1 //===- InstCombineCompares.cpp --------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visitICmp and visitFCmp functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/CaptureTracking.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/Utils/Local.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/ConstantRange.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/KnownBits.h"
29 #include "llvm/Transforms/InstCombine/InstCombiner.h"
33 using namespace PatternMatch
;
35 #define DEBUG_TYPE "instcombine"
37 // How many times is a select replaced by one of its operands?
38 STATISTIC(NumSel
, "Number of select opts");
41 /// Compute Result = In1+In2, returning true if the result overflowed for this
43 static bool addWithOverflow(APInt
&Result
, const APInt
&In1
,
44 const APInt
&In2
, bool IsSigned
= false) {
47 Result
= In1
.sadd_ov(In2
, Overflow
);
49 Result
= In1
.uadd_ov(In2
, Overflow
);
54 /// Compute Result = In1-In2, returning true if the result overflowed for this
56 static bool subWithOverflow(APInt
&Result
, const APInt
&In1
,
57 const APInt
&In2
, bool IsSigned
= false) {
60 Result
= In1
.ssub_ov(In2
, Overflow
);
62 Result
= In1
.usub_ov(In2
, Overflow
);
67 /// Given an icmp instruction, return true if any use of this comparison is a
68 /// branch on sign bit comparison.
69 static bool hasBranchUse(ICmpInst
&I
) {
70 for (auto *U
: I
.users())
71 if (isa
<BranchInst
>(U
))
76 /// Returns true if the exploded icmp can be expressed as a signed comparison
77 /// to zero and updates the predicate accordingly.
78 /// The signedness of the comparison is preserved.
79 /// TODO: Refactor with decomposeBitTestICmp()?
80 static bool isSignTest(ICmpInst::Predicate
&Pred
, const APInt
&C
) {
81 if (!ICmpInst::isSigned(Pred
))
85 return ICmpInst::isRelational(Pred
);
88 if (Pred
== ICmpInst::ICMP_SLT
) {
89 Pred
= ICmpInst::ICMP_SLE
;
92 } else if (C
.isAllOnes()) {
93 if (Pred
== ICmpInst::ICMP_SGT
) {
94 Pred
= ICmpInst::ICMP_SGE
;
102 /// This is called when we see this pattern:
103 /// cmp pred (load (gep GV, ...)), cmpcst
104 /// where GV is a global variable with a constant initializer. Try to simplify
105 /// this into some simple computation that does not need the load. For example
106 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
108 /// If AndCst is non-null, then the loaded value is masked with that constant
109 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
110 Instruction
*InstCombinerImpl::foldCmpLoadFromIndexedGlobal(
111 LoadInst
*LI
, GetElementPtrInst
*GEP
, GlobalVariable
*GV
, CmpInst
&ICI
,
112 ConstantInt
*AndCst
) {
113 if (LI
->isVolatile() || LI
->getType() != GEP
->getResultElementType() ||
114 GV
->getValueType() != GEP
->getSourceElementType() || !GV
->isConstant() ||
115 !GV
->hasDefinitiveInitializer())
118 Constant
*Init
= GV
->getInitializer();
119 if (!isa
<ConstantArray
>(Init
) && !isa
<ConstantDataArray
>(Init
))
122 uint64_t ArrayElementCount
= Init
->getType()->getArrayNumElements();
123 // Don't blow up on huge arrays.
124 if (ArrayElementCount
> MaxArraySizeForCombine
)
127 // There are many forms of this optimization we can handle, for now, just do
128 // the simple index into a single-dimensional array.
130 // Require: GEP GV, 0, i {{, constant indices}}
131 if (GEP
->getNumOperands() < 3 || !isa
<ConstantInt
>(GEP
->getOperand(1)) ||
132 !cast
<ConstantInt
>(GEP
->getOperand(1))->isZero() ||
133 isa
<Constant
>(GEP
->getOperand(2)))
136 // Check that indices after the variable are constants and in-range for the
137 // type they index. Collect the indices. This is typically for arrays of
139 SmallVector
<unsigned, 4> LaterIndices
;
141 Type
*EltTy
= Init
->getType()->getArrayElementType();
142 for (unsigned i
= 3, e
= GEP
->getNumOperands(); i
!= e
; ++i
) {
143 ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
145 return nullptr; // Variable index.
147 uint64_t IdxVal
= Idx
->getZExtValue();
148 if ((unsigned)IdxVal
!= IdxVal
)
149 return nullptr; // Too large array index.
151 if (StructType
*STy
= dyn_cast
<StructType
>(EltTy
))
152 EltTy
= STy
->getElementType(IdxVal
);
153 else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(EltTy
)) {
154 if (IdxVal
>= ATy
->getNumElements())
156 EltTy
= ATy
->getElementType();
158 return nullptr; // Unknown type.
161 LaterIndices
.push_back(IdxVal
);
164 enum { Overdefined
= -3, Undefined
= -2 };
166 // Variables for our state machines.
168 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
169 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
170 // and 87 is the second (and last) index. FirstTrueElement is -2 when
171 // undefined, otherwise set to the first true element. SecondTrueElement is
172 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
173 int FirstTrueElement
= Undefined
, SecondTrueElement
= Undefined
;
175 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
176 // form "i != 47 & i != 87". Same state transitions as for true elements.
177 int FirstFalseElement
= Undefined
, SecondFalseElement
= Undefined
;
179 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
180 /// define a state machine that triggers for ranges of values that the index
181 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
182 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
183 /// index in the range (inclusive). We use -2 for undefined here because we
184 /// use relative comparisons and don't want 0-1 to match -1.
185 int TrueRangeEnd
= Undefined
, FalseRangeEnd
= Undefined
;
187 // MagicBitvector - This is a magic bitvector where we set a bit if the
188 // comparison is true for element 'i'. If there are 64 elements or less in
189 // the array, this will fully represent all the comparison results.
190 uint64_t MagicBitvector
= 0;
192 // Scan the array and see if one of our patterns matches.
193 Constant
*CompareRHS
= cast
<Constant
>(ICI
.getOperand(1));
194 for (unsigned i
= 0, e
= ArrayElementCount
; i
!= e
; ++i
) {
195 Constant
*Elt
= Init
->getAggregateElement(i
);
199 // If this is indexing an array of structures, get the structure element.
200 if (!LaterIndices
.empty()) {
201 Elt
= ConstantFoldExtractValueInstruction(Elt
, LaterIndices
);
206 // If the element is masked, handle it.
208 Elt
= ConstantFoldBinaryOpOperands(Instruction::And
, Elt
, AndCst
, DL
);
213 // Find out if the comparison would be true or false for the i'th element.
214 Constant
*C
= ConstantFoldCompareInstOperands(ICI
.getPredicate(), Elt
,
215 CompareRHS
, DL
, &TLI
);
216 // If the result is undef for this element, ignore it.
217 if (isa
<UndefValue
>(C
)) {
218 // Extend range state machines to cover this element in case there is an
219 // undef in the middle of the range.
220 if (TrueRangeEnd
== (int)i
- 1)
222 if (FalseRangeEnd
== (int)i
- 1)
227 // If we can't compute the result for any of the elements, we have to give
228 // up evaluating the entire conditional.
229 if (!isa
<ConstantInt
>(C
))
232 // Otherwise, we know if the comparison is true or false for this element,
233 // update our state machines.
234 bool IsTrueForElt
= !cast
<ConstantInt
>(C
)->isZero();
236 // State machine for single/double/range index comparison.
238 // Update the TrueElement state machine.
239 if (FirstTrueElement
== Undefined
)
240 FirstTrueElement
= TrueRangeEnd
= i
; // First true element.
242 // Update double-compare state machine.
243 if (SecondTrueElement
== Undefined
)
244 SecondTrueElement
= i
;
246 SecondTrueElement
= Overdefined
;
248 // Update range state machine.
249 if (TrueRangeEnd
== (int)i
- 1)
252 TrueRangeEnd
= Overdefined
;
255 // Update the FalseElement state machine.
256 if (FirstFalseElement
== Undefined
)
257 FirstFalseElement
= FalseRangeEnd
= i
; // First false element.
259 // Update double-compare state machine.
260 if (SecondFalseElement
== Undefined
)
261 SecondFalseElement
= i
;
263 SecondFalseElement
= Overdefined
;
265 // Update range state machine.
266 if (FalseRangeEnd
== (int)i
- 1)
269 FalseRangeEnd
= Overdefined
;
273 // If this element is in range, update our magic bitvector.
274 if (i
< 64 && IsTrueForElt
)
275 MagicBitvector
|= 1ULL << i
;
277 // If all of our states become overdefined, bail out early. Since the
278 // predicate is expensive, only check it every 8 elements. This is only
279 // really useful for really huge arrays.
280 if ((i
& 8) == 0 && i
>= 64 && SecondTrueElement
== Overdefined
&&
281 SecondFalseElement
== Overdefined
&& TrueRangeEnd
== Overdefined
&&
282 FalseRangeEnd
== Overdefined
)
286 // Now that we've scanned the entire array, emit our new comparison(s). We
287 // order the state machines in complexity of the generated code.
288 Value
*Idx
= GEP
->getOperand(2);
290 // If the index is larger than the pointer offset size of the target, truncate
291 // the index down like the GEP would do implicitly. We don't have to do this
292 // for an inbounds GEP because the index can't be out of range.
293 if (!GEP
->isInBounds()) {
294 Type
*PtrIdxTy
= DL
.getIndexType(GEP
->getType());
295 unsigned OffsetSize
= PtrIdxTy
->getIntegerBitWidth();
296 if (Idx
->getType()->getPrimitiveSizeInBits().getFixedValue() > OffsetSize
)
297 Idx
= Builder
.CreateTrunc(Idx
, PtrIdxTy
);
300 // If inbounds keyword is not present, Idx * ElementSize can overflow.
301 // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
302 // Then, there are two possible values for Idx to match offset 0:
303 // 0x00..00, 0x80..00.
304 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
305 // comparison is false if Idx was 0x80..00.
306 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
307 unsigned ElementSize
=
308 DL
.getTypeAllocSize(Init
->getType()->getArrayElementType());
309 auto MaskIdx
= [&](Value
*Idx
) {
310 if (!GEP
->isInBounds() && llvm::countr_zero(ElementSize
) != 0) {
311 Value
*Mask
= ConstantInt::get(Idx
->getType(), -1);
312 Mask
= Builder
.CreateLShr(Mask
, llvm::countr_zero(ElementSize
));
313 Idx
= Builder
.CreateAnd(Idx
, Mask
);
318 // If the comparison is only true for one or two elements, emit direct
320 if (SecondTrueElement
!= Overdefined
) {
322 // None true -> false.
323 if (FirstTrueElement
== Undefined
)
324 return replaceInstUsesWith(ICI
, Builder
.getFalse());
326 Value
*FirstTrueIdx
= ConstantInt::get(Idx
->getType(), FirstTrueElement
);
328 // True for one element -> 'i == 47'.
329 if (SecondTrueElement
== Undefined
)
330 return new ICmpInst(ICmpInst::ICMP_EQ
, Idx
, FirstTrueIdx
);
332 // True for two elements -> 'i == 47 | i == 72'.
333 Value
*C1
= Builder
.CreateICmpEQ(Idx
, FirstTrueIdx
);
334 Value
*SecondTrueIdx
= ConstantInt::get(Idx
->getType(), SecondTrueElement
);
335 Value
*C2
= Builder
.CreateICmpEQ(Idx
, SecondTrueIdx
);
336 return BinaryOperator::CreateOr(C1
, C2
);
339 // If the comparison is only false for one or two elements, emit direct
341 if (SecondFalseElement
!= Overdefined
) {
343 // None false -> true.
344 if (FirstFalseElement
== Undefined
)
345 return replaceInstUsesWith(ICI
, Builder
.getTrue());
347 Value
*FirstFalseIdx
= ConstantInt::get(Idx
->getType(), FirstFalseElement
);
349 // False for one element -> 'i != 47'.
350 if (SecondFalseElement
== Undefined
)
351 return new ICmpInst(ICmpInst::ICMP_NE
, Idx
, FirstFalseIdx
);
353 // False for two elements -> 'i != 47 & i != 72'.
354 Value
*C1
= Builder
.CreateICmpNE(Idx
, FirstFalseIdx
);
355 Value
*SecondFalseIdx
=
356 ConstantInt::get(Idx
->getType(), SecondFalseElement
);
357 Value
*C2
= Builder
.CreateICmpNE(Idx
, SecondFalseIdx
);
358 return BinaryOperator::CreateAnd(C1
, C2
);
361 // If the comparison can be replaced with a range comparison for the elements
362 // where it is true, emit the range check.
363 if (TrueRangeEnd
!= Overdefined
) {
364 assert(TrueRangeEnd
!= FirstTrueElement
&& "Should emit single compare");
367 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
368 if (FirstTrueElement
) {
369 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstTrueElement
);
370 Idx
= Builder
.CreateAdd(Idx
, Offs
);
374 ConstantInt::get(Idx
->getType(), TrueRangeEnd
- FirstTrueElement
+ 1);
375 return new ICmpInst(ICmpInst::ICMP_ULT
, Idx
, End
);
378 // False range check.
379 if (FalseRangeEnd
!= Overdefined
) {
380 assert(FalseRangeEnd
!= FirstFalseElement
&& "Should emit single compare");
382 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
383 if (FirstFalseElement
) {
384 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstFalseElement
);
385 Idx
= Builder
.CreateAdd(Idx
, Offs
);
389 ConstantInt::get(Idx
->getType(), FalseRangeEnd
- FirstFalseElement
);
390 return new ICmpInst(ICmpInst::ICMP_UGT
, Idx
, End
);
393 // If a magic bitvector captures the entire comparison state
394 // of this load, replace it with computation that does:
395 // ((magic_cst >> i) & 1) != 0
399 // Look for an appropriate type:
400 // - The type of Idx if the magic fits
401 // - The smallest fitting legal type
402 if (ArrayElementCount
<= Idx
->getType()->getIntegerBitWidth())
405 Ty
= DL
.getSmallestLegalIntType(Init
->getContext(), ArrayElementCount
);
409 Value
*V
= Builder
.CreateIntCast(Idx
, Ty
, false);
410 V
= Builder
.CreateLShr(ConstantInt::get(Ty
, MagicBitvector
), V
);
411 V
= Builder
.CreateAnd(ConstantInt::get(Ty
, 1), V
);
412 return new ICmpInst(ICmpInst::ICMP_NE
, V
, ConstantInt::get(Ty
, 0));
419 /// Returns true if we can rewrite Start as a GEP with pointer Base
420 /// and some integer offset. The nodes that need to be re-written
421 /// for this transformation will be added to Explored.
422 static bool canRewriteGEPAsOffset(Value
*Start
, Value
*Base
,
423 const DataLayout
&DL
,
424 SetVector
<Value
*> &Explored
) {
425 SmallVector
<Value
*, 16> WorkList(1, Start
);
426 Explored
.insert(Base
);
428 // The following traversal gives us an order which can be used
429 // when doing the final transformation. Since in the final
430 // transformation we create the PHI replacement instructions first,
431 // we don't have to get them in any particular order.
433 // However, for other instructions we will have to traverse the
434 // operands of an instruction first, which means that we have to
435 // do a post-order traversal.
436 while (!WorkList
.empty()) {
437 SetVector
<PHINode
*> PHIs
;
439 while (!WorkList
.empty()) {
440 if (Explored
.size() >= 100)
443 Value
*V
= WorkList
.back();
445 if (Explored
.contains(V
)) {
450 if (!isa
<GetElementPtrInst
>(V
) && !isa
<PHINode
>(V
))
451 // We've found some value that we can't explore which is different from
452 // the base. Therefore we can't do this transformation.
455 if (auto *GEP
= dyn_cast
<GEPOperator
>(V
)) {
456 // Only allow inbounds GEPs with at most one variable offset.
457 auto IsNonConst
= [](Value
*V
) { return !isa
<ConstantInt
>(V
); };
458 if (!GEP
->isInBounds() || count_if(GEP
->indices(), IsNonConst
) > 1)
461 if (!Explored
.contains(GEP
->getOperand(0)))
462 WorkList
.push_back(GEP
->getOperand(0));
465 if (WorkList
.back() == V
) {
467 // We've finished visiting this node, mark it as such.
471 if (auto *PN
= dyn_cast
<PHINode
>(V
)) {
472 // We cannot transform PHIs on unsplittable basic blocks.
473 if (isa
<CatchSwitchInst
>(PN
->getParent()->getTerminator()))
480 // Explore the PHI nodes further.
481 for (auto *PN
: PHIs
)
482 for (Value
*Op
: PN
->incoming_values())
483 if (!Explored
.contains(Op
))
484 WorkList
.push_back(Op
);
487 // Make sure that we can do this. Since we can't insert GEPs in a basic
488 // block before a PHI node, we can't easily do this transformation if
489 // we have PHI node users of transformed instructions.
490 for (Value
*Val
: Explored
) {
491 for (Value
*Use
: Val
->uses()) {
493 auto *PHI
= dyn_cast
<PHINode
>(Use
);
494 auto *Inst
= dyn_cast
<Instruction
>(Val
);
496 if (Inst
== Base
|| Inst
== PHI
|| !Inst
|| !PHI
||
497 !Explored
.contains(PHI
))
500 if (PHI
->getParent() == Inst
->getParent())
507 // Sets the appropriate insert point on Builder where we can add
508 // a replacement Instruction for V (if that is possible).
509 static void setInsertionPoint(IRBuilder
<> &Builder
, Value
*V
,
510 bool Before
= true) {
511 if (auto *PHI
= dyn_cast
<PHINode
>(V
)) {
512 BasicBlock
*Parent
= PHI
->getParent();
513 Builder
.SetInsertPoint(Parent
, Parent
->getFirstInsertionPt());
516 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
518 I
= &*std::next(I
->getIterator());
519 Builder
.SetInsertPoint(I
);
522 if (auto *A
= dyn_cast
<Argument
>(V
)) {
523 // Set the insertion point in the entry block.
524 BasicBlock
&Entry
= A
->getParent()->getEntryBlock();
525 Builder
.SetInsertPoint(&Entry
, Entry
.getFirstInsertionPt());
528 // Otherwise, this is a constant and we don't need to set a new
530 assert(isa
<Constant
>(V
) && "Setting insertion point for unknown value!");
533 /// Returns a re-written value of Start as an indexed GEP using Base as a
535 static Value
*rewriteGEPAsOffset(Value
*Start
, Value
*Base
,
536 const DataLayout
&DL
,
537 SetVector
<Value
*> &Explored
,
539 // Perform all the substitutions. This is a bit tricky because we can
540 // have cycles in our use-def chains.
541 // 1. Create the PHI nodes without any incoming values.
542 // 2. Create all the other values.
543 // 3. Add the edges for the PHI nodes.
544 // 4. Emit GEPs to get the original pointers.
545 // 5. Remove the original instructions.
546 Type
*IndexType
= IntegerType::get(
547 Base
->getContext(), DL
.getIndexTypeSizeInBits(Start
->getType()));
549 DenseMap
<Value
*, Value
*> NewInsts
;
550 NewInsts
[Base
] = ConstantInt::getNullValue(IndexType
);
552 // Create the new PHI nodes, without adding any incoming values.
553 for (Value
*Val
: Explored
) {
556 // Create empty phi nodes. This avoids cyclic dependencies when creating
557 // the remaining instructions.
558 if (auto *PHI
= dyn_cast
<PHINode
>(Val
))
559 NewInsts
[PHI
] = PHINode::Create(IndexType
, PHI
->getNumIncomingValues(),
560 PHI
->getName() + ".idx", PHI
);
562 IRBuilder
<> Builder(Base
->getContext());
564 // Create all the other instructions.
565 for (Value
*Val
: Explored
) {
566 if (NewInsts
.contains(Val
))
569 if (auto *GEP
= dyn_cast
<GEPOperator
>(Val
)) {
570 setInsertionPoint(Builder
, GEP
);
571 Value
*Op
= NewInsts
[GEP
->getOperand(0)];
572 Value
*OffsetV
= emitGEPOffset(&Builder
, DL
, GEP
);
573 if (isa
<ConstantInt
>(Op
) && cast
<ConstantInt
>(Op
)->isZero())
574 NewInsts
[GEP
] = OffsetV
;
576 NewInsts
[GEP
] = Builder
.CreateNSWAdd(
577 Op
, OffsetV
, GEP
->getOperand(0)->getName() + ".add");
580 if (isa
<PHINode
>(Val
))
583 llvm_unreachable("Unexpected instruction type");
586 // Add the incoming values to the PHI nodes.
587 for (Value
*Val
: Explored
) {
590 // All the instructions have been created, we can now add edges to the
592 if (auto *PHI
= dyn_cast
<PHINode
>(Val
)) {
593 PHINode
*NewPhi
= static_cast<PHINode
*>(NewInsts
[PHI
]);
594 for (unsigned I
= 0, E
= PHI
->getNumIncomingValues(); I
< E
; ++I
) {
595 Value
*NewIncoming
= PHI
->getIncomingValue(I
);
597 if (NewInsts
.contains(NewIncoming
))
598 NewIncoming
= NewInsts
[NewIncoming
];
600 NewPhi
->addIncoming(NewIncoming
, PHI
->getIncomingBlock(I
));
605 for (Value
*Val
: Explored
) {
609 setInsertionPoint(Builder
, Val
, false);
610 // Create GEP for external users.
611 Value
*NewVal
= Builder
.CreateInBoundsGEP(
612 Builder
.getInt8Ty(), Base
, NewInsts
[Val
], Val
->getName() + ".ptr");
613 IC
.replaceInstUsesWith(*cast
<Instruction
>(Val
), NewVal
);
614 // Add old instruction to worklist for DCE. We don't directly remove it
615 // here because the original compare is one of the users.
616 IC
.addToWorklist(cast
<Instruction
>(Val
));
619 return NewInsts
[Start
];
622 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
623 /// We can look through PHIs, GEPs and casts in order to determine a common base
624 /// between GEPLHS and RHS.
625 static Instruction
*transformToIndexedCompare(GEPOperator
*GEPLHS
, Value
*RHS
,
626 ICmpInst::Predicate Cond
,
627 const DataLayout
&DL
,
629 // FIXME: Support vector of pointers.
630 if (GEPLHS
->getType()->isVectorTy())
633 if (!GEPLHS
->hasAllConstantIndices())
636 APInt
Offset(DL
.getIndexTypeSizeInBits(GEPLHS
->getType()), 0);
638 GEPLHS
->stripAndAccumulateConstantOffsets(DL
, Offset
,
639 /*AllowNonInbounds*/ false);
641 // Bail if we looked through addrspacecast.
642 if (PtrBase
->getType() != GEPLHS
->getType())
645 // The set of nodes that will take part in this transformation.
646 SetVector
<Value
*> Nodes
;
648 if (!canRewriteGEPAsOffset(RHS
, PtrBase
, DL
, Nodes
))
651 // We know we can re-write this as
652 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
653 // Since we've only looked through inbouds GEPs we know that we
654 // can't have overflow on either side. We can therefore re-write
656 // OFFSET1 cmp OFFSET2
657 Value
*NewRHS
= rewriteGEPAsOffset(RHS
, PtrBase
, DL
, Nodes
, IC
);
659 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
660 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
661 // offset. Since Index is the offset of LHS to the base pointer, we will now
662 // compare the offsets instead of comparing the pointers.
663 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
),
664 IC
.Builder
.getInt(Offset
), NewRHS
);
667 /// Fold comparisons between a GEP instruction and something else. At this point
668 /// we know that the GEP is on the LHS of the comparison.
669 Instruction
*InstCombinerImpl::foldGEPICmp(GEPOperator
*GEPLHS
, Value
*RHS
,
670 ICmpInst::Predicate Cond
,
672 // Don't transform signed compares of GEPs into index compares. Even if the
673 // GEP is inbounds, the final add of the base pointer can have signed overflow
674 // and would change the result of the icmp.
675 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
676 // the maximum signed value for the pointer type.
677 if (ICmpInst::isSigned(Cond
))
680 // Look through bitcasts and addrspacecasts. We do not however want to remove
682 if (!isa
<GetElementPtrInst
>(RHS
))
683 RHS
= RHS
->stripPointerCasts();
685 Value
*PtrBase
= GEPLHS
->getOperand(0);
686 if (PtrBase
== RHS
&& (GEPLHS
->isInBounds() || ICmpInst::isEquality(Cond
))) {
687 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
688 Value
*Offset
= EmitGEPOffset(GEPLHS
);
689 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Offset
,
690 Constant::getNullValue(Offset
->getType()));
693 if (GEPLHS
->isInBounds() && ICmpInst::isEquality(Cond
) &&
694 isa
<Constant
>(RHS
) && cast
<Constant
>(RHS
)->isNullValue() &&
695 !NullPointerIsDefined(I
.getFunction(),
696 RHS
->getType()->getPointerAddressSpace())) {
697 // For most address spaces, an allocation can't be placed at null, but null
698 // itself is treated as a 0 size allocation in the in bounds rules. Thus,
699 // the only valid inbounds address derived from null, is null itself.
700 // Thus, we have four cases to consider:
701 // 1) Base == nullptr, Offset == 0 -> inbounds, null
702 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
703 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
704 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
706 // (Note if we're indexing a type of size 0, that simply collapses into one
707 // of the buckets above.)
709 // In general, we're allowed to make values less poison (i.e. remove
710 // sources of full UB), so in this case, we just select between the two
711 // non-poison cases (1 and 4 above).
713 // For vectors, we apply the same reasoning on a per-lane basis.
714 auto *Base
= GEPLHS
->getPointerOperand();
715 if (GEPLHS
->getType()->isVectorTy() && Base
->getType()->isPointerTy()) {
716 auto EC
= cast
<VectorType
>(GEPLHS
->getType())->getElementCount();
717 Base
= Builder
.CreateVectorSplat(EC
, Base
);
719 return new ICmpInst(Cond
, Base
,
720 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
721 cast
<Constant
>(RHS
), Base
->getType()));
722 } else if (GEPOperator
*GEPRHS
= dyn_cast
<GEPOperator
>(RHS
)) {
723 // If the base pointers are different, but the indices are the same, just
724 // compare the base pointer.
725 if (PtrBase
!= GEPRHS
->getOperand(0)) {
726 bool IndicesTheSame
=
727 GEPLHS
->getNumOperands() == GEPRHS
->getNumOperands() &&
728 GEPLHS
->getPointerOperand()->getType() ==
729 GEPRHS
->getPointerOperand()->getType() &&
730 GEPLHS
->getSourceElementType() == GEPRHS
->getSourceElementType();
732 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
733 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
734 IndicesTheSame
= false;
738 // If all indices are the same, just compare the base pointers.
739 Type
*BaseType
= GEPLHS
->getOperand(0)->getType();
740 if (IndicesTheSame
&& CmpInst::makeCmpResultType(BaseType
) == I
.getType())
741 return new ICmpInst(Cond
, GEPLHS
->getOperand(0), GEPRHS
->getOperand(0));
743 // If we're comparing GEPs with two base pointers that only differ in type
744 // and both GEPs have only constant indices or just one use, then fold
745 // the compare with the adjusted indices.
746 // FIXME: Support vector of pointers.
747 if (GEPLHS
->isInBounds() && GEPRHS
->isInBounds() &&
748 (GEPLHS
->hasAllConstantIndices() || GEPLHS
->hasOneUse()) &&
749 (GEPRHS
->hasAllConstantIndices() || GEPRHS
->hasOneUse()) &&
750 PtrBase
->stripPointerCasts() ==
751 GEPRHS
->getOperand(0)->stripPointerCasts() &&
752 !GEPLHS
->getType()->isVectorTy()) {
753 Value
*LOffset
= EmitGEPOffset(GEPLHS
);
754 Value
*ROffset
= EmitGEPOffset(GEPRHS
);
756 // If we looked through an addrspacecast between different sized address
757 // spaces, the LHS and RHS pointers are different sized
758 // integers. Truncate to the smaller one.
759 Type
*LHSIndexTy
= LOffset
->getType();
760 Type
*RHSIndexTy
= ROffset
->getType();
761 if (LHSIndexTy
!= RHSIndexTy
) {
762 if (LHSIndexTy
->getPrimitiveSizeInBits().getFixedValue() <
763 RHSIndexTy
->getPrimitiveSizeInBits().getFixedValue()) {
764 ROffset
= Builder
.CreateTrunc(ROffset
, LHSIndexTy
);
766 LOffset
= Builder
.CreateTrunc(LOffset
, RHSIndexTy
);
769 Value
*Cmp
= Builder
.CreateICmp(ICmpInst::getSignedPredicate(Cond
),
771 return replaceInstUsesWith(I
, Cmp
);
774 // Otherwise, the base pointers are different and the indices are
775 // different. Try convert this to an indexed compare by looking through
777 return transformToIndexedCompare(GEPLHS
, RHS
, Cond
, DL
, *this);
780 bool GEPsInBounds
= GEPLHS
->isInBounds() && GEPRHS
->isInBounds();
781 if (GEPLHS
->getNumOperands() == GEPRHS
->getNumOperands() &&
782 GEPLHS
->getSourceElementType() == GEPRHS
->getSourceElementType()) {
783 // If the GEPs only differ by one index, compare it.
784 unsigned NumDifferences
= 0; // Keep track of # differences.
785 unsigned DiffOperand
= 0; // The operand that differs.
786 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
787 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
788 Type
*LHSType
= GEPLHS
->getOperand(i
)->getType();
789 Type
*RHSType
= GEPRHS
->getOperand(i
)->getType();
790 // FIXME: Better support for vector of pointers.
791 if (LHSType
->getPrimitiveSizeInBits() !=
792 RHSType
->getPrimitiveSizeInBits() ||
793 (GEPLHS
->getType()->isVectorTy() &&
794 (!LHSType
->isVectorTy() || !RHSType
->isVectorTy()))) {
795 // Irreconcilable differences.
800 if (NumDifferences
++) break;
804 if (NumDifferences
== 0) // SAME GEP?
805 return replaceInstUsesWith(I
, // No comparison is needed here.
806 ConstantInt::get(I
.getType(), ICmpInst::isTrueWhenEqual(Cond
)));
808 else if (NumDifferences
== 1 && GEPsInBounds
) {
809 Value
*LHSV
= GEPLHS
->getOperand(DiffOperand
);
810 Value
*RHSV
= GEPRHS
->getOperand(DiffOperand
);
811 // Make sure we do a signed comparison here.
812 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), LHSV
, RHSV
);
816 // Only lower this if the icmp is the only user of the GEP or if we expect
817 // the result to fold to a constant!
818 if ((GEPsInBounds
|| CmpInst::isEquality(Cond
)) &&
819 (GEPLHS
->hasAllConstantIndices() || GEPLHS
->hasOneUse()) &&
820 (GEPRHS
->hasAllConstantIndices() || GEPRHS
->hasOneUse())) {
821 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
822 Value
*L
= EmitGEPOffset(GEPLHS
);
823 Value
*R
= EmitGEPOffset(GEPRHS
);
824 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), L
, R
);
828 // Try convert this to an indexed compare by looking through PHIs/casts as a
830 return transformToIndexedCompare(GEPLHS
, RHS
, Cond
, DL
, *this);
833 bool InstCombinerImpl::foldAllocaCmp(AllocaInst
*Alloca
) {
834 // It would be tempting to fold away comparisons between allocas and any
835 // pointer not based on that alloca (e.g. an argument). However, even
836 // though such pointers cannot alias, they can still compare equal.
838 // But LLVM doesn't specify where allocas get their memory, so if the alloca
839 // doesn't escape we can argue that it's impossible to guess its value, and we
840 // can therefore act as if any such guesses are wrong.
842 // However, we need to ensure that this folding is consistent: We can't fold
843 // one comparison to false, and then leave a different comparison against the
844 // same value alone (as it might evaluate to true at runtime, leading to a
845 // contradiction). As such, this code ensures that all comparisons are folded
846 // at the same time, and there are no other escapes.
848 struct CmpCaptureTracker
: public CaptureTracker
{
850 bool Captured
= false;
851 /// The value of the map is a bit mask of which icmp operands the alloca is
853 SmallMapVector
<ICmpInst
*, unsigned, 4> ICmps
;
855 CmpCaptureTracker(AllocaInst
*Alloca
) : Alloca(Alloca
) {}
857 void tooManyUses() override
{ Captured
= true; }
859 bool captured(const Use
*U
) override
{
860 auto *ICmp
= dyn_cast
<ICmpInst
>(U
->getUser());
861 // We need to check that U is based *only* on the alloca, and doesn't
862 // have other contributions from a select/phi operand.
863 // TODO: We could check whether getUnderlyingObjects() reduces to one
864 // object, which would allow looking through phi nodes.
865 if (ICmp
&& ICmp
->isEquality() && getUnderlyingObject(*U
) == Alloca
) {
866 // Collect equality icmps of the alloca, and don't treat them as
868 auto Res
= ICmps
.insert({ICmp
, 0});
869 Res
.first
->second
|= 1u << U
->getOperandNo();
878 CmpCaptureTracker
Tracker(Alloca
);
879 PointerMayBeCaptured(Alloca
, &Tracker
);
880 if (Tracker
.Captured
)
883 bool Changed
= false;
884 for (auto [ICmp
, Operands
] : Tracker
.ICmps
) {
888 // The alloca is only used in one icmp operand. Assume that the
889 // equality is false.
890 auto *Res
= ConstantInt::get(
891 ICmp
->getType(), ICmp
->getPredicate() == ICmpInst::ICMP_NE
);
892 replaceInstUsesWith(*ICmp
, Res
);
893 eraseInstFromFunction(*ICmp
);
898 // Both icmp operands are based on the alloca, so this is comparing
899 // pointer offsets, without leaking any information about the address
900 // of the alloca. Ignore such comparisons.
903 llvm_unreachable("Cannot happen");
910 /// Fold "icmp pred (X+C), X".
911 Instruction
*InstCombinerImpl::foldICmpAddOpConst(Value
*X
, const APInt
&C
,
912 ICmpInst::Predicate Pred
) {
913 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
914 // so the values can never be equal. Similarly for all other "or equals"
916 assert(!!C
&& "C should not be zero!");
918 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
919 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
920 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
921 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_ULE
) {
922 Constant
*R
= ConstantInt::get(X
->getType(),
923 APInt::getMaxValue(C
.getBitWidth()) - C
);
924 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, R
);
927 // (X+1) >u X --> X <u (0-1) --> X != 255
928 // (X+2) >u X --> X <u (0-2) --> X <u 254
929 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
930 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_UGE
)
931 return new ICmpInst(ICmpInst::ICMP_ULT
, X
,
932 ConstantInt::get(X
->getType(), -C
));
934 APInt SMax
= APInt::getSignedMaxValue(C
.getBitWidth());
936 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
937 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
938 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
939 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
940 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
941 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
942 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
943 return new ICmpInst(ICmpInst::ICMP_SGT
, X
,
944 ConstantInt::get(X
->getType(), SMax
- C
));
946 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
947 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
948 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
949 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
950 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
951 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
953 assert(Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
);
954 return new ICmpInst(ICmpInst::ICMP_SLT
, X
,
955 ConstantInt::get(X
->getType(), SMax
- (C
- 1)));
958 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
959 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
960 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
961 Instruction
*InstCombinerImpl::foldICmpShrConstConst(ICmpInst
&I
, Value
*A
,
964 assert(I
.isEquality() && "Cannot fold icmp gt/lt");
966 auto getICmp
= [&I
](CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
) {
967 if (I
.getPredicate() == I
.ICMP_NE
)
968 Pred
= CmpInst::getInversePredicate(Pred
);
969 return new ICmpInst(Pred
, LHS
, RHS
);
972 // Don't bother doing any work for cases which InstSimplify handles.
976 bool IsAShr
= isa
<AShrOperator
>(I
.getOperand(0));
980 if (AP2
.isNegative() != AP1
.isNegative())
987 // 'A' must be large enough to shift out the highest set bit.
988 return getICmp(I
.ICMP_UGT
, A
,
989 ConstantInt::get(A
->getType(), AP2
.logBase2()));
992 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::getNullValue(A
->getType()));
995 if (IsAShr
&& AP1
.isNegative())
996 Shift
= AP1
.countl_one() - AP2
.countl_one();
998 Shift
= AP1
.countl_zero() - AP2
.countl_zero();
1001 if (IsAShr
&& AP1
== AP2
.ashr(Shift
)) {
1002 // There are multiple solutions if we are comparing against -1 and the LHS
1003 // of the ashr is not a power of two.
1004 if (AP1
.isAllOnes() && !AP2
.isPowerOf2())
1005 return getICmp(I
.ICMP_UGE
, A
, ConstantInt::get(A
->getType(), Shift
));
1006 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1007 } else if (AP1
== AP2
.lshr(Shift
)) {
1008 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1012 // Shifting const2 will never be equal to const1.
1013 // FIXME: This should always be handled by InstSimplify?
1014 auto *TorF
= ConstantInt::get(I
.getType(), I
.getPredicate() == I
.ICMP_NE
);
1015 return replaceInstUsesWith(I
, TorF
);
1018 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1019 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1020 Instruction
*InstCombinerImpl::foldICmpShlConstConst(ICmpInst
&I
, Value
*A
,
1023 assert(I
.isEquality() && "Cannot fold icmp gt/lt");
1025 auto getICmp
= [&I
](CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
) {
1026 if (I
.getPredicate() == I
.ICMP_NE
)
1027 Pred
= CmpInst::getInversePredicate(Pred
);
1028 return new ICmpInst(Pred
, LHS
, RHS
);
1031 // Don't bother doing any work for cases which InstSimplify handles.
1035 unsigned AP2TrailingZeros
= AP2
.countr_zero();
1037 if (!AP1
&& AP2TrailingZeros
!= 0)
1040 ConstantInt::get(A
->getType(), AP2
.getBitWidth() - AP2TrailingZeros
));
1043 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::getNullValue(A
->getType()));
1045 // Get the distance between the lowest bits that are set.
1046 int Shift
= AP1
.countr_zero() - AP2TrailingZeros
;
1048 if (Shift
> 0 && AP2
.shl(Shift
) == AP1
)
1049 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1051 // Shifting const2 will never be equal to const1.
1052 // FIXME: This should always be handled by InstSimplify?
1053 auto *TorF
= ConstantInt::get(I
.getType(), I
.getPredicate() == I
.ICMP_NE
);
1054 return replaceInstUsesWith(I
, TorF
);
1057 /// The caller has matched a pattern of the form:
1058 /// I = icmp ugt (add (add A, B), CI2), CI1
1059 /// If this is of the form:
1061 /// if (sum+128 >u 255)
1062 /// Then replace it with llvm.sadd.with.overflow.i8.
1064 static Instruction
*processUGT_ADDCST_ADD(ICmpInst
&I
, Value
*A
, Value
*B
,
1065 ConstantInt
*CI2
, ConstantInt
*CI1
,
1066 InstCombinerImpl
&IC
) {
1067 // The transformation we're trying to do here is to transform this into an
1068 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1069 // with a narrower add, and discard the add-with-constant that is part of the
1070 // range check (if we can't eliminate it, this isn't profitable).
1072 // In order to eliminate the add-with-constant, the compare can be its only
1074 Instruction
*AddWithCst
= cast
<Instruction
>(I
.getOperand(0));
1075 if (!AddWithCst
->hasOneUse())
1078 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1079 if (!CI2
->getValue().isPowerOf2())
1081 unsigned NewWidth
= CI2
->getValue().countr_zero();
1082 if (NewWidth
!= 7 && NewWidth
!= 15 && NewWidth
!= 31)
1085 // The width of the new add formed is 1 more than the bias.
1088 // Check to see that CI1 is an all-ones value with NewWidth bits.
1089 if (CI1
->getBitWidth() == NewWidth
||
1090 CI1
->getValue() != APInt::getLowBitsSet(CI1
->getBitWidth(), NewWidth
))
1093 // This is only really a signed overflow check if the inputs have been
1094 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1095 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1096 if (IC
.ComputeMaxSignificantBits(A
, 0, &I
) > NewWidth
||
1097 IC
.ComputeMaxSignificantBits(B
, 0, &I
) > NewWidth
)
1100 // In order to replace the original add with a narrower
1101 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1102 // and truncates that discard the high bits of the add. Verify that this is
1104 Instruction
*OrigAdd
= cast
<Instruction
>(AddWithCst
->getOperand(0));
1105 for (User
*U
: OrigAdd
->users()) {
1106 if (U
== AddWithCst
)
1109 // Only accept truncates for now. We would really like a nice recursive
1110 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1111 // chain to see which bits of a value are actually demanded. If the
1112 // original add had another add which was then immediately truncated, we
1113 // could still do the transformation.
1114 TruncInst
*TI
= dyn_cast
<TruncInst
>(U
);
1115 if (!TI
|| TI
->getType()->getPrimitiveSizeInBits() > NewWidth
)
1119 // If the pattern matches, truncate the inputs to the narrower type and
1120 // use the sadd_with_overflow intrinsic to efficiently compute both the
1121 // result and the overflow bit.
1122 Type
*NewType
= IntegerType::get(OrigAdd
->getContext(), NewWidth
);
1123 Function
*F
= Intrinsic::getDeclaration(
1124 I
.getModule(), Intrinsic::sadd_with_overflow
, NewType
);
1126 InstCombiner::BuilderTy
&Builder
= IC
.Builder
;
1128 // Put the new code above the original add, in case there are any uses of the
1129 // add between the add and the compare.
1130 Builder
.SetInsertPoint(OrigAdd
);
1132 Value
*TruncA
= Builder
.CreateTrunc(A
, NewType
, A
->getName() + ".trunc");
1133 Value
*TruncB
= Builder
.CreateTrunc(B
, NewType
, B
->getName() + ".trunc");
1134 CallInst
*Call
= Builder
.CreateCall(F
, {TruncA
, TruncB
}, "sadd");
1135 Value
*Add
= Builder
.CreateExtractValue(Call
, 0, "sadd.result");
1136 Value
*ZExt
= Builder
.CreateZExt(Add
, OrigAdd
->getType());
1138 // The inner add was the result of the narrow add, zero extended to the
1139 // wider type. Replace it with the result computed by the intrinsic.
1140 IC
.replaceInstUsesWith(*OrigAdd
, ZExt
);
1141 IC
.eraseInstFromFunction(*OrigAdd
);
1143 // The original icmp gets replaced with the overflow value.
1144 return ExtractValueInst::Create(Call
, 1, "sadd.overflow");
1148 /// icmp eq/ne (urem/srem %x, %y), 0
1149 /// iff %y is a power-of-two, we can replace this with a bit test:
1150 /// icmp eq/ne (and %x, (add %y, -1)), 0
1151 Instruction
*InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst
&I
) {
1152 // This fold is only valid for equality predicates.
1153 if (!I
.isEquality())
1155 ICmpInst::Predicate Pred
;
1156 Value
*X
, *Y
, *Zero
;
1157 if (!match(&I
, m_ICmp(Pred
, m_OneUse(m_IRem(m_Value(X
), m_Value(Y
))),
1158 m_CombineAnd(m_Zero(), m_Value(Zero
)))))
1160 if (!isKnownToBeAPowerOfTwo(Y
, /*OrZero*/ true, 0, &I
))
1162 // This may increase instruction count, we don't enforce that Y is a constant.
1163 Value
*Mask
= Builder
.CreateAdd(Y
, Constant::getAllOnesValue(Y
->getType()));
1164 Value
*Masked
= Builder
.CreateAnd(X
, Mask
);
1165 return ICmpInst::Create(Instruction::ICmp
, Pred
, Masked
, Zero
);
1168 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1169 /// by one-less-than-bitwidth into a sign test on the original value.
1170 Instruction
*InstCombinerImpl::foldSignBitTest(ICmpInst
&I
) {
1172 ICmpInst::Predicate Pred
;
1173 if (!I
.isEquality() || !match(&I
, m_ICmp(Pred
, m_Instruction(Val
), m_Zero())))
1180 if (match(Val
, m_TruncOrSelf(m_Shr(m_Value(X
), m_Constant(C
))))) {
1182 unsigned XBitWidth
= XTy
->getScalarSizeInBits();
1183 if (!match(C
, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ
,
1184 APInt(XBitWidth
, XBitWidth
- 1))))
1186 } else if (isa
<BinaryOperator
>(Val
) &&
1187 (X
= reassociateShiftAmtsOfTwoSameDirectionShifts(
1188 cast
<BinaryOperator
>(Val
), SQ
.getWithInstruction(Val
),
1189 /*AnalyzeForSignBitExtraction=*/true))) {
1194 return ICmpInst::Create(Instruction::ICmp
,
1195 Pred
== ICmpInst::ICMP_EQ
? ICmpInst::ICMP_SGE
1196 : ICmpInst::ICMP_SLT
,
1197 X
, ConstantInt::getNullValue(XTy
));
1200 // Handle icmp pred X, 0
1201 Instruction
*InstCombinerImpl::foldICmpWithZero(ICmpInst
&Cmp
) {
1202 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1203 if (!match(Cmp
.getOperand(1), m_Zero()))
1206 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1207 if (Pred
== ICmpInst::ICMP_SGT
) {
1209 if (match(Cmp
.getOperand(0), m_SMin(m_Value(A
), m_Value(B
)))) {
1210 if (isKnownPositive(A
, SQ
.getWithInstruction(&Cmp
)))
1211 return new ICmpInst(Pred
, B
, Cmp
.getOperand(1));
1212 if (isKnownPositive(B
, SQ
.getWithInstruction(&Cmp
)))
1213 return new ICmpInst(Pred
, A
, Cmp
.getOperand(1));
1217 if (Instruction
*New
= foldIRemByPowerOfTwoToBitTest(Cmp
))
1221 // icmp eq/ne (urem %x, %y), 0
1222 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1225 if (match(Cmp
.getOperand(0), m_URem(m_Value(X
), m_Value(Y
))) &&
1226 ICmpInst::isEquality(Pred
)) {
1227 KnownBits XKnown
= computeKnownBits(X
, 0, &Cmp
);
1228 KnownBits YKnown
= computeKnownBits(Y
, 0, &Cmp
);
1229 if (XKnown
.countMaxPopulation() == 1 && YKnown
.countMinPopulation() >= 2)
1230 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
1233 // (icmp eq/ne (mul X Y)) -> (icmp eq/ne X/Y) if we know about whether X/Y are
1234 // odd/non-zero/there is no overflow.
1235 if (match(Cmp
.getOperand(0), m_Mul(m_Value(X
), m_Value(Y
))) &&
1236 ICmpInst::isEquality(Pred
)) {
1238 KnownBits XKnown
= computeKnownBits(X
, 0, &Cmp
);
1241 if (XKnown
.countMaxTrailingZeros() == 0)
1242 return new ICmpInst(Pred
, Y
, Cmp
.getOperand(1));
1244 KnownBits YKnown
= computeKnownBits(Y
, 0, &Cmp
);
1247 if (YKnown
.countMaxTrailingZeros() == 0)
1248 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
1250 auto *BO0
= cast
<OverflowingBinaryOperator
>(Cmp
.getOperand(0));
1251 if (BO0
->hasNoUnsignedWrap() || BO0
->hasNoSignedWrap()) {
1252 const SimplifyQuery Q
= SQ
.getWithInstruction(&Cmp
);
1253 // `isKnownNonZero` does more analysis than just `!KnownBits.One.isZero()`
1254 // but to avoid unnecessary work, first just if this is an obvious case.
1256 // if X non-zero and NoOverflow(X * Y)
1258 if (!XKnown
.One
.isZero() || isKnownNonZero(X
, DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
1259 return new ICmpInst(Pred
, Y
, Cmp
.getOperand(1));
1261 // if Y non-zero and NoOverflow(X * Y)
1263 if (!YKnown
.One
.isZero() || isKnownNonZero(Y
, DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
1264 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
1266 // Note, we are skipping cases:
1267 // if Y % 2 != 0 AND X % 2 != 0
1269 // if X non-zero and Y non-zero and NoOverflow(X * Y)
1271 // Those can be simplified later as we would have already replaced the (icmp
1272 // eq/ne (mul X, Y)) with (icmp eq/ne X/Y) and if X/Y is known non-zero that
1273 // will fold to a constant elsewhere.
1278 /// Fold icmp Pred X, C.
1279 /// TODO: This code structure does not make sense. The saturating add fold
1280 /// should be moved to some other helper and extended as noted below (it is also
1281 /// possible that code has been made unnecessary - do we canonicalize IR to
1282 /// overflow/saturating intrinsics or not?).
1283 Instruction
*InstCombinerImpl::foldICmpWithConstant(ICmpInst
&Cmp
) {
1284 // Match the following pattern, which is a common idiom when writing
1285 // overflow-safe integer arithmetic functions. The source performs an addition
1286 // in wider type and explicitly checks for overflow using comparisons against
1287 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1289 // TODO: This could probably be generalized to handle other overflow-safe
1290 // operations if we worked out the formulas to compute the appropriate magic
1294 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1295 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1296 Value
*Op0
= Cmp
.getOperand(0), *Op1
= Cmp
.getOperand(1);
1298 ConstantInt
*CI
, *CI2
; // I = icmp ugt (add (add A, B), CI2), CI
1299 if (Pred
== ICmpInst::ICMP_UGT
&& match(Op1
, m_ConstantInt(CI
)) &&
1300 match(Op0
, m_Add(m_Add(m_Value(A
), m_Value(B
)), m_ConstantInt(CI2
))))
1301 if (Instruction
*Res
= processUGT_ADDCST_ADD(Cmp
, A
, B
, CI2
, CI
, *this))
1304 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1305 Constant
*C
= dyn_cast
<Constant
>(Op1
);
1309 if (auto *Phi
= dyn_cast
<PHINode
>(Op0
))
1310 if (all_of(Phi
->operands(), [](Value
*V
) { return isa
<Constant
>(V
); })) {
1311 SmallVector
<Constant
*> Ops
;
1312 for (Value
*V
: Phi
->incoming_values()) {
1314 ConstantFoldCompareInstOperands(Pred
, cast
<Constant
>(V
), C
, DL
);
1319 Builder
.SetInsertPoint(Phi
);
1320 PHINode
*NewPhi
= Builder
.CreatePHI(Cmp
.getType(), Phi
->getNumOperands());
1321 for (auto [V
, Pred
] : zip(Ops
, Phi
->blocks()))
1322 NewPhi
->addIncoming(V
, Pred
);
1323 return replaceInstUsesWith(Cmp
, NewPhi
);
1326 if (Instruction
*R
= tryFoldInstWithCtpopWithNot(&Cmp
))
1332 /// Canonicalize icmp instructions based on dominating conditions.
1333 Instruction
*InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst
&Cmp
) {
1334 // We already checked simple implication in InstSimplify, only handle complex
1336 Value
*X
= Cmp
.getOperand(0), *Y
= Cmp
.getOperand(1);
1337 ICmpInst::Predicate DomPred
;
1339 if (!match(Y
, m_APInt(C
)))
1342 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1343 ConstantRange CR
= ConstantRange::makeExactICmpRegion(Pred
, *C
);
1345 auto handleDomCond
= [&](Value
*DomCond
, bool CondIsTrue
) -> Instruction
* {
1347 if (!match(DomCond
, m_ICmp(DomPred
, m_Specific(X
), m_APInt(DomC
))))
1349 // We have 2 compares of a variable with constants. Calculate the constant
1350 // ranges of those compares to see if we can transform the 2nd compare:
1352 // DomCond = icmp DomPred X, DomC
1353 // br DomCond, CmpBB, FalseBB
1355 // Cmp = icmp Pred X, C
1357 DomPred
= CmpInst::getInversePredicate(DomPred
);
1358 ConstantRange DominatingCR
=
1359 ConstantRange::makeExactICmpRegion(DomPred
, *DomC
);
1360 ConstantRange Intersection
= DominatingCR
.intersectWith(CR
);
1361 ConstantRange Difference
= DominatingCR
.difference(CR
);
1362 if (Intersection
.isEmptySet())
1363 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
1364 if (Difference
.isEmptySet())
1365 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
1367 // Canonicalizing a sign bit comparison that gets used in a branch,
1368 // pessimizes codegen by generating branch on zero instruction instead
1369 // of a test and branch. So we avoid canonicalizing in such situations
1370 // because test and branch instruction has better branch displacement
1371 // than compare and branch instruction.
1373 bool IsSignBit
= isSignBitCheck(Pred
, *C
, UnusedBit
);
1374 if (Cmp
.isEquality() || (IsSignBit
&& hasBranchUse(Cmp
)))
1377 // Avoid an infinite loop with min/max canonicalization.
1378 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1379 if (Cmp
.hasOneUse() &&
1380 match(Cmp
.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1383 if (const APInt
*EqC
= Intersection
.getSingleElement())
1384 return new ICmpInst(ICmpInst::ICMP_EQ
, X
, Builder
.getInt(*EqC
));
1385 if (const APInt
*NeC
= Difference
.getSingleElement())
1386 return new ICmpInst(ICmpInst::ICMP_NE
, X
, Builder
.getInt(*NeC
));
1390 for (BranchInst
*BI
: DC
.conditionsFor(X
)) {
1391 auto *Cond
= BI
->getCondition();
1392 BasicBlockEdge
Edge0(BI
->getParent(), BI
->getSuccessor(0));
1393 if (DT
.dominates(Edge0
, Cmp
.getParent())) {
1394 if (auto *V
= handleDomCond(Cond
, true))
1397 BasicBlockEdge
Edge1(BI
->getParent(), BI
->getSuccessor(1));
1398 if (DT
.dominates(Edge1
, Cmp
.getParent()))
1399 if (auto *V
= handleDomCond(Cond
, false))
1407 /// Fold icmp (trunc X), C.
1408 Instruction
*InstCombinerImpl::foldICmpTruncConstant(ICmpInst
&Cmp
,
1411 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1412 Value
*X
= Trunc
->getOperand(0);
1413 if (C
.isOne() && C
.getBitWidth() > 1) {
1414 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1416 if (Pred
== ICmpInst::ICMP_SLT
&& match(X
, m_Signum(m_Value(V
))))
1417 return new ICmpInst(ICmpInst::ICMP_SLT
, V
,
1418 ConstantInt::get(V
->getType(), 1));
1421 Type
*SrcTy
= X
->getType();
1422 unsigned DstBits
= Trunc
->getType()->getScalarSizeInBits(),
1423 SrcBits
= SrcTy
->getScalarSizeInBits();
1425 // TODO: Handle any shifted constant by subtracting trailing zeros.
1426 // TODO: Handle non-equality predicates.
1428 if (Cmp
.isEquality() && match(X
, m_Shl(m_One(), m_Value(Y
)))) {
1429 // (trunc (1 << Y) to iN) == 0 --> Y u>= N
1430 // (trunc (1 << Y) to iN) != 0 --> Y u< N
1432 auto NewPred
= (Pred
== Cmp
.ICMP_EQ
) ? Cmp
.ICMP_UGE
: Cmp
.ICMP_ULT
;
1433 return new ICmpInst(NewPred
, Y
, ConstantInt::get(SrcTy
, DstBits
));
1435 // (trunc (1 << Y) to iN) == 2**C --> Y == C
1436 // (trunc (1 << Y) to iN) != 2**C --> Y != C
1438 return new ICmpInst(Pred
, Y
, ConstantInt::get(SrcTy
, C
.logBase2()));
1441 if (Cmp
.isEquality() && Trunc
->hasOneUse()) {
1442 // Canonicalize to a mask and wider compare if the wide type is suitable:
1443 // (trunc X to i8) == C --> (X & 0xff) == (zext C)
1444 if (!SrcTy
->isVectorTy() && shouldChangeType(DstBits
, SrcBits
)) {
1446 ConstantInt::get(SrcTy
, APInt::getLowBitsSet(SrcBits
, DstBits
));
1447 Value
*And
= Builder
.CreateAnd(X
, Mask
);
1448 Constant
*WideC
= ConstantInt::get(SrcTy
, C
.zext(SrcBits
));
1449 return new ICmpInst(Pred
, And
, WideC
);
1452 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1453 // of the high bits truncated out of x are known.
1454 KnownBits Known
= computeKnownBits(X
, 0, &Cmp
);
1456 // If all the high bits are known, we can do this xform.
1457 if ((Known
.Zero
| Known
.One
).countl_one() >= SrcBits
- DstBits
) {
1458 // Pull in the high bits from known-ones set.
1459 APInt NewRHS
= C
.zext(SrcBits
);
1460 NewRHS
|= Known
.One
& APInt::getHighBitsSet(SrcBits
, SrcBits
- DstBits
);
1461 return new ICmpInst(Pred
, X
, ConstantInt::get(SrcTy
, NewRHS
));
1465 // Look through truncated right-shift of the sign-bit for a sign-bit check:
1466 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0
1467 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1469 const APInt
*ShAmtC
;
1471 if (isSignBitCheck(Pred
, C
, TrueIfSigned
) &&
1472 match(X
, m_Shr(m_Value(ShOp
), m_APInt(ShAmtC
))) &&
1473 DstBits
== SrcBits
- ShAmtC
->getZExtValue()) {
1474 return TrueIfSigned
? new ICmpInst(ICmpInst::ICMP_SLT
, ShOp
,
1475 ConstantInt::getNullValue(SrcTy
))
1476 : new ICmpInst(ICmpInst::ICMP_SGT
, ShOp
,
1477 ConstantInt::getAllOnesValue(SrcTy
));
1483 /// Fold icmp (trunc X), (trunc Y).
1484 /// Fold icmp (trunc X), (zext Y).
1486 InstCombinerImpl::foldICmpTruncWithTruncOrExt(ICmpInst
&Cmp
,
1487 const SimplifyQuery
&Q
) {
1492 ICmpInst::Predicate Pred
;
1493 bool YIsZext
= false;
1494 // Try to match icmp (trunc X), (trunc Y)
1495 if (match(&Cmp
, m_ICmp(Pred
, m_Trunc(m_Value(X
)), m_Trunc(m_Value(Y
))))) {
1496 if (X
->getType() != Y
->getType() &&
1497 (!Cmp
.getOperand(0)->hasOneUse() || !Cmp
.getOperand(1)->hasOneUse()))
1499 if (!isDesirableIntType(X
->getType()->getScalarSizeInBits()) &&
1500 isDesirableIntType(Y
->getType()->getScalarSizeInBits())) {
1502 Pred
= Cmp
.getSwappedPredicate(Pred
);
1505 // Try to match icmp (trunc X), (zext Y)
1506 else if (match(&Cmp
, m_c_ICmp(Pred
, m_Trunc(m_Value(X
)),
1507 m_OneUse(m_ZExt(m_Value(Y
))))))
1513 Type
*TruncTy
= Cmp
.getOperand(0)->getType();
1514 unsigned TruncBits
= TruncTy
->getScalarSizeInBits();
1516 // If this transform will end up changing from desirable types -> undesirable
1518 if (isDesirableIntType(TruncBits
) &&
1519 !isDesirableIntType(X
->getType()->getScalarSizeInBits()))
1522 // Check if the trunc is unneeded.
1523 KnownBits KnownX
= llvm::computeKnownBits(X
, /*Depth*/ 0, Q
);
1524 if (KnownX
.countMaxActiveBits() > TruncBits
)
1528 // If Y is also a trunc, make sure it is unneeded.
1529 KnownBits KnownY
= llvm::computeKnownBits(Y
, /*Depth*/ 0, Q
);
1530 if (KnownY
.countMaxActiveBits() > TruncBits
)
1534 Value
*NewY
= Builder
.CreateZExtOrTrunc(Y
, X
->getType());
1535 return new ICmpInst(Pred
, X
, NewY
);
1538 /// Fold icmp (xor X, Y), C.
1539 Instruction
*InstCombinerImpl::foldICmpXorConstant(ICmpInst
&Cmp
,
1540 BinaryOperator
*Xor
,
1542 if (Instruction
*I
= foldICmpXorShiftConst(Cmp
, Xor
, C
))
1545 Value
*X
= Xor
->getOperand(0);
1546 Value
*Y
= Xor
->getOperand(1);
1548 if (!match(Y
, m_APInt(XorC
)))
1551 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1553 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1554 bool TrueIfSigned
= false;
1555 if (isSignBitCheck(Cmp
.getPredicate(), C
, TrueIfSigned
)) {
1557 // If the sign bit of the XorCst is not set, there is no change to
1558 // the operation, just stop using the Xor.
1559 if (!XorC
->isNegative())
1560 return replaceOperand(Cmp
, 0, X
);
1562 // Emit the opposite comparison.
1564 return new ICmpInst(ICmpInst::ICMP_SGT
, X
,
1565 ConstantInt::getAllOnesValue(X
->getType()));
1567 return new ICmpInst(ICmpInst::ICMP_SLT
, X
,
1568 ConstantInt::getNullValue(X
->getType()));
1571 if (Xor
->hasOneUse()) {
1572 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1573 if (!Cmp
.isEquality() && XorC
->isSignMask()) {
1574 Pred
= Cmp
.getFlippedSignednessPredicate();
1575 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), C
^ *XorC
));
1578 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1579 if (!Cmp
.isEquality() && XorC
->isMaxSignedValue()) {
1580 Pred
= Cmp
.getFlippedSignednessPredicate();
1581 Pred
= Cmp
.getSwappedPredicate(Pred
);
1582 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), C
^ *XorC
));
1586 // Mask constant magic can eliminate an 'xor' with unsigned compares.
1587 if (Pred
== ICmpInst::ICMP_UGT
) {
1588 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1589 if (*XorC
== ~C
&& (C
+ 1).isPowerOf2())
1590 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, Y
);
1591 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1592 if (*XorC
== C
&& (C
+ 1).isPowerOf2())
1593 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, Y
);
1595 if (Pred
== ICmpInst::ICMP_ULT
) {
1596 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1597 if (*XorC
== -C
&& C
.isPowerOf2())
1598 return new ICmpInst(ICmpInst::ICMP_UGT
, X
,
1599 ConstantInt::get(X
->getType(), ~C
));
1600 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1601 if (*XorC
== C
&& (-C
).isPowerOf2())
1602 return new ICmpInst(ICmpInst::ICMP_UGT
, X
,
1603 ConstantInt::get(X
->getType(), ~C
));
1608 /// For power-of-2 C:
1609 /// ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1)
1610 /// ((X s>> ShiftC) ^ X) u> (C - 1) --> (X + C) u> ((C << 1) - 1)
1611 Instruction
*InstCombinerImpl::foldICmpXorShiftConst(ICmpInst
&Cmp
,
1612 BinaryOperator
*Xor
,
1614 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1616 if (Pred
== ICmpInst::ICMP_ULT
)
1618 else if (Pred
== ICmpInst::ICMP_UGT
&& !C
.isMaxValue())
1622 if (!PowerOf2
.isPowerOf2())
1625 const APInt
*ShiftC
;
1626 if (!match(Xor
, m_OneUse(m_c_Xor(m_Value(X
),
1627 m_AShr(m_Deferred(X
), m_APInt(ShiftC
))))))
1629 uint64_t Shift
= ShiftC
->getLimitedValue();
1630 Type
*XType
= X
->getType();
1631 if (Shift
== 0 || PowerOf2
.isMinSignedValue())
1633 Value
*Add
= Builder
.CreateAdd(X
, ConstantInt::get(XType
, PowerOf2
));
1635 Pred
== ICmpInst::ICMP_ULT
? PowerOf2
<< 1 : ((PowerOf2
<< 1) - 1);
1636 return new ICmpInst(Pred
, Add
, ConstantInt::get(XType
, Bound
));
1639 /// Fold icmp (and (sh X, Y), C2), C1.
1640 Instruction
*InstCombinerImpl::foldICmpAndShift(ICmpInst
&Cmp
,
1641 BinaryOperator
*And
,
1644 BinaryOperator
*Shift
= dyn_cast
<BinaryOperator
>(And
->getOperand(0));
1645 if (!Shift
|| !Shift
->isShift())
1648 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1649 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1650 // code produced by the clang front-end, for bitfield access.
1651 // This seemingly simple opportunity to fold away a shift turns out to be
1652 // rather complicated. See PR17827 for details.
1653 unsigned ShiftOpcode
= Shift
->getOpcode();
1654 bool IsShl
= ShiftOpcode
== Instruction::Shl
;
1656 if (match(Shift
->getOperand(1), m_APInt(C3
))) {
1657 APInt NewAndCst
, NewCmpCst
;
1658 bool AnyCmpCstBitsShiftedOut
;
1659 if (ShiftOpcode
== Instruction::Shl
) {
1660 // For a left shift, we can fold if the comparison is not signed. We can
1661 // also fold a signed comparison if the mask value and comparison value
1662 // are not negative. These constraints may not be obvious, but we can
1663 // prove that they are correct using an SMT solver.
1664 if (Cmp
.isSigned() && (C2
.isNegative() || C1
.isNegative()))
1667 NewCmpCst
= C1
.lshr(*C3
);
1668 NewAndCst
= C2
.lshr(*C3
);
1669 AnyCmpCstBitsShiftedOut
= NewCmpCst
.shl(*C3
) != C1
;
1670 } else if (ShiftOpcode
== Instruction::LShr
) {
1671 // For a logical right shift, we can fold if the comparison is not signed.
1672 // We can also fold a signed comparison if the shifted mask value and the
1673 // shifted comparison value are not negative. These constraints may not be
1674 // obvious, but we can prove that they are correct using an SMT solver.
1675 NewCmpCst
= C1
.shl(*C3
);
1676 NewAndCst
= C2
.shl(*C3
);
1677 AnyCmpCstBitsShiftedOut
= NewCmpCst
.lshr(*C3
) != C1
;
1678 if (Cmp
.isSigned() && (NewAndCst
.isNegative() || NewCmpCst
.isNegative()))
1681 // For an arithmetic shift, check that both constants don't use (in a
1682 // signed sense) the top bits being shifted out.
1683 assert(ShiftOpcode
== Instruction::AShr
&& "Unknown shift opcode");
1684 NewCmpCst
= C1
.shl(*C3
);
1685 NewAndCst
= C2
.shl(*C3
);
1686 AnyCmpCstBitsShiftedOut
= NewCmpCst
.ashr(*C3
) != C1
;
1687 if (NewAndCst
.ashr(*C3
) != C2
)
1691 if (AnyCmpCstBitsShiftedOut
) {
1692 // If we shifted bits out, the fold is not going to work out. As a
1693 // special case, check to see if this means that the result is always
1694 // true or false now.
1695 if (Cmp
.getPredicate() == ICmpInst::ICMP_EQ
)
1696 return replaceInstUsesWith(Cmp
, ConstantInt::getFalse(Cmp
.getType()));
1697 if (Cmp
.getPredicate() == ICmpInst::ICMP_NE
)
1698 return replaceInstUsesWith(Cmp
, ConstantInt::getTrue(Cmp
.getType()));
1700 Value
*NewAnd
= Builder
.CreateAnd(
1701 Shift
->getOperand(0), ConstantInt::get(And
->getType(), NewAndCst
));
1702 return new ICmpInst(Cmp
.getPredicate(),
1703 NewAnd
, ConstantInt::get(And
->getType(), NewCmpCst
));
1707 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1708 // preferable because it allows the C2 << Y expression to be hoisted out of a
1709 // loop if Y is invariant and X is not.
1710 if (Shift
->hasOneUse() && C1
.isZero() && Cmp
.isEquality() &&
1711 !Shift
->isArithmeticShift() && !isa
<Constant
>(Shift
->getOperand(0))) {
1714 IsShl
? Builder
.CreateLShr(And
->getOperand(1), Shift
->getOperand(1))
1715 : Builder
.CreateShl(And
->getOperand(1), Shift
->getOperand(1));
1717 // Compute X & (C2 << Y).
1718 Value
*NewAnd
= Builder
.CreateAnd(Shift
->getOperand(0), NewShift
);
1719 return replaceOperand(Cmp
, 0, NewAnd
);
1725 /// Fold icmp (and X, C2), C1.
1726 Instruction
*InstCombinerImpl::foldICmpAndConstConst(ICmpInst
&Cmp
,
1727 BinaryOperator
*And
,
1729 bool isICMP_NE
= Cmp
.getPredicate() == ICmpInst::ICMP_NE
;
1731 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1732 // TODO: We canonicalize to the longer form for scalars because we have
1733 // better analysis/folds for icmp, and codegen may be better with icmp.
1734 if (isICMP_NE
&& Cmp
.getType()->isVectorTy() && C1
.isZero() &&
1735 match(And
->getOperand(1), m_One()))
1736 return new TruncInst(And
->getOperand(0), Cmp
.getType());
1740 if (!match(And
, m_And(m_Value(X
), m_APInt(C2
))))
1743 // Don't perform the following transforms if the AND has multiple uses
1744 if (!And
->hasOneUse())
1747 if (Cmp
.isEquality() && C1
.isZero()) {
1748 // Restrict this fold to single-use 'and' (PR10267).
1749 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1750 if (C2
->isSignMask()) {
1751 Constant
*Zero
= Constant::getNullValue(X
->getType());
1752 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_SGE
;
1753 return new ICmpInst(NewPred
, X
, Zero
);
1757 KnownBits Know
= computeKnownBits(And
->getOperand(0), 0, And
);
1758 // Set high zeros of C2 to allow matching negated power-of-2.
1759 NewC2
= *C2
| APInt::getHighBitsSet(C2
->getBitWidth(),
1760 Know
.countMinLeadingZeros());
1762 // Restrict this fold only for single-use 'and' (PR10267).
1763 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1764 if (NewC2
.isNegatedPowerOf2()) {
1765 Constant
*NegBOC
= ConstantInt::get(And
->getType(), -NewC2
);
1766 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
1767 return new ICmpInst(NewPred
, X
, NegBOC
);
1771 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1772 // the input width without changing the value produced, eliminate the cast:
1774 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1776 // We can do this transformation if the constants do not have their sign bits
1777 // set or if it is an equality comparison. Extending a relational comparison
1778 // when we're checking the sign bit would not work.
1780 if (match(And
->getOperand(0), m_OneUse(m_Trunc(m_Value(W
)))) &&
1781 (Cmp
.isEquality() || (!C1
.isNegative() && !C2
->isNegative()))) {
1782 // TODO: Is this a good transform for vectors? Wider types may reduce
1783 // throughput. Should this transform be limited (even for scalars) by using
1784 // shouldChangeType()?
1785 if (!Cmp
.getType()->isVectorTy()) {
1786 Type
*WideType
= W
->getType();
1787 unsigned WideScalarBits
= WideType
->getScalarSizeInBits();
1788 Constant
*ZextC1
= ConstantInt::get(WideType
, C1
.zext(WideScalarBits
));
1789 Constant
*ZextC2
= ConstantInt::get(WideType
, C2
->zext(WideScalarBits
));
1790 Value
*NewAnd
= Builder
.CreateAnd(W
, ZextC2
, And
->getName());
1791 return new ICmpInst(Cmp
.getPredicate(), NewAnd
, ZextC1
);
1795 if (Instruction
*I
= foldICmpAndShift(Cmp
, And
, C1
, *C2
))
1798 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1799 // (icmp pred (and A, (or (shl 1, B), 1), 0))
1801 // iff pred isn't signed
1802 if (!Cmp
.isSigned() && C1
.isZero() && And
->getOperand(0)->hasOneUse() &&
1803 match(And
->getOperand(1), m_One())) {
1804 Constant
*One
= cast
<Constant
>(And
->getOperand(1));
1805 Value
*Or
= And
->getOperand(0);
1806 Value
*A
, *B
, *LShr
;
1807 if (match(Or
, m_Or(m_Value(LShr
), m_Value(A
))) &&
1808 match(LShr
, m_LShr(m_Specific(A
), m_Value(B
)))) {
1809 unsigned UsesRemoved
= 0;
1810 if (And
->hasOneUse())
1812 if (Or
->hasOneUse())
1814 if (LShr
->hasOneUse())
1817 // Compute A & ((1 << B) | 1)
1818 unsigned RequireUsesRemoved
= match(B
, m_ImmConstant()) ? 1 : 3;
1819 if (UsesRemoved
>= RequireUsesRemoved
) {
1821 Builder
.CreateOr(Builder
.CreateShl(One
, B
, LShr
->getName(),
1823 One
, Or
->getName());
1824 Value
*NewAnd
= Builder
.CreateAnd(A
, NewOr
, And
->getName());
1825 return replaceOperand(Cmp
, 0, NewAnd
);
1833 /// Fold icmp (and X, Y), C.
1834 Instruction
*InstCombinerImpl::foldICmpAndConstant(ICmpInst
&Cmp
,
1835 BinaryOperator
*And
,
1837 if (Instruction
*I
= foldICmpAndConstConst(Cmp
, And
, C
))
1840 const ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1842 if (isSignBitCheck(Pred
, C
, TrueIfNeg
)) {
1843 // ((X - 1) & ~X) < 0 --> X == 0
1844 // ((X - 1) & ~X) >= 0 --> X != 0
1846 if (match(And
->getOperand(0), m_Add(m_Value(X
), m_AllOnes())) &&
1847 match(And
->getOperand(1), m_Not(m_Specific(X
)))) {
1848 auto NewPred
= TrueIfNeg
? CmpInst::ICMP_EQ
: CmpInst::ICMP_NE
;
1849 return new ICmpInst(NewPred
, X
, ConstantInt::getNullValue(X
->getType()));
1851 // (X & X) < 0 --> X == MinSignedC
1852 // (X & X) > -1 --> X != MinSignedC
1853 if (match(And
, m_c_And(m_Neg(m_Value(X
)), m_Deferred(X
)))) {
1854 Constant
*MinSignedC
= ConstantInt::get(
1856 APInt::getSignedMinValue(X
->getType()->getScalarSizeInBits()));
1857 auto NewPred
= TrueIfNeg
? CmpInst::ICMP_EQ
: CmpInst::ICMP_NE
;
1858 return new ICmpInst(NewPred
, X
, MinSignedC
);
1862 // TODO: These all require that Y is constant too, so refactor with the above.
1864 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1865 Value
*X
= And
->getOperand(0);
1866 Value
*Y
= And
->getOperand(1);
1867 if (auto *C2
= dyn_cast
<ConstantInt
>(Y
))
1868 if (auto *LI
= dyn_cast
<LoadInst
>(X
))
1869 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0)))
1870 if (auto *GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
1871 if (Instruction
*Res
=
1872 foldCmpLoadFromIndexedGlobal(LI
, GEP
, GV
, Cmp
, C2
))
1875 if (!Cmp
.isEquality())
1878 // X & -C == -C -> X > u ~C
1879 // X & -C != -C -> X <= u ~C
1880 // iff C is a power of 2
1881 if (Cmp
.getOperand(1) == Y
&& C
.isNegatedPowerOf2()) {
1883 Pred
== CmpInst::ICMP_EQ
? CmpInst::ICMP_UGT
: CmpInst::ICMP_ULE
;
1884 return new ICmpInst(NewPred
, X
, SubOne(cast
<Constant
>(Cmp
.getOperand(1))));
1887 // If we are testing the intersection of 2 select-of-nonzero-constants with no
1888 // common bits set, it's the same as checking if exactly one select condition
1890 // ((A ? TC : FC) & (B ? TC : FC)) == 0 --> xor A, B
1891 // ((A ? TC : FC) & (B ? TC : FC)) != 0 --> not(xor A, B)
1892 // TODO: Generalize for non-constant values.
1893 // TODO: Handle signed/unsigned predicates.
1894 // TODO: Handle other bitwise logic connectors.
1895 // TODO: Extend to handle a non-zero compare constant.
1896 if (C
.isZero() && (Pred
== CmpInst::ICMP_EQ
|| And
->hasOneUse())) {
1897 assert(Cmp
.isEquality() && "Not expecting non-equality predicates");
1899 const APInt
*TC
, *FC
;
1900 if (match(X
, m_Select(m_Value(A
), m_APInt(TC
), m_APInt(FC
))) &&
1902 m_Select(m_Value(B
), m_SpecificInt(*TC
), m_SpecificInt(*FC
))) &&
1903 !TC
->isZero() && !FC
->isZero() && !TC
->intersects(*FC
)) {
1904 Value
*R
= Builder
.CreateXor(A
, B
);
1905 if (Pred
== CmpInst::ICMP_NE
)
1906 R
= Builder
.CreateNot(R
);
1907 return replaceInstUsesWith(Cmp
, R
);
1911 // ((zext i1 X) & Y) == 0 --> !((trunc Y) & X)
1912 // ((zext i1 X) & Y) != 0 --> ((trunc Y) & X)
1913 // ((zext i1 X) & Y) == 1 --> ((trunc Y) & X)
1914 // ((zext i1 X) & Y) != 1 --> !((trunc Y) & X)
1915 if (match(And
, m_OneUse(m_c_And(m_OneUse(m_ZExt(m_Value(X
))), m_Value(Y
)))) &&
1916 X
->getType()->isIntOrIntVectorTy(1) && (C
.isZero() || C
.isOne())) {
1917 Value
*TruncY
= Builder
.CreateTrunc(Y
, X
->getType());
1918 if (C
.isZero() ^ (Pred
== CmpInst::ICMP_NE
)) {
1919 Value
*And
= Builder
.CreateAnd(TruncY
, X
);
1920 return BinaryOperator::CreateNot(And
);
1922 return BinaryOperator::CreateAnd(TruncY
, X
);
1928 /// Fold icmp eq/ne (or (xor/sub (X1, X2), xor/sub (X3, X4))), 0.
1929 static Value
*foldICmpOrXorSubChain(ICmpInst
&Cmp
, BinaryOperator
*Or
,
1930 InstCombiner::BuilderTy
&Builder
) {
1931 // Are we using xors or subs to bitwise check for a pair or pairs of
1932 // (in)equalities? Convert to a shorter form that has more potential to be
1933 // folded even further.
1934 // ((X1 ^/- X2) || (X3 ^/- X4)) == 0 --> (X1 == X2) && (X3 == X4)
1935 // ((X1 ^/- X2) || (X3 ^/- X4)) != 0 --> (X1 != X2) || (X3 != X4)
1936 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) == 0 -->
1937 // (X1 == X2) && (X3 == X4) && (X5 == X6)
1938 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) != 0 -->
1939 // (X1 != X2) || (X3 != X4) || (X5 != X6)
1940 SmallVector
<std::pair
<Value
*, Value
*>, 2> CmpValues
;
1941 SmallVector
<Value
*, 16> WorkList(1, Or
);
1943 while (!WorkList
.empty()) {
1944 auto MatchOrOperatorArgument
= [&](Value
*OrOperatorArgument
) {
1947 if (match(OrOperatorArgument
,
1948 m_OneUse(m_Xor(m_Value(Lhs
), m_Value(Rhs
))))) {
1949 CmpValues
.emplace_back(Lhs
, Rhs
);
1953 if (match(OrOperatorArgument
,
1954 m_OneUse(m_Sub(m_Value(Lhs
), m_Value(Rhs
))))) {
1955 CmpValues
.emplace_back(Lhs
, Rhs
);
1959 WorkList
.push_back(OrOperatorArgument
);
1962 Value
*CurrentValue
= WorkList
.pop_back_val();
1963 Value
*OrOperatorLhs
, *OrOperatorRhs
;
1965 if (!match(CurrentValue
,
1966 m_Or(m_Value(OrOperatorLhs
), m_Value(OrOperatorRhs
)))) {
1970 MatchOrOperatorArgument(OrOperatorRhs
);
1971 MatchOrOperatorArgument(OrOperatorLhs
);
1974 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1975 auto BOpc
= Pred
== CmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
1976 Value
*LhsCmp
= Builder
.CreateICmp(Pred
, CmpValues
.rbegin()->first
,
1977 CmpValues
.rbegin()->second
);
1979 for (auto It
= CmpValues
.rbegin() + 1; It
!= CmpValues
.rend(); ++It
) {
1980 Value
*RhsCmp
= Builder
.CreateICmp(Pred
, It
->first
, It
->second
);
1981 LhsCmp
= Builder
.CreateBinOp(BOpc
, LhsCmp
, RhsCmp
);
1987 /// Fold icmp (or X, Y), C.
1988 Instruction
*InstCombinerImpl::foldICmpOrConstant(ICmpInst
&Cmp
,
1991 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1993 // icmp slt signum(V) 1 --> icmp slt V, 1
1995 if (Pred
== ICmpInst::ICMP_SLT
&& match(Or
, m_Signum(m_Value(V
))))
1996 return new ICmpInst(ICmpInst::ICMP_SLT
, V
,
1997 ConstantInt::get(V
->getType(), 1));
2000 Value
*OrOp0
= Or
->getOperand(0), *OrOp1
= Or
->getOperand(1);
2002 if (match(OrOp1
, m_APInt(MaskC
)) && Cmp
.isEquality()) {
2003 if (*MaskC
== C
&& (C
+ 1).isPowerOf2()) {
2004 // X | C == C --> X <=u C
2005 // X | C != C --> X >u C
2006 // iff C+1 is a power of 2 (C is a bitmask of the low bits)
2007 Pred
= (Pred
== CmpInst::ICMP_EQ
) ? CmpInst::ICMP_ULE
: CmpInst::ICMP_UGT
;
2008 return new ICmpInst(Pred
, OrOp0
, OrOp1
);
2011 // More general: canonicalize 'equality with set bits mask' to
2012 // 'equality with clear bits mask'.
2013 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
2014 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
2015 if (Or
->hasOneUse()) {
2016 Value
*And
= Builder
.CreateAnd(OrOp0
, ~(*MaskC
));
2017 Constant
*NewC
= ConstantInt::get(Or
->getType(), C
^ (*MaskC
));
2018 return new ICmpInst(Pred
, And
, NewC
);
2022 // (X | (X-1)) s< 0 --> X s< 1
2023 // (X | (X-1)) s> -1 --> X s> 0
2026 if (isSignBitCheck(Pred
, C
, TrueIfSigned
) &&
2027 match(Or
, m_c_Or(m_Add(m_Value(X
), m_AllOnes()), m_Deferred(X
)))) {
2028 auto NewPred
= TrueIfSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_SGT
;
2029 Constant
*NewC
= ConstantInt::get(X
->getType(), TrueIfSigned
? 1 : 0);
2030 return new ICmpInst(NewPred
, X
, NewC
);
2034 // icmp(X | OrC, C) --> icmp(X, 0)
2035 if (C
.isNonNegative() && match(Or
, m_Or(m_Value(X
), m_APInt(OrC
)))) {
2037 // X | OrC s< C --> X s< 0 iff OrC s>= C s>= 0
2038 case ICmpInst::ICMP_SLT
:
2039 // X | OrC s>= C --> X s>= 0 iff OrC s>= C s>= 0
2040 case ICmpInst::ICMP_SGE
:
2042 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
2044 // X | OrC s<= C --> X s< 0 iff OrC s> C s>= 0
2045 case ICmpInst::ICMP_SLE
:
2046 // X | OrC s> C --> X s>= 0 iff OrC s> C s>= 0
2047 case ICmpInst::ICMP_SGT
:
2049 return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred
), X
,
2050 ConstantInt::getNullValue(X
->getType()));
2057 if (!Cmp
.isEquality() || !C
.isZero() || !Or
->hasOneUse())
2061 if (match(Or
, m_Or(m_PtrToInt(m_Value(P
)), m_PtrToInt(m_Value(Q
))))) {
2062 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
2063 // -> and (icmp eq P, null), (icmp eq Q, null).
2065 Builder
.CreateICmp(Pred
, P
, ConstantInt::getNullValue(P
->getType()));
2067 Builder
.CreateICmp(Pred
, Q
, ConstantInt::getNullValue(Q
->getType()));
2068 auto BOpc
= Pred
== CmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
2069 return BinaryOperator::Create(BOpc
, CmpP
, CmpQ
);
2072 if (Value
*V
= foldICmpOrXorSubChain(Cmp
, Or
, Builder
))
2073 return replaceInstUsesWith(Cmp
, V
);
2078 /// Fold icmp (mul X, Y), C.
2079 Instruction
*InstCombinerImpl::foldICmpMulConstant(ICmpInst
&Cmp
,
2080 BinaryOperator
*Mul
,
2082 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2083 Type
*MulTy
= Mul
->getType();
2084 Value
*X
= Mul
->getOperand(0);
2086 // If there's no overflow:
2087 // X * X == 0 --> X == 0
2088 // X * X != 0 --> X != 0
2089 if (Cmp
.isEquality() && C
.isZero() && X
== Mul
->getOperand(1) &&
2090 (Mul
->hasNoUnsignedWrap() || Mul
->hasNoSignedWrap()))
2091 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(MulTy
));
2094 if (!match(Mul
->getOperand(1), m_APInt(MulC
)))
2097 // If this is a test of the sign bit and the multiply is sign-preserving with
2098 // a constant operand, use the multiply LHS operand instead:
2099 // (X * +MulC) < 0 --> X < 0
2100 // (X * -MulC) < 0 --> X > 0
2101 if (isSignTest(Pred
, C
) && Mul
->hasNoSignedWrap()) {
2102 if (MulC
->isNegative())
2103 Pred
= ICmpInst::getSwappedPredicate(Pred
);
2104 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(MulTy
));
2110 // If the multiply does not wrap or the constant is odd, try to divide the
2111 // compare constant by the multiplication factor.
2112 if (Cmp
.isEquality()) {
2113 // (mul nsw X, MulC) eq/ne C --> X eq/ne C /s MulC
2114 if (Mul
->hasNoSignedWrap() && C
.srem(*MulC
).isZero()) {
2115 Constant
*NewC
= ConstantInt::get(MulTy
, C
.sdiv(*MulC
));
2116 return new ICmpInst(Pred
, X
, NewC
);
2119 // C % MulC == 0 is weaker than we could use if MulC is odd because it
2120 // correct to transform if MulC * N == C including overflow. I.e with i8
2121 // (icmp eq (mul X, 5), 101) -> (icmp eq X, 225) but since 101 % 5 != 0, we
2123 if (C
.urem(*MulC
).isZero()) {
2124 // (mul nuw X, MulC) eq/ne C --> X eq/ne C /u MulC
2125 // (mul X, OddC) eq/ne N * C --> X eq/ne N
2126 if ((*MulC
& 1).isOne() || Mul
->hasNoUnsignedWrap()) {
2127 Constant
*NewC
= ConstantInt::get(MulTy
, C
.udiv(*MulC
));
2128 return new ICmpInst(Pred
, X
, NewC
);
2133 // With a matching no-overflow guarantee, fold the constants:
2134 // (X * MulC) < C --> X < (C / MulC)
2135 // (X * MulC) > C --> X > (C / MulC)
2136 // TODO: Assert that Pred is not equal to SGE, SLE, UGE, ULE?
2137 Constant
*NewC
= nullptr;
2138 if (Mul
->hasNoSignedWrap() && ICmpInst::isSigned(Pred
)) {
2139 // MININT / -1 --> overflow.
2140 if (C
.isMinSignedValue() && MulC
->isAllOnes())
2142 if (MulC
->isNegative())
2143 Pred
= ICmpInst::getSwappedPredicate(Pred
);
2145 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SGE
) {
2146 NewC
= ConstantInt::get(
2147 MulTy
, APIntOps::RoundingSDiv(C
, *MulC
, APInt::Rounding::UP
));
2149 assert((Pred
== ICmpInst::ICMP_SLE
|| Pred
== ICmpInst::ICMP_SGT
) &&
2150 "Unexpected predicate");
2151 NewC
= ConstantInt::get(
2152 MulTy
, APIntOps::RoundingSDiv(C
, *MulC
, APInt::Rounding::DOWN
));
2154 } else if (Mul
->hasNoUnsignedWrap() && ICmpInst::isUnsigned(Pred
)) {
2155 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
) {
2156 NewC
= ConstantInt::get(
2157 MulTy
, APIntOps::RoundingUDiv(C
, *MulC
, APInt::Rounding::UP
));
2159 assert((Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_UGT
) &&
2160 "Unexpected predicate");
2161 NewC
= ConstantInt::get(
2162 MulTy
, APIntOps::RoundingUDiv(C
, *MulC
, APInt::Rounding::DOWN
));
2166 return NewC
? new ICmpInst(Pred
, X
, NewC
) : nullptr;
2169 /// Fold icmp (shl 1, Y), C.
2170 static Instruction
*foldICmpShlOne(ICmpInst
&Cmp
, Instruction
*Shl
,
2173 if (!match(Shl
, m_Shl(m_One(), m_Value(Y
))))
2176 Type
*ShiftType
= Shl
->getType();
2177 unsigned TypeBits
= C
.getBitWidth();
2178 bool CIsPowerOf2
= C
.isPowerOf2();
2179 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2180 if (Cmp
.isUnsigned()) {
2181 // (1 << Y) pred C -> Y pred Log2(C)
2183 // (1 << Y) < 30 -> Y <= 4
2184 // (1 << Y) <= 30 -> Y <= 4
2185 // (1 << Y) >= 30 -> Y > 4
2186 // (1 << Y) > 30 -> Y > 4
2187 if (Pred
== ICmpInst::ICMP_ULT
)
2188 Pred
= ICmpInst::ICMP_ULE
;
2189 else if (Pred
== ICmpInst::ICMP_UGE
)
2190 Pred
= ICmpInst::ICMP_UGT
;
2193 unsigned CLog2
= C
.logBase2();
2194 return new ICmpInst(Pred
, Y
, ConstantInt::get(ShiftType
, CLog2
));
2195 } else if (Cmp
.isSigned()) {
2196 Constant
*BitWidthMinusOne
= ConstantInt::get(ShiftType
, TypeBits
- 1);
2197 // (1 << Y) > 0 -> Y != 31
2198 // (1 << Y) > C -> Y != 31 if C is negative.
2199 if (Pred
== ICmpInst::ICMP_SGT
&& C
.sle(0))
2200 return new ICmpInst(ICmpInst::ICMP_NE
, Y
, BitWidthMinusOne
);
2202 // (1 << Y) < 0 -> Y == 31
2203 // (1 << Y) < 1 -> Y == 31
2204 // (1 << Y) < C -> Y == 31 if C is negative and not signed min.
2205 // Exclude signed min by subtracting 1 and lower the upper bound to 0.
2206 if (Pred
== ICmpInst::ICMP_SLT
&& (C
-1).sle(0))
2207 return new ICmpInst(ICmpInst::ICMP_EQ
, Y
, BitWidthMinusOne
);
2213 /// Fold icmp (shl X, Y), C.
2214 Instruction
*InstCombinerImpl::foldICmpShlConstant(ICmpInst
&Cmp
,
2215 BinaryOperator
*Shl
,
2217 const APInt
*ShiftVal
;
2218 if (Cmp
.isEquality() && match(Shl
->getOperand(0), m_APInt(ShiftVal
)))
2219 return foldICmpShlConstConst(Cmp
, Shl
->getOperand(1), C
, *ShiftVal
);
2221 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2222 // (icmp pred (shl nuw&nsw X, Y), Csle0)
2223 // -> (icmp pred X, Csle0)
2225 // The idea is the nuw/nsw essentially freeze the sign bit for the shift op
2226 // so X's must be what is used.
2227 if (C
.sle(0) && Shl
->hasNoUnsignedWrap() && Shl
->hasNoSignedWrap())
2228 return new ICmpInst(Pred
, Shl
->getOperand(0), Cmp
.getOperand(1));
2230 // (icmp eq/ne (shl nuw|nsw X, Y), 0)
2231 // -> (icmp eq/ne X, 0)
2232 if (ICmpInst::isEquality(Pred
) && C
.isZero() &&
2233 (Shl
->hasNoUnsignedWrap() || Shl
->hasNoSignedWrap()))
2234 return new ICmpInst(Pred
, Shl
->getOperand(0), Cmp
.getOperand(1));
2236 // (icmp slt (shl nsw X, Y), 0/1)
2237 // -> (icmp slt X, 0/1)
2238 // (icmp sgt (shl nsw X, Y), 0/-1)
2239 // -> (icmp sgt X, 0/-1)
2241 // NB: sge/sle with a constant will canonicalize to sgt/slt.
2242 if (Shl
->hasNoSignedWrap() &&
2243 (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SLT
))
2244 if (C
.isZero() || (Pred
== ICmpInst::ICMP_SGT
? C
.isAllOnes() : C
.isOne()))
2245 return new ICmpInst(Pred
, Shl
->getOperand(0), Cmp
.getOperand(1));
2247 const APInt
*ShiftAmt
;
2248 if (!match(Shl
->getOperand(1), m_APInt(ShiftAmt
)))
2249 return foldICmpShlOne(Cmp
, Shl
, C
);
2251 // Check that the shift amount is in range. If not, don't perform undefined
2252 // shifts. When the shift is visited, it will be simplified.
2253 unsigned TypeBits
= C
.getBitWidth();
2254 if (ShiftAmt
->uge(TypeBits
))
2257 Value
*X
= Shl
->getOperand(0);
2258 Type
*ShType
= Shl
->getType();
2260 // NSW guarantees that we are only shifting out sign bits from the high bits,
2261 // so we can ASHR the compare constant without needing a mask and eliminate
2263 if (Shl
->hasNoSignedWrap()) {
2264 if (Pred
== ICmpInst::ICMP_SGT
) {
2265 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2266 APInt ShiftedC
= C
.ashr(*ShiftAmt
);
2267 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2269 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2270 C
.ashr(*ShiftAmt
).shl(*ShiftAmt
) == C
) {
2271 APInt ShiftedC
= C
.ashr(*ShiftAmt
);
2272 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2274 if (Pred
== ICmpInst::ICMP_SLT
) {
2275 // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2276 // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2277 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2278 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2279 assert(!C
.isMinSignedValue() && "Unexpected icmp slt");
2280 APInt ShiftedC
= (C
- 1).ashr(*ShiftAmt
) + 1;
2281 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2285 // NUW guarantees that we are only shifting out zero bits from the high bits,
2286 // so we can LSHR the compare constant without needing a mask and eliminate
2288 if (Shl
->hasNoUnsignedWrap()) {
2289 if (Pred
== ICmpInst::ICMP_UGT
) {
2290 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2291 APInt ShiftedC
= C
.lshr(*ShiftAmt
);
2292 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2294 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2295 C
.lshr(*ShiftAmt
).shl(*ShiftAmt
) == C
) {
2296 APInt ShiftedC
= C
.lshr(*ShiftAmt
);
2297 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2299 if (Pred
== ICmpInst::ICMP_ULT
) {
2300 // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2301 // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2302 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2303 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2304 assert(C
.ugt(0) && "ult 0 should have been eliminated");
2305 APInt ShiftedC
= (C
- 1).lshr(*ShiftAmt
) + 1;
2306 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2310 if (Cmp
.isEquality() && Shl
->hasOneUse()) {
2311 // Strength-reduce the shift into an 'and'.
2312 Constant
*Mask
= ConstantInt::get(
2314 APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt
->getZExtValue()));
2315 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shl
->getName() + ".mask");
2316 Constant
*LShrC
= ConstantInt::get(ShType
, C
.lshr(*ShiftAmt
));
2317 return new ICmpInst(Pred
, And
, LShrC
);
2320 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2321 bool TrueIfSigned
= false;
2322 if (Shl
->hasOneUse() && isSignBitCheck(Pred
, C
, TrueIfSigned
)) {
2323 // (X << 31) <s 0 --> (X & 1) != 0
2324 Constant
*Mask
= ConstantInt::get(
2326 APInt::getOneBitSet(TypeBits
, TypeBits
- ShiftAmt
->getZExtValue() - 1));
2327 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shl
->getName() + ".mask");
2328 return new ICmpInst(TrueIfSigned
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
,
2329 And
, Constant::getNullValue(ShType
));
2332 // Simplify 'shl' inequality test into 'and' equality test.
2333 if (Cmp
.isUnsigned() && Shl
->hasOneUse()) {
2334 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2335 if ((C
+ 1).isPowerOf2() &&
2336 (Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_UGT
)) {
2337 Value
*And
= Builder
.CreateAnd(X
, (~C
).lshr(ShiftAmt
->getZExtValue()));
2338 return new ICmpInst(Pred
== ICmpInst::ICMP_ULE
? ICmpInst::ICMP_EQ
2339 : ICmpInst::ICMP_NE
,
2340 And
, Constant::getNullValue(ShType
));
2342 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2343 if (C
.isPowerOf2() &&
2344 (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
)) {
2346 Builder
.CreateAnd(X
, (~(C
- 1)).lshr(ShiftAmt
->getZExtValue()));
2347 return new ICmpInst(Pred
== ICmpInst::ICMP_ULT
? ICmpInst::ICMP_EQ
2348 : ICmpInst::ICMP_NE
,
2349 And
, Constant::getNullValue(ShType
));
2353 // Transform (icmp pred iM (shl iM %v, N), C)
2354 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2355 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2356 // This enables us to get rid of the shift in favor of a trunc that may be
2357 // free on the target. It has the additional benefit of comparing to a
2358 // smaller constant that may be more target-friendly.
2359 unsigned Amt
= ShiftAmt
->getLimitedValue(TypeBits
- 1);
2360 if (Shl
->hasOneUse() && Amt
!= 0 && C
.countr_zero() >= Amt
&&
2361 DL
.isLegalInteger(TypeBits
- Amt
)) {
2362 Type
*TruncTy
= IntegerType::get(Cmp
.getContext(), TypeBits
- Amt
);
2363 if (auto *ShVTy
= dyn_cast
<VectorType
>(ShType
))
2364 TruncTy
= VectorType::get(TruncTy
, ShVTy
->getElementCount());
2366 ConstantInt::get(TruncTy
, C
.ashr(*ShiftAmt
).trunc(TypeBits
- Amt
));
2367 return new ICmpInst(Pred
, Builder
.CreateTrunc(X
, TruncTy
), NewC
);
2373 /// Fold icmp ({al}shr X, Y), C.
2374 Instruction
*InstCombinerImpl::foldICmpShrConstant(ICmpInst
&Cmp
,
2375 BinaryOperator
*Shr
,
2377 // An exact shr only shifts out zero bits, so:
2378 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2379 Value
*X
= Shr
->getOperand(0);
2380 CmpInst::Predicate Pred
= Cmp
.getPredicate();
2381 if (Cmp
.isEquality() && Shr
->isExact() && C
.isZero())
2382 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
2384 bool IsAShr
= Shr
->getOpcode() == Instruction::AShr
;
2385 const APInt
*ShiftValC
;
2386 if (match(X
, m_APInt(ShiftValC
))) {
2387 if (Cmp
.isEquality())
2388 return foldICmpShrConstConst(Cmp
, Shr
->getOperand(1), C
, *ShiftValC
);
2390 // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0
2391 // (ShiftValC >> Y) <s 0 --> Y == 0 with ShiftValC < 0
2393 if (!IsAShr
&& ShiftValC
->isNegative() &&
2394 isSignBitCheck(Pred
, C
, TrueIfSigned
))
2395 return new ICmpInst(TrueIfSigned
? CmpInst::ICMP_EQ
: CmpInst::ICMP_NE
,
2397 ConstantInt::getNullValue(X
->getType()));
2399 // If the shifted constant is a power-of-2, test the shift amount directly:
2400 // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC))
2401 // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC))
2402 if (!IsAShr
&& ShiftValC
->isPowerOf2() &&
2403 (Pred
== CmpInst::ICMP_UGT
|| Pred
== CmpInst::ICMP_ULT
)) {
2404 bool IsUGT
= Pred
== CmpInst::ICMP_UGT
;
2405 assert(ShiftValC
->uge(C
) && "Expected simplify of compare");
2406 assert((IsUGT
|| !C
.isZero()) && "Expected X u< 0 to simplify");
2408 unsigned CmpLZ
= IsUGT
? C
.countl_zero() : (C
- 1).countl_zero();
2409 unsigned ShiftLZ
= ShiftValC
->countl_zero();
2410 Constant
*NewC
= ConstantInt::get(Shr
->getType(), CmpLZ
- ShiftLZ
);
2411 auto NewPred
= IsUGT
? CmpInst::ICMP_ULT
: CmpInst::ICMP_UGE
;
2412 return new ICmpInst(NewPred
, Shr
->getOperand(1), NewC
);
2416 const APInt
*ShiftAmtC
;
2417 if (!match(Shr
->getOperand(1), m_APInt(ShiftAmtC
)))
2420 // Check that the shift amount is in range. If not, don't perform undefined
2421 // shifts. When the shift is visited it will be simplified.
2422 unsigned TypeBits
= C
.getBitWidth();
2423 unsigned ShAmtVal
= ShiftAmtC
->getLimitedValue(TypeBits
);
2424 if (ShAmtVal
>= TypeBits
|| ShAmtVal
== 0)
2427 bool IsExact
= Shr
->isExact();
2428 Type
*ShrTy
= Shr
->getType();
2429 // TODO: If we could guarantee that InstSimplify would handle all of the
2430 // constant-value-based preconditions in the folds below, then we could assert
2431 // those conditions rather than checking them. This is difficult because of
2432 // undef/poison (PR34838).
2433 if (IsAShr
&& Shr
->hasOneUse()) {
2434 if (IsExact
|| Pred
== CmpInst::ICMP_SLT
|| Pred
== CmpInst::ICMP_ULT
) {
2435 // When ShAmtC can be shifted losslessly:
2436 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2437 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2438 APInt ShiftedC
= C
.shl(ShAmtVal
);
2439 if (ShiftedC
.ashr(ShAmtVal
) == C
)
2440 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2442 if (Pred
== CmpInst::ICMP_SGT
) {
2443 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2444 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2445 if (!C
.isMaxSignedValue() && !(C
+ 1).shl(ShAmtVal
).isMinSignedValue() &&
2446 (ShiftedC
+ 1).ashr(ShAmtVal
) == (C
+ 1))
2447 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2449 if (Pred
== CmpInst::ICMP_UGT
) {
2450 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2451 // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd
2452 // clause accounts for that pattern.
2453 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2454 if ((ShiftedC
+ 1).ashr(ShAmtVal
) == (C
+ 1) ||
2455 (C
+ 1).shl(ShAmtVal
).isMinSignedValue())
2456 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2459 // If the compare constant has significant bits above the lowest sign-bit,
2460 // then convert an unsigned cmp to a test of the sign-bit:
2461 // (ashr X, ShiftC) u> C --> X s< 0
2462 // (ashr X, ShiftC) u< C --> X s> -1
2463 if (C
.getBitWidth() > 2 && C
.getNumSignBits() <= ShAmtVal
) {
2464 if (Pred
== CmpInst::ICMP_UGT
) {
2465 return new ICmpInst(CmpInst::ICMP_SLT
, X
,
2466 ConstantInt::getNullValue(ShrTy
));
2468 if (Pred
== CmpInst::ICMP_ULT
) {
2469 return new ICmpInst(CmpInst::ICMP_SGT
, X
,
2470 ConstantInt::getAllOnesValue(ShrTy
));
2473 } else if (!IsAShr
) {
2474 if (Pred
== CmpInst::ICMP_ULT
|| (Pred
== CmpInst::ICMP_UGT
&& IsExact
)) {
2475 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2476 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2477 APInt ShiftedC
= C
.shl(ShAmtVal
);
2478 if (ShiftedC
.lshr(ShAmtVal
) == C
)
2479 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2481 if (Pred
== CmpInst::ICMP_UGT
) {
2482 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2483 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2484 if ((ShiftedC
+ 1).lshr(ShAmtVal
) == (C
+ 1))
2485 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2489 if (!Cmp
.isEquality())
2492 // Handle equality comparisons of shift-by-constant.
2494 // If the comparison constant changes with the shift, the comparison cannot
2495 // succeed (bits of the comparison constant cannot match the shifted value).
2496 // This should be known by InstSimplify and already be folded to true/false.
2497 assert(((IsAShr
&& C
.shl(ShAmtVal
).ashr(ShAmtVal
) == C
) ||
2498 (!IsAShr
&& C
.shl(ShAmtVal
).lshr(ShAmtVal
) == C
)) &&
2499 "Expected icmp+shr simplify did not occur.");
2501 // If the bits shifted out are known zero, compare the unshifted value:
2502 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2504 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, C
<< ShAmtVal
));
2508 if (Pred
== CmpInst::ICMP_EQ
)
2509 return new ICmpInst(CmpInst::ICMP_ULT
, X
,
2510 ConstantInt::get(ShrTy
, (C
+ 1).shl(ShAmtVal
)));
2512 return new ICmpInst(CmpInst::ICMP_UGT
, X
,
2513 ConstantInt::get(ShrTy
, (C
+ 1).shl(ShAmtVal
) - 1));
2516 if (Shr
->hasOneUse()) {
2517 // Canonicalize the shift into an 'and':
2518 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2519 APInt
Val(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShAmtVal
));
2520 Constant
*Mask
= ConstantInt::get(ShrTy
, Val
);
2521 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shr
->getName() + ".mask");
2522 return new ICmpInst(Pred
, And
, ConstantInt::get(ShrTy
, C
<< ShAmtVal
));
2528 Instruction
*InstCombinerImpl::foldICmpSRemConstant(ICmpInst
&Cmp
,
2529 BinaryOperator
*SRem
,
2531 // Match an 'is positive' or 'is negative' comparison of remainder by a
2532 // constant power-of-2 value:
2533 // (X % pow2C) sgt/slt 0
2534 const ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2535 if (Pred
!= ICmpInst::ICMP_SGT
&& Pred
!= ICmpInst::ICMP_SLT
&&
2536 Pred
!= ICmpInst::ICMP_EQ
&& Pred
!= ICmpInst::ICMP_NE
)
2539 // TODO: The one-use check is standard because we do not typically want to
2540 // create longer instruction sequences, but this might be a special-case
2541 // because srem is not good for analysis or codegen.
2542 if (!SRem
->hasOneUse())
2545 const APInt
*DivisorC
;
2546 if (!match(SRem
->getOperand(1), m_Power2(DivisorC
)))
2549 // For cmp_sgt/cmp_slt only zero valued C is handled.
2550 // For cmp_eq/cmp_ne only positive valued C is handled.
2551 if (((Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SLT
) &&
2553 ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2554 !C
.isStrictlyPositive()))
2557 // Mask off the sign bit and the modulo bits (low-bits).
2558 Type
*Ty
= SRem
->getType();
2559 APInt SignMask
= APInt::getSignMask(Ty
->getScalarSizeInBits());
2560 Constant
*MaskC
= ConstantInt::get(Ty
, SignMask
| (*DivisorC
- 1));
2561 Value
*And
= Builder
.CreateAnd(SRem
->getOperand(0), MaskC
);
2563 if (Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
)
2564 return new ICmpInst(Pred
, And
, ConstantInt::get(Ty
, C
));
2566 // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2567 // bit is set. Example:
2568 // (i8 X % 32) s> 0 --> (X & 159) s> 0
2569 if (Pred
== ICmpInst::ICMP_SGT
)
2570 return new ICmpInst(ICmpInst::ICMP_SGT
, And
, ConstantInt::getNullValue(Ty
));
2572 // For 'is negative?' check that the sign-bit is set and at least 1 masked
2573 // bit is set. Example:
2574 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2575 return new ICmpInst(ICmpInst::ICMP_UGT
, And
, ConstantInt::get(Ty
, SignMask
));
2578 /// Fold icmp (udiv X, Y), C.
2579 Instruction
*InstCombinerImpl::foldICmpUDivConstant(ICmpInst
&Cmp
,
2580 BinaryOperator
*UDiv
,
2582 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2583 Value
*X
= UDiv
->getOperand(0);
2584 Value
*Y
= UDiv
->getOperand(1);
2585 Type
*Ty
= UDiv
->getType();
2588 if (!match(X
, m_APInt(C2
)))
2591 assert(*C2
!= 0 && "udiv 0, X should have been simplified already.");
2593 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2594 if (Pred
== ICmpInst::ICMP_UGT
) {
2595 assert(!C
.isMaxValue() &&
2596 "icmp ugt X, UINT_MAX should have been simplified already.");
2597 return new ICmpInst(ICmpInst::ICMP_ULE
, Y
,
2598 ConstantInt::get(Ty
, C2
->udiv(C
+ 1)));
2601 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2602 if (Pred
== ICmpInst::ICMP_ULT
) {
2603 assert(C
!= 0 && "icmp ult X, 0 should have been simplified already.");
2604 return new ICmpInst(ICmpInst::ICMP_UGT
, Y
,
2605 ConstantInt::get(Ty
, C2
->udiv(C
)));
2611 /// Fold icmp ({su}div X, Y), C.
2612 Instruction
*InstCombinerImpl::foldICmpDivConstant(ICmpInst
&Cmp
,
2613 BinaryOperator
*Div
,
2615 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2616 Value
*X
= Div
->getOperand(0);
2617 Value
*Y
= Div
->getOperand(1);
2618 Type
*Ty
= Div
->getType();
2619 bool DivIsSigned
= Div
->getOpcode() == Instruction::SDiv
;
2621 // If unsigned division and the compare constant is bigger than
2622 // UMAX/2 (negative), there's only one pair of values that satisfies an
2623 // equality check, so eliminate the division:
2624 // (X u/ Y) == C --> (X == C) && (Y == 1)
2625 // (X u/ Y) != C --> (X != C) || (Y != 1)
2626 // Similarly, if signed division and the compare constant is exactly SMIN:
2627 // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
2628 // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
2629 if (Cmp
.isEquality() && Div
->hasOneUse() && C
.isSignBitSet() &&
2630 (!DivIsSigned
|| C
.isMinSignedValue())) {
2631 Value
*XBig
= Builder
.CreateICmp(Pred
, X
, ConstantInt::get(Ty
, C
));
2632 Value
*YOne
= Builder
.CreateICmp(Pred
, Y
, ConstantInt::get(Ty
, 1));
2633 auto Logic
= Pred
== ICmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
2634 return BinaryOperator::Create(Logic
, XBig
, YOne
);
2637 // Fold: icmp pred ([us]div X, C2), C -> range test
2638 // Fold this div into the comparison, producing a range check.
2639 // Determine, based on the divide type, what the range is being
2640 // checked. If there is an overflow on the low or high side, remember
2641 // it, otherwise compute the range [low, hi) bounding the new value.
2642 // See: InsertRangeTest above for the kinds of replacements possible.
2644 if (!match(Y
, m_APInt(C2
)))
2647 // FIXME: If the operand types don't match the type of the divide
2648 // then don't attempt this transform. The code below doesn't have the
2649 // logic to deal with a signed divide and an unsigned compare (and
2650 // vice versa). This is because (x /s C2) <s C produces different
2651 // results than (x /s C2) <u C or (x /u C2) <s C or even
2652 // (x /u C2) <u C. Simply casting the operands and result won't
2653 // work. :( The if statement below tests that condition and bails
2655 if (!Cmp
.isEquality() && DivIsSigned
!= Cmp
.isSigned())
2658 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2659 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2660 // division-by-constant cases should be present, we can not assert that they
2661 // have happened before we reach this icmp instruction.
2662 if (C2
->isZero() || C2
->isOne() || (DivIsSigned
&& C2
->isAllOnes()))
2665 // Compute Prod = C * C2. We are essentially solving an equation of
2666 // form X / C2 = C. We solve for X by multiplying C2 and C.
2667 // By solving for X, we can turn this into a range check instead of computing
2669 APInt Prod
= C
* *C2
;
2671 // Determine if the product overflows by seeing if the product is not equal to
2672 // the divide. Make sure we do the same kind of divide as in the LHS
2673 // instruction that we're folding.
2674 bool ProdOV
= (DivIsSigned
? Prod
.sdiv(*C2
) : Prod
.udiv(*C2
)) != C
;
2676 // If the division is known to be exact, then there is no remainder from the
2677 // divide, so the covered range size is unit, otherwise it is the divisor.
2678 APInt RangeSize
= Div
->isExact() ? APInt(C2
->getBitWidth(), 1) : *C2
;
2680 // Figure out the interval that is being checked. For example, a comparison
2681 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2682 // Compute this interval based on the constants involved and the signedness of
2683 // the compare/divide. This computes a half-open interval, keeping track of
2684 // whether either value in the interval overflows. After analysis each
2685 // overflow variable is set to 0 if it's corresponding bound variable is valid
2686 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2687 int LoOverflow
= 0, HiOverflow
= 0;
2688 APInt LoBound
, HiBound
;
2690 if (!DivIsSigned
) { // udiv
2691 // e.g. X/5 op 3 --> [15, 20)
2693 HiOverflow
= LoOverflow
= ProdOV
;
2695 // If this is not an exact divide, then many values in the range collapse
2696 // to the same result value.
2697 HiOverflow
= addWithOverflow(HiBound
, LoBound
, RangeSize
, false);
2699 } else if (C2
->isStrictlyPositive()) { // Divisor is > 0.
2700 if (C
.isZero()) { // (X / pos) op 0
2701 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2702 LoBound
= -(RangeSize
- 1);
2703 HiBound
= RangeSize
;
2704 } else if (C
.isStrictlyPositive()) { // (X / pos) op pos
2705 LoBound
= Prod
; // e.g. X/5 op 3 --> [15, 20)
2706 HiOverflow
= LoOverflow
= ProdOV
;
2708 HiOverflow
= addWithOverflow(HiBound
, Prod
, RangeSize
, true);
2709 } else { // (X / pos) op neg
2710 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2712 LoOverflow
= HiOverflow
= ProdOV
? -1 : 0;
2714 APInt DivNeg
= -RangeSize
;
2715 LoOverflow
= addWithOverflow(LoBound
, HiBound
, DivNeg
, true) ? -1 : 0;
2718 } else if (C2
->isNegative()) { // Divisor is < 0.
2721 if (C
.isZero()) { // (X / neg) op 0
2722 // e.g. X/-5 op 0 --> [-4, 5)
2723 LoBound
= RangeSize
+ 1;
2724 HiBound
= -RangeSize
;
2725 if (HiBound
== *C2
) { // -INTMIN = INTMIN
2726 HiOverflow
= 1; // [INTMIN+1, overflow)
2727 HiBound
= APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2729 } else if (C
.isStrictlyPositive()) { // (X / neg) op pos
2730 // e.g. X/-5 op 3 --> [-19, -14)
2732 HiOverflow
= LoOverflow
= ProdOV
? -1 : 0;
2735 addWithOverflow(LoBound
, HiBound
, RangeSize
, true) ? -1 : 0;
2736 } else { // (X / neg) op neg
2737 LoBound
= Prod
; // e.g. X/-5 op -3 --> [15, 20)
2738 LoOverflow
= HiOverflow
= ProdOV
;
2740 HiOverflow
= subWithOverflow(HiBound
, Prod
, RangeSize
, true);
2743 // Dividing by a negative swaps the condition. LT <-> GT
2744 Pred
= ICmpInst::getSwappedPredicate(Pred
);
2749 llvm_unreachable("Unhandled icmp predicate!");
2750 case ICmpInst::ICMP_EQ
:
2751 if (LoOverflow
&& HiOverflow
)
2752 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2754 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
,
2755 X
, ConstantInt::get(Ty
, LoBound
));
2757 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
2758 X
, ConstantInt::get(Ty
, HiBound
));
2759 return replaceInstUsesWith(
2760 Cmp
, insertRangeTest(X
, LoBound
, HiBound
, DivIsSigned
, true));
2761 case ICmpInst::ICMP_NE
:
2762 if (LoOverflow
&& HiOverflow
)
2763 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2765 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
2766 X
, ConstantInt::get(Ty
, LoBound
));
2768 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
,
2769 X
, ConstantInt::get(Ty
, HiBound
));
2770 return replaceInstUsesWith(
2771 Cmp
, insertRangeTest(X
, LoBound
, HiBound
, DivIsSigned
, false));
2772 case ICmpInst::ICMP_ULT
:
2773 case ICmpInst::ICMP_SLT
:
2774 if (LoOverflow
== +1) // Low bound is greater than input range.
2775 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2776 if (LoOverflow
== -1) // Low bound is less than input range.
2777 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2778 return new ICmpInst(Pred
, X
, ConstantInt::get(Ty
, LoBound
));
2779 case ICmpInst::ICMP_UGT
:
2780 case ICmpInst::ICMP_SGT
:
2781 if (HiOverflow
== +1) // High bound greater than input range.
2782 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2783 if (HiOverflow
== -1) // High bound less than input range.
2784 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2785 if (Pred
== ICmpInst::ICMP_UGT
)
2786 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, ConstantInt::get(Ty
, HiBound
));
2787 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, ConstantInt::get(Ty
, HiBound
));
2793 /// Fold icmp (sub X, Y), C.
2794 Instruction
*InstCombinerImpl::foldICmpSubConstant(ICmpInst
&Cmp
,
2795 BinaryOperator
*Sub
,
2797 Value
*X
= Sub
->getOperand(0), *Y
= Sub
->getOperand(1);
2798 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2799 Type
*Ty
= Sub
->getType();
2801 // (SubC - Y) == C) --> Y == (SubC - C)
2802 // (SubC - Y) != C) --> Y != (SubC - C)
2804 if (Cmp
.isEquality() && match(X
, m_ImmConstant(SubC
))) {
2805 return new ICmpInst(Pred
, Y
,
2806 ConstantExpr::getSub(SubC
, ConstantInt::get(Ty
, C
)));
2809 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2812 ICmpInst::Predicate SwappedPred
= Cmp
.getSwappedPredicate();
2813 bool HasNSW
= Sub
->hasNoSignedWrap();
2814 bool HasNUW
= Sub
->hasNoUnsignedWrap();
2815 if (match(X
, m_APInt(C2
)) &&
2816 ((Cmp
.isUnsigned() && HasNUW
) || (Cmp
.isSigned() && HasNSW
)) &&
2817 !subWithOverflow(SubResult
, *C2
, C
, Cmp
.isSigned()))
2818 return new ICmpInst(SwappedPred
, Y
, ConstantInt::get(Ty
, SubResult
));
2820 // X - Y == 0 --> X == Y.
2821 // X - Y != 0 --> X != Y.
2822 // TODO: We allow this with multiple uses as long as the other uses are not
2823 // in phis. The phi use check is guarding against a codegen regression
2824 // for a loop test. If the backend could undo this (and possibly
2825 // subsequent transforms), we would not need this hack.
2826 if (Cmp
.isEquality() && C
.isZero() &&
2827 none_of((Sub
->users()), [](const User
*U
) { return isa
<PHINode
>(U
); }))
2828 return new ICmpInst(Pred
, X
, Y
);
2830 // The following transforms are only worth it if the only user of the subtract
2832 // TODO: This is an artificial restriction for all of the transforms below
2833 // that only need a single replacement icmp. Can these use the phi test
2834 // like the transform above here?
2835 if (!Sub
->hasOneUse())
2838 if (Sub
->hasNoSignedWrap()) {
2839 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2840 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isAllOnes())
2841 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, Y
);
2843 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2844 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isZero())
2845 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, Y
);
2847 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2848 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isZero())
2849 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, Y
);
2851 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2852 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isOne())
2853 return new ICmpInst(ICmpInst::ICMP_SLE
, X
, Y
);
2856 if (!match(X
, m_APInt(C2
)))
2859 // C2 - Y <u C -> (Y | (C - 1)) == C2
2860 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2861 if (Pred
== ICmpInst::ICMP_ULT
&& C
.isPowerOf2() &&
2862 (*C2
& (C
- 1)) == (C
- 1))
2863 return new ICmpInst(ICmpInst::ICMP_EQ
, Builder
.CreateOr(Y
, C
- 1), X
);
2865 // C2 - Y >u C -> (Y | C) != C2
2866 // iff C2 & C == C and C + 1 is a power of 2
2867 if (Pred
== ICmpInst::ICMP_UGT
&& (C
+ 1).isPowerOf2() && (*C2
& C
) == C
)
2868 return new ICmpInst(ICmpInst::ICMP_NE
, Builder
.CreateOr(Y
, C
), X
);
2870 // We have handled special cases that reduce.
2871 // Canonicalize any remaining sub to add as:
2872 // (C2 - Y) > C --> (Y + ~C2) < ~C
2873 Value
*Add
= Builder
.CreateAdd(Y
, ConstantInt::get(Ty
, ~(*C2
)), "notsub",
2875 return new ICmpInst(SwappedPred
, Add
, ConstantInt::get(Ty
, ~C
));
2878 static Value
*createLogicFromTable(const std::bitset
<4> &Table
, Value
*Op0
,
2879 Value
*Op1
, IRBuilderBase
&Builder
,
2881 auto FoldConstant
= [&](bool Val
) {
2882 Constant
*Res
= Val
? Builder
.getTrue() : Builder
.getFalse();
2883 if (Op0
->getType()->isVectorTy())
2884 Res
= ConstantVector::getSplat(
2885 cast
<VectorType
>(Op0
->getType())->getElementCount(), Res
);
2889 switch (Table
.to_ulong()) {
2891 return FoldConstant(false);
2893 return HasOneUse
? Builder
.CreateNot(Builder
.CreateOr(Op0
, Op1
)) : nullptr;
2895 return HasOneUse
? Builder
.CreateAnd(Builder
.CreateNot(Op0
), Op1
) : nullptr;
2897 return Builder
.CreateNot(Op0
);
2899 return HasOneUse
? Builder
.CreateAnd(Op0
, Builder
.CreateNot(Op1
)) : nullptr;
2901 return Builder
.CreateNot(Op1
);
2903 return Builder
.CreateXor(Op0
, Op1
);
2905 return HasOneUse
? Builder
.CreateNot(Builder
.CreateAnd(Op0
, Op1
)) : nullptr;
2907 return Builder
.CreateAnd(Op0
, Op1
);
2909 return HasOneUse
? Builder
.CreateNot(Builder
.CreateXor(Op0
, Op1
)) : nullptr;
2913 return HasOneUse
? Builder
.CreateOr(Builder
.CreateNot(Op0
), Op1
) : nullptr;
2917 return HasOneUse
? Builder
.CreateOr(Op0
, Builder
.CreateNot(Op1
)) : nullptr;
2919 return Builder
.CreateOr(Op0
, Op1
);
2921 return FoldConstant(true);
2923 llvm_unreachable("Invalid Operation");
2928 /// Fold icmp (add X, Y), C.
2929 Instruction
*InstCombinerImpl::foldICmpAddConstant(ICmpInst
&Cmp
,
2930 BinaryOperator
*Add
,
2932 Value
*Y
= Add
->getOperand(1);
2933 Value
*X
= Add
->getOperand(0);
2936 Instruction
*Ext0
, *Ext1
;
2937 const CmpInst::Predicate Pred
= Cmp
.getPredicate();
2939 m_Add(m_CombineAnd(m_Instruction(Ext0
), m_ZExtOrSExt(m_Value(Op0
))),
2940 m_CombineAnd(m_Instruction(Ext1
),
2941 m_ZExtOrSExt(m_Value(Op1
))))) &&
2942 Op0
->getType()->isIntOrIntVectorTy(1) &&
2943 Op1
->getType()->isIntOrIntVectorTy(1)) {
2944 unsigned BW
= C
.getBitWidth();
2945 std::bitset
<4> Table
;
2946 auto ComputeTable
= [&](bool Op0Val
, bool Op1Val
) {
2949 Res
+= isa
<ZExtInst
>(Ext0
) ? 1 : -1;
2951 Res
+= isa
<ZExtInst
>(Ext1
) ? 1 : -1;
2952 return ICmpInst::compare(APInt(BW
, Res
, true), C
, Pred
);
2955 Table
[0] = ComputeTable(false, false);
2956 Table
[1] = ComputeTable(false, true);
2957 Table
[2] = ComputeTable(true, false);
2958 Table
[3] = ComputeTable(true, true);
2960 createLogicFromTable(Table
, Op0
, Op1
, Builder
, Add
->hasOneUse()))
2961 return replaceInstUsesWith(Cmp
, Cond
);
2964 if (Cmp
.isEquality() || !match(Y
, m_APInt(C2
)))
2967 // Fold icmp pred (add X, C2), C.
2968 Type
*Ty
= Add
->getType();
2970 // If the add does not wrap, we can always adjust the compare by subtracting
2971 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2972 // are canonicalized to SGT/SLT/UGT/ULT.
2973 if ((Add
->hasNoSignedWrap() &&
2974 (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SLT
)) ||
2975 (Add
->hasNoUnsignedWrap() &&
2976 (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULT
))) {
2979 Cmp
.isSigned() ? C
.ssub_ov(*C2
, Overflow
) : C
.usub_ov(*C2
, Overflow
);
2980 // If there is overflow, the result must be true or false.
2981 // TODO: Can we assert there is no overflow because InstSimplify always
2982 // handles those cases?
2984 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2985 return new ICmpInst(Pred
, X
, ConstantInt::get(Ty
, NewC
));
2988 auto CR
= ConstantRange::makeExactICmpRegion(Pred
, C
).subtract(*C2
);
2989 const APInt
&Upper
= CR
.getUpper();
2990 const APInt
&Lower
= CR
.getLower();
2991 if (Cmp
.isSigned()) {
2992 if (Lower
.isSignMask())
2993 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, ConstantInt::get(Ty
, Upper
));
2994 if (Upper
.isSignMask())
2995 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, ConstantInt::get(Ty
, Lower
));
2997 if (Lower
.isMinValue())
2998 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, ConstantInt::get(Ty
, Upper
));
2999 if (Upper
.isMinValue())
3000 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, ConstantInt::get(Ty
, Lower
));
3003 // This set of folds is intentionally placed after folds that use no-wrapping
3004 // flags because those folds are likely better for later analysis/codegen.
3005 const APInt SMax
= APInt::getSignedMaxValue(Ty
->getScalarSizeInBits());
3006 const APInt SMin
= APInt::getSignedMinValue(Ty
->getScalarSizeInBits());
3008 // Fold compare with offset to opposite sign compare if it eliminates offset:
3009 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
3010 if (Pred
== CmpInst::ICMP_UGT
&& C
== *C2
+ SMax
)
3011 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, ConstantInt::get(Ty
, -(*C2
)));
3013 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
3014 if (Pred
== CmpInst::ICMP_ULT
&& C
== *C2
+ SMin
)
3015 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, ConstantInt::get(Ty
, ~(*C2
)));
3017 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
3018 if (Pred
== CmpInst::ICMP_SGT
&& C
== *C2
- 1)
3019 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, ConstantInt::get(Ty
, SMax
- C
));
3021 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
3022 if (Pred
== CmpInst::ICMP_SLT
&& C
== *C2
)
3023 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, ConstantInt::get(Ty
, C
^ SMax
));
3025 // (X + -1) <u C --> X <=u C (if X is never null)
3026 if (Pred
== CmpInst::ICMP_ULT
&& C2
->isAllOnes()) {
3027 const SimplifyQuery Q
= SQ
.getWithInstruction(&Cmp
);
3028 if (llvm::isKnownNonZero(X
, DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
3029 return new ICmpInst(ICmpInst::ICMP_ULE
, X
, ConstantInt::get(Ty
, C
));
3032 if (!Add
->hasOneUse())
3035 // X+C <u C2 -> (X & -C2) == C
3036 // iff C & (C2-1) == 0
3037 // C2 is a power of 2
3038 if (Pred
== ICmpInst::ICMP_ULT
&& C
.isPowerOf2() && (*C2
& (C
- 1)) == 0)
3039 return new ICmpInst(ICmpInst::ICMP_EQ
, Builder
.CreateAnd(X
, -C
),
3040 ConstantExpr::getNeg(cast
<Constant
>(Y
)));
3042 // X+C >u C2 -> (X & ~C2) != C
3044 // C2+1 is a power of 2
3045 if (Pred
== ICmpInst::ICMP_UGT
&& (C
+ 1).isPowerOf2() && (*C2
& C
) == 0)
3046 return new ICmpInst(ICmpInst::ICMP_NE
, Builder
.CreateAnd(X
, ~C
),
3047 ConstantExpr::getNeg(cast
<Constant
>(Y
)));
3049 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
3051 // X+C2 >u C -> X+(C2-C-1) <u ~C
3052 if (Pred
== ICmpInst::ICMP_UGT
)
3053 return new ICmpInst(ICmpInst::ICMP_ULT
,
3054 Builder
.CreateAdd(X
, ConstantInt::get(Ty
, *C2
- C
- 1)),
3055 ConstantInt::get(Ty
, ~C
));
3060 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst
*SI
, Value
*&LHS
,
3061 Value
*&RHS
, ConstantInt
*&Less
,
3062 ConstantInt
*&Equal
,
3063 ConstantInt
*&Greater
) {
3064 // TODO: Generalize this to work with other comparison idioms or ensure
3065 // they get canonicalized into this form.
3067 // select i1 (a == b),
3069 // i32 (select i1 (a < b), i32 Less, i32 Greater)
3070 // where Equal, Less and Greater are placeholders for any three constants.
3071 ICmpInst::Predicate PredA
;
3072 if (!match(SI
->getCondition(), m_ICmp(PredA
, m_Value(LHS
), m_Value(RHS
))) ||
3073 !ICmpInst::isEquality(PredA
))
3075 Value
*EqualVal
= SI
->getTrueValue();
3076 Value
*UnequalVal
= SI
->getFalseValue();
3077 // We still can get non-canonical predicate here, so canonicalize.
3078 if (PredA
== ICmpInst::ICMP_NE
)
3079 std::swap(EqualVal
, UnequalVal
);
3080 if (!match(EqualVal
, m_ConstantInt(Equal
)))
3082 ICmpInst::Predicate PredB
;
3084 if (!match(UnequalVal
, m_Select(m_ICmp(PredB
, m_Value(LHS2
), m_Value(RHS2
)),
3085 m_ConstantInt(Less
), m_ConstantInt(Greater
))))
3087 // We can get predicate mismatch here, so canonicalize if possible:
3088 // First, ensure that 'LHS' match.
3090 // x sgt y <--> y slt x
3091 std::swap(LHS2
, RHS2
);
3092 PredB
= ICmpInst::getSwappedPredicate(PredB
);
3096 // We also need to canonicalize 'RHS'.
3097 if (PredB
== ICmpInst::ICMP_SGT
&& isa
<Constant
>(RHS2
)) {
3098 // x sgt C-1 <--> x sge C <--> not(x slt C)
3099 auto FlippedStrictness
=
3100 InstCombiner::getFlippedStrictnessPredicateAndConstant(
3101 PredB
, cast
<Constant
>(RHS2
));
3102 if (!FlippedStrictness
)
3104 assert(FlippedStrictness
->first
== ICmpInst::ICMP_SGE
&&
3105 "basic correctness failure");
3106 RHS2
= FlippedStrictness
->second
;
3107 // And kind-of perform the result swap.
3108 std::swap(Less
, Greater
);
3109 PredB
= ICmpInst::ICMP_SLT
;
3111 return PredB
== ICmpInst::ICMP_SLT
&& RHS
== RHS2
;
3114 Instruction
*InstCombinerImpl::foldICmpSelectConstant(ICmpInst
&Cmp
,
3118 assert(C
&& "Cmp RHS should be a constant int!");
3119 // If we're testing a constant value against the result of a three way
3120 // comparison, the result can be expressed directly in terms of the
3121 // original values being compared. Note: We could possibly be more
3122 // aggressive here and remove the hasOneUse test. The original select is
3123 // really likely to simplify or sink when we remove a test of the result.
3124 Value
*OrigLHS
, *OrigRHS
;
3125 ConstantInt
*C1LessThan
, *C2Equal
, *C3GreaterThan
;
3126 if (Cmp
.hasOneUse() &&
3127 matchThreeWayIntCompare(Select
, OrigLHS
, OrigRHS
, C1LessThan
, C2Equal
,
3129 assert(C1LessThan
&& C2Equal
&& C3GreaterThan
);
3131 bool TrueWhenLessThan
=
3132 ConstantExpr::getCompare(Cmp
.getPredicate(), C1LessThan
, C
)
3134 bool TrueWhenEqual
=
3135 ConstantExpr::getCompare(Cmp
.getPredicate(), C2Equal
, C
)
3137 bool TrueWhenGreaterThan
=
3138 ConstantExpr::getCompare(Cmp
.getPredicate(), C3GreaterThan
, C
)
3141 // This generates the new instruction that will replace the original Cmp
3142 // Instruction. Instead of enumerating the various combinations when
3143 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
3144 // false, we rely on chaining of ORs and future passes of InstCombine to
3145 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
3147 // When none of the three constants satisfy the predicate for the RHS (C),
3148 // the entire original Cmp can be simplified to a false.
3149 Value
*Cond
= Builder
.getFalse();
3150 if (TrueWhenLessThan
)
3151 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_SLT
,
3154 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_EQ
,
3156 if (TrueWhenGreaterThan
)
3157 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_SGT
,
3160 return replaceInstUsesWith(Cmp
, Cond
);
3165 Instruction
*InstCombinerImpl::foldICmpBitCast(ICmpInst
&Cmp
) {
3166 auto *Bitcast
= dyn_cast
<BitCastInst
>(Cmp
.getOperand(0));
3170 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3171 Value
*Op1
= Cmp
.getOperand(1);
3172 Value
*BCSrcOp
= Bitcast
->getOperand(0);
3173 Type
*SrcType
= Bitcast
->getSrcTy();
3174 Type
*DstType
= Bitcast
->getType();
3176 // Make sure the bitcast doesn't change between scalar and vector and
3177 // doesn't change the number of vector elements.
3178 if (SrcType
->isVectorTy() == DstType
->isVectorTy() &&
3179 SrcType
->getScalarSizeInBits() == DstType
->getScalarSizeInBits()) {
3180 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
3182 if (match(BCSrcOp
, m_SIToFP(m_Value(X
)))) {
3183 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
3184 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
3185 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
3186 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
3187 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_SLT
||
3188 Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
) &&
3189 match(Op1
, m_Zero()))
3190 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
3192 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
3193 if (Pred
== ICmpInst::ICMP_SLT
&& match(Op1
, m_One()))
3194 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), 1));
3196 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
3197 if (Pred
== ICmpInst::ICMP_SGT
&& match(Op1
, m_AllOnes()))
3198 return new ICmpInst(Pred
, X
,
3199 ConstantInt::getAllOnesValue(X
->getType()));
3202 // Zero-equality checks are preserved through unsigned floating-point casts:
3203 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
3204 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
3205 if (match(BCSrcOp
, m_UIToFP(m_Value(X
))))
3206 if (Cmp
.isEquality() && match(Op1
, m_Zero()))
3207 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
3209 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
3210 // the FP extend/truncate because that cast does not change the sign-bit.
3211 // This is true for all standard IEEE-754 types and the X86 80-bit type.
3212 // The sign-bit is always the most significant bit in those types.
3215 if (match(Op1
, m_APInt(C
)) && Bitcast
->hasOneUse() &&
3216 isSignBitCheck(Pred
, *C
, TrueIfSigned
)) {
3217 if (match(BCSrcOp
, m_FPExt(m_Value(X
))) ||
3218 match(BCSrcOp
, m_FPTrunc(m_Value(X
)))) {
3219 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
3220 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
3221 Type
*XType
= X
->getType();
3223 // We can't currently handle Power style floating point operations here.
3224 if (!(XType
->isPPC_FP128Ty() || SrcType
->isPPC_FP128Ty())) {
3225 Type
*NewType
= Builder
.getIntNTy(XType
->getScalarSizeInBits());
3226 if (auto *XVTy
= dyn_cast
<VectorType
>(XType
))
3227 NewType
= VectorType::get(NewType
, XVTy
->getElementCount());
3228 Value
*NewBitcast
= Builder
.CreateBitCast(X
, NewType
);
3230 return new ICmpInst(ICmpInst::ICMP_SLT
, NewBitcast
,
3231 ConstantInt::getNullValue(NewType
));
3233 return new ICmpInst(ICmpInst::ICMP_SGT
, NewBitcast
,
3234 ConstantInt::getAllOnesValue(NewType
));
3241 if (!match(Cmp
.getOperand(1), m_APInt(C
)) || !DstType
->isIntegerTy() ||
3242 !SrcType
->isIntOrIntVectorTy())
3245 // If this is checking if all elements of a vector compare are set or not,
3246 // invert the casted vector equality compare and test if all compare
3247 // elements are clear or not. Compare against zero is generally easier for
3248 // analysis and codegen.
3249 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
3250 // Example: are all elements equal? --> are zero elements not equal?
3251 // TODO: Try harder to reduce compare of 2 freely invertible operands?
3252 if (Cmp
.isEquality() && C
->isAllOnes() && Bitcast
->hasOneUse()) {
3253 if (Value
*NotBCSrcOp
=
3254 getFreelyInverted(BCSrcOp
, BCSrcOp
->hasOneUse(), &Builder
)) {
3255 Value
*Cast
= Builder
.CreateBitCast(NotBCSrcOp
, DstType
);
3256 return new ICmpInst(Pred
, Cast
, ConstantInt::getNullValue(DstType
));
3260 // If this is checking if all elements of an extended vector are clear or not,
3261 // compare in a narrow type to eliminate the extend:
3262 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
3264 if (Cmp
.isEquality() && C
->isZero() && Bitcast
->hasOneUse() &&
3265 match(BCSrcOp
, m_ZExtOrSExt(m_Value(X
)))) {
3266 if (auto *VecTy
= dyn_cast
<FixedVectorType
>(X
->getType())) {
3267 Type
*NewType
= Builder
.getIntNTy(VecTy
->getPrimitiveSizeInBits());
3268 Value
*NewCast
= Builder
.CreateBitCast(X
, NewType
);
3269 return new ICmpInst(Pred
, NewCast
, ConstantInt::getNullValue(NewType
));
3273 // Folding: icmp <pred> iN X, C
3274 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
3275 // and C is a splat of a K-bit pattern
3276 // and SC is a constant vector = <C', C', C', ..., C'>
3278 // %E = extractelement <M x iK> %vec, i32 C'
3279 // icmp <pred> iK %E, trunc(C)
3282 if (match(BCSrcOp
, m_Shuffle(m_Value(Vec
), m_Undef(), m_Mask(Mask
)))) {
3283 // Check whether every element of Mask is the same constant
3284 if (all_equal(Mask
)) {
3285 auto *VecTy
= cast
<VectorType
>(SrcType
);
3286 auto *EltTy
= cast
<IntegerType
>(VecTy
->getElementType());
3287 if (C
->isSplat(EltTy
->getBitWidth())) {
3288 // Fold the icmp based on the value of C
3289 // If C is M copies of an iK sized bit pattern,
3291 // => %E = extractelement <N x iK> %vec, i32 Elem
3292 // icmp <pred> iK %SplatVal, <pattern>
3293 Value
*Elem
= Builder
.getInt32(Mask
[0]);
3294 Value
*Extract
= Builder
.CreateExtractElement(Vec
, Elem
);
3295 Value
*NewC
= ConstantInt::get(EltTy
, C
->trunc(EltTy
->getBitWidth()));
3296 return new ICmpInst(Pred
, Extract
, NewC
);
3303 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3304 /// where X is some kind of instruction.
3305 Instruction
*InstCombinerImpl::foldICmpInstWithConstant(ICmpInst
&Cmp
) {
3308 if (match(Cmp
.getOperand(1), m_APInt(C
))) {
3309 if (auto *BO
= dyn_cast
<BinaryOperator
>(Cmp
.getOperand(0)))
3310 if (Instruction
*I
= foldICmpBinOpWithConstant(Cmp
, BO
, *C
))
3313 if (auto *SI
= dyn_cast
<SelectInst
>(Cmp
.getOperand(0)))
3314 // For now, we only support constant integers while folding the
3315 // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3316 // similar to the cases handled by binary ops above.
3317 if (auto *ConstRHS
= dyn_cast
<ConstantInt
>(Cmp
.getOperand(1)))
3318 if (Instruction
*I
= foldICmpSelectConstant(Cmp
, SI
, ConstRHS
))
3321 if (auto *TI
= dyn_cast
<TruncInst
>(Cmp
.getOperand(0)))
3322 if (Instruction
*I
= foldICmpTruncConstant(Cmp
, TI
, *C
))
3325 if (auto *II
= dyn_cast
<IntrinsicInst
>(Cmp
.getOperand(0)))
3326 if (Instruction
*I
= foldICmpIntrinsicWithConstant(Cmp
, II
, *C
))
3329 // (extractval ([s/u]subo X, Y), 0) == 0 --> X == Y
3330 // (extractval ([s/u]subo X, Y), 0) != 0 --> X != Y
3331 // TODO: This checks one-use, but that is not strictly necessary.
3332 Value
*Cmp0
= Cmp
.getOperand(0);
3334 if (C
->isZero() && Cmp
.isEquality() && Cmp0
->hasOneUse() &&
3336 m_ExtractValue
<0>(m_Intrinsic
<Intrinsic::ssub_with_overflow
>(
3337 m_Value(X
), m_Value(Y
)))) ||
3339 m_ExtractValue
<0>(m_Intrinsic
<Intrinsic::usub_with_overflow
>(
3340 m_Value(X
), m_Value(Y
))))))
3341 return new ICmpInst(Cmp
.getPredicate(), X
, Y
);
3344 if (match(Cmp
.getOperand(1), m_APIntAllowUndef(C
)))
3345 return foldICmpInstWithConstantAllowUndef(Cmp
, *C
);
3350 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3351 /// icmp eq/ne BO, C.
3352 Instruction
*InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3353 ICmpInst
&Cmp
, BinaryOperator
*BO
, const APInt
&C
) {
3354 // TODO: Some of these folds could work with arbitrary constants, but this
3355 // function is limited to scalar and vector splat constants.
3356 if (!Cmp
.isEquality())
3359 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3360 bool isICMP_NE
= Pred
== ICmpInst::ICMP_NE
;
3361 Constant
*RHS
= cast
<Constant
>(Cmp
.getOperand(1));
3362 Value
*BOp0
= BO
->getOperand(0), *BOp1
= BO
->getOperand(1);
3364 switch (BO
->getOpcode()) {
3365 case Instruction::SRem
:
3366 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3367 if (C
.isZero() && BO
->hasOneUse()) {
3369 if (match(BOp1
, m_APInt(BOC
)) && BOC
->sgt(1) && BOC
->isPowerOf2()) {
3370 Value
*NewRem
= Builder
.CreateURem(BOp0
, BOp1
, BO
->getName());
3371 return new ICmpInst(Pred
, NewRem
,
3372 Constant::getNullValue(BO
->getType()));
3376 case Instruction::Add
: {
3377 // (A + C2) == C --> A == (C - C2)
3378 // (A + C2) != C --> A != (C - C2)
3379 // TODO: Remove the one-use limitation? See discussion in D58633.
3380 if (Constant
*C2
= dyn_cast
<Constant
>(BOp1
)) {
3381 if (BO
->hasOneUse())
3382 return new ICmpInst(Pred
, BOp0
, ConstantExpr::getSub(RHS
, C2
));
3383 } else if (C
.isZero()) {
3384 // Replace ((add A, B) != 0) with (A != -B) if A or B is
3385 // efficiently invertible, or if the add has just this one use.
3386 if (Value
*NegVal
= dyn_castNegVal(BOp1
))
3387 return new ICmpInst(Pred
, BOp0
, NegVal
);
3388 if (Value
*NegVal
= dyn_castNegVal(BOp0
))
3389 return new ICmpInst(Pred
, NegVal
, BOp1
);
3390 if (BO
->hasOneUse()) {
3391 Value
*Neg
= Builder
.CreateNeg(BOp1
);
3393 return new ICmpInst(Pred
, BOp0
, Neg
);
3398 case Instruction::Xor
:
3399 if (BO
->hasOneUse()) {
3400 if (Constant
*BOC
= dyn_cast
<Constant
>(BOp1
)) {
3401 // For the xor case, we can xor two constants together, eliminating
3402 // the explicit xor.
3403 return new ICmpInst(Pred
, BOp0
, ConstantExpr::getXor(RHS
, BOC
));
3404 } else if (C
.isZero()) {
3405 // Replace ((xor A, B) != 0) with (A != B)
3406 return new ICmpInst(Pred
, BOp0
, BOp1
);
3410 case Instruction::Or
: {
3412 if (match(BOp1
, m_APInt(BOC
)) && BO
->hasOneUse() && RHS
->isAllOnesValue()) {
3413 // Comparing if all bits outside of a constant mask are set?
3414 // Replace (X | C) == -1 with (X & ~C) == ~C.
3415 // This removes the -1 constant.
3416 Constant
*NotBOC
= ConstantExpr::getNot(cast
<Constant
>(BOp1
));
3417 Value
*And
= Builder
.CreateAnd(BOp0
, NotBOC
);
3418 return new ICmpInst(Pred
, And
, NotBOC
);
3422 case Instruction::UDiv
:
3423 case Instruction::SDiv
:
3424 if (BO
->isExact()) {
3425 // div exact X, Y eq/ne 0 -> X eq/ne 0
3426 // div exact X, Y eq/ne 1 -> X eq/ne Y
3427 // div exact X, Y eq/ne C ->
3428 // if Y * C never-overflow && OneUse:
3431 return new ICmpInst(Pred
, BOp0
, Constant::getNullValue(BO
->getType()));
3433 return new ICmpInst(Pred
, BOp0
, BOp1
);
3434 else if (BO
->hasOneUse()) {
3435 OverflowResult OR
= computeOverflow(
3436 Instruction::Mul
, BO
->getOpcode() == Instruction::SDiv
, BOp1
,
3437 Cmp
.getOperand(1), BO
);
3438 if (OR
== OverflowResult::NeverOverflows
) {
3440 Builder
.CreateMul(BOp1
, ConstantInt::get(BO
->getType(), C
));
3441 return new ICmpInst(Pred
, YC
, BOp0
);
3445 if (BO
->getOpcode() == Instruction::UDiv
&& C
.isZero()) {
3446 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3447 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_UGT
;
3448 return new ICmpInst(NewPred
, BOp1
, BOp0
);
3457 static Instruction
*foldCtpopPow2Test(ICmpInst
&I
, IntrinsicInst
*CtpopLhs
,
3459 InstCombiner::BuilderTy
&Builder
,
3460 const SimplifyQuery
&Q
) {
3461 assert(CtpopLhs
->getIntrinsicID() == Intrinsic::ctpop
&&
3462 "Non-ctpop intrin in ctpop fold");
3463 if (!CtpopLhs
->hasOneUse())
3467 // isPow2OrZero : ctpop(X) u< 2
3468 // isPow2 : ctpop(X) == 1
3469 // NotPow2OrZero: ctpop(X) u> 1
3470 // NotPow2 : ctpop(X) != 1
3471 // If we know any bit of X can be folded to:
3472 // IsPow2 : X & (~Bit) == 0
3473 // NotPow2 : X & (~Bit) != 0
3474 const ICmpInst::Predicate Pred
= I
.getPredicate();
3475 if (((I
.isEquality() || Pred
== ICmpInst::ICMP_UGT
) && CRhs
== 1) ||
3476 (Pred
== ICmpInst::ICMP_ULT
&& CRhs
== 2)) {
3477 Value
*Op
= CtpopLhs
->getArgOperand(0);
3478 KnownBits OpKnown
= computeKnownBits(Op
, Q
.DL
,
3479 /*Depth*/ 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
3480 // No need to check for count > 1, that should be already constant folded.
3481 if (OpKnown
.countMinPopulation() == 1) {
3482 Value
*And
= Builder
.CreateAnd(
3483 Op
, Constant::getIntegerValue(Op
->getType(), ~(OpKnown
.One
)));
3484 return new ICmpInst(
3485 (Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_ULT
)
3487 : ICmpInst::ICMP_NE
,
3488 And
, Constant::getNullValue(Op
->getType()));
3495 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3496 Instruction
*InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3497 ICmpInst
&Cmp
, IntrinsicInst
*II
, const APInt
&C
) {
3498 Type
*Ty
= II
->getType();
3499 unsigned BitWidth
= C
.getBitWidth();
3500 const ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3502 switch (II
->getIntrinsicID()) {
3503 case Intrinsic::abs
:
3504 // abs(A) == 0 -> A == 0
3505 // abs(A) == INT_MIN -> A == INT_MIN
3506 if (C
.isZero() || C
.isMinSignedValue())
3507 return new ICmpInst(Pred
, II
->getArgOperand(0), ConstantInt::get(Ty
, C
));
3510 case Intrinsic::bswap
:
3511 // bswap(A) == C -> A == bswap(C)
3512 return new ICmpInst(Pred
, II
->getArgOperand(0),
3513 ConstantInt::get(Ty
, C
.byteSwap()));
3515 case Intrinsic::bitreverse
:
3516 // bitreverse(A) == C -> A == bitreverse(C)
3517 return new ICmpInst(Pred
, II
->getArgOperand(0),
3518 ConstantInt::get(Ty
, C
.reverseBits()));
3520 case Intrinsic::ctlz
:
3521 case Intrinsic::cttz
: {
3522 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
3524 return new ICmpInst(Pred
, II
->getArgOperand(0),
3525 ConstantInt::getNullValue(Ty
));
3527 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3528 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3529 // Limit to one use to ensure we don't increase instruction count.
3530 unsigned Num
= C
.getLimitedValue(BitWidth
);
3531 if (Num
!= BitWidth
&& II
->hasOneUse()) {
3532 bool IsTrailing
= II
->getIntrinsicID() == Intrinsic::cttz
;
3533 APInt Mask1
= IsTrailing
? APInt::getLowBitsSet(BitWidth
, Num
+ 1)
3534 : APInt::getHighBitsSet(BitWidth
, Num
+ 1);
3535 APInt Mask2
= IsTrailing
3536 ? APInt::getOneBitSet(BitWidth
, Num
)
3537 : APInt::getOneBitSet(BitWidth
, BitWidth
- Num
- 1);
3538 return new ICmpInst(Pred
, Builder
.CreateAnd(II
->getArgOperand(0), Mask1
),
3539 ConstantInt::get(Ty
, Mask2
));
3544 case Intrinsic::ctpop
: {
3545 // popcount(A) == 0 -> A == 0 and likewise for !=
3546 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3547 bool IsZero
= C
.isZero();
3548 if (IsZero
|| C
== BitWidth
)
3549 return new ICmpInst(Pred
, II
->getArgOperand(0),
3550 IsZero
? Constant::getNullValue(Ty
)
3551 : Constant::getAllOnesValue(Ty
));
3556 case Intrinsic::fshl
:
3557 case Intrinsic::fshr
:
3558 if (II
->getArgOperand(0) == II
->getArgOperand(1)) {
3559 const APInt
*RotAmtC
;
3560 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3561 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3562 if (match(II
->getArgOperand(2), m_APInt(RotAmtC
)))
3563 return new ICmpInst(Pred
, II
->getArgOperand(0),
3564 II
->getIntrinsicID() == Intrinsic::fshl
3565 ? ConstantInt::get(Ty
, C
.rotr(*RotAmtC
))
3566 : ConstantInt::get(Ty
, C
.rotl(*RotAmtC
)));
3570 case Intrinsic::umax
:
3571 case Intrinsic::uadd_sat
: {
3572 // uadd.sat(a, b) == 0 -> (a | b) == 0
3573 // umax(a, b) == 0 -> (a | b) == 0
3574 if (C
.isZero() && II
->hasOneUse()) {
3575 Value
*Or
= Builder
.CreateOr(II
->getArgOperand(0), II
->getArgOperand(1));
3576 return new ICmpInst(Pred
, Or
, Constant::getNullValue(Ty
));
3581 case Intrinsic::ssub_sat
:
3582 // ssub.sat(a, b) == 0 -> a == b
3584 return new ICmpInst(Pred
, II
->getArgOperand(0), II
->getArgOperand(1));
3586 case Intrinsic::usub_sat
: {
3587 // usub.sat(a, b) == 0 -> a <= b
3589 ICmpInst::Predicate NewPred
=
3590 Pred
== ICmpInst::ICMP_EQ
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_UGT
;
3591 return new ICmpInst(NewPred
, II
->getArgOperand(0), II
->getArgOperand(1));
3602 /// Fold an icmp with LLVM intrinsics
3603 static Instruction
*
3604 foldICmpIntrinsicWithIntrinsic(ICmpInst
&Cmp
,
3605 InstCombiner::BuilderTy
&Builder
) {
3606 assert(Cmp
.isEquality());
3608 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3609 Value
*Op0
= Cmp
.getOperand(0);
3610 Value
*Op1
= Cmp
.getOperand(1);
3611 const auto *IIOp0
= dyn_cast
<IntrinsicInst
>(Op0
);
3612 const auto *IIOp1
= dyn_cast
<IntrinsicInst
>(Op1
);
3613 if (!IIOp0
|| !IIOp1
|| IIOp0
->getIntrinsicID() != IIOp1
->getIntrinsicID())
3616 switch (IIOp0
->getIntrinsicID()) {
3617 case Intrinsic::bswap
:
3618 case Intrinsic::bitreverse
:
3619 // If both operands are byte-swapped or bit-reversed, just compare the
3621 return new ICmpInst(Pred
, IIOp0
->getOperand(0), IIOp1
->getOperand(0));
3622 case Intrinsic::fshl
:
3623 case Intrinsic::fshr
: {
3624 // If both operands are rotated by same amount, just compare the
3626 if (IIOp0
->getOperand(0) != IIOp0
->getOperand(1))
3628 if (IIOp1
->getOperand(0) != IIOp1
->getOperand(1))
3630 if (IIOp0
->getOperand(2) == IIOp1
->getOperand(2))
3631 return new ICmpInst(Pred
, IIOp0
->getOperand(0), IIOp1
->getOperand(0));
3633 // rotate(X, AmtX) == rotate(Y, AmtY)
3634 // -> rotate(X, AmtX - AmtY) == Y
3635 // Do this if either both rotates have one use or if only one has one use
3636 // and AmtX/AmtY are constants.
3637 unsigned OneUses
= IIOp0
->hasOneUse() + IIOp1
->hasOneUse();
3639 (OneUses
== 1 && match(IIOp0
->getOperand(2), m_ImmConstant()) &&
3640 match(IIOp1
->getOperand(2), m_ImmConstant()))) {
3642 Builder
.CreateSub(IIOp0
->getOperand(2), IIOp1
->getOperand(2));
3643 Value
*CombinedRotate
= Builder
.CreateIntrinsic(
3644 Op0
->getType(), IIOp0
->getIntrinsicID(),
3645 {IIOp0
->getOperand(0), IIOp0
->getOperand(0), SubAmt
});
3646 return new ICmpInst(Pred
, IIOp1
->getOperand(0), CombinedRotate
);
3656 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3657 /// where X is some kind of instruction and C is AllowUndef.
3658 /// TODO: Move more folds which allow undef to this function.
3660 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst
&Cmp
,
3662 const ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3663 if (auto *II
= dyn_cast
<IntrinsicInst
>(Cmp
.getOperand(0))) {
3664 switch (II
->getIntrinsicID()) {
3667 case Intrinsic::fshl
:
3668 case Intrinsic::fshr
:
3669 if (Cmp
.isEquality() && II
->getArgOperand(0) == II
->getArgOperand(1)) {
3670 // (rot X, ?) == 0/-1 --> X == 0/-1
3671 if (C
.isZero() || C
.isAllOnes())
3672 return new ICmpInst(Pred
, II
->getArgOperand(0), Cmp
.getOperand(1));
3681 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C.
3682 Instruction
*InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst
&Cmp
,
3685 switch (BO
->getOpcode()) {
3686 case Instruction::Xor
:
3687 if (Instruction
*I
= foldICmpXorConstant(Cmp
, BO
, C
))
3690 case Instruction::And
:
3691 if (Instruction
*I
= foldICmpAndConstant(Cmp
, BO
, C
))
3694 case Instruction::Or
:
3695 if (Instruction
*I
= foldICmpOrConstant(Cmp
, BO
, C
))
3698 case Instruction::Mul
:
3699 if (Instruction
*I
= foldICmpMulConstant(Cmp
, BO
, C
))
3702 case Instruction::Shl
:
3703 if (Instruction
*I
= foldICmpShlConstant(Cmp
, BO
, C
))
3706 case Instruction::LShr
:
3707 case Instruction::AShr
:
3708 if (Instruction
*I
= foldICmpShrConstant(Cmp
, BO
, C
))
3711 case Instruction::SRem
:
3712 if (Instruction
*I
= foldICmpSRemConstant(Cmp
, BO
, C
))
3715 case Instruction::UDiv
:
3716 if (Instruction
*I
= foldICmpUDivConstant(Cmp
, BO
, C
))
3719 case Instruction::SDiv
:
3720 if (Instruction
*I
= foldICmpDivConstant(Cmp
, BO
, C
))
3723 case Instruction::Sub
:
3724 if (Instruction
*I
= foldICmpSubConstant(Cmp
, BO
, C
))
3727 case Instruction::Add
:
3728 if (Instruction
*I
= foldICmpAddConstant(Cmp
, BO
, C
))
3735 // TODO: These folds could be refactored to be part of the above calls.
3736 return foldICmpBinOpEqualityWithConstant(Cmp
, BO
, C
);
3739 static Instruction
*
3740 foldICmpUSubSatOrUAddSatWithConstant(ICmpInst::Predicate Pred
,
3741 SaturatingInst
*II
, const APInt
&C
,
3742 InstCombiner::BuilderTy
&Builder
) {
3743 // This transform may end up producing more than one instruction for the
3744 // intrinsic, so limit it to one user of the intrinsic.
3745 if (!II
->hasOneUse())
3748 // Let Y = [add/sub]_sat(X, C) pred C2
3749 // SatVal = The saturating value for the operation
3750 // WillWrap = Whether or not the operation will underflow / overflow
3751 // => Y = (WillWrap ? SatVal : (X binop C)) pred C2
3752 // => Y = WillWrap ? (SatVal pred C2) : ((X binop C) pred C2)
3754 // When (SatVal pred C2) is true, then
3755 // Y = WillWrap ? true : ((X binop C) pred C2)
3756 // => Y = WillWrap || ((X binop C) pred C2)
3758 // Y = WillWrap ? false : ((X binop C) pred C2)
3759 // => Y = !WillWrap ? ((X binop C) pred C2) : false
3760 // => Y = !WillWrap && ((X binop C) pred C2)
3761 Value
*Op0
= II
->getOperand(0);
3762 Value
*Op1
= II
->getOperand(1);
3765 // This transform only works when the intrinsic has an integral constant or
3766 // splat vector as the second operand.
3767 if (!match(Op1
, m_APInt(COp1
)))
3771 switch (II
->getIntrinsicID()) {
3774 "This function only works with usub_sat and uadd_sat for now!");
3775 case Intrinsic::uadd_sat
:
3776 SatVal
= APInt::getAllOnes(C
.getBitWidth());
3778 case Intrinsic::usub_sat
:
3779 SatVal
= APInt::getZero(C
.getBitWidth());
3783 // Check (SatVal pred C2)
3784 bool SatValCheck
= ICmpInst::compare(SatVal
, C
, Pred
);
3787 ConstantRange C1
= ConstantRange::makeExactNoWrapRegion(
3788 II
->getBinaryOp(), *COp1
, II
->getNoWrapKind());
3794 ConstantRange C2
= ConstantRange::makeExactICmpRegion(Pred
, C
);
3795 if (II
->getBinaryOp() == Instruction::Add
)
3800 Instruction::BinaryOps CombiningOp
=
3801 SatValCheck
? Instruction::BinaryOps::Or
: Instruction::BinaryOps::And
;
3803 std::optional
<ConstantRange
> Combination
;
3804 if (CombiningOp
== Instruction::BinaryOps::Or
)
3805 Combination
= C1
.exactUnionWith(C2
);
3806 else /* CombiningOp == Instruction::BinaryOps::And */
3807 Combination
= C1
.exactIntersectWith(C2
);
3812 CmpInst::Predicate EquivPred
;
3816 Combination
->getEquivalentICmp(EquivPred
, EquivInt
, EquivOffset
);
3818 return new ICmpInst(
3820 Builder
.CreateAdd(Op0
, ConstantInt::get(Op1
->getType(), EquivOffset
)),
3821 ConstantInt::get(Op1
->getType(), EquivInt
));
3824 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3825 Instruction
*InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst
&Cmp
,
3828 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3830 // Handle folds that apply for any kind of icmp.
3831 switch (II
->getIntrinsicID()) {
3834 case Intrinsic::uadd_sat
:
3835 case Intrinsic::usub_sat
:
3836 if (auto *Folded
= foldICmpUSubSatOrUAddSatWithConstant(
3837 Pred
, cast
<SaturatingInst
>(II
), C
, Builder
))
3840 case Intrinsic::ctpop
: {
3841 const SimplifyQuery Q
= SQ
.getWithInstruction(&Cmp
);
3842 if (Instruction
*R
= foldCtpopPow2Test(Cmp
, II
, C
, Builder
, Q
))
3847 if (Cmp
.isEquality())
3848 return foldICmpEqIntrinsicWithConstant(Cmp
, II
, C
);
3850 Type
*Ty
= II
->getType();
3851 unsigned BitWidth
= C
.getBitWidth();
3852 switch (II
->getIntrinsicID()) {
3853 case Intrinsic::ctpop
: {
3854 // (ctpop X > BitWidth - 1) --> X == -1
3855 Value
*X
= II
->getArgOperand(0);
3856 if (C
== BitWidth
- 1 && Pred
== ICmpInst::ICMP_UGT
)
3857 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_EQ
, X
,
3858 ConstantInt::getAllOnesValue(Ty
));
3859 // (ctpop X < BitWidth) --> X != -1
3860 if (C
== BitWidth
&& Pred
== ICmpInst::ICMP_ULT
)
3861 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_NE
, X
,
3862 ConstantInt::getAllOnesValue(Ty
));
3865 case Intrinsic::ctlz
: {
3866 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3867 if (Pred
== ICmpInst::ICMP_UGT
&& C
.ult(BitWidth
)) {
3868 unsigned Num
= C
.getLimitedValue();
3869 APInt Limit
= APInt::getOneBitSet(BitWidth
, BitWidth
- Num
- 1);
3870 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_ULT
,
3871 II
->getArgOperand(0), ConstantInt::get(Ty
, Limit
));
3874 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3875 if (Pred
== ICmpInst::ICMP_ULT
&& C
.uge(1) && C
.ule(BitWidth
)) {
3876 unsigned Num
= C
.getLimitedValue();
3877 APInt Limit
= APInt::getLowBitsSet(BitWidth
, BitWidth
- Num
);
3878 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_UGT
,
3879 II
->getArgOperand(0), ConstantInt::get(Ty
, Limit
));
3883 case Intrinsic::cttz
: {
3884 // Limit to one use to ensure we don't increase instruction count.
3885 if (!II
->hasOneUse())
3888 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3889 if (Pred
== ICmpInst::ICMP_UGT
&& C
.ult(BitWidth
)) {
3890 APInt Mask
= APInt::getLowBitsSet(BitWidth
, C
.getLimitedValue() + 1);
3891 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_EQ
,
3892 Builder
.CreateAnd(II
->getArgOperand(0), Mask
),
3893 ConstantInt::getNullValue(Ty
));
3896 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3897 if (Pred
== ICmpInst::ICMP_ULT
&& C
.uge(1) && C
.ule(BitWidth
)) {
3898 APInt Mask
= APInt::getLowBitsSet(BitWidth
, C
.getLimitedValue());
3899 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_NE
,
3900 Builder
.CreateAnd(II
->getArgOperand(0), Mask
),
3901 ConstantInt::getNullValue(Ty
));
3905 case Intrinsic::ssub_sat
:
3906 // ssub.sat(a, b) spred 0 -> a spred b
3907 if (ICmpInst::isSigned(Pred
)) {
3909 return new ICmpInst(Pred
, II
->getArgOperand(0), II
->getArgOperand(1));
3910 // X s<= 0 is cannonicalized to X s< 1
3911 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isOne())
3912 return new ICmpInst(ICmpInst::ICMP_SLE
, II
->getArgOperand(0),
3913 II
->getArgOperand(1));
3914 // X s>= 0 is cannonicalized to X s> -1
3915 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isAllOnes())
3916 return new ICmpInst(ICmpInst::ICMP_SGE
, II
->getArgOperand(0),
3917 II
->getArgOperand(1));
3927 /// Handle icmp with constant (but not simple integer constant) RHS.
3928 Instruction
*InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst
&I
) {
3929 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3930 Constant
*RHSC
= dyn_cast
<Constant
>(Op1
);
3931 Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
);
3935 switch (LHSI
->getOpcode()) {
3936 case Instruction::PHI
:
3937 if (Instruction
*NV
= foldOpIntoPhi(I
, cast
<PHINode
>(LHSI
)))
3940 case Instruction::IntToPtr
:
3941 // icmp pred inttoptr(X), null -> icmp pred X, 0
3942 if (RHSC
->isNullValue() &&
3943 DL
.getIntPtrType(RHSC
->getType()) == LHSI
->getOperand(0)->getType())
3944 return new ICmpInst(
3945 I
.getPredicate(), LHSI
->getOperand(0),
3946 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
3949 case Instruction::Load
:
3950 // Try to optimize things like "A[i] > 4" to index computations.
3951 if (GetElementPtrInst
*GEP
=
3952 dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0)))
3953 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
3954 if (Instruction
*Res
=
3955 foldCmpLoadFromIndexedGlobal(cast
<LoadInst
>(LHSI
), GEP
, GV
, I
))
3963 Instruction
*InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred
,
3964 SelectInst
*SI
, Value
*RHS
,
3965 const ICmpInst
&I
) {
3966 // Try to fold the comparison into the select arms, which will cause the
3967 // select to be converted into a logical and/or.
3968 auto SimplifyOp
= [&](Value
*Op
, bool SelectCondIsTrue
) -> Value
* {
3969 if (Value
*Res
= simplifyICmpInst(Pred
, Op
, RHS
, SQ
))
3971 if (std::optional
<bool> Impl
= isImpliedCondition(
3972 SI
->getCondition(), Pred
, Op
, RHS
, DL
, SelectCondIsTrue
))
3973 return ConstantInt::get(I
.getType(), *Impl
);
3977 ConstantInt
*CI
= nullptr;
3978 Value
*Op1
= SimplifyOp(SI
->getOperand(1), true);
3980 CI
= dyn_cast
<ConstantInt
>(Op1
);
3982 Value
*Op2
= SimplifyOp(SI
->getOperand(2), false);
3984 CI
= dyn_cast
<ConstantInt
>(Op2
);
3986 // We only want to perform this transformation if it will not lead to
3987 // additional code. This is true if either both sides of the select
3988 // fold to a constant (in which case the icmp is replaced with a select
3989 // which will usually simplify) or this is the only user of the
3990 // select (in which case we are trading a select+icmp for a simpler
3991 // select+icmp) or all uses of the select can be replaced based on
3992 // dominance information ("Global cases").
3993 bool Transform
= false;
3996 else if (Op1
|| Op2
) {
3998 if (SI
->hasOneUse())
4001 else if (CI
&& !CI
->isZero())
4002 // When Op1 is constant try replacing select with second operand.
4003 // Otherwise Op2 is constant and try replacing select with first
4005 Transform
= replacedSelectWithOperand(SI
, &I
, Op1
? 2 : 1);
4009 Op1
= Builder
.CreateICmp(Pred
, SI
->getOperand(1), RHS
, I
.getName());
4011 Op2
= Builder
.CreateICmp(Pred
, SI
->getOperand(2), RHS
, I
.getName());
4012 return SelectInst::Create(SI
->getOperand(0), Op1
, Op2
);
4018 /// Some comparisons can be simplified.
4019 /// In this case, we are looking for comparisons that look like
4020 /// a check for a lossy truncation.
4022 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
4023 /// Where Mask is some pattern that produces all-ones in low bits:
4025 /// ((-1 << y) >> y) <- non-canonical, has extra uses
4027 /// ((1 << y) + (-1)) <- non-canonical, has extra uses
4028 /// The Mask can be a constant, too.
4029 /// For some predicates, the operands are commutative.
4030 /// For others, x can only be on a specific side.
4031 static Value
*foldICmpWithLowBitMaskedVal(ICmpInst
&I
,
4032 InstCombiner::BuilderTy
&Builder
) {
4033 ICmpInst::Predicate SrcPred
;
4035 auto m_VariableMask
= m_CombineOr(
4036 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
4037 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
4038 m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
4039 m_LShr(m_Shl(m_AllOnes(), m_Value(Y
)), m_Deferred(Y
))));
4040 auto m_Mask
= m_CombineOr(m_VariableMask
, m_LowBitMask());
4041 if (!match(&I
, m_c_ICmp(SrcPred
,
4042 m_c_And(m_CombineAnd(m_Mask
, m_Value(M
)), m_Value(X
)),
4046 ICmpInst::Predicate DstPred
;
4048 case ICmpInst::Predicate::ICMP_EQ
:
4049 // x & (-1 >> y) == x -> x u<= (-1 >> y)
4050 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
4052 case ICmpInst::Predicate::ICMP_NE
:
4053 // x & (-1 >> y) != x -> x u> (-1 >> y)
4054 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
4056 case ICmpInst::Predicate::ICMP_ULT
:
4057 // x & (-1 >> y) u< x -> x u> (-1 >> y)
4058 // x u> x & (-1 >> y) -> x u> (-1 >> y)
4059 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
4061 case ICmpInst::Predicate::ICMP_UGE
:
4062 // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
4063 // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
4064 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
4066 case ICmpInst::Predicate::ICMP_SLT
:
4067 // x & (-1 >> y) s< x -> x s> (-1 >> y)
4068 // x s> x & (-1 >> y) -> x s> (-1 >> y)
4069 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
4071 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
4073 DstPred
= ICmpInst::Predicate::ICMP_SGT
;
4075 case ICmpInst::Predicate::ICMP_SGE
:
4076 // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
4077 // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
4078 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
4080 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
4082 DstPred
= ICmpInst::Predicate::ICMP_SLE
;
4084 case ICmpInst::Predicate::ICMP_SGT
:
4085 case ICmpInst::Predicate::ICMP_SLE
:
4087 case ICmpInst::Predicate::ICMP_UGT
:
4088 case ICmpInst::Predicate::ICMP_ULE
:
4089 llvm_unreachable("Instsimplify took care of commut. variant");
4092 llvm_unreachable("All possible folds are handled.");
4095 // The mask value may be a vector constant that has undefined elements. But it
4096 // may not be safe to propagate those undefs into the new compare, so replace
4097 // those elements by copying an existing, defined, and safe scalar constant.
4098 Type
*OpTy
= M
->getType();
4099 auto *VecC
= dyn_cast
<Constant
>(M
);
4100 auto *OpVTy
= dyn_cast
<FixedVectorType
>(OpTy
);
4101 if (OpVTy
&& VecC
&& VecC
->containsUndefOrPoisonElement()) {
4102 Constant
*SafeReplacementConstant
= nullptr;
4103 for (unsigned i
= 0, e
= OpVTy
->getNumElements(); i
!= e
; ++i
) {
4104 if (!isa
<UndefValue
>(VecC
->getAggregateElement(i
))) {
4105 SafeReplacementConstant
= VecC
->getAggregateElement(i
);
4109 assert(SafeReplacementConstant
&& "Failed to find undef replacement");
4110 M
= Constant::replaceUndefsWith(VecC
, SafeReplacementConstant
);
4113 return Builder
.CreateICmp(DstPred
, X
, M
);
4116 /// Some comparisons can be simplified.
4117 /// In this case, we are looking for comparisons that look like
4118 /// a check for a lossy signed truncation.
4119 /// Folds: (MaskedBits is a constant.)
4120 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
4122 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
4123 /// Where KeptBits = bitwidth(%x) - MaskedBits
4125 foldICmpWithTruncSignExtendedVal(ICmpInst
&I
,
4126 InstCombiner::BuilderTy
&Builder
) {
4127 ICmpInst::Predicate SrcPred
;
4129 const APInt
*C0
, *C1
; // FIXME: non-splats, potentially with undef.
4130 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
4131 if (!match(&I
, m_c_ICmp(SrcPred
,
4132 m_OneUse(m_AShr(m_Shl(m_Value(X
), m_APInt(C0
)),
4137 // Potential handling of non-splats: for each element:
4138 // * if both are undef, replace with constant 0.
4139 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
4140 // * if both are not undef, and are different, bailout.
4141 // * else, only one is undef, then pick the non-undef one.
4143 // The shift amount must be equal.
4146 const APInt
&MaskedBits
= *C0
;
4147 assert(MaskedBits
!= 0 && "shift by zero should be folded away already.");
4149 ICmpInst::Predicate DstPred
;
4151 case ICmpInst::Predicate::ICMP_EQ
:
4152 // ((%x << MaskedBits) a>> MaskedBits) == %x
4154 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
4155 DstPred
= ICmpInst::Predicate::ICMP_ULT
;
4157 case ICmpInst::Predicate::ICMP_NE
:
4158 // ((%x << MaskedBits) a>> MaskedBits) != %x
4160 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
4161 DstPred
= ICmpInst::Predicate::ICMP_UGE
;
4163 // FIXME: are more folds possible?
4168 auto *XType
= X
->getType();
4169 const unsigned XBitWidth
= XType
->getScalarSizeInBits();
4170 const APInt BitWidth
= APInt(XBitWidth
, XBitWidth
);
4171 assert(BitWidth
.ugt(MaskedBits
) && "shifts should leave some bits untouched");
4173 // KeptBits = bitwidth(%x) - MaskedBits
4174 const APInt KeptBits
= BitWidth
- MaskedBits
;
4175 assert(KeptBits
.ugt(0) && KeptBits
.ult(BitWidth
) && "unreachable");
4176 // ICmpCst = (1 << KeptBits)
4177 const APInt ICmpCst
= APInt(XBitWidth
, 1).shl(KeptBits
);
4178 assert(ICmpCst
.isPowerOf2());
4179 // AddCst = (1 << (KeptBits-1))
4180 const APInt AddCst
= ICmpCst
.lshr(1);
4181 assert(AddCst
.ult(ICmpCst
) && AddCst
.isPowerOf2());
4183 // T0 = add %x, AddCst
4184 Value
*T0
= Builder
.CreateAdd(X
, ConstantInt::get(XType
, AddCst
));
4185 // T1 = T0 DstPred ICmpCst
4186 Value
*T1
= Builder
.CreateICmp(DstPred
, T0
, ConstantInt::get(XType
, ICmpCst
));
4192 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
4193 // we should move shifts to the same hand of 'and', i.e. rewrite as
4194 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
4195 // We are only interested in opposite logical shifts here.
4196 // One of the shifts can be truncated.
4197 // If we can, we want to end up creating 'lshr' shift.
4199 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst
&I
, const SimplifyQuery SQ
,
4200 InstCombiner::BuilderTy
&Builder
) {
4201 if (!I
.isEquality() || !match(I
.getOperand(1), m_Zero()) ||
4202 !I
.getOperand(0)->hasOneUse())
4205 auto m_AnyLogicalShift
= m_LogicalShift(m_Value(), m_Value());
4207 // Look for an 'and' of two logical shifts, one of which may be truncated.
4208 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
4209 Instruction
*XShift
, *MaybeTruncation
, *YShift
;
4212 m_c_And(m_CombineAnd(m_AnyLogicalShift
, m_Instruction(XShift
)),
4213 m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
4214 m_AnyLogicalShift
, m_Instruction(YShift
))),
4215 m_Instruction(MaybeTruncation
)))))
4218 // We potentially looked past 'trunc', but only when matching YShift,
4219 // therefore YShift must have the widest type.
4220 Instruction
*WidestShift
= YShift
;
4221 // Therefore XShift must have the shallowest type.
4222 // Or they both have identical types if there was no truncation.
4223 Instruction
*NarrowestShift
= XShift
;
4225 Type
*WidestTy
= WidestShift
->getType();
4226 Type
*NarrowestTy
= NarrowestShift
->getType();
4227 assert(NarrowestTy
== I
.getOperand(0)->getType() &&
4228 "We did not look past any shifts while matching XShift though.");
4229 bool HadTrunc
= WidestTy
!= I
.getOperand(0)->getType();
4231 // If YShift is a 'lshr', swap the shifts around.
4232 if (match(YShift
, m_LShr(m_Value(), m_Value())))
4233 std::swap(XShift
, YShift
);
4235 // The shifts must be in opposite directions.
4236 auto XShiftOpcode
= XShift
->getOpcode();
4237 if (XShiftOpcode
== YShift
->getOpcode())
4238 return nullptr; // Do not care about same-direction shifts here.
4240 Value
*X
, *XShAmt
, *Y
, *YShAmt
;
4241 match(XShift
, m_BinOp(m_Value(X
), m_ZExtOrSelf(m_Value(XShAmt
))));
4242 match(YShift
, m_BinOp(m_Value(Y
), m_ZExtOrSelf(m_Value(YShAmt
))));
4244 // If one of the values being shifted is a constant, then we will end with
4245 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
4246 // however, we will need to ensure that we won't increase instruction count.
4247 if (!isa
<Constant
>(X
) && !isa
<Constant
>(Y
)) {
4248 // At least one of the hands of the 'and' should be one-use shift.
4249 if (!match(I
.getOperand(0),
4250 m_c_And(m_OneUse(m_AnyLogicalShift
), m_Value())))
4253 // Due to the 'trunc', we will need to widen X. For that either the old
4254 // 'trunc' or the shift amt in the non-truncated shift should be one-use.
4255 if (!MaybeTruncation
->hasOneUse() &&
4256 !NarrowestShift
->getOperand(1)->hasOneUse())
4261 // We have two shift amounts from two different shifts. The types of those
4262 // shift amounts may not match. If that's the case let's bailout now.
4263 if (XShAmt
->getType() != YShAmt
->getType())
4266 // As input, we have the following pattern:
4267 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
4268 // We want to rewrite that as:
4269 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
4270 // While we know that originally (Q+K) would not overflow
4271 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
4272 // shift amounts. so it may now overflow in smaller bitwidth.
4273 // To ensure that does not happen, we need to ensure that the total maximal
4274 // shift amount is still representable in that smaller bit width.
4275 unsigned MaximalPossibleTotalShiftAmount
=
4276 (WidestTy
->getScalarSizeInBits() - 1) +
4277 (NarrowestTy
->getScalarSizeInBits() - 1);
4278 APInt MaximalRepresentableShiftAmount
=
4279 APInt::getAllOnes(XShAmt
->getType()->getScalarSizeInBits());
4280 if (MaximalRepresentableShiftAmount
.ult(MaximalPossibleTotalShiftAmount
))
4283 // Can we fold (XShAmt+YShAmt) ?
4284 auto *NewShAmt
= dyn_cast_or_null
<Constant
>(
4285 simplifyAddInst(XShAmt
, YShAmt
, /*isNSW=*/false,
4286 /*isNUW=*/false, SQ
.getWithInstruction(&I
)));
4289 if (NewShAmt
->getType() != WidestTy
) {
4291 ConstantFoldCastOperand(Instruction::ZExt
, NewShAmt
, WidestTy
, SQ
.DL
);
4295 unsigned WidestBitWidth
= WidestTy
->getScalarSizeInBits();
4297 // Is the new shift amount smaller than the bit width?
4298 // FIXME: could also rely on ConstantRange.
4299 if (!match(NewShAmt
,
4300 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT
,
4301 APInt(WidestBitWidth
, WidestBitWidth
))))
4304 // An extra legality check is needed if we had trunc-of-lshr.
4305 if (HadTrunc
&& match(WidestShift
, m_LShr(m_Value(), m_Value()))) {
4306 auto CanFold
= [NewShAmt
, WidestBitWidth
, NarrowestShift
, SQ
,
4308 // It isn't obvious whether it's worth it to analyze non-constants here.
4309 // Also, let's basically give up on non-splat cases, pessimizing vectors.
4310 // If *any* of these preconditions matches we can perform the fold.
4311 Constant
*NewShAmtSplat
= NewShAmt
->getType()->isVectorTy()
4312 ? NewShAmt
->getSplatValue()
4314 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
4315 if (NewShAmtSplat
&&
4316 (NewShAmtSplat
->isNullValue() ||
4317 NewShAmtSplat
->getUniqueInteger() == WidestBitWidth
- 1))
4319 // We consider *min* leading zeros so a single outlier
4320 // blocks the transform as opposed to allowing it.
4321 if (auto *C
= dyn_cast
<Constant
>(NarrowestShift
->getOperand(0))) {
4322 KnownBits Known
= computeKnownBits(C
, SQ
.DL
);
4323 unsigned MinLeadZero
= Known
.countMinLeadingZeros();
4324 // If the value being shifted has at most lowest bit set we can fold.
4325 unsigned MaxActiveBits
= Known
.getBitWidth() - MinLeadZero
;
4326 if (MaxActiveBits
<= 1)
4328 // Precondition: NewShAmt u<= countLeadingZeros(C)
4329 if (NewShAmtSplat
&& NewShAmtSplat
->getUniqueInteger().ule(MinLeadZero
))
4332 if (auto *C
= dyn_cast
<Constant
>(WidestShift
->getOperand(0))) {
4333 KnownBits Known
= computeKnownBits(C
, SQ
.DL
);
4334 unsigned MinLeadZero
= Known
.countMinLeadingZeros();
4335 // If the value being shifted has at most lowest bit set we can fold.
4336 unsigned MaxActiveBits
= Known
.getBitWidth() - MinLeadZero
;
4337 if (MaxActiveBits
<= 1)
4339 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
4340 if (NewShAmtSplat
) {
4342 (WidestBitWidth
- 1) - NewShAmtSplat
->getUniqueInteger();
4343 if (AdjNewShAmt
.ule(MinLeadZero
))
4347 return false; // Can't tell if it's ok.
4353 // All good, we can do this fold.
4354 X
= Builder
.CreateZExt(X
, WidestTy
);
4355 Y
= Builder
.CreateZExt(Y
, WidestTy
);
4356 // The shift is the same that was for X.
4357 Value
*T0
= XShiftOpcode
== Instruction::BinaryOps::LShr
4358 ? Builder
.CreateLShr(X
, NewShAmt
)
4359 : Builder
.CreateShl(X
, NewShAmt
);
4360 Value
*T1
= Builder
.CreateAnd(T0
, Y
);
4361 return Builder
.CreateICmp(I
.getPredicate(), T1
,
4362 Constant::getNullValue(WidestTy
));
4367 /// ((x * y) ?/ x) != y
4369 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
4370 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
4371 /// will mean that we are looking for the opposite answer.
4372 Value
*InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst
&I
) {
4373 ICmpInst::Predicate Pred
;
4378 // Look for: (-1 u/ x) u</u>= y
4379 if (!I
.isEquality() &&
4380 match(&I
, m_c_ICmp(Pred
,
4381 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X
))),
4382 m_Instruction(Div
)),
4386 // Are we checking that overflow does not happen, or does happen?
4388 case ICmpInst::Predicate::ICMP_ULT
:
4389 NeedNegation
= false;
4391 case ICmpInst::Predicate::ICMP_UGE
:
4392 NeedNegation
= true;
4395 return nullptr; // Wrong predicate.
4397 } else // Look for: ((x * y) / x) !=/== y
4398 if (I
.isEquality() &&
4400 m_c_ICmp(Pred
, m_Value(Y
),
4402 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y
),
4404 m_Instruction(Mul
)),
4406 m_Instruction(Div
))))) {
4407 NeedNegation
= Pred
== ICmpInst::Predicate::ICMP_EQ
;
4411 BuilderTy::InsertPointGuard
Guard(Builder
);
4412 // If the pattern included (x * y), we'll want to insert new instructions
4413 // right before that original multiplication so that we can replace it.
4414 bool MulHadOtherUses
= Mul
&& !Mul
->hasOneUse();
4415 if (MulHadOtherUses
)
4416 Builder
.SetInsertPoint(Mul
);
4418 Function
*F
= Intrinsic::getDeclaration(I
.getModule(),
4419 Div
->getOpcode() == Instruction::UDiv
4420 ? Intrinsic::umul_with_overflow
4421 : Intrinsic::smul_with_overflow
,
4423 CallInst
*Call
= Builder
.CreateCall(F
, {X
, Y
}, "mul");
4425 // If the multiplication was used elsewhere, to ensure that we don't leave
4426 // "duplicate" instructions, replace uses of that original multiplication
4427 // with the multiplication result from the with.overflow intrinsic.
4428 if (MulHadOtherUses
)
4429 replaceInstUsesWith(*Mul
, Builder
.CreateExtractValue(Call
, 0, "mul.val"));
4431 Value
*Res
= Builder
.CreateExtractValue(Call
, 1, "mul.ov");
4432 if (NeedNegation
) // This technically increases instruction count.
4433 Res
= Builder
.CreateNot(Res
, "mul.not.ov");
4435 // If we replaced the mul, erase it. Do this after all uses of Builder,
4436 // as the mul is used as insertion point.
4437 if (MulHadOtherUses
)
4438 eraseInstFromFunction(*Mul
);
4443 static Instruction
*foldICmpXNegX(ICmpInst
&I
,
4444 InstCombiner::BuilderTy
&Builder
) {
4445 CmpInst::Predicate Pred
;
4447 if (match(&I
, m_c_ICmp(Pred
, m_NSWNeg(m_Value(X
)), m_Deferred(X
)))) {
4449 if (ICmpInst::isSigned(Pred
))
4450 Pred
= ICmpInst::getSwappedPredicate(Pred
);
4451 else if (ICmpInst::isUnsigned(Pred
))
4452 Pred
= ICmpInst::getSignedPredicate(Pred
);
4453 // else for equality-comparisons just keep the predicate.
4455 return ICmpInst::Create(Instruction::ICmp
, Pred
, X
,
4456 Constant::getNullValue(X
->getType()), I
.getName());
4459 // A value is not equal to its negation unless that value is 0 or
4460 // MinSignedValue, ie: a != -a --> (a & MaxSignedVal) != 0
4461 if (match(&I
, m_c_ICmp(Pred
, m_OneUse(m_Neg(m_Value(X
))), m_Deferred(X
))) &&
4462 ICmpInst::isEquality(Pred
)) {
4463 Type
*Ty
= X
->getType();
4464 uint32_t BitWidth
= Ty
->getScalarSizeInBits();
4465 Constant
*MaxSignedVal
=
4466 ConstantInt::get(Ty
, APInt::getSignedMaxValue(BitWidth
));
4467 Value
*And
= Builder
.CreateAnd(X
, MaxSignedVal
);
4468 Constant
*Zero
= Constant::getNullValue(Ty
);
4469 return CmpInst::Create(Instruction::ICmp
, Pred
, And
, Zero
);
4475 static Instruction
*foldICmpAndXX(ICmpInst
&I
, const SimplifyQuery
&Q
,
4476 InstCombinerImpl
&IC
) {
4477 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1), *A
;
4478 // Normalize and operand as operand 0.
4479 CmpInst::Predicate Pred
= I
.getPredicate();
4480 if (match(Op1
, m_c_And(m_Specific(Op0
), m_Value()))) {
4481 std::swap(Op0
, Op1
);
4482 Pred
= ICmpInst::getSwappedPredicate(Pred
);
4485 if (!match(Op0
, m_c_And(m_Specific(Op1
), m_Value(A
))))
4488 // (icmp (X & Y) u< X --> (X & Y) != X
4489 if (Pred
== ICmpInst::ICMP_ULT
)
4490 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
4492 // (icmp (X & Y) u>= X --> (X & Y) == X
4493 if (Pred
== ICmpInst::ICMP_UGE
)
4494 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
4499 static Instruction
*foldICmpOrXX(ICmpInst
&I
, const SimplifyQuery
&Q
,
4500 InstCombinerImpl
&IC
) {
4501 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1), *A
;
4503 // Normalize or operand as operand 0.
4504 CmpInst::Predicate Pred
= I
.getPredicate();
4505 if (match(Op1
, m_c_Or(m_Specific(Op0
), m_Value(A
)))) {
4506 std::swap(Op0
, Op1
);
4507 Pred
= ICmpInst::getSwappedPredicate(Pred
);
4508 } else if (!match(Op0
, m_c_Or(m_Specific(Op1
), m_Value(A
)))) {
4512 // icmp (X | Y) u<= X --> (X | Y) == X
4513 if (Pred
== ICmpInst::ICMP_ULE
)
4514 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
4516 // icmp (X | Y) u> X --> (X | Y) != X
4517 if (Pred
== ICmpInst::ICMP_UGT
)
4518 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
4520 if (ICmpInst::isEquality(Pred
) && Op0
->hasOneUse()) {
4521 // icmp (X | Y) eq/ne Y --> (X & ~Y) eq/ne 0 if Y is freely invertible
4523 IC
.getFreelyInverted(Op1
, Op1
->hasOneUse(), &IC
.Builder
))
4524 return new ICmpInst(Pred
, IC
.Builder
.CreateAnd(A
, NotOp1
),
4525 Constant::getNullValue(Op1
->getType()));
4526 // icmp (X | Y) eq/ne Y --> (~X | Y) eq/ne -1 if X is freely invertible.
4527 if (Value
*NotA
= IC
.getFreelyInverted(A
, A
->hasOneUse(), &IC
.Builder
))
4528 return new ICmpInst(Pred
, IC
.Builder
.CreateOr(Op1
, NotA
),
4529 Constant::getAllOnesValue(Op1
->getType()));
4534 static Instruction
*foldICmpXorXX(ICmpInst
&I
, const SimplifyQuery
&Q
,
4535 InstCombinerImpl
&IC
) {
4536 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1), *A
;
4537 // Normalize xor operand as operand 0.
4538 CmpInst::Predicate Pred
= I
.getPredicate();
4539 if (match(Op1
, m_c_Xor(m_Specific(Op0
), m_Value()))) {
4540 std::swap(Op0
, Op1
);
4541 Pred
= ICmpInst::getSwappedPredicate(Pred
);
4543 if (!match(Op0
, m_c_Xor(m_Specific(Op1
), m_Value(A
))))
4546 // icmp (X ^ Y_NonZero) u>= X --> icmp (X ^ Y_NonZero) u> X
4547 // icmp (X ^ Y_NonZero) u<= X --> icmp (X ^ Y_NonZero) u< X
4548 // icmp (X ^ Y_NonZero) s>= X --> icmp (X ^ Y_NonZero) s> X
4549 // icmp (X ^ Y_NonZero) s<= X --> icmp (X ^ Y_NonZero) s< X
4550 CmpInst::Predicate PredOut
= CmpInst::getStrictPredicate(Pred
);
4551 if (PredOut
!= Pred
&&
4552 isKnownNonZero(A
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
))
4553 return new ICmpInst(PredOut
, Op0
, Op1
);
4558 /// Try to fold icmp (binop), X or icmp X, (binop).
4559 /// TODO: A large part of this logic is duplicated in InstSimplify's
4560 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
4562 Instruction
*InstCombinerImpl::foldICmpBinOp(ICmpInst
&I
,
4563 const SimplifyQuery
&SQ
) {
4564 const SimplifyQuery Q
= SQ
.getWithInstruction(&I
);
4565 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
4567 // Special logic for binary operators.
4568 BinaryOperator
*BO0
= dyn_cast
<BinaryOperator
>(Op0
);
4569 BinaryOperator
*BO1
= dyn_cast
<BinaryOperator
>(Op1
);
4573 if (Instruction
*NewICmp
= foldICmpXNegX(I
, Builder
))
4576 const CmpInst::Predicate Pred
= I
.getPredicate();
4579 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
4580 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
4581 if (match(Op0
, m_OneUse(m_c_Add(m_Specific(Op1
), m_Value(X
)))) &&
4582 (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
))
4583 return new ICmpInst(Pred
, Builder
.CreateNot(Op1
), X
);
4584 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
4585 if (match(Op1
, m_OneUse(m_c_Add(m_Specific(Op0
), m_Value(X
)))) &&
4586 (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
))
4587 return new ICmpInst(Pred
, X
, Builder
.CreateNot(Op0
));
4590 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1
4592 if (match(Op0
, m_OneUse(m_Add(m_c_Add(m_Specific(Op1
), m_Value(X
)),
4593 m_ImmConstant(C
)))) &&
4594 (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
)) {
4595 Constant
*C2
= ConstantExpr::getNot(C
);
4596 return new ICmpInst(Pred
, Builder
.CreateSub(C2
, X
), Op1
);
4598 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X
4599 if (match(Op1
, m_OneUse(m_Add(m_c_Add(m_Specific(Op0
), m_Value(X
)),
4600 m_ImmConstant(C
)))) &&
4601 (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
)) {
4602 Constant
*C2
= ConstantExpr::getNot(C
);
4603 return new ICmpInst(Pred
, Op0
, Builder
.CreateSub(C2
, X
));
4608 // Similar to above: an unsigned overflow comparison may use offset + mask:
4609 // ((Op1 + C) & C) u< Op1 --> Op1 != 0
4610 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
4611 // Op0 u> ((Op0 + C) & C) --> Op0 != 0
4612 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
4615 if ((Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
) &&
4616 match(Op0
, m_And(m_BinOp(BO
), m_LowBitMask(C
))) &&
4617 match(BO
, m_Add(m_Specific(Op1
), m_SpecificIntAllowUndef(*C
)))) {
4618 CmpInst::Predicate NewPred
=
4619 Pred
== ICmpInst::ICMP_ULT
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
;
4620 Constant
*Zero
= ConstantInt::getNullValue(Op1
->getType());
4621 return new ICmpInst(NewPred
, Op1
, Zero
);
4624 if ((Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
) &&
4625 match(Op1
, m_And(m_BinOp(BO
), m_LowBitMask(C
))) &&
4626 match(BO
, m_Add(m_Specific(Op0
), m_SpecificIntAllowUndef(*C
)))) {
4627 CmpInst::Predicate NewPred
=
4628 Pred
== ICmpInst::ICMP_UGT
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
;
4629 Constant
*Zero
= ConstantInt::getNullValue(Op1
->getType());
4630 return new ICmpInst(NewPred
, Op0
, Zero
);
4634 bool NoOp0WrapProblem
= false, NoOp1WrapProblem
= false;
4635 bool Op0HasNUW
= false, Op1HasNUW
= false;
4636 bool Op0HasNSW
= false, Op1HasNSW
= false;
4637 // Analyze the case when either Op0 or Op1 is an add instruction.
4638 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
4639 auto hasNoWrapProblem
= [](const BinaryOperator
&BO
, CmpInst::Predicate Pred
,
4640 bool &HasNSW
, bool &HasNUW
) -> bool {
4641 if (isa
<OverflowingBinaryOperator
>(BO
)) {
4642 HasNUW
= BO
.hasNoUnsignedWrap();
4643 HasNSW
= BO
.hasNoSignedWrap();
4644 return ICmpInst::isEquality(Pred
) ||
4645 (CmpInst::isUnsigned(Pred
) && HasNUW
) ||
4646 (CmpInst::isSigned(Pred
) && HasNSW
);
4647 } else if (BO
.getOpcode() == Instruction::Or
) {
4655 Value
*A
= nullptr, *B
= nullptr, *C
= nullptr, *D
= nullptr;
4658 match(BO0
, m_AddLike(m_Value(A
), m_Value(B
)));
4659 NoOp0WrapProblem
= hasNoWrapProblem(*BO0
, Pred
, Op0HasNSW
, Op0HasNUW
);
4662 match(BO1
, m_AddLike(m_Value(C
), m_Value(D
)));
4663 NoOp1WrapProblem
= hasNoWrapProblem(*BO1
, Pred
, Op1HasNSW
, Op1HasNUW
);
4666 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4667 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4668 if ((A
== Op1
|| B
== Op1
) && NoOp0WrapProblem
)
4669 return new ICmpInst(Pred
, A
== Op1
? B
: A
,
4670 Constant::getNullValue(Op1
->getType()));
4672 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4673 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4674 if ((C
== Op0
|| D
== Op0
) && NoOp1WrapProblem
)
4675 return new ICmpInst(Pred
, Constant::getNullValue(Op0
->getType()),
4678 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4679 if (A
&& C
&& (A
== C
|| A
== D
|| B
== C
|| B
== D
) && NoOp0WrapProblem
&&
4681 // Determine Y and Z in the form icmp (X+Y), (X+Z).
4684 // C + B == C + D -> B == D
4687 } else if (A
== D
) {
4688 // D + B == C + D -> B == C
4691 } else if (B
== C
) {
4692 // A + C == C + D -> A == D
4697 // A + D == C + D -> A == C
4701 return new ICmpInst(Pred
, Y
, Z
);
4704 // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4705 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SLT
&&
4706 match(B
, m_AllOnes()))
4707 return new ICmpInst(CmpInst::ICMP_SLE
, A
, Op1
);
4709 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4710 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SGE
&&
4711 match(B
, m_AllOnes()))
4712 return new ICmpInst(CmpInst::ICMP_SGT
, A
, Op1
);
4714 // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4715 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SLE
&& match(B
, m_One()))
4716 return new ICmpInst(CmpInst::ICMP_SLT
, A
, Op1
);
4718 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4719 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SGT
&& match(B
, m_One()))
4720 return new ICmpInst(CmpInst::ICMP_SGE
, A
, Op1
);
4722 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4723 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SGT
&&
4724 match(D
, m_AllOnes()))
4725 return new ICmpInst(CmpInst::ICMP_SGE
, Op0
, C
);
4727 // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4728 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SLE
&&
4729 match(D
, m_AllOnes()))
4730 return new ICmpInst(CmpInst::ICMP_SLT
, Op0
, C
);
4732 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4733 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SGE
&& match(D
, m_One()))
4734 return new ICmpInst(CmpInst::ICMP_SGT
, Op0
, C
);
4736 // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4737 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SLT
&& match(D
, m_One()))
4738 return new ICmpInst(CmpInst::ICMP_SLE
, Op0
, C
);
4740 // TODO: The subtraction-related identities shown below also hold, but
4741 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4742 // wouldn't happen even if they were implemented.
4744 // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4745 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4746 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4747 // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4749 // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4750 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_ULE
&& match(B
, m_One()))
4751 return new ICmpInst(CmpInst::ICMP_ULT
, A
, Op1
);
4753 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4754 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_UGT
&& match(B
, m_One()))
4755 return new ICmpInst(CmpInst::ICMP_UGE
, A
, Op1
);
4757 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4758 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_UGE
&& match(D
, m_One()))
4759 return new ICmpInst(CmpInst::ICMP_UGT
, Op0
, C
);
4761 // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4762 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_ULT
&& match(D
, m_One()))
4763 return new ICmpInst(CmpInst::ICMP_ULE
, Op0
, C
);
4765 // if C1 has greater magnitude than C2:
4766 // icmp (A + C1), (C + C2) -> icmp (A + C3), C
4767 // s.t. C3 = C1 - C2
4769 // if C2 has greater magnitude than C1:
4770 // icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4771 // s.t. C3 = C2 - C1
4772 if (A
&& C
&& NoOp0WrapProblem
&& NoOp1WrapProblem
&&
4773 (BO0
->hasOneUse() || BO1
->hasOneUse()) && !I
.isUnsigned()) {
4774 const APInt
*AP1
, *AP2
;
4775 // TODO: Support non-uniform vectors.
4776 // TODO: Allow undef passthrough if B AND D's element is undef.
4777 if (match(B
, m_APIntAllowUndef(AP1
)) && match(D
, m_APIntAllowUndef(AP2
)) &&
4778 AP1
->isNegative() == AP2
->isNegative()) {
4779 APInt AP1Abs
= AP1
->abs();
4780 APInt AP2Abs
= AP2
->abs();
4781 if (AP1Abs
.uge(AP2Abs
)) {
4782 APInt Diff
= *AP1
- *AP2
;
4783 Constant
*C3
= Constant::getIntegerValue(BO0
->getType(), Diff
);
4784 Value
*NewAdd
= Builder
.CreateAdd(
4785 A
, C3
, "", Op0HasNUW
&& Diff
.ule(*AP1
), Op0HasNSW
);
4786 return new ICmpInst(Pred
, NewAdd
, C
);
4788 APInt Diff
= *AP2
- *AP1
;
4789 Constant
*C3
= Constant::getIntegerValue(BO0
->getType(), Diff
);
4790 Value
*NewAdd
= Builder
.CreateAdd(
4791 C
, C3
, "", Op1HasNUW
&& Diff
.ule(*AP2
), Op1HasNSW
);
4792 return new ICmpInst(Pred
, A
, NewAdd
);
4795 Constant
*Cst1
, *Cst2
;
4796 if (match(B
, m_ImmConstant(Cst1
)) && match(D
, m_ImmConstant(Cst2
)) &&
4797 ICmpInst::isEquality(Pred
)) {
4798 Constant
*Diff
= ConstantExpr::getSub(Cst2
, Cst1
);
4799 Value
*NewAdd
= Builder
.CreateAdd(C
, Diff
);
4800 return new ICmpInst(Pred
, A
, NewAdd
);
4804 // Analyze the case when either Op0 or Op1 is a sub instruction.
4805 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4810 if (BO0
&& BO0
->getOpcode() == Instruction::Sub
) {
4811 A
= BO0
->getOperand(0);
4812 B
= BO0
->getOperand(1);
4814 if (BO1
&& BO1
->getOpcode() == Instruction::Sub
) {
4815 C
= BO1
->getOperand(0);
4816 D
= BO1
->getOperand(1);
4819 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4820 if (A
== Op1
&& NoOp0WrapProblem
)
4821 return new ICmpInst(Pred
, Constant::getNullValue(Op1
->getType()), B
);
4822 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4823 if (C
== Op0
&& NoOp1WrapProblem
)
4824 return new ICmpInst(Pred
, D
, Constant::getNullValue(Op0
->getType()));
4826 // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4827 // (A - B) u>/u<= A --> B u>/u<= A
4828 if (A
== Op1
&& (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
))
4829 return new ICmpInst(Pred
, B
, A
);
4830 // C u</u>= (C - D) --> C u</u>= D
4831 if (C
== Op0
&& (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
))
4832 return new ICmpInst(Pred
, C
, D
);
4833 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0
4834 if (A
== Op1
&& (Pred
== ICmpInst::ICMP_UGE
|| Pred
== ICmpInst::ICMP_ULT
) &&
4835 isKnownNonZero(B
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
))
4836 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred
), B
, A
);
4837 // C u<=/u> (C - D) --> C u</u>= D iff B != 0
4838 if (C
== Op0
&& (Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_UGT
) &&
4839 isKnownNonZero(D
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
))
4840 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred
), C
, D
);
4842 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4843 if (B
&& D
&& B
== D
&& NoOp0WrapProblem
&& NoOp1WrapProblem
)
4844 return new ICmpInst(Pred
, A
, C
);
4846 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4847 if (A
&& C
&& A
== C
&& NoOp0WrapProblem
&& NoOp1WrapProblem
)
4848 return new ICmpInst(Pred
, D
, B
);
4850 // icmp (0-X) < cst --> x > -cst
4851 if (NoOp0WrapProblem
&& ICmpInst::isSigned(Pred
)) {
4853 if (match(BO0
, m_Neg(m_Value(X
))))
4854 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
))
4855 if (RHSC
->isNotMinSignedValue())
4856 return new ICmpInst(I
.getSwappedPredicate(), X
,
4857 ConstantExpr::getNeg(RHSC
));
4860 if (Instruction
* R
= foldICmpXorXX(I
, Q
, *this))
4862 if (Instruction
*R
= foldICmpOrXX(I
, Q
, *this))
4866 // Try to remove shared multiplier from comparison:
4867 // X * Z u{lt/le/gt/ge}/eq/ne Y * Z
4869 if (Pred
== ICmpInst::getUnsignedPredicate(Pred
) &&
4870 ((match(Op0
, m_Mul(m_Value(X
), m_Value(Z
))) &&
4871 match(Op1
, m_c_Mul(m_Specific(Z
), m_Value(Y
)))) ||
4872 (match(Op0
, m_Mul(m_Value(Z
), m_Value(X
))) &&
4873 match(Op1
, m_c_Mul(m_Specific(Z
), m_Value(Y
)))))) {
4875 if (ICmpInst::isEquality(Pred
)) {
4876 KnownBits ZKnown
= computeKnownBits(Z
, 0, &I
);
4878 // X * Z eq/ne Y * Z -> X eq/ne Y
4879 if (ZKnown
.countMaxTrailingZeros() == 0)
4880 return new ICmpInst(Pred
, X
, Y
);
4881 NonZero
= !ZKnown
.One
.isZero() ||
4882 isKnownNonZero(Z
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
);
4883 // if Z != 0 and nsw(X * Z) and nsw(Y * Z)
4884 // X * Z eq/ne Y * Z -> X eq/ne Y
4885 if (NonZero
&& BO0
&& BO1
&& Op0HasNSW
&& Op1HasNSW
)
4886 return new ICmpInst(Pred
, X
, Y
);
4888 NonZero
= isKnownNonZero(Z
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
);
4890 // If Z != 0 and nuw(X * Z) and nuw(Y * Z)
4891 // X * Z u{lt/le/gt/ge}/eq/ne Y * Z -> X u{lt/le/gt/ge}/eq/ne Y
4892 if (NonZero
&& BO0
&& BO1
&& Op0HasNUW
&& Op1HasNUW
)
4893 return new ICmpInst(Pred
, X
, Y
);
4897 BinaryOperator
*SRem
= nullptr;
4898 // icmp (srem X, Y), Y
4899 if (BO0
&& BO0
->getOpcode() == Instruction::SRem
&& Op1
== BO0
->getOperand(1))
4901 // icmp Y, (srem X, Y)
4902 else if (BO1
&& BO1
->getOpcode() == Instruction::SRem
&&
4903 Op0
== BO1
->getOperand(1))
4906 // We don't check hasOneUse to avoid increasing register pressure because
4907 // the value we use is the same value this instruction was already using.
4908 switch (SRem
== BO0
? ICmpInst::getSwappedPredicate(Pred
) : Pred
) {
4911 case ICmpInst::ICMP_EQ
:
4912 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
4913 case ICmpInst::ICMP_NE
:
4914 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4915 case ICmpInst::ICMP_SGT
:
4916 case ICmpInst::ICMP_SGE
:
4917 return new ICmpInst(ICmpInst::ICMP_SGT
, SRem
->getOperand(1),
4918 Constant::getAllOnesValue(SRem
->getType()));
4919 case ICmpInst::ICMP_SLT
:
4920 case ICmpInst::ICMP_SLE
:
4921 return new ICmpInst(ICmpInst::ICMP_SLT
, SRem
->getOperand(1),
4922 Constant::getNullValue(SRem
->getType()));
4926 if (BO0
&& BO1
&& BO0
->getOpcode() == BO1
->getOpcode() &&
4927 (BO0
->hasOneUse() || BO1
->hasOneUse()) &&
4928 BO0
->getOperand(1) == BO1
->getOperand(1)) {
4929 switch (BO0
->getOpcode()) {
4932 case Instruction::Add
:
4933 case Instruction::Sub
:
4934 case Instruction::Xor
: {
4935 if (I
.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4936 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
4939 if (match(BO0
->getOperand(1), m_APInt(C
))) {
4940 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4941 if (C
->isSignMask()) {
4942 ICmpInst::Predicate NewPred
= I
.getFlippedSignednessPredicate();
4943 return new ICmpInst(NewPred
, BO0
->getOperand(0), BO1
->getOperand(0));
4946 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4947 if (BO0
->getOpcode() == Instruction::Xor
&& C
->isMaxSignedValue()) {
4948 ICmpInst::Predicate NewPred
= I
.getFlippedSignednessPredicate();
4949 NewPred
= I
.getSwappedPredicate(NewPred
);
4950 return new ICmpInst(NewPred
, BO0
->getOperand(0), BO1
->getOperand(0));
4955 case Instruction::Mul
: {
4956 if (!I
.isEquality())
4960 if (match(BO0
->getOperand(1), m_APInt(C
)) && !C
->isZero() &&
4962 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4963 // Mask = -1 >> count-trailing-zeros(C).
4964 if (unsigned TZs
= C
->countr_zero()) {
4965 Constant
*Mask
= ConstantInt::get(
4967 APInt::getLowBitsSet(C
->getBitWidth(), C
->getBitWidth() - TZs
));
4968 Value
*And1
= Builder
.CreateAnd(BO0
->getOperand(0), Mask
);
4969 Value
*And2
= Builder
.CreateAnd(BO1
->getOperand(0), Mask
);
4970 return new ICmpInst(Pred
, And1
, And2
);
4975 case Instruction::UDiv
:
4976 case Instruction::LShr
:
4977 if (I
.isSigned() || !BO0
->isExact() || !BO1
->isExact())
4979 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
4981 case Instruction::SDiv
:
4982 if (!(I
.isEquality() || match(BO0
->getOperand(1), m_NonNegative())) ||
4983 !BO0
->isExact() || !BO1
->isExact())
4985 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
4987 case Instruction::AShr
:
4988 if (!BO0
->isExact() || !BO1
->isExact())
4990 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
4992 case Instruction::Shl
: {
4993 bool NUW
= Op0HasNUW
&& Op1HasNUW
;
4994 bool NSW
= Op0HasNSW
&& Op1HasNSW
;
4997 if (!NSW
&& I
.isSigned())
4999 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
5005 // Transform A & (L - 1) `ult` L --> L != 0
5006 auto LSubOne
= m_Add(m_Specific(Op1
), m_AllOnes());
5007 auto BitwiseAnd
= m_c_And(m_Value(), LSubOne
);
5009 if (match(BO0
, BitwiseAnd
) && Pred
== ICmpInst::ICMP_ULT
) {
5010 auto *Zero
= Constant::getNullValue(BO0
->getType());
5011 return new ICmpInst(ICmpInst::ICMP_NE
, Op1
, Zero
);
5015 // For unsigned predicates / eq / ne:
5016 // icmp pred (x << 1), x --> icmp getSignedPredicate(pred) x, 0
5017 // icmp pred x, (x << 1) --> icmp getSignedPredicate(pred) 0, x
5018 if (!ICmpInst::isSigned(Pred
)) {
5019 if (match(Op0
, m_Shl(m_Specific(Op1
), m_One())))
5020 return new ICmpInst(ICmpInst::getSignedPredicate(Pred
), Op1
,
5021 Constant::getNullValue(Op1
->getType()));
5022 else if (match(Op1
, m_Shl(m_Specific(Op0
), m_One())))
5023 return new ICmpInst(ICmpInst::getSignedPredicate(Pred
),
5024 Constant::getNullValue(Op0
->getType()), Op0
);
5027 if (Value
*V
= foldMultiplicationOverflowCheck(I
))
5028 return replaceInstUsesWith(I
, V
);
5030 if (Value
*V
= foldICmpWithLowBitMaskedVal(I
, Builder
))
5031 return replaceInstUsesWith(I
, V
);
5033 if (Instruction
*R
= foldICmpAndXX(I
, Q
, *this))
5036 if (Value
*V
= foldICmpWithTruncSignExtendedVal(I
, Builder
))
5037 return replaceInstUsesWith(I
, V
);
5039 if (Value
*V
= foldShiftIntoShiftInAnotherHandOfAndInICmp(I
, SQ
, Builder
))
5040 return replaceInstUsesWith(I
, V
);
5045 /// Fold icmp Pred min|max(X, Y), Z.
5046 Instruction
*InstCombinerImpl::foldICmpWithMinMax(Instruction
&I
,
5047 MinMaxIntrinsic
*MinMax
,
5049 ICmpInst::Predicate Pred
) {
5050 Value
*X
= MinMax
->getLHS();
5051 Value
*Y
= MinMax
->getRHS();
5052 if (ICmpInst::isSigned(Pred
) && !MinMax
->isSigned())
5054 if (ICmpInst::isUnsigned(Pred
) && MinMax
->isSigned()) {
5055 // Revert the transform signed pred -> unsigned pred
5056 // TODO: We can flip the signedness of predicate if both operands of icmp
5058 if (isKnownNonNegative(Z
, SQ
.getWithInstruction(&I
)) &&
5059 isKnownNonNegative(MinMax
, SQ
.getWithInstruction(&I
))) {
5060 Pred
= ICmpInst::getFlippedSignednessPredicate(Pred
);
5064 SimplifyQuery Q
= SQ
.getWithInstruction(&I
);
5065 auto IsCondKnownTrue
= [](Value
*Val
) -> std::optional
<bool> {
5067 return std::nullopt
;
5068 if (match(Val
, m_One()))
5070 if (match(Val
, m_Zero()))
5072 return std::nullopt
;
5074 auto CmpXZ
= IsCondKnownTrue(simplifyICmpInst(Pred
, X
, Z
, Q
));
5075 auto CmpYZ
= IsCondKnownTrue(simplifyICmpInst(Pred
, Y
, Z
, Q
));
5076 if (!CmpXZ
.has_value() && !CmpYZ
.has_value())
5078 if (!CmpXZ
.has_value()) {
5080 std::swap(CmpXZ
, CmpYZ
);
5083 auto FoldIntoCmpYZ
= [&]() -> Instruction
* {
5084 if (CmpYZ
.has_value())
5085 return replaceInstUsesWith(I
, ConstantInt::getBool(I
.getType(), *CmpYZ
));
5086 return ICmpInst::Create(Instruction::ICmp
, Pred
, Y
, Z
);
5090 case ICmpInst::ICMP_EQ
:
5091 case ICmpInst::ICMP_NE
: {
5094 // min(X, Y) == Z X <= Y
5095 // max(X, Y) == Z X >= Y
5096 // min(X, Y) != Z X > Y
5097 // max(X, Y) != Z X < Y
5098 if ((Pred
== ICmpInst::ICMP_EQ
) == *CmpXZ
) {
5099 ICmpInst::Predicate NewPred
=
5100 ICmpInst::getNonStrictPredicate(MinMax
->getPredicate());
5101 if (Pred
== ICmpInst::ICMP_NE
)
5102 NewPred
= ICmpInst::getInversePredicate(NewPred
);
5103 return ICmpInst::Create(Instruction::ICmp
, NewPred
, X
, Y
);
5105 // Otherwise (X != Z):
5106 ICmpInst::Predicate NewPred
= MinMax
->getPredicate();
5107 auto MinMaxCmpXZ
= IsCondKnownTrue(simplifyICmpInst(NewPred
, X
, Z
, Q
));
5108 if (!MinMaxCmpXZ
.has_value()) {
5110 std::swap(CmpXZ
, CmpYZ
);
5111 // Re-check pre-condition X != Z
5112 if (!CmpXZ
.has_value() || (Pred
== ICmpInst::ICMP_EQ
) == *CmpXZ
)
5114 MinMaxCmpXZ
= IsCondKnownTrue(simplifyICmpInst(NewPred
, X
, Z
, Q
));
5116 if (!MinMaxCmpXZ
.has_value())
5120 // min(X, Y) == Z X < Z false
5121 // max(X, Y) == Z X > Z false
5122 // min(X, Y) != Z X < Z true
5123 // max(X, Y) != Z X > Z true
5124 return replaceInstUsesWith(
5125 I
, ConstantInt::getBool(I
.getType(), Pred
== ICmpInst::ICMP_NE
));
5128 // min(X, Y) == Z X > Z Y == Z
5129 // max(X, Y) == Z X < Z Y == Z
5130 // min(X, Y) != Z X > Z Y != Z
5131 // max(X, Y) != Z X < Z Y != Z
5132 return FoldIntoCmpYZ();
5136 case ICmpInst::ICMP_SLT
:
5137 case ICmpInst::ICMP_ULT
:
5138 case ICmpInst::ICMP_SLE
:
5139 case ICmpInst::ICMP_ULE
:
5140 case ICmpInst::ICMP_SGT
:
5141 case ICmpInst::ICMP_UGT
:
5142 case ICmpInst::ICMP_SGE
:
5143 case ICmpInst::ICMP_UGE
: {
5144 bool IsSame
= MinMax
->getPredicate() == ICmpInst::getStrictPredicate(Pred
);
5148 // min(X, Y) < Z X < Z true
5149 // min(X, Y) <= Z X <= Z true
5150 // max(X, Y) > Z X > Z true
5151 // max(X, Y) >= Z X >= Z true
5152 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5155 // max(X, Y) < Z X < Z Y < Z
5156 // max(X, Y) <= Z X <= Z Y <= Z
5157 // min(X, Y) > Z X > Z Y > Z
5158 // min(X, Y) >= Z X >= Z Y >= Z
5159 return FoldIntoCmpYZ();
5164 // min(X, Y) < Z X >= Z Y < Z
5165 // min(X, Y) <= Z X > Z Y <= Z
5166 // max(X, Y) > Z X <= Z Y > Z
5167 // max(X, Y) >= Z X < Z Y >= Z
5168 return FoldIntoCmpYZ();
5171 // max(X, Y) < Z X >= Z false
5172 // max(X, Y) <= Z X > Z false
5173 // min(X, Y) > Z X <= Z false
5174 // min(X, Y) >= Z X < Z false
5175 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5187 // Canonicalize checking for a power-of-2-or-zero value:
5188 static Instruction
*foldICmpPow2Test(ICmpInst
&I
,
5189 InstCombiner::BuilderTy
&Builder
) {
5190 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5191 const CmpInst::Predicate Pred
= I
.getPredicate();
5194 if (I
.isEquality()) {
5195 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
5196 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
5197 if (!match(Op0
, m_OneUse(m_c_And(m_Add(m_Value(A
), m_AllOnes()),
5199 !match(Op1
, m_ZeroInt()))
5202 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
5203 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
5204 if (match(Op0
, m_OneUse(m_c_And(m_Neg(m_Specific(Op1
)), m_Specific(Op1
)))))
5207 m_OneUse(m_c_And(m_Neg(m_Specific(Op0
)), m_Specific(Op0
)))))
5210 CheckIs
= Pred
== ICmpInst::ICMP_EQ
;
5211 } else if (ICmpInst::isUnsigned(Pred
)) {
5212 // (A ^ (A-1)) u>= A --> ctpop(A) < 2 (two commuted variants)
5213 // ((A-1) ^ A) u< A --> ctpop(A) > 1 (two commuted variants)
5215 if ((Pred
== ICmpInst::ICMP_UGE
|| Pred
== ICmpInst::ICMP_ULT
) &&
5216 match(Op0
, m_OneUse(m_c_Xor(m_Add(m_Specific(Op1
), m_AllOnes()),
5217 m_Specific(Op1
))))) {
5219 CheckIs
= Pred
== ICmpInst::ICMP_UGE
;
5220 } else if ((Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
) &&
5221 match(Op1
, m_OneUse(m_c_Xor(m_Add(m_Specific(Op0
), m_AllOnes()),
5222 m_Specific(Op0
))))) {
5224 CheckIs
= Pred
== ICmpInst::ICMP_ULE
;
5229 Type
*Ty
= A
->getType();
5230 CallInst
*CtPop
= Builder
.CreateUnaryIntrinsic(Intrinsic::ctpop
, A
);
5231 return CheckIs
? new ICmpInst(ICmpInst::ICMP_ULT
, CtPop
,
5232 ConstantInt::get(Ty
, 2))
5233 : new ICmpInst(ICmpInst::ICMP_UGT
, CtPop
,
5234 ConstantInt::get(Ty
, 1));
5240 Instruction
*InstCombinerImpl::foldICmpEquality(ICmpInst
&I
) {
5241 if (!I
.isEquality())
5244 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5245 const CmpInst::Predicate Pred
= I
.getPredicate();
5246 Value
*A
, *B
, *C
, *D
;
5247 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
)))) {
5248 if (A
== Op1
|| B
== Op1
) { // (A^B) == A -> B == 0
5249 Value
*OtherVal
= A
== Op1
? B
: A
;
5250 return new ICmpInst(Pred
, OtherVal
, Constant::getNullValue(A
->getType()));
5253 if (match(Op1
, m_Xor(m_Value(C
), m_Value(D
)))) {
5254 // A^c1 == C^c2 --> A == C^(c1^c2)
5255 ConstantInt
*C1
, *C2
;
5256 if (match(B
, m_ConstantInt(C1
)) && match(D
, m_ConstantInt(C2
)) &&
5258 Constant
*NC
= Builder
.getInt(C1
->getValue() ^ C2
->getValue());
5259 Value
*Xor
= Builder
.CreateXor(C
, NC
);
5260 return new ICmpInst(Pred
, A
, Xor
);
5263 // A^B == A^D -> B == D
5265 return new ICmpInst(Pred
, B
, D
);
5267 return new ICmpInst(Pred
, B
, C
);
5269 return new ICmpInst(Pred
, A
, D
);
5271 return new ICmpInst(Pred
, A
, C
);
5276 // (icmp eq/ne (and X, C), X)
5277 // -> (icmp eq/ne (and X, ~C), 0)
5281 if (match(Op0
, m_OneUse(m_And(m_Specific(Op1
), m_ImmConstant(CMask
)))))
5283 else if (match(Op1
, m_OneUse(m_And(m_Specific(Op0
), m_ImmConstant(CMask
)))))
5286 return new ICmpInst(Pred
, Builder
.CreateAnd(A
, Builder
.CreateNot(CMask
)),
5287 Constant::getNullValue(A
->getType()));
5290 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
))) && (A
== Op0
|| B
== Op0
)) {
5291 // A == (A^B) -> B == 0
5292 Value
*OtherVal
= A
== Op0
? B
: A
;
5293 return new ICmpInst(Pred
, OtherVal
, Constant::getNullValue(A
->getType()));
5296 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5297 if (match(Op0
, m_OneUse(m_And(m_Value(A
), m_Value(B
)))) &&
5298 match(Op1
, m_OneUse(m_And(m_Value(C
), m_Value(D
))))) {
5299 Value
*X
= nullptr, *Y
= nullptr, *Z
= nullptr;
5305 } else if (A
== D
) {
5309 } else if (B
== C
) {
5313 } else if (B
== D
) {
5319 if (X
) { // Build (X^Y) & Z
5320 Op1
= Builder
.CreateXor(X
, Y
);
5321 Op1
= Builder
.CreateAnd(Op1
, Z
);
5322 return new ICmpInst(Pred
, Op1
, Constant::getNullValue(Op1
->getType()));
5327 // Similar to above, but specialized for constant because invert is needed:
5328 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
5331 if (match(Op0
, m_OneUse(m_Or(m_Value(X
), m_Constant(C
)))) &&
5332 match(Op1
, m_OneUse(m_Or(m_Value(Y
), m_Specific(C
))))) {
5333 Value
*Xor
= Builder
.CreateXor(X
, Y
);
5334 Value
*And
= Builder
.CreateAnd(Xor
, ConstantExpr::getNot(C
));
5335 return new ICmpInst(Pred
, And
, Constant::getNullValue(And
->getType()));
5339 if (match(Op1
, m_ZExt(m_Value(A
))) &&
5340 (Op0
->hasOneUse() || Op1
->hasOneUse())) {
5341 // (B & (Pow2C-1)) == zext A --> A == trunc B
5342 // (B & (Pow2C-1)) != zext A --> A != trunc B
5344 if (match(Op0
, m_And(m_Value(B
), m_LowBitMask(MaskC
))) &&
5345 MaskC
->countr_one() == A
->getType()->getScalarSizeInBits())
5346 return new ICmpInst(Pred
, A
, Builder
.CreateTrunc(B
, A
->getType()));
5349 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
5350 // For lshr and ashr pairs.
5351 const APInt
*AP1
, *AP2
;
5352 if ((match(Op0
, m_OneUse(m_LShr(m_Value(A
), m_APIntAllowUndef(AP1
)))) &&
5353 match(Op1
, m_OneUse(m_LShr(m_Value(B
), m_APIntAllowUndef(AP2
))))) ||
5354 (match(Op0
, m_OneUse(m_AShr(m_Value(A
), m_APIntAllowUndef(AP1
)))) &&
5355 match(Op1
, m_OneUse(m_AShr(m_Value(B
), m_APIntAllowUndef(AP2
)))))) {
5358 unsigned TypeBits
= AP1
->getBitWidth();
5359 unsigned ShAmt
= AP1
->getLimitedValue(TypeBits
);
5360 if (ShAmt
< TypeBits
&& ShAmt
!= 0) {
5361 ICmpInst::Predicate NewPred
=
5362 Pred
== ICmpInst::ICMP_NE
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
5363 Value
*Xor
= Builder
.CreateXor(A
, B
, I
.getName() + ".unshifted");
5364 APInt CmpVal
= APInt::getOneBitSet(TypeBits
, ShAmt
);
5365 return new ICmpInst(NewPred
, Xor
, ConstantInt::get(A
->getType(), CmpVal
));
5369 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
5371 if (match(Op0
, m_OneUse(m_Shl(m_Value(A
), m_ConstantInt(Cst1
)))) &&
5372 match(Op1
, m_OneUse(m_Shl(m_Value(B
), m_Specific(Cst1
))))) {
5373 unsigned TypeBits
= Cst1
->getBitWidth();
5374 unsigned ShAmt
= (unsigned)Cst1
->getLimitedValue(TypeBits
);
5375 if (ShAmt
< TypeBits
&& ShAmt
!= 0) {
5376 Value
*Xor
= Builder
.CreateXor(A
, B
, I
.getName() + ".unshifted");
5377 APInt AndVal
= APInt::getLowBitsSet(TypeBits
, TypeBits
- ShAmt
);
5378 Value
*And
= Builder
.CreateAnd(Xor
, Builder
.getInt(AndVal
),
5379 I
.getName() + ".mask");
5380 return new ICmpInst(Pred
, And
, Constant::getNullValue(Cst1
->getType()));
5384 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
5385 // "icmp (and X, mask), cst"
5387 if (Op0
->hasOneUse() &&
5388 match(Op0
, m_Trunc(m_OneUse(m_LShr(m_Value(A
), m_ConstantInt(ShAmt
))))) &&
5389 match(Op1
, m_ConstantInt(Cst1
)) &&
5390 // Only do this when A has multiple uses. This is most important to do
5391 // when it exposes other optimizations.
5393 unsigned ASize
= cast
<IntegerType
>(A
->getType())->getPrimitiveSizeInBits();
5395 if (ShAmt
< ASize
) {
5397 APInt::getLowBitsSet(ASize
, Op0
->getType()->getPrimitiveSizeInBits());
5400 APInt CmpV
= Cst1
->getValue().zext(ASize
);
5403 Value
*Mask
= Builder
.CreateAnd(A
, Builder
.getInt(MaskV
));
5404 return new ICmpInst(Pred
, Mask
, Builder
.getInt(CmpV
));
5408 if (Instruction
*ICmp
= foldICmpIntrinsicWithIntrinsic(I
, Builder
))
5411 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
5412 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
5413 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
5415 unsigned BitWidth
= Op0
->getType()->getScalarSizeInBits();
5416 if (match(Op0
, m_AShr(m_Trunc(m_Value(A
)), m_SpecificInt(BitWidth
- 1))) &&
5417 match(Op1
, m_Trunc(m_LShr(m_Specific(A
), m_SpecificInt(BitWidth
)))) &&
5418 A
->getType()->getScalarSizeInBits() == BitWidth
* 2 &&
5419 (I
.getOperand(0)->hasOneUse() || I
.getOperand(1)->hasOneUse())) {
5420 APInt C
= APInt::getOneBitSet(BitWidth
* 2, BitWidth
- 1);
5421 Value
*Add
= Builder
.CreateAdd(A
, ConstantInt::get(A
->getType(), C
));
5422 return new ICmpInst(Pred
== ICmpInst::ICMP_EQ
? ICmpInst::ICMP_ULT
5423 : ICmpInst::ICMP_UGE
,
5424 Add
, ConstantInt::get(A
->getType(), C
.shl(1)));
5428 // Assume B_Pow2 != 0
5429 // 1. A & B_Pow2 != B_Pow2 -> A & B_Pow2 == 0
5430 // 2. A & B_Pow2 == B_Pow2 -> A & B_Pow2 != 0
5431 if (match(Op0
, m_c_And(m_Specific(Op1
), m_Value())) &&
5432 isKnownToBeAPowerOfTwo(Op1
, /* OrZero */ false, 0, &I
))
5433 return new ICmpInst(CmpInst::getInversePredicate(Pred
), Op0
,
5434 ConstantInt::getNullValue(Op0
->getType()));
5436 if (match(Op1
, m_c_And(m_Specific(Op0
), m_Value())) &&
5437 isKnownToBeAPowerOfTwo(Op0
, /* OrZero */ false, 0, &I
))
5438 return new ICmpInst(CmpInst::getInversePredicate(Pred
), Op1
,
5439 ConstantInt::getNullValue(Op1
->getType()));
5442 // icmp eq/ne X, OneUse(rotate-right(X))
5443 // -> icmp eq/ne X, rotate-left(X)
5444 // We generally try to convert rotate-right -> rotate-left, this just
5445 // canonicalizes another case.
5446 CmpInst::Predicate PredUnused
= Pred
;
5447 if (match(&I
, m_c_ICmp(PredUnused
, m_Value(A
),
5448 m_OneUse(m_Intrinsic
<Intrinsic::fshr
>(
5449 m_Deferred(A
), m_Deferred(A
), m_Value(B
))))))
5450 return new ICmpInst(
5452 Builder
.CreateIntrinsic(Op0
->getType(), Intrinsic::fshl
, {A
, A
, B
}));
5455 // icmp eq/ne OneUse(A ^ Cst), B --> icmp eq/ne (A ^ B), Cst
5457 if (match(&I
, m_c_ICmp(PredUnused
,
5458 m_OneUse(m_Xor(m_Value(A
), m_ImmConstant(Cst
))),
5459 m_CombineAnd(m_Value(B
), m_Unless(m_ImmConstant())))))
5460 return new ICmpInst(Pred
, Builder
.CreateXor(A
, B
), Cst
);
5463 // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2)
5465 m_CombineOr(m_CombineOr(m_c_Add(m_Value(B
), m_Deferred(A
)),
5466 m_c_Xor(m_Value(B
), m_Deferred(A
))),
5467 m_Sub(m_Value(B
), m_Deferred(A
)));
5468 std::optional
<bool> IsZero
= std::nullopt
;
5469 if (match(&I
, m_c_ICmp(PredUnused
, m_OneUse(m_c_And(m_Value(A
), m_Matcher
)),
5472 // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0)
5474 m_ICmp(PredUnused
, m_OneUse(m_c_And(m_Value(A
), m_Matcher
)),
5478 if (IsZero
&& isKnownToBeAPowerOfTwo(A
, /* OrZero */ true, /*Depth*/ 0, &I
))
5479 // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2)
5480 // -> (icmp eq/ne (and X, P2), 0)
5481 // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0)
5482 // -> (icmp eq/ne (and X, P2), P2)
5483 return new ICmpInst(Pred
, Builder
.CreateAnd(B
, A
),
5485 : ConstantInt::getNullValue(A
->getType()));
5491 Instruction
*InstCombinerImpl::foldICmpWithTrunc(ICmpInst
&ICmp
) {
5492 ICmpInst::Predicate Pred
= ICmp
.getPredicate();
5493 Value
*Op0
= ICmp
.getOperand(0), *Op1
= ICmp
.getOperand(1);
5495 // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
5496 // The trunc masks high bits while the compare may effectively mask low bits.
5499 if (!match(Op0
, m_OneUse(m_Trunc(m_Value(X
)))) || !match(Op1
, m_APInt(C
)))
5502 // This matches patterns corresponding to tests of the signbit as well as:
5503 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
5504 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
5506 if (decomposeBitTestICmp(Op0
, Op1
, Pred
, X
, Mask
, true /* WithTrunc */)) {
5507 Value
*And
= Builder
.CreateAnd(X
, Mask
);
5508 Constant
*Zero
= ConstantInt::getNullValue(X
->getType());
5509 return new ICmpInst(Pred
, And
, Zero
);
5512 unsigned SrcBits
= X
->getType()->getScalarSizeInBits();
5513 if (Pred
== ICmpInst::ICMP_ULT
&& C
->isNegatedPowerOf2()) {
5514 // If C is a negative power-of-2 (high-bit mask):
5515 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
5516 Constant
*MaskC
= ConstantInt::get(X
->getType(), C
->zext(SrcBits
));
5517 Value
*And
= Builder
.CreateAnd(X
, MaskC
);
5518 return new ICmpInst(ICmpInst::ICMP_NE
, And
, MaskC
);
5521 if (Pred
== ICmpInst::ICMP_UGT
&& (~*C
).isPowerOf2()) {
5522 // If C is not-of-power-of-2 (one clear bit):
5523 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
5524 Constant
*MaskC
= ConstantInt::get(X
->getType(), (*C
+ 1).zext(SrcBits
));
5525 Value
*And
= Builder
.CreateAnd(X
, MaskC
);
5526 return new ICmpInst(ICmpInst::ICMP_EQ
, And
, MaskC
);
5529 if (auto *II
= dyn_cast
<IntrinsicInst
>(X
)) {
5530 if (II
->getIntrinsicID() == Intrinsic::cttz
||
5531 II
->getIntrinsicID() == Intrinsic::ctlz
) {
5532 unsigned MaxRet
= SrcBits
;
5533 // If the "is_zero_poison" argument is set, then we know at least
5534 // one bit is set in the input, so the result is always at least one
5535 // less than the full bitwidth of that input.
5536 if (match(II
->getArgOperand(1), m_One()))
5539 // Make sure the destination is wide enough to hold the largest output of
5541 if (llvm::Log2_32(MaxRet
) + 1 <= Op0
->getType()->getScalarSizeInBits())
5542 if (Instruction
*I
=
5543 foldICmpIntrinsicWithConstant(ICmp
, II
, C
->zext(SrcBits
)))
5551 Instruction
*InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst
&ICmp
) {
5552 assert(isa
<CastInst
>(ICmp
.getOperand(0)) && "Expected cast for operand 0");
5553 auto *CastOp0
= cast
<CastInst
>(ICmp
.getOperand(0));
5555 if (!match(CastOp0
, m_ZExtOrSExt(m_Value(X
))))
5558 bool IsSignedExt
= CastOp0
->getOpcode() == Instruction::SExt
;
5559 bool IsSignedCmp
= ICmp
.isSigned();
5561 // icmp Pred (ext X), (ext Y)
5563 if (match(ICmp
.getOperand(1), m_ZExtOrSExt(m_Value(Y
)))) {
5564 bool IsZext0
= isa
<ZExtInst
>(ICmp
.getOperand(0));
5565 bool IsZext1
= isa
<ZExtInst
>(ICmp
.getOperand(1));
5567 if (IsZext0
!= IsZext1
) {
5568 // If X and Y and both i1
5569 // (icmp eq/ne (zext X) (sext Y))
5570 // eq -> (icmp eq (or X, Y), 0)
5571 // ne -> (icmp ne (or X, Y), 0)
5572 if (ICmp
.isEquality() && X
->getType()->isIntOrIntVectorTy(1) &&
5573 Y
->getType()->isIntOrIntVectorTy(1))
5574 return new ICmpInst(ICmp
.getPredicate(), Builder
.CreateOr(X
, Y
),
5575 Constant::getNullValue(X
->getType()));
5577 // If we have mismatched casts and zext has the nneg flag, we can
5578 // treat the "zext nneg" as "sext". Otherwise, we cannot fold and quit.
5580 auto *NonNegInst0
= dyn_cast
<PossiblyNonNegInst
>(ICmp
.getOperand(0));
5581 auto *NonNegInst1
= dyn_cast
<PossiblyNonNegInst
>(ICmp
.getOperand(1));
5583 bool IsNonNeg0
= NonNegInst0
&& NonNegInst0
->hasNonNeg();
5584 bool IsNonNeg1
= NonNegInst1
&& NonNegInst1
->hasNonNeg();
5586 if ((IsZext0
&& IsNonNeg0
) || (IsZext1
&& IsNonNeg1
))
5592 // Not an extension from the same type?
5593 Type
*XTy
= X
->getType(), *YTy
= Y
->getType();
5595 // One of the casts must have one use because we are creating a new cast.
5596 if (!ICmp
.getOperand(0)->hasOneUse() && !ICmp
.getOperand(1)->hasOneUse())
5598 // Extend the narrower operand to the type of the wider operand.
5599 CastInst::CastOps CastOpcode
=
5600 IsSignedExt
? Instruction::SExt
: Instruction::ZExt
;
5601 if (XTy
->getScalarSizeInBits() < YTy
->getScalarSizeInBits())
5602 X
= Builder
.CreateCast(CastOpcode
, X
, YTy
);
5603 else if (YTy
->getScalarSizeInBits() < XTy
->getScalarSizeInBits())
5604 Y
= Builder
.CreateCast(CastOpcode
, Y
, XTy
);
5609 // (zext X) == (zext Y) --> X == Y
5610 // (sext X) == (sext Y) --> X == Y
5611 if (ICmp
.isEquality())
5612 return new ICmpInst(ICmp
.getPredicate(), X
, Y
);
5614 // A signed comparison of sign extended values simplifies into a
5615 // signed comparison.
5616 if (IsSignedCmp
&& IsSignedExt
)
5617 return new ICmpInst(ICmp
.getPredicate(), X
, Y
);
5619 // The other three cases all fold into an unsigned comparison.
5620 return new ICmpInst(ICmp
.getUnsignedPredicate(), X
, Y
);
5623 // Below here, we are only folding a compare with constant.
5624 auto *C
= dyn_cast
<Constant
>(ICmp
.getOperand(1));
5628 // If a lossless truncate is possible...
5629 Type
*SrcTy
= CastOp0
->getSrcTy();
5630 Constant
*Res
= getLosslessTrunc(C
, SrcTy
, CastOp0
->getOpcode());
5632 if (ICmp
.isEquality())
5633 return new ICmpInst(ICmp
.getPredicate(), X
, Res
);
5635 // A signed comparison of sign extended values simplifies into a
5636 // signed comparison.
5637 if (IsSignedExt
&& IsSignedCmp
)
5638 return new ICmpInst(ICmp
.getPredicate(), X
, Res
);
5640 // The other three cases all fold into an unsigned comparison.
5641 return new ICmpInst(ICmp
.getUnsignedPredicate(), X
, Res
);
5644 // The re-extended constant changed, partly changed (in the case of a vector),
5645 // or could not be determined to be equal (in the case of a constant
5646 // expression), so the constant cannot be represented in the shorter type.
5647 // All the cases that fold to true or false will have already been handled
5648 // by simplifyICmpInst, so only deal with the tricky case.
5649 if (IsSignedCmp
|| !IsSignedExt
|| !isa
<ConstantInt
>(C
))
5652 // Is source op positive?
5653 // icmp ult (sext X), C --> icmp sgt X, -1
5654 if (ICmp
.getPredicate() == ICmpInst::ICMP_ULT
)
5655 return new ICmpInst(CmpInst::ICMP_SGT
, X
, Constant::getAllOnesValue(SrcTy
));
5657 // Is source op negative?
5658 // icmp ugt (sext X), C --> icmp slt X, 0
5659 assert(ICmp
.getPredicate() == ICmpInst::ICMP_UGT
&& "ICmp should be folded!");
5660 return new ICmpInst(CmpInst::ICMP_SLT
, X
, Constant::getNullValue(SrcTy
));
5663 /// Handle icmp (cast x), (cast or constant).
5664 Instruction
*InstCombinerImpl::foldICmpWithCastOp(ICmpInst
&ICmp
) {
5665 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
5666 // icmp compares only pointer's value.
5667 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
5668 Value
*SimplifiedOp0
= simplifyIntToPtrRoundTripCast(ICmp
.getOperand(0));
5669 Value
*SimplifiedOp1
= simplifyIntToPtrRoundTripCast(ICmp
.getOperand(1));
5670 if (SimplifiedOp0
|| SimplifiedOp1
)
5671 return new ICmpInst(ICmp
.getPredicate(),
5672 SimplifiedOp0
? SimplifiedOp0
: ICmp
.getOperand(0),
5673 SimplifiedOp1
? SimplifiedOp1
: ICmp
.getOperand(1));
5675 auto *CastOp0
= dyn_cast
<CastInst
>(ICmp
.getOperand(0));
5678 if (!isa
<Constant
>(ICmp
.getOperand(1)) && !isa
<CastInst
>(ICmp
.getOperand(1)))
5681 Value
*Op0Src
= CastOp0
->getOperand(0);
5682 Type
*SrcTy
= CastOp0
->getSrcTy();
5683 Type
*DestTy
= CastOp0
->getDestTy();
5685 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
5686 // integer type is the same size as the pointer type.
5687 auto CompatibleSizes
= [&](Type
*SrcTy
, Type
*DestTy
) {
5688 if (isa
<VectorType
>(SrcTy
)) {
5689 SrcTy
= cast
<VectorType
>(SrcTy
)->getElementType();
5690 DestTy
= cast
<VectorType
>(DestTy
)->getElementType();
5692 return DL
.getPointerTypeSizeInBits(SrcTy
) == DestTy
->getIntegerBitWidth();
5694 if (CastOp0
->getOpcode() == Instruction::PtrToInt
&&
5695 CompatibleSizes(SrcTy
, DestTy
)) {
5696 Value
*NewOp1
= nullptr;
5697 if (auto *PtrToIntOp1
= dyn_cast
<PtrToIntOperator
>(ICmp
.getOperand(1))) {
5698 Value
*PtrSrc
= PtrToIntOp1
->getOperand(0);
5699 if (PtrSrc
->getType() == Op0Src
->getType())
5700 NewOp1
= PtrToIntOp1
->getOperand(0);
5701 } else if (auto *RHSC
= dyn_cast
<Constant
>(ICmp
.getOperand(1))) {
5702 NewOp1
= ConstantExpr::getIntToPtr(RHSC
, SrcTy
);
5706 return new ICmpInst(ICmp
.getPredicate(), Op0Src
, NewOp1
);
5709 if (Instruction
*R
= foldICmpWithTrunc(ICmp
))
5712 return foldICmpWithZextOrSext(ICmp
);
5715 static bool isNeutralValue(Instruction::BinaryOps BinaryOp
, Value
*RHS
, bool IsSigned
) {
5718 llvm_unreachable("Unsupported binary op");
5719 case Instruction::Add
:
5720 case Instruction::Sub
:
5721 return match(RHS
, m_Zero());
5722 case Instruction::Mul
:
5723 return !(RHS
->getType()->isIntOrIntVectorTy(1) && IsSigned
) &&
5724 match(RHS
, m_One());
5729 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp
,
5730 bool IsSigned
, Value
*LHS
, Value
*RHS
,
5731 Instruction
*CxtI
) const {
5734 llvm_unreachable("Unsupported binary op");
5735 case Instruction::Add
:
5737 return computeOverflowForSignedAdd(LHS
, RHS
, CxtI
);
5739 return computeOverflowForUnsignedAdd(LHS
, RHS
, CxtI
);
5740 case Instruction::Sub
:
5742 return computeOverflowForSignedSub(LHS
, RHS
, CxtI
);
5744 return computeOverflowForUnsignedSub(LHS
, RHS
, CxtI
);
5745 case Instruction::Mul
:
5747 return computeOverflowForSignedMul(LHS
, RHS
, CxtI
);
5749 return computeOverflowForUnsignedMul(LHS
, RHS
, CxtI
);
5753 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp
,
5754 bool IsSigned
, Value
*LHS
,
5755 Value
*RHS
, Instruction
&OrigI
,
5757 Constant
*&Overflow
) {
5758 if (OrigI
.isCommutative() && isa
<Constant
>(LHS
) && !isa
<Constant
>(RHS
))
5759 std::swap(LHS
, RHS
);
5761 // If the overflow check was an add followed by a compare, the insertion point
5762 // may be pointing to the compare. We want to insert the new instructions
5763 // before the add in case there are uses of the add between the add and the
5765 Builder
.SetInsertPoint(&OrigI
);
5767 Type
*OverflowTy
= Type::getInt1Ty(LHS
->getContext());
5768 if (auto *LHSTy
= dyn_cast
<VectorType
>(LHS
->getType()))
5769 OverflowTy
= VectorType::get(OverflowTy
, LHSTy
->getElementCount());
5771 if (isNeutralValue(BinaryOp
, RHS
, IsSigned
)) {
5773 Overflow
= ConstantInt::getFalse(OverflowTy
);
5777 switch (computeOverflow(BinaryOp
, IsSigned
, LHS
, RHS
, &OrigI
)) {
5778 case OverflowResult::MayOverflow
:
5780 case OverflowResult::AlwaysOverflowsLow
:
5781 case OverflowResult::AlwaysOverflowsHigh
:
5782 Result
= Builder
.CreateBinOp(BinaryOp
, LHS
, RHS
);
5783 Result
->takeName(&OrigI
);
5784 Overflow
= ConstantInt::getTrue(OverflowTy
);
5786 case OverflowResult::NeverOverflows
:
5787 Result
= Builder
.CreateBinOp(BinaryOp
, LHS
, RHS
);
5788 Result
->takeName(&OrigI
);
5789 Overflow
= ConstantInt::getFalse(OverflowTy
);
5790 if (auto *Inst
= dyn_cast
<Instruction
>(Result
)) {
5792 Inst
->setHasNoSignedWrap();
5794 Inst
->setHasNoUnsignedWrap();
5799 llvm_unreachable("Unexpected overflow result");
5802 /// Recognize and process idiom involving test for multiplication
5805 /// The caller has matched a pattern of the form:
5806 /// I = cmp u (mul(zext A, zext B), V
5807 /// The function checks if this is a test for overflow and if so replaces
5808 /// multiplication with call to 'mul.with.overflow' intrinsic.
5810 /// \param I Compare instruction.
5811 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
5812 /// the compare instruction. Must be of integer type.
5813 /// \param OtherVal The other argument of compare instruction.
5814 /// \returns Instruction which must replace the compare instruction, NULL if no
5815 /// replacement required.
5816 static Instruction
*processUMulZExtIdiom(ICmpInst
&I
, Value
*MulVal
,
5817 const APInt
*OtherVal
,
5818 InstCombinerImpl
&IC
) {
5819 // Don't bother doing this transformation for pointers, don't do it for
5821 if (!isa
<IntegerType
>(MulVal
->getType()))
5824 auto *MulInstr
= dyn_cast
<Instruction
>(MulVal
);
5827 assert(MulInstr
->getOpcode() == Instruction::Mul
);
5829 auto *LHS
= cast
<ZExtInst
>(MulInstr
->getOperand(0)),
5830 *RHS
= cast
<ZExtInst
>(MulInstr
->getOperand(1));
5831 assert(LHS
->getOpcode() == Instruction::ZExt
);
5832 assert(RHS
->getOpcode() == Instruction::ZExt
);
5833 Value
*A
= LHS
->getOperand(0), *B
= RHS
->getOperand(0);
5835 // Calculate type and width of the result produced by mul.with.overflow.
5836 Type
*TyA
= A
->getType(), *TyB
= B
->getType();
5837 unsigned WidthA
= TyA
->getPrimitiveSizeInBits(),
5838 WidthB
= TyB
->getPrimitiveSizeInBits();
5841 if (WidthB
> WidthA
) {
5849 // In order to replace the original mul with a narrower mul.with.overflow,
5850 // all uses must ignore upper bits of the product. The number of used low
5851 // bits must be not greater than the width of mul.with.overflow.
5852 if (MulVal
->hasNUsesOrMore(2))
5853 for (User
*U
: MulVal
->users()) {
5856 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(U
)) {
5857 // Check if truncation ignores bits above MulWidth.
5858 unsigned TruncWidth
= TI
->getType()->getPrimitiveSizeInBits();
5859 if (TruncWidth
> MulWidth
)
5861 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
)) {
5862 // Check if AND ignores bits above MulWidth.
5863 if (BO
->getOpcode() != Instruction::And
)
5865 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
5866 const APInt
&CVal
= CI
->getValue();
5867 if (CVal
.getBitWidth() - CVal
.countl_zero() > MulWidth
)
5870 // In this case we could have the operand of the binary operation
5871 // being defined in another block, and performing the replacement
5872 // could break the dominance relation.
5876 // Other uses prohibit this transformation.
5881 // Recognize patterns
5882 switch (I
.getPredicate()) {
5883 case ICmpInst::ICMP_UGT
: {
5884 // Recognize pattern:
5885 // mulval = mul(zext A, zext B)
5886 // cmp ugt mulval, max
5887 APInt MaxVal
= APInt::getMaxValue(MulWidth
);
5888 MaxVal
= MaxVal
.zext(OtherVal
->getBitWidth());
5889 if (MaxVal
.eq(*OtherVal
))
5890 break; // Recognized
5894 case ICmpInst::ICMP_ULT
: {
5895 // Recognize pattern:
5896 // mulval = mul(zext A, zext B)
5897 // cmp ule mulval, max + 1
5898 APInt MaxVal
= APInt::getOneBitSet(OtherVal
->getBitWidth(), MulWidth
);
5899 if (MaxVal
.eq(*OtherVal
))
5900 break; // Recognized
5908 InstCombiner::BuilderTy
&Builder
= IC
.Builder
;
5909 Builder
.SetInsertPoint(MulInstr
);
5911 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5912 Value
*MulA
= A
, *MulB
= B
;
5913 if (WidthA
< MulWidth
)
5914 MulA
= Builder
.CreateZExt(A
, MulType
);
5915 if (WidthB
< MulWidth
)
5916 MulB
= Builder
.CreateZExt(B
, MulType
);
5917 Function
*F
= Intrinsic::getDeclaration(
5918 I
.getModule(), Intrinsic::umul_with_overflow
, MulType
);
5919 CallInst
*Call
= Builder
.CreateCall(F
, {MulA
, MulB
}, "umul");
5920 IC
.addToWorklist(MulInstr
);
5922 // If there are uses of mul result other than the comparison, we know that
5923 // they are truncation or binary AND. Change them to use result of
5924 // mul.with.overflow and adjust properly mask/size.
5925 if (MulVal
->hasNUsesOrMore(2)) {
5926 Value
*Mul
= Builder
.CreateExtractValue(Call
, 0, "umul.value");
5927 for (User
*U
: make_early_inc_range(MulVal
->users())) {
5930 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(U
)) {
5931 if (TI
->getType()->getPrimitiveSizeInBits() == MulWidth
)
5932 IC
.replaceInstUsesWith(*TI
, Mul
);
5934 TI
->setOperand(0, Mul
);
5935 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
)) {
5936 assert(BO
->getOpcode() == Instruction::And
);
5937 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5938 ConstantInt
*CI
= cast
<ConstantInt
>(BO
->getOperand(1));
5939 APInt ShortMask
= CI
->getValue().trunc(MulWidth
);
5940 Value
*ShortAnd
= Builder
.CreateAnd(Mul
, ShortMask
);
5941 Value
*Zext
= Builder
.CreateZExt(ShortAnd
, BO
->getType());
5942 IC
.replaceInstUsesWith(*BO
, Zext
);
5944 llvm_unreachable("Unexpected Binary operation");
5946 IC
.addToWorklist(cast
<Instruction
>(U
));
5950 // The original icmp gets replaced with the overflow value, maybe inverted
5951 // depending on predicate.
5952 if (I
.getPredicate() == ICmpInst::ICMP_ULT
) {
5953 Value
*Res
= Builder
.CreateExtractValue(Call
, 1);
5954 return BinaryOperator::CreateNot(Res
);
5957 return ExtractValueInst::Create(Call
, 1);
5960 /// When performing a comparison against a constant, it is possible that not all
5961 /// the bits in the LHS are demanded. This helper method computes the mask that
5963 static APInt
getDemandedBitsLHSMask(ICmpInst
&I
, unsigned BitWidth
) {
5965 if (!match(I
.getOperand(1), m_APInt(RHS
)))
5966 return APInt::getAllOnes(BitWidth
);
5968 // If this is a normal comparison, it demands all bits. If it is a sign bit
5969 // comparison, it only demands the sign bit.
5971 if (InstCombiner::isSignBitCheck(I
.getPredicate(), *RHS
, UnusedBit
))
5972 return APInt::getSignMask(BitWidth
);
5974 switch (I
.getPredicate()) {
5975 // For a UGT comparison, we don't care about any bits that
5976 // correspond to the trailing ones of the comparand. The value of these
5977 // bits doesn't impact the outcome of the comparison, because any value
5978 // greater than the RHS must differ in a bit higher than these due to carry.
5979 case ICmpInst::ICMP_UGT
:
5980 return APInt::getBitsSetFrom(BitWidth
, RHS
->countr_one());
5982 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5983 // Any value less than the RHS must differ in a higher bit because of carries.
5984 case ICmpInst::ICMP_ULT
:
5985 return APInt::getBitsSetFrom(BitWidth
, RHS
->countr_zero());
5988 return APInt::getAllOnes(BitWidth
);
5992 /// Check that one use is in the same block as the definition and all
5993 /// other uses are in blocks dominated by a given block.
5995 /// \param DI Definition
5997 /// \param DB Block that must dominate all uses of \p DI outside
5998 /// the parent block
5999 /// \return true when \p UI is the only use of \p DI in the parent block
6000 /// and all other uses of \p DI are in blocks dominated by \p DB.
6002 bool InstCombinerImpl::dominatesAllUses(const Instruction
*DI
,
6003 const Instruction
*UI
,
6004 const BasicBlock
*DB
) const {
6005 assert(DI
&& UI
&& "Instruction not defined\n");
6006 // Ignore incomplete definitions.
6007 if (!DI
->getParent())
6009 // DI and UI must be in the same block.
6010 if (DI
->getParent() != UI
->getParent())
6012 // Protect from self-referencing blocks.
6013 if (DI
->getParent() == DB
)
6015 for (const User
*U
: DI
->users()) {
6016 auto *Usr
= cast
<Instruction
>(U
);
6017 if (Usr
!= UI
&& !DT
.dominates(DB
, Usr
->getParent()))
6023 /// Return true when the instruction sequence within a block is select-cmp-br.
6024 static bool isChainSelectCmpBranch(const SelectInst
*SI
) {
6025 const BasicBlock
*BB
= SI
->getParent();
6028 auto *BI
= dyn_cast_or_null
<BranchInst
>(BB
->getTerminator());
6029 if (!BI
|| BI
->getNumSuccessors() != 2)
6031 auto *IC
= dyn_cast
<ICmpInst
>(BI
->getCondition());
6032 if (!IC
|| (IC
->getOperand(0) != SI
&& IC
->getOperand(1) != SI
))
6037 /// True when a select result is replaced by one of its operands
6038 /// in select-icmp sequence. This will eventually result in the elimination
6041 /// \param SI Select instruction
6042 /// \param Icmp Compare instruction
6043 /// \param SIOpd Operand that replaces the select
6046 /// - The replacement is global and requires dominator information
6047 /// - The caller is responsible for the actual replacement
6052 /// %4 = select i1 %3, %C* %0, %C* null
6053 /// %5 = icmp eq %C* %4, null
6054 /// br i1 %5, label %9, label %7
6056 /// ; <label>:7 ; preds = %entry
6057 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
6060 /// can be transformed to
6062 /// %5 = icmp eq %C* %0, null
6063 /// %6 = select i1 %3, i1 %5, i1 true
6064 /// br i1 %6, label %9, label %7
6066 /// ; <label>:7 ; preds = %entry
6067 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
6069 /// Similar when the first operand of the select is a constant or/and
6070 /// the compare is for not equal rather than equal.
6072 /// NOTE: The function is only called when the select and compare constants
6073 /// are equal, the optimization can work only for EQ predicates. This is not a
6074 /// major restriction since a NE compare should be 'normalized' to an equal
6075 /// compare, which usually happens in the combiner and test case
6076 /// select-cmp-br.ll checks for it.
6077 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst
*SI
,
6078 const ICmpInst
*Icmp
,
6079 const unsigned SIOpd
) {
6080 assert((SIOpd
== 1 || SIOpd
== 2) && "Invalid select operand!");
6081 if (isChainSelectCmpBranch(SI
) && Icmp
->getPredicate() == ICmpInst::ICMP_EQ
) {
6082 BasicBlock
*Succ
= SI
->getParent()->getTerminator()->getSuccessor(1);
6083 // The check for the single predecessor is not the best that can be
6084 // done. But it protects efficiently against cases like when SI's
6085 // home block has two successors, Succ and Succ1, and Succ1 predecessor
6086 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
6087 // replaced can be reached on either path. So the uniqueness check
6088 // guarantees that the path all uses of SI (outside SI's parent) are on
6089 // is disjoint from all other paths out of SI. But that information
6090 // is more expensive to compute, and the trade-off here is in favor
6091 // of compile-time. It should also be noticed that we check for a single
6092 // predecessor and not only uniqueness. This to handle the situation when
6093 // Succ and Succ1 points to the same basic block.
6094 if (Succ
->getSinglePredecessor() && dominatesAllUses(SI
, Icmp
, Succ
)) {
6096 SI
->replaceUsesOutsideBlock(SI
->getOperand(SIOpd
), SI
->getParent());
6103 /// Try to fold the comparison based on range information we can get by checking
6104 /// whether bits are known to be zero or one in the inputs.
6105 Instruction
*InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst
&I
) {
6106 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
6107 Type
*Ty
= Op0
->getType();
6108 ICmpInst::Predicate Pred
= I
.getPredicate();
6110 // Get scalar or pointer size.
6111 unsigned BitWidth
= Ty
->isIntOrIntVectorTy()
6112 ? Ty
->getScalarSizeInBits()
6113 : DL
.getPointerTypeSizeInBits(Ty
->getScalarType());
6118 KnownBits
Op0Known(BitWidth
);
6119 KnownBits
Op1Known(BitWidth
);
6122 // Don't use dominating conditions when folding icmp using known bits. This
6123 // may convert signed into unsigned predicates in ways that other passes
6124 // (especially IndVarSimplify) may not be able to reliably undo.
6126 auto _
= make_scope_exit([&]() { SQ
.DC
= &DC
; });
6127 if (SimplifyDemandedBits(&I
, 0, getDemandedBitsLHSMask(I
, BitWidth
),
6131 if (SimplifyDemandedBits(&I
, 1, APInt::getAllOnes(BitWidth
), Op1Known
, 0))
6135 // Given the known and unknown bits, compute a range that the LHS could be
6136 // in. Compute the Min, Max and RHS values based on the known bits. For the
6137 // EQ and NE we use unsigned values.
6138 APInt
Op0Min(BitWidth
, 0), Op0Max(BitWidth
, 0);
6139 APInt
Op1Min(BitWidth
, 0), Op1Max(BitWidth
, 0);
6141 Op0Min
= Op0Known
.getSignedMinValue();
6142 Op0Max
= Op0Known
.getSignedMaxValue();
6143 Op1Min
= Op1Known
.getSignedMinValue();
6144 Op1Max
= Op1Known
.getSignedMaxValue();
6146 Op0Min
= Op0Known
.getMinValue();
6147 Op0Max
= Op0Known
.getMaxValue();
6148 Op1Min
= Op1Known
.getMinValue();
6149 Op1Max
= Op1Known
.getMaxValue();
6152 // If Min and Max are known to be the same, then SimplifyDemandedBits figured
6153 // out that the LHS or RHS is a constant. Constant fold this now, so that
6154 // code below can assume that Min != Max.
6155 if (!isa
<Constant
>(Op0
) && Op0Min
== Op0Max
)
6156 return new ICmpInst(Pred
, ConstantExpr::getIntegerValue(Ty
, Op0Min
), Op1
);
6157 if (!isa
<Constant
>(Op1
) && Op1Min
== Op1Max
)
6158 return new ICmpInst(Pred
, Op0
, ConstantExpr::getIntegerValue(Ty
, Op1Min
));
6160 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
6161 // min/max canonical compare with some other compare. That could lead to
6162 // conflict with select canonicalization and infinite looping.
6163 // FIXME: This constraint may go away if min/max intrinsics are canonical.
6164 auto isMinMaxCmp
= [&](Instruction
&Cmp
) {
6165 if (!Cmp
.hasOneUse())
6168 SelectPatternFlavor SPF
= matchSelectPattern(Cmp
.user_back(), A
, B
).Flavor
;
6169 if (!SelectPatternResult::isMinOrMax(SPF
))
6171 return match(Op0
, m_MaxOrMin(m_Value(), m_Value())) ||
6172 match(Op1
, m_MaxOrMin(m_Value(), m_Value()));
6174 if (!isMinMaxCmp(I
)) {
6178 case ICmpInst::ICMP_ULT
: {
6179 if (Op1Min
== Op0Max
) // A <u B -> A != B if max(A) == min(B)
6180 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
6182 if (match(Op1
, m_APInt(CmpC
))) {
6183 // A <u C -> A == C-1 if min(A)+1 == C
6184 if (*CmpC
== Op0Min
+ 1)
6185 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
6186 ConstantInt::get(Op1
->getType(), *CmpC
- 1));
6187 // X <u C --> X == 0, if the number of zero bits in the bottom of X
6188 // exceeds the log2 of C.
6189 if (Op0Known
.countMinTrailingZeros() >= CmpC
->ceilLogBase2())
6190 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
6191 Constant::getNullValue(Op1
->getType()));
6195 case ICmpInst::ICMP_UGT
: {
6196 if (Op1Max
== Op0Min
) // A >u B -> A != B if min(A) == max(B)
6197 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
6199 if (match(Op1
, m_APInt(CmpC
))) {
6200 // A >u C -> A == C+1 if max(a)-1 == C
6201 if (*CmpC
== Op0Max
- 1)
6202 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
6203 ConstantInt::get(Op1
->getType(), *CmpC
+ 1));
6204 // X >u C --> X != 0, if the number of zero bits in the bottom of X
6205 // exceeds the log2 of C.
6206 if (Op0Known
.countMinTrailingZeros() >= CmpC
->getActiveBits())
6207 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
,
6208 Constant::getNullValue(Op1
->getType()));
6212 case ICmpInst::ICMP_SLT
: {
6213 if (Op1Min
== Op0Max
) // A <s B -> A != B if max(A) == min(B)
6214 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
6216 if (match(Op1
, m_APInt(CmpC
))) {
6217 if (*CmpC
== Op0Min
+ 1) // A <s C -> A == C-1 if min(A)+1 == C
6218 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
6219 ConstantInt::get(Op1
->getType(), *CmpC
- 1));
6223 case ICmpInst::ICMP_SGT
: {
6224 if (Op1Max
== Op0Min
) // A >s B -> A != B if min(A) == max(B)
6225 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
6227 if (match(Op1
, m_APInt(CmpC
))) {
6228 if (*CmpC
== Op0Max
- 1) // A >s C -> A == C+1 if max(A)-1 == C
6229 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
6230 ConstantInt::get(Op1
->getType(), *CmpC
+ 1));
6237 // Based on the range information we know about the LHS, see if we can
6238 // simplify this comparison. For example, (x&4) < 8 is always true.
6241 llvm_unreachable("Unknown icmp opcode!");
6242 case ICmpInst::ICMP_EQ
:
6243 case ICmpInst::ICMP_NE
: {
6244 if (Op0Max
.ult(Op1Min
) || Op0Min
.ugt(Op1Max
))
6245 return replaceInstUsesWith(
6246 I
, ConstantInt::getBool(I
.getType(), Pred
== CmpInst::ICMP_NE
));
6248 // If all bits are known zero except for one, then we know at most one bit
6249 // is set. If the comparison is against zero, then this is a check to see if
6250 // *that* bit is set.
6251 APInt Op0KnownZeroInverted
= ~Op0Known
.Zero
;
6252 if (Op1Known
.isZero()) {
6253 // If the LHS is an AND with the same constant, look through it.
6254 Value
*LHS
= nullptr;
6256 if (!match(Op0
, m_And(m_Value(LHS
), m_APInt(LHSC
))) ||
6257 *LHSC
!= Op0KnownZeroInverted
)
6262 if (match(LHS
, m_Shl(m_Power2(C1
), m_Value(X
)))) {
6263 Type
*XTy
= X
->getType();
6264 unsigned Log2C1
= C1
->countr_zero();
6265 APInt C2
= Op0KnownZeroInverted
;
6266 APInt C2Pow2
= (C2
& ~(*C1
- 1)) + *C1
;
6267 if (C2Pow2
.isPowerOf2()) {
6268 // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2):
6269 // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1))
6270 // ((C1 << X) & C2) != 0 -> X < (Log2(C2+C1) - Log2(C1))
6271 unsigned Log2C2
= C2Pow2
.countr_zero();
6272 auto *CmpC
= ConstantInt::get(XTy
, Log2C2
- Log2C1
);
6274 Pred
== CmpInst::ICMP_EQ
? CmpInst::ICMP_UGE
: CmpInst::ICMP_ULT
;
6275 return new ICmpInst(NewPred
, X
, CmpC
);
6280 // Op0 eq C_Pow2 -> Op0 ne 0 if Op0 is known to be C_Pow2 or zero.
6281 if (Op1Known
.isConstant() && Op1Known
.getConstant().isPowerOf2() &&
6282 (Op0Known
& Op1Known
) == Op0Known
)
6283 return new ICmpInst(CmpInst::getInversePredicate(Pred
), Op0
,
6284 ConstantInt::getNullValue(Op1
->getType()));
6287 case ICmpInst::ICMP_ULT
: {
6288 if (Op0Max
.ult(Op1Min
)) // A <u B -> true if max(A) < min(B)
6289 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
6290 if (Op0Min
.uge(Op1Max
)) // A <u B -> false if min(A) >= max(B)
6291 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
6294 case ICmpInst::ICMP_UGT
: {
6295 if (Op0Min
.ugt(Op1Max
)) // A >u B -> true if min(A) > max(B)
6296 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
6297 if (Op0Max
.ule(Op1Min
)) // A >u B -> false if max(A) <= max(B)
6298 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
6301 case ICmpInst::ICMP_SLT
: {
6302 if (Op0Max
.slt(Op1Min
)) // A <s B -> true if max(A) < min(C)
6303 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
6304 if (Op0Min
.sge(Op1Max
)) // A <s B -> false if min(A) >= max(C)
6305 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
6308 case ICmpInst::ICMP_SGT
: {
6309 if (Op0Min
.sgt(Op1Max
)) // A >s B -> true if min(A) > max(B)
6310 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
6311 if (Op0Max
.sle(Op1Min
)) // A >s B -> false if max(A) <= min(B)
6312 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
6315 case ICmpInst::ICMP_SGE
:
6316 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SGE with ConstantInt not folded!");
6317 if (Op0Min
.sge(Op1Max
)) // A >=s B -> true if min(A) >= max(B)
6318 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
6319 if (Op0Max
.slt(Op1Min
)) // A >=s B -> false if max(A) < min(B)
6320 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
6321 if (Op1Min
== Op0Max
) // A >=s B -> A == B if max(A) == min(B)
6322 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
6324 case ICmpInst::ICMP_SLE
:
6325 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SLE with ConstantInt not folded!");
6326 if (Op0Max
.sle(Op1Min
)) // A <=s B -> true if max(A) <= min(B)
6327 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
6328 if (Op0Min
.sgt(Op1Max
)) // A <=s B -> false if min(A) > max(B)
6329 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
6330 if (Op1Max
== Op0Min
) // A <=s B -> A == B if min(A) == max(B)
6331 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
6333 case ICmpInst::ICMP_UGE
:
6334 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_UGE with ConstantInt not folded!");
6335 if (Op0Min
.uge(Op1Max
)) // A >=u B -> true if min(A) >= max(B)
6336 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
6337 if (Op0Max
.ult(Op1Min
)) // A >=u B -> false if max(A) < min(B)
6338 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
6339 if (Op1Min
== Op0Max
) // A >=u B -> A == B if max(A) == min(B)
6340 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
6342 case ICmpInst::ICMP_ULE
:
6343 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_ULE with ConstantInt not folded!");
6344 if (Op0Max
.ule(Op1Min
)) // A <=u B -> true if max(A) <= min(B)
6345 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
6346 if (Op0Min
.ugt(Op1Max
)) // A <=u B -> false if min(A) > max(B)
6347 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
6348 if (Op1Max
== Op0Min
) // A <=u B -> A == B if min(A) == max(B)
6349 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
6353 // Turn a signed comparison into an unsigned one if both operands are known to
6354 // have the same sign.
6356 ((Op0Known
.Zero
.isNegative() && Op1Known
.Zero
.isNegative()) ||
6357 (Op0Known
.One
.isNegative() && Op1Known
.One
.isNegative())))
6358 return new ICmpInst(I
.getUnsignedPredicate(), Op0
, Op1
);
6363 /// If one operand of an icmp is effectively a bool (value range of {0,1}),
6364 /// then try to reduce patterns based on that limit.
6365 Instruction
*InstCombinerImpl::foldICmpUsingBoolRange(ICmpInst
&I
) {
6367 ICmpInst::Predicate Pred
;
6369 // X must be 0 and bool must be true for "ULT":
6370 // X <u (zext i1 Y) --> (X == 0) & Y
6371 if (match(&I
, m_c_ICmp(Pred
, m_Value(X
), m_OneUse(m_ZExt(m_Value(Y
))))) &&
6372 Y
->getType()->isIntOrIntVectorTy(1) && Pred
== ICmpInst::ICMP_ULT
)
6373 return BinaryOperator::CreateAnd(Builder
.CreateIsNull(X
), Y
);
6375 // X must be 0 or bool must be true for "ULE":
6376 // X <=u (sext i1 Y) --> (X == 0) | Y
6377 if (match(&I
, m_c_ICmp(Pred
, m_Value(X
), m_OneUse(m_SExt(m_Value(Y
))))) &&
6378 Y
->getType()->isIntOrIntVectorTy(1) && Pred
== ICmpInst::ICMP_ULE
)
6379 return BinaryOperator::CreateOr(Builder
.CreateIsNull(X
), Y
);
6381 // icmp eq/ne X, (zext/sext (icmp eq/ne X, C))
6382 ICmpInst::Predicate Pred1
, Pred2
;
6385 if (match(&I
, m_c_ICmp(Pred1
, m_Value(X
),
6386 m_CombineAnd(m_Instruction(ExtI
),
6387 m_ZExtOrSExt(m_ICmp(Pred2
, m_Deferred(X
),
6389 ICmpInst::isEquality(Pred1
) && ICmpInst::isEquality(Pred2
)) {
6390 bool IsSExt
= ExtI
->getOpcode() == Instruction::SExt
;
6391 bool HasOneUse
= ExtI
->hasOneUse() && ExtI
->getOperand(0)->hasOneUse();
6392 auto CreateRangeCheck
= [&] {
6394 Builder
.CreateICmp(Pred1
, X
, Constant::getNullValue(X
->getType()));
6395 Value
*CmpV2
= Builder
.CreateICmp(
6396 Pred1
, X
, ConstantInt::getSigned(X
->getType(), IsSExt
? -1 : 1));
6397 return BinaryOperator::Create(
6398 Pred1
== ICmpInst::ICMP_EQ
? Instruction::Or
: Instruction::And
,
6402 if (Pred2
== ICmpInst::ICMP_EQ
) {
6403 // icmp eq X, (zext/sext (icmp eq X, 0)) --> false
6404 // icmp ne X, (zext/sext (icmp eq X, 0)) --> true
6405 return replaceInstUsesWith(
6406 I
, ConstantInt::getBool(I
.getType(), Pred1
== ICmpInst::ICMP_NE
));
6407 } else if (!IsSExt
|| HasOneUse
) {
6408 // icmp eq X, (zext (icmp ne X, 0)) --> X == 0 || X == 1
6409 // icmp ne X, (zext (icmp ne X, 0)) --> X != 0 && X != 1
6410 // icmp eq X, (sext (icmp ne X, 0)) --> X == 0 || X == -1
6411 // icmp ne X, (sext (icmp ne X, 0)) --> X != 0 && X == -1
6412 return CreateRangeCheck();
6414 } else if (IsSExt
? C
->isAllOnes() : C
->isOne()) {
6415 if (Pred2
== ICmpInst::ICMP_NE
) {
6416 // icmp eq X, (zext (icmp ne X, 1)) --> false
6417 // icmp ne X, (zext (icmp ne X, 1)) --> true
6418 // icmp eq X, (sext (icmp ne X, -1)) --> false
6419 // icmp ne X, (sext (icmp ne X, -1)) --> true
6420 return replaceInstUsesWith(
6421 I
, ConstantInt::getBool(I
.getType(), Pred1
== ICmpInst::ICMP_NE
));
6422 } else if (!IsSExt
|| HasOneUse
) {
6423 // icmp eq X, (zext (icmp eq X, 1)) --> X == 0 || X == 1
6424 // icmp ne X, (zext (icmp eq X, 1)) --> X != 0 && X != 1
6425 // icmp eq X, (sext (icmp eq X, -1)) --> X == 0 || X == -1
6426 // icmp ne X, (sext (icmp eq X, -1)) --> X != 0 && X == -1
6427 return CreateRangeCheck();
6430 // when C != 0 && C != 1:
6431 // icmp eq X, (zext (icmp eq X, C)) --> icmp eq X, 0
6432 // icmp eq X, (zext (icmp ne X, C)) --> icmp eq X, 1
6433 // icmp ne X, (zext (icmp eq X, C)) --> icmp ne X, 0
6434 // icmp ne X, (zext (icmp ne X, C)) --> icmp ne X, 1
6435 // when C != 0 && C != -1:
6436 // icmp eq X, (sext (icmp eq X, C)) --> icmp eq X, 0
6437 // icmp eq X, (sext (icmp ne X, C)) --> icmp eq X, -1
6438 // icmp ne X, (sext (icmp eq X, C)) --> icmp ne X, 0
6439 // icmp ne X, (sext (icmp ne X, C)) --> icmp ne X, -1
6440 return ICmpInst::Create(
6441 Instruction::ICmp
, Pred1
, X
,
6442 ConstantInt::getSigned(X
->getType(), Pred2
== ICmpInst::ICMP_NE
6451 std::optional
<std::pair
<CmpInst::Predicate
, Constant
*>>
6452 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred
,
6454 assert(ICmpInst::isRelational(Pred
) && ICmpInst::isIntPredicate(Pred
) &&
6455 "Only for relational integer predicates.");
6457 Type
*Type
= C
->getType();
6458 bool IsSigned
= ICmpInst::isSigned(Pred
);
6460 CmpInst::Predicate UnsignedPred
= ICmpInst::getUnsignedPredicate(Pred
);
6461 bool WillIncrement
=
6462 UnsignedPred
== ICmpInst::ICMP_ULE
|| UnsignedPred
== ICmpInst::ICMP_UGT
;
6464 // Check if the constant operand can be safely incremented/decremented
6465 // without overflowing/underflowing.
6466 auto ConstantIsOk
= [WillIncrement
, IsSigned
](ConstantInt
*C
) {
6467 return WillIncrement
? !C
->isMaxValue(IsSigned
) : !C
->isMinValue(IsSigned
);
6470 Constant
*SafeReplacementConstant
= nullptr;
6471 if (auto *CI
= dyn_cast
<ConstantInt
>(C
)) {
6472 // Bail out if the constant can't be safely incremented/decremented.
6473 if (!ConstantIsOk(CI
))
6474 return std::nullopt
;
6475 } else if (auto *FVTy
= dyn_cast
<FixedVectorType
>(Type
)) {
6476 unsigned NumElts
= FVTy
->getNumElements();
6477 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
6478 Constant
*Elt
= C
->getAggregateElement(i
);
6480 return std::nullopt
;
6482 if (isa
<UndefValue
>(Elt
))
6485 // Bail out if we can't determine if this constant is min/max or if we
6486 // know that this constant is min/max.
6487 auto *CI
= dyn_cast
<ConstantInt
>(Elt
);
6488 if (!CI
|| !ConstantIsOk(CI
))
6489 return std::nullopt
;
6491 if (!SafeReplacementConstant
)
6492 SafeReplacementConstant
= CI
;
6494 } else if (isa
<VectorType
>(C
->getType())) {
6495 // Handle scalable splat
6496 Value
*SplatC
= C
->getSplatValue();
6497 auto *CI
= dyn_cast_or_null
<ConstantInt
>(SplatC
);
6498 // Bail out if the constant can't be safely incremented/decremented.
6499 if (!CI
|| !ConstantIsOk(CI
))
6500 return std::nullopt
;
6503 return std::nullopt
;
6506 // It may not be safe to change a compare predicate in the presence of
6507 // undefined elements, so replace those elements with the first safe constant
6509 // TODO: in case of poison, it is safe; let's replace undefs only.
6510 if (C
->containsUndefOrPoisonElement()) {
6511 assert(SafeReplacementConstant
&& "Replacement constant not set");
6512 C
= Constant::replaceUndefsWith(C
, SafeReplacementConstant
);
6515 CmpInst::Predicate NewPred
= CmpInst::getFlippedStrictnessPredicate(Pred
);
6517 // Increment or decrement the constant.
6518 Constant
*OneOrNegOne
= ConstantInt::get(Type
, WillIncrement
? 1 : -1, true);
6519 Constant
*NewC
= ConstantExpr::getAdd(C
, OneOrNegOne
);
6521 return std::make_pair(NewPred
, NewC
);
6524 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
6525 /// it into the appropriate icmp lt or icmp gt instruction. This transform
6526 /// allows them to be folded in visitICmpInst.
6527 static ICmpInst
*canonicalizeCmpWithConstant(ICmpInst
&I
) {
6528 ICmpInst::Predicate Pred
= I
.getPredicate();
6529 if (ICmpInst::isEquality(Pred
) || !ICmpInst::isIntPredicate(Pred
) ||
6530 InstCombiner::isCanonicalPredicate(Pred
))
6533 Value
*Op0
= I
.getOperand(0);
6534 Value
*Op1
= I
.getOperand(1);
6535 auto *Op1C
= dyn_cast
<Constant
>(Op1
);
6539 auto FlippedStrictness
=
6540 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred
, Op1C
);
6541 if (!FlippedStrictness
)
6544 return new ICmpInst(FlippedStrictness
->first
, Op0
, FlippedStrictness
->second
);
6547 /// If we have a comparison with a non-canonical predicate, if we can update
6548 /// all the users, invert the predicate and adjust all the users.
6549 CmpInst
*InstCombinerImpl::canonicalizeICmpPredicate(CmpInst
&I
) {
6550 // Is the predicate already canonical?
6551 CmpInst::Predicate Pred
= I
.getPredicate();
6552 if (InstCombiner::isCanonicalPredicate(Pred
))
6555 // Can all users be adjusted to predicate inversion?
6556 if (!InstCombiner::canFreelyInvertAllUsersOf(&I
, /*IgnoredUser=*/nullptr))
6559 // Ok, we can canonicalize comparison!
6560 // Let's first invert the comparison's predicate.
6561 I
.setPredicate(CmpInst::getInversePredicate(Pred
));
6562 I
.setName(I
.getName() + ".not");
6564 // And, adapt users.
6565 freelyInvertAllUsersOf(&I
);
6570 /// Integer compare with boolean values can always be turned into bitwise ops.
6571 static Instruction
*canonicalizeICmpBool(ICmpInst
&I
,
6572 InstCombiner::BuilderTy
&Builder
) {
6573 Value
*A
= I
.getOperand(0), *B
= I
.getOperand(1);
6574 assert(A
->getType()->isIntOrIntVectorTy(1) && "Bools only");
6576 // A boolean compared to true/false can be simplified to Op0/true/false in
6577 // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
6578 // Cases not handled by InstSimplify are always 'not' of Op0.
6579 if (match(B
, m_Zero())) {
6580 switch (I
.getPredicate()) {
6581 case CmpInst::ICMP_EQ
: // A == 0 -> !A
6582 case CmpInst::ICMP_ULE
: // A <=u 0 -> !A
6583 case CmpInst::ICMP_SGE
: // A >=s 0 -> !A
6584 return BinaryOperator::CreateNot(A
);
6586 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
6588 } else if (match(B
, m_One())) {
6589 switch (I
.getPredicate()) {
6590 case CmpInst::ICMP_NE
: // A != 1 -> !A
6591 case CmpInst::ICMP_ULT
: // A <u 1 -> !A
6592 case CmpInst::ICMP_SGT
: // A >s -1 -> !A
6593 return BinaryOperator::CreateNot(A
);
6595 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
6599 switch (I
.getPredicate()) {
6601 llvm_unreachable("Invalid icmp instruction!");
6602 case ICmpInst::ICMP_EQ
:
6603 // icmp eq i1 A, B -> ~(A ^ B)
6604 return BinaryOperator::CreateNot(Builder
.CreateXor(A
, B
));
6606 case ICmpInst::ICMP_NE
:
6607 // icmp ne i1 A, B -> A ^ B
6608 return BinaryOperator::CreateXor(A
, B
);
6610 case ICmpInst::ICMP_UGT
:
6611 // icmp ugt -> icmp ult
6614 case ICmpInst::ICMP_ULT
:
6615 // icmp ult i1 A, B -> ~A & B
6616 return BinaryOperator::CreateAnd(Builder
.CreateNot(A
), B
);
6618 case ICmpInst::ICMP_SGT
:
6619 // icmp sgt -> icmp slt
6622 case ICmpInst::ICMP_SLT
:
6623 // icmp slt i1 A, B -> A & ~B
6624 return BinaryOperator::CreateAnd(Builder
.CreateNot(B
), A
);
6626 case ICmpInst::ICMP_UGE
:
6627 // icmp uge -> icmp ule
6630 case ICmpInst::ICMP_ULE
:
6631 // icmp ule i1 A, B -> ~A | B
6632 return BinaryOperator::CreateOr(Builder
.CreateNot(A
), B
);
6634 case ICmpInst::ICMP_SGE
:
6635 // icmp sge -> icmp sle
6638 case ICmpInst::ICMP_SLE
:
6639 // icmp sle i1 A, B -> A | ~B
6640 return BinaryOperator::CreateOr(Builder
.CreateNot(B
), A
);
6644 // Transform pattern like:
6645 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
6646 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
6650 static Instruction
*foldICmpWithHighBitMask(ICmpInst
&Cmp
,
6651 InstCombiner::BuilderTy
&Builder
) {
6652 ICmpInst::Predicate Pred
, NewPred
;
6655 m_c_ICmp(Pred
, m_OneUse(m_Shl(m_One(), m_Value(Y
))), m_Value(X
)))) {
6657 case ICmpInst::ICMP_ULE
:
6658 NewPred
= ICmpInst::ICMP_NE
;
6660 case ICmpInst::ICMP_UGT
:
6661 NewPred
= ICmpInst::ICMP_EQ
;
6666 } else if (match(&Cmp
, m_c_ICmp(Pred
,
6667 m_OneUse(m_CombineOr(
6668 m_Not(m_Shl(m_AllOnes(), m_Value(Y
))),
6669 m_Add(m_Shl(m_One(), m_Value(Y
)),
6672 // The variant with 'add' is not canonical, (the variant with 'not' is)
6673 // we only get it because it has extra uses, and can't be canonicalized,
6676 case ICmpInst::ICMP_ULT
:
6677 NewPred
= ICmpInst::ICMP_NE
;
6679 case ICmpInst::ICMP_UGE
:
6680 NewPred
= ICmpInst::ICMP_EQ
;
6688 Value
*NewX
= Builder
.CreateLShr(X
, Y
, X
->getName() + ".highbits");
6689 Constant
*Zero
= Constant::getNullValue(NewX
->getType());
6690 return CmpInst::Create(Instruction::ICmp
, NewPred
, NewX
, Zero
);
6693 static Instruction
*foldVectorCmp(CmpInst
&Cmp
,
6694 InstCombiner::BuilderTy
&Builder
) {
6695 const CmpInst::Predicate Pred
= Cmp
.getPredicate();
6696 Value
*LHS
= Cmp
.getOperand(0), *RHS
= Cmp
.getOperand(1);
6699 auto createCmpReverse
= [&](CmpInst::Predicate Pred
, Value
*X
, Value
*Y
) {
6700 Value
*V
= Builder
.CreateCmp(Pred
, X
, Y
, Cmp
.getName());
6701 if (auto *I
= dyn_cast
<Instruction
>(V
))
6702 I
->copyIRFlags(&Cmp
);
6703 Module
*M
= Cmp
.getModule();
6704 Function
*F
= Intrinsic::getDeclaration(
6705 M
, Intrinsic::experimental_vector_reverse
, V
->getType());
6706 return CallInst::Create(F
, V
);
6709 if (match(LHS
, m_VecReverse(m_Value(V1
)))) {
6710 // cmp Pred, rev(V1), rev(V2) --> rev(cmp Pred, V1, V2)
6711 if (match(RHS
, m_VecReverse(m_Value(V2
))) &&
6712 (LHS
->hasOneUse() || RHS
->hasOneUse()))
6713 return createCmpReverse(Pred
, V1
, V2
);
6715 // cmp Pred, rev(V1), RHSSplat --> rev(cmp Pred, V1, RHSSplat)
6716 if (LHS
->hasOneUse() && isSplatValue(RHS
))
6717 return createCmpReverse(Pred
, V1
, RHS
);
6719 // cmp Pred, LHSSplat, rev(V2) --> rev(cmp Pred, LHSSplat, V2)
6720 else if (isSplatValue(LHS
) && match(RHS
, m_OneUse(m_VecReverse(m_Value(V2
)))))
6721 return createCmpReverse(Pred
, LHS
, V2
);
6724 if (!match(LHS
, m_Shuffle(m_Value(V1
), m_Undef(), m_Mask(M
))))
6727 // If both arguments of the cmp are shuffles that use the same mask and
6728 // shuffle within a single vector, move the shuffle after the cmp:
6729 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
6730 Type
*V1Ty
= V1
->getType();
6731 if (match(RHS
, m_Shuffle(m_Value(V2
), m_Undef(), m_SpecificMask(M
))) &&
6732 V1Ty
== V2
->getType() && (LHS
->hasOneUse() || RHS
->hasOneUse())) {
6733 Value
*NewCmp
= Builder
.CreateCmp(Pred
, V1
, V2
);
6734 return new ShuffleVectorInst(NewCmp
, M
);
6737 // Try to canonicalize compare with splatted operand and splat constant.
6738 // TODO: We could generalize this for more than splats. See/use the code in
6739 // InstCombiner::foldVectorBinop().
6741 if (!LHS
->hasOneUse() || !match(RHS
, m_Constant(C
)))
6744 // Length-changing splats are ok, so adjust the constants as needed:
6745 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
6746 Constant
*ScalarC
= C
->getSplatValue(/* AllowUndefs */ true);
6748 if (ScalarC
&& match(M
, m_SplatOrUndefMask(MaskSplatIndex
))) {
6749 // We allow undefs in matching, but this transform removes those for safety.
6750 // Demanded elements analysis should be able to recover some/all of that.
6751 C
= ConstantVector::getSplat(cast
<VectorType
>(V1Ty
)->getElementCount(),
6753 SmallVector
<int, 8> NewM(M
.size(), MaskSplatIndex
);
6754 Value
*NewCmp
= Builder
.CreateCmp(Pred
, V1
, C
);
6755 return new ShuffleVectorInst(NewCmp
, NewM
);
6761 // extract(uadd.with.overflow(A, B), 0) ult A
6762 // -> extract(uadd.with.overflow(A, B), 1)
6763 static Instruction
*foldICmpOfUAddOv(ICmpInst
&I
) {
6764 CmpInst::Predicate Pred
= I
.getPredicate();
6765 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
6769 auto UAddOvResultPat
= m_ExtractValue
<0>(
6770 m_Intrinsic
<Intrinsic::uadd_with_overflow
>(m_Value(A
), m_Value(B
)));
6771 if (match(Op0
, UAddOvResultPat
) &&
6772 ((Pred
== ICmpInst::ICMP_ULT
&& (Op1
== A
|| Op1
== B
)) ||
6773 (Pred
== ICmpInst::ICMP_EQ
&& match(Op1
, m_ZeroInt()) &&
6774 (match(A
, m_One()) || match(B
, m_One()))) ||
6775 (Pred
== ICmpInst::ICMP_NE
&& match(Op1
, m_AllOnes()) &&
6776 (match(A
, m_AllOnes()) || match(B
, m_AllOnes())))))
6777 // extract(uadd.with.overflow(A, B), 0) < A
6778 // extract(uadd.with.overflow(A, 1), 0) == 0
6779 // extract(uadd.with.overflow(A, -1), 0) != -1
6780 UAddOv
= cast
<ExtractValueInst
>(Op0
)->getAggregateOperand();
6781 else if (match(Op1
, UAddOvResultPat
) &&
6782 Pred
== ICmpInst::ICMP_UGT
&& (Op0
== A
|| Op0
== B
))
6783 // A > extract(uadd.with.overflow(A, B), 0)
6784 UAddOv
= cast
<ExtractValueInst
>(Op1
)->getAggregateOperand();
6788 return ExtractValueInst::Create(UAddOv
, 1);
6791 static Instruction
*foldICmpInvariantGroup(ICmpInst
&I
) {
6792 if (!I
.getOperand(0)->getType()->isPointerTy() ||
6793 NullPointerIsDefined(
6794 I
.getParent()->getParent(),
6795 I
.getOperand(0)->getType()->getPointerAddressSpace())) {
6799 if (match(I
.getOperand(0), m_Instruction(Op
)) &&
6800 match(I
.getOperand(1), m_Zero()) &&
6801 Op
->isLaunderOrStripInvariantGroup()) {
6802 return ICmpInst::Create(Instruction::ICmp
, I
.getPredicate(),
6803 Op
->getOperand(0), I
.getOperand(1));
6808 /// This function folds patterns produced by lowering of reduce idioms, such as
6809 /// llvm.vector.reduce.and which are lowered into instruction chains. This code
6810 /// attempts to generate fewer number of scalar comparisons instead of vector
6811 /// comparisons when possible.
6812 static Instruction
*foldReductionIdiom(ICmpInst
&I
,
6813 InstCombiner::BuilderTy
&Builder
,
6814 const DataLayout
&DL
) {
6815 if (I
.getType()->isVectorTy())
6817 ICmpInst::Predicate OuterPred
, InnerPred
;
6820 // Match lowering of @llvm.vector.reduce.and. Turn
6821 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs
6822 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8
6823 /// %res = icmp <pred> i8 %scalar_ne, 0
6827 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64
6828 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64
6829 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
6831 /// for <pred> in {ne, eq}.
6832 if (!match(&I
, m_ICmp(OuterPred
,
6833 m_OneUse(m_BitCast(m_OneUse(
6834 m_ICmp(InnerPred
, m_Value(LHS
), m_Value(RHS
))))),
6837 auto *LHSTy
= dyn_cast
<FixedVectorType
>(LHS
->getType());
6838 if (!LHSTy
|| !LHSTy
->getElementType()->isIntegerTy())
6841 LHSTy
->getNumElements() * LHSTy
->getElementType()->getIntegerBitWidth();
6842 // TODO: Relax this to "not wider than max legal integer type"?
6843 if (!DL
.isLegalInteger(NumBits
))
6846 if (ICmpInst::isEquality(OuterPred
) && InnerPred
== ICmpInst::ICMP_NE
) {
6847 auto *ScalarTy
= Builder
.getIntNTy(NumBits
);
6848 LHS
= Builder
.CreateBitCast(LHS
, ScalarTy
, LHS
->getName() + ".scalar");
6849 RHS
= Builder
.CreateBitCast(RHS
, ScalarTy
, RHS
->getName() + ".scalar");
6850 return ICmpInst::Create(Instruction::ICmp
, OuterPred
, LHS
, RHS
,
6857 // This helper will be called with icmp operands in both orders.
6858 Instruction
*InstCombinerImpl::foldICmpCommutative(ICmpInst::Predicate Pred
,
6859 Value
*Op0
, Value
*Op1
,
6861 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
6862 if (auto *GEP
= dyn_cast
<GEPOperator
>(Op0
))
6863 if (Instruction
*NI
= foldGEPICmp(GEP
, Op1
, Pred
, CxtI
))
6866 if (auto *SI
= dyn_cast
<SelectInst
>(Op0
))
6867 if (Instruction
*NI
= foldSelectICmp(Pred
, SI
, Op1
, CxtI
))
6870 if (auto *MinMax
= dyn_cast
<MinMaxIntrinsic
>(Op0
))
6871 if (Instruction
*Res
= foldICmpWithMinMax(CxtI
, MinMax
, Op1
, Pred
))
6878 if (match(Op0
, m_Add(m_Value(X
), m_APInt(C
))) && Op1
== X
)
6879 return foldICmpAddOpConst(X
, *C
, Pred
);
6882 // abs(X) >= X --> true
6883 // abs(X) u<= X --> true
6884 // abs(X) < X --> false
6885 // abs(X) u> X --> false
6886 // abs(X) u>= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
6887 // abs(X) <= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
6888 // abs(X) == X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
6889 // abs(X) u< X --> IsIntMinPosion ? `X < 0` : `X > INTMIN`
6890 // abs(X) > X --> IsIntMinPosion ? `X < 0` : `X > INTMIN`
6891 // abs(X) != X --> IsIntMinPosion ? `X < 0` : `X > INTMIN`
6895 if (match(Op0
, m_Intrinsic
<Intrinsic::abs
>(m_Value(X
), m_Constant(C
))) &&
6896 match(Op1
, m_Specific(X
))) {
6897 Value
*NullValue
= Constant::getNullValue(X
->getType());
6898 Value
*AllOnesValue
= Constant::getAllOnesValue(X
->getType());
6900 APInt::getSignedMinValue(X
->getType()->getScalarSizeInBits());
6901 bool IsIntMinPosion
= C
->isAllOnesValue();
6903 case CmpInst::ICMP_ULE
:
6904 case CmpInst::ICMP_SGE
:
6905 return replaceInstUsesWith(CxtI
, ConstantInt::getTrue(CxtI
.getType()));
6906 case CmpInst::ICMP_UGT
:
6907 case CmpInst::ICMP_SLT
:
6908 return replaceInstUsesWith(CxtI
, ConstantInt::getFalse(CxtI
.getType()));
6909 case CmpInst::ICMP_UGE
:
6910 case CmpInst::ICMP_SLE
:
6911 case CmpInst::ICMP_EQ
: {
6912 return replaceInstUsesWith(
6913 CxtI
, IsIntMinPosion
6914 ? Builder
.CreateICmpSGT(X
, AllOnesValue
)
6915 : Builder
.CreateICmpULT(
6916 X
, ConstantInt::get(X
->getType(), SMin
+ 1)));
6918 case CmpInst::ICMP_ULT
:
6919 case CmpInst::ICMP_SGT
:
6920 case CmpInst::ICMP_NE
: {
6921 return replaceInstUsesWith(
6922 CxtI
, IsIntMinPosion
6923 ? Builder
.CreateICmpSLT(X
, NullValue
)
6924 : Builder
.CreateICmpUGT(
6925 X
, ConstantInt::get(X
->getType(), SMin
)));
6928 llvm_unreachable("Invalid predicate!");
6936 Instruction
*InstCombinerImpl::visitICmpInst(ICmpInst
&I
) {
6937 bool Changed
= false;
6938 const SimplifyQuery Q
= SQ
.getWithInstruction(&I
);
6939 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
6940 unsigned Op0Cplxity
= getComplexity(Op0
);
6941 unsigned Op1Cplxity
= getComplexity(Op1
);
6943 /// Orders the operands of the compare so that they are listed from most
6944 /// complex to least complex. This puts constants before unary operators,
6945 /// before binary operators.
6946 if (Op0Cplxity
< Op1Cplxity
) {
6948 std::swap(Op0
, Op1
);
6952 if (Value
*V
= simplifyICmpInst(I
.getPredicate(), Op0
, Op1
, Q
))
6953 return replaceInstUsesWith(I
, V
);
6955 // Comparing -val or val with non-zero is the same as just comparing val
6956 // ie, abs(val) != 0 -> val != 0
6957 if (I
.getPredicate() == ICmpInst::ICMP_NE
&& match(Op1
, m_Zero())) {
6958 Value
*Cond
, *SelectTrue
, *SelectFalse
;
6959 if (match(Op0
, m_Select(m_Value(Cond
), m_Value(SelectTrue
),
6960 m_Value(SelectFalse
)))) {
6961 if (Value
*V
= dyn_castNegVal(SelectTrue
)) {
6962 if (V
== SelectFalse
)
6963 return CmpInst::Create(Instruction::ICmp
, I
.getPredicate(), V
, Op1
);
6965 else if (Value
*V
= dyn_castNegVal(SelectFalse
)) {
6966 if (V
== SelectTrue
)
6967 return CmpInst::Create(Instruction::ICmp
, I
.getPredicate(), V
, Op1
);
6972 if (Op0
->getType()->isIntOrIntVectorTy(1))
6973 if (Instruction
*Res
= canonicalizeICmpBool(I
, Builder
))
6976 if (Instruction
*Res
= canonicalizeCmpWithConstant(I
))
6979 if (Instruction
*Res
= canonicalizeICmpPredicate(I
))
6982 if (Instruction
*Res
= foldICmpWithConstant(I
))
6985 if (Instruction
*Res
= foldICmpWithDominatingICmp(I
))
6988 if (Instruction
*Res
= foldICmpUsingBoolRange(I
))
6991 if (Instruction
*Res
= foldICmpUsingKnownBits(I
))
6994 if (Instruction
*Res
= foldICmpTruncWithTruncOrExt(I
, Q
))
6997 // Test if the ICmpInst instruction is used exclusively by a select as
6998 // part of a minimum or maximum operation. If so, refrain from doing
6999 // any other folding. This helps out other analyses which understand
7000 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
7001 // and CodeGen. And in this case, at least one of the comparison
7002 // operands has at least one user besides the compare (the select),
7003 // which would often largely negate the benefit of folding anyway.
7005 // Do the same for the other patterns recognized by matchSelectPattern.
7007 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.user_back())) {
7009 SelectPatternResult SPR
= matchSelectPattern(SI
, A
, B
);
7010 if (SPR
.Flavor
!= SPF_UNKNOWN
)
7014 // Do this after checking for min/max to prevent infinite looping.
7015 if (Instruction
*Res
= foldICmpWithZero(I
))
7018 // FIXME: We only do this after checking for min/max to prevent infinite
7019 // looping caused by a reverse canonicalization of these patterns for min/max.
7020 // FIXME: The organization of folds is a mess. These would naturally go into
7021 // canonicalizeCmpWithConstant(), but we can't move all of the above folds
7022 // down here after the min/max restriction.
7023 ICmpInst::Predicate Pred
= I
.getPredicate();
7025 if (match(Op1
, m_APInt(C
))) {
7026 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
7027 if (Pred
== ICmpInst::ICMP_UGT
&& C
->isMaxSignedValue()) {
7028 Constant
*Zero
= Constant::getNullValue(Op0
->getType());
7029 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
, Zero
);
7032 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
7033 if (Pred
== ICmpInst::ICMP_ULT
&& C
->isMinSignedValue()) {
7034 Constant
*AllOnes
= Constant::getAllOnesValue(Op0
->getType());
7035 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
, AllOnes
);
7039 // The folds in here may rely on wrapping flags and special constants, so
7040 // they can break up min/max idioms in some cases but not seemingly similar
7042 // FIXME: It may be possible to enhance select folding to make this
7043 // unnecessary. It may also be moot if we canonicalize to min/max
7045 if (Instruction
*Res
= foldICmpBinOp(I
, Q
))
7048 if (Instruction
*Res
= foldICmpInstWithConstant(I
))
7051 // Try to match comparison as a sign bit test. Intentionally do this after
7052 // foldICmpInstWithConstant() to potentially let other folds to happen first.
7053 if (Instruction
*New
= foldSignBitTest(I
))
7056 if (Instruction
*Res
= foldICmpInstWithConstantNotInt(I
))
7059 if (Instruction
*Res
= foldICmpCommutative(I
.getPredicate(), Op0
, Op1
, I
))
7061 if (Instruction
*Res
=
7062 foldICmpCommutative(I
.getSwappedPredicate(), Op1
, Op0
, I
))
7065 // In case of a comparison with two select instructions having the same
7066 // condition, check whether one of the resulting branches can be simplified.
7067 // If so, just compare the other branch and select the appropriate result.
7069 // %tmp1 = select i1 %cmp, i32 %y, i32 %x
7070 // %tmp2 = select i1 %cmp, i32 %z, i32 %x
7071 // %cmp2 = icmp slt i32 %tmp2, %tmp1
7072 // The icmp will result false for the false value of selects and the result
7073 // will depend upon the comparison of true values of selects if %cmp is
7074 // true. Thus, transform this into:
7075 // %cmp = icmp slt i32 %y, %z
7076 // %sel = select i1 %cond, i1 %cmp, i1 false
7077 // This handles similar cases to transform.
7079 Value
*Cond
, *A
, *B
, *C
, *D
;
7080 if (match(Op0
, m_Select(m_Value(Cond
), m_Value(A
), m_Value(B
))) &&
7081 match(Op1
, m_Select(m_Specific(Cond
), m_Value(C
), m_Value(D
))) &&
7082 (Op0
->hasOneUse() || Op1
->hasOneUse())) {
7083 // Check whether comparison of TrueValues can be simplified
7084 if (Value
*Res
= simplifyICmpInst(Pred
, A
, C
, SQ
)) {
7085 Value
*NewICMP
= Builder
.CreateICmp(Pred
, B
, D
);
7086 return SelectInst::Create(Cond
, Res
, NewICMP
);
7088 // Check whether comparison of FalseValues can be simplified
7089 if (Value
*Res
= simplifyICmpInst(Pred
, B
, D
, SQ
)) {
7090 Value
*NewICMP
= Builder
.CreateICmp(Pred
, A
, C
);
7091 return SelectInst::Create(Cond
, NewICMP
, Res
);
7096 // Try to optimize equality comparisons against alloca-based pointers.
7097 if (Op0
->getType()->isPointerTy() && I
.isEquality()) {
7098 assert(Op1
->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
7099 if (auto *Alloca
= dyn_cast
<AllocaInst
>(getUnderlyingObject(Op0
)))
7100 if (foldAllocaCmp(Alloca
))
7102 if (auto *Alloca
= dyn_cast
<AllocaInst
>(getUnderlyingObject(Op1
)))
7103 if (foldAllocaCmp(Alloca
))
7107 if (Instruction
*Res
= foldICmpBitCast(I
))
7110 // TODO: Hoist this above the min/max bailout.
7111 if (Instruction
*R
= foldICmpWithCastOp(I
))
7116 // Transform (X & ~Y) == 0 --> (X & Y) != 0
7117 // and (X & ~Y) != 0 --> (X & Y) == 0
7118 // if A is a power of 2.
7119 if (match(Op0
, m_And(m_Value(X
), m_Not(m_Value(Y
)))) &&
7120 match(Op1
, m_Zero()) && isKnownToBeAPowerOfTwo(X
, false, 0, &I
) &&
7122 return new ICmpInst(I
.getInversePredicate(), Builder
.CreateAnd(X
, Y
),
7125 // Op0 pred Op1 -> ~Op1 pred ~Op0, if this allows us to drop an instruction.
7126 if (Op0
->getType()->isIntOrIntVectorTy()) {
7127 bool ConsumesOp0
, ConsumesOp1
;
7128 if (isFreeToInvert(Op0
, Op0
->hasOneUse(), ConsumesOp0
) &&
7129 isFreeToInvert(Op1
, Op1
->hasOneUse(), ConsumesOp1
) &&
7130 (ConsumesOp0
|| ConsumesOp1
)) {
7131 Value
*InvOp0
= getFreelyInverted(Op0
, Op0
->hasOneUse(), &Builder
);
7132 Value
*InvOp1
= getFreelyInverted(Op1
, Op1
->hasOneUse(), &Builder
);
7133 assert(InvOp0
&& InvOp1
&&
7134 "Mismatch between isFreeToInvert and getFreelyInverted");
7135 return new ICmpInst(I
.getSwappedPredicate(), InvOp0
, InvOp1
);
7139 Instruction
*AddI
= nullptr;
7140 if (match(&I
, m_UAddWithOverflow(m_Value(X
), m_Value(Y
),
7141 m_Instruction(AddI
))) &&
7142 isa
<IntegerType
>(X
->getType())) {
7145 // m_UAddWithOverflow can match patterns that do not include an explicit
7146 // "add" instruction, so check the opcode of the matched op.
7147 if (AddI
->getOpcode() == Instruction::Add
&&
7148 OptimizeOverflowCheck(Instruction::Add
, /*Signed*/ false, X
, Y
, *AddI
,
7149 Result
, Overflow
)) {
7150 replaceInstUsesWith(*AddI
, Result
);
7151 eraseInstFromFunction(*AddI
);
7152 return replaceInstUsesWith(I
, Overflow
);
7156 // (zext X) * (zext Y) --> llvm.umul.with.overflow.
7157 if (match(Op0
, m_NUWMul(m_ZExt(m_Value(X
)), m_ZExt(m_Value(Y
)))) &&
7158 match(Op1
, m_APInt(C
))) {
7159 if (Instruction
*R
= processUMulZExtIdiom(I
, Op0
, C
, *this))
7163 // Signbit test folds
7164 // Fold (X u>> BitWidth - 1 Pred ZExt(i1)) --> X s< 0 Pred i1
7165 // Fold (X s>> BitWidth - 1 Pred SExt(i1)) --> X s< 0 Pred i1
7167 if ((I
.isUnsigned() || I
.isEquality()) &&
7169 m_CombineAnd(m_Instruction(ExtI
), m_ZExtOrSExt(m_Value(Y
)))) &&
7170 Y
->getType()->getScalarSizeInBits() == 1 &&
7171 (Op0
->hasOneUse() || Op1
->hasOneUse())) {
7172 unsigned OpWidth
= Op0
->getType()->getScalarSizeInBits();
7173 Instruction
*ShiftI
;
7174 if (match(Op0
, m_CombineAnd(m_Instruction(ShiftI
),
7175 m_Shr(m_Value(X
), m_SpecificIntAllowUndef(
7177 unsigned ExtOpc
= ExtI
->getOpcode();
7178 unsigned ShiftOpc
= ShiftI
->getOpcode();
7179 if ((ExtOpc
== Instruction::ZExt
&& ShiftOpc
== Instruction::LShr
) ||
7180 (ExtOpc
== Instruction::SExt
&& ShiftOpc
== Instruction::AShr
)) {
7182 Builder
.CreateICmpSLT(X
, Constant::getNullValue(X
->getType()));
7183 Value
*Cmp
= Builder
.CreateICmp(Pred
, SLTZero
, Y
, I
.getName());
7184 return replaceInstUsesWith(I
, Cmp
);
7190 if (Instruction
*Res
= foldICmpEquality(I
))
7193 if (Instruction
*Res
= foldICmpPow2Test(I
, Builder
))
7196 if (Instruction
*Res
= foldICmpOfUAddOv(I
))
7199 // The 'cmpxchg' instruction returns an aggregate containing the old value and
7200 // an i1 which indicates whether or not we successfully did the swap.
7202 // Replace comparisons between the old value and the expected value with the
7203 // indicator that 'cmpxchg' returns.
7205 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
7206 // spuriously fail. In those cases, the old value may equal the expected
7207 // value but it is possible for the swap to not occur.
7208 if (I
.getPredicate() == ICmpInst::ICMP_EQ
)
7209 if (auto *EVI
= dyn_cast
<ExtractValueInst
>(Op0
))
7210 if (auto *ACXI
= dyn_cast
<AtomicCmpXchgInst
>(EVI
->getAggregateOperand()))
7211 if (EVI
->getIndices()[0] == 0 && ACXI
->getCompareOperand() == Op1
&&
7213 return ExtractValueInst::Create(ACXI
, 1);
7215 if (Instruction
*Res
= foldICmpWithHighBitMask(I
, Builder
))
7218 if (I
.getType()->isVectorTy())
7219 if (Instruction
*Res
= foldVectorCmp(I
, Builder
))
7222 if (Instruction
*Res
= foldICmpInvariantGroup(I
))
7225 if (Instruction
*Res
= foldReductionIdiom(I
, Builder
, DL
))
7228 return Changed
? &I
: nullptr;
7231 /// Fold fcmp ([us]itofp x, cst) if possible.
7232 Instruction
*InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst
&I
,
7235 if (!isa
<ConstantFP
>(RHSC
)) return nullptr;
7236 const APFloat
&RHS
= cast
<ConstantFP
>(RHSC
)->getValueAPF();
7238 // Get the width of the mantissa. We don't want to hack on conversions that
7239 // might lose information from the integer, e.g. "i64 -> float"
7240 int MantissaWidth
= LHSI
->getType()->getFPMantissaWidth();
7241 if (MantissaWidth
== -1) return nullptr; // Unknown.
7243 IntegerType
*IntTy
= cast
<IntegerType
>(LHSI
->getOperand(0)->getType());
7245 bool LHSUnsigned
= isa
<UIToFPInst
>(LHSI
);
7247 if (I
.isEquality()) {
7248 FCmpInst::Predicate P
= I
.getPredicate();
7249 bool IsExact
= false;
7250 APSInt
RHSCvt(IntTy
->getBitWidth(), LHSUnsigned
);
7251 RHS
.convertToInteger(RHSCvt
, APFloat::rmNearestTiesToEven
, &IsExact
);
7253 // If the floating point constant isn't an integer value, we know if we will
7254 // ever compare equal / not equal to it.
7256 // TODO: Can never be -0.0 and other non-representable values
7257 APFloat
RHSRoundInt(RHS
);
7258 RHSRoundInt
.roundToIntegral(APFloat::rmNearestTiesToEven
);
7259 if (RHS
!= RHSRoundInt
) {
7260 if (P
== FCmpInst::FCMP_OEQ
|| P
== FCmpInst::FCMP_UEQ
)
7261 return replaceInstUsesWith(I
, Builder
.getFalse());
7263 assert(P
== FCmpInst::FCMP_ONE
|| P
== FCmpInst::FCMP_UNE
);
7264 return replaceInstUsesWith(I
, Builder
.getTrue());
7268 // TODO: If the constant is exactly representable, is it always OK to do
7269 // equality compares as integer?
7272 // Check to see that the input is converted from an integer type that is small
7273 // enough that preserves all bits. TODO: check here for "known" sign bits.
7274 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
7275 unsigned InputSize
= IntTy
->getScalarSizeInBits();
7277 // Following test does NOT adjust InputSize downwards for signed inputs,
7278 // because the most negative value still requires all the mantissa bits
7279 // to distinguish it from one less than that value.
7280 if ((int)InputSize
> MantissaWidth
) {
7281 // Conversion would lose accuracy. Check if loss can impact comparison.
7282 int Exp
= ilogb(RHS
);
7283 if (Exp
== APFloat::IEK_Inf
) {
7284 int MaxExponent
= ilogb(APFloat::getLargest(RHS
.getSemantics()));
7285 if (MaxExponent
< (int)InputSize
- !LHSUnsigned
)
7286 // Conversion could create infinity.
7289 // Note that if RHS is zero or NaN, then Exp is negative
7290 // and first condition is trivially false.
7291 if (MantissaWidth
<= Exp
&& Exp
<= (int)InputSize
- !LHSUnsigned
)
7292 // Conversion could affect comparison.
7297 // Otherwise, we can potentially simplify the comparison. We know that it
7298 // will always come through as an integer value and we know the constant is
7299 // not a NAN (it would have been previously simplified).
7300 assert(!RHS
.isNaN() && "NaN comparison not already folded!");
7302 ICmpInst::Predicate Pred
;
7303 switch (I
.getPredicate()) {
7304 default: llvm_unreachable("Unexpected predicate!");
7305 case FCmpInst::FCMP_UEQ
:
7306 case FCmpInst::FCMP_OEQ
:
7307 Pred
= ICmpInst::ICMP_EQ
;
7309 case FCmpInst::FCMP_UGT
:
7310 case FCmpInst::FCMP_OGT
:
7311 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGT
: ICmpInst::ICMP_SGT
;
7313 case FCmpInst::FCMP_UGE
:
7314 case FCmpInst::FCMP_OGE
:
7315 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_SGE
;
7317 case FCmpInst::FCMP_ULT
:
7318 case FCmpInst::FCMP_OLT
:
7319 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULT
: ICmpInst::ICMP_SLT
;
7321 case FCmpInst::FCMP_ULE
:
7322 case FCmpInst::FCMP_OLE
:
7323 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_SLE
;
7325 case FCmpInst::FCMP_UNE
:
7326 case FCmpInst::FCMP_ONE
:
7327 Pred
= ICmpInst::ICMP_NE
;
7329 case FCmpInst::FCMP_ORD
:
7330 return replaceInstUsesWith(I
, Builder
.getTrue());
7331 case FCmpInst::FCMP_UNO
:
7332 return replaceInstUsesWith(I
, Builder
.getFalse());
7335 // Now we know that the APFloat is a normal number, zero or inf.
7337 // See if the FP constant is too large for the integer. For example,
7338 // comparing an i8 to 300.0.
7339 unsigned IntWidth
= IntTy
->getScalarSizeInBits();
7342 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
7343 // and large values.
7344 APFloat
SMax(RHS
.getSemantics());
7345 SMax
.convertFromAPInt(APInt::getSignedMaxValue(IntWidth
), true,
7346 APFloat::rmNearestTiesToEven
);
7347 if (SMax
< RHS
) { // smax < 13123.0
7348 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SLT
||
7349 Pred
== ICmpInst::ICMP_SLE
)
7350 return replaceInstUsesWith(I
, Builder
.getTrue());
7351 return replaceInstUsesWith(I
, Builder
.getFalse());
7354 // If the RHS value is > UnsignedMax, fold the comparison. This handles
7355 // +INF and large values.
7356 APFloat
UMax(RHS
.getSemantics());
7357 UMax
.convertFromAPInt(APInt::getMaxValue(IntWidth
), false,
7358 APFloat::rmNearestTiesToEven
);
7359 if (UMax
< RHS
) { // umax < 13123.0
7360 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_ULT
||
7361 Pred
== ICmpInst::ICMP_ULE
)
7362 return replaceInstUsesWith(I
, Builder
.getTrue());
7363 return replaceInstUsesWith(I
, Builder
.getFalse());
7368 // See if the RHS value is < SignedMin.
7369 APFloat
SMin(RHS
.getSemantics());
7370 SMin
.convertFromAPInt(APInt::getSignedMinValue(IntWidth
), true,
7371 APFloat::rmNearestTiesToEven
);
7372 if (SMin
> RHS
) { // smin > 12312.0
7373 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
||
7374 Pred
== ICmpInst::ICMP_SGE
)
7375 return replaceInstUsesWith(I
, Builder
.getTrue());
7376 return replaceInstUsesWith(I
, Builder
.getFalse());
7379 // See if the RHS value is < UnsignedMin.
7380 APFloat
UMin(RHS
.getSemantics());
7381 UMin
.convertFromAPInt(APInt::getMinValue(IntWidth
), false,
7382 APFloat::rmNearestTiesToEven
);
7383 if (UMin
> RHS
) { // umin > 12312.0
7384 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_UGT
||
7385 Pred
== ICmpInst::ICMP_UGE
)
7386 return replaceInstUsesWith(I
, Builder
.getTrue());
7387 return replaceInstUsesWith(I
, Builder
.getFalse());
7391 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
7392 // [0, UMAX], but it may still be fractional. Check whether this is the case
7393 // using the IsExact flag.
7394 // Don't do this for zero, because -0.0 is not fractional.
7395 APSInt
RHSInt(IntWidth
, LHSUnsigned
);
7397 RHS
.convertToInteger(RHSInt
, APFloat::rmTowardZero
, &IsExact
);
7398 if (!RHS
.isZero()) {
7400 // If we had a comparison against a fractional value, we have to adjust
7401 // the compare predicate and sometimes the value. RHSC is rounded towards
7402 // zero at this point.
7404 default: llvm_unreachable("Unexpected integer comparison!");
7405 case ICmpInst::ICMP_NE
: // (float)int != 4.4 --> true
7406 return replaceInstUsesWith(I
, Builder
.getTrue());
7407 case ICmpInst::ICMP_EQ
: // (float)int == 4.4 --> false
7408 return replaceInstUsesWith(I
, Builder
.getFalse());
7409 case ICmpInst::ICMP_ULE
:
7410 // (float)int <= 4.4 --> int <= 4
7411 // (float)int <= -4.4 --> false
7412 if (RHS
.isNegative())
7413 return replaceInstUsesWith(I
, Builder
.getFalse());
7415 case ICmpInst::ICMP_SLE
:
7416 // (float)int <= 4.4 --> int <= 4
7417 // (float)int <= -4.4 --> int < -4
7418 if (RHS
.isNegative())
7419 Pred
= ICmpInst::ICMP_SLT
;
7421 case ICmpInst::ICMP_ULT
:
7422 // (float)int < -4.4 --> false
7423 // (float)int < 4.4 --> int <= 4
7424 if (RHS
.isNegative())
7425 return replaceInstUsesWith(I
, Builder
.getFalse());
7426 Pred
= ICmpInst::ICMP_ULE
;
7428 case ICmpInst::ICMP_SLT
:
7429 // (float)int < -4.4 --> int < -4
7430 // (float)int < 4.4 --> int <= 4
7431 if (!RHS
.isNegative())
7432 Pred
= ICmpInst::ICMP_SLE
;
7434 case ICmpInst::ICMP_UGT
:
7435 // (float)int > 4.4 --> int > 4
7436 // (float)int > -4.4 --> true
7437 if (RHS
.isNegative())
7438 return replaceInstUsesWith(I
, Builder
.getTrue());
7440 case ICmpInst::ICMP_SGT
:
7441 // (float)int > 4.4 --> int > 4
7442 // (float)int > -4.4 --> int >= -4
7443 if (RHS
.isNegative())
7444 Pred
= ICmpInst::ICMP_SGE
;
7446 case ICmpInst::ICMP_UGE
:
7447 // (float)int >= -4.4 --> true
7448 // (float)int >= 4.4 --> int > 4
7449 if (RHS
.isNegative())
7450 return replaceInstUsesWith(I
, Builder
.getTrue());
7451 Pred
= ICmpInst::ICMP_UGT
;
7453 case ICmpInst::ICMP_SGE
:
7454 // (float)int >= -4.4 --> int >= -4
7455 // (float)int >= 4.4 --> int > 4
7456 if (!RHS
.isNegative())
7457 Pred
= ICmpInst::ICMP_SGT
;
7463 // Lower this FP comparison into an appropriate integer version of the
7465 return new ICmpInst(Pred
, LHSI
->getOperand(0), Builder
.getInt(RHSInt
));
7468 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
7469 static Instruction
*foldFCmpReciprocalAndZero(FCmpInst
&I
, Instruction
*LHSI
,
7471 // When C is not 0.0 and infinities are not allowed:
7472 // (C / X) < 0.0 is a sign-bit test of X
7473 // (C / X) < 0.0 --> X < 0.0 (if C is positive)
7474 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
7477 // Multiply (C / X) < 0.0 by X * X / C.
7478 // - X is non zero, if it is the flag 'ninf' is violated.
7479 // - C defines the sign of X * X * C. Thus it also defines whether to swap
7480 // the predicate. C is also non zero by definition.
7482 // Thus X * X / C is non zero and the transformation is valid. [qed]
7484 FCmpInst::Predicate Pred
= I
.getPredicate();
7486 // Check that predicates are valid.
7487 if ((Pred
!= FCmpInst::FCMP_OGT
) && (Pred
!= FCmpInst::FCMP_OLT
) &&
7488 (Pred
!= FCmpInst::FCMP_OGE
) && (Pred
!= FCmpInst::FCMP_OLE
))
7491 // Check that RHS operand is zero.
7492 if (!match(RHSC
, m_AnyZeroFP()))
7495 // Check fastmath flags ('ninf').
7496 if (!LHSI
->hasNoInfs() || !I
.hasNoInfs())
7499 // Check the properties of the dividend. It must not be zero to avoid a
7500 // division by zero (see Proof).
7502 if (!match(LHSI
->getOperand(0), m_APFloat(C
)))
7508 // Get swapped predicate if necessary.
7509 if (C
->isNegative())
7510 Pred
= I
.getSwappedPredicate();
7512 return new FCmpInst(Pred
, LHSI
->getOperand(1), RHSC
, "", &I
);
7515 /// Optimize fabs(X) compared with zero.
7516 static Instruction
*foldFabsWithFcmpZero(FCmpInst
&I
, InstCombinerImpl
&IC
) {
7518 if (!match(I
.getOperand(0), m_FAbs(m_Value(X
))))
7522 if (!match(I
.getOperand(1), m_APFloat(C
)))
7525 if (!C
->isPosZero()) {
7526 if (!C
->isSmallestNormalized())
7529 const Function
*F
= I
.getFunction();
7530 DenormalMode Mode
= F
->getDenormalMode(C
->getSemantics());
7531 if (Mode
.Input
== DenormalMode::PreserveSign
||
7532 Mode
.Input
== DenormalMode::PositiveZero
) {
7534 auto replaceFCmp
= [](FCmpInst
*I
, FCmpInst::Predicate P
, Value
*X
) {
7535 Constant
*Zero
= ConstantFP::getZero(X
->getType());
7536 return new FCmpInst(P
, X
, Zero
, "", I
);
7539 switch (I
.getPredicate()) {
7540 case FCmpInst::FCMP_OLT
:
7541 // fcmp olt fabs(x), smallest_normalized_number -> fcmp oeq x, 0.0
7542 return replaceFCmp(&I
, FCmpInst::FCMP_OEQ
, X
);
7543 case FCmpInst::FCMP_UGE
:
7544 // fcmp uge fabs(x), smallest_normalized_number -> fcmp une x, 0.0
7545 return replaceFCmp(&I
, FCmpInst::FCMP_UNE
, X
);
7546 case FCmpInst::FCMP_OGE
:
7547 // fcmp oge fabs(x), smallest_normalized_number -> fcmp one x, 0.0
7548 return replaceFCmp(&I
, FCmpInst::FCMP_ONE
, X
);
7549 case FCmpInst::FCMP_ULT
:
7550 // fcmp ult fabs(x), smallest_normalized_number -> fcmp ueq x, 0.0
7551 return replaceFCmp(&I
, FCmpInst::FCMP_UEQ
, X
);
7560 auto replacePredAndOp0
= [&IC
](FCmpInst
*I
, FCmpInst::Predicate P
, Value
*X
) {
7562 return IC
.replaceOperand(*I
, 0, X
);
7565 switch (I
.getPredicate()) {
7566 case FCmpInst::FCMP_UGE
:
7567 case FCmpInst::FCMP_OLT
:
7568 // fabs(X) >= 0.0 --> true
7569 // fabs(X) < 0.0 --> false
7570 llvm_unreachable("fcmp should have simplified");
7572 case FCmpInst::FCMP_OGT
:
7573 // fabs(X) > 0.0 --> X != 0.0
7574 return replacePredAndOp0(&I
, FCmpInst::FCMP_ONE
, X
);
7576 case FCmpInst::FCMP_UGT
:
7577 // fabs(X) u> 0.0 --> X u!= 0.0
7578 return replacePredAndOp0(&I
, FCmpInst::FCMP_UNE
, X
);
7580 case FCmpInst::FCMP_OLE
:
7581 // fabs(X) <= 0.0 --> X == 0.0
7582 return replacePredAndOp0(&I
, FCmpInst::FCMP_OEQ
, X
);
7584 case FCmpInst::FCMP_ULE
:
7585 // fabs(X) u<= 0.0 --> X u== 0.0
7586 return replacePredAndOp0(&I
, FCmpInst::FCMP_UEQ
, X
);
7588 case FCmpInst::FCMP_OGE
:
7589 // fabs(X) >= 0.0 --> !isnan(X)
7590 assert(!I
.hasNoNaNs() && "fcmp should have simplified");
7591 return replacePredAndOp0(&I
, FCmpInst::FCMP_ORD
, X
);
7593 case FCmpInst::FCMP_ULT
:
7594 // fabs(X) u< 0.0 --> isnan(X)
7595 assert(!I
.hasNoNaNs() && "fcmp should have simplified");
7596 return replacePredAndOp0(&I
, FCmpInst::FCMP_UNO
, X
);
7598 case FCmpInst::FCMP_OEQ
:
7599 case FCmpInst::FCMP_UEQ
:
7600 case FCmpInst::FCMP_ONE
:
7601 case FCmpInst::FCMP_UNE
:
7602 case FCmpInst::FCMP_ORD
:
7603 case FCmpInst::FCMP_UNO
:
7604 // Look through the fabs() because it doesn't change anything but the sign.
7605 // fabs(X) == 0.0 --> X == 0.0,
7606 // fabs(X) != 0.0 --> X != 0.0
7607 // isnan(fabs(X)) --> isnan(X)
7608 // !isnan(fabs(X) --> !isnan(X)
7609 return replacePredAndOp0(&I
, I
.getPredicate(), X
);
7616 static Instruction
*foldFCmpFNegCommonOp(FCmpInst
&I
) {
7617 CmpInst::Predicate Pred
= I
.getPredicate();
7618 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
7620 // Canonicalize fneg as Op1.
7621 if (match(Op0
, m_FNeg(m_Value())) && !match(Op1
, m_FNeg(m_Value()))) {
7622 std::swap(Op0
, Op1
);
7623 Pred
= I
.getSwappedPredicate();
7626 if (!match(Op1
, m_FNeg(m_Specific(Op0
))))
7629 // Replace the negated operand with 0.0:
7630 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0
7631 Constant
*Zero
= ConstantFP::getZero(Op0
->getType());
7632 return new FCmpInst(Pred
, Op0
, Zero
, "", &I
);
7635 Instruction
*InstCombinerImpl::visitFCmpInst(FCmpInst
&I
) {
7636 bool Changed
= false;
7638 /// Orders the operands of the compare so that they are listed from most
7639 /// complex to least complex. This puts constants before unary operators,
7640 /// before binary operators.
7641 if (getComplexity(I
.getOperand(0)) < getComplexity(I
.getOperand(1))) {
7646 const CmpInst::Predicate Pred
= I
.getPredicate();
7647 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
7648 if (Value
*V
= simplifyFCmpInst(Pred
, Op0
, Op1
, I
.getFastMathFlags(),
7649 SQ
.getWithInstruction(&I
)))
7650 return replaceInstUsesWith(I
, V
);
7652 // Simplify 'fcmp pred X, X'
7653 Type
*OpType
= Op0
->getType();
7654 assert(OpType
== Op1
->getType() && "fcmp with different-typed operands?");
7658 case FCmpInst::FCMP_UNO
: // True if unordered: isnan(X) | isnan(Y)
7659 case FCmpInst::FCMP_ULT
: // True if unordered or less than
7660 case FCmpInst::FCMP_UGT
: // True if unordered or greater than
7661 case FCmpInst::FCMP_UNE
: // True if unordered or not equal
7662 // Canonicalize these to be 'fcmp uno %X, 0.0'.
7663 I
.setPredicate(FCmpInst::FCMP_UNO
);
7664 I
.setOperand(1, Constant::getNullValue(OpType
));
7667 case FCmpInst::FCMP_ORD
: // True if ordered (no nans)
7668 case FCmpInst::FCMP_OEQ
: // True if ordered and equal
7669 case FCmpInst::FCMP_OGE
: // True if ordered and greater than or equal
7670 case FCmpInst::FCMP_OLE
: // True if ordered and less than or equal
7671 // Canonicalize these to be 'fcmp ord %X, 0.0'.
7672 I
.setPredicate(FCmpInst::FCMP_ORD
);
7673 I
.setOperand(1, Constant::getNullValue(OpType
));
7678 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
7679 // then canonicalize the operand to 0.0.
7680 if (Pred
== CmpInst::FCMP_ORD
|| Pred
== CmpInst::FCMP_UNO
) {
7681 if (!match(Op0
, m_PosZeroFP()) && isKnownNeverNaN(Op0
, DL
, &TLI
, 0,
7683 return replaceOperand(I
, 0, ConstantFP::getZero(OpType
));
7685 if (!match(Op1
, m_PosZeroFP()) &&
7686 isKnownNeverNaN(Op1
, DL
, &TLI
, 0, &AC
, &I
, &DT
))
7687 return replaceOperand(I
, 1, ConstantFP::getZero(OpType
));
7690 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
7692 if (match(Op0
, m_FNeg(m_Value(X
))) && match(Op1
, m_FNeg(m_Value(Y
))))
7693 return new FCmpInst(I
.getSwappedPredicate(), X
, Y
, "", &I
);
7695 if (Instruction
*R
= foldFCmpFNegCommonOp(I
))
7698 // Test if the FCmpInst instruction is used exclusively by a select as
7699 // part of a minimum or maximum operation. If so, refrain from doing
7700 // any other folding. This helps out other analyses which understand
7701 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
7702 // and CodeGen. And in this case, at least one of the comparison
7703 // operands has at least one user besides the compare (the select),
7704 // which would often largely negate the benefit of folding anyway.
7706 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.user_back())) {
7708 SelectPatternResult SPR
= matchSelectPattern(SI
, A
, B
);
7709 if (SPR
.Flavor
!= SPF_UNKNOWN
)
7713 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
7714 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
7715 if (match(Op1
, m_AnyZeroFP()) && !match(Op1
, m_PosZeroFP()))
7716 return replaceOperand(I
, 1, ConstantFP::getZero(OpType
));
7718 // Ignore signbit of bitcasted int when comparing equality to FP 0.0:
7719 // fcmp oeq/une (bitcast X), 0.0 --> (and X, SignMaskC) ==/!= 0
7720 if (match(Op1
, m_PosZeroFP()) &&
7721 match(Op0
, m_OneUse(m_BitCast(m_Value(X
)))) &&
7722 X
->getType()->isVectorTy() == OpType
->isVectorTy() &&
7723 X
->getType()->getScalarSizeInBits() == OpType
->getScalarSizeInBits()) {
7724 ICmpInst::Predicate IntPred
= ICmpInst::BAD_ICMP_PREDICATE
;
7725 if (Pred
== FCmpInst::FCMP_OEQ
)
7726 IntPred
= ICmpInst::ICMP_EQ
;
7727 else if (Pred
== FCmpInst::FCMP_UNE
)
7728 IntPred
= ICmpInst::ICMP_NE
;
7730 if (IntPred
!= ICmpInst::BAD_ICMP_PREDICATE
) {
7731 Type
*IntTy
= X
->getType();
7732 const APInt
&SignMask
= ~APInt::getSignMask(IntTy
->getScalarSizeInBits());
7733 Value
*MaskX
= Builder
.CreateAnd(X
, ConstantInt::get(IntTy
, SignMask
));
7734 return new ICmpInst(IntPred
, MaskX
, ConstantInt::getNullValue(IntTy
));
7738 // Handle fcmp with instruction LHS and constant RHS.
7741 if (match(Op0
, m_Instruction(LHSI
)) && match(Op1
, m_Constant(RHSC
))) {
7742 switch (LHSI
->getOpcode()) {
7743 case Instruction::PHI
:
7744 if (Instruction
*NV
= foldOpIntoPhi(I
, cast
<PHINode
>(LHSI
)))
7747 case Instruction::SIToFP
:
7748 case Instruction::UIToFP
:
7749 if (Instruction
*NV
= foldFCmpIntToFPConst(I
, LHSI
, RHSC
))
7752 case Instruction::FDiv
:
7753 if (Instruction
*NV
= foldFCmpReciprocalAndZero(I
, LHSI
, RHSC
))
7756 case Instruction::Load
:
7757 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0)))
7758 if (auto *GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
7759 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(
7760 cast
<LoadInst
>(LHSI
), GEP
, GV
, I
))
7766 if (Instruction
*R
= foldFabsWithFcmpZero(I
, *this))
7769 if (match(Op0
, m_FNeg(m_Value(X
)))) {
7770 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
7772 if (match(Op1
, m_Constant(C
)))
7773 if (Constant
*NegC
= ConstantFoldUnaryOpOperand(Instruction::FNeg
, C
, DL
))
7774 return new FCmpInst(I
.getSwappedPredicate(), X
, NegC
, "", &I
);
7777 if (match(Op0
, m_FPExt(m_Value(X
)))) {
7778 // fcmp (fpext X), (fpext Y) -> fcmp X, Y
7779 if (match(Op1
, m_FPExt(m_Value(Y
))) && X
->getType() == Y
->getType())
7780 return new FCmpInst(Pred
, X
, Y
, "", &I
);
7783 if (match(Op1
, m_APFloat(C
))) {
7784 const fltSemantics
&FPSem
=
7785 X
->getType()->getScalarType()->getFltSemantics();
7787 APFloat TruncC
= *C
;
7788 TruncC
.convert(FPSem
, APFloat::rmNearestTiesToEven
, &Lossy
);
7791 // X can't possibly equal the higher-precision constant, so reduce any
7792 // equality comparison.
7793 // TODO: Other predicates can be handled via getFCmpCode().
7795 case FCmpInst::FCMP_OEQ
:
7796 // X is ordered and equal to an impossible constant --> false
7797 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
7798 case FCmpInst::FCMP_ONE
:
7799 // X is ordered and not equal to an impossible constant --> ordered
7800 return new FCmpInst(FCmpInst::FCMP_ORD
, X
,
7801 ConstantFP::getZero(X
->getType()));
7802 case FCmpInst::FCMP_UEQ
:
7803 // X is unordered or equal to an impossible constant --> unordered
7804 return new FCmpInst(FCmpInst::FCMP_UNO
, X
,
7805 ConstantFP::getZero(X
->getType()));
7806 case FCmpInst::FCMP_UNE
:
7807 // X is unordered or not equal to an impossible constant --> true
7808 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
7814 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
7815 // Avoid lossy conversions and denormals.
7816 // Zero is a special case that's OK to convert.
7817 APFloat Fabs
= TruncC
;
7820 (Fabs
.isZero() || !(Fabs
< APFloat::getSmallestNormalized(FPSem
)))) {
7821 Constant
*NewC
= ConstantFP::get(X
->getType(), TruncC
);
7822 return new FCmpInst(Pred
, X
, NewC
, "", &I
);
7827 // Convert a sign-bit test of an FP value into a cast and integer compare.
7828 // TODO: Simplify if the copysign constant is 0.0 or NaN.
7829 // TODO: Handle non-zero compare constants.
7830 // TODO: Handle other predicates.
7832 if (match(Op0
, m_OneUse(m_Intrinsic
<Intrinsic::copysign
>(m_APFloat(C
),
7834 match(Op1
, m_AnyZeroFP()) && !C
->isZero() && !C
->isNaN()) {
7835 Type
*IntType
= Builder
.getIntNTy(X
->getType()->getScalarSizeInBits());
7836 if (auto *VecTy
= dyn_cast
<VectorType
>(OpType
))
7837 IntType
= VectorType::get(IntType
, VecTy
->getElementCount());
7839 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
7840 if (Pred
== FCmpInst::FCMP_OLT
) {
7841 Value
*IntX
= Builder
.CreateBitCast(X
, IntType
);
7842 return new ICmpInst(ICmpInst::ICMP_SLT
, IntX
,
7843 ConstantInt::getNullValue(IntType
));
7848 Value
*CanonLHS
= nullptr, *CanonRHS
= nullptr;
7849 match(Op0
, m_Intrinsic
<Intrinsic::canonicalize
>(m_Value(CanonLHS
)));
7850 match(Op1
, m_Intrinsic
<Intrinsic::canonicalize
>(m_Value(CanonRHS
)));
7852 // (canonicalize(x) == x) => (x == x)
7853 if (CanonLHS
== Op1
)
7854 return new FCmpInst(Pred
, Op1
, Op1
, "", &I
);
7856 // (x == canonicalize(x)) => (x == x)
7857 if (CanonRHS
== Op0
)
7858 return new FCmpInst(Pred
, Op0
, Op0
, "", &I
);
7860 // (canonicalize(x) == canonicalize(y)) => (x == y)
7861 if (CanonLHS
&& CanonRHS
)
7862 return new FCmpInst(Pred
, CanonLHS
, CanonRHS
, "", &I
);
7865 if (I
.getType()->isVectorTy())
7866 if (Instruction
*Res
= foldVectorCmp(I
, Builder
))
7869 return Changed
? &I
: nullptr;