1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains support for clang's and llvm's instrumentation based
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ProfileData/Coverage/CoverageMapping.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallBitVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/Object/BuildID.h"
23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
24 #include "llvm/ProfileData/InstrProfReader.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/Errc.h"
27 #include "llvm/Support/Error.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MemoryBuffer.h"
30 #include "llvm/Support/VirtualFileSystem.h"
31 #include "llvm/Support/raw_ostream.h"
41 #include <system_error>
46 using namespace coverage
;
48 #define DEBUG_TYPE "coverage-mapping"
50 Counter
CounterExpressionBuilder::get(const CounterExpression
&E
) {
51 auto It
= ExpressionIndices
.find(E
);
52 if (It
!= ExpressionIndices
.end())
53 return Counter::getExpression(It
->second
);
54 unsigned I
= Expressions
.size();
55 Expressions
.push_back(E
);
56 ExpressionIndices
[E
] = I
;
57 return Counter::getExpression(I
);
60 void CounterExpressionBuilder::extractTerms(Counter C
, int Factor
,
61 SmallVectorImpl
<Term
> &Terms
) {
62 switch (C
.getKind()) {
65 case Counter::CounterValueReference
:
66 Terms
.emplace_back(C
.getCounterID(), Factor
);
68 case Counter::Expression
:
69 const auto &E
= Expressions
[C
.getExpressionID()];
70 extractTerms(E
.LHS
, Factor
, Terms
);
72 E
.RHS
, E
.Kind
== CounterExpression::Subtract
? -Factor
: Factor
, Terms
);
77 Counter
CounterExpressionBuilder::simplify(Counter ExpressionTree
) {
78 // Gather constant terms.
79 SmallVector
<Term
, 32> Terms
;
80 extractTerms(ExpressionTree
, +1, Terms
);
82 // If there are no terms, this is just a zero. The algorithm below assumes at
84 if (Terms
.size() == 0)
85 return Counter::getZero();
87 // Group the terms by counter ID.
88 llvm::sort(Terms
, [](const Term
&LHS
, const Term
&RHS
) {
89 return LHS
.CounterID
< RHS
.CounterID
;
92 // Combine terms by counter ID to eliminate counters that sum to zero.
93 auto Prev
= Terms
.begin();
94 for (auto I
= Prev
+ 1, E
= Terms
.end(); I
!= E
; ++I
) {
95 if (I
->CounterID
== Prev
->CounterID
) {
96 Prev
->Factor
+= I
->Factor
;
102 Terms
.erase(++Prev
, Terms
.end());
105 // Create additions. We do this before subtractions to avoid constructs like
106 // ((0 - X) + Y), as opposed to (Y - X).
107 for (auto T
: Terms
) {
110 for (int I
= 0; I
< T
.Factor
; ++I
)
112 C
= Counter::getCounter(T
.CounterID
);
114 C
= get(CounterExpression(CounterExpression::Add
, C
,
115 Counter::getCounter(T
.CounterID
)));
118 // Create subtractions.
119 for (auto T
: Terms
) {
122 for (int I
= 0; I
< -T
.Factor
; ++I
)
123 C
= get(CounterExpression(CounterExpression::Subtract
, C
,
124 Counter::getCounter(T
.CounterID
)));
129 Counter
CounterExpressionBuilder::add(Counter LHS
, Counter RHS
, bool Simplify
) {
130 auto Cnt
= get(CounterExpression(CounterExpression::Add
, LHS
, RHS
));
131 return Simplify
? simplify(Cnt
) : Cnt
;
134 Counter
CounterExpressionBuilder::subtract(Counter LHS
, Counter RHS
,
136 auto Cnt
= get(CounterExpression(CounterExpression::Subtract
, LHS
, RHS
));
137 return Simplify
? simplify(Cnt
) : Cnt
;
140 void CounterMappingContext::dump(const Counter
&C
, raw_ostream
&OS
) const {
141 switch (C
.getKind()) {
145 case Counter::CounterValueReference
:
146 OS
<< '#' << C
.getCounterID();
148 case Counter::Expression
: {
149 if (C
.getExpressionID() >= Expressions
.size())
151 const auto &E
= Expressions
[C
.getExpressionID()];
154 OS
<< (E
.Kind
== CounterExpression::Subtract
? " - " : " + ");
160 if (CounterValues
.empty())
162 Expected
<int64_t> Value
= evaluate(C
);
163 if (auto E
= Value
.takeError()) {
164 consumeError(std::move(E
));
167 OS
<< '[' << *Value
<< ']';
170 Expected
<int64_t> CounterMappingContext::evaluate(const Counter
&C
) const {
178 } VisitCount
= KNeverVisited
;
181 std::stack
<StackElem
> CounterStack
;
182 CounterStack
.push({C
});
184 int64_t LastPoppedValue
;
186 while (!CounterStack
.empty()) {
187 StackElem
&Current
= CounterStack
.top();
189 switch (Current
.ICounter
.getKind()) {
194 case Counter::CounterValueReference
:
195 if (Current
.ICounter
.getCounterID() >= CounterValues
.size())
196 return errorCodeToError(errc::argument_out_of_domain
);
197 LastPoppedValue
= CounterValues
[Current
.ICounter
.getCounterID()];
200 case Counter::Expression
: {
201 if (Current
.ICounter
.getExpressionID() >= Expressions
.size())
202 return errorCodeToError(errc::argument_out_of_domain
);
203 const auto &E
= Expressions
[Current
.ICounter
.getExpressionID()];
204 if (Current
.VisitCount
== StackElem::KNeverVisited
) {
205 CounterStack
.push(StackElem
{E
.LHS
});
206 Current
.VisitCount
= StackElem::KVisitedOnce
;
207 } else if (Current
.VisitCount
== StackElem::KVisitedOnce
) {
208 Current
.LHS
= LastPoppedValue
;
209 CounterStack
.push(StackElem
{E
.RHS
});
210 Current
.VisitCount
= StackElem::KVisitedTwice
;
212 int64_t LHS
= Current
.LHS
;
213 int64_t RHS
= LastPoppedValue
;
215 E
.Kind
== CounterExpression::Subtract
? LHS
- RHS
: LHS
+ RHS
;
223 return LastPoppedValue
;
226 Expected
<BitVector
> CounterMappingContext::evaluateBitmap(
227 const CounterMappingRegion
*MCDCDecision
) const {
228 unsigned ID
= MCDCDecision
->MCDCParams
.BitmapIdx
;
229 unsigned NC
= MCDCDecision
->MCDCParams
.NumConditions
;
230 unsigned SizeInBits
= llvm::alignTo(uint64_t(1) << NC
, CHAR_BIT
);
231 unsigned SizeInBytes
= SizeInBits
/ CHAR_BIT
;
233 assert(ID
+ SizeInBytes
<= BitmapBytes
.size() && "BitmapBytes overrun");
234 ArrayRef
<uint8_t> Bytes(&BitmapBytes
[ID
], SizeInBytes
);
236 // Mask each bitmap byte into the BitVector. Go in reverse so that the
237 // bitvector can just be shifted over by one byte on each iteration.
238 BitVector
Result(SizeInBits
, false);
239 for (auto Byte
= std::rbegin(Bytes
); Byte
!= std::rend(Bytes
); ++Byte
) {
240 uint32_t Data
= *Byte
;
242 Result
.setBitsInMask(&Data
, 1);
247 class MCDCRecordProcessor
{
248 /// A bitmap representing the executed test vectors for a boolean expression.
249 /// Each index of the bitmap corresponds to a possible test vector. An index
250 /// with a bit value of '1' indicates that the corresponding Test Vector
251 /// identified by that index was executed.
252 const BitVector
&ExecutedTestVectorBitmap
;
254 /// Decision Region to which the ExecutedTestVectorBitmap applies.
255 const CounterMappingRegion
&Region
;
257 /// Array of branch regions corresponding each conditions in the boolean
259 ArrayRef
<const CounterMappingRegion
*> Branches
;
261 /// Total number of conditions in the boolean expression.
262 unsigned NumConditions
;
264 /// Mapping of a condition ID to its corresponding branch region.
265 llvm::DenseMap
<unsigned, const CounterMappingRegion
*> Map
;
267 /// Vector used to track whether a condition is constant folded.
268 MCDCRecord::BoolVector Folded
;
270 /// Mapping of calculated MC/DC Independence Pairs for each condition.
271 MCDCRecord::TVPairMap IndependencePairs
;
273 /// Total number of possible Test Vectors for the boolean expression.
274 MCDCRecord::TestVectors TestVectors
;
276 /// Actual executed Test Vectors for the boolean expression, based on
277 /// ExecutedTestVectorBitmap.
278 MCDCRecord::TestVectors ExecVectors
;
281 MCDCRecordProcessor(const BitVector
&Bitmap
,
282 const CounterMappingRegion
&Region
,
283 ArrayRef
<const CounterMappingRegion
*> Branches
)
284 : ExecutedTestVectorBitmap(Bitmap
), Region(Region
), Branches(Branches
),
285 NumConditions(Region
.MCDCParams
.NumConditions
),
286 Folded(NumConditions
, false), IndependencePairs(NumConditions
),
287 TestVectors((size_t)1 << NumConditions
) {}
290 void recordTestVector(MCDCRecord::TestVector
&TV
,
291 MCDCRecord::CondState Result
) {
292 // Calculate an index that is used to identify the test vector in a vector
293 // of test vectors. This index also corresponds to the index values of an
294 // MCDC Region's bitmap (see findExecutedTestVectors()).
296 for (auto Cond
= std::rbegin(TV
); Cond
!= std::rend(TV
); ++Cond
) {
298 Index
|= (*Cond
== MCDCRecord::MCDC_True
) ? 0x1 : 0x0;
301 // Copy the completed test vector to the vector of testvectors.
302 TestVectors
[Index
] = TV
;
304 // The final value (T,F) is equal to the last non-dontcare state on the
305 // path (in a short-circuiting system).
306 TestVectors
[Index
].push_back(Result
);
309 void shouldCopyOffTestVectorForTruePath(MCDCRecord::TestVector
&TV
,
311 // Branch regions are hashed based on an ID.
312 const CounterMappingRegion
*Branch
= Map
[ID
];
314 TV
[ID
- 1] = MCDCRecord::MCDC_True
;
315 if (Branch
->MCDCParams
.TrueID
> 0)
316 buildTestVector(TV
, Branch
->MCDCParams
.TrueID
);
318 recordTestVector(TV
, MCDCRecord::MCDC_True
);
321 void shouldCopyOffTestVectorForFalsePath(MCDCRecord::TestVector
&TV
,
323 // Branch regions are hashed based on an ID.
324 const CounterMappingRegion
*Branch
= Map
[ID
];
326 TV
[ID
- 1] = MCDCRecord::MCDC_False
;
327 if (Branch
->MCDCParams
.FalseID
> 0)
328 buildTestVector(TV
, Branch
->MCDCParams
.FalseID
);
330 recordTestVector(TV
, MCDCRecord::MCDC_False
);
333 /// Starting with the base test vector, build a comprehensive list of
334 /// possible test vectors by recursively walking the branch condition IDs
335 /// provided. Once an end node is reached, record the test vector in a vector
336 /// of test vectors that can be matched against during MC/DC analysis, and
337 /// then reset the positions to 'DontCare'.
338 void buildTestVector(MCDCRecord::TestVector
&TV
, unsigned ID
= 1) {
339 shouldCopyOffTestVectorForTruePath(TV
, ID
);
340 shouldCopyOffTestVectorForFalsePath(TV
, ID
);
342 // Reset back to DontCare.
343 TV
[ID
- 1] = MCDCRecord::MCDC_DontCare
;
346 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test
347 /// vector at the corresponding index was executed during a test run.
348 void findExecutedTestVectors(const BitVector
&ExecutedTestVectorBitmap
) {
349 for (unsigned Idx
= 0; Idx
< ExecutedTestVectorBitmap
.size(); ++Idx
) {
350 if (ExecutedTestVectorBitmap
[Idx
] == 0)
352 assert(!TestVectors
[Idx
].empty() && "Test Vector doesn't exist.");
353 ExecVectors
.push_back(TestVectors
[Idx
]);
357 /// For a given condition and two executed Test Vectors, A and B, see if the
358 /// two test vectors match forming an Independence Pair for the condition.
359 /// For two test vectors to match, the following must be satisfied:
360 /// - The condition's value in each test vector must be opposite.
361 /// - The result's value in each test vector must be opposite.
362 /// - All other conditions' values must be equal or marked as "don't care".
363 bool matchTestVectors(unsigned Aidx
, unsigned Bidx
, unsigned ConditionIdx
) {
364 const MCDCRecord::TestVector
&A
= ExecVectors
[Aidx
];
365 const MCDCRecord::TestVector
&B
= ExecVectors
[Bidx
];
367 // If condition values in both A and B aren't opposites, no match.
368 // Because a value can be 0 (false), 1 (true), or -1 (DontCare), a check
369 // that "XOR != 1" will ensure that the values are opposites and that
370 // neither of them is a DontCare.
371 // 1 XOR 0 == 1 | 0 XOR 0 == 0 | -1 XOR 0 == -1
372 // 1 XOR 1 == 0 | 0 XOR 1 == 1 | -1 XOR 1 == -2
373 // 1 XOR -1 == -2 | 0 XOR -1 == -1 | -1 XOR -1 == 0
374 if ((A
[ConditionIdx
] ^ B
[ConditionIdx
]) != 1)
377 // If the results of both A and B aren't opposites, no match.
378 if ((A
[NumConditions
] ^ B
[NumConditions
]) != 1)
381 for (unsigned Idx
= 0; Idx
< NumConditions
; ++Idx
) {
382 // Look for other conditions that don't match. Skip over the given
383 // Condition as well as any conditions marked as "don't care".
384 const auto ARecordTyForCond
= A
[Idx
];
385 const auto BRecordTyForCond
= B
[Idx
];
386 if (Idx
== ConditionIdx
||
387 ARecordTyForCond
== MCDCRecord::MCDC_DontCare
||
388 BRecordTyForCond
== MCDCRecord::MCDC_DontCare
)
391 // If there is a condition mismatch with any of the other conditions,
392 // there is no match for the test vectors.
393 if (ARecordTyForCond
!= BRecordTyForCond
)
401 /// Find all possible Independence Pairs for a boolean expression given its
402 /// executed Test Vectors. This process involves looking at each condition
403 /// and attempting to find two Test Vectors that "match", giving us a pair.
404 void findIndependencePairs() {
405 unsigned NumTVs
= ExecVectors
.size();
407 // For each condition.
408 for (unsigned C
= 0; C
< NumConditions
; ++C
) {
409 bool PairFound
= false;
411 // For each executed test vector.
412 for (unsigned I
= 0; !PairFound
&& I
< NumTVs
; ++I
) {
413 // Compared to every other executed test vector.
414 for (unsigned J
= 0; !PairFound
&& J
< NumTVs
; ++J
) {
418 // If a matching pair of vectors is found, record them.
419 if ((PairFound
= matchTestVectors(I
, J
, C
)))
420 IndependencePairs
[C
] = std::make_pair(I
+ 1, J
+ 1);
427 /// Process the MC/DC Record in order to produce a result for a boolean
428 /// expression. This process includes tracking the conditions that comprise
429 /// the decision region, calculating the list of all possible test vectors,
430 /// marking the executed test vectors, and then finding an Independence Pair
431 /// out of the executed test vectors for each condition in the boolean
432 /// expression. A condition is tracked to ensure that its ID can be mapped to
433 /// its ordinal position in the boolean expression. The condition's source
434 /// location is also tracked, as well as whether it is constant folded (in
435 /// which case it is excuded from the metric).
436 MCDCRecord
processMCDCRecord() {
438 MCDCRecord::CondIDMap PosToID
;
439 MCDCRecord::LineColPairMap CondLoc
;
441 // Walk the Record's BranchRegions (representing Conditions) in order to:
442 // - Hash the condition based on its corresponding ID. This will be used to
443 // calculate the test vectors.
444 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its
445 // actual ID. This will be used to visualize the conditions in the
447 // - Keep track of the condition source location. This will be used to
448 // visualize where the condition is.
449 // - Record whether the condition is constant folded so that we exclude it
450 // from being measured.
451 for (const auto *B
: Branches
) {
452 Map
[B
->MCDCParams
.ID
] = B
;
453 PosToID
[I
] = B
->MCDCParams
.ID
- 1;
454 CondLoc
[I
] = B
->startLoc();
455 Folded
[I
++] = (B
->Count
.isZero() && B
->FalseCount
.isZero());
458 // Initialize a base test vector as 'DontCare'.
459 MCDCRecord::TestVector
TV(NumConditions
, MCDCRecord::MCDC_DontCare
);
461 // Use the base test vector to build the list of all possible test vectors.
464 // Using Profile Bitmap from runtime, mark the executed test vectors.
465 findExecutedTestVectors(ExecutedTestVectorBitmap
);
467 // Compare executed test vectors against each other to find an independence
468 // pairs for each condition. This processing takes the most time.
469 findIndependencePairs();
471 // Record Test vectors, executed vectors, and independence pairs.
472 MCDCRecord
Res(Region
, ExecVectors
, IndependencePairs
, Folded
, PosToID
,
478 Expected
<MCDCRecord
> CounterMappingContext::evaluateMCDCRegion(
479 const CounterMappingRegion
&Region
,
480 const BitVector
&ExecutedTestVectorBitmap
,
481 ArrayRef
<const CounterMappingRegion
*> Branches
) {
483 MCDCRecordProcessor
MCDCProcessor(ExecutedTestVectorBitmap
, Region
, Branches
);
484 return MCDCProcessor
.processMCDCRecord();
487 unsigned CounterMappingContext::getMaxCounterID(const Counter
&C
) const {
495 } VisitCount
= KNeverVisited
;
498 std::stack
<StackElem
> CounterStack
;
499 CounterStack
.push({C
});
501 int64_t LastPoppedValue
;
503 while (!CounterStack
.empty()) {
504 StackElem
&Current
= CounterStack
.top();
506 switch (Current
.ICounter
.getKind()) {
511 case Counter::CounterValueReference
:
512 LastPoppedValue
= Current
.ICounter
.getCounterID();
515 case Counter::Expression
: {
516 if (Current
.ICounter
.getExpressionID() >= Expressions
.size()) {
520 const auto &E
= Expressions
[Current
.ICounter
.getExpressionID()];
521 if (Current
.VisitCount
== StackElem::KNeverVisited
) {
522 CounterStack
.push(StackElem
{E
.LHS
});
523 Current
.VisitCount
= StackElem::KVisitedOnce
;
524 } else if (Current
.VisitCount
== StackElem::KVisitedOnce
) {
525 Current
.LHS
= LastPoppedValue
;
526 CounterStack
.push(StackElem
{E
.RHS
});
527 Current
.VisitCount
= StackElem::KVisitedTwice
;
529 int64_t LHS
= Current
.LHS
;
530 int64_t RHS
= LastPoppedValue
;
531 LastPoppedValue
= std::max(LHS
, RHS
);
540 return LastPoppedValue
;
543 void FunctionRecordIterator::skipOtherFiles() {
544 while (Current
!= Records
.end() && !Filename
.empty() &&
545 Filename
!= Current
->Filenames
[0])
547 if (Current
== Records
.end())
548 *this = FunctionRecordIterator();
551 ArrayRef
<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
552 StringRef Filename
) const {
553 size_t FilenameHash
= hash_value(Filename
);
554 auto RecordIt
= FilenameHash2RecordIndices
.find(FilenameHash
);
555 if (RecordIt
== FilenameHash2RecordIndices
.end())
557 return RecordIt
->second
;
560 static unsigned getMaxCounterID(const CounterMappingContext
&Ctx
,
561 const CoverageMappingRecord
&Record
) {
562 unsigned MaxCounterID
= 0;
563 for (const auto &Region
: Record
.MappingRegions
) {
564 MaxCounterID
= std::max(MaxCounterID
, Ctx
.getMaxCounterID(Region
.Count
));
569 static unsigned getMaxBitmapSize(const CounterMappingContext
&Ctx
,
570 const CoverageMappingRecord
&Record
) {
571 unsigned MaxBitmapID
= 0;
572 unsigned NumConditions
= 0;
573 // Scan max(BitmapIdx).
574 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid
575 // and `MaxBitmapID is `unsigned`. `BitmapIdx` is unique in the record.
576 for (const auto &Region
: reverse(Record
.MappingRegions
)) {
577 if (Region
.Kind
== CounterMappingRegion::MCDCDecisionRegion
&&
578 MaxBitmapID
<= Region
.MCDCParams
.BitmapIdx
) {
579 MaxBitmapID
= Region
.MCDCParams
.BitmapIdx
;
580 NumConditions
= Region
.MCDCParams
.NumConditions
;
583 unsigned SizeInBits
= llvm::alignTo(uint64_t(1) << NumConditions
, CHAR_BIT
);
584 return MaxBitmapID
+ (SizeInBits
/ CHAR_BIT
);
589 /// Collect Decisions, Branchs, and Expansions and associate them.
590 class MCDCDecisionRecorder
{
592 /// This holds the DecisionRegion and MCDCBranches under it.
593 /// Also traverses Expansion(s).
594 /// The Decision has the number of MCDCBranches and will complete
595 /// when it is filled with unique ConditionID of MCDCBranches.
596 struct DecisionRecord
{
597 const CounterMappingRegion
*DecisionRegion
;
599 /// They are reflected from DecisionRegion for convenience.
600 LineColPair DecisionStartLoc
;
601 LineColPair DecisionEndLoc
;
603 /// This is passed to `MCDCRecordProcessor`, so this should be compatible
604 /// to`ArrayRef<const CounterMappingRegion *>`.
605 SmallVector
<const CounterMappingRegion
*> MCDCBranches
;
607 /// IDs that are stored in MCDCBranches
608 /// Complete when all IDs (1 to NumConditions) are met.
609 DenseSet
<CounterMappingRegion::MCDCConditionID
> ConditionIDs
;
611 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion
612 /// and its children (via expansions).
613 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so
614 /// the location in the expansion doesn't matter.
615 DenseSet
<unsigned> ExpandedFileIDs
;
617 DecisionRecord(const CounterMappingRegion
&Decision
)
618 : DecisionRegion(&Decision
), DecisionStartLoc(Decision
.startLoc()),
619 DecisionEndLoc(Decision
.endLoc()) {
620 assert(Decision
.Kind
== CounterMappingRegion::MCDCDecisionRegion
);
623 /// Determine whether DecisionRecord dominates `R`.
624 bool dominates(const CounterMappingRegion
&R
) const {
625 // Determine whether `R` is included in `DecisionRegion`.
626 if (R
.FileID
== DecisionRegion
->FileID
&&
627 R
.startLoc() >= DecisionStartLoc
&& R
.endLoc() <= DecisionEndLoc
)
630 // Determine whether `R` is pointed by any of Expansions.
631 return ExpandedFileIDs
.contains(R
.FileID
);
635 NotProcessed
= 0, /// Irrelevant to this Decision
636 Processed
, /// Added to this Decision
637 Completed
, /// Added and filled this Decision
640 /// Add Branch into the Decision
641 /// \param Branch expects MCDCBranchRegion
642 /// \returns NotProcessed/Processed/Completed
643 Result
addBranch(const CounterMappingRegion
&Branch
) {
644 assert(Branch
.Kind
== CounterMappingRegion::MCDCBranchRegion
);
646 auto ConditionID
= Branch
.MCDCParams
.ID
;
647 assert(ConditionID
> 0 && "ConditionID should begin with 1");
649 if (ConditionIDs
.contains(ConditionID
) ||
650 ConditionID
> DecisionRegion
->MCDCParams
.NumConditions
)
653 if (!this->dominates(Branch
))
656 assert(MCDCBranches
.size() < DecisionRegion
->MCDCParams
.NumConditions
);
658 // Put `ID=1` in front of `MCDCBranches` for convenience
659 // even if `MCDCBranches` is not topological.
660 if (ConditionID
== 1)
661 MCDCBranches
.insert(MCDCBranches
.begin(), &Branch
);
663 MCDCBranches
.push_back(&Branch
);
665 // Mark `ID` as `assigned`.
666 ConditionIDs
.insert(ConditionID
);
668 // `Completed` when `MCDCBranches` is full
669 return (MCDCBranches
.size() == DecisionRegion
->MCDCParams
.NumConditions
674 /// Record Expansion if it is relevant to this Decision.
675 /// Each `Expansion` may nest.
676 /// \returns true if recorded.
677 bool recordExpansion(const CounterMappingRegion
&Expansion
) {
678 if (!this->dominates(Expansion
))
681 ExpandedFileIDs
.insert(Expansion
.ExpandedFileID
);
687 /// Decisions in progress
688 /// DecisionRecord is added for each MCDCDecisionRegion.
689 /// DecisionRecord is removed when Decision is completed.
690 SmallVector
<DecisionRecord
> Decisions
;
693 ~MCDCDecisionRecorder() {
694 assert(Decisions
.empty() && "All Decisions have not been resolved");
697 /// Register Region and start recording.
698 void registerDecision(const CounterMappingRegion
&Decision
) {
699 Decisions
.emplace_back(Decision
);
702 void recordExpansion(const CounterMappingRegion
&Expansion
) {
703 any_of(Decisions
, [&Expansion
](auto &Decision
) {
704 return Decision
.recordExpansion(Expansion
);
708 using DecisionAndBranches
=
709 std::pair
<const CounterMappingRegion
*, /// Decision
710 SmallVector
<const CounterMappingRegion
*> /// Branches
713 /// Add MCDCBranchRegion to DecisionRecord.
714 /// \param Branch to be processed
715 /// \returns DecisionsAndBranches if DecisionRecord completed.
716 /// Or returns nullopt.
717 std::optional
<DecisionAndBranches
>
718 processBranch(const CounterMappingRegion
&Branch
) {
719 // Seek each Decision and apply Region to it.
720 for (auto DecisionIter
= Decisions
.begin(), DecisionEnd
= Decisions
.end();
721 DecisionIter
!= DecisionEnd
; ++DecisionIter
)
722 switch (DecisionIter
->addBranch(Branch
)) {
723 case DecisionRecord::NotProcessed
:
725 case DecisionRecord::Processed
:
727 case DecisionRecord::Completed
:
728 DecisionAndBranches Result
=
729 std::make_pair(DecisionIter
->DecisionRegion
,
730 std::move(DecisionIter
->MCDCBranches
));
731 Decisions
.erase(DecisionIter
); // No longer used.
735 llvm_unreachable("Branch not found in Decisions");
741 Error
CoverageMapping::loadFunctionRecord(
742 const CoverageMappingRecord
&Record
,
743 IndexedInstrProfReader
&ProfileReader
) {
744 StringRef OrigFuncName
= Record
.FunctionName
;
745 if (OrigFuncName
.empty())
746 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
747 "record function name is empty");
749 if (Record
.Filenames
.empty())
750 OrigFuncName
= getFuncNameWithoutPrefix(OrigFuncName
);
752 OrigFuncName
= getFuncNameWithoutPrefix(OrigFuncName
, Record
.Filenames
[0]);
754 CounterMappingContext
Ctx(Record
.Expressions
);
756 std::vector
<uint64_t> Counts
;
757 if (Error E
= ProfileReader
.getFunctionCounts(Record
.FunctionName
,
758 Record
.FunctionHash
, Counts
)) {
759 instrprof_error IPE
= std::get
<0>(InstrProfError::take(std::move(E
)));
760 if (IPE
== instrprof_error::hash_mismatch
) {
761 FuncHashMismatches
.emplace_back(std::string(Record
.FunctionName
),
762 Record
.FunctionHash
);
763 return Error::success();
765 if (IPE
!= instrprof_error::unknown_function
)
766 return make_error
<InstrProfError
>(IPE
);
767 Counts
.assign(getMaxCounterID(Ctx
, Record
) + 1, 0);
769 Ctx
.setCounts(Counts
);
771 std::vector
<uint8_t> BitmapBytes
;
772 if (Error E
= ProfileReader
.getFunctionBitmapBytes(
773 Record
.FunctionName
, Record
.FunctionHash
, BitmapBytes
)) {
774 instrprof_error IPE
= std::get
<0>(InstrProfError::take(std::move(E
)));
775 if (IPE
== instrprof_error::hash_mismatch
) {
776 FuncHashMismatches
.emplace_back(std::string(Record
.FunctionName
),
777 Record
.FunctionHash
);
778 return Error::success();
780 if (IPE
!= instrprof_error::unknown_function
)
781 return make_error
<InstrProfError
>(IPE
);
782 BitmapBytes
.assign(getMaxBitmapSize(Ctx
, Record
) + 1, 0);
784 Ctx
.setBitmapBytes(BitmapBytes
);
786 assert(!Record
.MappingRegions
.empty() && "Function has no regions");
788 // This coverage record is a zero region for a function that's unused in
789 // some TU, but used in a different TU. Ignore it. The coverage maps from the
790 // the other TU will either be loaded (providing full region counts) or they
791 // won't (in which case we don't unintuitively report functions as uncovered
792 // when they have non-zero counts in the profile).
793 if (Record
.MappingRegions
.size() == 1 &&
794 Record
.MappingRegions
[0].Count
.isZero() && Counts
[0] > 0)
795 return Error::success();
797 MCDCDecisionRecorder MCDCDecisions
;
798 FunctionRecord
Function(OrigFuncName
, Record
.Filenames
);
799 for (const auto &Region
: Record
.MappingRegions
) {
800 // MCDCDecisionRegion should be handled first since it overlaps with
802 if (Region
.Kind
== CounterMappingRegion::MCDCDecisionRegion
) {
803 MCDCDecisions
.registerDecision(Region
);
806 Expected
<int64_t> ExecutionCount
= Ctx
.evaluate(Region
.Count
);
807 if (auto E
= ExecutionCount
.takeError()) {
808 consumeError(std::move(E
));
809 return Error::success();
811 Expected
<int64_t> AltExecutionCount
= Ctx
.evaluate(Region
.FalseCount
);
812 if (auto E
= AltExecutionCount
.takeError()) {
813 consumeError(std::move(E
));
814 return Error::success();
816 Function
.pushRegion(Region
, *ExecutionCount
, *AltExecutionCount
);
818 // Record ExpansionRegion.
819 if (Region
.Kind
== CounterMappingRegion::ExpansionRegion
) {
820 MCDCDecisions
.recordExpansion(Region
);
824 // Do nothing unless MCDCBranchRegion.
825 if (Region
.Kind
!= CounterMappingRegion::MCDCBranchRegion
)
828 auto Result
= MCDCDecisions
.processBranch(Region
);
829 if (!Result
) // Any Decision doesn't complete.
832 auto MCDCDecision
= Result
->first
;
833 auto &MCDCBranches
= Result
->second
;
835 // Evaluating the test vector bitmap for the decision region entails
836 // calculating precisely what bits are pertinent to this region alone.
837 // This is calculated based on the recorded offset into the global
838 // profile bitmap; the length is calculated based on the recorded
839 // number of conditions.
840 Expected
<BitVector
> ExecutedTestVectorBitmap
=
841 Ctx
.evaluateBitmap(MCDCDecision
);
842 if (auto E
= ExecutedTestVectorBitmap
.takeError()) {
843 consumeError(std::move(E
));
844 return Error::success();
847 // Since the bitmap identifies the executed test vectors for an MC/DC
848 // DecisionRegion, all of the information is now available to process.
849 // This is where the bulk of the MC/DC progressing takes place.
850 Expected
<MCDCRecord
> Record
= Ctx
.evaluateMCDCRegion(
851 *MCDCDecision
, *ExecutedTestVectorBitmap
, MCDCBranches
);
852 if (auto E
= Record
.takeError()) {
853 consumeError(std::move(E
));
854 return Error::success();
857 // Save the MC/DC Record so that it can be visualized later.
858 Function
.pushMCDCRecord(*Record
);
861 // Don't create records for (filenames, function) pairs we've already seen.
862 auto FilenamesHash
= hash_combine_range(Record
.Filenames
.begin(),
863 Record
.Filenames
.end());
864 if (!RecordProvenance
[FilenamesHash
].insert(hash_value(OrigFuncName
)).second
)
865 return Error::success();
867 Functions
.push_back(std::move(Function
));
869 // Performance optimization: keep track of the indices of the function records
870 // which correspond to each filename. This can be used to substantially speed
871 // up queries for coverage info in a file.
872 unsigned RecordIndex
= Functions
.size() - 1;
873 for (StringRef Filename
: Record
.Filenames
) {
874 auto &RecordIndices
= FilenameHash2RecordIndices
[hash_value(Filename
)];
875 // Note that there may be duplicates in the filename set for a function
876 // record, because of e.g. macro expansions in the function in which both
877 // the macro and the function are defined in the same file.
878 if (RecordIndices
.empty() || RecordIndices
.back() != RecordIndex
)
879 RecordIndices
.push_back(RecordIndex
);
882 return Error::success();
885 // This function is for memory optimization by shortening the lifetimes
886 // of CoverageMappingReader instances.
887 Error
CoverageMapping::loadFromReaders(
888 ArrayRef
<std::unique_ptr
<CoverageMappingReader
>> CoverageReaders
,
889 IndexedInstrProfReader
&ProfileReader
, CoverageMapping
&Coverage
) {
890 for (const auto &CoverageReader
: CoverageReaders
) {
891 for (auto RecordOrErr
: *CoverageReader
) {
892 if (Error E
= RecordOrErr
.takeError())
894 const auto &Record
= *RecordOrErr
;
895 if (Error E
= Coverage
.loadFunctionRecord(Record
, ProfileReader
))
899 return Error::success();
902 Expected
<std::unique_ptr
<CoverageMapping
>> CoverageMapping::load(
903 ArrayRef
<std::unique_ptr
<CoverageMappingReader
>> CoverageReaders
,
904 IndexedInstrProfReader
&ProfileReader
) {
905 auto Coverage
= std::unique_ptr
<CoverageMapping
>(new CoverageMapping());
906 if (Error E
= loadFromReaders(CoverageReaders
, ProfileReader
, *Coverage
))
908 return std::move(Coverage
);
911 // If E is a no_data_found error, returns success. Otherwise returns E.
912 static Error
handleMaybeNoDataFoundError(Error E
) {
914 std::move(E
), [](const CoverageMapError
&CME
) {
915 if (CME
.get() == coveragemap_error::no_data_found
)
916 return static_cast<Error
>(Error::success());
917 return make_error
<CoverageMapError
>(CME
.get(), CME
.getMessage());
921 Error
CoverageMapping::loadFromFile(
922 StringRef Filename
, StringRef Arch
, StringRef CompilationDir
,
923 IndexedInstrProfReader
&ProfileReader
, CoverageMapping
&Coverage
,
924 bool &DataFound
, SmallVectorImpl
<object::BuildID
> *FoundBinaryIDs
) {
925 auto CovMappingBufOrErr
= MemoryBuffer::getFileOrSTDIN(
926 Filename
, /*IsText=*/false, /*RequiresNullTerminator=*/false);
927 if (std::error_code EC
= CovMappingBufOrErr
.getError())
928 return createFileError(Filename
, errorCodeToError(EC
));
929 MemoryBufferRef CovMappingBufRef
=
930 CovMappingBufOrErr
.get()->getMemBufferRef();
931 SmallVector
<std::unique_ptr
<MemoryBuffer
>, 4> Buffers
;
933 SmallVector
<object::BuildIDRef
> BinaryIDs
;
934 auto CoverageReadersOrErr
= BinaryCoverageReader::create(
935 CovMappingBufRef
, Arch
, Buffers
, CompilationDir
,
936 FoundBinaryIDs
? &BinaryIDs
: nullptr);
937 if (Error E
= CoverageReadersOrErr
.takeError()) {
938 E
= handleMaybeNoDataFoundError(std::move(E
));
940 return createFileError(Filename
, std::move(E
));
944 SmallVector
<std::unique_ptr
<CoverageMappingReader
>, 4> Readers
;
945 for (auto &Reader
: CoverageReadersOrErr
.get())
946 Readers
.push_back(std::move(Reader
));
947 if (FoundBinaryIDs
&& !Readers
.empty()) {
948 llvm::append_range(*FoundBinaryIDs
,
949 llvm::map_range(BinaryIDs
, [](object::BuildIDRef BID
) {
950 return object::BuildID(BID
);
953 DataFound
|= !Readers
.empty();
954 if (Error E
= loadFromReaders(Readers
, ProfileReader
, Coverage
))
955 return createFileError(Filename
, std::move(E
));
956 return Error::success();
959 Expected
<std::unique_ptr
<CoverageMapping
>> CoverageMapping::load(
960 ArrayRef
<StringRef
> ObjectFilenames
, StringRef ProfileFilename
,
961 vfs::FileSystem
&FS
, ArrayRef
<StringRef
> Arches
, StringRef CompilationDir
,
962 const object::BuildIDFetcher
*BIDFetcher
, bool CheckBinaryIDs
) {
963 auto ProfileReaderOrErr
= IndexedInstrProfReader::create(ProfileFilename
, FS
);
964 if (Error E
= ProfileReaderOrErr
.takeError())
965 return createFileError(ProfileFilename
, std::move(E
));
966 auto ProfileReader
= std::move(ProfileReaderOrErr
.get());
967 auto Coverage
= std::unique_ptr
<CoverageMapping
>(new CoverageMapping());
968 bool DataFound
= false;
970 auto GetArch
= [&](size_t Idx
) {
973 if (Arches
.size() == 1)
974 return Arches
.front();
978 SmallVector
<object::BuildID
> FoundBinaryIDs
;
979 for (const auto &File
: llvm::enumerate(ObjectFilenames
)) {
981 loadFromFile(File
.value(), GetArch(File
.index()), CompilationDir
,
982 *ProfileReader
, *Coverage
, DataFound
, &FoundBinaryIDs
))
987 std::vector
<object::BuildID
> ProfileBinaryIDs
;
988 if (Error E
= ProfileReader
->readBinaryIds(ProfileBinaryIDs
))
989 return createFileError(ProfileFilename
, std::move(E
));
991 SmallVector
<object::BuildIDRef
> BinaryIDsToFetch
;
992 if (!ProfileBinaryIDs
.empty()) {
993 const auto &Compare
= [](object::BuildIDRef A
, object::BuildIDRef B
) {
994 return std::lexicographical_compare(A
.begin(), A
.end(), B
.begin(),
997 llvm::sort(FoundBinaryIDs
, Compare
);
999 ProfileBinaryIDs
.begin(), ProfileBinaryIDs
.end(),
1000 FoundBinaryIDs
.begin(), FoundBinaryIDs
.end(),
1001 std::inserter(BinaryIDsToFetch
, BinaryIDsToFetch
.end()), Compare
);
1004 for (object::BuildIDRef BinaryID
: BinaryIDsToFetch
) {
1005 std::optional
<std::string
> PathOpt
= BIDFetcher
->fetch(BinaryID
);
1007 std::string Path
= std::move(*PathOpt
);
1008 StringRef Arch
= Arches
.size() == 1 ? Arches
.front() : StringRef();
1009 if (Error E
= loadFromFile(Path
, Arch
, CompilationDir
, *ProfileReader
,
1010 *Coverage
, DataFound
))
1011 return std::move(E
);
1012 } else if (CheckBinaryIDs
) {
1013 return createFileError(
1015 createStringError(errc::no_such_file_or_directory
,
1016 "Missing binary ID: " +
1017 llvm::toHex(BinaryID
, /*LowerCase=*/true)));
1023 return createFileError(
1024 join(ObjectFilenames
.begin(), ObjectFilenames
.end(), ", "),
1025 make_error
<CoverageMapError
>(coveragemap_error::no_data_found
));
1026 return std::move(Coverage
);
1031 /// Distributes functions into instantiation sets.
1033 /// An instantiation set is a collection of functions that have the same source
1034 /// code, ie, template functions specializations.
1035 class FunctionInstantiationSetCollector
{
1036 using MapT
= std::map
<LineColPair
, std::vector
<const FunctionRecord
*>>;
1037 MapT InstantiatedFunctions
;
1040 void insert(const FunctionRecord
&Function
, unsigned FileID
) {
1041 auto I
= Function
.CountedRegions
.begin(), E
= Function
.CountedRegions
.end();
1042 while (I
!= E
&& I
->FileID
!= FileID
)
1044 assert(I
!= E
&& "function does not cover the given file");
1045 auto &Functions
= InstantiatedFunctions
[I
->startLoc()];
1046 Functions
.push_back(&Function
);
1049 MapT::iterator
begin() { return InstantiatedFunctions
.begin(); }
1050 MapT::iterator
end() { return InstantiatedFunctions
.end(); }
1053 class SegmentBuilder
{
1054 std::vector
<CoverageSegment
> &Segments
;
1055 SmallVector
<const CountedRegion
*, 8> ActiveRegions
;
1057 SegmentBuilder(std::vector
<CoverageSegment
> &Segments
) : Segments(Segments
) {}
1059 /// Emit a segment with the count from \p Region starting at \p StartLoc.
1061 /// \p IsRegionEntry: The segment is at the start of a new non-gap region.
1062 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
1063 void startSegment(const CountedRegion
&Region
, LineColPair StartLoc
,
1064 bool IsRegionEntry
, bool EmitSkippedRegion
= false) {
1065 bool HasCount
= !EmitSkippedRegion
&&
1066 (Region
.Kind
!= CounterMappingRegion::SkippedRegion
);
1068 // If the new segment wouldn't affect coverage rendering, skip it.
1069 if (!Segments
.empty() && !IsRegionEntry
&& !EmitSkippedRegion
) {
1070 const auto &Last
= Segments
.back();
1071 if (Last
.HasCount
== HasCount
&& Last
.Count
== Region
.ExecutionCount
&&
1072 !Last
.IsRegionEntry
)
1077 Segments
.emplace_back(StartLoc
.first
, StartLoc
.second
,
1078 Region
.ExecutionCount
, IsRegionEntry
,
1079 Region
.Kind
== CounterMappingRegion::GapRegion
);
1081 Segments
.emplace_back(StartLoc
.first
, StartLoc
.second
, IsRegionEntry
);
1084 const auto &Last
= Segments
.back();
1085 dbgs() << "Segment at " << Last
.Line
<< ":" << Last
.Col
1086 << " (count = " << Last
.Count
<< ")"
1087 << (Last
.IsRegionEntry
? ", RegionEntry" : "")
1088 << (!Last
.HasCount
? ", Skipped" : "")
1089 << (Last
.IsGapRegion
? ", Gap" : "") << "\n";
1093 /// Emit segments for active regions which end before \p Loc.
1095 /// \p Loc: The start location of the next region. If std::nullopt, all active
1096 /// regions are completed.
1097 /// \p FirstCompletedRegion: Index of the first completed region.
1098 void completeRegionsUntil(std::optional
<LineColPair
> Loc
,
1099 unsigned FirstCompletedRegion
) {
1100 // Sort the completed regions by end location. This makes it simple to
1101 // emit closing segments in sorted order.
1102 auto CompletedRegionsIt
= ActiveRegions
.begin() + FirstCompletedRegion
;
1103 std::stable_sort(CompletedRegionsIt
, ActiveRegions
.end(),
1104 [](const CountedRegion
*L
, const CountedRegion
*R
) {
1105 return L
->endLoc() < R
->endLoc();
1108 // Emit segments for all completed regions.
1109 for (unsigned I
= FirstCompletedRegion
+ 1, E
= ActiveRegions
.size(); I
< E
;
1111 const auto *CompletedRegion
= ActiveRegions
[I
];
1112 assert((!Loc
|| CompletedRegion
->endLoc() <= *Loc
) &&
1113 "Completed region ends after start of new region");
1115 const auto *PrevCompletedRegion
= ActiveRegions
[I
- 1];
1116 auto CompletedSegmentLoc
= PrevCompletedRegion
->endLoc();
1118 // Don't emit any more segments if they start where the new region begins.
1119 if (Loc
&& CompletedSegmentLoc
== *Loc
)
1122 // Don't emit a segment if the next completed region ends at the same
1123 // location as this one.
1124 if (CompletedSegmentLoc
== CompletedRegion
->endLoc())
1127 // Use the count from the last completed region which ends at this loc.
1128 for (unsigned J
= I
+ 1; J
< E
; ++J
)
1129 if (CompletedRegion
->endLoc() == ActiveRegions
[J
]->endLoc())
1130 CompletedRegion
= ActiveRegions
[J
];
1132 startSegment(*CompletedRegion
, CompletedSegmentLoc
, false);
1135 auto Last
= ActiveRegions
.back();
1136 if (FirstCompletedRegion
&& Last
->endLoc() != *Loc
) {
1137 // If there's a gap after the end of the last completed region and the
1138 // start of the new region, use the last active region to fill the gap.
1139 startSegment(*ActiveRegions
[FirstCompletedRegion
- 1], Last
->endLoc(),
1141 } else if (!FirstCompletedRegion
&& (!Loc
|| *Loc
!= Last
->endLoc())) {
1142 // Emit a skipped segment if there are no more active regions. This
1143 // ensures that gaps between functions are marked correctly.
1144 startSegment(*Last
, Last
->endLoc(), false, true);
1147 // Pop the completed regions.
1148 ActiveRegions
.erase(CompletedRegionsIt
, ActiveRegions
.end());
1151 void buildSegmentsImpl(ArrayRef
<CountedRegion
> Regions
) {
1152 for (const auto &CR
: enumerate(Regions
)) {
1153 auto CurStartLoc
= CR
.value().startLoc();
1155 // Active regions which end before the current region need to be popped.
1156 auto CompletedRegions
=
1157 std::stable_partition(ActiveRegions
.begin(), ActiveRegions
.end(),
1158 [&](const CountedRegion
*Region
) {
1159 return !(Region
->endLoc() <= CurStartLoc
);
1161 if (CompletedRegions
!= ActiveRegions
.end()) {
1162 unsigned FirstCompletedRegion
=
1163 std::distance(ActiveRegions
.begin(), CompletedRegions
);
1164 completeRegionsUntil(CurStartLoc
, FirstCompletedRegion
);
1167 bool GapRegion
= CR
.value().Kind
== CounterMappingRegion::GapRegion
;
1169 // Try to emit a segment for the current region.
1170 if (CurStartLoc
== CR
.value().endLoc()) {
1171 // Avoid making zero-length regions active. If it's the last region,
1172 // emit a skipped segment. Otherwise use its predecessor's count.
1173 const bool Skipped
=
1174 (CR
.index() + 1) == Regions
.size() ||
1175 CR
.value().Kind
== CounterMappingRegion::SkippedRegion
;
1176 startSegment(ActiveRegions
.empty() ? CR
.value() : *ActiveRegions
.back(),
1177 CurStartLoc
, !GapRegion
, Skipped
);
1178 // If it is skipped segment, create a segment with last pushed
1179 // regions's count at CurStartLoc.
1180 if (Skipped
&& !ActiveRegions
.empty())
1181 startSegment(*ActiveRegions
.back(), CurStartLoc
, false);
1184 if (CR
.index() + 1 == Regions
.size() ||
1185 CurStartLoc
!= Regions
[CR
.index() + 1].startLoc()) {
1186 // Emit a segment if the next region doesn't start at the same location
1188 startSegment(CR
.value(), CurStartLoc
, !GapRegion
);
1191 // This region is active (i.e not completed).
1192 ActiveRegions
.push_back(&CR
.value());
1195 // Complete any remaining active regions.
1196 if (!ActiveRegions
.empty())
1197 completeRegionsUntil(std::nullopt
, 0);
1200 /// Sort a nested sequence of regions from a single file.
1201 static void sortNestedRegions(MutableArrayRef
<CountedRegion
> Regions
) {
1202 llvm::sort(Regions
, [](const CountedRegion
&LHS
, const CountedRegion
&RHS
) {
1203 if (LHS
.startLoc() != RHS
.startLoc())
1204 return LHS
.startLoc() < RHS
.startLoc();
1205 if (LHS
.endLoc() != RHS
.endLoc())
1206 // When LHS completely contains RHS, we sort LHS first.
1207 return RHS
.endLoc() < LHS
.endLoc();
1208 // If LHS and RHS cover the same area, we need to sort them according
1209 // to their kinds so that the most suitable region will become "active"
1210 // in combineRegions(). Because we accumulate counter values only from
1211 // regions of the same kind as the first region of the area, prefer
1212 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
1213 static_assert(CounterMappingRegion::CodeRegion
<
1214 CounterMappingRegion::ExpansionRegion
&&
1215 CounterMappingRegion::ExpansionRegion
<
1216 CounterMappingRegion::SkippedRegion
,
1217 "Unexpected order of region kind values");
1218 return LHS
.Kind
< RHS
.Kind
;
1222 /// Combine counts of regions which cover the same area.
1223 static ArrayRef
<CountedRegion
>
1224 combineRegions(MutableArrayRef
<CountedRegion
> Regions
) {
1225 if (Regions
.empty())
1227 auto Active
= Regions
.begin();
1228 auto End
= Regions
.end();
1229 for (auto I
= Regions
.begin() + 1; I
!= End
; ++I
) {
1230 if (Active
->startLoc() != I
->startLoc() ||
1231 Active
->endLoc() != I
->endLoc()) {
1232 // Shift to the next region.
1238 // Merge duplicate region.
1239 // If CodeRegions and ExpansionRegions cover the same area, it's probably
1240 // a macro which is fully expanded to another macro. In that case, we need
1241 // to accumulate counts only from CodeRegions, or else the area will be
1243 // On the other hand, a macro may have a nested macro in its body. If the
1244 // outer macro is used several times, the ExpansionRegion for the nested
1245 // macro will also be added several times. These ExpansionRegions cover
1246 // the same source locations and have to be combined to reach the correct
1247 // value for that area.
1248 // We add counts of the regions of the same kind as the active region
1249 // to handle the both situations.
1250 if (I
->Kind
== Active
->Kind
)
1251 Active
->ExecutionCount
+= I
->ExecutionCount
;
1253 return Regions
.drop_back(std::distance(++Active
, End
));
1257 /// Build a sorted list of CoverageSegments from a list of Regions.
1258 static std::vector
<CoverageSegment
>
1259 buildSegments(MutableArrayRef
<CountedRegion
> Regions
) {
1260 std::vector
<CoverageSegment
> Segments
;
1261 SegmentBuilder
Builder(Segments
);
1263 sortNestedRegions(Regions
);
1264 ArrayRef
<CountedRegion
> CombinedRegions
= combineRegions(Regions
);
1267 dbgs() << "Combined regions:\n";
1268 for (const auto &CR
: CombinedRegions
)
1269 dbgs() << " " << CR
.LineStart
<< ":" << CR
.ColumnStart
<< " -> "
1270 << CR
.LineEnd
<< ":" << CR
.ColumnEnd
1271 << " (count=" << CR
.ExecutionCount
<< ")\n";
1274 Builder
.buildSegmentsImpl(CombinedRegions
);
1277 for (unsigned I
= 1, E
= Segments
.size(); I
< E
; ++I
) {
1278 const auto &L
= Segments
[I
- 1];
1279 const auto &R
= Segments
[I
];
1280 if (!(L
.Line
< R
.Line
) && !(L
.Line
== R
.Line
&& L
.Col
< R
.Col
)) {
1281 if (L
.Line
== R
.Line
&& L
.Col
== R
.Col
&& !L
.HasCount
)
1283 LLVM_DEBUG(dbgs() << " ! Segment " << L
.Line
<< ":" << L
.Col
1284 << " followed by " << R
.Line
<< ":" << R
.Col
<< "\n");
1285 assert(false && "Coverage segments not unique or sorted");
1294 } // end anonymous namespace
1296 std::vector
<StringRef
> CoverageMapping::getUniqueSourceFiles() const {
1297 std::vector
<StringRef
> Filenames
;
1298 for (const auto &Function
: getCoveredFunctions())
1299 llvm::append_range(Filenames
, Function
.Filenames
);
1300 llvm::sort(Filenames
);
1301 auto Last
= std::unique(Filenames
.begin(), Filenames
.end());
1302 Filenames
.erase(Last
, Filenames
.end());
1306 static SmallBitVector
gatherFileIDs(StringRef SourceFile
,
1307 const FunctionRecord
&Function
) {
1308 SmallBitVector
FilenameEquivalence(Function
.Filenames
.size(), false);
1309 for (unsigned I
= 0, E
= Function
.Filenames
.size(); I
< E
; ++I
)
1310 if (SourceFile
== Function
.Filenames
[I
])
1311 FilenameEquivalence
[I
] = true;
1312 return FilenameEquivalence
;
1315 /// Return the ID of the file where the definition of the function is located.
1316 static std::optional
<unsigned>
1317 findMainViewFileID(const FunctionRecord
&Function
) {
1318 SmallBitVector
IsNotExpandedFile(Function
.Filenames
.size(), true);
1319 for (const auto &CR
: Function
.CountedRegions
)
1320 if (CR
.Kind
== CounterMappingRegion::ExpansionRegion
)
1321 IsNotExpandedFile
[CR
.ExpandedFileID
] = false;
1322 int I
= IsNotExpandedFile
.find_first();
1324 return std::nullopt
;
1328 /// Check if SourceFile is the file that contains the definition of
1329 /// the Function. Return the ID of the file in that case or std::nullopt
1331 static std::optional
<unsigned>
1332 findMainViewFileID(StringRef SourceFile
, const FunctionRecord
&Function
) {
1333 std::optional
<unsigned> I
= findMainViewFileID(Function
);
1334 if (I
&& SourceFile
== Function
.Filenames
[*I
])
1336 return std::nullopt
;
1339 static bool isExpansion(const CountedRegion
&R
, unsigned FileID
) {
1340 return R
.Kind
== CounterMappingRegion::ExpansionRegion
&& R
.FileID
== FileID
;
1343 CoverageData
CoverageMapping::getCoverageForFile(StringRef Filename
) const {
1344 CoverageData
FileCoverage(Filename
);
1345 std::vector
<CountedRegion
> Regions
;
1347 // Look up the function records in the given file. Due to hash collisions on
1348 // the filename, we may get back some records that are not in the file.
1349 ArrayRef
<unsigned> RecordIndices
=
1350 getImpreciseRecordIndicesForFilename(Filename
);
1351 for (unsigned RecordIndex
: RecordIndices
) {
1352 const FunctionRecord
&Function
= Functions
[RecordIndex
];
1353 auto MainFileID
= findMainViewFileID(Filename
, Function
);
1354 auto FileIDs
= gatherFileIDs(Filename
, Function
);
1355 for (const auto &CR
: Function
.CountedRegions
)
1356 if (FileIDs
.test(CR
.FileID
)) {
1357 Regions
.push_back(CR
);
1358 if (MainFileID
&& isExpansion(CR
, *MainFileID
))
1359 FileCoverage
.Expansions
.emplace_back(CR
, Function
);
1361 // Capture branch regions specific to the function (excluding expansions).
1362 for (const auto &CR
: Function
.CountedBranchRegions
)
1363 if (FileIDs
.test(CR
.FileID
) && (CR
.FileID
== CR
.ExpandedFileID
))
1364 FileCoverage
.BranchRegions
.push_back(CR
);
1365 // Capture MCDC records specific to the function.
1366 for (const auto &MR
: Function
.MCDCRecords
)
1367 if (FileIDs
.test(MR
.getDecisionRegion().FileID
))
1368 FileCoverage
.MCDCRecords
.push_back(MR
);
1371 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename
<< "\n");
1372 FileCoverage
.Segments
= SegmentBuilder::buildSegments(Regions
);
1374 return FileCoverage
;
1377 std::vector
<InstantiationGroup
>
1378 CoverageMapping::getInstantiationGroups(StringRef Filename
) const {
1379 FunctionInstantiationSetCollector InstantiationSetCollector
;
1380 // Look up the function records in the given file. Due to hash collisions on
1381 // the filename, we may get back some records that are not in the file.
1382 ArrayRef
<unsigned> RecordIndices
=
1383 getImpreciseRecordIndicesForFilename(Filename
);
1384 for (unsigned RecordIndex
: RecordIndices
) {
1385 const FunctionRecord
&Function
= Functions
[RecordIndex
];
1386 auto MainFileID
= findMainViewFileID(Filename
, Function
);
1389 InstantiationSetCollector
.insert(Function
, *MainFileID
);
1392 std::vector
<InstantiationGroup
> Result
;
1393 for (auto &InstantiationSet
: InstantiationSetCollector
) {
1394 InstantiationGroup IG
{InstantiationSet
.first
.first
,
1395 InstantiationSet
.first
.second
,
1396 std::move(InstantiationSet
.second
)};
1397 Result
.emplace_back(std::move(IG
));
1403 CoverageMapping::getCoverageForFunction(const FunctionRecord
&Function
) const {
1404 auto MainFileID
= findMainViewFileID(Function
);
1406 return CoverageData();
1408 CoverageData
FunctionCoverage(Function
.Filenames
[*MainFileID
]);
1409 std::vector
<CountedRegion
> Regions
;
1410 for (const auto &CR
: Function
.CountedRegions
)
1411 if (CR
.FileID
== *MainFileID
) {
1412 Regions
.push_back(CR
);
1413 if (isExpansion(CR
, *MainFileID
))
1414 FunctionCoverage
.Expansions
.emplace_back(CR
, Function
);
1416 // Capture branch regions specific to the function (excluding expansions).
1417 for (const auto &CR
: Function
.CountedBranchRegions
)
1418 if (CR
.FileID
== *MainFileID
)
1419 FunctionCoverage
.BranchRegions
.push_back(CR
);
1421 // Capture MCDC records specific to the function.
1422 for (const auto &MR
: Function
.MCDCRecords
)
1423 if (MR
.getDecisionRegion().FileID
== *MainFileID
)
1424 FunctionCoverage
.MCDCRecords
.push_back(MR
);
1426 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function
.Name
1428 FunctionCoverage
.Segments
= SegmentBuilder::buildSegments(Regions
);
1430 return FunctionCoverage
;
1433 CoverageData
CoverageMapping::getCoverageForExpansion(
1434 const ExpansionRecord
&Expansion
) const {
1435 CoverageData
ExpansionCoverage(
1436 Expansion
.Function
.Filenames
[Expansion
.FileID
]);
1437 std::vector
<CountedRegion
> Regions
;
1438 for (const auto &CR
: Expansion
.Function
.CountedRegions
)
1439 if (CR
.FileID
== Expansion
.FileID
) {
1440 Regions
.push_back(CR
);
1441 if (isExpansion(CR
, Expansion
.FileID
))
1442 ExpansionCoverage
.Expansions
.emplace_back(CR
, Expansion
.Function
);
1444 for (const auto &CR
: Expansion
.Function
.CountedBranchRegions
)
1445 // Capture branch regions that only pertain to the corresponding expansion.
1446 if (CR
.FileID
== Expansion
.FileID
)
1447 ExpansionCoverage
.BranchRegions
.push_back(CR
);
1449 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
1450 << Expansion
.FileID
<< "\n");
1451 ExpansionCoverage
.Segments
= SegmentBuilder::buildSegments(Regions
);
1453 return ExpansionCoverage
;
1456 LineCoverageStats::LineCoverageStats(
1457 ArrayRef
<const CoverageSegment
*> LineSegments
,
1458 const CoverageSegment
*WrappedSegment
, unsigned Line
)
1459 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line
),
1460 LineSegments(LineSegments
), WrappedSegment(WrappedSegment
) {
1461 // Find the minimum number of regions which start in this line.
1462 unsigned MinRegionCount
= 0;
1463 auto isStartOfRegion
= [](const CoverageSegment
*S
) {
1464 return !S
->IsGapRegion
&& S
->HasCount
&& S
->IsRegionEntry
;
1466 for (unsigned I
= 0; I
< LineSegments
.size() && MinRegionCount
< 2; ++I
)
1467 if (isStartOfRegion(LineSegments
[I
]))
1470 bool StartOfSkippedRegion
= !LineSegments
.empty() &&
1471 !LineSegments
.front()->HasCount
&&
1472 LineSegments
.front()->IsRegionEntry
;
1474 HasMultipleRegions
= MinRegionCount
> 1;
1476 !StartOfSkippedRegion
&&
1477 ((WrappedSegment
&& WrappedSegment
->HasCount
) || (MinRegionCount
> 0));
1479 // if there is any starting segment at this line with a counter, it must be
1481 Mapped
|= std::any_of(
1482 LineSegments
.begin(), LineSegments
.end(),
1483 [](const auto *Seq
) { return Seq
->IsRegionEntry
&& Seq
->HasCount
; });
1489 // Pick the max count from the non-gap, region entry segments and the
1492 ExecutionCount
= WrappedSegment
->Count
;
1493 if (!MinRegionCount
)
1495 for (const auto *LS
: LineSegments
)
1496 if (isStartOfRegion(LS
))
1497 ExecutionCount
= std::max(ExecutionCount
, LS
->Count
);
1500 LineCoverageIterator
&LineCoverageIterator::operator++() {
1501 if (Next
== CD
.end()) {
1502 Stats
= LineCoverageStats();
1506 if (Segments
.size())
1507 WrappedSegment
= Segments
.back();
1509 while (Next
!= CD
.end() && Next
->Line
== Line
)
1510 Segments
.push_back(&*Next
++);
1511 Stats
= LineCoverageStats(Segments
, WrappedSegment
, Line
);
1516 static std::string
getCoverageMapErrString(coveragemap_error Err
,
1517 const std::string
&ErrMsg
= "") {
1519 raw_string_ostream
OS(Msg
);
1522 case coveragemap_error::success
:
1525 case coveragemap_error::eof
:
1526 OS
<< "end of File";
1528 case coveragemap_error::no_data_found
:
1529 OS
<< "no coverage data found";
1531 case coveragemap_error::unsupported_version
:
1532 OS
<< "unsupported coverage format version";
1534 case coveragemap_error::truncated
:
1535 OS
<< "truncated coverage data";
1537 case coveragemap_error::malformed
:
1538 OS
<< "malformed coverage data";
1540 case coveragemap_error::decompression_failed
:
1541 OS
<< "failed to decompress coverage data (zlib)";
1543 case coveragemap_error::invalid_or_missing_arch_specifier
:
1544 OS
<< "`-arch` specifier is invalid or missing for universal binary";
1548 // If optional error message is not empty, append it to the message.
1549 if (!ErrMsg
.empty())
1550 OS
<< ": " << ErrMsg
;
1557 // FIXME: This class is only here to support the transition to llvm::Error. It
1558 // will be removed once this transition is complete. Clients should prefer to
1559 // deal with the Error value directly, rather than converting to error_code.
1560 class CoverageMappingErrorCategoryType
: public std::error_category
{
1561 const char *name() const noexcept override
{ return "llvm.coveragemap"; }
1562 std::string
message(int IE
) const override
{
1563 return getCoverageMapErrString(static_cast<coveragemap_error
>(IE
));
1567 } // end anonymous namespace
1569 std::string
CoverageMapError::message() const {
1570 return getCoverageMapErrString(Err
, Msg
);
1573 const std::error_category
&llvm::coverage::coveragemap_category() {
1574 static CoverageMappingErrorCategoryType ErrorCategory
;
1575 return ErrorCategory
;
1578 char CoverageMapError::ID
= 0;