[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / ProfileData / Coverage / CoverageMapping.cpp
bloba357b4cb4921117a88b8ca0de02636973c8ec04b
1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for clang's and llvm's instrumentation based
10 // code coverage.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ProfileData/Coverage/CoverageMapping.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallBitVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/Object/BuildID.h"
23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
24 #include "llvm/ProfileData/InstrProfReader.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/Errc.h"
27 #include "llvm/Support/Error.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MemoryBuffer.h"
30 #include "llvm/Support/VirtualFileSystem.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cmath>
35 #include <cstdint>
36 #include <iterator>
37 #include <map>
38 #include <memory>
39 #include <optional>
40 #include <string>
41 #include <system_error>
42 #include <utility>
43 #include <vector>
45 using namespace llvm;
46 using namespace coverage;
48 #define DEBUG_TYPE "coverage-mapping"
50 Counter CounterExpressionBuilder::get(const CounterExpression &E) {
51 auto It = ExpressionIndices.find(E);
52 if (It != ExpressionIndices.end())
53 return Counter::getExpression(It->second);
54 unsigned I = Expressions.size();
55 Expressions.push_back(E);
56 ExpressionIndices[E] = I;
57 return Counter::getExpression(I);
60 void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
61 SmallVectorImpl<Term> &Terms) {
62 switch (C.getKind()) {
63 case Counter::Zero:
64 break;
65 case Counter::CounterValueReference:
66 Terms.emplace_back(C.getCounterID(), Factor);
67 break;
68 case Counter::Expression:
69 const auto &E = Expressions[C.getExpressionID()];
70 extractTerms(E.LHS, Factor, Terms);
71 extractTerms(
72 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
73 break;
77 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
78 // Gather constant terms.
79 SmallVector<Term, 32> Terms;
80 extractTerms(ExpressionTree, +1, Terms);
82 // If there are no terms, this is just a zero. The algorithm below assumes at
83 // least one term.
84 if (Terms.size() == 0)
85 return Counter::getZero();
87 // Group the terms by counter ID.
88 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
89 return LHS.CounterID < RHS.CounterID;
90 });
92 // Combine terms by counter ID to eliminate counters that sum to zero.
93 auto Prev = Terms.begin();
94 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
95 if (I->CounterID == Prev->CounterID) {
96 Prev->Factor += I->Factor;
97 continue;
99 ++Prev;
100 *Prev = *I;
102 Terms.erase(++Prev, Terms.end());
104 Counter C;
105 // Create additions. We do this before subtractions to avoid constructs like
106 // ((0 - X) + Y), as opposed to (Y - X).
107 for (auto T : Terms) {
108 if (T.Factor <= 0)
109 continue;
110 for (int I = 0; I < T.Factor; ++I)
111 if (C.isZero())
112 C = Counter::getCounter(T.CounterID);
113 else
114 C = get(CounterExpression(CounterExpression::Add, C,
115 Counter::getCounter(T.CounterID)));
118 // Create subtractions.
119 for (auto T : Terms) {
120 if (T.Factor >= 0)
121 continue;
122 for (int I = 0; I < -T.Factor; ++I)
123 C = get(CounterExpression(CounterExpression::Subtract, C,
124 Counter::getCounter(T.CounterID)));
126 return C;
129 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) {
130 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS));
131 return Simplify ? simplify(Cnt) : Cnt;
134 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS,
135 bool Simplify) {
136 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS));
137 return Simplify ? simplify(Cnt) : Cnt;
140 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
141 switch (C.getKind()) {
142 case Counter::Zero:
143 OS << '0';
144 return;
145 case Counter::CounterValueReference:
146 OS << '#' << C.getCounterID();
147 break;
148 case Counter::Expression: {
149 if (C.getExpressionID() >= Expressions.size())
150 return;
151 const auto &E = Expressions[C.getExpressionID()];
152 OS << '(';
153 dump(E.LHS, OS);
154 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
155 dump(E.RHS, OS);
156 OS << ')';
157 break;
160 if (CounterValues.empty())
161 return;
162 Expected<int64_t> Value = evaluate(C);
163 if (auto E = Value.takeError()) {
164 consumeError(std::move(E));
165 return;
167 OS << '[' << *Value << ']';
170 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
171 struct StackElem {
172 Counter ICounter;
173 int64_t LHS = 0;
174 enum {
175 KNeverVisited = 0,
176 KVisitedOnce = 1,
177 KVisitedTwice = 2,
178 } VisitCount = KNeverVisited;
181 std::stack<StackElem> CounterStack;
182 CounterStack.push({C});
184 int64_t LastPoppedValue;
186 while (!CounterStack.empty()) {
187 StackElem &Current = CounterStack.top();
189 switch (Current.ICounter.getKind()) {
190 case Counter::Zero:
191 LastPoppedValue = 0;
192 CounterStack.pop();
193 break;
194 case Counter::CounterValueReference:
195 if (Current.ICounter.getCounterID() >= CounterValues.size())
196 return errorCodeToError(errc::argument_out_of_domain);
197 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()];
198 CounterStack.pop();
199 break;
200 case Counter::Expression: {
201 if (Current.ICounter.getExpressionID() >= Expressions.size())
202 return errorCodeToError(errc::argument_out_of_domain);
203 const auto &E = Expressions[Current.ICounter.getExpressionID()];
204 if (Current.VisitCount == StackElem::KNeverVisited) {
205 CounterStack.push(StackElem{E.LHS});
206 Current.VisitCount = StackElem::KVisitedOnce;
207 } else if (Current.VisitCount == StackElem::KVisitedOnce) {
208 Current.LHS = LastPoppedValue;
209 CounterStack.push(StackElem{E.RHS});
210 Current.VisitCount = StackElem::KVisitedTwice;
211 } else {
212 int64_t LHS = Current.LHS;
213 int64_t RHS = LastPoppedValue;
214 LastPoppedValue =
215 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS;
216 CounterStack.pop();
218 break;
223 return LastPoppedValue;
226 Expected<BitVector> CounterMappingContext::evaluateBitmap(
227 const CounterMappingRegion *MCDCDecision) const {
228 unsigned ID = MCDCDecision->MCDCParams.BitmapIdx;
229 unsigned NC = MCDCDecision->MCDCParams.NumConditions;
230 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NC, CHAR_BIT);
231 unsigned SizeInBytes = SizeInBits / CHAR_BIT;
233 assert(ID + SizeInBytes <= BitmapBytes.size() && "BitmapBytes overrun");
234 ArrayRef<uint8_t> Bytes(&BitmapBytes[ID], SizeInBytes);
236 // Mask each bitmap byte into the BitVector. Go in reverse so that the
237 // bitvector can just be shifted over by one byte on each iteration.
238 BitVector Result(SizeInBits, false);
239 for (auto Byte = std::rbegin(Bytes); Byte != std::rend(Bytes); ++Byte) {
240 uint32_t Data = *Byte;
241 Result <<= CHAR_BIT;
242 Result.setBitsInMask(&Data, 1);
244 return Result;
247 class MCDCRecordProcessor {
248 /// A bitmap representing the executed test vectors for a boolean expression.
249 /// Each index of the bitmap corresponds to a possible test vector. An index
250 /// with a bit value of '1' indicates that the corresponding Test Vector
251 /// identified by that index was executed.
252 const BitVector &ExecutedTestVectorBitmap;
254 /// Decision Region to which the ExecutedTestVectorBitmap applies.
255 const CounterMappingRegion &Region;
257 /// Array of branch regions corresponding each conditions in the boolean
258 /// expression.
259 ArrayRef<const CounterMappingRegion *> Branches;
261 /// Total number of conditions in the boolean expression.
262 unsigned NumConditions;
264 /// Mapping of a condition ID to its corresponding branch region.
265 llvm::DenseMap<unsigned, const CounterMappingRegion *> Map;
267 /// Vector used to track whether a condition is constant folded.
268 MCDCRecord::BoolVector Folded;
270 /// Mapping of calculated MC/DC Independence Pairs for each condition.
271 MCDCRecord::TVPairMap IndependencePairs;
273 /// Total number of possible Test Vectors for the boolean expression.
274 MCDCRecord::TestVectors TestVectors;
276 /// Actual executed Test Vectors for the boolean expression, based on
277 /// ExecutedTestVectorBitmap.
278 MCDCRecord::TestVectors ExecVectors;
280 public:
281 MCDCRecordProcessor(const BitVector &Bitmap,
282 const CounterMappingRegion &Region,
283 ArrayRef<const CounterMappingRegion *> Branches)
284 : ExecutedTestVectorBitmap(Bitmap), Region(Region), Branches(Branches),
285 NumConditions(Region.MCDCParams.NumConditions),
286 Folded(NumConditions, false), IndependencePairs(NumConditions),
287 TestVectors((size_t)1 << NumConditions) {}
289 private:
290 void recordTestVector(MCDCRecord::TestVector &TV,
291 MCDCRecord::CondState Result) {
292 // Calculate an index that is used to identify the test vector in a vector
293 // of test vectors. This index also corresponds to the index values of an
294 // MCDC Region's bitmap (see findExecutedTestVectors()).
295 unsigned Index = 0;
296 for (auto Cond = std::rbegin(TV); Cond != std::rend(TV); ++Cond) {
297 Index <<= 1;
298 Index |= (*Cond == MCDCRecord::MCDC_True) ? 0x1 : 0x0;
301 // Copy the completed test vector to the vector of testvectors.
302 TestVectors[Index] = TV;
304 // The final value (T,F) is equal to the last non-dontcare state on the
305 // path (in a short-circuiting system).
306 TestVectors[Index].push_back(Result);
309 void shouldCopyOffTestVectorForTruePath(MCDCRecord::TestVector &TV,
310 unsigned ID) {
311 // Branch regions are hashed based on an ID.
312 const CounterMappingRegion *Branch = Map[ID];
314 TV[ID - 1] = MCDCRecord::MCDC_True;
315 if (Branch->MCDCParams.TrueID > 0)
316 buildTestVector(TV, Branch->MCDCParams.TrueID);
317 else
318 recordTestVector(TV, MCDCRecord::MCDC_True);
321 void shouldCopyOffTestVectorForFalsePath(MCDCRecord::TestVector &TV,
322 unsigned ID) {
323 // Branch regions are hashed based on an ID.
324 const CounterMappingRegion *Branch = Map[ID];
326 TV[ID - 1] = MCDCRecord::MCDC_False;
327 if (Branch->MCDCParams.FalseID > 0)
328 buildTestVector(TV, Branch->MCDCParams.FalseID);
329 else
330 recordTestVector(TV, MCDCRecord::MCDC_False);
333 /// Starting with the base test vector, build a comprehensive list of
334 /// possible test vectors by recursively walking the branch condition IDs
335 /// provided. Once an end node is reached, record the test vector in a vector
336 /// of test vectors that can be matched against during MC/DC analysis, and
337 /// then reset the positions to 'DontCare'.
338 void buildTestVector(MCDCRecord::TestVector &TV, unsigned ID = 1) {
339 shouldCopyOffTestVectorForTruePath(TV, ID);
340 shouldCopyOffTestVectorForFalsePath(TV, ID);
342 // Reset back to DontCare.
343 TV[ID - 1] = MCDCRecord::MCDC_DontCare;
346 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test
347 /// vector at the corresponding index was executed during a test run.
348 void findExecutedTestVectors(const BitVector &ExecutedTestVectorBitmap) {
349 for (unsigned Idx = 0; Idx < ExecutedTestVectorBitmap.size(); ++Idx) {
350 if (ExecutedTestVectorBitmap[Idx] == 0)
351 continue;
352 assert(!TestVectors[Idx].empty() && "Test Vector doesn't exist.");
353 ExecVectors.push_back(TestVectors[Idx]);
357 /// For a given condition and two executed Test Vectors, A and B, see if the
358 /// two test vectors match forming an Independence Pair for the condition.
359 /// For two test vectors to match, the following must be satisfied:
360 /// - The condition's value in each test vector must be opposite.
361 /// - The result's value in each test vector must be opposite.
362 /// - All other conditions' values must be equal or marked as "don't care".
363 bool matchTestVectors(unsigned Aidx, unsigned Bidx, unsigned ConditionIdx) {
364 const MCDCRecord::TestVector &A = ExecVectors[Aidx];
365 const MCDCRecord::TestVector &B = ExecVectors[Bidx];
367 // If condition values in both A and B aren't opposites, no match.
368 // Because a value can be 0 (false), 1 (true), or -1 (DontCare), a check
369 // that "XOR != 1" will ensure that the values are opposites and that
370 // neither of them is a DontCare.
371 // 1 XOR 0 == 1 | 0 XOR 0 == 0 | -1 XOR 0 == -1
372 // 1 XOR 1 == 0 | 0 XOR 1 == 1 | -1 XOR 1 == -2
373 // 1 XOR -1 == -2 | 0 XOR -1 == -1 | -1 XOR -1 == 0
374 if ((A[ConditionIdx] ^ B[ConditionIdx]) != 1)
375 return false;
377 // If the results of both A and B aren't opposites, no match.
378 if ((A[NumConditions] ^ B[NumConditions]) != 1)
379 return false;
381 for (unsigned Idx = 0; Idx < NumConditions; ++Idx) {
382 // Look for other conditions that don't match. Skip over the given
383 // Condition as well as any conditions marked as "don't care".
384 const auto ARecordTyForCond = A[Idx];
385 const auto BRecordTyForCond = B[Idx];
386 if (Idx == ConditionIdx ||
387 ARecordTyForCond == MCDCRecord::MCDC_DontCare ||
388 BRecordTyForCond == MCDCRecord::MCDC_DontCare)
389 continue;
391 // If there is a condition mismatch with any of the other conditions,
392 // there is no match for the test vectors.
393 if (ARecordTyForCond != BRecordTyForCond)
394 return false;
397 // Otherwise, match.
398 return true;
401 /// Find all possible Independence Pairs for a boolean expression given its
402 /// executed Test Vectors. This process involves looking at each condition
403 /// and attempting to find two Test Vectors that "match", giving us a pair.
404 void findIndependencePairs() {
405 unsigned NumTVs = ExecVectors.size();
407 // For each condition.
408 for (unsigned C = 0; C < NumConditions; ++C) {
409 bool PairFound = false;
411 // For each executed test vector.
412 for (unsigned I = 0; !PairFound && I < NumTVs; ++I) {
413 // Compared to every other executed test vector.
414 for (unsigned J = 0; !PairFound && J < NumTVs; ++J) {
415 if (I == J)
416 continue;
418 // If a matching pair of vectors is found, record them.
419 if ((PairFound = matchTestVectors(I, J, C)))
420 IndependencePairs[C] = std::make_pair(I + 1, J + 1);
426 public:
427 /// Process the MC/DC Record in order to produce a result for a boolean
428 /// expression. This process includes tracking the conditions that comprise
429 /// the decision region, calculating the list of all possible test vectors,
430 /// marking the executed test vectors, and then finding an Independence Pair
431 /// out of the executed test vectors for each condition in the boolean
432 /// expression. A condition is tracked to ensure that its ID can be mapped to
433 /// its ordinal position in the boolean expression. The condition's source
434 /// location is also tracked, as well as whether it is constant folded (in
435 /// which case it is excuded from the metric).
436 MCDCRecord processMCDCRecord() {
437 unsigned I = 0;
438 MCDCRecord::CondIDMap PosToID;
439 MCDCRecord::LineColPairMap CondLoc;
441 // Walk the Record's BranchRegions (representing Conditions) in order to:
442 // - Hash the condition based on its corresponding ID. This will be used to
443 // calculate the test vectors.
444 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its
445 // actual ID. This will be used to visualize the conditions in the
446 // correct order.
447 // - Keep track of the condition source location. This will be used to
448 // visualize where the condition is.
449 // - Record whether the condition is constant folded so that we exclude it
450 // from being measured.
451 for (const auto *B : Branches) {
452 Map[B->MCDCParams.ID] = B;
453 PosToID[I] = B->MCDCParams.ID - 1;
454 CondLoc[I] = B->startLoc();
455 Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero());
458 // Initialize a base test vector as 'DontCare'.
459 MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare);
461 // Use the base test vector to build the list of all possible test vectors.
462 buildTestVector(TV);
464 // Using Profile Bitmap from runtime, mark the executed test vectors.
465 findExecutedTestVectors(ExecutedTestVectorBitmap);
467 // Compare executed test vectors against each other to find an independence
468 // pairs for each condition. This processing takes the most time.
469 findIndependencePairs();
471 // Record Test vectors, executed vectors, and independence pairs.
472 MCDCRecord Res(Region, ExecVectors, IndependencePairs, Folded, PosToID,
473 CondLoc);
474 return Res;
478 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion(
479 const CounterMappingRegion &Region,
480 const BitVector &ExecutedTestVectorBitmap,
481 ArrayRef<const CounterMappingRegion *> Branches) {
483 MCDCRecordProcessor MCDCProcessor(ExecutedTestVectorBitmap, Region, Branches);
484 return MCDCProcessor.processMCDCRecord();
487 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const {
488 struct StackElem {
489 Counter ICounter;
490 int64_t LHS = 0;
491 enum {
492 KNeverVisited = 0,
493 KVisitedOnce = 1,
494 KVisitedTwice = 2,
495 } VisitCount = KNeverVisited;
498 std::stack<StackElem> CounterStack;
499 CounterStack.push({C});
501 int64_t LastPoppedValue;
503 while (!CounterStack.empty()) {
504 StackElem &Current = CounterStack.top();
506 switch (Current.ICounter.getKind()) {
507 case Counter::Zero:
508 LastPoppedValue = 0;
509 CounterStack.pop();
510 break;
511 case Counter::CounterValueReference:
512 LastPoppedValue = Current.ICounter.getCounterID();
513 CounterStack.pop();
514 break;
515 case Counter::Expression: {
516 if (Current.ICounter.getExpressionID() >= Expressions.size()) {
517 LastPoppedValue = 0;
518 CounterStack.pop();
519 } else {
520 const auto &E = Expressions[Current.ICounter.getExpressionID()];
521 if (Current.VisitCount == StackElem::KNeverVisited) {
522 CounterStack.push(StackElem{E.LHS});
523 Current.VisitCount = StackElem::KVisitedOnce;
524 } else if (Current.VisitCount == StackElem::KVisitedOnce) {
525 Current.LHS = LastPoppedValue;
526 CounterStack.push(StackElem{E.RHS});
527 Current.VisitCount = StackElem::KVisitedTwice;
528 } else {
529 int64_t LHS = Current.LHS;
530 int64_t RHS = LastPoppedValue;
531 LastPoppedValue = std::max(LHS, RHS);
532 CounterStack.pop();
535 break;
540 return LastPoppedValue;
543 void FunctionRecordIterator::skipOtherFiles() {
544 while (Current != Records.end() && !Filename.empty() &&
545 Filename != Current->Filenames[0])
546 ++Current;
547 if (Current == Records.end())
548 *this = FunctionRecordIterator();
551 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
552 StringRef Filename) const {
553 size_t FilenameHash = hash_value(Filename);
554 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash);
555 if (RecordIt == FilenameHash2RecordIndices.end())
556 return {};
557 return RecordIt->second;
560 static unsigned getMaxCounterID(const CounterMappingContext &Ctx,
561 const CoverageMappingRecord &Record) {
562 unsigned MaxCounterID = 0;
563 for (const auto &Region : Record.MappingRegions) {
564 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count));
566 return MaxCounterID;
569 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx,
570 const CoverageMappingRecord &Record) {
571 unsigned MaxBitmapID = 0;
572 unsigned NumConditions = 0;
573 // Scan max(BitmapIdx).
574 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid
575 // and `MaxBitmapID is `unsigned`. `BitmapIdx` is unique in the record.
576 for (const auto &Region : reverse(Record.MappingRegions)) {
577 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion &&
578 MaxBitmapID <= Region.MCDCParams.BitmapIdx) {
579 MaxBitmapID = Region.MCDCParams.BitmapIdx;
580 NumConditions = Region.MCDCParams.NumConditions;
583 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT);
584 return MaxBitmapID + (SizeInBits / CHAR_BIT);
587 namespace {
589 /// Collect Decisions, Branchs, and Expansions and associate them.
590 class MCDCDecisionRecorder {
591 private:
592 /// This holds the DecisionRegion and MCDCBranches under it.
593 /// Also traverses Expansion(s).
594 /// The Decision has the number of MCDCBranches and will complete
595 /// when it is filled with unique ConditionID of MCDCBranches.
596 struct DecisionRecord {
597 const CounterMappingRegion *DecisionRegion;
599 /// They are reflected from DecisionRegion for convenience.
600 LineColPair DecisionStartLoc;
601 LineColPair DecisionEndLoc;
603 /// This is passed to `MCDCRecordProcessor`, so this should be compatible
604 /// to`ArrayRef<const CounterMappingRegion *>`.
605 SmallVector<const CounterMappingRegion *> MCDCBranches;
607 /// IDs that are stored in MCDCBranches
608 /// Complete when all IDs (1 to NumConditions) are met.
609 DenseSet<CounterMappingRegion::MCDCConditionID> ConditionIDs;
611 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion
612 /// and its children (via expansions).
613 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so
614 /// the location in the expansion doesn't matter.
615 DenseSet<unsigned> ExpandedFileIDs;
617 DecisionRecord(const CounterMappingRegion &Decision)
618 : DecisionRegion(&Decision), DecisionStartLoc(Decision.startLoc()),
619 DecisionEndLoc(Decision.endLoc()) {
620 assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion);
623 /// Determine whether DecisionRecord dominates `R`.
624 bool dominates(const CounterMappingRegion &R) const {
625 // Determine whether `R` is included in `DecisionRegion`.
626 if (R.FileID == DecisionRegion->FileID &&
627 R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc)
628 return true;
630 // Determine whether `R` is pointed by any of Expansions.
631 return ExpandedFileIDs.contains(R.FileID);
634 enum Result {
635 NotProcessed = 0, /// Irrelevant to this Decision
636 Processed, /// Added to this Decision
637 Completed, /// Added and filled this Decision
640 /// Add Branch into the Decision
641 /// \param Branch expects MCDCBranchRegion
642 /// \returns NotProcessed/Processed/Completed
643 Result addBranch(const CounterMappingRegion &Branch) {
644 assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion);
646 auto ConditionID = Branch.MCDCParams.ID;
647 assert(ConditionID > 0 && "ConditionID should begin with 1");
649 if (ConditionIDs.contains(ConditionID) ||
650 ConditionID > DecisionRegion->MCDCParams.NumConditions)
651 return NotProcessed;
653 if (!this->dominates(Branch))
654 return NotProcessed;
656 assert(MCDCBranches.size() < DecisionRegion->MCDCParams.NumConditions);
658 // Put `ID=1` in front of `MCDCBranches` for convenience
659 // even if `MCDCBranches` is not topological.
660 if (ConditionID == 1)
661 MCDCBranches.insert(MCDCBranches.begin(), &Branch);
662 else
663 MCDCBranches.push_back(&Branch);
665 // Mark `ID` as `assigned`.
666 ConditionIDs.insert(ConditionID);
668 // `Completed` when `MCDCBranches` is full
669 return (MCDCBranches.size() == DecisionRegion->MCDCParams.NumConditions
670 ? Completed
671 : Processed);
674 /// Record Expansion if it is relevant to this Decision.
675 /// Each `Expansion` may nest.
676 /// \returns true if recorded.
677 bool recordExpansion(const CounterMappingRegion &Expansion) {
678 if (!this->dominates(Expansion))
679 return false;
681 ExpandedFileIDs.insert(Expansion.ExpandedFileID);
682 return true;
686 private:
687 /// Decisions in progress
688 /// DecisionRecord is added for each MCDCDecisionRegion.
689 /// DecisionRecord is removed when Decision is completed.
690 SmallVector<DecisionRecord> Decisions;
692 public:
693 ~MCDCDecisionRecorder() {
694 assert(Decisions.empty() && "All Decisions have not been resolved");
697 /// Register Region and start recording.
698 void registerDecision(const CounterMappingRegion &Decision) {
699 Decisions.emplace_back(Decision);
702 void recordExpansion(const CounterMappingRegion &Expansion) {
703 any_of(Decisions, [&Expansion](auto &Decision) {
704 return Decision.recordExpansion(Expansion);
708 using DecisionAndBranches =
709 std::pair<const CounterMappingRegion *, /// Decision
710 SmallVector<const CounterMappingRegion *> /// Branches
713 /// Add MCDCBranchRegion to DecisionRecord.
714 /// \param Branch to be processed
715 /// \returns DecisionsAndBranches if DecisionRecord completed.
716 /// Or returns nullopt.
717 std::optional<DecisionAndBranches>
718 processBranch(const CounterMappingRegion &Branch) {
719 // Seek each Decision and apply Region to it.
720 for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end();
721 DecisionIter != DecisionEnd; ++DecisionIter)
722 switch (DecisionIter->addBranch(Branch)) {
723 case DecisionRecord::NotProcessed:
724 continue;
725 case DecisionRecord::Processed:
726 return std::nullopt;
727 case DecisionRecord::Completed:
728 DecisionAndBranches Result =
729 std::make_pair(DecisionIter->DecisionRegion,
730 std::move(DecisionIter->MCDCBranches));
731 Decisions.erase(DecisionIter); // No longer used.
732 return Result;
735 llvm_unreachable("Branch not found in Decisions");
739 } // namespace
741 Error CoverageMapping::loadFunctionRecord(
742 const CoverageMappingRecord &Record,
743 IndexedInstrProfReader &ProfileReader) {
744 StringRef OrigFuncName = Record.FunctionName;
745 if (OrigFuncName.empty())
746 return make_error<CoverageMapError>(coveragemap_error::malformed,
747 "record function name is empty");
749 if (Record.Filenames.empty())
750 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
751 else
752 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
754 CounterMappingContext Ctx(Record.Expressions);
756 std::vector<uint64_t> Counts;
757 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
758 Record.FunctionHash, Counts)) {
759 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
760 if (IPE == instrprof_error::hash_mismatch) {
761 FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
762 Record.FunctionHash);
763 return Error::success();
765 if (IPE != instrprof_error::unknown_function)
766 return make_error<InstrProfError>(IPE);
767 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0);
769 Ctx.setCounts(Counts);
771 std::vector<uint8_t> BitmapBytes;
772 if (Error E = ProfileReader.getFunctionBitmapBytes(
773 Record.FunctionName, Record.FunctionHash, BitmapBytes)) {
774 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
775 if (IPE == instrprof_error::hash_mismatch) {
776 FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
777 Record.FunctionHash);
778 return Error::success();
780 if (IPE != instrprof_error::unknown_function)
781 return make_error<InstrProfError>(IPE);
782 BitmapBytes.assign(getMaxBitmapSize(Ctx, Record) + 1, 0);
784 Ctx.setBitmapBytes(BitmapBytes);
786 assert(!Record.MappingRegions.empty() && "Function has no regions");
788 // This coverage record is a zero region for a function that's unused in
789 // some TU, but used in a different TU. Ignore it. The coverage maps from the
790 // the other TU will either be loaded (providing full region counts) or they
791 // won't (in which case we don't unintuitively report functions as uncovered
792 // when they have non-zero counts in the profile).
793 if (Record.MappingRegions.size() == 1 &&
794 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
795 return Error::success();
797 MCDCDecisionRecorder MCDCDecisions;
798 FunctionRecord Function(OrigFuncName, Record.Filenames);
799 for (const auto &Region : Record.MappingRegions) {
800 // MCDCDecisionRegion should be handled first since it overlaps with
801 // others inside.
802 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) {
803 MCDCDecisions.registerDecision(Region);
804 continue;
806 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
807 if (auto E = ExecutionCount.takeError()) {
808 consumeError(std::move(E));
809 return Error::success();
811 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount);
812 if (auto E = AltExecutionCount.takeError()) {
813 consumeError(std::move(E));
814 return Error::success();
816 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount);
818 // Record ExpansionRegion.
819 if (Region.Kind == CounterMappingRegion::ExpansionRegion) {
820 MCDCDecisions.recordExpansion(Region);
821 continue;
824 // Do nothing unless MCDCBranchRegion.
825 if (Region.Kind != CounterMappingRegion::MCDCBranchRegion)
826 continue;
828 auto Result = MCDCDecisions.processBranch(Region);
829 if (!Result) // Any Decision doesn't complete.
830 continue;
832 auto MCDCDecision = Result->first;
833 auto &MCDCBranches = Result->second;
835 // Evaluating the test vector bitmap for the decision region entails
836 // calculating precisely what bits are pertinent to this region alone.
837 // This is calculated based on the recorded offset into the global
838 // profile bitmap; the length is calculated based on the recorded
839 // number of conditions.
840 Expected<BitVector> ExecutedTestVectorBitmap =
841 Ctx.evaluateBitmap(MCDCDecision);
842 if (auto E = ExecutedTestVectorBitmap.takeError()) {
843 consumeError(std::move(E));
844 return Error::success();
847 // Since the bitmap identifies the executed test vectors for an MC/DC
848 // DecisionRegion, all of the information is now available to process.
849 // This is where the bulk of the MC/DC progressing takes place.
850 Expected<MCDCRecord> Record = Ctx.evaluateMCDCRegion(
851 *MCDCDecision, *ExecutedTestVectorBitmap, MCDCBranches);
852 if (auto E = Record.takeError()) {
853 consumeError(std::move(E));
854 return Error::success();
857 // Save the MC/DC Record so that it can be visualized later.
858 Function.pushMCDCRecord(*Record);
861 // Don't create records for (filenames, function) pairs we've already seen.
862 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
863 Record.Filenames.end());
864 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
865 return Error::success();
867 Functions.push_back(std::move(Function));
869 // Performance optimization: keep track of the indices of the function records
870 // which correspond to each filename. This can be used to substantially speed
871 // up queries for coverage info in a file.
872 unsigned RecordIndex = Functions.size() - 1;
873 for (StringRef Filename : Record.Filenames) {
874 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)];
875 // Note that there may be duplicates in the filename set for a function
876 // record, because of e.g. macro expansions in the function in which both
877 // the macro and the function are defined in the same file.
878 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex)
879 RecordIndices.push_back(RecordIndex);
882 return Error::success();
885 // This function is for memory optimization by shortening the lifetimes
886 // of CoverageMappingReader instances.
887 Error CoverageMapping::loadFromReaders(
888 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
889 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) {
890 for (const auto &CoverageReader : CoverageReaders) {
891 for (auto RecordOrErr : *CoverageReader) {
892 if (Error E = RecordOrErr.takeError())
893 return E;
894 const auto &Record = *RecordOrErr;
895 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader))
896 return E;
899 return Error::success();
902 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
903 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
904 IndexedInstrProfReader &ProfileReader) {
905 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
906 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage))
907 return std::move(E);
908 return std::move(Coverage);
911 // If E is a no_data_found error, returns success. Otherwise returns E.
912 static Error handleMaybeNoDataFoundError(Error E) {
913 return handleErrors(
914 std::move(E), [](const CoverageMapError &CME) {
915 if (CME.get() == coveragemap_error::no_data_found)
916 return static_cast<Error>(Error::success());
917 return make_error<CoverageMapError>(CME.get(), CME.getMessage());
921 Error CoverageMapping::loadFromFile(
922 StringRef Filename, StringRef Arch, StringRef CompilationDir,
923 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage,
924 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) {
925 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(
926 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false);
927 if (std::error_code EC = CovMappingBufOrErr.getError())
928 return createFileError(Filename, errorCodeToError(EC));
929 MemoryBufferRef CovMappingBufRef =
930 CovMappingBufOrErr.get()->getMemBufferRef();
931 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
933 SmallVector<object::BuildIDRef> BinaryIDs;
934 auto CoverageReadersOrErr = BinaryCoverageReader::create(
935 CovMappingBufRef, Arch, Buffers, CompilationDir,
936 FoundBinaryIDs ? &BinaryIDs : nullptr);
937 if (Error E = CoverageReadersOrErr.takeError()) {
938 E = handleMaybeNoDataFoundError(std::move(E));
939 if (E)
940 return createFileError(Filename, std::move(E));
941 return E;
944 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
945 for (auto &Reader : CoverageReadersOrErr.get())
946 Readers.push_back(std::move(Reader));
947 if (FoundBinaryIDs && !Readers.empty()) {
948 llvm::append_range(*FoundBinaryIDs,
949 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) {
950 return object::BuildID(BID);
951 }));
953 DataFound |= !Readers.empty();
954 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage))
955 return createFileError(Filename, std::move(E));
956 return Error::success();
959 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
960 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename,
961 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir,
962 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) {
963 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS);
964 if (Error E = ProfileReaderOrErr.takeError())
965 return createFileError(ProfileFilename, std::move(E));
966 auto ProfileReader = std::move(ProfileReaderOrErr.get());
967 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
968 bool DataFound = false;
970 auto GetArch = [&](size_t Idx) {
971 if (Arches.empty())
972 return StringRef();
973 if (Arches.size() == 1)
974 return Arches.front();
975 return Arches[Idx];
978 SmallVector<object::BuildID> FoundBinaryIDs;
979 for (const auto &File : llvm::enumerate(ObjectFilenames)) {
980 if (Error E =
981 loadFromFile(File.value(), GetArch(File.index()), CompilationDir,
982 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs))
983 return std::move(E);
986 if (BIDFetcher) {
987 std::vector<object::BuildID> ProfileBinaryIDs;
988 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs))
989 return createFileError(ProfileFilename, std::move(E));
991 SmallVector<object::BuildIDRef> BinaryIDsToFetch;
992 if (!ProfileBinaryIDs.empty()) {
993 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) {
994 return std::lexicographical_compare(A.begin(), A.end(), B.begin(),
995 B.end());
997 llvm::sort(FoundBinaryIDs, Compare);
998 std::set_difference(
999 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(),
1000 FoundBinaryIDs.begin(), FoundBinaryIDs.end(),
1001 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare);
1004 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) {
1005 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID);
1006 if (PathOpt) {
1007 std::string Path = std::move(*PathOpt);
1008 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef();
1009 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader,
1010 *Coverage, DataFound))
1011 return std::move(E);
1012 } else if (CheckBinaryIDs) {
1013 return createFileError(
1014 ProfileFilename,
1015 createStringError(errc::no_such_file_or_directory,
1016 "Missing binary ID: " +
1017 llvm::toHex(BinaryID, /*LowerCase=*/true)));
1022 if (!DataFound)
1023 return createFileError(
1024 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "),
1025 make_error<CoverageMapError>(coveragemap_error::no_data_found));
1026 return std::move(Coverage);
1029 namespace {
1031 /// Distributes functions into instantiation sets.
1033 /// An instantiation set is a collection of functions that have the same source
1034 /// code, ie, template functions specializations.
1035 class FunctionInstantiationSetCollector {
1036 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
1037 MapT InstantiatedFunctions;
1039 public:
1040 void insert(const FunctionRecord &Function, unsigned FileID) {
1041 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
1042 while (I != E && I->FileID != FileID)
1043 ++I;
1044 assert(I != E && "function does not cover the given file");
1045 auto &Functions = InstantiatedFunctions[I->startLoc()];
1046 Functions.push_back(&Function);
1049 MapT::iterator begin() { return InstantiatedFunctions.begin(); }
1050 MapT::iterator end() { return InstantiatedFunctions.end(); }
1053 class SegmentBuilder {
1054 std::vector<CoverageSegment> &Segments;
1055 SmallVector<const CountedRegion *, 8> ActiveRegions;
1057 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
1059 /// Emit a segment with the count from \p Region starting at \p StartLoc.
1061 /// \p IsRegionEntry: The segment is at the start of a new non-gap region.
1062 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
1063 void startSegment(const CountedRegion &Region, LineColPair StartLoc,
1064 bool IsRegionEntry, bool EmitSkippedRegion = false) {
1065 bool HasCount = !EmitSkippedRegion &&
1066 (Region.Kind != CounterMappingRegion::SkippedRegion);
1068 // If the new segment wouldn't affect coverage rendering, skip it.
1069 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
1070 const auto &Last = Segments.back();
1071 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
1072 !Last.IsRegionEntry)
1073 return;
1076 if (HasCount)
1077 Segments.emplace_back(StartLoc.first, StartLoc.second,
1078 Region.ExecutionCount, IsRegionEntry,
1079 Region.Kind == CounterMappingRegion::GapRegion);
1080 else
1081 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
1083 LLVM_DEBUG({
1084 const auto &Last = Segments.back();
1085 dbgs() << "Segment at " << Last.Line << ":" << Last.Col
1086 << " (count = " << Last.Count << ")"
1087 << (Last.IsRegionEntry ? ", RegionEntry" : "")
1088 << (!Last.HasCount ? ", Skipped" : "")
1089 << (Last.IsGapRegion ? ", Gap" : "") << "\n";
1093 /// Emit segments for active regions which end before \p Loc.
1095 /// \p Loc: The start location of the next region. If std::nullopt, all active
1096 /// regions are completed.
1097 /// \p FirstCompletedRegion: Index of the first completed region.
1098 void completeRegionsUntil(std::optional<LineColPair> Loc,
1099 unsigned FirstCompletedRegion) {
1100 // Sort the completed regions by end location. This makes it simple to
1101 // emit closing segments in sorted order.
1102 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
1103 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
1104 [](const CountedRegion *L, const CountedRegion *R) {
1105 return L->endLoc() < R->endLoc();
1108 // Emit segments for all completed regions.
1109 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
1110 ++I) {
1111 const auto *CompletedRegion = ActiveRegions[I];
1112 assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
1113 "Completed region ends after start of new region");
1115 const auto *PrevCompletedRegion = ActiveRegions[I - 1];
1116 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
1118 // Don't emit any more segments if they start where the new region begins.
1119 if (Loc && CompletedSegmentLoc == *Loc)
1120 break;
1122 // Don't emit a segment if the next completed region ends at the same
1123 // location as this one.
1124 if (CompletedSegmentLoc == CompletedRegion->endLoc())
1125 continue;
1127 // Use the count from the last completed region which ends at this loc.
1128 for (unsigned J = I + 1; J < E; ++J)
1129 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
1130 CompletedRegion = ActiveRegions[J];
1132 startSegment(*CompletedRegion, CompletedSegmentLoc, false);
1135 auto Last = ActiveRegions.back();
1136 if (FirstCompletedRegion && Last->endLoc() != *Loc) {
1137 // If there's a gap after the end of the last completed region and the
1138 // start of the new region, use the last active region to fill the gap.
1139 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
1140 false);
1141 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
1142 // Emit a skipped segment if there are no more active regions. This
1143 // ensures that gaps between functions are marked correctly.
1144 startSegment(*Last, Last->endLoc(), false, true);
1147 // Pop the completed regions.
1148 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
1151 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
1152 for (const auto &CR : enumerate(Regions)) {
1153 auto CurStartLoc = CR.value().startLoc();
1155 // Active regions which end before the current region need to be popped.
1156 auto CompletedRegions =
1157 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
1158 [&](const CountedRegion *Region) {
1159 return !(Region->endLoc() <= CurStartLoc);
1161 if (CompletedRegions != ActiveRegions.end()) {
1162 unsigned FirstCompletedRegion =
1163 std::distance(ActiveRegions.begin(), CompletedRegions);
1164 completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
1167 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
1169 // Try to emit a segment for the current region.
1170 if (CurStartLoc == CR.value().endLoc()) {
1171 // Avoid making zero-length regions active. If it's the last region,
1172 // emit a skipped segment. Otherwise use its predecessor's count.
1173 const bool Skipped =
1174 (CR.index() + 1) == Regions.size() ||
1175 CR.value().Kind == CounterMappingRegion::SkippedRegion;
1176 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
1177 CurStartLoc, !GapRegion, Skipped);
1178 // If it is skipped segment, create a segment with last pushed
1179 // regions's count at CurStartLoc.
1180 if (Skipped && !ActiveRegions.empty())
1181 startSegment(*ActiveRegions.back(), CurStartLoc, false);
1182 continue;
1184 if (CR.index() + 1 == Regions.size() ||
1185 CurStartLoc != Regions[CR.index() + 1].startLoc()) {
1186 // Emit a segment if the next region doesn't start at the same location
1187 // as this one.
1188 startSegment(CR.value(), CurStartLoc, !GapRegion);
1191 // This region is active (i.e not completed).
1192 ActiveRegions.push_back(&CR.value());
1195 // Complete any remaining active regions.
1196 if (!ActiveRegions.empty())
1197 completeRegionsUntil(std::nullopt, 0);
1200 /// Sort a nested sequence of regions from a single file.
1201 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
1202 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
1203 if (LHS.startLoc() != RHS.startLoc())
1204 return LHS.startLoc() < RHS.startLoc();
1205 if (LHS.endLoc() != RHS.endLoc())
1206 // When LHS completely contains RHS, we sort LHS first.
1207 return RHS.endLoc() < LHS.endLoc();
1208 // If LHS and RHS cover the same area, we need to sort them according
1209 // to their kinds so that the most suitable region will become "active"
1210 // in combineRegions(). Because we accumulate counter values only from
1211 // regions of the same kind as the first region of the area, prefer
1212 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
1213 static_assert(CounterMappingRegion::CodeRegion <
1214 CounterMappingRegion::ExpansionRegion &&
1215 CounterMappingRegion::ExpansionRegion <
1216 CounterMappingRegion::SkippedRegion,
1217 "Unexpected order of region kind values");
1218 return LHS.Kind < RHS.Kind;
1222 /// Combine counts of regions which cover the same area.
1223 static ArrayRef<CountedRegion>
1224 combineRegions(MutableArrayRef<CountedRegion> Regions) {
1225 if (Regions.empty())
1226 return Regions;
1227 auto Active = Regions.begin();
1228 auto End = Regions.end();
1229 for (auto I = Regions.begin() + 1; I != End; ++I) {
1230 if (Active->startLoc() != I->startLoc() ||
1231 Active->endLoc() != I->endLoc()) {
1232 // Shift to the next region.
1233 ++Active;
1234 if (Active != I)
1235 *Active = *I;
1236 continue;
1238 // Merge duplicate region.
1239 // If CodeRegions and ExpansionRegions cover the same area, it's probably
1240 // a macro which is fully expanded to another macro. In that case, we need
1241 // to accumulate counts only from CodeRegions, or else the area will be
1242 // counted twice.
1243 // On the other hand, a macro may have a nested macro in its body. If the
1244 // outer macro is used several times, the ExpansionRegion for the nested
1245 // macro will also be added several times. These ExpansionRegions cover
1246 // the same source locations and have to be combined to reach the correct
1247 // value for that area.
1248 // We add counts of the regions of the same kind as the active region
1249 // to handle the both situations.
1250 if (I->Kind == Active->Kind)
1251 Active->ExecutionCount += I->ExecutionCount;
1253 return Regions.drop_back(std::distance(++Active, End));
1256 public:
1257 /// Build a sorted list of CoverageSegments from a list of Regions.
1258 static std::vector<CoverageSegment>
1259 buildSegments(MutableArrayRef<CountedRegion> Regions) {
1260 std::vector<CoverageSegment> Segments;
1261 SegmentBuilder Builder(Segments);
1263 sortNestedRegions(Regions);
1264 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
1266 LLVM_DEBUG({
1267 dbgs() << "Combined regions:\n";
1268 for (const auto &CR : CombinedRegions)
1269 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> "
1270 << CR.LineEnd << ":" << CR.ColumnEnd
1271 << " (count=" << CR.ExecutionCount << ")\n";
1274 Builder.buildSegmentsImpl(CombinedRegions);
1276 #ifndef NDEBUG
1277 for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
1278 const auto &L = Segments[I - 1];
1279 const auto &R = Segments[I];
1280 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
1281 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount)
1282 continue;
1283 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
1284 << " followed by " << R.Line << ":" << R.Col << "\n");
1285 assert(false && "Coverage segments not unique or sorted");
1288 #endif
1290 return Segments;
1294 } // end anonymous namespace
1296 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
1297 std::vector<StringRef> Filenames;
1298 for (const auto &Function : getCoveredFunctions())
1299 llvm::append_range(Filenames, Function.Filenames);
1300 llvm::sort(Filenames);
1301 auto Last = std::unique(Filenames.begin(), Filenames.end());
1302 Filenames.erase(Last, Filenames.end());
1303 return Filenames;
1306 static SmallBitVector gatherFileIDs(StringRef SourceFile,
1307 const FunctionRecord &Function) {
1308 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
1309 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
1310 if (SourceFile == Function.Filenames[I])
1311 FilenameEquivalence[I] = true;
1312 return FilenameEquivalence;
1315 /// Return the ID of the file where the definition of the function is located.
1316 static std::optional<unsigned>
1317 findMainViewFileID(const FunctionRecord &Function) {
1318 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
1319 for (const auto &CR : Function.CountedRegions)
1320 if (CR.Kind == CounterMappingRegion::ExpansionRegion)
1321 IsNotExpandedFile[CR.ExpandedFileID] = false;
1322 int I = IsNotExpandedFile.find_first();
1323 if (I == -1)
1324 return std::nullopt;
1325 return I;
1328 /// Check if SourceFile is the file that contains the definition of
1329 /// the Function. Return the ID of the file in that case or std::nullopt
1330 /// otherwise.
1331 static std::optional<unsigned>
1332 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) {
1333 std::optional<unsigned> I = findMainViewFileID(Function);
1334 if (I && SourceFile == Function.Filenames[*I])
1335 return I;
1336 return std::nullopt;
1339 static bool isExpansion(const CountedRegion &R, unsigned FileID) {
1340 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
1343 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
1344 CoverageData FileCoverage(Filename);
1345 std::vector<CountedRegion> Regions;
1347 // Look up the function records in the given file. Due to hash collisions on
1348 // the filename, we may get back some records that are not in the file.
1349 ArrayRef<unsigned> RecordIndices =
1350 getImpreciseRecordIndicesForFilename(Filename);
1351 for (unsigned RecordIndex : RecordIndices) {
1352 const FunctionRecord &Function = Functions[RecordIndex];
1353 auto MainFileID = findMainViewFileID(Filename, Function);
1354 auto FileIDs = gatherFileIDs(Filename, Function);
1355 for (const auto &CR : Function.CountedRegions)
1356 if (FileIDs.test(CR.FileID)) {
1357 Regions.push_back(CR);
1358 if (MainFileID && isExpansion(CR, *MainFileID))
1359 FileCoverage.Expansions.emplace_back(CR, Function);
1361 // Capture branch regions specific to the function (excluding expansions).
1362 for (const auto &CR : Function.CountedBranchRegions)
1363 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID))
1364 FileCoverage.BranchRegions.push_back(CR);
1365 // Capture MCDC records specific to the function.
1366 for (const auto &MR : Function.MCDCRecords)
1367 if (FileIDs.test(MR.getDecisionRegion().FileID))
1368 FileCoverage.MCDCRecords.push_back(MR);
1371 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
1372 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
1374 return FileCoverage;
1377 std::vector<InstantiationGroup>
1378 CoverageMapping::getInstantiationGroups(StringRef Filename) const {
1379 FunctionInstantiationSetCollector InstantiationSetCollector;
1380 // Look up the function records in the given file. Due to hash collisions on
1381 // the filename, we may get back some records that are not in the file.
1382 ArrayRef<unsigned> RecordIndices =
1383 getImpreciseRecordIndicesForFilename(Filename);
1384 for (unsigned RecordIndex : RecordIndices) {
1385 const FunctionRecord &Function = Functions[RecordIndex];
1386 auto MainFileID = findMainViewFileID(Filename, Function);
1387 if (!MainFileID)
1388 continue;
1389 InstantiationSetCollector.insert(Function, *MainFileID);
1392 std::vector<InstantiationGroup> Result;
1393 for (auto &InstantiationSet : InstantiationSetCollector) {
1394 InstantiationGroup IG{InstantiationSet.first.first,
1395 InstantiationSet.first.second,
1396 std::move(InstantiationSet.second)};
1397 Result.emplace_back(std::move(IG));
1399 return Result;
1402 CoverageData
1403 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
1404 auto MainFileID = findMainViewFileID(Function);
1405 if (!MainFileID)
1406 return CoverageData();
1408 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
1409 std::vector<CountedRegion> Regions;
1410 for (const auto &CR : Function.CountedRegions)
1411 if (CR.FileID == *MainFileID) {
1412 Regions.push_back(CR);
1413 if (isExpansion(CR, *MainFileID))
1414 FunctionCoverage.Expansions.emplace_back(CR, Function);
1416 // Capture branch regions specific to the function (excluding expansions).
1417 for (const auto &CR : Function.CountedBranchRegions)
1418 if (CR.FileID == *MainFileID)
1419 FunctionCoverage.BranchRegions.push_back(CR);
1421 // Capture MCDC records specific to the function.
1422 for (const auto &MR : Function.MCDCRecords)
1423 if (MR.getDecisionRegion().FileID == *MainFileID)
1424 FunctionCoverage.MCDCRecords.push_back(MR);
1426 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
1427 << "\n");
1428 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
1430 return FunctionCoverage;
1433 CoverageData CoverageMapping::getCoverageForExpansion(
1434 const ExpansionRecord &Expansion) const {
1435 CoverageData ExpansionCoverage(
1436 Expansion.Function.Filenames[Expansion.FileID]);
1437 std::vector<CountedRegion> Regions;
1438 for (const auto &CR : Expansion.Function.CountedRegions)
1439 if (CR.FileID == Expansion.FileID) {
1440 Regions.push_back(CR);
1441 if (isExpansion(CR, Expansion.FileID))
1442 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
1444 for (const auto &CR : Expansion.Function.CountedBranchRegions)
1445 // Capture branch regions that only pertain to the corresponding expansion.
1446 if (CR.FileID == Expansion.FileID)
1447 ExpansionCoverage.BranchRegions.push_back(CR);
1449 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
1450 << Expansion.FileID << "\n");
1451 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
1453 return ExpansionCoverage;
1456 LineCoverageStats::LineCoverageStats(
1457 ArrayRef<const CoverageSegment *> LineSegments,
1458 const CoverageSegment *WrappedSegment, unsigned Line)
1459 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
1460 LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
1461 // Find the minimum number of regions which start in this line.
1462 unsigned MinRegionCount = 0;
1463 auto isStartOfRegion = [](const CoverageSegment *S) {
1464 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
1466 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
1467 if (isStartOfRegion(LineSegments[I]))
1468 ++MinRegionCount;
1470 bool StartOfSkippedRegion = !LineSegments.empty() &&
1471 !LineSegments.front()->HasCount &&
1472 LineSegments.front()->IsRegionEntry;
1474 HasMultipleRegions = MinRegionCount > 1;
1475 Mapped =
1476 !StartOfSkippedRegion &&
1477 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
1479 // if there is any starting segment at this line with a counter, it must be
1480 // mapped
1481 Mapped |= std::any_of(
1482 LineSegments.begin(), LineSegments.end(),
1483 [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; });
1485 if (!Mapped) {
1486 return;
1489 // Pick the max count from the non-gap, region entry segments and the
1490 // wrapped count.
1491 if (WrappedSegment)
1492 ExecutionCount = WrappedSegment->Count;
1493 if (!MinRegionCount)
1494 return;
1495 for (const auto *LS : LineSegments)
1496 if (isStartOfRegion(LS))
1497 ExecutionCount = std::max(ExecutionCount, LS->Count);
1500 LineCoverageIterator &LineCoverageIterator::operator++() {
1501 if (Next == CD.end()) {
1502 Stats = LineCoverageStats();
1503 Ended = true;
1504 return *this;
1506 if (Segments.size())
1507 WrappedSegment = Segments.back();
1508 Segments.clear();
1509 while (Next != CD.end() && Next->Line == Line)
1510 Segments.push_back(&*Next++);
1511 Stats = LineCoverageStats(Segments, WrappedSegment, Line);
1512 ++Line;
1513 return *this;
1516 static std::string getCoverageMapErrString(coveragemap_error Err,
1517 const std::string &ErrMsg = "") {
1518 std::string Msg;
1519 raw_string_ostream OS(Msg);
1521 switch (Err) {
1522 case coveragemap_error::success:
1523 OS << "success";
1524 break;
1525 case coveragemap_error::eof:
1526 OS << "end of File";
1527 break;
1528 case coveragemap_error::no_data_found:
1529 OS << "no coverage data found";
1530 break;
1531 case coveragemap_error::unsupported_version:
1532 OS << "unsupported coverage format version";
1533 break;
1534 case coveragemap_error::truncated:
1535 OS << "truncated coverage data";
1536 break;
1537 case coveragemap_error::malformed:
1538 OS << "malformed coverage data";
1539 break;
1540 case coveragemap_error::decompression_failed:
1541 OS << "failed to decompress coverage data (zlib)";
1542 break;
1543 case coveragemap_error::invalid_or_missing_arch_specifier:
1544 OS << "`-arch` specifier is invalid or missing for universal binary";
1545 break;
1548 // If optional error message is not empty, append it to the message.
1549 if (!ErrMsg.empty())
1550 OS << ": " << ErrMsg;
1552 return Msg;
1555 namespace {
1557 // FIXME: This class is only here to support the transition to llvm::Error. It
1558 // will be removed once this transition is complete. Clients should prefer to
1559 // deal with the Error value directly, rather than converting to error_code.
1560 class CoverageMappingErrorCategoryType : public std::error_category {
1561 const char *name() const noexcept override { return "llvm.coveragemap"; }
1562 std::string message(int IE) const override {
1563 return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
1567 } // end anonymous namespace
1569 std::string CoverageMapError::message() const {
1570 return getCoverageMapErrString(Err, Msg);
1573 const std::error_category &llvm::coverage::coveragemap_category() {
1574 static CoverageMappingErrorCategoryType ErrorCategory;
1575 return ErrorCategory;
1578 char CoverageMapError::ID = 0;