[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / MC / XCOFFObjectWriter.cpp
blob343e2fc877bc3b1683e252eff1d0a68882a8b779
1 //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements XCOFF object file writer information.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/BinaryFormat/XCOFF.h"
14 #include "llvm/MC/MCAsmBackend.h"
15 #include "llvm/MC/MCAsmLayout.h"
16 #include "llvm/MC/MCAssembler.h"
17 #include "llvm/MC/MCFixup.h"
18 #include "llvm/MC/MCFixupKindInfo.h"
19 #include "llvm/MC/MCObjectWriter.h"
20 #include "llvm/MC/MCSectionXCOFF.h"
21 #include "llvm/MC/MCSymbolXCOFF.h"
22 #include "llvm/MC/MCValue.h"
23 #include "llvm/MC/MCXCOFFObjectWriter.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/EndianStream.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
30 #include <deque>
31 #include <map>
33 using namespace llvm;
35 // An XCOFF object file has a limited set of predefined sections. The most
36 // important ones for us (right now) are:
37 // .text --> contains program code and read-only data.
38 // .data --> contains initialized data, function descriptors, and the TOC.
39 // .bss --> contains uninitialized data.
40 // Each of these sections is composed of 'Control Sections'. A Control Section
41 // is more commonly referred to as a csect. A csect is an indivisible unit of
42 // code or data, and acts as a container for symbols. A csect is mapped
43 // into a section based on its storage-mapping class, with the exception of
44 // XMC_RW which gets mapped to either .data or .bss based on whether it's
45 // explicitly initialized or not.
47 // We don't represent the sections in the MC layer as there is nothing
48 // interesting about them at at that level: they carry information that is
49 // only relevant to the ObjectWriter, so we materialize them in this class.
50 namespace {
52 constexpr unsigned DefaultSectionAlign = 4;
53 constexpr int16_t MaxSectionIndex = INT16_MAX;
55 // Packs the csect's alignment and type into a byte.
56 uint8_t getEncodedType(const MCSectionXCOFF *);
58 struct XCOFFRelocation {
59 uint32_t SymbolTableIndex;
60 uint32_t FixupOffsetInCsect;
61 uint8_t SignAndSize;
62 uint8_t Type;
65 // Wrapper around an MCSymbolXCOFF.
66 struct Symbol {
67 const MCSymbolXCOFF *const MCSym;
68 uint32_t SymbolTableIndex;
70 XCOFF::VisibilityType getVisibilityType() const {
71 return MCSym->getVisibilityType();
74 XCOFF::StorageClass getStorageClass() const {
75 return MCSym->getStorageClass();
77 StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); }
78 Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
81 // Wrapper for an MCSectionXCOFF.
82 // It can be a Csect or debug section or DWARF section and so on.
83 struct XCOFFSection {
84 const MCSectionXCOFF *const MCSec;
85 uint32_t SymbolTableIndex;
86 uint64_t Address;
87 uint64_t Size;
89 SmallVector<Symbol, 1> Syms;
90 SmallVector<XCOFFRelocation, 1> Relocations;
91 StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); }
92 XCOFF::VisibilityType getVisibilityType() const {
93 return MCSec->getVisibilityType();
95 XCOFFSection(const MCSectionXCOFF *MCSec)
96 : MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
99 // Type to be used for a container representing a set of csects with
100 // (approximately) the same storage mapping class. For example all the csects
101 // with a storage mapping class of `xmc_pr` will get placed into the same
102 // container.
103 using CsectGroup = std::deque<XCOFFSection>;
104 using CsectGroups = std::deque<CsectGroup *>;
106 // The basic section entry defination. This Section represents a section entry
107 // in XCOFF section header table.
108 struct SectionEntry {
109 char Name[XCOFF::NameSize];
110 // The physical/virtual address of the section. For an object file these
111 // values are equivalent, except for in the overflow section header, where
112 // the physical address specifies the number of relocation entries and the
113 // virtual address specifies the number of line number entries.
114 // TODO: Divide Address into PhysicalAddress and VirtualAddress when line
115 // number entries are supported.
116 uint64_t Address;
117 uint64_t Size;
118 uint64_t FileOffsetToData;
119 uint64_t FileOffsetToRelocations;
120 uint32_t RelocationCount;
121 int32_t Flags;
123 int16_t Index;
125 virtual uint64_t advanceFileOffset(const uint64_t MaxRawDataSize,
126 const uint64_t RawPointer) {
127 FileOffsetToData = RawPointer;
128 uint64_t NewPointer = RawPointer + Size;
129 if (NewPointer > MaxRawDataSize)
130 report_fatal_error("Section raw data overflowed this object file.");
131 return NewPointer;
134 // XCOFF has special section numbers for symbols:
135 // -2 Specifies N_DEBUG, a special symbolic debugging symbol.
136 // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not
137 // relocatable.
138 // 0 Specifies N_UNDEF, an undefined external symbol.
139 // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that
140 // hasn't been initialized.
141 static constexpr int16_t UninitializedIndex =
142 XCOFF::ReservedSectionNum::N_DEBUG - 1;
144 SectionEntry(StringRef N, int32_t Flags)
145 : Name(), Address(0), Size(0), FileOffsetToData(0),
146 FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags),
147 Index(UninitializedIndex) {
148 assert(N.size() <= XCOFF::NameSize && "section name too long");
149 memcpy(Name, N.data(), N.size());
152 virtual void reset() {
153 Address = 0;
154 Size = 0;
155 FileOffsetToData = 0;
156 FileOffsetToRelocations = 0;
157 RelocationCount = 0;
158 Index = UninitializedIndex;
161 virtual ~SectionEntry() = default;
164 // Represents the data related to a section excluding the csects that make up
165 // the raw data of the section. The csects are stored separately as not all
166 // sections contain csects, and some sections contain csects which are better
167 // stored separately, e.g. the .data section containing read-write, descriptor,
168 // TOCBase and TOC-entry csects.
169 struct CsectSectionEntry : public SectionEntry {
170 // Virtual sections do not need storage allocated in the object file.
171 const bool IsVirtual;
173 // This is a section containing csect groups.
174 CsectGroups Groups;
176 CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual,
177 CsectGroups Groups)
178 : SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) {
179 assert(N.size() <= XCOFF::NameSize && "section name too long");
180 memcpy(Name, N.data(), N.size());
183 void reset() override {
184 SectionEntry::reset();
185 // Clear any csects we have stored.
186 for (auto *Group : Groups)
187 Group->clear();
190 virtual ~CsectSectionEntry() = default;
193 struct DwarfSectionEntry : public SectionEntry {
194 // For DWARF section entry.
195 std::unique_ptr<XCOFFSection> DwarfSect;
197 // For DWARF section, we must use real size in the section header. MemorySize
198 // is for the size the DWARF section occupies including paddings.
199 uint32_t MemorySize;
201 // TODO: Remove this override. Loadable sections (e.g., .text, .data) may need
202 // to be aligned. Other sections generally don't need any alignment, but if
203 // they're aligned, the RawPointer should be adjusted before writing the
204 // section. Then a dwarf-specific function wouldn't be needed.
205 uint64_t advanceFileOffset(const uint64_t MaxRawDataSize,
206 const uint64_t RawPointer) override {
207 FileOffsetToData = RawPointer;
208 uint64_t NewPointer = RawPointer + MemorySize;
209 assert(NewPointer <= MaxRawDataSize &&
210 "Section raw data overflowed this object file.");
211 return NewPointer;
214 DwarfSectionEntry(StringRef N, int32_t Flags,
215 std::unique_ptr<XCOFFSection> Sect)
216 : SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)),
217 MemorySize(0) {
218 assert(DwarfSect->MCSec->isDwarfSect() &&
219 "This should be a DWARF section!");
220 assert(N.size() <= XCOFF::NameSize && "section name too long");
221 memcpy(Name, N.data(), N.size());
224 DwarfSectionEntry(DwarfSectionEntry &&s) = default;
226 virtual ~DwarfSectionEntry() = default;
229 struct ExceptionTableEntry {
230 const MCSymbol *Trap;
231 uint64_t TrapAddress = ~0ul;
232 unsigned Lang;
233 unsigned Reason;
235 ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason)
236 : Trap(Trap), Lang(Lang), Reason(Reason) {}
239 struct ExceptionInfo {
240 const MCSymbol *FunctionSymbol;
241 unsigned FunctionSize;
242 std::vector<ExceptionTableEntry> Entries;
245 struct ExceptionSectionEntry : public SectionEntry {
246 std::map<const StringRef, ExceptionInfo> ExceptionTable;
247 bool isDebugEnabled = false;
249 ExceptionSectionEntry(StringRef N, int32_t Flags)
250 : SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) {
251 assert(N.size() <= XCOFF::NameSize && "Section too long.");
252 memcpy(Name, N.data(), N.size());
255 virtual ~ExceptionSectionEntry() = default;
258 struct CInfoSymInfo {
259 // Name of the C_INFO symbol associated with the section
260 std::string Name;
261 std::string Metadata;
262 // Offset into the start of the metadata in the section
263 uint64_t Offset;
265 CInfoSymInfo(std::string Name, std::string Metadata)
266 : Name(Name), Metadata(Metadata) {}
267 // Metadata needs to be padded out to an even word size.
268 uint32_t paddingSize() const {
269 return alignTo(Metadata.size(), sizeof(uint32_t)) - Metadata.size();
272 // Total size of the entry, including the 4 byte length
273 uint32_t size() const {
274 return Metadata.size() + paddingSize() + sizeof(uint32_t);
278 struct CInfoSymSectionEntry : public SectionEntry {
279 std::unique_ptr<CInfoSymInfo> Entry;
281 CInfoSymSectionEntry(StringRef N, int32_t Flags) : SectionEntry(N, Flags) {}
282 virtual ~CInfoSymSectionEntry() = default;
283 void addEntry(std::unique_ptr<CInfoSymInfo> NewEntry) {
284 Entry = std::move(NewEntry);
285 Entry->Offset = sizeof(uint32_t);
286 Size += Entry->size();
288 void reset() override {
289 SectionEntry::reset();
290 Entry.reset();
294 class XCOFFObjectWriter : public MCObjectWriter {
296 uint32_t SymbolTableEntryCount = 0;
297 uint64_t SymbolTableOffset = 0;
298 uint16_t SectionCount = 0;
299 uint32_t PaddingsBeforeDwarf = 0;
300 std::vector<std::pair<std::string, size_t>> FileNames;
301 bool HasVisibility = false;
303 support::endian::Writer W;
304 std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
305 StringTableBuilder Strings;
307 const uint64_t MaxRawDataSize =
308 TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX;
310 // Maps the MCSection representation to its corresponding XCOFFSection
311 // wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into
312 // from its containing MCSectionXCOFF.
313 DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap;
315 // Maps the MCSymbol representation to its corrresponding symbol table index.
316 // Needed for relocation.
317 DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap;
319 // CsectGroups. These store the csects which make up different parts of
320 // the sections. Should have one for each set of csects that get mapped into
321 // the same section and get handled in a 'similar' way.
322 CsectGroup UndefinedCsects;
323 CsectGroup ProgramCodeCsects;
324 CsectGroup ReadOnlyCsects;
325 CsectGroup DataCsects;
326 CsectGroup FuncDSCsects;
327 CsectGroup TOCCsects;
328 CsectGroup BSSCsects;
329 CsectGroup TDataCsects;
330 CsectGroup TBSSCsects;
332 // The Predefined sections.
333 CsectSectionEntry Text;
334 CsectSectionEntry Data;
335 CsectSectionEntry BSS;
336 CsectSectionEntry TData;
337 CsectSectionEntry TBSS;
339 // All the XCOFF sections, in the order they will appear in the section header
340 // table.
341 std::array<CsectSectionEntry *const, 5> Sections{
342 {&Text, &Data, &BSS, &TData, &TBSS}};
344 std::vector<DwarfSectionEntry> DwarfSections;
345 std::vector<SectionEntry> OverflowSections;
347 ExceptionSectionEntry ExceptionSection;
348 CInfoSymSectionEntry CInfoSymSection;
350 CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec);
352 void reset() override;
354 void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override;
356 void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *,
357 const MCFixup &, MCValue, uint64_t &) override;
359 uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override;
361 bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
362 bool nameShouldBeInStringTable(const StringRef &);
363 void writeSymbolName(const StringRef &);
365 void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef,
366 const XCOFFSection &CSectionRef,
367 int16_t SectionIndex,
368 uint64_t SymbolOffset);
369 void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef,
370 int16_t SectionIndex,
371 XCOFF::StorageClass StorageClass);
372 void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef,
373 int16_t SectionIndex);
374 void writeFileHeader();
375 void writeAuxFileHeader();
376 void writeSectionHeader(const SectionEntry *Sec);
377 void writeSectionHeaderTable();
378 void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout);
379 void writeSectionForControlSectionEntry(const MCAssembler &Asm,
380 const MCAsmLayout &Layout,
381 const CsectSectionEntry &CsectEntry,
382 uint64_t &CurrentAddressLocation);
383 void writeSectionForDwarfSectionEntry(const MCAssembler &Asm,
384 const MCAsmLayout &Layout,
385 const DwarfSectionEntry &DwarfEntry,
386 uint64_t &CurrentAddressLocation);
387 void writeSectionForExceptionSectionEntry(
388 const MCAssembler &Asm, const MCAsmLayout &Layout,
389 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation);
390 void writeSectionForCInfoSymSectionEntry(const MCAssembler &Asm,
391 const MCAsmLayout &Layout,
392 CInfoSymSectionEntry &CInfoSymEntry,
393 uint64_t &CurrentAddressLocation);
394 void writeSymbolTable(const MCAsmLayout &Layout);
395 void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,
396 uint64_t NumberOfRelocEnt = 0);
397 void writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
398 uint8_t SymbolAlignmentAndType,
399 uint8_t StorageMappingClass);
400 void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize,
401 uint64_t LineNumberPointer,
402 uint32_t EndIndex);
403 void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize,
404 uint32_t EndIndex);
405 void writeSymbolEntry(StringRef SymbolName, uint64_t Value,
406 int16_t SectionNumber, uint16_t SymbolType,
407 uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1);
408 void writeRelocations();
409 void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section);
411 // Called after all the csects and symbols have been processed by
412 // `executePostLayoutBinding`, this function handles building up the majority
413 // of the structures in the object file representation. Namely:
414 // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
415 // sizes.
416 // *) Assigns symbol table indices.
417 // *) Builds up the section header table by adding any non-empty sections to
418 // `Sections`.
419 void assignAddressesAndIndices(const MCAsmLayout &);
420 // Called after relocations are recorded.
421 void finalizeSectionInfo();
422 void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount);
423 void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer);
425 void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap,
426 unsigned LanguageCode, unsigned ReasonCode,
427 unsigned FunctionSize, bool hasDebug) override;
428 bool hasExceptionSection() {
429 return !ExceptionSection.ExceptionTable.empty();
431 unsigned getExceptionSectionSize();
432 unsigned getExceptionOffset(const MCSymbol *Symbol);
434 void addCInfoSymEntry(StringRef Name, StringRef Metadata) override;
435 size_t auxiliaryHeaderSize() const {
436 // 64-bit object files have no auxiliary header.
437 return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0;
440 public:
441 XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
442 raw_pwrite_stream &OS);
444 void writeWord(uint64_t Word) {
445 is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word);
449 XCOFFObjectWriter::XCOFFObjectWriter(
450 std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
451 : W(OS, llvm::endianness::big), TargetObjectWriter(std::move(MOTW)),
452 Strings(StringTableBuilder::XCOFF),
453 Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false,
454 CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}),
455 Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false,
456 CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}),
457 BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true,
458 CsectGroups{&BSSCsects}),
459 TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false,
460 CsectGroups{&TDataCsects}),
461 TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true,
462 CsectGroups{&TBSSCsects}),
463 ExceptionSection(".except", XCOFF::STYP_EXCEPT),
464 CInfoSymSection(".info", XCOFF::STYP_INFO) {}
466 void XCOFFObjectWriter::reset() {
467 // Clear the mappings we created.
468 SymbolIndexMap.clear();
469 SectionMap.clear();
471 UndefinedCsects.clear();
472 // Reset any sections we have written to, and empty the section header table.
473 for (auto *Sec : Sections)
474 Sec->reset();
475 for (auto &DwarfSec : DwarfSections)
476 DwarfSec.reset();
477 for (auto &OverflowSec : OverflowSections)
478 OverflowSec.reset();
479 ExceptionSection.reset();
480 CInfoSymSection.reset();
482 // Reset states in XCOFFObjectWriter.
483 SymbolTableEntryCount = 0;
484 SymbolTableOffset = 0;
485 SectionCount = 0;
486 PaddingsBeforeDwarf = 0;
487 Strings.clear();
489 MCObjectWriter::reset();
492 CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) {
493 switch (MCSec->getMappingClass()) {
494 case XCOFF::XMC_PR:
495 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
496 "Only an initialized csect can contain program code.");
497 return ProgramCodeCsects;
498 case XCOFF::XMC_RO:
499 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
500 "Only an initialized csect can contain read only data.");
501 return ReadOnlyCsects;
502 case XCOFF::XMC_RW:
503 if (XCOFF::XTY_CM == MCSec->getCSectType())
504 return BSSCsects;
506 if (XCOFF::XTY_SD == MCSec->getCSectType())
507 return DataCsects;
509 report_fatal_error("Unhandled mapping of read-write csect to section.");
510 case XCOFF::XMC_DS:
511 return FuncDSCsects;
512 case XCOFF::XMC_BS:
513 assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
514 "Mapping invalid csect. CSECT with bss storage class must be "
515 "common type.");
516 return BSSCsects;
517 case XCOFF::XMC_TL:
518 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
519 "Mapping invalid csect. CSECT with tdata storage class must be "
520 "an initialized csect.");
521 return TDataCsects;
522 case XCOFF::XMC_UL:
523 assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
524 "Mapping invalid csect. CSECT with tbss storage class must be "
525 "an uninitialized csect.");
526 return TBSSCsects;
527 case XCOFF::XMC_TC0:
528 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
529 "Only an initialized csect can contain TOC-base.");
530 assert(TOCCsects.empty() &&
531 "We should have only one TOC-base, and it should be the first csect "
532 "in this CsectGroup.");
533 return TOCCsects;
534 case XCOFF::XMC_TC:
535 case XCOFF::XMC_TE:
536 case XCOFF::XMC_TD:
537 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
538 "Only an initialized csect can contain TC entry.");
539 assert(!TOCCsects.empty() &&
540 "We should at least have a TOC-base in this CsectGroup.");
541 return TOCCsects;
542 default:
543 report_fatal_error("Unhandled mapping of csect to section.");
547 static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) {
548 if (XSym->isDefined())
549 return cast<MCSectionXCOFF>(XSym->getFragment()->getParent());
550 return XSym->getRepresentedCsect();
553 void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
554 const MCAsmLayout &Layout) {
555 for (const auto &S : Asm) {
556 const auto *MCSec = cast<const MCSectionXCOFF>(&S);
557 assert(!SectionMap.contains(MCSec) && "Cannot add a section twice.");
559 // If the name does not fit in the storage provided in the symbol table
560 // entry, add it to the string table.
561 if (nameShouldBeInStringTable(MCSec->getSymbolTableName()))
562 Strings.add(MCSec->getSymbolTableName());
563 if (MCSec->isCsect()) {
564 // A new control section. Its CsectSectionEntry should already be staticly
565 // generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of
566 // the CsectSectionEntry.
567 assert(XCOFF::XTY_ER != MCSec->getCSectType() &&
568 "An undefined csect should not get registered.");
569 CsectGroup &Group = getCsectGroup(MCSec);
570 Group.emplace_back(MCSec);
571 SectionMap[MCSec] = &Group.back();
572 } else if (MCSec->isDwarfSect()) {
573 // A new DwarfSectionEntry.
574 std::unique_ptr<XCOFFSection> DwarfSec =
575 std::make_unique<XCOFFSection>(MCSec);
576 SectionMap[MCSec] = DwarfSec.get();
578 DwarfSectionEntry SecEntry(MCSec->getName(),
579 *MCSec->getDwarfSubtypeFlags(),
580 std::move(DwarfSec));
581 DwarfSections.push_back(std::move(SecEntry));
582 } else
583 llvm_unreachable("unsupport section type!");
586 for (const MCSymbol &S : Asm.symbols()) {
587 // Nothing to do for temporary symbols.
588 if (S.isTemporary())
589 continue;
591 const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
592 const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym);
594 if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED)
595 HasVisibility = true;
597 if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) {
598 // Handle undefined symbol.
599 UndefinedCsects.emplace_back(ContainingCsect);
600 SectionMap[ContainingCsect] = &UndefinedCsects.back();
601 if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName()))
602 Strings.add(ContainingCsect->getSymbolTableName());
603 continue;
606 // If the symbol is the csect itself, we don't need to put the symbol
607 // into csect's Syms.
608 if (XSym == ContainingCsect->getQualNameSymbol())
609 continue;
611 // Only put a label into the symbol table when it is an external label.
612 if (!XSym->isExternal())
613 continue;
615 assert(SectionMap.contains(ContainingCsect) &&
616 "Expected containing csect to exist in map");
617 XCOFFSection *Csect = SectionMap[ContainingCsect];
618 // Lookup the containing csect and add the symbol to it.
619 assert(Csect->MCSec->isCsect() && "only csect is supported now!");
620 Csect->Syms.emplace_back(XSym);
622 // If the name does not fit in the storage provided in the symbol table
623 // entry, add it to the string table.
624 if (nameShouldBeInStringTable(XSym->getSymbolTableName()))
625 Strings.add(XSym->getSymbolTableName());
628 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymSection.Entry;
629 if (CISI && nameShouldBeInStringTable(CISI->Name))
630 Strings.add(CISI->Name);
632 FileNames = Asm.getFileNames();
633 // Emit ".file" as the source file name when there is no file name.
634 if (FileNames.empty())
635 FileNames.emplace_back(".file", 0);
636 for (const std::pair<std::string, size_t> &F : FileNames) {
637 if (nameShouldBeInStringTable(F.first))
638 Strings.add(F.first);
641 Strings.finalize();
642 assignAddressesAndIndices(Layout);
645 void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm,
646 const MCAsmLayout &Layout,
647 const MCFragment *Fragment,
648 const MCFixup &Fixup, MCValue Target,
649 uint64_t &FixedValue) {
650 auto getIndex = [this](const MCSymbol *Sym,
651 const MCSectionXCOFF *ContainingCsect) {
652 // If we could not find the symbol directly in SymbolIndexMap, this symbol
653 // could either be a temporary symbol or an undefined symbol. In this case,
654 // we would need to have the relocation reference its csect instead.
655 return SymbolIndexMap.contains(Sym)
656 ? SymbolIndexMap[Sym]
657 : SymbolIndexMap[ContainingCsect->getQualNameSymbol()];
660 auto getVirtualAddress =
661 [this, &Layout](const MCSymbol *Sym,
662 const MCSectionXCOFF *ContainingSect) -> uint64_t {
663 // A DWARF section.
664 if (ContainingSect->isDwarfSect())
665 return Layout.getSymbolOffset(*Sym);
667 // A csect.
668 if (!Sym->isDefined())
669 return SectionMap[ContainingSect]->Address;
671 // A label.
672 assert(Sym->isDefined() && "not a valid object that has address!");
673 return SectionMap[ContainingSect]->Address + Layout.getSymbolOffset(*Sym);
676 const MCSymbol *const SymA = &Target.getSymA()->getSymbol();
678 MCAsmBackend &Backend = Asm.getBackend();
679 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
680 MCFixupKindInfo::FKF_IsPCRel;
682 uint8_t Type;
683 uint8_t SignAndSize;
684 std::tie(Type, SignAndSize) =
685 TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel);
687 const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA));
688 assert(SectionMap.contains(SymASec) &&
689 "Expected containing csect to exist in map.");
691 assert((Fixup.getOffset() <=
692 MaxRawDataSize - Layout.getFragmentOffset(Fragment)) &&
693 "Fragment offset + fixup offset is overflowed.");
694 uint32_t FixupOffsetInCsect =
695 Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
697 const uint32_t Index = getIndex(SymA, SymASec);
698 if (Type == XCOFF::RelocationType::R_POS ||
699 Type == XCOFF::RelocationType::R_TLS ||
700 Type == XCOFF::RelocationType::R_TLS_LE ||
701 Type == XCOFF::RelocationType::R_TLS_IE)
702 // The FixedValue should be symbol's virtual address in this object file
703 // plus any constant value that we might get.
704 FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant();
705 else if (Type == XCOFF::RelocationType::R_TLSM)
706 // The FixedValue should always be zero since the region handle is only
707 // known at load time.
708 FixedValue = 0;
709 else if (Type == XCOFF::RelocationType::R_TOC ||
710 Type == XCOFF::RelocationType::R_TOCL) {
711 // For non toc-data external symbols, R_TOC type relocation will relocate to
712 // data symbols that have XCOFF::XTY_SD type csect. For toc-data external
713 // symbols, R_TOC type relocation will relocate to data symbols that have
714 // XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC
715 // entry for them, so the FixedValue should always be 0.
716 if (SymASec->getCSectType() == XCOFF::XTY_ER) {
717 FixedValue = 0;
718 } else {
719 // The FixedValue should be the TOC entry offset from the TOC-base plus
720 // any constant offset value.
721 const int64_t TOCEntryOffset = SectionMap[SymASec]->Address -
722 TOCCsects.front().Address +
723 Target.getConstant();
724 if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset))
725 report_fatal_error("TOCEntryOffset overflows in small code model mode");
727 FixedValue = TOCEntryOffset;
729 } else if (Type == XCOFF::RelocationType::R_RBR) {
730 MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent());
731 assert((SymASec->getMappingClass() == XCOFF::XMC_PR &&
732 ParentSec->getMappingClass() == XCOFF::XMC_PR) &&
733 "Only XMC_PR csect may have the R_RBR relocation.");
735 // The address of the branch instruction should be the sum of section
736 // address, fragment offset and Fixup offset.
737 uint64_t BRInstrAddress =
738 SectionMap[ParentSec]->Address + FixupOffsetInCsect;
739 // The FixedValue should be the difference between symbol's virtual address
740 // and BR instr address plus any constant value.
741 FixedValue = getVirtualAddress(SymA, SymASec) - BRInstrAddress +
742 Target.getConstant();
743 } else if (Type == XCOFF::RelocationType::R_REF) {
744 // The FixedValue and FixupOffsetInCsect should always be 0 since it
745 // specifies a nonrelocating reference.
746 FixedValue = 0;
747 FixupOffsetInCsect = 0;
750 XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type};
751 MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent());
752 assert(SectionMap.contains(RelocationSec) &&
753 "Expected containing csect to exist in map.");
754 SectionMap[RelocationSec]->Relocations.push_back(Reloc);
756 if (!Target.getSymB())
757 return;
759 const MCSymbol *const SymB = &Target.getSymB()->getSymbol();
760 if (SymA == SymB)
761 report_fatal_error("relocation for opposite term is not yet supported");
763 const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB));
764 assert(SectionMap.contains(SymBSec) &&
765 "Expected containing csect to exist in map.");
766 if (SymASec == SymBSec)
767 report_fatal_error(
768 "relocation for paired relocatable term is not yet supported");
770 assert(Type == XCOFF::RelocationType::R_POS &&
771 "SymA must be R_POS here if it's not opposite term or paired "
772 "relocatable term.");
773 const uint32_t IndexB = getIndex(SymB, SymBSec);
774 // SymB must be R_NEG here, given the general form of Target(MCValue) is
775 // "SymbolA - SymbolB + imm64".
776 const uint8_t TypeB = XCOFF::RelocationType::R_NEG;
777 XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB};
778 SectionMap[RelocationSec]->Relocations.push_back(RelocB);
779 // We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA,
780 // now we just need to fold "- SymbolB" here.
781 FixedValue -= getVirtualAddress(SymB, SymBSec);
784 void XCOFFObjectWriter::writeSections(const MCAssembler &Asm,
785 const MCAsmLayout &Layout) {
786 uint64_t CurrentAddressLocation = 0;
787 for (const auto *Section : Sections)
788 writeSectionForControlSectionEntry(Asm, Layout, *Section,
789 CurrentAddressLocation);
790 for (const auto &DwarfSection : DwarfSections)
791 writeSectionForDwarfSectionEntry(Asm, Layout, DwarfSection,
792 CurrentAddressLocation);
793 writeSectionForExceptionSectionEntry(Asm, Layout, ExceptionSection,
794 CurrentAddressLocation);
795 writeSectionForCInfoSymSectionEntry(Asm, Layout, CInfoSymSection,
796 CurrentAddressLocation);
799 uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm,
800 const MCAsmLayout &Layout) {
801 // We always emit a timestamp of 0 for reproducibility, so ensure incremental
802 // linking is not enabled, in case, like with Windows COFF, such a timestamp
803 // is incompatible with incremental linking of XCOFF.
804 if (Asm.isIncrementalLinkerCompatible())
805 report_fatal_error("Incremental linking not supported for XCOFF.");
807 finalizeSectionInfo();
808 uint64_t StartOffset = W.OS.tell();
810 writeFileHeader();
811 writeAuxFileHeader();
812 writeSectionHeaderTable();
813 writeSections(Asm, Layout);
814 writeRelocations();
815 writeSymbolTable(Layout);
816 // Write the string table.
817 Strings.write(W.OS);
819 return W.OS.tell() - StartOffset;
822 bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
823 return SymbolName.size() > XCOFF::NameSize || is64Bit();
826 void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) {
827 // Magic, Offset or SymbolName.
828 if (nameShouldBeInStringTable(SymbolName)) {
829 W.write<int32_t>(0);
830 W.write<uint32_t>(Strings.getOffset(SymbolName));
831 } else {
832 char Name[XCOFF::NameSize + 1];
833 std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
834 ArrayRef<char> NameRef(Name, XCOFF::NameSize);
835 W.write(NameRef);
839 void XCOFFObjectWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value,
840 int16_t SectionNumber,
841 uint16_t SymbolType,
842 uint8_t StorageClass,
843 uint8_t NumberOfAuxEntries) {
844 if (is64Bit()) {
845 W.write<uint64_t>(Value);
846 W.write<uint32_t>(Strings.getOffset(SymbolName));
847 } else {
848 writeSymbolName(SymbolName);
849 W.write<uint32_t>(Value);
851 W.write<int16_t>(SectionNumber);
852 W.write<uint16_t>(SymbolType);
853 W.write<uint8_t>(StorageClass);
854 W.write<uint8_t>(NumberOfAuxEntries);
857 void XCOFFObjectWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
858 uint8_t SymbolAlignmentAndType,
859 uint8_t StorageMappingClass) {
860 W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength);
861 W.write<uint32_t>(0); // ParameterHashIndex
862 W.write<uint16_t>(0); // TypeChkSectNum
863 W.write<uint8_t>(SymbolAlignmentAndType);
864 W.write<uint8_t>(StorageMappingClass);
865 if (is64Bit()) {
866 W.write<uint32_t>(Hi_32(SectionOrLength));
867 W.OS.write_zeros(1); // Reserved
868 W.write<uint8_t>(XCOFF::AUX_CSECT);
869 } else {
870 W.write<uint32_t>(0); // StabInfoIndex
871 W.write<uint16_t>(0); // StabSectNum
875 void XCOFFObjectWriter::writeSymbolAuxDwarfEntry(
876 uint64_t LengthOfSectionPortion, uint64_t NumberOfRelocEnt) {
877 writeWord(LengthOfSectionPortion);
878 if (!is64Bit())
879 W.OS.write_zeros(4); // Reserved
880 writeWord(NumberOfRelocEnt);
881 if (is64Bit()) {
882 W.OS.write_zeros(1); // Reserved
883 W.write<uint8_t>(XCOFF::AUX_SECT);
884 } else {
885 W.OS.write_zeros(6); // Reserved
889 void XCOFFObjectWriter::writeSymbolEntryForCsectMemberLabel(
890 const Symbol &SymbolRef, const XCOFFSection &CSectionRef,
891 int16_t SectionIndex, uint64_t SymbolOffset) {
892 assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address &&
893 "Symbol address overflowed.");
895 auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName());
896 if (Entry != ExceptionSection.ExceptionTable.end()) {
897 writeSymbolEntry(SymbolRef.getSymbolTableName(),
898 CSectionRef.Address + SymbolOffset, SectionIndex,
899 // In the old version of the 32-bit XCOFF interpretation,
900 // symbols may require bit 10 (0x0020) to be set if the
901 // symbol is a function, otherwise the bit should be 0.
902 is64Bit() ? SymbolRef.getVisibilityType()
903 : SymbolRef.getVisibilityType() | 0x0020,
904 SymbolRef.getStorageClass(),
905 (is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2);
906 if (is64Bit() && ExceptionSection.isDebugEnabled) {
907 // On 64 bit with debugging enabled, we have a csect, exception, and
908 // function auxilliary entries, so we must increment symbol index by 4.
909 writeSymbolAuxExceptionEntry(
910 ExceptionSection.FileOffsetToData +
911 getExceptionOffset(Entry->second.FunctionSymbol),
912 Entry->second.FunctionSize,
913 SymbolIndexMap[Entry->second.FunctionSymbol] + 4);
915 // For exception section entries, csect and function auxilliary entries
916 // must exist. On 64-bit there is also an exception auxilliary entry.
917 writeSymbolAuxFunctionEntry(
918 ExceptionSection.FileOffsetToData +
919 getExceptionOffset(Entry->second.FunctionSymbol),
920 Entry->second.FunctionSize, 0,
921 (is64Bit() && ExceptionSection.isDebugEnabled)
922 ? SymbolIndexMap[Entry->second.FunctionSymbol] + 4
923 : SymbolIndexMap[Entry->second.FunctionSymbol] + 3);
924 } else {
925 writeSymbolEntry(SymbolRef.getSymbolTableName(),
926 CSectionRef.Address + SymbolOffset, SectionIndex,
927 SymbolRef.getVisibilityType(),
928 SymbolRef.getStorageClass());
930 writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD,
931 CSectionRef.MCSec->getMappingClass());
934 void XCOFFObjectWriter::writeSymbolEntryForDwarfSection(
935 const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) {
936 assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!");
938 writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0,
939 SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF);
941 writeSymbolAuxDwarfEntry(DwarfSectionRef.Size);
944 void XCOFFObjectWriter::writeSymbolEntryForControlSection(
945 const XCOFFSection &CSectionRef, int16_t SectionIndex,
946 XCOFF::StorageClass StorageClass) {
947 writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address,
948 SectionIndex, CSectionRef.getVisibilityType(), StorageClass);
950 writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec),
951 CSectionRef.MCSec->getMappingClass());
954 void XCOFFObjectWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset,
955 uint32_t FunctionSize,
956 uint64_t LineNumberPointer,
957 uint32_t EndIndex) {
958 if (is64Bit())
959 writeWord(LineNumberPointer);
960 else
961 W.write<uint32_t>(EntryOffset);
962 W.write<uint32_t>(FunctionSize);
963 if (!is64Bit())
964 writeWord(LineNumberPointer);
965 W.write<uint32_t>(EndIndex);
966 if (is64Bit()) {
967 W.OS.write_zeros(1);
968 W.write<uint8_t>(XCOFF::AUX_FCN);
969 } else {
970 W.OS.write_zeros(2);
974 void XCOFFObjectWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset,
975 uint32_t FunctionSize,
976 uint32_t EndIndex) {
977 assert(is64Bit() && "Exception auxilliary entries are 64-bit only.");
978 W.write<uint64_t>(EntryOffset);
979 W.write<uint32_t>(FunctionSize);
980 W.write<uint32_t>(EndIndex);
981 W.OS.write_zeros(1); // Pad (unused)
982 W.write<uint8_t>(XCOFF::AUX_EXCEPT);
985 void XCOFFObjectWriter::writeFileHeader() {
986 W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32);
987 W.write<uint16_t>(SectionCount);
988 W.write<int32_t>(0); // TimeStamp
989 writeWord(SymbolTableOffset);
990 if (is64Bit()) {
991 W.write<uint16_t>(auxiliaryHeaderSize());
992 W.write<uint16_t>(0); // Flags
993 W.write<int32_t>(SymbolTableEntryCount);
994 } else {
995 W.write<int32_t>(SymbolTableEntryCount);
996 W.write<uint16_t>(auxiliaryHeaderSize());
997 W.write<uint16_t>(0); // Flags
1001 void XCOFFObjectWriter::writeAuxFileHeader() {
1002 if (!auxiliaryHeaderSize())
1003 return;
1004 W.write<uint16_t>(0); // Magic
1005 W.write<uint16_t>(
1006 XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the
1007 // n_type field in the symbol table entry is
1008 // used in XCOFF32.
1009 W.write<uint32_t>(Sections[0]->Size); // TextSize
1010 W.write<uint32_t>(Sections[1]->Size); // InitDataSize
1011 W.write<uint32_t>(Sections[2]->Size); // BssDataSize
1012 W.write<uint32_t>(0); // EntryPointAddr
1013 W.write<uint32_t>(Sections[0]->Address); // TextStartAddr
1014 W.write<uint32_t>(Sections[1]->Address); // DataStartAddr
1017 void XCOFFObjectWriter::writeSectionHeader(const SectionEntry *Sec) {
1018 bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0;
1019 bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0;
1020 // Nothing to write for this Section.
1021 if (Sec->Index == SectionEntry::UninitializedIndex)
1022 return;
1024 // Write Name.
1025 ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
1026 W.write(NameRef);
1028 // Write the Physical Address and Virtual Address.
1029 // We use 0 for DWARF sections' Physical and Virtual Addresses.
1030 writeWord(IsDwarf ? 0 : Sec->Address);
1031 // Since line number is not supported, we set it to 0 for overflow sections.
1032 writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address);
1034 writeWord(Sec->Size);
1035 writeWord(Sec->FileOffsetToData);
1036 writeWord(Sec->FileOffsetToRelocations);
1037 writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet.
1039 if (is64Bit()) {
1040 W.write<uint32_t>(Sec->RelocationCount);
1041 W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet.
1042 W.write<int32_t>(Sec->Flags);
1043 W.OS.write_zeros(4);
1044 } else {
1045 // For the overflow section header, s_nreloc provides a reference to the
1046 // primary section header and s_nlnno must have the same value.
1047 // For common section headers, if either of s_nreloc or s_nlnno are set to
1048 // 65535, the other one must also be set to 65535.
1049 W.write<uint16_t>(Sec->RelocationCount);
1050 W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow)
1051 ? Sec->RelocationCount
1052 : 0); // NumberOfLineNumbers. Not supported yet.
1053 W.write<int32_t>(Sec->Flags);
1057 void XCOFFObjectWriter::writeSectionHeaderTable() {
1058 for (const auto *CsectSec : Sections)
1059 writeSectionHeader(CsectSec);
1060 for (const auto &DwarfSec : DwarfSections)
1061 writeSectionHeader(&DwarfSec);
1062 for (const auto &OverflowSec : OverflowSections)
1063 writeSectionHeader(&OverflowSec);
1064 if (hasExceptionSection())
1065 writeSectionHeader(&ExceptionSection);
1066 if (CInfoSymSection.Entry)
1067 writeSectionHeader(&CInfoSymSection);
1070 void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc,
1071 const XCOFFSection &Section) {
1072 if (Section.MCSec->isCsect())
1073 writeWord(Section.Address + Reloc.FixupOffsetInCsect);
1074 else {
1075 // DWARF sections' address is set to 0.
1076 assert(Section.MCSec->isDwarfSect() && "unsupport section type!");
1077 writeWord(Reloc.FixupOffsetInCsect);
1079 W.write<uint32_t>(Reloc.SymbolTableIndex);
1080 W.write<uint8_t>(Reloc.SignAndSize);
1081 W.write<uint8_t>(Reloc.Type);
1084 void XCOFFObjectWriter::writeRelocations() {
1085 for (const auto *Section : Sections) {
1086 if (Section->Index == SectionEntry::UninitializedIndex)
1087 // Nothing to write for this Section.
1088 continue;
1090 for (const auto *Group : Section->Groups) {
1091 if (Group->empty())
1092 continue;
1094 for (const auto &Csect : *Group) {
1095 for (const auto Reloc : Csect.Relocations)
1096 writeRelocation(Reloc, Csect);
1101 for (const auto &DwarfSection : DwarfSections)
1102 for (const auto &Reloc : DwarfSection.DwarfSect->Relocations)
1103 writeRelocation(Reloc, *DwarfSection.DwarfSect);
1106 void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) {
1107 // Write C_FILE symbols.
1108 for (const std::pair<std::string, size_t> &F : FileNames) {
1109 // The n_name of a C_FILE symbol is the source file's name when no auxiliary
1110 // entries are present.
1111 StringRef FileName = F.first;
1113 // For C_FILE symbols, the Source Language ID overlays the high-order byte
1114 // of the SymbolType field, and the CPU Version ID is defined as the
1115 // low-order byte.
1116 // AIX's system assembler determines the source language ID based on the
1117 // source file's name suffix, and the behavior here is consistent with it.
1118 uint8_t LangID;
1119 if (FileName.ends_with(".c"))
1120 LangID = XCOFF::TB_C;
1121 else if (FileName.ends_with_insensitive(".f") ||
1122 FileName.ends_with_insensitive(".f77") ||
1123 FileName.ends_with_insensitive(".f90") ||
1124 FileName.ends_with_insensitive(".f95") ||
1125 FileName.ends_with_insensitive(".f03") ||
1126 FileName.ends_with_insensitive(".f08"))
1127 LangID = XCOFF::TB_Fortran;
1128 else
1129 LangID = XCOFF::TB_CPLUSPLUS;
1130 uint8_t CpuID;
1131 if (is64Bit())
1132 CpuID = XCOFF::TCPU_PPC64;
1133 else
1134 CpuID = XCOFF::TCPU_COM;
1136 writeSymbolEntry(FileName, /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG,
1137 /*SymbolType=*/(LangID << 8) | CpuID, XCOFF::C_FILE,
1138 /*NumberOfAuxEntries=*/0);
1141 if (CInfoSymSection.Entry)
1142 writeSymbolEntry(CInfoSymSection.Entry->Name, CInfoSymSection.Entry->Offset,
1143 CInfoSymSection.Index,
1144 /*SymbolType=*/0, XCOFF::C_INFO,
1145 /*NumberOfAuxEntries=*/0);
1147 for (const auto &Csect : UndefinedCsects) {
1148 writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF,
1149 Csect.MCSec->getStorageClass());
1152 for (const auto *Section : Sections) {
1153 if (Section->Index == SectionEntry::UninitializedIndex)
1154 // Nothing to write for this Section.
1155 continue;
1157 for (const auto *Group : Section->Groups) {
1158 if (Group->empty())
1159 continue;
1161 const int16_t SectionIndex = Section->Index;
1162 for (const auto &Csect : *Group) {
1163 // Write out the control section first and then each symbol in it.
1164 writeSymbolEntryForControlSection(Csect, SectionIndex,
1165 Csect.MCSec->getStorageClass());
1167 for (const auto &Sym : Csect.Syms)
1168 writeSymbolEntryForCsectMemberLabel(
1169 Sym, Csect, SectionIndex, Layout.getSymbolOffset(*(Sym.MCSym)));
1174 for (const auto &DwarfSection : DwarfSections)
1175 writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect,
1176 DwarfSection.Index);
1179 void XCOFFObjectWriter::finalizeRelocationInfo(SectionEntry *Sec,
1180 uint64_t RelCount) {
1181 // Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file
1182 // may not contain an overflow section header.
1183 if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) {
1184 // Generate an overflow section header.
1185 SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO);
1187 // This field specifies the file section number of the section header that
1188 // overflowed.
1189 SecEntry.RelocationCount = Sec->Index;
1191 // This field specifies the number of relocation entries actually
1192 // required.
1193 SecEntry.Address = RelCount;
1194 SecEntry.Index = ++SectionCount;
1195 OverflowSections.push_back(std::move(SecEntry));
1197 // The field in the primary section header is always 65535
1198 // (XCOFF::RelocOverflow).
1199 Sec->RelocationCount = XCOFF::RelocOverflow;
1200 } else {
1201 Sec->RelocationCount = RelCount;
1205 void XCOFFObjectWriter::calcOffsetToRelocations(SectionEntry *Sec,
1206 uint64_t &RawPointer) {
1207 if (!Sec->RelocationCount)
1208 return;
1210 Sec->FileOffsetToRelocations = RawPointer;
1211 uint64_t RelocationSizeInSec = 0;
1212 if (!is64Bit() &&
1213 Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) {
1214 // Find its corresponding overflow section.
1215 for (auto &OverflowSec : OverflowSections) {
1216 if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) {
1217 RelocationSizeInSec =
1218 OverflowSec.Address * XCOFF::RelocationSerializationSize32;
1220 // This field must have the same values as in the corresponding
1221 // primary section header.
1222 OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations;
1225 assert(RelocationSizeInSec && "Overflow section header doesn't exist.");
1226 } else {
1227 RelocationSizeInSec = Sec->RelocationCount *
1228 (is64Bit() ? XCOFF::RelocationSerializationSize64
1229 : XCOFF::RelocationSerializationSize32);
1232 RawPointer += RelocationSizeInSec;
1233 if (RawPointer > MaxRawDataSize)
1234 report_fatal_error("Relocation data overflowed this object file.");
1237 void XCOFFObjectWriter::finalizeSectionInfo() {
1238 for (auto *Section : Sections) {
1239 if (Section->Index == SectionEntry::UninitializedIndex)
1240 // Nothing to record for this Section.
1241 continue;
1243 uint64_t RelCount = 0;
1244 for (const auto *Group : Section->Groups) {
1245 if (Group->empty())
1246 continue;
1248 for (auto &Csect : *Group)
1249 RelCount += Csect.Relocations.size();
1251 finalizeRelocationInfo(Section, RelCount);
1254 for (auto &DwarfSection : DwarfSections)
1255 finalizeRelocationInfo(&DwarfSection,
1256 DwarfSection.DwarfSect->Relocations.size());
1258 // Calculate the RawPointer value for all headers.
1259 uint64_t RawPointer =
1260 (is64Bit() ? (XCOFF::FileHeaderSize64 +
1261 SectionCount * XCOFF::SectionHeaderSize64)
1262 : (XCOFF::FileHeaderSize32 +
1263 SectionCount * XCOFF::SectionHeaderSize32)) +
1264 auxiliaryHeaderSize();
1266 // Calculate the file offset to the section data.
1267 for (auto *Sec : Sections) {
1268 if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual)
1269 continue;
1271 RawPointer = Sec->advanceFileOffset(MaxRawDataSize, RawPointer);
1274 if (!DwarfSections.empty()) {
1275 RawPointer += PaddingsBeforeDwarf;
1276 for (auto &DwarfSection : DwarfSections) {
1277 RawPointer = DwarfSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1281 if (hasExceptionSection())
1282 RawPointer = ExceptionSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1284 if (CInfoSymSection.Entry)
1285 RawPointer = CInfoSymSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1287 for (auto *Sec : Sections) {
1288 if (Sec->Index != SectionEntry::UninitializedIndex)
1289 calcOffsetToRelocations(Sec, RawPointer);
1292 for (auto &DwarfSec : DwarfSections)
1293 calcOffsetToRelocations(&DwarfSec, RawPointer);
1295 // TODO Error check that the number of symbol table entries fits in 32-bits
1296 // signed ...
1297 if (SymbolTableEntryCount)
1298 SymbolTableOffset = RawPointer;
1301 void XCOFFObjectWriter::addExceptionEntry(
1302 const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode,
1303 unsigned ReasonCode, unsigned FunctionSize, bool hasDebug) {
1304 // If a module had debug info, debugging is enabled and XCOFF emits the
1305 // exception auxilliary entry.
1306 if (hasDebug)
1307 ExceptionSection.isDebugEnabled = true;
1308 auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName());
1309 if (Entry != ExceptionSection.ExceptionTable.end()) {
1310 Entry->second.Entries.push_back(
1311 ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
1312 return;
1314 ExceptionInfo NewEntry;
1315 NewEntry.FunctionSymbol = Symbol;
1316 NewEntry.FunctionSize = FunctionSize;
1317 NewEntry.Entries.push_back(
1318 ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
1319 ExceptionSection.ExceptionTable.insert(
1320 std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry));
1323 unsigned XCOFFObjectWriter::getExceptionSectionSize() {
1324 unsigned EntryNum = 0;
1326 for (auto it = ExceptionSection.ExceptionTable.begin();
1327 it != ExceptionSection.ExceptionTable.end(); ++it)
1328 // The size() gets +1 to account for the initial entry containing the
1329 // symbol table index.
1330 EntryNum += it->second.Entries.size() + 1;
1332 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
1333 : XCOFF::ExceptionSectionEntrySize32);
1336 unsigned XCOFFObjectWriter::getExceptionOffset(const MCSymbol *Symbol) {
1337 unsigned EntryNum = 0;
1338 for (auto it = ExceptionSection.ExceptionTable.begin();
1339 it != ExceptionSection.ExceptionTable.end(); ++it) {
1340 if (Symbol == it->second.FunctionSymbol)
1341 break;
1342 EntryNum += it->second.Entries.size() + 1;
1344 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
1345 : XCOFF::ExceptionSectionEntrySize32);
1348 void XCOFFObjectWriter::addCInfoSymEntry(StringRef Name, StringRef Metadata) {
1349 assert(!CInfoSymSection.Entry && "Multiple entries are not supported");
1350 CInfoSymSection.addEntry(
1351 std::make_unique<CInfoSymInfo>(Name.str(), Metadata.str()));
1354 void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) {
1355 // The symbol table starts with all the C_FILE symbols.
1356 uint32_t SymbolTableIndex = FileNames.size();
1358 if (CInfoSymSection.Entry)
1359 SymbolTableIndex++;
1361 // Calculate indices for undefined symbols.
1362 for (auto &Csect : UndefinedCsects) {
1363 Csect.Size = 0;
1364 Csect.Address = 0;
1365 Csect.SymbolTableIndex = SymbolTableIndex;
1366 SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
1367 // 1 main and 1 auxiliary symbol table entry for each contained symbol.
1368 SymbolTableIndex += 2;
1371 // The address corrresponds to the address of sections and symbols in the
1372 // object file. We place the shared address 0 immediately after the
1373 // section header table.
1374 uint64_t Address = 0;
1375 // Section indices are 1-based in XCOFF.
1376 int32_t SectionIndex = 1;
1377 bool HasTDataSection = false;
1379 for (auto *Section : Sections) {
1380 const bool IsEmpty =
1381 llvm::all_of(Section->Groups,
1382 [](const CsectGroup *Group) { return Group->empty(); });
1383 if (IsEmpty)
1384 continue;
1386 if (SectionIndex > MaxSectionIndex)
1387 report_fatal_error("Section index overflow!");
1388 Section->Index = SectionIndex++;
1389 SectionCount++;
1391 bool SectionAddressSet = false;
1392 // Reset the starting address to 0 for TData section.
1393 if (Section->Flags == XCOFF::STYP_TDATA) {
1394 Address = 0;
1395 HasTDataSection = true;
1397 // Reset the starting address to 0 for TBSS section if the object file does
1398 // not contain TData Section.
1399 if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection)
1400 Address = 0;
1402 for (auto *Group : Section->Groups) {
1403 if (Group->empty())
1404 continue;
1406 for (auto &Csect : *Group) {
1407 const MCSectionXCOFF *MCSec = Csect.MCSec;
1408 Csect.Address = alignTo(Address, MCSec->getAlign());
1409 Csect.Size = Layout.getSectionAddressSize(MCSec);
1410 Address = Csect.Address + Csect.Size;
1411 Csect.SymbolTableIndex = SymbolTableIndex;
1412 SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
1413 // 1 main and 1 auxiliary symbol table entry for the csect.
1414 SymbolTableIndex += 2;
1416 for (auto &Sym : Csect.Syms) {
1417 bool hasExceptEntry = false;
1418 auto Entry =
1419 ExceptionSection.ExceptionTable.find(Sym.MCSym->getName());
1420 if (Entry != ExceptionSection.ExceptionTable.end()) {
1421 hasExceptEntry = true;
1422 for (auto &TrapEntry : Entry->second.Entries) {
1423 TrapEntry.TrapAddress = Layout.getSymbolOffset(*(Sym.MCSym)) +
1424 TrapEntry.Trap->getOffset();
1427 Sym.SymbolTableIndex = SymbolTableIndex;
1428 SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex;
1429 // 1 main and 1 auxiliary symbol table entry for each contained
1430 // symbol. For symbols with exception section entries, a function
1431 // auxilliary entry is needed, and on 64-bit XCOFF with debugging
1432 // enabled, an additional exception auxilliary entry is needed.
1433 SymbolTableIndex += 2;
1434 if (hasExceptionSection() && hasExceptEntry) {
1435 if (is64Bit() && ExceptionSection.isDebugEnabled)
1436 SymbolTableIndex += 2;
1437 else
1438 SymbolTableIndex += 1;
1443 if (!SectionAddressSet) {
1444 Section->Address = Group->front().Address;
1445 SectionAddressSet = true;
1449 // Make sure the address of the next section aligned to
1450 // DefaultSectionAlign.
1451 Address = alignTo(Address, DefaultSectionAlign);
1452 Section->Size = Address - Section->Address;
1455 // Start to generate DWARF sections. Sections other than DWARF section use
1456 // DefaultSectionAlign as the default alignment, while DWARF sections have
1457 // their own alignments. If these two alignments are not the same, we need
1458 // some paddings here and record the paddings bytes for FileOffsetToData
1459 // calculation.
1460 if (!DwarfSections.empty())
1461 PaddingsBeforeDwarf =
1462 alignTo(Address,
1463 (*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) -
1464 Address;
1466 DwarfSectionEntry *LastDwarfSection = nullptr;
1467 for (auto &DwarfSection : DwarfSections) {
1468 assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!");
1470 XCOFFSection &DwarfSect = *DwarfSection.DwarfSect;
1471 const MCSectionXCOFF *MCSec = DwarfSect.MCSec;
1473 // Section index.
1474 DwarfSection.Index = SectionIndex++;
1475 SectionCount++;
1477 // Symbol index.
1478 DwarfSect.SymbolTableIndex = SymbolTableIndex;
1479 SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex;
1480 // 1 main and 1 auxiliary symbol table entry for the csect.
1481 SymbolTableIndex += 2;
1483 // Section address. Make it align to section alignment.
1484 // We use address 0 for DWARF sections' Physical and Virtual Addresses.
1485 // This address is used to tell where is the section in the final object.
1486 // See writeSectionForDwarfSectionEntry().
1487 DwarfSection.Address = DwarfSect.Address =
1488 alignTo(Address, MCSec->getAlign());
1490 // Section size.
1491 // For DWARF section, we must use the real size which may be not aligned.
1492 DwarfSection.Size = DwarfSect.Size = Layout.getSectionAddressSize(MCSec);
1494 Address = DwarfSection.Address + DwarfSection.Size;
1496 if (LastDwarfSection)
1497 LastDwarfSection->MemorySize =
1498 DwarfSection.Address - LastDwarfSection->Address;
1499 LastDwarfSection = &DwarfSection;
1501 if (LastDwarfSection) {
1502 // Make the final DWARF section address align to the default section
1503 // alignment for follow contents.
1504 Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size,
1505 DefaultSectionAlign);
1506 LastDwarfSection->MemorySize = Address - LastDwarfSection->Address;
1508 if (hasExceptionSection()) {
1509 ExceptionSection.Index = SectionIndex++;
1510 SectionCount++;
1511 ExceptionSection.Address = 0;
1512 ExceptionSection.Size = getExceptionSectionSize();
1513 Address += ExceptionSection.Size;
1514 Address = alignTo(Address, DefaultSectionAlign);
1517 if (CInfoSymSection.Entry) {
1518 CInfoSymSection.Index = SectionIndex++;
1519 SectionCount++;
1520 CInfoSymSection.Address = 0;
1521 Address += CInfoSymSection.Size;
1522 Address = alignTo(Address, DefaultSectionAlign);
1525 SymbolTableEntryCount = SymbolTableIndex;
1528 void XCOFFObjectWriter::writeSectionForControlSectionEntry(
1529 const MCAssembler &Asm, const MCAsmLayout &Layout,
1530 const CsectSectionEntry &CsectEntry, uint64_t &CurrentAddressLocation) {
1531 // Nothing to write for this Section.
1532 if (CsectEntry.Index == SectionEntry::UninitializedIndex)
1533 return;
1535 // There could be a gap (without corresponding zero padding) between
1536 // sections.
1537 // There could be a gap (without corresponding zero padding) between
1538 // sections.
1539 assert(((CurrentAddressLocation <= CsectEntry.Address) ||
1540 (CsectEntry.Flags == XCOFF::STYP_TDATA) ||
1541 (CsectEntry.Flags == XCOFF::STYP_TBSS)) &&
1542 "CurrentAddressLocation should be less than or equal to section "
1543 "address if the section is not TData or TBSS.");
1545 CurrentAddressLocation = CsectEntry.Address;
1547 // For virtual sections, nothing to write. But need to increase
1548 // CurrentAddressLocation for later sections like DWARF section has a correct
1549 // writing location.
1550 if (CsectEntry.IsVirtual) {
1551 CurrentAddressLocation += CsectEntry.Size;
1552 return;
1555 for (const auto &Group : CsectEntry.Groups) {
1556 for (const auto &Csect : *Group) {
1557 if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
1558 W.OS.write_zeros(PaddingSize);
1559 if (Csect.Size)
1560 Asm.writeSectionData(W.OS, Csect.MCSec, Layout);
1561 CurrentAddressLocation = Csect.Address + Csect.Size;
1565 // The size of the tail padding in a section is the end virtual address of
1566 // the current section minus the end virtual address of the last csect
1567 // in that section.
1568 if (uint64_t PaddingSize =
1569 CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) {
1570 W.OS.write_zeros(PaddingSize);
1571 CurrentAddressLocation += PaddingSize;
1575 void XCOFFObjectWriter::writeSectionForDwarfSectionEntry(
1576 const MCAssembler &Asm, const MCAsmLayout &Layout,
1577 const DwarfSectionEntry &DwarfEntry, uint64_t &CurrentAddressLocation) {
1578 // There could be a gap (without corresponding zero padding) between
1579 // sections. For example DWARF section alignment is bigger than
1580 // DefaultSectionAlign.
1581 assert(CurrentAddressLocation <= DwarfEntry.Address &&
1582 "CurrentAddressLocation should be less than or equal to section "
1583 "address.");
1585 if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation)
1586 W.OS.write_zeros(PaddingSize);
1588 if (DwarfEntry.Size)
1589 Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec, Layout);
1591 CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size;
1593 // DWARF section size is not aligned to DefaultSectionAlign.
1594 // Make sure CurrentAddressLocation is aligned to DefaultSectionAlign.
1595 uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign;
1596 uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0;
1597 if (TailPaddingSize)
1598 W.OS.write_zeros(TailPaddingSize);
1600 CurrentAddressLocation += TailPaddingSize;
1603 void XCOFFObjectWriter::writeSectionForExceptionSectionEntry(
1604 const MCAssembler &Asm, const MCAsmLayout &Layout,
1605 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation) {
1606 for (auto it = ExceptionEntry.ExceptionTable.begin();
1607 it != ExceptionEntry.ExceptionTable.end(); it++) {
1608 // For every symbol that has exception entries, you must start the entries
1609 // with an initial symbol table index entry
1610 W.write<uint32_t>(SymbolIndexMap[it->second.FunctionSymbol]);
1611 if (is64Bit()) {
1612 // 4-byte padding on 64-bit.
1613 W.OS.write_zeros(4);
1615 W.OS.write_zeros(2);
1616 for (auto &TrapEntry : it->second.Entries) {
1617 writeWord(TrapEntry.TrapAddress);
1618 W.write<uint8_t>(TrapEntry.Lang);
1619 W.write<uint8_t>(TrapEntry.Reason);
1623 CurrentAddressLocation += getExceptionSectionSize();
1626 void XCOFFObjectWriter::writeSectionForCInfoSymSectionEntry(
1627 const MCAssembler &Asm, const MCAsmLayout &Layout,
1628 CInfoSymSectionEntry &CInfoSymEntry, uint64_t &CurrentAddressLocation) {
1629 if (!CInfoSymSection.Entry)
1630 return;
1632 constexpr int WordSize = sizeof(uint32_t);
1633 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymEntry.Entry;
1634 const std::string &Metadata = CISI->Metadata;
1636 // Emit the 4-byte length of the metadata.
1637 W.write<uint32_t>(Metadata.size());
1639 if (Metadata.size() == 0)
1640 return;
1642 // Write out the payload one word at a time.
1643 size_t Index = 0;
1644 while (Index + WordSize <= Metadata.size()) {
1645 uint32_t NextWord =
1646 llvm::support::endian::read32be(Metadata.data() + Index);
1647 W.write<uint32_t>(NextWord);
1648 Index += WordSize;
1651 // If there is padding, we have at least one byte of payload left to emit.
1652 if (CISI->paddingSize()) {
1653 std::array<uint8_t, WordSize> LastWord = {0};
1654 ::memcpy(LastWord.data(), Metadata.data() + Index, Metadata.size() - Index);
1655 W.write<uint32_t>(llvm::support::endian::read32be(LastWord.data()));
1658 CurrentAddressLocation += CISI->size();
1661 // Takes the log base 2 of the alignment and shifts the result into the 5 most
1662 // significant bits of a byte, then or's in the csect type into the least
1663 // significant 3 bits.
1664 uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
1665 unsigned Log2Align = Log2(Sec->getAlign());
1666 // Result is a number in the range [0, 31] which fits in the 5 least
1667 // significant bits. Shift this value into the 5 most significant bits, and
1668 // bitwise-or in the csect type.
1669 uint8_t EncodedAlign = Log2Align << 3;
1670 return EncodedAlign | Sec->getCSectType();
1673 } // end anonymous namespace
1675 std::unique_ptr<MCObjectWriter>
1676 llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
1677 raw_pwrite_stream &OS) {
1678 return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS);