1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
11 /// This file provides internal interfaces used to implement the InstCombine.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/InstVisitor.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/KnownBits.h"
29 #include "llvm/Transforms/InstCombine/InstCombiner.h"
30 #include "llvm/Transforms/Utils/Local.h"
33 #define DEBUG_TYPE "instcombine"
34 #include "llvm/Transforms/Utils/InstructionWorklist.h"
36 using namespace llvm::PatternMatch
;
38 // As a default, let's assume that we want to be aggressive,
39 // and attempt to traverse with no limits in attempt to sink negation.
40 static constexpr unsigned NegatorDefaultMaxDepth
= ~0U;
42 // Let's guesstimate that most often we will end up visiting/producing
43 // fairly small number of new instructions.
44 static constexpr unsigned NegatorMaxNodesSSO
= 16;
50 class AssumptionCache
;
51 class BlockFrequencyInfo
;
57 class OptimizationRemarkEmitter
;
58 class ProfileSummaryInfo
;
59 class TargetLibraryInfo
;
62 class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
63 : public InstCombiner
,
64 public InstVisitor
<InstCombinerImpl
, Instruction
*> {
66 InstCombinerImpl(InstructionWorklist
&Worklist
, BuilderTy
&Builder
,
67 bool MinimizeSize
, AAResults
*AA
, AssumptionCache
&AC
,
68 TargetLibraryInfo
&TLI
, TargetTransformInfo
&TTI
,
69 DominatorTree
&DT
, OptimizationRemarkEmitter
&ORE
,
70 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
,
71 const DataLayout
&DL
, LoopInfo
*LI
)
72 : InstCombiner(Worklist
, Builder
, MinimizeSize
, AA
, AC
, TLI
, TTI
, DT
, ORE
,
75 virtual ~InstCombinerImpl() = default;
77 /// Perform early cleanup and prepare the InstCombine worklist.
78 bool prepareWorklist(Function
&F
,
79 ReversePostOrderTraversal
<BasicBlock
*> &RPOT
);
81 /// Run the combiner over the entire worklist until it is empty.
83 /// \returns true if the IR is changed.
86 // Visitation implementation - Implement instruction combining for different
87 // instruction types. The semantics are as follows:
89 // null - No change was made
90 // I - Change was made, I is still valid, I may be dead though
91 // otherwise - Change was made, replace I with returned instruction
93 Instruction
*visitFNeg(UnaryOperator
&I
);
94 Instruction
*visitAdd(BinaryOperator
&I
);
95 Instruction
*visitFAdd(BinaryOperator
&I
);
96 Value
*OptimizePointerDifference(
97 Value
*LHS
, Value
*RHS
, Type
*Ty
, bool isNUW
);
98 Instruction
*visitSub(BinaryOperator
&I
);
99 Instruction
*visitFSub(BinaryOperator
&I
);
100 Instruction
*visitMul(BinaryOperator
&I
);
101 Instruction
*foldFMulReassoc(BinaryOperator
&I
);
102 Instruction
*visitFMul(BinaryOperator
&I
);
103 Instruction
*visitURem(BinaryOperator
&I
);
104 Instruction
*visitSRem(BinaryOperator
&I
);
105 Instruction
*visitFRem(BinaryOperator
&I
);
106 bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator
&I
);
107 Instruction
*commonIRemTransforms(BinaryOperator
&I
);
108 Instruction
*commonIDivTransforms(BinaryOperator
&I
);
109 Instruction
*visitUDiv(BinaryOperator
&I
);
110 Instruction
*visitSDiv(BinaryOperator
&I
);
111 Instruction
*visitFDiv(BinaryOperator
&I
);
112 Value
*simplifyRangeCheck(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
, bool Inverted
);
113 Instruction
*visitAnd(BinaryOperator
&I
);
114 Instruction
*visitOr(BinaryOperator
&I
);
115 bool sinkNotIntoLogicalOp(Instruction
&I
);
116 bool sinkNotIntoOtherHandOfLogicalOp(Instruction
&I
);
117 Instruction
*visitXor(BinaryOperator
&I
);
118 Instruction
*visitShl(BinaryOperator
&I
);
119 Value
*reassociateShiftAmtsOfTwoSameDirectionShifts(
120 BinaryOperator
*Sh0
, const SimplifyQuery
&SQ
,
121 bool AnalyzeForSignBitExtraction
= false);
122 Instruction
*canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
124 Instruction
*foldVariableSignZeroExtensionOfVariableHighBitExtract(
125 BinaryOperator
&OldAShr
);
126 Instruction
*visitAShr(BinaryOperator
&I
);
127 Instruction
*visitLShr(BinaryOperator
&I
);
128 Instruction
*commonShiftTransforms(BinaryOperator
&I
);
129 Instruction
*visitFCmpInst(FCmpInst
&I
);
130 CmpInst
*canonicalizeICmpPredicate(CmpInst
&I
);
131 Instruction
*visitICmpInst(ICmpInst
&I
);
132 Instruction
*FoldShiftByConstant(Value
*Op0
, Constant
*Op1
,
134 Instruction
*commonCastTransforms(CastInst
&CI
);
135 Instruction
*visitTrunc(TruncInst
&CI
);
136 Instruction
*visitZExt(ZExtInst
&Zext
);
137 Instruction
*visitSExt(SExtInst
&Sext
);
138 Instruction
*visitFPTrunc(FPTruncInst
&CI
);
139 Instruction
*visitFPExt(CastInst
&CI
);
140 Instruction
*visitFPToUI(FPToUIInst
&FI
);
141 Instruction
*visitFPToSI(FPToSIInst
&FI
);
142 Instruction
*visitUIToFP(CastInst
&CI
);
143 Instruction
*visitSIToFP(CastInst
&CI
);
144 Instruction
*visitPtrToInt(PtrToIntInst
&CI
);
145 Instruction
*visitIntToPtr(IntToPtrInst
&CI
);
146 Instruction
*visitBitCast(BitCastInst
&CI
);
147 Instruction
*visitAddrSpaceCast(AddrSpaceCastInst
&CI
);
148 Instruction
*foldItoFPtoI(CastInst
&FI
);
149 Instruction
*visitSelectInst(SelectInst
&SI
);
150 Instruction
*visitCallInst(CallInst
&CI
);
151 Instruction
*visitInvokeInst(InvokeInst
&II
);
152 Instruction
*visitCallBrInst(CallBrInst
&CBI
);
154 Instruction
*SliceUpIllegalIntegerPHI(PHINode
&PN
);
155 Instruction
*visitPHINode(PHINode
&PN
);
156 Instruction
*visitGetElementPtrInst(GetElementPtrInst
&GEP
);
157 Instruction
*visitGEPOfGEP(GetElementPtrInst
&GEP
, GEPOperator
*Src
);
158 Instruction
*visitAllocaInst(AllocaInst
&AI
);
159 Instruction
*visitAllocSite(Instruction
&FI
);
160 Instruction
*visitFree(CallInst
&FI
, Value
*FreedOp
);
161 Instruction
*visitLoadInst(LoadInst
&LI
);
162 Instruction
*visitStoreInst(StoreInst
&SI
);
163 Instruction
*visitAtomicRMWInst(AtomicRMWInst
&SI
);
164 Instruction
*visitUnconditionalBranchInst(BranchInst
&BI
);
165 Instruction
*visitBranchInst(BranchInst
&BI
);
166 Instruction
*visitFenceInst(FenceInst
&FI
);
167 Instruction
*visitSwitchInst(SwitchInst
&SI
);
168 Instruction
*visitReturnInst(ReturnInst
&RI
);
169 Instruction
*visitUnreachableInst(UnreachableInst
&I
);
171 foldAggregateConstructionIntoAggregateReuse(InsertValueInst
&OrigIVI
);
172 Instruction
*visitInsertValueInst(InsertValueInst
&IV
);
173 Instruction
*visitInsertElementInst(InsertElementInst
&IE
);
174 Instruction
*visitExtractElementInst(ExtractElementInst
&EI
);
175 Instruction
*simplifyBinOpSplats(ShuffleVectorInst
&SVI
);
176 Instruction
*visitShuffleVectorInst(ShuffleVectorInst
&SVI
);
177 Instruction
*visitExtractValueInst(ExtractValueInst
&EV
);
178 Instruction
*visitLandingPadInst(LandingPadInst
&LI
);
179 Instruction
*visitVAEndInst(VAEndInst
&I
);
180 Value
*pushFreezeToPreventPoisonFromPropagating(FreezeInst
&FI
);
181 bool freezeOtherUses(FreezeInst
&FI
);
182 Instruction
*foldFreezeIntoRecurrence(FreezeInst
&I
, PHINode
*PN
);
183 Instruction
*visitFreeze(FreezeInst
&I
);
185 /// Specify what to return for unhandled instructions.
186 Instruction
*visitInstruction(Instruction
&I
) { return nullptr; }
188 /// True when DB dominates all uses of DI except UI.
189 /// UI must be in the same block as DI.
190 /// The routine checks that the DI parent and DB are different.
191 bool dominatesAllUses(const Instruction
*DI
, const Instruction
*UI
,
192 const BasicBlock
*DB
) const;
194 /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
195 bool replacedSelectWithOperand(SelectInst
*SI
, const ICmpInst
*Icmp
,
196 const unsigned SIOpd
);
198 LoadInst
*combineLoadToNewType(LoadInst
&LI
, Type
*NewTy
,
199 const Twine
&Suffix
= "");
201 KnownFPClass
computeKnownFPClass(Value
*Val
, FastMathFlags FMF
,
202 FPClassTest Interested
= fcAllFlags
,
203 const Instruction
*CtxI
= nullptr,
204 unsigned Depth
= 0) const {
205 return llvm::computeKnownFPClass(Val
, FMF
, DL
, Interested
, Depth
, &TLI
, &AC
,
209 KnownFPClass
computeKnownFPClass(Value
*Val
,
210 FPClassTest Interested
= fcAllFlags
,
211 const Instruction
*CtxI
= nullptr,
212 unsigned Depth
= 0) const {
213 return llvm::computeKnownFPClass(Val
, DL
, Interested
, Depth
, &TLI
, &AC
,
217 /// Check if fmul \p MulVal, +0.0 will yield +0.0 (or signed zero is
219 bool fmulByZeroIsZero(Value
*MulVal
, FastMathFlags FMF
,
220 const Instruction
*CtxI
) const;
222 Constant
*getLosslessTrunc(Constant
*C
, Type
*TruncTy
, unsigned ExtOp
) {
223 Constant
*TruncC
= ConstantExpr::getTrunc(C
, TruncTy
);
224 Constant
*ExtTruncC
=
225 ConstantFoldCastOperand(ExtOp
, TruncC
, C
->getType(), DL
);
226 if (ExtTruncC
&& ExtTruncC
== C
)
231 Constant
*getLosslessUnsignedTrunc(Constant
*C
, Type
*TruncTy
) {
232 return getLosslessTrunc(C
, TruncTy
, Instruction::ZExt
);
235 Constant
*getLosslessSignedTrunc(Constant
*C
, Type
*TruncTy
) {
236 return getLosslessTrunc(C
, TruncTy
, Instruction::SExt
);
240 bool annotateAnyAllocSite(CallBase
&Call
, const TargetLibraryInfo
*TLI
);
241 bool isDesirableIntType(unsigned BitWidth
) const;
242 bool shouldChangeType(unsigned FromBitWidth
, unsigned ToBitWidth
) const;
243 bool shouldChangeType(Type
*From
, Type
*To
) const;
244 Value
*dyn_castNegVal(Value
*V
) const;
246 /// Classify whether a cast is worth optimizing.
248 /// This is a helper to decide whether the simplification of
249 /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
251 /// \param CI The cast we are interested in.
253 /// \return true if this cast actually results in any code being generated and
254 /// if it cannot already be eliminated by some other transformation.
255 bool shouldOptimizeCast(CastInst
*CI
);
257 /// Try to optimize a sequence of instructions checking if an operation
258 /// on LHS and RHS overflows.
260 /// If this overflow check is done via one of the overflow check intrinsics,
261 /// then CtxI has to be the call instruction calling that intrinsic. If this
262 /// overflow check is done by arithmetic followed by a compare, then CtxI has
263 /// to be the arithmetic instruction.
265 /// If a simplification is possible, stores the simplified result of the
266 /// operation in OperationResult and result of the overflow check in
267 /// OverflowResult, and return true. If no simplification is possible,
269 bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp
, bool IsSigned
,
270 Value
*LHS
, Value
*RHS
,
271 Instruction
&CtxI
, Value
*&OperationResult
,
272 Constant
*&OverflowResult
);
274 Instruction
*visitCallBase(CallBase
&Call
);
275 Instruction
*tryOptimizeCall(CallInst
*CI
);
276 bool transformConstExprCastCall(CallBase
&Call
);
277 Instruction
*transformCallThroughTrampoline(CallBase
&Call
,
278 IntrinsicInst
&Tramp
);
280 // Return (a, b) if (LHS, RHS) is known to be (a, b) or (b, a).
281 // Otherwise, return std::nullopt
282 // Currently it matches:
283 // - LHS = (select c, a, b), RHS = (select c, b, a)
284 // - LHS = (phi [a, BB0], [b, BB1]), RHS = (phi [b, BB0], [a, BB1])
285 // - LHS = min(a, b), RHS = max(a, b)
286 std::optional
<std::pair
<Value
*, Value
*>> matchSymmetricPair(Value
*LHS
,
289 Value
*simplifyMaskedLoad(IntrinsicInst
&II
);
290 Instruction
*simplifyMaskedStore(IntrinsicInst
&II
);
291 Instruction
*simplifyMaskedGather(IntrinsicInst
&II
);
292 Instruction
*simplifyMaskedScatter(IntrinsicInst
&II
);
294 /// Transform (zext icmp) to bitwise / integer operations in order to
297 /// \param ICI The icmp of the (zext icmp) pair we are interested in.
298 /// \parem CI The zext of the (zext icmp) pair we are interested in.
300 /// \return null if the transformation cannot be performed. If the
301 /// transformation can be performed the new instruction that replaces the
302 /// (zext icmp) pair will be returned.
303 Instruction
*transformZExtICmp(ICmpInst
*Cmp
, ZExtInst
&Zext
);
305 Instruction
*transformSExtICmp(ICmpInst
*Cmp
, SExtInst
&Sext
);
307 bool willNotOverflowSignedAdd(const WithCache
<const Value
*> &LHS
,
308 const WithCache
<const Value
*> &RHS
,
309 const Instruction
&CxtI
) const {
310 return computeOverflowForSignedAdd(LHS
, RHS
, &CxtI
) ==
311 OverflowResult::NeverOverflows
;
314 bool willNotOverflowUnsignedAdd(const WithCache
<const Value
*> &LHS
,
315 const WithCache
<const Value
*> &RHS
,
316 const Instruction
&CxtI
) const {
317 return computeOverflowForUnsignedAdd(LHS
, RHS
, &CxtI
) ==
318 OverflowResult::NeverOverflows
;
321 bool willNotOverflowAdd(const Value
*LHS
, const Value
*RHS
,
322 const Instruction
&CxtI
, bool IsSigned
) const {
323 return IsSigned
? willNotOverflowSignedAdd(LHS
, RHS
, CxtI
)
324 : willNotOverflowUnsignedAdd(LHS
, RHS
, CxtI
);
327 bool willNotOverflowSignedSub(const Value
*LHS
, const Value
*RHS
,
328 const Instruction
&CxtI
) const {
329 return computeOverflowForSignedSub(LHS
, RHS
, &CxtI
) ==
330 OverflowResult::NeverOverflows
;
333 bool willNotOverflowUnsignedSub(const Value
*LHS
, const Value
*RHS
,
334 const Instruction
&CxtI
) const {
335 return computeOverflowForUnsignedSub(LHS
, RHS
, &CxtI
) ==
336 OverflowResult::NeverOverflows
;
339 bool willNotOverflowSub(const Value
*LHS
, const Value
*RHS
,
340 const Instruction
&CxtI
, bool IsSigned
) const {
341 return IsSigned
? willNotOverflowSignedSub(LHS
, RHS
, CxtI
)
342 : willNotOverflowUnsignedSub(LHS
, RHS
, CxtI
);
345 bool willNotOverflowSignedMul(const Value
*LHS
, const Value
*RHS
,
346 const Instruction
&CxtI
) const {
347 return computeOverflowForSignedMul(LHS
, RHS
, &CxtI
) ==
348 OverflowResult::NeverOverflows
;
351 bool willNotOverflowUnsignedMul(const Value
*LHS
, const Value
*RHS
,
352 const Instruction
&CxtI
) const {
353 return computeOverflowForUnsignedMul(LHS
, RHS
, &CxtI
) ==
354 OverflowResult::NeverOverflows
;
357 bool willNotOverflowMul(const Value
*LHS
, const Value
*RHS
,
358 const Instruction
&CxtI
, bool IsSigned
) const {
359 return IsSigned
? willNotOverflowSignedMul(LHS
, RHS
, CxtI
)
360 : willNotOverflowUnsignedMul(LHS
, RHS
, CxtI
);
363 bool willNotOverflow(BinaryOperator::BinaryOps Opcode
, const Value
*LHS
,
364 const Value
*RHS
, const Instruction
&CxtI
,
365 bool IsSigned
) const {
367 case Instruction::Add
: return willNotOverflowAdd(LHS
, RHS
, CxtI
, IsSigned
);
368 case Instruction::Sub
: return willNotOverflowSub(LHS
, RHS
, CxtI
, IsSigned
);
369 case Instruction::Mul
: return willNotOverflowMul(LHS
, RHS
, CxtI
, IsSigned
);
370 default: llvm_unreachable("Unexpected opcode for overflow query");
374 Value
*EmitGEPOffset(User
*GEP
);
375 Instruction
*scalarizePHI(ExtractElementInst
&EI
, PHINode
*PN
);
376 Instruction
*foldBitcastExtElt(ExtractElementInst
&ExtElt
);
377 Instruction
*foldCastedBitwiseLogic(BinaryOperator
&I
);
378 Instruction
*foldBinopOfSextBoolToSelect(BinaryOperator
&I
);
379 Instruction
*narrowBinOp(TruncInst
&Trunc
);
380 Instruction
*narrowMaskedBinOp(BinaryOperator
&And
);
381 Instruction
*narrowMathIfNoOverflow(BinaryOperator
&I
);
382 Instruction
*narrowFunnelShift(TruncInst
&Trunc
);
383 Instruction
*optimizeBitCastFromPhi(CastInst
&CI
, PHINode
*PN
);
384 Instruction
*matchSAddSubSat(IntrinsicInst
&MinMax1
);
385 Instruction
*foldNot(BinaryOperator
&I
);
386 Instruction
*foldBinOpOfDisplacedShifts(BinaryOperator
&I
);
388 /// Determine if a pair of casts can be replaced by a single cast.
390 /// \param CI1 The first of a pair of casts.
391 /// \param CI2 The second of a pair of casts.
393 /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
394 /// Instruction::CastOps value for a cast that can replace the pair, casting
395 /// CI1->getSrcTy() to CI2->getDstTy().
397 /// \see CastInst::isEliminableCastPair
398 Instruction::CastOps
isEliminableCastPair(const CastInst
*CI1
,
399 const CastInst
*CI2
);
400 Value
*simplifyIntToPtrRoundTripCast(Value
*Val
);
402 Value
*foldAndOrOfICmps(ICmpInst
*LHS
, ICmpInst
*RHS
, Instruction
&I
,
403 bool IsAnd
, bool IsLogical
= false);
404 Value
*foldXorOfICmps(ICmpInst
*LHS
, ICmpInst
*RHS
, BinaryOperator
&Xor
);
406 Value
*foldEqOfParts(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
, bool IsAnd
);
408 Value
*foldAndOrOfICmpsUsingRanges(ICmpInst
*ICmp1
, ICmpInst
*ICmp2
,
411 /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
412 /// NOTE: Unlike most of instcombine, this returns a Value which should
413 /// already be inserted into the function.
414 Value
*foldLogicOfFCmps(FCmpInst
*LHS
, FCmpInst
*RHS
, bool IsAnd
,
415 bool IsLogicalSelect
= false);
417 Instruction
*foldLogicOfIsFPClass(BinaryOperator
&Operator
, Value
*LHS
,
421 canonicalizeConditionalNegationViaMathToSelect(BinaryOperator
&i
);
423 Value
*foldAndOrOfICmpsOfAndWithPow2(ICmpInst
*LHS
, ICmpInst
*RHS
,
424 Instruction
*CxtI
, bool IsAnd
,
425 bool IsLogical
= false);
426 Value
*matchSelectFromAndOr(Value
*A
, Value
*B
, Value
*C
, Value
*D
,
427 bool InvertFalseVal
= false);
428 Value
*getSelectCondition(Value
*A
, Value
*B
, bool ABIsTheSame
);
430 Instruction
*foldLShrOverflowBit(BinaryOperator
&I
);
431 Instruction
*foldExtractOfOverflowIntrinsic(ExtractValueInst
&EV
);
432 Instruction
*foldIntrinsicWithOverflowCommon(IntrinsicInst
*II
);
433 Instruction
*foldIntrinsicIsFPClass(IntrinsicInst
&II
);
434 Instruction
*foldFPSignBitOps(BinaryOperator
&I
);
435 Instruction
*foldFDivConstantDivisor(BinaryOperator
&I
);
437 // Optimize one of these forms:
438 // and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
439 // or i1 Op, SI / select i1 Op, i1 true, i1 SI (if IsAnd = false)
440 // into simplier select instruction using isImpliedCondition.
441 Instruction
*foldAndOrOfSelectUsingImpliedCond(Value
*Op
, SelectInst
&SI
,
444 Instruction
*hoistFNegAboveFMulFDiv(Value
*FNegOp
, Instruction
&FMFSource
);
447 /// Create and insert the idiom we use to indicate a block is unreachable
448 /// without having to rewrite the CFG from within InstCombine.
449 void CreateNonTerminatorUnreachable(Instruction
*InsertAt
) {
450 auto &Ctx
= InsertAt
->getContext();
451 auto *SI
= new StoreInst(ConstantInt::getTrue(Ctx
),
452 PoisonValue::get(PointerType::getUnqual(Ctx
)),
453 /*isVolatile*/ false, Align(1));
454 InsertNewInstBefore(SI
, InsertAt
->getIterator());
457 /// Combiner aware instruction erasure.
459 /// When dealing with an instruction that has side effects or produces a void
460 /// value, we can't rely on DCE to delete the instruction. Instead, visit
461 /// methods should return the value returned by this function.
462 Instruction
*eraseInstFromFunction(Instruction
&I
) override
{
463 LLVM_DEBUG(dbgs() << "IC: ERASE " << I
<< '\n');
464 assert(I
.use_empty() && "Cannot erase instruction that is used!");
467 // Make sure that we reprocess all operands now that we reduced their
469 SmallVector
<Value
*> Ops(I
.operands());
473 for (Value
*Op
: Ops
)
474 Worklist
.handleUseCountDecrement(Op
);
476 return nullptr; // Don't do anything with FI
479 OverflowResult
computeOverflow(
480 Instruction::BinaryOps BinaryOp
, bool IsSigned
,
481 Value
*LHS
, Value
*RHS
, Instruction
*CxtI
) const;
483 /// Performs a few simplifications for operators which are associative
485 bool SimplifyAssociativeOrCommutative(BinaryOperator
&I
);
487 /// Tries to simplify binary operations which some other binary
488 /// operation distributes over.
490 /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
491 /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
492 /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
493 /// value, or null if it didn't simplify.
494 Value
*foldUsingDistributiveLaws(BinaryOperator
&I
);
496 /// Tries to simplify add operations using the definition of remainder.
498 /// The definition of remainder is X % C = X - (X / C ) * C. The add
499 /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
501 Value
*SimplifyAddWithRemainder(BinaryOperator
&I
);
503 // Binary Op helper for select operations where the expression can be
504 // efficiently reorganized.
505 Value
*SimplifySelectsFeedingBinaryOp(BinaryOperator
&I
, Value
*LHS
,
508 // If `I` has operand `(ctpop (not x))`, fold `I` with `(sub nuw nsw
509 // BitWidth(x), (ctpop x))`.
510 Instruction
*tryFoldInstWithCtpopWithNot(Instruction
*I
);
512 // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
513 // -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
514 // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
515 // -> (BinOp (logic_shift (BinOp X, Y)), Mask)
516 Instruction
*foldBinOpShiftWithShift(BinaryOperator
&I
);
518 /// Tries to simplify binops of select and cast of the select condition.
520 /// (Binop (cast C), (select C, T, F))
521 /// -> (select C, C0, C1)
522 Instruction
*foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator
&I
);
524 /// This tries to simplify binary operations by factorizing out common terms
525 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
526 Value
*tryFactorizationFolds(BinaryOperator
&I
);
528 /// Match a select chain which produces one of three values based on whether
529 /// the LHS is less than, equal to, or greater than RHS respectively.
530 /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
531 /// Equal and Greater values are saved in the matching process and returned to
533 bool matchThreeWayIntCompare(SelectInst
*SI
, Value
*&LHS
, Value
*&RHS
,
534 ConstantInt
*&Less
, ConstantInt
*&Equal
,
535 ConstantInt
*&Greater
);
537 /// Attempts to replace V with a simpler value based on the demanded
539 Value
*SimplifyDemandedUseBits(Value
*V
, APInt DemandedMask
, KnownBits
&Known
,
540 unsigned Depth
, Instruction
*CxtI
);
541 bool SimplifyDemandedBits(Instruction
*I
, unsigned Op
,
542 const APInt
&DemandedMask
, KnownBits
&Known
,
543 unsigned Depth
= 0) override
;
545 /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
546 /// bits. It also tries to handle simplifications that can be done based on
547 /// DemandedMask, but without modifying the Instruction.
548 Value
*SimplifyMultipleUseDemandedBits(Instruction
*I
,
549 const APInt
&DemandedMask
,
551 unsigned Depth
, Instruction
*CxtI
);
553 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
554 /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
555 Value
*simplifyShrShlDemandedBits(
556 Instruction
*Shr
, const APInt
&ShrOp1
, Instruction
*Shl
,
557 const APInt
&ShlOp1
, const APInt
&DemandedMask
, KnownBits
&Known
);
559 /// Tries to simplify operands to an integer instruction based on its
561 bool SimplifyDemandedInstructionBits(Instruction
&Inst
);
562 bool SimplifyDemandedInstructionBits(Instruction
&Inst
, KnownBits
&Known
);
564 Value
*SimplifyDemandedVectorElts(Value
*V
, APInt DemandedElts
,
565 APInt
&PoisonElts
, unsigned Depth
= 0,
566 bool AllowMultipleUsers
= false) override
;
568 /// Canonicalize the position of binops relative to shufflevector.
569 Instruction
*foldVectorBinop(BinaryOperator
&Inst
);
570 Instruction
*foldVectorSelect(SelectInst
&Sel
);
571 Instruction
*foldSelectShuffle(ShuffleVectorInst
&Shuf
);
573 /// Given a binary operator, cast instruction, or select which has a PHI node
574 /// as operand #0, see if we can fold the instruction into the PHI (which is
575 /// only possible if all operands to the PHI are constants).
576 Instruction
*foldOpIntoPhi(Instruction
&I
, PHINode
*PN
);
578 /// For a binary operator with 2 phi operands, try to hoist the binary
579 /// operation before the phi. This can result in fewer instructions in
580 /// patterns where at least one set of phi operands simplifies.
582 /// BB3: binop (phi [X, BB1], [C1, BB2]), (phi [Y, BB1], [C2, BB2])
584 /// BB1: BO = binop X, Y
585 /// BB3: phi [BO, BB1], [(binop C1, C2), BB2]
586 Instruction
*foldBinopWithPhiOperands(BinaryOperator
&BO
);
588 /// Given an instruction with a select as one operand and a constant as the
589 /// other operand, try to fold the binary operator into the select arguments.
590 /// This also works for Cast instructions, which obviously do not have a
592 Instruction
*FoldOpIntoSelect(Instruction
&Op
, SelectInst
*SI
,
593 bool FoldWithMultiUse
= false);
595 /// This is a convenience wrapper function for the above two functions.
596 Instruction
*foldBinOpIntoSelectOrPhi(BinaryOperator
&I
);
598 Instruction
*foldAddWithConstant(BinaryOperator
&Add
);
600 Instruction
*foldSquareSumInt(BinaryOperator
&I
);
601 Instruction
*foldSquareSumFP(BinaryOperator
&I
);
603 /// Try to rotate an operation below a PHI node, using PHI nodes for
605 Instruction
*foldPHIArgOpIntoPHI(PHINode
&PN
);
606 Instruction
*foldPHIArgBinOpIntoPHI(PHINode
&PN
);
607 Instruction
*foldPHIArgInsertValueInstructionIntoPHI(PHINode
&PN
);
608 Instruction
*foldPHIArgExtractValueInstructionIntoPHI(PHINode
&PN
);
609 Instruction
*foldPHIArgGEPIntoPHI(PHINode
&PN
);
610 Instruction
*foldPHIArgLoadIntoPHI(PHINode
&PN
);
611 Instruction
*foldPHIArgZextsIntoPHI(PHINode
&PN
);
612 Instruction
*foldPHIArgIntToPtrToPHI(PHINode
&PN
);
614 /// If an integer typed PHI has only one use which is an IntToPtr operation,
615 /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
616 /// insert a new pointer typed PHI and replace the original one.
617 bool foldIntegerTypedPHI(PHINode
&PN
);
619 /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
620 /// folded operation.
621 void PHIArgMergedDebugLoc(Instruction
*Inst
, PHINode
&PN
);
623 Instruction
*foldGEPICmp(GEPOperator
*GEPLHS
, Value
*RHS
,
624 ICmpInst::Predicate Cond
, Instruction
&I
);
625 Instruction
*foldSelectICmp(ICmpInst::Predicate Pred
, SelectInst
*SI
,
626 Value
*RHS
, const ICmpInst
&I
);
627 bool foldAllocaCmp(AllocaInst
*Alloca
);
628 Instruction
*foldCmpLoadFromIndexedGlobal(LoadInst
*LI
,
629 GetElementPtrInst
*GEP
,
630 GlobalVariable
*GV
, CmpInst
&ICI
,
631 ConstantInt
*AndCst
= nullptr);
632 Instruction
*foldFCmpIntToFPConst(FCmpInst
&I
, Instruction
*LHSI
,
634 Instruction
*foldICmpAddOpConst(Value
*X
, const APInt
&C
,
635 ICmpInst::Predicate Pred
);
636 Instruction
*foldICmpWithCastOp(ICmpInst
&ICmp
);
637 Instruction
*foldICmpWithZextOrSext(ICmpInst
&ICmp
);
639 Instruction
*foldICmpUsingKnownBits(ICmpInst
&Cmp
);
640 Instruction
*foldICmpWithDominatingICmp(ICmpInst
&Cmp
);
641 Instruction
*foldICmpWithConstant(ICmpInst
&Cmp
);
642 Instruction
*foldICmpUsingBoolRange(ICmpInst
&I
);
643 Instruction
*foldICmpInstWithConstant(ICmpInst
&Cmp
);
644 Instruction
*foldICmpInstWithConstantNotInt(ICmpInst
&Cmp
);
645 Instruction
*foldICmpInstWithConstantAllowUndef(ICmpInst
&Cmp
,
647 Instruction
*foldICmpBinOp(ICmpInst
&Cmp
, const SimplifyQuery
&SQ
);
648 Instruction
*foldICmpWithMinMax(Instruction
&I
, MinMaxIntrinsic
*MinMax
,
649 Value
*Z
, ICmpInst::Predicate Pred
);
650 Instruction
*foldICmpEquality(ICmpInst
&Cmp
);
651 Instruction
*foldIRemByPowerOfTwoToBitTest(ICmpInst
&I
);
652 Instruction
*foldSignBitTest(ICmpInst
&I
);
653 Instruction
*foldICmpWithZero(ICmpInst
&Cmp
);
655 Value
*foldMultiplicationOverflowCheck(ICmpInst
&Cmp
);
657 Instruction
*foldICmpBinOpWithConstant(ICmpInst
&Cmp
, BinaryOperator
*BO
,
659 Instruction
*foldICmpSelectConstant(ICmpInst
&Cmp
, SelectInst
*Select
,
661 Instruction
*foldICmpTruncConstant(ICmpInst
&Cmp
, TruncInst
*Trunc
,
663 Instruction
*foldICmpTruncWithTruncOrExt(ICmpInst
&Cmp
,
664 const SimplifyQuery
&Q
);
665 Instruction
*foldICmpAndConstant(ICmpInst
&Cmp
, BinaryOperator
*And
,
667 Instruction
*foldICmpXorConstant(ICmpInst
&Cmp
, BinaryOperator
*Xor
,
669 Instruction
*foldICmpOrConstant(ICmpInst
&Cmp
, BinaryOperator
*Or
,
671 Instruction
*foldICmpMulConstant(ICmpInst
&Cmp
, BinaryOperator
*Mul
,
673 Instruction
*foldICmpShlConstant(ICmpInst
&Cmp
, BinaryOperator
*Shl
,
675 Instruction
*foldICmpShrConstant(ICmpInst
&Cmp
, BinaryOperator
*Shr
,
677 Instruction
*foldICmpSRemConstant(ICmpInst
&Cmp
, BinaryOperator
*UDiv
,
679 Instruction
*foldICmpUDivConstant(ICmpInst
&Cmp
, BinaryOperator
*UDiv
,
681 Instruction
*foldICmpDivConstant(ICmpInst
&Cmp
, BinaryOperator
*Div
,
683 Instruction
*foldICmpSubConstant(ICmpInst
&Cmp
, BinaryOperator
*Sub
,
685 Instruction
*foldICmpAddConstant(ICmpInst
&Cmp
, BinaryOperator
*Add
,
687 Instruction
*foldICmpAndConstConst(ICmpInst
&Cmp
, BinaryOperator
*And
,
689 Instruction
*foldICmpAndShift(ICmpInst
&Cmp
, BinaryOperator
*And
,
690 const APInt
&C1
, const APInt
&C2
);
691 Instruction
*foldICmpXorShiftConst(ICmpInst
&Cmp
, BinaryOperator
*Xor
,
693 Instruction
*foldICmpShrConstConst(ICmpInst
&I
, Value
*ShAmt
, const APInt
&C1
,
695 Instruction
*foldICmpShlConstConst(ICmpInst
&I
, Value
*ShAmt
, const APInt
&C1
,
698 Instruction
*foldICmpBinOpEqualityWithConstant(ICmpInst
&Cmp
,
701 Instruction
*foldICmpIntrinsicWithConstant(ICmpInst
&ICI
, IntrinsicInst
*II
,
703 Instruction
*foldICmpEqIntrinsicWithConstant(ICmpInst
&ICI
, IntrinsicInst
*II
,
705 Instruction
*foldICmpBitCast(ICmpInst
&Cmp
);
706 Instruction
*foldICmpWithTrunc(ICmpInst
&Cmp
);
707 Instruction
*foldICmpCommutative(ICmpInst::Predicate Pred
, Value
*Op0
,
708 Value
*Op1
, ICmpInst
&CxtI
);
710 // Helpers of visitSelectInst().
711 Instruction
*foldSelectOfBools(SelectInst
&SI
);
712 Instruction
*foldSelectExtConst(SelectInst
&Sel
);
713 Instruction
*foldSelectOpOp(SelectInst
&SI
, Instruction
*TI
, Instruction
*FI
);
714 Instruction
*foldSelectIntoOp(SelectInst
&SI
, Value
*, Value
*);
715 Instruction
*foldSPFofSPF(Instruction
*Inner
, SelectPatternFlavor SPF1
,
716 Value
*A
, Value
*B
, Instruction
&Outer
,
717 SelectPatternFlavor SPF2
, Value
*C
);
718 Instruction
*foldSelectInstWithICmp(SelectInst
&SI
, ICmpInst
*ICI
);
719 Instruction
*foldSelectValueEquivalence(SelectInst
&SI
, ICmpInst
&ICI
);
720 bool replaceInInstruction(Value
*V
, Value
*Old
, Value
*New
,
723 Value
*insertRangeTest(Value
*V
, const APInt
&Lo
, const APInt
&Hi
,
724 bool isSigned
, bool Inside
);
725 bool mergeStoreIntoSuccessor(StoreInst
&SI
);
727 /// Given an initial instruction, check to see if it is the root of a
728 /// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
730 Instruction
*matchBSwapOrBitReverse(Instruction
&I
, bool MatchBSwaps
,
731 bool MatchBitReversals
);
733 Instruction
*SimplifyAnyMemTransfer(AnyMemTransferInst
*MI
);
734 Instruction
*SimplifyAnyMemSet(AnyMemSetInst
*MI
);
736 Value
*EvaluateInDifferentType(Value
*V
, Type
*Ty
, bool isSigned
);
738 bool tryToSinkInstruction(Instruction
*I
, BasicBlock
*DestBlock
);
740 bool removeInstructionsBeforeUnreachable(Instruction
&I
);
741 void addDeadEdge(BasicBlock
*From
, BasicBlock
*To
,
742 SmallVectorImpl
<BasicBlock
*> &Worklist
);
743 void handleUnreachableFrom(Instruction
*I
,
744 SmallVectorImpl
<BasicBlock
*> &Worklist
);
745 void handlePotentiallyDeadBlocks(SmallVectorImpl
<BasicBlock
*> &Worklist
);
746 void handlePotentiallyDeadSuccessors(BasicBlock
*BB
, BasicBlock
*LiveSucc
);
747 void freelyInvertAllUsersOf(Value
*V
, Value
*IgnoredUser
= nullptr);
750 class Negator final
{
751 /// Top-to-bottom, def-to-use negated instruction tree we produced.
752 SmallVector
<Instruction
*, NegatorMaxNodesSSO
> NewInstructions
;
754 using BuilderTy
= IRBuilder
<TargetFolder
, IRBuilderCallbackInserter
>;
757 const bool IsTrulyNegation
;
759 SmallDenseMap
<Value
*, Value
*> NegationsCache
;
761 Negator(LLVMContext
&C
, const DataLayout
&DL
, bool IsTrulyNegation
);
763 #if LLVM_ENABLE_STATS
764 unsigned NumValuesVisitedInThisNegator
= 0;
768 using Result
= std::pair
<ArrayRef
<Instruction
*> /*NewInstructions*/,
769 Value
* /*NegatedRoot*/>;
771 std::array
<Value
*, 2> getSortedOperandsOfBinOp(Instruction
*I
);
773 [[nodiscard
]] Value
*visitImpl(Value
*V
, bool IsNSW
, unsigned Depth
);
775 [[nodiscard
]] Value
*negate(Value
*V
, bool IsNSW
, unsigned Depth
);
777 /// Recurse depth-first and attempt to sink the negation.
778 /// FIXME: use worklist?
779 [[nodiscard
]] std::optional
<Result
> run(Value
*Root
, bool IsNSW
);
781 Negator(const Negator
&) = delete;
782 Negator(Negator
&&) = delete;
783 Negator
&operator=(const Negator
&) = delete;
784 Negator
&operator=(Negator
&&) = delete;
787 /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
788 /// otherwise returns negated value.
789 [[nodiscard
]] static Value
*Negate(bool LHSIsZero
, bool IsNSW
, Value
*Root
,
790 InstCombinerImpl
&IC
);
793 } // end namespace llvm
797 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H