1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visit functions for load, store and alloca.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/Transforms/InstCombine/InstCombiner.h"
25 #include "llvm/Transforms/Utils/Local.h"
27 using namespace PatternMatch
;
29 #define DEBUG_TYPE "instcombine"
31 STATISTIC(NumDeadStore
, "Number of dead stores eliminated");
32 STATISTIC(NumGlobalCopies
, "Number of allocas copied from constant global");
34 static cl::opt
<unsigned> MaxCopiedFromConstantUsers(
35 "instcombine-max-copied-from-constant-users", cl::init(300),
36 cl::desc("Maximum users to visit in copy from constant transform"),
40 cl::opt
<bool> EnableInferAlignmentPass(
41 "enable-infer-alignment-pass", cl::init(true), cl::Hidden
, cl::ZeroOrMore
,
42 cl::desc("Enable the InferAlignment pass, disabling alignment inference in "
46 /// isOnlyCopiedFromConstantMemory - Recursively walk the uses of a (derived)
47 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
48 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
49 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
50 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
51 /// the alloca, and if the source pointer is a pointer to a constant memory
52 /// location, we can optimize this.
54 isOnlyCopiedFromConstantMemory(AAResults
*AA
, AllocaInst
*V
,
55 MemTransferInst
*&TheCopy
,
56 SmallVectorImpl
<Instruction
*> &ToDelete
) {
57 // We track lifetime intrinsics as we encounter them. If we decide to go
58 // ahead and replace the value with the memory location, this lets the caller
59 // quickly eliminate the markers.
61 using ValueAndIsOffset
= PointerIntPair
<Value
*, 1, bool>;
62 SmallVector
<ValueAndIsOffset
, 32> Worklist
;
63 SmallPtrSet
<ValueAndIsOffset
, 32> Visited
;
64 Worklist
.emplace_back(V
, false);
65 while (!Worklist
.empty()) {
66 ValueAndIsOffset Elem
= Worklist
.pop_back_val();
67 if (!Visited
.insert(Elem
).second
)
69 if (Visited
.size() > MaxCopiedFromConstantUsers
)
72 const auto [Value
, IsOffset
] = Elem
;
73 for (auto &U
: Value
->uses()) {
74 auto *I
= cast
<Instruction
>(U
.getUser());
76 if (auto *LI
= dyn_cast
<LoadInst
>(I
)) {
77 // Ignore non-volatile loads, they are always ok.
78 if (!LI
->isSimple()) return false;
82 if (isa
<PHINode
, SelectInst
>(I
)) {
83 // We set IsOffset=true, to forbid the memcpy from occurring after the
84 // phi: If one of the phi operands is not based on the alloca, we
85 // would incorrectly omit a write.
86 Worklist
.emplace_back(I
, true);
89 if (isa
<BitCastInst
, AddrSpaceCastInst
>(I
)) {
90 // If uses of the bitcast are ok, we are ok.
91 Worklist
.emplace_back(I
, IsOffset
);
94 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
95 // If the GEP has all zero indices, it doesn't offset the pointer. If it
97 Worklist
.emplace_back(I
, IsOffset
|| !GEP
->hasAllZeroIndices());
101 if (auto *Call
= dyn_cast
<CallBase
>(I
)) {
102 // If this is the function being called then we treat it like a load and
104 if (Call
->isCallee(&U
))
107 unsigned DataOpNo
= Call
->getDataOperandNo(&U
);
108 bool IsArgOperand
= Call
->isArgOperand(&U
);
110 // Inalloca arguments are clobbered by the call.
111 if (IsArgOperand
&& Call
->isInAllocaArgument(DataOpNo
))
114 // If this call site doesn't modify the memory, then we know it is just
115 // a load (but one that potentially returns the value itself), so we can
116 // ignore it if we know that the value isn't captured.
117 bool NoCapture
= Call
->doesNotCapture(DataOpNo
);
118 if ((Call
->onlyReadsMemory() && (Call
->use_empty() || NoCapture
)) ||
119 (Call
->onlyReadsMemory(DataOpNo
) && NoCapture
))
122 // If this is being passed as a byval argument, the caller is making a
123 // copy, so it is only a read of the alloca.
124 if (IsArgOperand
&& Call
->isByValArgument(DataOpNo
))
128 // Lifetime intrinsics can be handled by the caller.
129 if (I
->isLifetimeStartOrEnd()) {
130 assert(I
->use_empty() && "Lifetime markers have no result to use!");
131 ToDelete
.push_back(I
);
135 // If this is isn't our memcpy/memmove, reject it as something we can't
137 MemTransferInst
*MI
= dyn_cast
<MemTransferInst
>(I
);
141 // If the transfer is volatile, reject it.
142 if (MI
->isVolatile())
145 // If the transfer is using the alloca as a source of the transfer, then
146 // ignore it since it is a load (unless the transfer is volatile).
147 if (U
.getOperandNo() == 1)
150 // If we already have seen a copy, reject the second one.
151 if (TheCopy
) return false;
153 // If the pointer has been offset from the start of the alloca, we can't
154 // safely handle this.
155 if (IsOffset
) return false;
157 // If the memintrinsic isn't using the alloca as the dest, reject it.
158 if (U
.getOperandNo() != 0) return false;
160 // If the source of the memcpy/move is not constant, reject it.
161 if (isModSet(AA
->getModRefInfoMask(MI
->getSource())))
164 // Otherwise, the transform is safe. Remember the copy instruction.
171 /// isOnlyCopiedFromConstantMemory - Return true if the specified alloca is only
172 /// modified by a copy from a constant memory location. If we can prove this, we
173 /// can replace any uses of the alloca with uses of the memory location
175 static MemTransferInst
*
176 isOnlyCopiedFromConstantMemory(AAResults
*AA
,
178 SmallVectorImpl
<Instruction
*> &ToDelete
) {
179 MemTransferInst
*TheCopy
= nullptr;
180 if (isOnlyCopiedFromConstantMemory(AA
, AI
, TheCopy
, ToDelete
))
185 /// Returns true if V is dereferenceable for size of alloca.
186 static bool isDereferenceableForAllocaSize(const Value
*V
, const AllocaInst
*AI
,
187 const DataLayout
&DL
) {
188 if (AI
->isArrayAllocation())
190 uint64_t AllocaSize
= DL
.getTypeStoreSize(AI
->getAllocatedType());
193 return isDereferenceableAndAlignedPointer(V
, AI
->getAlign(),
194 APInt(64, AllocaSize
), DL
);
197 static Instruction
*simplifyAllocaArraySize(InstCombinerImpl
&IC
,
198 AllocaInst
&AI
, DominatorTree
&DT
) {
199 // Check for array size of 1 (scalar allocation).
200 if (!AI
.isArrayAllocation()) {
201 // i32 1 is the canonical array size for scalar allocations.
202 if (AI
.getArraySize()->getType()->isIntegerTy(32))
206 return IC
.replaceOperand(AI
, 0, IC
.Builder
.getInt32(1));
209 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
210 if (const ConstantInt
*C
= dyn_cast
<ConstantInt
>(AI
.getArraySize())) {
211 if (C
->getValue().getActiveBits() <= 64) {
212 Type
*NewTy
= ArrayType::get(AI
.getAllocatedType(), C
->getZExtValue());
213 AllocaInst
*New
= IC
.Builder
.CreateAlloca(NewTy
, AI
.getAddressSpace(),
214 nullptr, AI
.getName());
215 New
->setAlignment(AI
.getAlign());
216 New
->setUsedWithInAlloca(AI
.isUsedWithInAlloca());
218 replaceAllDbgUsesWith(AI
, *New
, *New
, DT
);
219 return IC
.replaceInstUsesWith(AI
, New
);
223 if (isa
<UndefValue
>(AI
.getArraySize()))
224 return IC
.replaceInstUsesWith(AI
, Constant::getNullValue(AI
.getType()));
226 // Ensure that the alloca array size argument has type equal to the offset
227 // size of the alloca() pointer, which, in the tyical case, is intptr_t,
228 // so that any casting is exposed early.
229 Type
*PtrIdxTy
= IC
.getDataLayout().getIndexType(AI
.getType());
230 if (AI
.getArraySize()->getType() != PtrIdxTy
) {
231 Value
*V
= IC
.Builder
.CreateIntCast(AI
.getArraySize(), PtrIdxTy
, false);
232 return IC
.replaceOperand(AI
, 0, V
);
239 // If I and V are pointers in different address space, it is not allowed to
240 // use replaceAllUsesWith since I and V have different types. A
241 // non-target-specific transformation should not use addrspacecast on V since
242 // the two address space may be disjoint depending on target.
244 // This class chases down uses of the old pointer until reaching the load
245 // instructions, then replaces the old pointer in the load instructions with
246 // the new pointer. If during the chasing it sees bitcast or GEP, it will
247 // create new bitcast or GEP with the new pointer and use them in the load
249 class PointerReplacer
{
251 PointerReplacer(InstCombinerImpl
&IC
, Instruction
&Root
, unsigned SrcAS
)
252 : IC(IC
), Root(Root
), FromAS(SrcAS
) {}
255 void replacePointer(Value
*V
);
258 bool collectUsersRecursive(Instruction
&I
);
259 void replace(Instruction
*I
);
260 Value
*getReplacement(Value
*I
);
261 bool isAvailable(Instruction
*I
) const {
262 return I
== &Root
|| Worklist
.contains(I
);
265 bool isEqualOrValidAddrSpaceCast(const Instruction
*I
,
266 unsigned FromAS
) const {
267 const auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(I
);
270 unsigned ToAS
= ASC
->getDestAddressSpace();
271 return (FromAS
== ToAS
) || IC
.isValidAddrSpaceCast(FromAS
, ToAS
);
274 SmallPtrSet
<Instruction
*, 32> ValuesToRevisit
;
275 SmallSetVector
<Instruction
*, 4> Worklist
;
276 MapVector
<Value
*, Value
*> WorkMap
;
277 InstCombinerImpl
&IC
;
281 } // end anonymous namespace
283 bool PointerReplacer::collectUsers() {
284 if (!collectUsersRecursive(Root
))
287 // Ensure that all outstanding (indirect) users of I
288 // are inserted into the Worklist. Return false
290 for (auto *Inst
: ValuesToRevisit
)
291 if (!Worklist
.contains(Inst
))
296 bool PointerReplacer::collectUsersRecursive(Instruction
&I
) {
297 for (auto *U
: I
.users()) {
298 auto *Inst
= cast
<Instruction
>(&*U
);
299 if (auto *Load
= dyn_cast
<LoadInst
>(Inst
)) {
300 if (Load
->isVolatile())
302 Worklist
.insert(Load
);
303 } else if (auto *PHI
= dyn_cast
<PHINode
>(Inst
)) {
304 // All incoming values must be instructions for replacability
305 if (any_of(PHI
->incoming_values(),
306 [](Value
*V
) { return !isa
<Instruction
>(V
); }))
309 // If at least one incoming value of the PHI is not in Worklist,
310 // store the PHI for revisiting and skip this iteration of the
312 if (any_of(PHI
->incoming_values(), [this](Value
*V
) {
313 return !isAvailable(cast
<Instruction
>(V
));
315 ValuesToRevisit
.insert(Inst
);
319 Worklist
.insert(PHI
);
320 if (!collectUsersRecursive(*PHI
))
322 } else if (auto *SI
= dyn_cast
<SelectInst
>(Inst
)) {
323 if (!isa
<Instruction
>(SI
->getTrueValue()) ||
324 !isa
<Instruction
>(SI
->getFalseValue()))
327 if (!isAvailable(cast
<Instruction
>(SI
->getTrueValue())) ||
328 !isAvailable(cast
<Instruction
>(SI
->getFalseValue()))) {
329 ValuesToRevisit
.insert(Inst
);
333 if (!collectUsersRecursive(*SI
))
335 } else if (isa
<GetElementPtrInst
, BitCastInst
>(Inst
)) {
336 Worklist
.insert(Inst
);
337 if (!collectUsersRecursive(*Inst
))
339 } else if (auto *MI
= dyn_cast
<MemTransferInst
>(Inst
)) {
340 if (MI
->isVolatile())
342 Worklist
.insert(Inst
);
343 } else if (isEqualOrValidAddrSpaceCast(Inst
, FromAS
)) {
344 Worklist
.insert(Inst
);
345 } else if (Inst
->isLifetimeStartOrEnd()) {
348 LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U
<< '\n');
356 Value
*PointerReplacer::getReplacement(Value
*V
) { return WorkMap
.lookup(V
); }
358 void PointerReplacer::replace(Instruction
*I
) {
359 if (getReplacement(I
))
362 if (auto *LT
= dyn_cast
<LoadInst
>(I
)) {
363 auto *V
= getReplacement(LT
->getPointerOperand());
364 assert(V
&& "Operand not replaced");
365 auto *NewI
= new LoadInst(LT
->getType(), V
, "", LT
->isVolatile(),
366 LT
->getAlign(), LT
->getOrdering(),
367 LT
->getSyncScopeID());
369 copyMetadataForLoad(*NewI
, *LT
);
371 IC
.InsertNewInstWith(NewI
, LT
->getIterator());
372 IC
.replaceInstUsesWith(*LT
, NewI
);
374 } else if (auto *PHI
= dyn_cast
<PHINode
>(I
)) {
375 Type
*NewTy
= getReplacement(PHI
->getIncomingValue(0))->getType();
376 auto *NewPHI
= PHINode::Create(NewTy
, PHI
->getNumIncomingValues(),
377 PHI
->getName(), PHI
);
378 for (unsigned int I
= 0; I
< PHI
->getNumIncomingValues(); ++I
)
379 NewPHI
->addIncoming(getReplacement(PHI
->getIncomingValue(I
)),
380 PHI
->getIncomingBlock(I
));
381 WorkMap
[PHI
] = NewPHI
;
382 } else if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
383 auto *V
= getReplacement(GEP
->getPointerOperand());
384 assert(V
&& "Operand not replaced");
385 SmallVector
<Value
*, 8> Indices
;
386 Indices
.append(GEP
->idx_begin(), GEP
->idx_end());
388 GetElementPtrInst::Create(GEP
->getSourceElementType(), V
, Indices
);
389 IC
.InsertNewInstWith(NewI
, GEP
->getIterator());
392 } else if (auto *BC
= dyn_cast
<BitCastInst
>(I
)) {
393 auto *V
= getReplacement(BC
->getOperand(0));
394 assert(V
&& "Operand not replaced");
395 auto *NewT
= PointerType::get(BC
->getType()->getContext(),
396 V
->getType()->getPointerAddressSpace());
397 auto *NewI
= new BitCastInst(V
, NewT
);
398 IC
.InsertNewInstWith(NewI
, BC
->getIterator());
401 } else if (auto *SI
= dyn_cast
<SelectInst
>(I
)) {
402 auto *NewSI
= SelectInst::Create(
403 SI
->getCondition(), getReplacement(SI
->getTrueValue()),
404 getReplacement(SI
->getFalseValue()), SI
->getName(), nullptr, SI
);
405 IC
.InsertNewInstWith(NewSI
, SI
->getIterator());
408 } else if (auto *MemCpy
= dyn_cast
<MemTransferInst
>(I
)) {
409 auto *SrcV
= getReplacement(MemCpy
->getRawSource());
410 // The pointer may appear in the destination of a copy, but we don't want to
413 assert(getReplacement(MemCpy
->getRawDest()) &&
414 "destination not in replace list");
418 IC
.Builder
.SetInsertPoint(MemCpy
);
419 auto *NewI
= IC
.Builder
.CreateMemTransferInst(
420 MemCpy
->getIntrinsicID(), MemCpy
->getRawDest(), MemCpy
->getDestAlign(),
421 SrcV
, MemCpy
->getSourceAlign(), MemCpy
->getLength(),
422 MemCpy
->isVolatile());
423 AAMDNodes AAMD
= MemCpy
->getAAMetadata();
425 NewI
->setAAMetadata(AAMD
);
427 IC
.eraseInstFromFunction(*MemCpy
);
428 WorkMap
[MemCpy
] = NewI
;
429 } else if (auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(I
)) {
430 auto *V
= getReplacement(ASC
->getPointerOperand());
431 assert(V
&& "Operand not replaced");
432 assert(isEqualOrValidAddrSpaceCast(
433 ASC
, V
->getType()->getPointerAddressSpace()) &&
434 "Invalid address space cast!");
436 if (V
->getType()->getPointerAddressSpace() !=
437 ASC
->getType()->getPointerAddressSpace()) {
438 auto *NewI
= new AddrSpaceCastInst(V
, ASC
->getType(), "");
440 IC
.InsertNewInstWith(NewI
, ASC
->getIterator());
443 IC
.replaceInstUsesWith(*ASC
, NewV
);
444 IC
.eraseInstFromFunction(*ASC
);
446 llvm_unreachable("should never reach here");
450 void PointerReplacer::replacePointer(Value
*V
) {
452 auto *PT
= cast
<PointerType
>(Root
.getType());
453 auto *NT
= cast
<PointerType
>(V
->getType());
454 assert(PT
!= NT
&& "Invalid usage");
458 for (Instruction
*Workitem
: Worklist
)
462 Instruction
*InstCombinerImpl::visitAllocaInst(AllocaInst
&AI
) {
463 if (auto *I
= simplifyAllocaArraySize(*this, AI
, DT
))
466 if (AI
.getAllocatedType()->isSized()) {
467 // Move all alloca's of zero byte objects to the entry block and merge them
468 // together. Note that we only do this for alloca's, because malloc should
469 // allocate and return a unique pointer, even for a zero byte allocation.
470 if (DL
.getTypeAllocSize(AI
.getAllocatedType()).getKnownMinValue() == 0) {
471 // For a zero sized alloca there is no point in doing an array allocation.
472 // This is helpful if the array size is a complicated expression not used
474 if (AI
.isArrayAllocation())
475 return replaceOperand(AI
, 0,
476 ConstantInt::get(AI
.getArraySize()->getType(), 1));
478 // Get the first instruction in the entry block.
479 BasicBlock
&EntryBlock
= AI
.getParent()->getParent()->getEntryBlock();
480 Instruction
*FirstInst
= EntryBlock
.getFirstNonPHIOrDbg();
481 if (FirstInst
!= &AI
) {
482 // If the entry block doesn't start with a zero-size alloca then move
483 // this one to the start of the entry block. There is no problem with
484 // dominance as the array size was forced to a constant earlier already.
485 AllocaInst
*EntryAI
= dyn_cast
<AllocaInst
>(FirstInst
);
486 if (!EntryAI
|| !EntryAI
->getAllocatedType()->isSized() ||
487 DL
.getTypeAllocSize(EntryAI
->getAllocatedType())
488 .getKnownMinValue() != 0) {
489 AI
.moveBefore(FirstInst
);
493 // Replace this zero-sized alloca with the one at the start of the entry
494 // block after ensuring that the address will be aligned enough for both
496 const Align MaxAlign
= std::max(EntryAI
->getAlign(), AI
.getAlign());
497 EntryAI
->setAlignment(MaxAlign
);
498 return replaceInstUsesWith(AI
, EntryAI
);
503 // Check to see if this allocation is only modified by a memcpy/memmove from
504 // a memory location whose alignment is equal to or exceeds that of the
505 // allocation. If this is the case, we can change all users to use the
506 // constant memory location instead. This is commonly produced by the CFE by
507 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
508 // is only subsequently read.
509 SmallVector
<Instruction
*, 4> ToDelete
;
510 if (MemTransferInst
*Copy
= isOnlyCopiedFromConstantMemory(AA
, &AI
, ToDelete
)) {
511 Value
*TheSrc
= Copy
->getSource();
512 Align AllocaAlign
= AI
.getAlign();
513 Align SourceAlign
= getOrEnforceKnownAlignment(
514 TheSrc
, AllocaAlign
, DL
, &AI
, &AC
, &DT
);
515 if (AllocaAlign
<= SourceAlign
&&
516 isDereferenceableForAllocaSize(TheSrc
, &AI
, DL
) &&
517 !isa
<Instruction
>(TheSrc
)) {
518 // FIXME: Can we sink instructions without violating dominance when TheSrc
519 // is an instruction instead of a constant or argument?
520 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI
<< '\n');
521 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy
<< '\n');
522 unsigned SrcAddrSpace
= TheSrc
->getType()->getPointerAddressSpace();
523 if (AI
.getAddressSpace() == SrcAddrSpace
) {
524 for (Instruction
*Delete
: ToDelete
)
525 eraseInstFromFunction(*Delete
);
527 Instruction
*NewI
= replaceInstUsesWith(AI
, TheSrc
);
528 eraseInstFromFunction(*Copy
);
533 PointerReplacer
PtrReplacer(*this, AI
, SrcAddrSpace
);
534 if (PtrReplacer
.collectUsers()) {
535 for (Instruction
*Delete
: ToDelete
)
536 eraseInstFromFunction(*Delete
);
538 PtrReplacer
.replacePointer(TheSrc
);
544 // At last, use the generic allocation site handler to aggressively remove
546 return visitAllocSite(AI
);
549 // Are we allowed to form a atomic load or store of this type?
550 static bool isSupportedAtomicType(Type
*Ty
) {
551 return Ty
->isIntOrPtrTy() || Ty
->isFloatingPointTy();
554 /// Helper to combine a load to a new type.
556 /// This just does the work of combining a load to a new type. It handles
557 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
558 /// loaded *value* type. This will convert it to a pointer, cast the operand to
559 /// that pointer type, load it, etc.
561 /// Note that this will create all of the instructions with whatever insert
562 /// point the \c InstCombinerImpl currently is using.
563 LoadInst
*InstCombinerImpl::combineLoadToNewType(LoadInst
&LI
, Type
*NewTy
,
564 const Twine
&Suffix
) {
565 assert((!LI
.isAtomic() || isSupportedAtomicType(NewTy
)) &&
566 "can't fold an atomic load to requested type");
569 Builder
.CreateAlignedLoad(NewTy
, LI
.getPointerOperand(), LI
.getAlign(),
570 LI
.isVolatile(), LI
.getName() + Suffix
);
571 NewLoad
->setAtomic(LI
.getOrdering(), LI
.getSyncScopeID());
572 copyMetadataForLoad(*NewLoad
, LI
);
576 /// Combine a store to a new type.
578 /// Returns the newly created store instruction.
579 static StoreInst
*combineStoreToNewValue(InstCombinerImpl
&IC
, StoreInst
&SI
,
581 assert((!SI
.isAtomic() || isSupportedAtomicType(V
->getType())) &&
582 "can't fold an atomic store of requested type");
584 Value
*Ptr
= SI
.getPointerOperand();
585 SmallVector
<std::pair
<unsigned, MDNode
*>, 8> MD
;
586 SI
.getAllMetadata(MD
);
588 StoreInst
*NewStore
=
589 IC
.Builder
.CreateAlignedStore(V
, Ptr
, SI
.getAlign(), SI
.isVolatile());
590 NewStore
->setAtomic(SI
.getOrdering(), SI
.getSyncScopeID());
591 for (const auto &MDPair
: MD
) {
592 unsigned ID
= MDPair
.first
;
593 MDNode
*N
= MDPair
.second
;
594 // Note, essentially every kind of metadata should be preserved here! This
595 // routine is supposed to clone a store instruction changing *only its
596 // type*. The only metadata it makes sense to drop is metadata which is
597 // invalidated when the pointer type changes. This should essentially
598 // never be the case in LLVM, but we explicitly switch over only known
599 // metadata to be conservatively correct. If you are adding metadata to
600 // LLVM which pertains to stores, you almost certainly want to add it
603 case LLVMContext::MD_dbg
:
604 case LLVMContext::MD_DIAssignID
:
605 case LLVMContext::MD_tbaa
:
606 case LLVMContext::MD_prof
:
607 case LLVMContext::MD_fpmath
:
608 case LLVMContext::MD_tbaa_struct
:
609 case LLVMContext::MD_alias_scope
:
610 case LLVMContext::MD_noalias
:
611 case LLVMContext::MD_nontemporal
:
612 case LLVMContext::MD_mem_parallel_loop_access
:
613 case LLVMContext::MD_access_group
:
614 // All of these directly apply.
615 NewStore
->setMetadata(ID
, N
);
617 case LLVMContext::MD_invariant_load
:
618 case LLVMContext::MD_nonnull
:
619 case LLVMContext::MD_noundef
:
620 case LLVMContext::MD_range
:
621 case LLVMContext::MD_align
:
622 case LLVMContext::MD_dereferenceable
:
623 case LLVMContext::MD_dereferenceable_or_null
:
624 // These don't apply for stores.
632 /// Combine loads to match the type of their uses' value after looking
633 /// through intervening bitcasts.
635 /// The core idea here is that if the result of a load is used in an operation,
636 /// we should load the type most conducive to that operation. For example, when
637 /// loading an integer and converting that immediately to a pointer, we should
638 /// instead directly load a pointer.
640 /// However, this routine must never change the width of a load or the number of
641 /// loads as that would introduce a semantic change. This combine is expected to
642 /// be a semantic no-op which just allows loads to more closely model the types
643 /// of their consuming operations.
645 /// Currently, we also refuse to change the precise type used for an atomic load
646 /// or a volatile load. This is debatable, and might be reasonable to change
647 /// later. However, it is risky in case some backend or other part of LLVM is
648 /// relying on the exact type loaded to select appropriate atomic operations.
649 static Instruction
*combineLoadToOperationType(InstCombinerImpl
&IC
,
651 // FIXME: We could probably with some care handle both volatile and ordered
652 // atomic loads here but it isn't clear that this is important.
653 if (!Load
.isUnordered())
656 if (Load
.use_empty())
659 // swifterror values can't be bitcasted.
660 if (Load
.getPointerOperand()->isSwiftError())
663 // Fold away bit casts of the loaded value by loading the desired type.
664 // Note that we should not do this for pointer<->integer casts,
665 // because that would result in type punning.
666 if (Load
.hasOneUse()) {
667 // Don't transform when the type is x86_amx, it makes the pass that lower
668 // x86_amx type happy.
669 Type
*LoadTy
= Load
.getType();
670 if (auto *BC
= dyn_cast
<BitCastInst
>(Load
.user_back())) {
671 assert(!LoadTy
->isX86_AMXTy() && "Load from x86_amx* should not happen!");
672 if (BC
->getType()->isX86_AMXTy())
676 if (auto *CastUser
= dyn_cast
<CastInst
>(Load
.user_back())) {
677 Type
*DestTy
= CastUser
->getDestTy();
678 if (CastUser
->isNoopCast(IC
.getDataLayout()) &&
679 LoadTy
->isPtrOrPtrVectorTy() == DestTy
->isPtrOrPtrVectorTy() &&
680 (!Load
.isAtomic() || isSupportedAtomicType(DestTy
))) {
681 LoadInst
*NewLoad
= IC
.combineLoadToNewType(Load
, DestTy
);
682 CastUser
->replaceAllUsesWith(NewLoad
);
683 IC
.eraseInstFromFunction(*CastUser
);
689 // FIXME: We should also canonicalize loads of vectors when their elements are
690 // cast to other types.
694 static Instruction
*unpackLoadToAggregate(InstCombinerImpl
&IC
, LoadInst
&LI
) {
695 // FIXME: We could probably with some care handle both volatile and atomic
696 // stores here but it isn't clear that this is important.
700 Type
*T
= LI
.getType();
701 if (!T
->isAggregateType())
704 StringRef Name
= LI
.getName();
706 if (auto *ST
= dyn_cast
<StructType
>(T
)) {
707 // If the struct only have one element, we unpack.
708 auto NumElements
= ST
->getNumElements();
709 if (NumElements
== 1) {
710 LoadInst
*NewLoad
= IC
.combineLoadToNewType(LI
, ST
->getTypeAtIndex(0U),
712 NewLoad
->setAAMetadata(LI
.getAAMetadata());
713 return IC
.replaceInstUsesWith(LI
, IC
.Builder
.CreateInsertValue(
714 PoisonValue::get(T
), NewLoad
, 0, Name
));
717 // We don't want to break loads with padding here as we'd loose
718 // the knowledge that padding exists for the rest of the pipeline.
719 const DataLayout
&DL
= IC
.getDataLayout();
720 auto *SL
= DL
.getStructLayout(ST
);
722 // Don't unpack for structure with scalable vector.
723 if (SL
->getSizeInBits().isScalable())
726 if (SL
->hasPadding())
729 const auto Align
= LI
.getAlign();
730 auto *Addr
= LI
.getPointerOperand();
731 auto *IdxType
= Type::getInt32Ty(T
->getContext());
732 auto *Zero
= ConstantInt::get(IdxType
, 0);
734 Value
*V
= PoisonValue::get(T
);
735 for (unsigned i
= 0; i
< NumElements
; i
++) {
736 Value
*Indices
[2] = {
738 ConstantInt::get(IdxType
, i
),
740 auto *Ptr
= IC
.Builder
.CreateInBoundsGEP(ST
, Addr
, ArrayRef(Indices
),
742 auto *L
= IC
.Builder
.CreateAlignedLoad(
743 ST
->getElementType(i
), Ptr
,
744 commonAlignment(Align
, SL
->getElementOffset(i
)), Name
+ ".unpack");
745 // Propagate AA metadata. It'll still be valid on the narrowed load.
746 L
->setAAMetadata(LI
.getAAMetadata());
747 V
= IC
.Builder
.CreateInsertValue(V
, L
, i
);
751 return IC
.replaceInstUsesWith(LI
, V
);
754 if (auto *AT
= dyn_cast
<ArrayType
>(T
)) {
755 auto *ET
= AT
->getElementType();
756 auto NumElements
= AT
->getNumElements();
757 if (NumElements
== 1) {
758 LoadInst
*NewLoad
= IC
.combineLoadToNewType(LI
, ET
, ".unpack");
759 NewLoad
->setAAMetadata(LI
.getAAMetadata());
760 return IC
.replaceInstUsesWith(LI
, IC
.Builder
.CreateInsertValue(
761 PoisonValue::get(T
), NewLoad
, 0, Name
));
764 // Bail out if the array is too large. Ideally we would like to optimize
765 // arrays of arbitrary size but this has a terrible impact on compile time.
766 // The threshold here is chosen arbitrarily, maybe needs a little bit of
768 if (NumElements
> IC
.MaxArraySizeForCombine
)
771 const DataLayout
&DL
= IC
.getDataLayout();
772 TypeSize EltSize
= DL
.getTypeAllocSize(ET
);
773 const auto Align
= LI
.getAlign();
775 auto *Addr
= LI
.getPointerOperand();
776 auto *IdxType
= Type::getInt64Ty(T
->getContext());
777 auto *Zero
= ConstantInt::get(IdxType
, 0);
779 Value
*V
= PoisonValue::get(T
);
780 TypeSize Offset
= TypeSize::get(0, ET
->isScalableTy());
781 for (uint64_t i
= 0; i
< NumElements
; i
++) {
782 Value
*Indices
[2] = {
784 ConstantInt::get(IdxType
, i
),
786 auto *Ptr
= IC
.Builder
.CreateInBoundsGEP(AT
, Addr
, ArrayRef(Indices
),
788 auto EltAlign
= commonAlignment(Align
, Offset
.getKnownMinValue());
789 auto *L
= IC
.Builder
.CreateAlignedLoad(AT
->getElementType(), Ptr
,
790 EltAlign
, Name
+ ".unpack");
791 L
->setAAMetadata(LI
.getAAMetadata());
792 V
= IC
.Builder
.CreateInsertValue(V
, L
, i
);
797 return IC
.replaceInstUsesWith(LI
, V
);
803 // If we can determine that all possible objects pointed to by the provided
804 // pointer value are, not only dereferenceable, but also definitively less than
805 // or equal to the provided maximum size, then return true. Otherwise, return
806 // false (constant global values and allocas fall into this category).
808 // FIXME: This should probably live in ValueTracking (or similar).
809 static bool isObjectSizeLessThanOrEq(Value
*V
, uint64_t MaxSize
,
810 const DataLayout
&DL
) {
811 SmallPtrSet
<Value
*, 4> Visited
;
812 SmallVector
<Value
*, 4> Worklist(1, V
);
815 Value
*P
= Worklist
.pop_back_val();
816 P
= P
->stripPointerCasts();
818 if (!Visited
.insert(P
).second
)
821 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(P
)) {
822 Worklist
.push_back(SI
->getTrueValue());
823 Worklist
.push_back(SI
->getFalseValue());
827 if (PHINode
*PN
= dyn_cast
<PHINode
>(P
)) {
828 append_range(Worklist
, PN
->incoming_values());
832 if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(P
)) {
833 if (GA
->isInterposable())
835 Worklist
.push_back(GA
->getAliasee());
839 // If we know how big this object is, and it is less than MaxSize, continue
840 // searching. Otherwise, return false.
841 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(P
)) {
842 if (!AI
->getAllocatedType()->isSized())
845 ConstantInt
*CS
= dyn_cast
<ConstantInt
>(AI
->getArraySize());
849 TypeSize TS
= DL
.getTypeAllocSize(AI
->getAllocatedType());
852 // Make sure that, even if the multiplication below would wrap as an
853 // uint64_t, we still do the right thing.
854 if ((CS
->getValue().zext(128) * APInt(128, TS
.getFixedValue()))
860 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(P
)) {
861 if (!GV
->hasDefinitiveInitializer() || !GV
->isConstant())
864 uint64_t InitSize
= DL
.getTypeAllocSize(GV
->getValueType());
865 if (InitSize
> MaxSize
)
871 } while (!Worklist
.empty());
876 // If we're indexing into an object of a known size, and the outer index is
877 // not a constant, but having any value but zero would lead to undefined
878 // behavior, replace it with zero.
880 // For example, if we have:
881 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
883 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
884 // ... = load i32* %arrayidx, align 4
885 // Then we know that we can replace %x in the GEP with i64 0.
887 // FIXME: We could fold any GEP index to zero that would cause UB if it were
888 // not zero. Currently, we only handle the first such index. Also, we could
889 // also search through non-zero constant indices if we kept track of the
890 // offsets those indices implied.
891 static bool canReplaceGEPIdxWithZero(InstCombinerImpl
&IC
,
892 GetElementPtrInst
*GEPI
, Instruction
*MemI
,
894 if (GEPI
->getNumOperands() < 2)
897 // Find the first non-zero index of a GEP. If all indices are zero, return
898 // one past the last index.
899 auto FirstNZIdx
= [](const GetElementPtrInst
*GEPI
) {
901 for (unsigned IE
= GEPI
->getNumOperands(); I
!= IE
; ++I
) {
902 Value
*V
= GEPI
->getOperand(I
);
903 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
913 // Skip through initial 'zero' indices, and find the corresponding pointer
914 // type. See if the next index is not a constant.
915 Idx
= FirstNZIdx(GEPI
);
916 if (Idx
== GEPI
->getNumOperands())
918 if (isa
<Constant
>(GEPI
->getOperand(Idx
)))
921 SmallVector
<Value
*, 4> Ops(GEPI
->idx_begin(), GEPI
->idx_begin() + Idx
);
922 Type
*SourceElementType
= GEPI
->getSourceElementType();
923 // Size information about scalable vectors is not available, so we cannot
924 // deduce whether indexing at n is undefined behaviour or not. Bail out.
925 if (SourceElementType
->isScalableTy())
928 Type
*AllocTy
= GetElementPtrInst::getIndexedType(SourceElementType
, Ops
);
929 if (!AllocTy
|| !AllocTy
->isSized())
931 const DataLayout
&DL
= IC
.getDataLayout();
932 uint64_t TyAllocSize
= DL
.getTypeAllocSize(AllocTy
).getFixedValue();
934 // If there are more indices after the one we might replace with a zero, make
935 // sure they're all non-negative. If any of them are negative, the overall
936 // address being computed might be before the base address determined by the
937 // first non-zero index.
938 auto IsAllNonNegative
= [&]() {
939 for (unsigned i
= Idx
+1, e
= GEPI
->getNumOperands(); i
!= e
; ++i
) {
940 KnownBits Known
= IC
.computeKnownBits(GEPI
->getOperand(i
), 0, MemI
);
941 if (Known
.isNonNegative())
949 // FIXME: If the GEP is not inbounds, and there are extra indices after the
950 // one we'll replace, those could cause the address computation to wrap
951 // (rendering the IsAllNonNegative() check below insufficient). We can do
952 // better, ignoring zero indices (and other indices we can prove small
953 // enough not to wrap).
954 if (Idx
+1 != GEPI
->getNumOperands() && !GEPI
->isInBounds())
957 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
958 // also known to be dereferenceable.
959 return isObjectSizeLessThanOrEq(GEPI
->getOperand(0), TyAllocSize
, DL
) &&
963 // If we're indexing into an object with a variable index for the memory
964 // access, but the object has only one element, we can assume that the index
965 // will always be zero. If we replace the GEP, return it.
966 static Instruction
*replaceGEPIdxWithZero(InstCombinerImpl
&IC
, Value
*Ptr
,
968 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(Ptr
)) {
970 if (canReplaceGEPIdxWithZero(IC
, GEPI
, &MemI
, Idx
)) {
971 Instruction
*NewGEPI
= GEPI
->clone();
972 NewGEPI
->setOperand(Idx
,
973 ConstantInt::get(GEPI
->getOperand(Idx
)->getType(), 0));
974 IC
.InsertNewInstBefore(NewGEPI
, GEPI
->getIterator());
982 static bool canSimplifyNullStoreOrGEP(StoreInst
&SI
) {
983 if (NullPointerIsDefined(SI
.getFunction(), SI
.getPointerAddressSpace()))
986 auto *Ptr
= SI
.getPointerOperand();
987 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(Ptr
))
988 Ptr
= GEPI
->getOperand(0);
989 return (isa
<ConstantPointerNull
>(Ptr
) &&
990 !NullPointerIsDefined(SI
.getFunction(), SI
.getPointerAddressSpace()));
993 static bool canSimplifyNullLoadOrGEP(LoadInst
&LI
, Value
*Op
) {
994 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(Op
)) {
995 const Value
*GEPI0
= GEPI
->getOperand(0);
996 if (isa
<ConstantPointerNull
>(GEPI0
) &&
997 !NullPointerIsDefined(LI
.getFunction(), GEPI
->getPointerAddressSpace()))
1000 if (isa
<UndefValue
>(Op
) ||
1001 (isa
<ConstantPointerNull
>(Op
) &&
1002 !NullPointerIsDefined(LI
.getFunction(), LI
.getPointerAddressSpace())))
1007 Instruction
*InstCombinerImpl::visitLoadInst(LoadInst
&LI
) {
1008 Value
*Op
= LI
.getOperand(0);
1009 if (Value
*Res
= simplifyLoadInst(&LI
, Op
, SQ
.getWithInstruction(&LI
)))
1010 return replaceInstUsesWith(LI
, Res
);
1012 // Try to canonicalize the loaded type.
1013 if (Instruction
*Res
= combineLoadToOperationType(*this, LI
))
1016 if (!EnableInferAlignmentPass
) {
1017 // Attempt to improve the alignment.
1018 Align KnownAlign
= getOrEnforceKnownAlignment(
1019 Op
, DL
.getPrefTypeAlign(LI
.getType()), DL
, &LI
, &AC
, &DT
);
1020 if (KnownAlign
> LI
.getAlign())
1021 LI
.setAlignment(KnownAlign
);
1024 // Replace GEP indices if possible.
1025 if (Instruction
*NewGEPI
= replaceGEPIdxWithZero(*this, Op
, LI
))
1026 return replaceOperand(LI
, 0, NewGEPI
);
1028 if (Instruction
*Res
= unpackLoadToAggregate(*this, LI
))
1031 // Do really simple store-to-load forwarding and load CSE, to catch cases
1032 // where there are several consecutive memory accesses to the same location,
1033 // separated by a few arithmetic operations.
1034 bool IsLoadCSE
= false;
1035 BatchAAResults
BatchAA(*AA
);
1036 if (Value
*AvailableVal
= FindAvailableLoadedValue(&LI
, BatchAA
, &IsLoadCSE
)) {
1038 combineMetadataForCSE(cast
<LoadInst
>(AvailableVal
), &LI
, false);
1040 return replaceInstUsesWith(
1041 LI
, Builder
.CreateBitOrPointerCast(AvailableVal
, LI
.getType(),
1042 LI
.getName() + ".cast"));
1045 // None of the following transforms are legal for volatile/ordered atomic
1046 // loads. Most of them do apply for unordered atomics.
1047 if (!LI
.isUnordered()) return nullptr;
1049 // load(gep null, ...) -> unreachable
1050 // load null/undef -> unreachable
1051 // TODO: Consider a target hook for valid address spaces for this xforms.
1052 if (canSimplifyNullLoadOrGEP(LI
, Op
)) {
1053 CreateNonTerminatorUnreachable(&LI
);
1054 return replaceInstUsesWith(LI
, PoisonValue::get(LI
.getType()));
1057 if (Op
->hasOneUse()) {
1058 // Change select and PHI nodes to select values instead of addresses: this
1059 // helps alias analysis out a lot, allows many others simplifications, and
1060 // exposes redundancy in the code.
1062 // Note that we cannot do the transformation unless we know that the
1063 // introduced loads cannot trap! Something like this is valid as long as
1064 // the condition is always false: load (select bool %C, int* null, int* %G),
1065 // but it would not be valid if we transformed it to load from null
1068 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op
)) {
1069 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
1070 Align Alignment
= LI
.getAlign();
1071 if (isSafeToLoadUnconditionally(SI
->getOperand(1), LI
.getType(),
1072 Alignment
, DL
, SI
) &&
1073 isSafeToLoadUnconditionally(SI
->getOperand(2), LI
.getType(),
1074 Alignment
, DL
, SI
)) {
1076 Builder
.CreateLoad(LI
.getType(), SI
->getOperand(1),
1077 SI
->getOperand(1)->getName() + ".val");
1079 Builder
.CreateLoad(LI
.getType(), SI
->getOperand(2),
1080 SI
->getOperand(2)->getName() + ".val");
1081 assert(LI
.isUnordered() && "implied by above");
1082 V1
->setAlignment(Alignment
);
1083 V1
->setAtomic(LI
.getOrdering(), LI
.getSyncScopeID());
1084 V2
->setAlignment(Alignment
);
1085 V2
->setAtomic(LI
.getOrdering(), LI
.getSyncScopeID());
1086 return SelectInst::Create(SI
->getCondition(), V1
, V2
);
1089 // load (select (cond, null, P)) -> load P
1090 if (isa
<ConstantPointerNull
>(SI
->getOperand(1)) &&
1091 !NullPointerIsDefined(SI
->getFunction(),
1092 LI
.getPointerAddressSpace()))
1093 return replaceOperand(LI
, 0, SI
->getOperand(2));
1095 // load (select (cond, P, null)) -> load P
1096 if (isa
<ConstantPointerNull
>(SI
->getOperand(2)) &&
1097 !NullPointerIsDefined(SI
->getFunction(),
1098 LI
.getPointerAddressSpace()))
1099 return replaceOperand(LI
, 0, SI
->getOperand(1));
1105 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1107 /// \returns underlying value that was "cast", or nullptr otherwise.
1109 /// For example, if we have:
1111 /// %E0 = extractelement <2 x double> %U, i32 0
1112 /// %V0 = insertvalue [2 x double] undef, double %E0, 0
1113 /// %E1 = extractelement <2 x double> %U, i32 1
1114 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1
1116 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1117 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1118 /// Note that %U may contain non-undef values where %V1 has undef.
1119 static Value
*likeBitCastFromVector(InstCombinerImpl
&IC
, Value
*V
) {
1121 while (auto *IV
= dyn_cast
<InsertValueInst
>(V
)) {
1122 auto *E
= dyn_cast
<ExtractElementInst
>(IV
->getInsertedValueOperand());
1125 auto *W
= E
->getVectorOperand();
1130 auto *CI
= dyn_cast
<ConstantInt
>(E
->getIndexOperand());
1131 if (!CI
|| IV
->getNumIndices() != 1 || CI
->getZExtValue() != *IV
->idx_begin())
1133 V
= IV
->getAggregateOperand();
1135 if (!match(V
, m_Undef()) || !U
)
1138 auto *UT
= cast
<VectorType
>(U
->getType());
1139 auto *VT
= V
->getType();
1140 // Check that types UT and VT are bitwise isomorphic.
1141 const auto &DL
= IC
.getDataLayout();
1142 if (DL
.getTypeStoreSizeInBits(UT
) != DL
.getTypeStoreSizeInBits(VT
)) {
1145 if (auto *AT
= dyn_cast
<ArrayType
>(VT
)) {
1146 if (AT
->getNumElements() != cast
<FixedVectorType
>(UT
)->getNumElements())
1149 auto *ST
= cast
<StructType
>(VT
);
1150 if (ST
->getNumElements() != cast
<FixedVectorType
>(UT
)->getNumElements())
1152 for (const auto *EltT
: ST
->elements()) {
1153 if (EltT
!= UT
->getElementType())
1160 /// Combine stores to match the type of value being stored.
1162 /// The core idea here is that the memory does not have any intrinsic type and
1163 /// where we can we should match the type of a store to the type of value being
1166 /// However, this routine must never change the width of a store or the number of
1167 /// stores as that would introduce a semantic change. This combine is expected to
1168 /// be a semantic no-op which just allows stores to more closely model the types
1169 /// of their incoming values.
1171 /// Currently, we also refuse to change the precise type used for an atomic or
1172 /// volatile store. This is debatable, and might be reasonable to change later.
1173 /// However, it is risky in case some backend or other part of LLVM is relying
1174 /// on the exact type stored to select appropriate atomic operations.
1176 /// \returns true if the store was successfully combined away. This indicates
1177 /// the caller must erase the store instruction. We have to let the caller erase
1178 /// the store instruction as otherwise there is no way to signal whether it was
1179 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1180 static bool combineStoreToValueType(InstCombinerImpl
&IC
, StoreInst
&SI
) {
1181 // FIXME: We could probably with some care handle both volatile and ordered
1182 // atomic stores here but it isn't clear that this is important.
1183 if (!SI
.isUnordered())
1186 // swifterror values can't be bitcasted.
1187 if (SI
.getPointerOperand()->isSwiftError())
1190 Value
*V
= SI
.getValueOperand();
1192 // Fold away bit casts of the stored value by storing the original type.
1193 if (auto *BC
= dyn_cast
<BitCastInst
>(V
)) {
1194 assert(!BC
->getType()->isX86_AMXTy() &&
1195 "store to x86_amx* should not happen!");
1196 V
= BC
->getOperand(0);
1197 // Don't transform when the type is x86_amx, it makes the pass that lower
1198 // x86_amx type happy.
1199 if (V
->getType()->isX86_AMXTy())
1201 if (!SI
.isAtomic() || isSupportedAtomicType(V
->getType())) {
1202 combineStoreToNewValue(IC
, SI
, V
);
1207 if (Value
*U
= likeBitCastFromVector(IC
, V
))
1208 if (!SI
.isAtomic() || isSupportedAtomicType(U
->getType())) {
1209 combineStoreToNewValue(IC
, SI
, U
);
1213 // FIXME: We should also canonicalize stores of vectors when their elements
1214 // are cast to other types.
1218 static bool unpackStoreToAggregate(InstCombinerImpl
&IC
, StoreInst
&SI
) {
1219 // FIXME: We could probably with some care handle both volatile and atomic
1220 // stores here but it isn't clear that this is important.
1224 Value
*V
= SI
.getValueOperand();
1225 Type
*T
= V
->getType();
1227 if (!T
->isAggregateType())
1230 if (auto *ST
= dyn_cast
<StructType
>(T
)) {
1231 // If the struct only have one element, we unpack.
1232 unsigned Count
= ST
->getNumElements();
1234 V
= IC
.Builder
.CreateExtractValue(V
, 0);
1235 combineStoreToNewValue(IC
, SI
, V
);
1239 // We don't want to break loads with padding here as we'd loose
1240 // the knowledge that padding exists for the rest of the pipeline.
1241 const DataLayout
&DL
= IC
.getDataLayout();
1242 auto *SL
= DL
.getStructLayout(ST
);
1244 // Don't unpack for structure with scalable vector.
1245 if (SL
->getSizeInBits().isScalable())
1248 if (SL
->hasPadding())
1251 const auto Align
= SI
.getAlign();
1253 SmallString
<16> EltName
= V
->getName();
1255 auto *Addr
= SI
.getPointerOperand();
1256 SmallString
<16> AddrName
= Addr
->getName();
1257 AddrName
+= ".repack";
1259 auto *IdxType
= Type::getInt32Ty(ST
->getContext());
1260 auto *Zero
= ConstantInt::get(IdxType
, 0);
1261 for (unsigned i
= 0; i
< Count
; i
++) {
1262 Value
*Indices
[2] = {
1264 ConstantInt::get(IdxType
, i
),
1267 IC
.Builder
.CreateInBoundsGEP(ST
, Addr
, ArrayRef(Indices
), AddrName
);
1268 auto *Val
= IC
.Builder
.CreateExtractValue(V
, i
, EltName
);
1269 auto EltAlign
= commonAlignment(Align
, SL
->getElementOffset(i
));
1270 llvm::Instruction
*NS
= IC
.Builder
.CreateAlignedStore(Val
, Ptr
, EltAlign
);
1271 NS
->setAAMetadata(SI
.getAAMetadata());
1277 if (auto *AT
= dyn_cast
<ArrayType
>(T
)) {
1278 // If the array only have one element, we unpack.
1279 auto NumElements
= AT
->getNumElements();
1280 if (NumElements
== 1) {
1281 V
= IC
.Builder
.CreateExtractValue(V
, 0);
1282 combineStoreToNewValue(IC
, SI
, V
);
1286 // Bail out if the array is too large. Ideally we would like to optimize
1287 // arrays of arbitrary size but this has a terrible impact on compile time.
1288 // The threshold here is chosen arbitrarily, maybe needs a little bit of
1290 if (NumElements
> IC
.MaxArraySizeForCombine
)
1293 const DataLayout
&DL
= IC
.getDataLayout();
1294 TypeSize EltSize
= DL
.getTypeAllocSize(AT
->getElementType());
1295 const auto Align
= SI
.getAlign();
1297 SmallString
<16> EltName
= V
->getName();
1299 auto *Addr
= SI
.getPointerOperand();
1300 SmallString
<16> AddrName
= Addr
->getName();
1301 AddrName
+= ".repack";
1303 auto *IdxType
= Type::getInt64Ty(T
->getContext());
1304 auto *Zero
= ConstantInt::get(IdxType
, 0);
1306 TypeSize Offset
= TypeSize::get(0, AT
->getElementType()->isScalableTy());
1307 for (uint64_t i
= 0; i
< NumElements
; i
++) {
1308 Value
*Indices
[2] = {
1310 ConstantInt::get(IdxType
, i
),
1313 IC
.Builder
.CreateInBoundsGEP(AT
, Addr
, ArrayRef(Indices
), AddrName
);
1314 auto *Val
= IC
.Builder
.CreateExtractValue(V
, i
, EltName
);
1315 auto EltAlign
= commonAlignment(Align
, Offset
.getKnownMinValue());
1316 Instruction
*NS
= IC
.Builder
.CreateAlignedStore(Val
, Ptr
, EltAlign
);
1317 NS
->setAAMetadata(SI
.getAAMetadata());
1327 /// equivalentAddressValues - Test if A and B will obviously have the same
1328 /// value. This includes recognizing that %t0 and %t1 will have the same
1329 /// value in code like this:
1330 /// %t0 = getelementptr \@a, 0, 3
1331 /// store i32 0, i32* %t0
1332 /// %t1 = getelementptr \@a, 0, 3
1333 /// %t2 = load i32* %t1
1335 static bool equivalentAddressValues(Value
*A
, Value
*B
) {
1336 // Test if the values are trivially equivalent.
1337 if (A
== B
) return true;
1339 // Test if the values come form identical arithmetic instructions.
1340 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1341 // its only used to compare two uses within the same basic block, which
1342 // means that they'll always either have the same value or one of them
1343 // will have an undefined value.
1344 if (isa
<BinaryOperator
>(A
) ||
1347 isa
<GetElementPtrInst
>(A
))
1348 if (Instruction
*BI
= dyn_cast
<Instruction
>(B
))
1349 if (cast
<Instruction
>(A
)->isIdenticalToWhenDefined(BI
))
1352 // Otherwise they may not be equivalent.
1356 Instruction
*InstCombinerImpl::visitStoreInst(StoreInst
&SI
) {
1357 Value
*Val
= SI
.getOperand(0);
1358 Value
*Ptr
= SI
.getOperand(1);
1360 // Try to canonicalize the stored type.
1361 if (combineStoreToValueType(*this, SI
))
1362 return eraseInstFromFunction(SI
);
1364 if (!EnableInferAlignmentPass
) {
1365 // Attempt to improve the alignment.
1366 const Align KnownAlign
= getOrEnforceKnownAlignment(
1367 Ptr
, DL
.getPrefTypeAlign(Val
->getType()), DL
, &SI
, &AC
, &DT
);
1368 if (KnownAlign
> SI
.getAlign())
1369 SI
.setAlignment(KnownAlign
);
1372 // Try to canonicalize the stored type.
1373 if (unpackStoreToAggregate(*this, SI
))
1374 return eraseInstFromFunction(SI
);
1376 // Replace GEP indices if possible.
1377 if (Instruction
*NewGEPI
= replaceGEPIdxWithZero(*this, Ptr
, SI
))
1378 return replaceOperand(SI
, 1, NewGEPI
);
1380 // Don't hack volatile/ordered stores.
1381 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1382 if (!SI
.isUnordered()) return nullptr;
1384 // If the RHS is an alloca with a single use, zapify the store, making the
1386 if (Ptr
->hasOneUse()) {
1387 if (isa
<AllocaInst
>(Ptr
))
1388 return eraseInstFromFunction(SI
);
1389 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
)) {
1390 if (isa
<AllocaInst
>(GEP
->getOperand(0))) {
1391 if (GEP
->getOperand(0)->hasOneUse())
1392 return eraseInstFromFunction(SI
);
1397 // If we have a store to a location which is known constant, we can conclude
1398 // that the store must be storing the constant value (else the memory
1399 // wouldn't be constant), and this must be a noop.
1400 if (!isModSet(AA
->getModRefInfoMask(Ptr
)))
1401 return eraseInstFromFunction(SI
);
1403 // Do really simple DSE, to catch cases where there are several consecutive
1404 // stores to the same location, separated by a few arithmetic operations. This
1405 // situation often occurs with bitfield accesses.
1406 BasicBlock::iterator
BBI(SI
);
1407 for (unsigned ScanInsts
= 6; BBI
!= SI
.getParent()->begin() && ScanInsts
;
1410 // Don't count debug info directives, lest they affect codegen,
1411 // and we skip pointer-to-pointer bitcasts, which are NOPs.
1412 if (BBI
->isDebugOrPseudoInst()) {
1417 if (StoreInst
*PrevSI
= dyn_cast
<StoreInst
>(BBI
)) {
1418 // Prev store isn't volatile, and stores to the same location?
1419 if (PrevSI
->isUnordered() &&
1420 equivalentAddressValues(PrevSI
->getOperand(1), SI
.getOperand(1)) &&
1421 PrevSI
->getValueOperand()->getType() ==
1422 SI
.getValueOperand()->getType()) {
1424 // Manually add back the original store to the worklist now, so it will
1425 // be processed after the operands of the removed store, as this may
1426 // expose additional DSE opportunities.
1428 eraseInstFromFunction(*PrevSI
);
1434 // If this is a load, we have to stop. However, if the loaded value is from
1435 // the pointer we're loading and is producing the pointer we're storing,
1436 // then *this* store is dead (X = load P; store X -> P).
1437 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
)) {
1438 if (LI
== Val
&& equivalentAddressValues(LI
->getOperand(0), Ptr
)) {
1439 assert(SI
.isUnordered() && "can't eliminate ordering operation");
1440 return eraseInstFromFunction(SI
);
1443 // Otherwise, this is a load from some other location. Stores before it
1448 // Don't skip over loads, throws or things that can modify memory.
1449 if (BBI
->mayWriteToMemory() || BBI
->mayReadFromMemory() || BBI
->mayThrow())
1453 // store X, null -> turns into 'unreachable' in SimplifyCFG
1454 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1455 if (canSimplifyNullStoreOrGEP(SI
)) {
1456 if (!isa
<PoisonValue
>(Val
))
1457 return replaceOperand(SI
, 0, PoisonValue::get(Val
->getType()));
1458 return nullptr; // Do not modify these!
1461 // This is a non-terminator unreachable marker. Don't remove it.
1462 if (isa
<UndefValue
>(Ptr
)) {
1463 // Remove guaranteed-to-transfer instructions before the marker.
1464 if (removeInstructionsBeforeUnreachable(SI
))
1467 // Remove all instructions after the marker and handle dead blocks this
1469 SmallVector
<BasicBlock
*> Worklist
;
1470 handleUnreachableFrom(SI
.getNextNode(), Worklist
);
1471 handlePotentiallyDeadBlocks(Worklist
);
1475 // store undef, Ptr -> noop
1476 // FIXME: This is technically incorrect because it might overwrite a poison
1477 // value. Change to PoisonValue once #52930 is resolved.
1478 if (isa
<UndefValue
>(Val
))
1479 return eraseInstFromFunction(SI
);
1484 /// Try to transform:
1485 /// if () { *P = v1; } else { *P = v2 }
1487 /// *P = v1; if () { *P = v2; }
1488 /// into a phi node with a store in the successor.
1489 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst
&SI
) {
1490 if (!SI
.isUnordered())
1491 return false; // This code has not been audited for volatile/ordered case.
1493 // Check if the successor block has exactly 2 incoming edges.
1494 BasicBlock
*StoreBB
= SI
.getParent();
1495 BasicBlock
*DestBB
= StoreBB
->getTerminator()->getSuccessor(0);
1496 if (!DestBB
->hasNPredecessors(2))
1499 // Capture the other block (the block that doesn't contain our store).
1500 pred_iterator PredIter
= pred_begin(DestBB
);
1501 if (*PredIter
== StoreBB
)
1503 BasicBlock
*OtherBB
= *PredIter
;
1505 // Bail out if all of the relevant blocks aren't distinct. This can happen,
1506 // for example, if SI is in an infinite loop.
1507 if (StoreBB
== DestBB
|| OtherBB
== DestBB
)
1510 // Verify that the other block ends in a branch and is not otherwise empty.
1511 BasicBlock::iterator
BBI(OtherBB
->getTerminator());
1512 BranchInst
*OtherBr
= dyn_cast
<BranchInst
>(BBI
);
1513 if (!OtherBr
|| BBI
== OtherBB
->begin())
1516 auto OtherStoreIsMergeable
= [&](StoreInst
*OtherStore
) -> bool {
1518 OtherStore
->getPointerOperand() != SI
.getPointerOperand())
1521 auto *SIVTy
= SI
.getValueOperand()->getType();
1522 auto *OSVTy
= OtherStore
->getValueOperand()->getType();
1523 return CastInst::isBitOrNoopPointerCastable(OSVTy
, SIVTy
, DL
) &&
1524 SI
.hasSameSpecialState(OtherStore
);
1527 // If the other block ends in an unconditional branch, check for the 'if then
1528 // else' case. There is an instruction before the branch.
1529 StoreInst
*OtherStore
= nullptr;
1530 if (OtherBr
->isUnconditional()) {
1532 // Skip over debugging info and pseudo probes.
1533 while (BBI
->isDebugOrPseudoInst()) {
1534 if (BBI
==OtherBB
->begin())
1538 // If this isn't a store, isn't a store to the same location, or is not the
1539 // right kind of store, bail out.
1540 OtherStore
= dyn_cast
<StoreInst
>(BBI
);
1541 if (!OtherStoreIsMergeable(OtherStore
))
1544 // Otherwise, the other block ended with a conditional branch. If one of the
1545 // destinations is StoreBB, then we have the if/then case.
1546 if (OtherBr
->getSuccessor(0) != StoreBB
&&
1547 OtherBr
->getSuccessor(1) != StoreBB
)
1550 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1551 // if/then triangle. See if there is a store to the same ptr as SI that
1552 // lives in OtherBB.
1554 // Check to see if we find the matching store.
1555 OtherStore
= dyn_cast
<StoreInst
>(BBI
);
1556 if (OtherStoreIsMergeable(OtherStore
))
1559 // If we find something that may be using or overwriting the stored
1560 // value, or if we run out of instructions, we can't do the transform.
1561 if (BBI
->mayReadFromMemory() || BBI
->mayThrow() ||
1562 BBI
->mayWriteToMemory() || BBI
== OtherBB
->begin())
1566 // In order to eliminate the store in OtherBr, we have to make sure nothing
1567 // reads or overwrites the stored value in StoreBB.
1568 for (BasicBlock::iterator I
= StoreBB
->begin(); &*I
!= &SI
; ++I
) {
1569 // FIXME: This should really be AA driven.
1570 if (I
->mayReadFromMemory() || I
->mayThrow() || I
->mayWriteToMemory())
1575 // Insert a PHI node now if we need it.
1576 Value
*MergedVal
= OtherStore
->getValueOperand();
1577 // The debug locations of the original instructions might differ. Merge them.
1578 DebugLoc MergedLoc
= DILocation::getMergedLocation(SI
.getDebugLoc(),
1579 OtherStore
->getDebugLoc());
1580 if (MergedVal
!= SI
.getValueOperand()) {
1582 PHINode::Create(SI
.getValueOperand()->getType(), 2, "storemerge");
1583 PN
->addIncoming(SI
.getValueOperand(), SI
.getParent());
1584 Builder
.SetInsertPoint(OtherStore
);
1585 PN
->addIncoming(Builder
.CreateBitOrPointerCast(MergedVal
, PN
->getType()),
1587 MergedVal
= InsertNewInstBefore(PN
, DestBB
->begin());
1588 PN
->setDebugLoc(MergedLoc
);
1591 // Advance to a place where it is safe to insert the new store and insert it.
1592 BBI
= DestBB
->getFirstInsertionPt();
1594 new StoreInst(MergedVal
, SI
.getOperand(1), SI
.isVolatile(), SI
.getAlign(),
1595 SI
.getOrdering(), SI
.getSyncScopeID());
1596 InsertNewInstBefore(NewSI
, BBI
);
1597 NewSI
->setDebugLoc(MergedLoc
);
1598 NewSI
->mergeDIAssignID({&SI
, OtherStore
});
1600 // If the two stores had AA tags, merge them.
1601 AAMDNodes AATags
= SI
.getAAMetadata();
1603 NewSI
->setAAMetadata(AATags
.merge(OtherStore
->getAAMetadata()));
1605 // Nuke the old stores.
1606 eraseInstFromFunction(SI
);
1607 eraseInstFromFunction(*OtherStore
);