1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCCodeView.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCFixup.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCFragment.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/Support/Alignment.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/EndianStream.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/LEB128.h"
38 #include "llvm/Support/raw_ostream.h"
47 class MCSubtargetInfo
;
50 #define DEBUG_TYPE "assembler"
55 STATISTIC(EmittedFragments
, "Number of emitted assembler fragments - total");
56 STATISTIC(EmittedRelaxableFragments
,
57 "Number of emitted assembler fragments - relaxable");
58 STATISTIC(EmittedDataFragments
,
59 "Number of emitted assembler fragments - data");
60 STATISTIC(EmittedCompactEncodedInstFragments
,
61 "Number of emitted assembler fragments - compact encoded inst");
62 STATISTIC(EmittedAlignFragments
,
63 "Number of emitted assembler fragments - align");
64 STATISTIC(EmittedFillFragments
,
65 "Number of emitted assembler fragments - fill");
66 STATISTIC(EmittedNopsFragments
, "Number of emitted assembler fragments - nops");
67 STATISTIC(EmittedOrgFragments
, "Number of emitted assembler fragments - org");
68 STATISTIC(evaluateFixup
, "Number of evaluated fixups");
69 STATISTIC(FragmentLayouts
, "Number of fragment layouts");
70 STATISTIC(ObjectBytes
, "Number of emitted object file bytes");
71 STATISTIC(RelaxationSteps
, "Number of assembler layout and relaxation steps");
72 STATISTIC(RelaxedInstructions
, "Number of relaxed instructions");
74 } // end namespace stats
75 } // end anonymous namespace
77 // FIXME FIXME FIXME: There are number of places in this file where we convert
78 // what is a 64-bit assembler value used for computation into a value in the
79 // object file, which may truncate it. We should detect that truncation where
80 // invalid and report errors back.
84 MCAssembler::MCAssembler(MCContext
&Context
,
85 std::unique_ptr
<MCAsmBackend
> Backend
,
86 std::unique_ptr
<MCCodeEmitter
> Emitter
,
87 std::unique_ptr
<MCObjectWriter
> Writer
)
88 : Context(Context
), Backend(std::move(Backend
)),
89 Emitter(std::move(Emitter
)), Writer(std::move(Writer
)),
90 BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
91 IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
92 VersionInfo
.Major
= 0; // Major version == 0 for "none specified"
93 DarwinTargetVariantVersionInfo
.Major
= 0;
96 MCAssembler::~MCAssembler() = default;
98 void MCAssembler::reset() {
101 IndirectSymbols
.clear();
103 LinkerOptions
.clear();
108 SubsectionsViaSymbols
= false;
109 IncrementalLinkerCompatible
= false;
111 LOHContainer
.reset();
112 VersionInfo
.Major
= 0;
113 VersionInfo
.SDKVersion
= VersionTuple();
114 DarwinTargetVariantVersionInfo
.Major
= 0;
115 DarwinTargetVariantVersionInfo
.SDKVersion
= VersionTuple();
117 // reset objects owned by us
119 getBackendPtr()->reset();
121 getEmitterPtr()->reset();
123 getWriterPtr()->reset();
124 getLOHContainer().reset();
127 bool MCAssembler::registerSection(MCSection
&Section
) {
128 if (Section
.isRegistered())
130 Sections
.push_back(&Section
);
131 Section
.setIsRegistered(true);
135 bool MCAssembler::isThumbFunc(const MCSymbol
*Symbol
) const {
136 if (ThumbFuncs
.count(Symbol
))
139 if (!Symbol
->isVariable())
142 const MCExpr
*Expr
= Symbol
->getVariableValue();
145 if (!Expr
->evaluateAsRelocatable(V
, nullptr, nullptr))
148 if (V
.getSymB() || V
.getRefKind() != MCSymbolRefExpr::VK_None
)
151 const MCSymbolRefExpr
*Ref
= V
.getSymA();
155 if (Ref
->getKind() != MCSymbolRefExpr::VK_None
)
158 const MCSymbol
&Sym
= Ref
->getSymbol();
159 if (!isThumbFunc(&Sym
))
162 ThumbFuncs
.insert(Symbol
); // Cache it.
166 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol
&Symbol
) const {
167 // Non-temporary labels should always be visible to the linker.
168 if (!Symbol
.isTemporary())
171 if (Symbol
.isUsedInReloc())
177 const MCSymbol
*MCAssembler::getAtom(const MCSymbol
&S
) const {
178 // Linker visible symbols define atoms.
179 if (isSymbolLinkerVisible(S
))
182 // Absolute and undefined symbols have no defining atom.
183 if (!S
.isInSection())
186 // Non-linker visible symbols in sections which can't be atomized have no
188 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
189 *S
.getFragment()->getParent()))
192 // Otherwise, return the atom for the containing fragment.
193 return S
.getFragment()->getAtom();
196 bool MCAssembler::evaluateFixup(const MCAsmLayout
&Layout
, const MCFixup
&Fixup
,
197 const MCFragment
*DF
, MCValue
&Target
,
198 const MCSubtargetInfo
*STI
, uint64_t &Value
,
199 bool &WasForced
) const {
200 ++stats::evaluateFixup
;
202 // FIXME: This code has some duplication with recordRelocation. We should
203 // probably merge the two into a single callback that tries to evaluate a
204 // fixup and records a relocation if one is needed.
206 // On error claim to have completely evaluated the fixup, to prevent any
207 // further processing from being done.
208 const MCExpr
*Expr
= Fixup
.getValue();
209 MCContext
&Ctx
= getContext();
212 if (!Expr
->evaluateAsRelocatable(Target
, &Layout
, &Fixup
)) {
213 Ctx
.reportError(Fixup
.getLoc(), "expected relocatable expression");
216 if (const MCSymbolRefExpr
*RefB
= Target
.getSymB()) {
217 if (RefB
->getKind() != MCSymbolRefExpr::VK_None
) {
218 Ctx
.reportError(Fixup
.getLoc(),
219 "unsupported subtraction of qualified symbol");
224 assert(getBackendPtr() && "Expected assembler backend");
225 bool IsTarget
= getBackendPtr()->getFixupKindInfo(Fixup
.getKind()).Flags
&
226 MCFixupKindInfo::FKF_IsTarget
;
229 return getBackend().evaluateTargetFixup(*this, Layout
, Fixup
, DF
, Target
,
230 STI
, Value
, WasForced
);
232 unsigned FixupFlags
= getBackendPtr()->getFixupKindInfo(Fixup
.getKind()).Flags
;
233 bool IsPCRel
= getBackendPtr()->getFixupKindInfo(Fixup
.getKind()).Flags
&
234 MCFixupKindInfo::FKF_IsPCRel
;
236 bool IsResolved
= false;
238 if (Target
.getSymB()) {
240 } else if (!Target
.getSymA()) {
243 const MCSymbolRefExpr
*A
= Target
.getSymA();
244 const MCSymbol
&SA
= A
->getSymbol();
245 if (A
->getKind() != MCSymbolRefExpr::VK_None
|| SA
.isUndefined()) {
247 } else if (auto *Writer
= getWriterPtr()) {
248 IsResolved
= (FixupFlags
& MCFixupKindInfo::FKF_Constant
) ||
249 Writer
->isSymbolRefDifferenceFullyResolvedImpl(
250 *this, SA
, *DF
, false, true);
254 IsResolved
= Target
.isAbsolute();
257 Value
= Target
.getConstant();
259 if (const MCSymbolRefExpr
*A
= Target
.getSymA()) {
260 const MCSymbol
&Sym
= A
->getSymbol();
262 Value
+= Layout
.getSymbolOffset(Sym
);
264 if (const MCSymbolRefExpr
*B
= Target
.getSymB()) {
265 const MCSymbol
&Sym
= B
->getSymbol();
267 Value
-= Layout
.getSymbolOffset(Sym
);
270 bool ShouldAlignPC
= getBackend().getFixupKindInfo(Fixup
.getKind()).Flags
&
271 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
;
272 assert((ShouldAlignPC
? IsPCRel
: true) &&
273 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
276 uint64_t Offset
= Layout
.getFragmentOffset(DF
) + Fixup
.getOffset();
278 // A number of ARM fixups in Thumb mode require that the effective PC
279 // address be determined as the 32-bit aligned version of the actual offset.
280 if (ShouldAlignPC
) Offset
&= ~0x3;
284 // Let the backend force a relocation if needed.
286 getBackend().shouldForceRelocation(*this, Fixup
, Target
, STI
)) {
291 // A linker relaxation target may emit ADD/SUB relocations for A-B+C. Let
292 // recordRelocation handle non-VK_None cases like A@plt-B+C.
293 if (!IsResolved
&& Target
.getSymA() && Target
.getSymB() &&
294 Target
.getSymA()->getKind() == MCSymbolRefExpr::VK_None
&&
295 getBackend().handleAddSubRelocations(Layout
, *DF
, Fixup
, Target
, Value
))
301 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout
&Layout
,
302 const MCFragment
&F
) const {
303 assert(getBackendPtr() && "Requires assembler backend");
304 switch (F
.getKind()) {
305 case MCFragment::FT_Data
:
306 return cast
<MCDataFragment
>(F
).getContents().size();
307 case MCFragment::FT_Relaxable
:
308 return cast
<MCRelaxableFragment
>(F
).getContents().size();
309 case MCFragment::FT_CompactEncodedInst
:
310 return cast
<MCCompactEncodedInstFragment
>(F
).getContents().size();
311 case MCFragment::FT_Fill
: {
312 auto &FF
= cast
<MCFillFragment
>(F
);
313 int64_t NumValues
= 0;
314 if (!FF
.getNumValues().evaluateKnownAbsolute(NumValues
, Layout
)) {
315 getContext().reportError(FF
.getLoc(),
316 "expected assembly-time absolute expression");
319 int64_t Size
= NumValues
* FF
.getValueSize();
321 getContext().reportError(FF
.getLoc(), "invalid number of bytes");
327 case MCFragment::FT_Nops
:
328 return cast
<MCNopsFragment
>(F
).getNumBytes();
330 case MCFragment::FT_LEB
:
331 return cast
<MCLEBFragment
>(F
).getContents().size();
333 case MCFragment::FT_BoundaryAlign
:
334 return cast
<MCBoundaryAlignFragment
>(F
).getSize();
336 case MCFragment::FT_SymbolId
:
339 case MCFragment::FT_Align
: {
340 const MCAlignFragment
&AF
= cast
<MCAlignFragment
>(F
);
341 unsigned Offset
= Layout
.getFragmentOffset(&AF
);
342 unsigned Size
= offsetToAlignment(Offset
, AF
.getAlignment());
344 // Insert extra Nops for code alignment if the target define
345 // shouldInsertExtraNopBytesForCodeAlign target hook.
346 if (AF
.getParent()->useCodeAlign() && AF
.hasEmitNops() &&
347 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF
, Size
))
350 // If we are padding with nops, force the padding to be larger than the
352 if (Size
> 0 && AF
.hasEmitNops()) {
353 while (Size
% getBackend().getMinimumNopSize())
354 Size
+= AF
.getAlignment().value();
356 if (Size
> AF
.getMaxBytesToEmit())
361 case MCFragment::FT_Org
: {
362 const MCOrgFragment
&OF
= cast
<MCOrgFragment
>(F
);
364 if (!OF
.getOffset().evaluateAsValue(Value
, Layout
)) {
365 getContext().reportError(OF
.getLoc(),
366 "expected assembly-time absolute expression");
370 uint64_t FragmentOffset
= Layout
.getFragmentOffset(&OF
);
371 int64_t TargetLocation
= Value
.getConstant();
372 if (const MCSymbolRefExpr
*A
= Value
.getSymA()) {
374 if (!Layout
.getSymbolOffset(A
->getSymbol(), Val
)) {
375 getContext().reportError(OF
.getLoc(), "expected absolute expression");
378 TargetLocation
+= Val
;
380 int64_t Size
= TargetLocation
- FragmentOffset
;
381 if (Size
< 0 || Size
>= 0x40000000) {
382 getContext().reportError(
383 OF
.getLoc(), "invalid .org offset '" + Twine(TargetLocation
) +
384 "' (at offset '" + Twine(FragmentOffset
) + "')");
390 case MCFragment::FT_Dwarf
:
391 return cast
<MCDwarfLineAddrFragment
>(F
).getContents().size();
392 case MCFragment::FT_DwarfFrame
:
393 return cast
<MCDwarfCallFrameFragment
>(F
).getContents().size();
394 case MCFragment::FT_CVInlineLines
:
395 return cast
<MCCVInlineLineTableFragment
>(F
).getContents().size();
396 case MCFragment::FT_CVDefRange
:
397 return cast
<MCCVDefRangeFragment
>(F
).getContents().size();
398 case MCFragment::FT_PseudoProbe
:
399 return cast
<MCPseudoProbeAddrFragment
>(F
).getContents().size();
400 case MCFragment::FT_Dummy
:
401 llvm_unreachable("Should not have been added");
404 llvm_unreachable("invalid fragment kind");
407 void MCAsmLayout::layoutFragment(MCFragment
*F
) {
408 MCFragment
*Prev
= F
->getPrevNode();
410 // We should never try to recompute something which is valid.
411 assert(!isFragmentValid(F
) && "Attempt to recompute a valid fragment!");
412 // We should never try to compute the fragment layout if its predecessor
414 assert((!Prev
|| isFragmentValid(Prev
)) &&
415 "Attempt to compute fragment before its predecessor!");
417 assert(!F
->IsBeingLaidOut
&& "Already being laid out!");
418 F
->IsBeingLaidOut
= true;
420 ++stats::FragmentLayouts
;
422 // Compute fragment offset and size.
424 F
->Offset
= Prev
->Offset
+ getAssembler().computeFragmentSize(*this, *Prev
);
427 F
->IsBeingLaidOut
= false;
428 LastValidFragment
[F
->getParent()] = F
;
430 // If bundling is enabled and this fragment has instructions in it, it has to
431 // obey the bundling restrictions. With padding, we'll have:
436 // -------------------------------------
437 // Prev |##########| F |
438 // -------------------------------------
443 // The fragment's offset will point to after the padding, and its computed
444 // size won't include the padding.
446 // When the -mc-relax-all flag is used, we optimize bundling by writting the
447 // padding directly into fragments when the instructions are emitted inside
448 // the streamer. When the fragment is larger than the bundle size, we need to
449 // ensure that it's bundle aligned. This means that if we end up with
450 // multiple fragments, we must emit bundle padding between fragments.
452 // ".align N" is an example of a directive that introduces multiple
453 // fragments. We could add a special case to handle ".align N" by emitting
454 // within-fragment padding (which would produce less padding when N is less
455 // than the bundle size), but for now we don't.
457 if (Assembler
.isBundlingEnabled() && F
->hasInstructions()) {
458 assert(isa
<MCEncodedFragment
>(F
) &&
459 "Only MCEncodedFragment implementations have instructions");
460 MCEncodedFragment
*EF
= cast
<MCEncodedFragment
>(F
);
461 uint64_t FSize
= Assembler
.computeFragmentSize(*this, *EF
);
463 if (!Assembler
.getRelaxAll() && FSize
> Assembler
.getBundleAlignSize())
464 report_fatal_error("Fragment can't be larger than a bundle size");
466 uint64_t RequiredBundlePadding
=
467 computeBundlePadding(Assembler
, EF
, EF
->Offset
, FSize
);
468 if (RequiredBundlePadding
> UINT8_MAX
)
469 report_fatal_error("Padding cannot exceed 255 bytes");
470 EF
->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding
));
471 EF
->Offset
+= RequiredBundlePadding
;
475 bool MCAssembler::registerSymbol(const MCSymbol
&Symbol
) {
476 bool Changed
= !Symbol
.isRegistered();
478 Symbol
.setIsRegistered(true);
479 Symbols
.push_back(&Symbol
);
484 void MCAssembler::writeFragmentPadding(raw_ostream
&OS
,
485 const MCEncodedFragment
&EF
,
486 uint64_t FSize
) const {
487 assert(getBackendPtr() && "Expected assembler backend");
488 // Should NOP padding be written out before this fragment?
489 unsigned BundlePadding
= EF
.getBundlePadding();
490 if (BundlePadding
> 0) {
491 assert(isBundlingEnabled() &&
492 "Writing bundle padding with disabled bundling");
493 assert(EF
.hasInstructions() &&
494 "Writing bundle padding for a fragment without instructions");
496 unsigned TotalLength
= BundlePadding
+ static_cast<unsigned>(FSize
);
497 const MCSubtargetInfo
*STI
= EF
.getSubtargetInfo();
498 if (EF
.alignToBundleEnd() && TotalLength
> getBundleAlignSize()) {
499 // If the padding itself crosses a bundle boundary, it must be emitted
500 // in 2 pieces, since even nop instructions must not cross boundaries.
501 // v--------------v <- BundleAlignSize
502 // v---------v <- BundlePadding
503 // ----------------------------
504 // | Prev |####|####| F |
505 // ----------------------------
506 // ^-------------------^ <- TotalLength
507 unsigned DistanceToBoundary
= TotalLength
- getBundleAlignSize();
508 if (!getBackend().writeNopData(OS
, DistanceToBoundary
, STI
))
509 report_fatal_error("unable to write NOP sequence of " +
510 Twine(DistanceToBoundary
) + " bytes");
511 BundlePadding
-= DistanceToBoundary
;
513 if (!getBackend().writeNopData(OS
, BundlePadding
, STI
))
514 report_fatal_error("unable to write NOP sequence of " +
515 Twine(BundlePadding
) + " bytes");
519 /// Write the fragment \p F to the output file.
520 static void writeFragment(raw_ostream
&OS
, const MCAssembler
&Asm
,
521 const MCAsmLayout
&Layout
, const MCFragment
&F
) {
522 // FIXME: Embed in fragments instead?
523 uint64_t FragmentSize
= Asm
.computeFragmentSize(Layout
, F
);
525 llvm::endianness Endian
= Asm
.getBackend().Endian
;
527 if (const MCEncodedFragment
*EF
= dyn_cast
<MCEncodedFragment
>(&F
))
528 Asm
.writeFragmentPadding(OS
, *EF
, FragmentSize
);
530 // This variable (and its dummy usage) is to participate in the assert at
531 // the end of the function.
532 uint64_t Start
= OS
.tell();
535 ++stats::EmittedFragments
;
537 switch (F
.getKind()) {
538 case MCFragment::FT_Align
: {
539 ++stats::EmittedAlignFragments
;
540 const MCAlignFragment
&AF
= cast
<MCAlignFragment
>(F
);
541 assert(AF
.getValueSize() && "Invalid virtual align in concrete fragment!");
543 uint64_t Count
= FragmentSize
/ AF
.getValueSize();
545 // FIXME: This error shouldn't actually occur (the front end should emit
546 // multiple .align directives to enforce the semantics it wants), but is
547 // severe enough that we want to report it. How to handle this?
548 if (Count
* AF
.getValueSize() != FragmentSize
)
549 report_fatal_error("undefined .align directive, value size '" +
550 Twine(AF
.getValueSize()) +
551 "' is not a divisor of padding size '" +
552 Twine(FragmentSize
) + "'");
554 // See if we are aligning with nops, and if so do that first to try to fill
555 // the Count bytes. Then if that did not fill any bytes or there are any
556 // bytes left to fill use the Value and ValueSize to fill the rest.
557 // If we are aligning with nops, ask that target to emit the right data.
558 if (AF
.hasEmitNops()) {
559 if (!Asm
.getBackend().writeNopData(OS
, Count
, AF
.getSubtargetInfo()))
560 report_fatal_error("unable to write nop sequence of " +
561 Twine(Count
) + " bytes");
565 // Otherwise, write out in multiples of the value size.
566 for (uint64_t i
= 0; i
!= Count
; ++i
) {
567 switch (AF
.getValueSize()) {
568 default: llvm_unreachable("Invalid size!");
569 case 1: OS
<< char(AF
.getValue()); break;
571 support::endian::write
<uint16_t>(OS
, AF
.getValue(), Endian
);
574 support::endian::write
<uint32_t>(OS
, AF
.getValue(), Endian
);
577 support::endian::write
<uint64_t>(OS
, AF
.getValue(), Endian
);
584 case MCFragment::FT_Data
:
585 ++stats::EmittedDataFragments
;
586 OS
<< cast
<MCDataFragment
>(F
).getContents();
589 case MCFragment::FT_Relaxable
:
590 ++stats::EmittedRelaxableFragments
;
591 OS
<< cast
<MCRelaxableFragment
>(F
).getContents();
594 case MCFragment::FT_CompactEncodedInst
:
595 ++stats::EmittedCompactEncodedInstFragments
;
596 OS
<< cast
<MCCompactEncodedInstFragment
>(F
).getContents();
599 case MCFragment::FT_Fill
: {
600 ++stats::EmittedFillFragments
;
601 const MCFillFragment
&FF
= cast
<MCFillFragment
>(F
);
602 uint64_t V
= FF
.getValue();
603 unsigned VSize
= FF
.getValueSize();
604 const unsigned MaxChunkSize
= 16;
605 char Data
[MaxChunkSize
];
606 assert(0 < VSize
&& VSize
<= MaxChunkSize
&& "Illegal fragment fill size");
607 // Duplicate V into Data as byte vector to reduce number of
608 // writes done. As such, do endian conversion here.
609 for (unsigned I
= 0; I
!= VSize
; ++I
) {
610 unsigned index
= Endian
== llvm::endianness::little
? I
: (VSize
- I
- 1);
611 Data
[I
] = uint8_t(V
>> (index
* 8));
613 for (unsigned I
= VSize
; I
< MaxChunkSize
; ++I
)
614 Data
[I
] = Data
[I
- VSize
];
616 // Set to largest multiple of VSize in Data.
617 const unsigned NumPerChunk
= MaxChunkSize
/ VSize
;
618 // Set ChunkSize to largest multiple of VSize in Data
619 const unsigned ChunkSize
= VSize
* NumPerChunk
;
621 // Do copies by chunk.
622 StringRef
Ref(Data
, ChunkSize
);
623 for (uint64_t I
= 0, E
= FragmentSize
/ ChunkSize
; I
!= E
; ++I
)
626 // do remainder if needed.
627 unsigned TrailingCount
= FragmentSize
% ChunkSize
;
629 OS
.write(Data
, TrailingCount
);
633 case MCFragment::FT_Nops
: {
634 ++stats::EmittedNopsFragments
;
635 const MCNopsFragment
&NF
= cast
<MCNopsFragment
>(F
);
637 int64_t NumBytes
= NF
.getNumBytes();
638 int64_t ControlledNopLength
= NF
.getControlledNopLength();
639 int64_t MaximumNopLength
=
640 Asm
.getBackend().getMaximumNopSize(*NF
.getSubtargetInfo());
642 assert(NumBytes
> 0 && "Expected positive NOPs fragment size");
643 assert(ControlledNopLength
>= 0 && "Expected non-negative NOP size");
645 if (ControlledNopLength
> MaximumNopLength
) {
646 Asm
.getContext().reportError(NF
.getLoc(),
647 "illegal NOP size " +
648 std::to_string(ControlledNopLength
) +
649 ". (expected within [0, " +
650 std::to_string(MaximumNopLength
) + "])");
651 // Clamp the NOP length as reportError does not stop the execution
653 ControlledNopLength
= MaximumNopLength
;
656 // Use maximum value if the size of each NOP is not specified
657 if (!ControlledNopLength
)
658 ControlledNopLength
= MaximumNopLength
;
661 uint64_t NumBytesToEmit
=
662 (uint64_t)std::min(NumBytes
, ControlledNopLength
);
663 assert(NumBytesToEmit
&& "try to emit empty NOP instruction");
664 if (!Asm
.getBackend().writeNopData(OS
, NumBytesToEmit
,
665 NF
.getSubtargetInfo())) {
666 report_fatal_error("unable to write nop sequence of the remaining " +
667 Twine(NumBytesToEmit
) + " bytes");
670 NumBytes
-= NumBytesToEmit
;
675 case MCFragment::FT_LEB
: {
676 const MCLEBFragment
&LF
= cast
<MCLEBFragment
>(F
);
677 OS
<< LF
.getContents();
681 case MCFragment::FT_BoundaryAlign
: {
682 const MCBoundaryAlignFragment
&BF
= cast
<MCBoundaryAlignFragment
>(F
);
683 if (!Asm
.getBackend().writeNopData(OS
, FragmentSize
, BF
.getSubtargetInfo()))
684 report_fatal_error("unable to write nop sequence of " +
685 Twine(FragmentSize
) + " bytes");
689 case MCFragment::FT_SymbolId
: {
690 const MCSymbolIdFragment
&SF
= cast
<MCSymbolIdFragment
>(F
);
691 support::endian::write
<uint32_t>(OS
, SF
.getSymbol()->getIndex(), Endian
);
695 case MCFragment::FT_Org
: {
696 ++stats::EmittedOrgFragments
;
697 const MCOrgFragment
&OF
= cast
<MCOrgFragment
>(F
);
699 for (uint64_t i
= 0, e
= FragmentSize
; i
!= e
; ++i
)
700 OS
<< char(OF
.getValue());
705 case MCFragment::FT_Dwarf
: {
706 const MCDwarfLineAddrFragment
&OF
= cast
<MCDwarfLineAddrFragment
>(F
);
707 OS
<< OF
.getContents();
710 case MCFragment::FT_DwarfFrame
: {
711 const MCDwarfCallFrameFragment
&CF
= cast
<MCDwarfCallFrameFragment
>(F
);
712 OS
<< CF
.getContents();
715 case MCFragment::FT_CVInlineLines
: {
716 const auto &OF
= cast
<MCCVInlineLineTableFragment
>(F
);
717 OS
<< OF
.getContents();
720 case MCFragment::FT_CVDefRange
: {
721 const auto &DRF
= cast
<MCCVDefRangeFragment
>(F
);
722 OS
<< DRF
.getContents();
725 case MCFragment::FT_PseudoProbe
: {
726 const MCPseudoProbeAddrFragment
&PF
= cast
<MCPseudoProbeAddrFragment
>(F
);
727 OS
<< PF
.getContents();
730 case MCFragment::FT_Dummy
:
731 llvm_unreachable("Should not have been added");
734 assert(OS
.tell() - Start
== FragmentSize
&&
735 "The stream should advance by fragment size");
738 void MCAssembler::writeSectionData(raw_ostream
&OS
, const MCSection
*Sec
,
739 const MCAsmLayout
&Layout
) const {
740 assert(getBackendPtr() && "Expected assembler backend");
742 // Ignore virtual sections.
743 if (Sec
->isVirtualSection()) {
744 assert(Layout
.getSectionFileSize(Sec
) == 0 && "Invalid size for section!");
746 // Check that contents are only things legal inside a virtual section.
747 for (const MCFragment
&F
: *Sec
) {
748 switch (F
.getKind()) {
749 default: llvm_unreachable("Invalid fragment in virtual section!");
750 case MCFragment::FT_Data
: {
751 // Check that we aren't trying to write a non-zero contents (or fixups)
752 // into a virtual section. This is to support clients which use standard
753 // directives to fill the contents of virtual sections.
754 const MCDataFragment
&DF
= cast
<MCDataFragment
>(F
);
755 if (DF
.fixup_begin() != DF
.fixup_end())
756 getContext().reportError(SMLoc(), Sec
->getVirtualSectionKind() +
757 " section '" + Sec
->getName() +
758 "' cannot have fixups");
759 for (unsigned i
= 0, e
= DF
.getContents().size(); i
!= e
; ++i
)
760 if (DF
.getContents()[i
]) {
761 getContext().reportError(SMLoc(),
762 Sec
->getVirtualSectionKind() +
763 " section '" + Sec
->getName() +
764 "' cannot have non-zero initializers");
769 case MCFragment::FT_Align
:
770 // Check that we aren't trying to write a non-zero value into a virtual
772 assert((cast
<MCAlignFragment
>(F
).getValueSize() == 0 ||
773 cast
<MCAlignFragment
>(F
).getValue() == 0) &&
774 "Invalid align in virtual section!");
776 case MCFragment::FT_Fill
:
777 assert((cast
<MCFillFragment
>(F
).getValue() == 0) &&
778 "Invalid fill in virtual section!");
780 case MCFragment::FT_Org
:
788 uint64_t Start
= OS
.tell();
791 for (const MCFragment
&F
: *Sec
)
792 writeFragment(OS
, *this, Layout
, F
);
794 assert(getContext().hadError() ||
795 OS
.tell() - Start
== Layout
.getSectionAddressSize(Sec
));
798 std::tuple
<MCValue
, uint64_t, bool>
799 MCAssembler::handleFixup(const MCAsmLayout
&Layout
, MCFragment
&F
,
800 const MCFixup
&Fixup
, const MCSubtargetInfo
*STI
) {
801 // Evaluate the fixup.
806 evaluateFixup(Layout
, Fixup
, &F
, Target
, STI
, FixedValue
, WasForced
);
808 // The fixup was unresolved, we need a relocation. Inform the object
809 // writer of the relocation, and give it an opportunity to adjust the
810 // fixup value if need be.
811 getWriter().recordRelocation(*this, Layout
, &F
, Fixup
, Target
, FixedValue
);
813 return std::make_tuple(Target
, FixedValue
, IsResolved
);
816 void MCAssembler::layout(MCAsmLayout
&Layout
) {
817 assert(getBackendPtr() && "Expected assembler backend");
818 DEBUG_WITH_TYPE("mc-dump", {
819 errs() << "assembler backend - pre-layout\n--\n";
822 // Create dummy fragments and assign section ordinals.
823 unsigned SectionIndex
= 0;
824 for (MCSection
&Sec
: *this) {
825 // Create dummy fragments to eliminate any empty sections, this simplifies
827 if (Sec
.getFragmentList().empty())
828 new MCDataFragment(&Sec
);
830 Sec
.setOrdinal(SectionIndex
++);
833 // Assign layout order indices to sections and fragments.
834 for (unsigned i
= 0, e
= Layout
.getSectionOrder().size(); i
!= e
; ++i
) {
835 MCSection
*Sec
= Layout
.getSectionOrder()[i
];
836 Sec
->setLayoutOrder(i
);
838 unsigned FragmentIndex
= 0;
839 for (MCFragment
&Frag
: *Sec
)
840 Frag
.setLayoutOrder(FragmentIndex
++);
843 // Layout until everything fits.
844 while (layoutOnce(Layout
)) {
845 if (getContext().hadError())
847 // Size of fragments in one section can depend on the size of fragments in
848 // another. If any fragment has changed size, we have to re-layout (and
849 // as a result possibly further relax) all.
850 for (MCSection
&Sec
: *this)
851 Layout
.invalidateFragmentsFrom(&*Sec
.begin());
854 DEBUG_WITH_TYPE("mc-dump", {
855 errs() << "assembler backend - post-relaxation\n--\n";
858 // Finalize the layout, including fragment lowering.
859 finishLayout(Layout
);
861 DEBUG_WITH_TYPE("mc-dump", {
862 errs() << "assembler backend - final-layout\n--\n";
865 // Allow the object writer a chance to perform post-layout binding (for
866 // example, to set the index fields in the symbol data).
867 getWriter().executePostLayoutBinding(*this, Layout
);
869 // Evaluate and apply the fixups, generating relocation entries as necessary.
870 for (MCSection
&Sec
: *this) {
871 for (MCFragment
&Frag
: Sec
) {
872 ArrayRef
<MCFixup
> Fixups
;
873 MutableArrayRef
<char> Contents
;
874 const MCSubtargetInfo
*STI
= nullptr;
876 // Process MCAlignFragment and MCEncodedFragmentWithFixups here.
877 switch (Frag
.getKind()) {
880 case MCFragment::FT_Align
: {
881 MCAlignFragment
&AF
= cast
<MCAlignFragment
>(Frag
);
882 // Insert fixup type for code alignment if the target define
883 // shouldInsertFixupForCodeAlign target hook.
884 if (Sec
.useCodeAlign() && AF
.hasEmitNops())
885 getBackend().shouldInsertFixupForCodeAlign(*this, Layout
, AF
);
888 case MCFragment::FT_Data
: {
889 MCDataFragment
&DF
= cast
<MCDataFragment
>(Frag
);
890 Fixups
= DF
.getFixups();
891 Contents
= DF
.getContents();
892 STI
= DF
.getSubtargetInfo();
893 assert(!DF
.hasInstructions() || STI
!= nullptr);
896 case MCFragment::FT_Relaxable
: {
897 MCRelaxableFragment
&RF
= cast
<MCRelaxableFragment
>(Frag
);
898 Fixups
= RF
.getFixups();
899 Contents
= RF
.getContents();
900 STI
= RF
.getSubtargetInfo();
901 assert(!RF
.hasInstructions() || STI
!= nullptr);
904 case MCFragment::FT_CVDefRange
: {
905 MCCVDefRangeFragment
&CF
= cast
<MCCVDefRangeFragment
>(Frag
);
906 Fixups
= CF
.getFixups();
907 Contents
= CF
.getContents();
910 case MCFragment::FT_Dwarf
: {
911 MCDwarfLineAddrFragment
&DF
= cast
<MCDwarfLineAddrFragment
>(Frag
);
912 Fixups
= DF
.getFixups();
913 Contents
= DF
.getContents();
916 case MCFragment::FT_DwarfFrame
: {
917 MCDwarfCallFrameFragment
&DF
= cast
<MCDwarfCallFrameFragment
>(Frag
);
918 Fixups
= DF
.getFixups();
919 Contents
= DF
.getContents();
922 case MCFragment::FT_LEB
: {
923 auto &LF
= cast
<MCLEBFragment
>(Frag
);
924 Fixups
= LF
.getFixups();
925 Contents
= LF
.getContents();
928 case MCFragment::FT_PseudoProbe
: {
929 MCPseudoProbeAddrFragment
&PF
= cast
<MCPseudoProbeAddrFragment
>(Frag
);
930 Fixups
= PF
.getFixups();
931 Contents
= PF
.getContents();
935 for (const MCFixup
&Fixup
: Fixups
) {
939 std::tie(Target
, FixedValue
, IsResolved
) =
940 handleFixup(Layout
, Frag
, Fixup
, STI
);
941 getBackend().applyFixup(*this, Fixup
, Target
, Contents
, FixedValue
,
948 void MCAssembler::Finish() {
949 // Create the layout object.
950 MCAsmLayout
Layout(*this);
953 // Write the object file.
954 stats::ObjectBytes
+= getWriter().writeObject(*this, Layout
);
957 bool MCAssembler::fixupNeedsRelaxation(const MCFixup
&Fixup
,
958 const MCRelaxableFragment
*DF
,
959 const MCAsmLayout
&Layout
) const {
960 assert(getBackendPtr() && "Expected assembler backend");
964 bool Resolved
= evaluateFixup(Layout
, Fixup
, DF
, Target
,
965 DF
->getSubtargetInfo(), Value
, WasForced
);
966 if (Target
.getSymA() &&
967 Target
.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8
&&
968 Fixup
.getKind() == FK_Data_1
)
970 return getBackend().fixupNeedsRelaxationAdvanced(Fixup
, Resolved
, Value
, DF
,
974 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment
*F
,
975 const MCAsmLayout
&Layout
) const {
976 assert(getBackendPtr() && "Expected assembler backend");
977 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
978 // are intentionally pushing out inst fragments, or because we relaxed a
979 // previous instruction to one that doesn't need relaxation.
980 if (!getBackend().mayNeedRelaxation(F
->getInst(), *F
->getSubtargetInfo()))
983 for (const MCFixup
&Fixup
: F
->getFixups())
984 if (fixupNeedsRelaxation(Fixup
, F
, Layout
))
990 bool MCAssembler::relaxInstruction(MCAsmLayout
&Layout
,
991 MCRelaxableFragment
&F
) {
992 assert(getEmitterPtr() &&
993 "Expected CodeEmitter defined for relaxInstruction");
994 if (!fragmentNeedsRelaxation(&F
, Layout
))
997 ++stats::RelaxedInstructions
;
999 // FIXME-PERF: We could immediately lower out instructions if we can tell
1000 // they are fully resolved, to avoid retesting on later passes.
1002 // Relax the fragment.
1004 MCInst Relaxed
= F
.getInst();
1005 getBackend().relaxInstruction(Relaxed
, *F
.getSubtargetInfo());
1007 // Encode the new instruction.
1009 F
.getFixups().clear();
1010 F
.getContents().clear();
1011 getEmitter().encodeInstruction(Relaxed
, F
.getContents(), F
.getFixups(),
1012 *F
.getSubtargetInfo());
1016 bool MCAssembler::relaxLEB(MCAsmLayout
&Layout
, MCLEBFragment
&LF
) {
1017 const unsigned OldSize
= static_cast<unsigned>(LF
.getContents().size());
1018 unsigned PadTo
= OldSize
;
1020 SmallVectorImpl
<char> &Data
= LF
.getContents();
1021 LF
.getFixups().clear();
1022 // Use evaluateKnownAbsolute for Mach-O as a hack: .subsections_via_symbols
1023 // requires that .uleb128 A-B is foldable where A and B reside in different
1024 // fragments. This is used by __gcc_except_table.
1025 bool Abs
= getSubsectionsViaSymbols()
1026 ? LF
.getValue().evaluateKnownAbsolute(Value
, Layout
)
1027 : LF
.getValue().evaluateAsAbsolute(Value
, Layout
);
1029 bool Relaxed
, UseZeroPad
;
1030 std::tie(Relaxed
, UseZeroPad
) = getBackend().relaxLEB128(LF
, Layout
, Value
);
1032 getContext().reportError(LF
.getValue().getLoc(),
1033 Twine(LF
.isSigned() ? ".s" : ".u") +
1034 "leb128 expression is not absolute");
1035 LF
.setValue(MCConstantExpr::create(0, Context
));
1037 uint8_t Tmp
[10]; // maximum size: ceil(64/7)
1038 PadTo
= std::max(PadTo
, encodeULEB128(uint64_t(Value
), Tmp
));
1043 raw_svector_ostream
OSE(Data
);
1044 // The compiler can generate EH table assembly that is impossible to assemble
1045 // without either adding padding to an LEB fragment or adding extra padding
1046 // to a later alignment fragment. To accommodate such tables, relaxation can
1047 // only increase an LEB fragment size here, not decrease it. See PR35809.
1049 encodeSLEB128(Value
, OSE
, PadTo
);
1051 encodeULEB128(Value
, OSE
, PadTo
);
1052 return OldSize
!= LF
.getContents().size();
1055 /// Check if the branch crosses the boundary.
1057 /// \param StartAddr start address of the fused/unfused branch.
1058 /// \param Size size of the fused/unfused branch.
1059 /// \param BoundaryAlignment alignment requirement of the branch.
1060 /// \returns true if the branch cross the boundary.
1061 static bool mayCrossBoundary(uint64_t StartAddr
, uint64_t Size
,
1062 Align BoundaryAlignment
) {
1063 uint64_t EndAddr
= StartAddr
+ Size
;
1064 return (StartAddr
>> Log2(BoundaryAlignment
)) !=
1065 ((EndAddr
- 1) >> Log2(BoundaryAlignment
));
1068 /// Check if the branch is against the boundary.
1070 /// \param StartAddr start address of the fused/unfused branch.
1071 /// \param Size size of the fused/unfused branch.
1072 /// \param BoundaryAlignment alignment requirement of the branch.
1073 /// \returns true if the branch is against the boundary.
1074 static bool isAgainstBoundary(uint64_t StartAddr
, uint64_t Size
,
1075 Align BoundaryAlignment
) {
1076 uint64_t EndAddr
= StartAddr
+ Size
;
1077 return (EndAddr
& (BoundaryAlignment
.value() - 1)) == 0;
1080 /// Check if the branch needs padding.
1082 /// \param StartAddr start address of the fused/unfused branch.
1083 /// \param Size size of the fused/unfused branch.
1084 /// \param BoundaryAlignment alignment requirement of the branch.
1085 /// \returns true if the branch needs padding.
1086 static bool needPadding(uint64_t StartAddr
, uint64_t Size
,
1087 Align BoundaryAlignment
) {
1088 return mayCrossBoundary(StartAddr
, Size
, BoundaryAlignment
) ||
1089 isAgainstBoundary(StartAddr
, Size
, BoundaryAlignment
);
1092 bool MCAssembler::relaxBoundaryAlign(MCAsmLayout
&Layout
,
1093 MCBoundaryAlignFragment
&BF
) {
1094 // BoundaryAlignFragment that doesn't need to align any fragment should not be
1096 if (!BF
.getLastFragment())
1099 uint64_t AlignedOffset
= Layout
.getFragmentOffset(&BF
);
1100 uint64_t AlignedSize
= 0;
1101 for (const MCFragment
*F
= BF
.getLastFragment(); F
!= &BF
;
1102 F
= F
->getPrevNode())
1103 AlignedSize
+= computeFragmentSize(Layout
, *F
);
1105 Align BoundaryAlignment
= BF
.getAlignment();
1106 uint64_t NewSize
= needPadding(AlignedOffset
, AlignedSize
, BoundaryAlignment
)
1107 ? offsetToAlignment(AlignedOffset
, BoundaryAlignment
)
1109 if (NewSize
== BF
.getSize())
1111 BF
.setSize(NewSize
);
1112 Layout
.invalidateFragmentsFrom(&BF
);
1116 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout
&Layout
,
1117 MCDwarfLineAddrFragment
&DF
) {
1120 if (getBackend().relaxDwarfLineAddr(DF
, Layout
, WasRelaxed
))
1123 MCContext
&Context
= Layout
.getAssembler().getContext();
1124 uint64_t OldSize
= DF
.getContents().size();
1126 bool Abs
= DF
.getAddrDelta().evaluateKnownAbsolute(AddrDelta
, Layout
);
1127 assert(Abs
&& "We created a line delta with an invalid expression");
1130 LineDelta
= DF
.getLineDelta();
1131 SmallVectorImpl
<char> &Data
= DF
.getContents();
1133 DF
.getFixups().clear();
1135 MCDwarfLineAddr::encode(Context
, getDWARFLinetableParams(), LineDelta
,
1137 return OldSize
!= Data
.size();
1140 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout
&Layout
,
1141 MCDwarfCallFrameFragment
&DF
) {
1143 if (getBackend().relaxDwarfCFA(DF
, Layout
, WasRelaxed
))
1146 MCContext
&Context
= Layout
.getAssembler().getContext();
1148 bool Abs
= DF
.getAddrDelta().evaluateAsAbsolute(Value
, Layout
);
1150 getContext().reportError(DF
.getAddrDelta().getLoc(),
1151 "invalid CFI advance_loc expression");
1152 DF
.setAddrDelta(MCConstantExpr::create(0, Context
));
1156 SmallVectorImpl
<char> &Data
= DF
.getContents();
1157 uint64_t OldSize
= Data
.size();
1159 DF
.getFixups().clear();
1161 MCDwarfFrameEmitter::encodeAdvanceLoc(Context
, Value
, Data
);
1162 return OldSize
!= Data
.size();
1165 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout
&Layout
,
1166 MCCVInlineLineTableFragment
&F
) {
1167 unsigned OldSize
= F
.getContents().size();
1168 getContext().getCVContext().encodeInlineLineTable(Layout
, F
);
1169 return OldSize
!= F
.getContents().size();
1172 bool MCAssembler::relaxCVDefRange(MCAsmLayout
&Layout
,
1173 MCCVDefRangeFragment
&F
) {
1174 unsigned OldSize
= F
.getContents().size();
1175 getContext().getCVContext().encodeDefRange(Layout
, F
);
1176 return OldSize
!= F
.getContents().size();
1179 bool MCAssembler::relaxPseudoProbeAddr(MCAsmLayout
&Layout
,
1180 MCPseudoProbeAddrFragment
&PF
) {
1181 uint64_t OldSize
= PF
.getContents().size();
1183 bool Abs
= PF
.getAddrDelta().evaluateKnownAbsolute(AddrDelta
, Layout
);
1184 assert(Abs
&& "We created a pseudo probe with an invalid expression");
1186 SmallVectorImpl
<char> &Data
= PF
.getContents();
1188 raw_svector_ostream
OSE(Data
);
1189 PF
.getFixups().clear();
1191 // AddrDelta is a signed integer
1192 encodeSLEB128(AddrDelta
, OSE
, OldSize
);
1193 return OldSize
!= Data
.size();
1196 bool MCAssembler::relaxFragment(MCAsmLayout
&Layout
, MCFragment
&F
) {
1197 switch(F
.getKind()) {
1200 case MCFragment::FT_Relaxable
:
1201 assert(!getRelaxAll() &&
1202 "Did not expect a MCRelaxableFragment in RelaxAll mode");
1203 return relaxInstruction(Layout
, cast
<MCRelaxableFragment
>(F
));
1204 case MCFragment::FT_Dwarf
:
1205 return relaxDwarfLineAddr(Layout
, cast
<MCDwarfLineAddrFragment
>(F
));
1206 case MCFragment::FT_DwarfFrame
:
1207 return relaxDwarfCallFrameFragment(Layout
,
1208 cast
<MCDwarfCallFrameFragment
>(F
));
1209 case MCFragment::FT_LEB
:
1210 return relaxLEB(Layout
, cast
<MCLEBFragment
>(F
));
1211 case MCFragment::FT_BoundaryAlign
:
1212 return relaxBoundaryAlign(Layout
, cast
<MCBoundaryAlignFragment
>(F
));
1213 case MCFragment::FT_CVInlineLines
:
1214 return relaxCVInlineLineTable(Layout
, cast
<MCCVInlineLineTableFragment
>(F
));
1215 case MCFragment::FT_CVDefRange
:
1216 return relaxCVDefRange(Layout
, cast
<MCCVDefRangeFragment
>(F
));
1217 case MCFragment::FT_PseudoProbe
:
1218 return relaxPseudoProbeAddr(Layout
, cast
<MCPseudoProbeAddrFragment
>(F
));
1222 bool MCAssembler::layoutSectionOnce(MCAsmLayout
&Layout
, MCSection
&Sec
) {
1223 // Holds the first fragment which needed relaxing during this layout. It will
1224 // remain NULL if none were relaxed.
1225 // When a fragment is relaxed, all the fragments following it should get
1226 // invalidated because their offset is going to change.
1227 MCFragment
*FirstRelaxedFragment
= nullptr;
1229 // Attempt to relax all the fragments in the section.
1230 for (MCFragment
&Frag
: Sec
) {
1231 // Check if this is a fragment that needs relaxation.
1232 bool RelaxedFrag
= relaxFragment(Layout
, Frag
);
1233 if (RelaxedFrag
&& !FirstRelaxedFragment
)
1234 FirstRelaxedFragment
= &Frag
;
1236 if (FirstRelaxedFragment
) {
1237 Layout
.invalidateFragmentsFrom(FirstRelaxedFragment
);
1243 bool MCAssembler::layoutOnce(MCAsmLayout
&Layout
) {
1244 ++stats::RelaxationSteps
;
1246 bool WasRelaxed
= false;
1247 for (MCSection
&Sec
: *this) {
1248 while (layoutSectionOnce(Layout
, Sec
))
1255 void MCAssembler::finishLayout(MCAsmLayout
&Layout
) {
1256 assert(getBackendPtr() && "Expected assembler backend");
1257 // The layout is done. Mark every fragment as valid.
1258 for (unsigned int i
= 0, n
= Layout
.getSectionOrder().size(); i
!= n
; ++i
) {
1259 MCSection
&Section
= *Layout
.getSectionOrder()[i
];
1260 Layout
.getFragmentOffset(&*Section
.getFragmentList().rbegin());
1261 computeFragmentSize(Layout
, *Section
.getFragmentList().rbegin());
1263 getBackend().finishLayout(*this, Layout
);
1266 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1267 LLVM_DUMP_METHOD
void MCAssembler::dump() const{
1268 raw_ostream
&OS
= errs();
1270 OS
<< "<MCAssembler\n";
1271 OS
<< " Sections:[\n ";
1272 for (const_iterator it
= begin(), ie
= end(); it
!= ie
; ++it
) {
1273 if (it
!= begin()) OS
<< ",\n ";
1279 for (const_symbol_iterator it
= symbol_begin(), ie
= symbol_end(); it
!= ie
; ++it
) {
1280 if (it
!= symbol_begin()) OS
<< ",\n ";
1283 OS
<< ", Index:" << it
->getIndex() << ", ";