that can track
1208 // through debug info, this decision may need to be revisited - but do so
1209 // with care when it comes to debug info size. Emitting small CUs containing
1210 // only a few imported entities into every destination module may be very
1211 // size inefficient.
1212 CU->replaceGlobalVariables(nullptr);
1214 CU->replaceImportedEntities(nullptr);
1218 /// Insert all of the named MDNodes in Src into the Dest module.
1219 void IRLinker::linkNamedMDNodes() {
1220 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1221 for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1222 // Don't link module flags here. Do them separately.
1223 if (&NMD == SrcModFlags)
1224 continue;
1225 // Don't import pseudo probe descriptors here for thinLTO. They will be
1226 // emitted by the originating module.
1227 if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) {
1228 if (!DstM.getNamedMetadata(NMD.getName()))
1229 emitWarning("Pseudo-probe ignored: source module '" +
1230 SrcM->getModuleIdentifier() +
1231 "' is compiled with -fpseudo-probe-for-profiling while "
1232 "destination module '" +
1233 DstM.getModuleIdentifier() + "' is not\n");
1234 continue;
1236 // The stats are computed per module and will all be merged in the binary.
1237 // Importing the metadata will cause duplication of the stats.
1238 if (IsPerformingImport && NMD.getName() == "llvm.stats")
1239 continue;
1241 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1242 // Add Src elements into Dest node.
1243 for (const MDNode *Op : NMD.operands())
1244 DestNMD->addOperand(Mapper.mapMDNode(*Op));
1248 /// Merge the linker flags in Src into the Dest module.
1249 Error IRLinker::linkModuleFlagsMetadata() {
1250 // If the source module has no module flags, we are done.
1251 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1252 if (!SrcModFlags)
1253 return Error::success();
1255 // Check for module flag for updates before do anything.
1256 UpgradeModuleFlags(*SrcM);
1258 // If the destination module doesn't have module flags yet, then just copy
1259 // over the source module's flags.
1260 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1261 if (DstModFlags->getNumOperands() == 0) {
1262 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1263 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1265 return Error::success();
1268 // First build a map of the existing module flags and requirements.
1269 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
1270 SmallSetVector<MDNode *, 16> Requirements;
1271 SmallVector<unsigned, 0> Mins;
1272 DenseSet<MDString *> SeenMin;
1273 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1274 MDNode *Op = DstModFlags->getOperand(I);
1275 uint64_t Behavior =
1276 mdconst::extract<ConstantInt>(Op->getOperand(0))->getZExtValue();
1277 MDString *ID = cast<MDString>(Op->getOperand(1));
1279 if (Behavior == Module::Require) {
1280 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1281 } else {
1282 if (Behavior == Module::Min)
1283 Mins.push_back(I);
1284 Flags[ID] = std::make_pair(Op, I);
1288 // Merge in the flags from the source module, and also collect its set of
1289 // requirements.
1290 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1291 MDNode *SrcOp = SrcModFlags->getOperand(I);
1292 ConstantInt *SrcBehavior =
1293 mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1294 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1295 MDNode *DstOp;
1296 unsigned DstIndex;
1297 std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1298 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1299 SeenMin.insert(ID);
1301 // If this is a requirement, add it and continue.
1302 if (SrcBehaviorValue == Module::Require) {
1303 // If the destination module does not already have this requirement, add
1304 // it.
1305 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1306 DstModFlags->addOperand(SrcOp);
1308 continue;
1311 // If there is no existing flag with this ID, just add it.
1312 if (!DstOp) {
1313 if (SrcBehaviorValue == Module::Min) {
1314 Mins.push_back(DstModFlags->getNumOperands());
1315 SeenMin.erase(ID);
1317 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1318 DstModFlags->addOperand(SrcOp);
1319 continue;
1322 // Otherwise, perform a merge.
1323 ConstantInt *DstBehavior =
1324 mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1325 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1327 auto overrideDstValue = [&]() {
1328 DstModFlags->setOperand(DstIndex, SrcOp);
1329 Flags[ID].first = SrcOp;
1332 // If either flag has override behavior, handle it first.
1333 if (DstBehaviorValue == Module::Override) {
1334 // Diagnose inconsistent flags which both have override behavior.
1335 if (SrcBehaviorValue == Module::Override &&
1336 SrcOp->getOperand(2) != DstOp->getOperand(2))
1337 return stringErr("linking module flags '" + ID->getString() +
1338 "': IDs have conflicting override values in '" +
1339 SrcM->getModuleIdentifier() + "' and '" +
1340 DstM.getModuleIdentifier() + "'");
1341 continue;
1342 } else if (SrcBehaviorValue == Module::Override) {
1343 // Update the destination flag to that of the source.
1344 overrideDstValue();
1345 continue;
1348 // Diagnose inconsistent merge behavior types.
1349 if (SrcBehaviorValue != DstBehaviorValue) {
1350 bool MinAndWarn = (SrcBehaviorValue == Module::Min &&
1351 DstBehaviorValue == Module::Warning) ||
1352 (DstBehaviorValue == Module::Min &&
1353 SrcBehaviorValue == Module::Warning);
1354 bool MaxAndWarn = (SrcBehaviorValue == Module::Max &&
1355 DstBehaviorValue == Module::Warning) ||
1356 (DstBehaviorValue == Module::Max &&
1357 SrcBehaviorValue == Module::Warning);
1358 if (!(MaxAndWarn || MinAndWarn))
1359 return stringErr("linking module flags '" + ID->getString() +
1360 "': IDs have conflicting behaviors in '" +
1361 SrcM->getModuleIdentifier() + "' and '" +
1362 DstM.getModuleIdentifier() + "'");
1365 auto ensureDistinctOp = [&](MDNode *DstValue) {
1366 assert(isa<MDTuple>(DstValue) &&
1367 "Expected MDTuple when appending module flags");
1368 if (DstValue->isDistinct())
1369 return dyn_cast<MDTuple>(DstValue);
1370 ArrayRef<MDOperand> DstOperands = DstValue->operands();
1371 MDTuple *New = MDTuple::getDistinct(
1372 DstM.getContext(),
1373 SmallVector<Metadata *, 4>(DstOperands.begin(), DstOperands.end()));
1374 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1375 MDNode *Flag = MDTuple::getDistinct(DstM.getContext(), FlagOps);
1376 DstModFlags->setOperand(DstIndex, Flag);
1377 Flags[ID].first = Flag;
1378 return New;
1381 // Emit a warning if the values differ and either source or destination
1382 // request Warning behavior.
1383 if ((DstBehaviorValue == Module::Warning ||
1384 SrcBehaviorValue == Module::Warning) &&
1385 SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1386 std::string Str;
1387 raw_string_ostream(Str)
1388 << "linking module flags '" << ID->getString()
1389 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
1390 << "' from " << SrcM->getModuleIdentifier() << " with '"
1391 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
1392 << ')';
1393 emitWarning(Str);
1396 // Choose the minimum if either source or destination request Min behavior.
1397 if (DstBehaviorValue == Module::Min || SrcBehaviorValue == Module::Min) {
1398 ConstantInt *DstValue =
1399 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1400 ConstantInt *SrcValue =
1401 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1403 // The resulting flag should have a Min behavior, and contain the minimum
1404 // value from between the source and destination values.
1405 Metadata *FlagOps[] = {
1406 (DstBehaviorValue != Module::Min ? SrcOp : DstOp)->getOperand(0), ID,
1407 (SrcValue->getZExtValue() < DstValue->getZExtValue() ? SrcOp : DstOp)
1408 ->getOperand(2)};
1409 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1410 DstModFlags->setOperand(DstIndex, Flag);
1411 Flags[ID].first = Flag;
1412 continue;
1415 // Choose the maximum if either source or destination request Max behavior.
1416 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) {
1417 ConstantInt *DstValue =
1418 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1419 ConstantInt *SrcValue =
1420 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1422 // The resulting flag should have a Max behavior, and contain the maximum
1423 // value from between the source and destination values.
1424 Metadata *FlagOps[] = {
1425 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID,
1426 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp)
1427 ->getOperand(2)};
1428 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1429 DstModFlags->setOperand(DstIndex, Flag);
1430 Flags[ID].first = Flag;
1431 continue;
1434 // Perform the merge for standard behavior types.
1435 switch (SrcBehaviorValue) {
1436 case Module::Require:
1437 case Module::Override:
1438 llvm_unreachable("not possible");
1439 case Module::Error: {
1440 // Emit an error if the values differ.
1441 if (SrcOp->getOperand(2) != DstOp->getOperand(2))
1442 return stringErr("linking module flags '" + ID->getString() +
1443 "': IDs have conflicting values in '" +
1444 SrcM->getModuleIdentifier() + "' and '" +
1445 DstM.getModuleIdentifier() + "'");
1446 continue;
1448 case Module::Warning: {
1449 break;
1451 case Module::Max: {
1452 break;
1454 case Module::Append: {
1455 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
1456 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1457 for (const auto &O : SrcValue->operands())
1458 DstValue->push_back(O);
1459 break;
1461 case Module::AppendUnique: {
1462 SmallSetVector<Metadata *, 16> Elts;
1463 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
1464 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1465 Elts.insert(DstValue->op_begin(), DstValue->op_end());
1466 Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1467 for (auto I = DstValue->getNumOperands(); I < Elts.size(); I++)
1468 DstValue->push_back(Elts[I]);
1469 break;
1475 // For the Min behavior, set the value to 0 if either module does not have the
1476 // flag.
1477 for (auto Idx : Mins) {
1478 MDNode *Op = DstModFlags->getOperand(Idx);
1479 MDString *ID = cast<MDString>(Op->getOperand(1));
1480 if (!SeenMin.count(ID)) {
1481 ConstantInt *V = mdconst::extract<ConstantInt>(Op->getOperand(2));
1482 Metadata *FlagOps[] = {
1483 Op->getOperand(0), ID,
1484 ConstantAsMetadata::get(ConstantInt::get(V->getType(), 0))};
1485 DstModFlags->setOperand(Idx, MDNode::get(DstM.getContext(), FlagOps));
1489 // Check all of the requirements.
1490 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1491 MDNode *Requirement = Requirements[I];
1492 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1493 Metadata *ReqValue = Requirement->getOperand(1);
1495 MDNode *Op = Flags[Flag].first;
1496 if (!Op || Op->getOperand(2) != ReqValue)
1497 return stringErr("linking module flags '" + Flag->getString() +
1498 "': does not have the required value");
1500 return Error::success();
1503 /// Return InlineAsm adjusted with target-specific directives if required.
1504 /// For ARM and Thumb, we have to add directives to select the appropriate ISA
1505 /// to support mixing module-level inline assembly from ARM and Thumb modules.
1506 static std::string adjustInlineAsm(const std::string &InlineAsm,
1507 const Triple &Triple) {
1508 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
1509 return ".text\n.balign 2\n.thumb\n" + InlineAsm;
1510 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
1511 return ".text\n.balign 4\n.arm\n" + InlineAsm;
1512 return InlineAsm;
1515 void IRLinker::updateAttributes(GlobalValue &GV) {
1516 /// Remove nocallback attribute while linking, because nocallback attribute
1517 /// indicates that the function is only allowed to jump back into caller's
1518 /// module only by a return or an exception. When modules are linked, this
1519 /// property cannot be guaranteed anymore. For example, the nocallback
1520 /// function may contain a call to another module. But if we merge its caller
1521 /// and callee module here, and not the module containing the nocallback
1522 /// function definition itself, the nocallback property will be violated
1523 /// (since the nocallback function will call back into the newly merged module
1524 /// containing both its caller and callee). This could happen if the module
1525 /// containing the nocallback function definition is native code, so it does
1526 /// not participate in the LTO link. Note if the nocallback function does
1527 /// participate in the LTO link, and thus ends up in the merged module
1528 /// containing its caller and callee, removing the attribute doesn't hurt as
1529 /// it has no effect on definitions in the same module.
1530 if (auto *F = dyn_cast<Function>(&GV)) {
1531 if (!F->isIntrinsic())
1532 F->removeFnAttr(llvm::Attribute::NoCallback);
1534 // Remove nocallback attribute when it is on a call-site.
1535 for (BasicBlock &BB : *F)
1536 for (Instruction &I : BB)
1537 if (CallBase *CI = dyn_cast<CallBase>(&I))
1538 CI->removeFnAttr(Attribute::NoCallback);
1542 Error IRLinker::run() {
1543 // Ensure metadata materialized before value mapping.
1544 if (SrcM->getMaterializer())
1545 if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1546 return Err;
1548 DstM.IsNewDbgInfoFormat = SrcM->IsNewDbgInfoFormat;
1550 // Inherit the target data from the source module if the destination module
1551 // doesn't have one already.
1552 if (DstM.getDataLayout().isDefault())
1553 DstM.setDataLayout(SrcM->getDataLayout());
1555 // Copy the target triple from the source to dest if the dest's is empty.
1556 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1557 DstM.setTargetTriple(SrcM->getTargetTriple());
1559 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1561 // During CUDA compilation we have to link with the bitcode supplied with
1562 // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has
1563 // the layout that is different from the one used by LLVM/clang (it does not
1564 // include i128). Issuing a warning is not very helpful as there's not much
1565 // the user can do about it.
1566 bool EnableDLWarning = true;
1567 bool EnableTripleWarning = true;
1568 if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) {
1569 std::string ModuleId = SrcM->getModuleIdentifier();
1570 StringRef FileName = llvm::sys::path::filename(ModuleId);
1571 bool SrcIsLibDevice =
1572 FileName.starts_with("libdevice") && FileName.ends_with(".10.bc");
1573 bool SrcHasLibDeviceDL =
1574 (SrcM->getDataLayoutStr().empty() ||
1575 SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64");
1576 // libdevice bitcode uses nvptx64-nvidia-gpulibs or just
1577 // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with
1578 // all NVPTX variants.
1579 bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA &&
1580 SrcTriple.getOSName() == "gpulibs") ||
1581 (SrcTriple.getVendorName() == "unknown" &&
1582 SrcTriple.getOSName() == "unknown");
1583 EnableTripleWarning = !(SrcIsLibDevice && SrcHasLibDeviceTriple);
1584 EnableDLWarning = !(SrcIsLibDevice && SrcHasLibDeviceDL);
1587 if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) {
1588 emitWarning("Linking two modules of different data layouts: '" +
1589 SrcM->getModuleIdentifier() + "' is '" +
1590 SrcM->getDataLayoutStr() + "' whereas '" +
1591 DstM.getModuleIdentifier() + "' is '" +
1592 DstM.getDataLayoutStr() + "'\n");
1595 if (EnableTripleWarning && !SrcM->getTargetTriple().empty() &&
1596 !SrcTriple.isCompatibleWith(DstTriple))
1597 emitWarning("Linking two modules of different target triples: '" +
1598 SrcM->getModuleIdentifier() + "' is '" +
1599 SrcM->getTargetTriple() + "' whereas '" +
1600 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
1601 "'\n");
1603 DstM.setTargetTriple(SrcTriple.merge(DstTriple));
1605 // Loop over all of the linked values to compute type mappings.
1606 computeTypeMapping();
1608 std::reverse(Worklist.begin(), Worklist.end());
1609 while (!Worklist.empty()) {
1610 GlobalValue *GV = Worklist.back();
1611 Worklist.pop_back();
1613 // Already mapped.
1614 if (ValueMap.find(GV) != ValueMap.end() ||
1615 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end())
1616 continue;
1618 assert(!GV->isDeclaration());
1619 Mapper.mapValue(*GV);
1620 if (FoundError)
1621 return std::move(*FoundError);
1622 flushRAUWWorklist();
1625 // Note that we are done linking global value bodies. This prevents
1626 // metadata linking from creating new references.
1627 DoneLinkingBodies = true;
1628 Mapper.addFlags(RF_NullMapMissingGlobalValues);
1630 // Remap all of the named MDNodes in Src into the DstM module. We do this
1631 // after linking GlobalValues so that MDNodes that reference GlobalValues
1632 // are properly remapped.
1633 linkNamedMDNodes();
1635 // Clean up any global objects with potentially unmapped metadata.
1636 // Specifically declarations which did not become definitions.
1637 for (GlobalObject *NGO : UnmappedMetadata) {
1638 if (NGO->isDeclaration())
1639 Mapper.remapGlobalObjectMetadata(*NGO);
1642 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
1643 // Append the module inline asm string.
1644 DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(),
1645 SrcTriple));
1646 } else if (IsPerformingImport) {
1647 // Import any symver directives for symbols in DstM.
1648 ModuleSymbolTable::CollectAsmSymvers(*SrcM,
1649 [&](StringRef Name, StringRef Alias) {
1650 if (DstM.getNamedValue(Name)) {
1651 SmallString<256> S(".symver ");
1652 S += Name;
1653 S += ", ";
1654 S += Alias;
1655 DstM.appendModuleInlineAsm(S);
1660 // Reorder the globals just added to the destination module to match their
1661 // original order in the source module.
1662 for (GlobalVariable &GV : SrcM->globals()) {
1663 if (GV.hasAppendingLinkage())
1664 continue;
1665 Value *NewValue = Mapper.mapValue(GV);
1666 if (NewValue) {
1667 auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts());
1668 if (NewGV) {
1669 NewGV->removeFromParent();
1670 DstM.insertGlobalVariable(NewGV);
1675 // Merge the module flags into the DstM module.
1676 return linkModuleFlagsMetadata();
1679 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1680 : ETypes(E), IsPacked(P) {}
1682 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1683 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1685 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1686 return IsPacked == That.IsPacked && ETypes == That.ETypes;
1689 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1690 return !this->operator==(That);
1693 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1694 return DenseMapInfo<StructType *>::getEmptyKey();
1697 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1698 return DenseMapInfo<StructType *>::getTombstoneKey();
1701 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1702 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1703 Key.IsPacked);
1706 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1707 return getHashValue(KeyTy(ST));
1710 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1711 const StructType *RHS) {
1712 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1713 return false;
1714 return LHS == KeyTy(RHS);
1717 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
1718 const StructType *RHS) {
1719 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1720 return LHS == RHS;
1721 return KeyTy(LHS) == KeyTy(RHS);
1724 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1725 assert(!Ty->isOpaque());
1726 NonOpaqueStructTypes.insert(Ty);
1729 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
1730 assert(!Ty->isOpaque());
1731 NonOpaqueStructTypes.insert(Ty);
1732 bool Removed = OpaqueStructTypes.erase(Ty);
1733 (void)Removed;
1734 assert(Removed);
1737 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1738 assert(Ty->isOpaque());
1739 OpaqueStructTypes.insert(Ty);
1742 StructType *
1743 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1744 bool IsPacked) {
1745 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1746 auto I = NonOpaqueStructTypes.find_as(Key);
1747 return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1750 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1751 if (Ty->isOpaque())
1752 return OpaqueStructTypes.count(Ty);
1753 auto I = NonOpaqueStructTypes.find(Ty);
1754 return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1757 IRMover::IRMover(Module &M) : Composite(M) {
1758 TypeFinder StructTypes;
1759 StructTypes.run(M, /* OnlyNamed */ false);
1760 for (StructType *Ty : StructTypes) {
1761 if (Ty->isOpaque())
1762 IdentifiedStructTypes.addOpaque(Ty);
1763 else
1764 IdentifiedStructTypes.addNonOpaque(Ty);
1766 // Self-map metadatas in the destination module. This is needed when
1767 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1768 // destination module may be reached from the source module.
1769 for (const auto *MD : StructTypes.getVisitedMetadata()) {
1770 SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1774 Error IRMover::move(std::unique_ptr<Module> Src,
1775 ArrayRef<GlobalValue *> ValuesToLink,
1776 LazyCallback AddLazyFor, bool IsPerformingImport) {
1777 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1778 std::move(Src), ValuesToLink, std::move(AddLazyFor),
1779 IsPerformingImport);
1780 Error E = TheIRLinker.run();
1781 Composite.dropTriviallyDeadConstantArrays();
1782 return E;