[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombineMulDivRem.cpp
blob6c3adf00c189a8edd2dc5794b8fa0918160becc2
1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Transforms/InstCombine/InstCombiner.h"
34 #include "llvm/Transforms/Utils/BuildLibCalls.h"
35 #include <cassert>
37 #define DEBUG_TYPE "instcombine"
38 #include "llvm/Transforms/Utils/InstructionWorklist.h"
40 using namespace llvm;
41 using namespace PatternMatch;
43 /// The specific integer value is used in a context where it is known to be
44 /// non-zero. If this allows us to simplify the computation, do so and return
45 /// the new operand, otherwise return null.
46 static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
47 Instruction &CxtI) {
48 // If V has multiple uses, then we would have to do more analysis to determine
49 // if this is safe. For example, the use could be in dynamically unreached
50 // code.
51 if (!V->hasOneUse()) return nullptr;
53 bool MadeChange = false;
55 // ((1 << A) >>u B) --> (1 << (A-B))
56 // Because V cannot be zero, we know that B is less than A.
57 Value *A = nullptr, *B = nullptr, *One = nullptr;
58 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
59 match(One, m_One())) {
60 A = IC.Builder.CreateSub(A, B);
61 return IC.Builder.CreateShl(One, A);
64 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
65 // inexact. Similarly for <<.
66 BinaryOperator *I = dyn_cast<BinaryOperator>(V);
67 if (I && I->isLogicalShift() &&
68 IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
69 // We know that this is an exact/nuw shift and that the input is a
70 // non-zero context as well.
71 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
72 IC.replaceOperand(*I, 0, V2);
73 MadeChange = true;
76 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
77 I->setIsExact();
78 MadeChange = true;
81 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
82 I->setHasNoUnsignedWrap();
83 MadeChange = true;
87 // TODO: Lots more we could do here:
88 // If V is a phi node, we can call this on each of its operands.
89 // "select cond, X, 0" can simplify to "X".
91 return MadeChange ? V : nullptr;
94 // TODO: This is a specific form of a much more general pattern.
95 // We could detect a select with any binop identity constant, or we
96 // could use SimplifyBinOp to see if either arm of the select reduces.
97 // But that needs to be done carefully and/or while removing potential
98 // reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
99 static Value *foldMulSelectToNegate(BinaryOperator &I,
100 InstCombiner::BuilderTy &Builder) {
101 Value *Cond, *OtherOp;
103 // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
104 // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
105 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
106 m_Value(OtherOp)))) {
107 bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
108 Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
109 return Builder.CreateSelect(Cond, OtherOp, Neg);
111 // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
112 // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
113 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
114 m_Value(OtherOp)))) {
115 bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
116 Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
117 return Builder.CreateSelect(Cond, Neg, OtherOp);
120 // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
121 // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
122 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
123 m_SpecificFP(-1.0))),
124 m_Value(OtherOp)))) {
125 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
126 Builder.setFastMathFlags(I.getFastMathFlags());
127 return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
130 // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
131 // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
132 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
133 m_SpecificFP(1.0))),
134 m_Value(OtherOp)))) {
135 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
136 Builder.setFastMathFlags(I.getFastMathFlags());
137 return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
140 return nullptr;
143 /// Reduce integer multiplication patterns that contain a (+/-1 << Z) factor.
144 /// Callers are expected to call this twice to handle commuted patterns.
145 static Value *foldMulShl1(BinaryOperator &Mul, bool CommuteOperands,
146 InstCombiner::BuilderTy &Builder) {
147 Value *X = Mul.getOperand(0), *Y = Mul.getOperand(1);
148 if (CommuteOperands)
149 std::swap(X, Y);
151 const bool HasNSW = Mul.hasNoSignedWrap();
152 const bool HasNUW = Mul.hasNoUnsignedWrap();
154 // X * (1 << Z) --> X << Z
155 Value *Z;
156 if (match(Y, m_Shl(m_One(), m_Value(Z)))) {
157 bool PropagateNSW = HasNSW && cast<ShlOperator>(Y)->hasNoSignedWrap();
158 return Builder.CreateShl(X, Z, Mul.getName(), HasNUW, PropagateNSW);
161 // Similar to above, but an increment of the shifted value becomes an add:
162 // X * ((1 << Z) + 1) --> (X * (1 << Z)) + X --> (X << Z) + X
163 // This increases uses of X, so it may require a freeze, but that is still
164 // expected to be an improvement because it removes the multiply.
165 BinaryOperator *Shift;
166 if (match(Y, m_OneUse(m_Add(m_BinOp(Shift), m_One()))) &&
167 match(Shift, m_OneUse(m_Shl(m_One(), m_Value(Z))))) {
168 bool PropagateNSW = HasNSW && Shift->hasNoSignedWrap();
169 Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
170 Value *Shl = Builder.CreateShl(FrX, Z, "mulshl", HasNUW, PropagateNSW);
171 return Builder.CreateAdd(Shl, FrX, Mul.getName(), HasNUW, PropagateNSW);
174 // Similar to above, but a decrement of the shifted value is disguised as
175 // 'not' and becomes a sub:
176 // X * (~(-1 << Z)) --> X * ((1 << Z) - 1) --> (X << Z) - X
177 // This increases uses of X, so it may require a freeze, but that is still
178 // expected to be an improvement because it removes the multiply.
179 if (match(Y, m_OneUse(m_Not(m_OneUse(m_Shl(m_AllOnes(), m_Value(Z))))))) {
180 Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
181 Value *Shl = Builder.CreateShl(FrX, Z, "mulshl");
182 return Builder.CreateSub(Shl, FrX, Mul.getName());
185 return nullptr;
188 static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth,
189 bool AssumeNonZero, bool DoFold);
191 Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
192 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
193 if (Value *V =
194 simplifyMulInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
195 SQ.getWithInstruction(&I)))
196 return replaceInstUsesWith(I, V);
198 if (SimplifyAssociativeOrCommutative(I))
199 return &I;
201 if (Instruction *X = foldVectorBinop(I))
202 return X;
204 if (Instruction *Phi = foldBinopWithPhiOperands(I))
205 return Phi;
207 if (Value *V = foldUsingDistributiveLaws(I))
208 return replaceInstUsesWith(I, V);
210 Type *Ty = I.getType();
211 const unsigned BitWidth = Ty->getScalarSizeInBits();
212 const bool HasNSW = I.hasNoSignedWrap();
213 const bool HasNUW = I.hasNoUnsignedWrap();
215 // X * -1 --> 0 - X
216 if (match(Op1, m_AllOnes())) {
217 return HasNSW ? BinaryOperator::CreateNSWNeg(Op0)
218 : BinaryOperator::CreateNeg(Op0);
221 // Also allow combining multiply instructions on vectors.
223 Value *NewOp;
224 Constant *C1, *C2;
225 const APInt *IVal;
226 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
227 m_Constant(C1))) &&
228 match(C1, m_APInt(IVal))) {
229 // ((X << C2)*C1) == (X * (C1 << C2))
230 Constant *Shl = ConstantExpr::getShl(C1, C2);
231 BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
232 BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
233 if (HasNUW && Mul->hasNoUnsignedWrap())
234 BO->setHasNoUnsignedWrap();
235 if (HasNSW && Mul->hasNoSignedWrap() && Shl->isNotMinSignedValue())
236 BO->setHasNoSignedWrap();
237 return BO;
240 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
241 // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
242 if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
243 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
245 if (HasNUW)
246 Shl->setHasNoUnsignedWrap();
247 if (HasNSW) {
248 const APInt *V;
249 if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
250 Shl->setHasNoSignedWrap();
253 return Shl;
258 if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
259 // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
260 // The "* (1<<C)" thus becomes a potential shifting opportunity.
261 if (Value *NegOp0 =
262 Negator::Negate(/*IsNegation*/ true, HasNSW, Op0, *this)) {
263 auto *Op1C = cast<Constant>(Op1);
264 return replaceInstUsesWith(
265 I, Builder.CreateMul(NegOp0, ConstantExpr::getNeg(Op1C), "",
266 /* HasNUW */ false,
267 HasNSW && Op1C->isNotMinSignedValue()));
270 // Try to convert multiply of extended operand to narrow negate and shift
271 // for better analysis.
272 // This is valid if the shift amount (trailing zeros in the multiplier
273 // constant) clears more high bits than the bitwidth difference between
274 // source and destination types:
275 // ({z/s}ext X) * (-1<<C) --> (zext (-X)) << C
276 const APInt *NegPow2C;
277 Value *X;
278 if (match(Op0, m_ZExtOrSExt(m_Value(X))) &&
279 match(Op1, m_APIntAllowUndef(NegPow2C))) {
280 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
281 unsigned ShiftAmt = NegPow2C->countr_zero();
282 if (ShiftAmt >= BitWidth - SrcWidth) {
283 Value *N = Builder.CreateNeg(X, X->getName() + ".neg");
284 Value *Z = Builder.CreateZExt(N, Ty, N->getName() + ".z");
285 return BinaryOperator::CreateShl(Z, ConstantInt::get(Ty, ShiftAmt));
290 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
291 return FoldedMul;
293 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
294 return replaceInstUsesWith(I, FoldedMul);
296 // Simplify mul instructions with a constant RHS.
297 Constant *MulC;
298 if (match(Op1, m_ImmConstant(MulC))) {
299 // Canonicalize (X+C1)*MulC -> X*MulC+C1*MulC.
300 // Canonicalize (X|C1)*MulC -> X*MulC+C1*MulC.
301 Value *X;
302 Constant *C1;
303 if (match(Op0, m_OneUse(m_AddLike(m_Value(X), m_ImmConstant(C1))))) {
304 // C1*MulC simplifies to a tidier constant.
305 Value *NewC = Builder.CreateMul(C1, MulC);
306 auto *BOp0 = cast<BinaryOperator>(Op0);
307 bool Op0NUW =
308 (BOp0->getOpcode() == Instruction::Or || BOp0->hasNoUnsignedWrap());
309 Value *NewMul = Builder.CreateMul(X, MulC);
310 auto *BO = BinaryOperator::CreateAdd(NewMul, NewC);
311 if (HasNUW && Op0NUW) {
312 // If NewMulBO is constant we also can set BO to nuw.
313 if (auto *NewMulBO = dyn_cast<BinaryOperator>(NewMul))
314 NewMulBO->setHasNoUnsignedWrap();
315 BO->setHasNoUnsignedWrap();
317 return BO;
321 // abs(X) * abs(X) -> X * X
322 // nabs(X) * nabs(X) -> X * X
323 if (Op0 == Op1) {
324 Value *X, *Y;
325 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
326 if (SPF == SPF_ABS || SPF == SPF_NABS)
327 return BinaryOperator::CreateMul(X, X);
329 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
330 return BinaryOperator::CreateMul(X, X);
334 Value *X, *Y;
335 // abs(X) * abs(Y) -> abs(X * Y)
336 if (I.hasNoSignedWrap() &&
337 match(Op0,
338 m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One()))) &&
339 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(Y), m_One()))))
340 return replaceInstUsesWith(
341 I, Builder.CreateBinaryIntrinsic(Intrinsic::abs,
342 Builder.CreateNSWMul(X, Y),
343 Builder.getTrue()));
346 // -X * C --> X * -C
347 Value *X, *Y;
348 Constant *Op1C;
349 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
350 return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
352 // -X * -Y --> X * Y
353 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
354 auto *NewMul = BinaryOperator::CreateMul(X, Y);
355 if (HasNSW && cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
356 cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
357 NewMul->setHasNoSignedWrap();
358 return NewMul;
361 // -X * Y --> -(X * Y)
362 // X * -Y --> -(X * Y)
363 if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
364 return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
366 // (-X * Y) * -X --> (X * Y) * X
367 // (-X << Y) * -X --> (X << Y) * X
368 if (match(Op1, m_Neg(m_Value(X)))) {
369 if (Value *NegOp0 = Negator::Negate(false, /*IsNSW*/ false, Op0, *this))
370 return BinaryOperator::CreateMul(NegOp0, X);
373 // (X / Y) * Y = X - (X % Y)
374 // (X / Y) * -Y = (X % Y) - X
376 Value *Y = Op1;
377 BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
378 if (!Div || (Div->getOpcode() != Instruction::UDiv &&
379 Div->getOpcode() != Instruction::SDiv)) {
380 Y = Op0;
381 Div = dyn_cast<BinaryOperator>(Op1);
383 Value *Neg = dyn_castNegVal(Y);
384 if (Div && Div->hasOneUse() &&
385 (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
386 (Div->getOpcode() == Instruction::UDiv ||
387 Div->getOpcode() == Instruction::SDiv)) {
388 Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
390 // If the division is exact, X % Y is zero, so we end up with X or -X.
391 if (Div->isExact()) {
392 if (DivOp1 == Y)
393 return replaceInstUsesWith(I, X);
394 return BinaryOperator::CreateNeg(X);
397 auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
398 : Instruction::SRem;
399 // X must be frozen because we are increasing its number of uses.
400 Value *XFreeze = Builder.CreateFreeze(X, X->getName() + ".fr");
401 Value *Rem = Builder.CreateBinOp(RemOpc, XFreeze, DivOp1);
402 if (DivOp1 == Y)
403 return BinaryOperator::CreateSub(XFreeze, Rem);
404 return BinaryOperator::CreateSub(Rem, XFreeze);
408 // Fold the following two scenarios:
409 // 1) i1 mul -> i1 and.
410 // 2) X * Y --> X & Y, iff X, Y can be only {0,1}.
411 // Note: We could use known bits to generalize this and related patterns with
412 // shifts/truncs
413 if (Ty->isIntOrIntVectorTy(1) ||
414 (match(Op0, m_And(m_Value(), m_One())) &&
415 match(Op1, m_And(m_Value(), m_One()))))
416 return BinaryOperator::CreateAnd(Op0, Op1);
418 if (Value *R = foldMulShl1(I, /* CommuteOperands */ false, Builder))
419 return replaceInstUsesWith(I, R);
420 if (Value *R = foldMulShl1(I, /* CommuteOperands */ true, Builder))
421 return replaceInstUsesWith(I, R);
423 // (zext bool X) * (zext bool Y) --> zext (and X, Y)
424 // (sext bool X) * (sext bool Y) --> zext (and X, Y)
425 // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
426 if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
427 (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
428 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
429 (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
430 Value *And = Builder.CreateAnd(X, Y, "mulbool");
431 return CastInst::Create(Instruction::ZExt, And, Ty);
433 // (sext bool X) * (zext bool Y) --> sext (and X, Y)
434 // (zext bool X) * (sext bool Y) --> sext (and X, Y)
435 // Note: -1 * 1 == 1 * -1 == -1
436 if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
437 (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
438 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
439 (Op0->hasOneUse() || Op1->hasOneUse())) {
440 Value *And = Builder.CreateAnd(X, Y, "mulbool");
441 return CastInst::Create(Instruction::SExt, And, Ty);
444 // (zext bool X) * Y --> X ? Y : 0
445 // Y * (zext bool X) --> X ? Y : 0
446 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
447 return SelectInst::Create(X, Op1, ConstantInt::getNullValue(Ty));
448 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
449 return SelectInst::Create(X, Op0, ConstantInt::getNullValue(Ty));
451 Constant *ImmC;
452 if (match(Op1, m_ImmConstant(ImmC))) {
453 // (sext bool X) * C --> X ? -C : 0
454 if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
455 Constant *NegC = ConstantExpr::getNeg(ImmC);
456 return SelectInst::Create(X, NegC, ConstantInt::getNullValue(Ty));
459 // (ashr i32 X, 31) * C --> (X < 0) ? -C : 0
460 const APInt *C;
461 if (match(Op0, m_OneUse(m_AShr(m_Value(X), m_APInt(C)))) &&
462 *C == C->getBitWidth() - 1) {
463 Constant *NegC = ConstantExpr::getNeg(ImmC);
464 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
465 return SelectInst::Create(IsNeg, NegC, ConstantInt::getNullValue(Ty));
469 // (lshr X, 31) * Y --> (X < 0) ? Y : 0
470 // TODO: We are not checking one-use because the elimination of the multiply
471 // is better for analysis?
472 const APInt *C;
473 if (match(&I, m_c_BinOp(m_LShr(m_Value(X), m_APInt(C)), m_Value(Y))) &&
474 *C == C->getBitWidth() - 1) {
475 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
476 return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
479 // (and X, 1) * Y --> (trunc X) ? Y : 0
480 if (match(&I, m_c_BinOp(m_OneUse(m_And(m_Value(X), m_One())), m_Value(Y)))) {
481 Value *Tr = Builder.CreateTrunc(X, CmpInst::makeCmpResultType(Ty));
482 return SelectInst::Create(Tr, Y, ConstantInt::getNullValue(Ty));
485 // ((ashr X, 31) | 1) * X --> abs(X)
486 // X * ((ashr X, 31) | 1) --> abs(X)
487 if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
488 m_SpecificIntAllowUndef(BitWidth - 1)),
489 m_One()),
490 m_Deferred(X)))) {
491 Value *Abs = Builder.CreateBinaryIntrinsic(
492 Intrinsic::abs, X, ConstantInt::getBool(I.getContext(), HasNSW));
493 Abs->takeName(&I);
494 return replaceInstUsesWith(I, Abs);
497 if (Instruction *Ext = narrowMathIfNoOverflow(I))
498 return Ext;
500 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
501 return Res;
503 // (mul Op0 Op1):
504 // if Log2(Op0) folds away ->
505 // (shl Op1, Log2(Op0))
506 // if Log2(Op1) folds away ->
507 // (shl Op0, Log2(Op1))
508 if (takeLog2(Builder, Op0, /*Depth*/ 0, /*AssumeNonZero*/ false,
509 /*DoFold*/ false)) {
510 Value *Res = takeLog2(Builder, Op0, /*Depth*/ 0, /*AssumeNonZero*/ false,
511 /*DoFold*/ true);
512 BinaryOperator *Shl = BinaryOperator::CreateShl(Op1, Res);
513 // We can only propegate nuw flag.
514 Shl->setHasNoUnsignedWrap(HasNUW);
515 return Shl;
517 if (takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ false,
518 /*DoFold*/ false)) {
519 Value *Res = takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ false,
520 /*DoFold*/ true);
521 BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, Res);
522 // We can only propegate nuw flag.
523 Shl->setHasNoUnsignedWrap(HasNUW);
524 return Shl;
527 bool Changed = false;
528 if (!HasNSW && willNotOverflowSignedMul(Op0, Op1, I)) {
529 Changed = true;
530 I.setHasNoSignedWrap(true);
533 if (!HasNUW && willNotOverflowUnsignedMul(Op0, Op1, I)) {
534 Changed = true;
535 I.setHasNoUnsignedWrap(true);
538 return Changed ? &I : nullptr;
541 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
542 BinaryOperator::BinaryOps Opcode = I.getOpcode();
543 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
544 "Expected fmul or fdiv");
546 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
547 Value *X, *Y;
549 // -X * -Y --> X * Y
550 // -X / -Y --> X / Y
551 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
552 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
554 // fabs(X) * fabs(X) -> X * X
555 // fabs(X) / fabs(X) -> X / X
556 if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
557 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
559 // fabs(X) * fabs(Y) --> fabs(X * Y)
560 // fabs(X) / fabs(Y) --> fabs(X / Y)
561 if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
562 (Op0->hasOneUse() || Op1->hasOneUse())) {
563 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
564 Builder.setFastMathFlags(I.getFastMathFlags());
565 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
566 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
567 Fabs->takeName(&I);
568 return replaceInstUsesWith(I, Fabs);
571 return nullptr;
574 Instruction *InstCombinerImpl::foldFMulReassoc(BinaryOperator &I) {
575 Value *Op0 = I.getOperand(0);
576 Value *Op1 = I.getOperand(1);
577 Value *X, *Y;
578 Constant *C;
580 // Reassociate constant RHS with another constant to form constant
581 // expression.
582 if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
583 Constant *C1;
584 if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
585 // (C1 / X) * C --> (C * C1) / X
586 Constant *CC1 =
587 ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
588 if (CC1 && CC1->isNormalFP())
589 return BinaryOperator::CreateFDivFMF(CC1, X, &I);
591 if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
592 // (X / C1) * C --> X * (C / C1)
593 Constant *CDivC1 =
594 ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
595 if (CDivC1 && CDivC1->isNormalFP())
596 return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
598 // If the constant was a denormal, try reassociating differently.
599 // (X / C1) * C --> X / (C1 / C)
600 Constant *C1DivC =
601 ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
602 if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
603 return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
606 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
607 // canonicalized to 'fadd X, C'. Distributing the multiply may allow
608 // further folds and (X * C) + C2 is 'fma'.
609 if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
610 // (X + C1) * C --> (X * C) + (C * C1)
611 if (Constant *CC1 =
612 ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
613 Value *XC = Builder.CreateFMulFMF(X, C, &I);
614 return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
617 if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
618 // (C1 - X) * C --> (C * C1) - (X * C)
619 if (Constant *CC1 =
620 ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
621 Value *XC = Builder.CreateFMulFMF(X, C, &I);
622 return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
627 Value *Z;
628 if (match(&I,
629 m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))), m_Value(Z)))) {
630 // Sink division: (X / Y) * Z --> (X * Z) / Y
631 Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
632 return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
635 // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
636 // nnan disallows the possibility of returning a number if both operands are
637 // negative (in that case, we should return NaN).
638 if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
639 match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
640 Value *XY = Builder.CreateFMulFMF(X, Y, &I);
641 Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
642 return replaceInstUsesWith(I, Sqrt);
645 // The following transforms are done irrespective of the number of uses
646 // for the expression "1.0/sqrt(X)".
647 // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
648 // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
649 // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
650 // has the necessary (reassoc) fast-math-flags.
651 if (I.hasNoSignedZeros() &&
652 match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
653 match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
654 return BinaryOperator::CreateFDivFMF(X, Y, &I);
655 if (I.hasNoSignedZeros() &&
656 match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
657 match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
658 return BinaryOperator::CreateFDivFMF(X, Y, &I);
660 // Like the similar transform in instsimplify, this requires 'nsz' because
661 // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
662 if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && Op0->hasNUses(2)) {
663 // Peek through fdiv to find squaring of square root:
664 // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
665 if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
666 Value *XX = Builder.CreateFMulFMF(X, X, &I);
667 return BinaryOperator::CreateFDivFMF(XX, Y, &I);
669 // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
670 if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
671 Value *XX = Builder.CreateFMulFMF(X, X, &I);
672 return BinaryOperator::CreateFDivFMF(Y, XX, &I);
676 // pow(X, Y) * X --> pow(X, Y+1)
677 // X * pow(X, Y) --> pow(X, Y+1)
678 if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
679 m_Value(Y))),
680 m_Deferred(X)))) {
681 Value *Y1 = Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
682 Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
683 return replaceInstUsesWith(I, Pow);
686 if (I.isOnlyUserOfAnyOperand()) {
687 // pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
688 if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
689 match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
690 auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
691 auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
692 return replaceInstUsesWith(I, NewPow);
694 // pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
695 if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
696 match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
697 auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
698 auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
699 return replaceInstUsesWith(I, NewPow);
702 // powi(x, y) * powi(x, z) -> powi(x, y + z)
703 if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
704 match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
705 Y->getType() == Z->getType()) {
706 auto *YZ = Builder.CreateAdd(Y, Z);
707 auto *NewPow = Builder.CreateIntrinsic(
708 Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
709 return replaceInstUsesWith(I, NewPow);
712 // exp(X) * exp(Y) -> exp(X + Y)
713 if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
714 match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
715 Value *XY = Builder.CreateFAddFMF(X, Y, &I);
716 Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
717 return replaceInstUsesWith(I, Exp);
720 // exp2(X) * exp2(Y) -> exp2(X + Y)
721 if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
722 match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
723 Value *XY = Builder.CreateFAddFMF(X, Y, &I);
724 Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
725 return replaceInstUsesWith(I, Exp2);
729 // (X*Y) * X => (X*X) * Y where Y != X
730 // The purpose is two-fold:
731 // 1) to form a power expression (of X).
732 // 2) potentially shorten the critical path: After transformation, the
733 // latency of the instruction Y is amortized by the expression of X*X,
734 // and therefore Y is in a "less critical" position compared to what it
735 // was before the transformation.
736 if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && Op1 != Y) {
737 Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
738 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
740 if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && Op0 != Y) {
741 Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
742 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
745 return nullptr;
748 Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
749 if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1),
750 I.getFastMathFlags(),
751 SQ.getWithInstruction(&I)))
752 return replaceInstUsesWith(I, V);
754 if (SimplifyAssociativeOrCommutative(I))
755 return &I;
757 if (Instruction *X = foldVectorBinop(I))
758 return X;
760 if (Instruction *Phi = foldBinopWithPhiOperands(I))
761 return Phi;
763 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
764 return FoldedMul;
766 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
767 return replaceInstUsesWith(I, FoldedMul);
769 if (Instruction *R = foldFPSignBitOps(I))
770 return R;
772 // X * -1.0 --> -X
773 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
774 if (match(Op1, m_SpecificFP(-1.0)))
775 return UnaryOperator::CreateFNegFMF(Op0, &I);
777 // With no-nans: X * 0.0 --> copysign(0.0, X)
778 if (I.hasNoNaNs() && match(Op1, m_PosZeroFP())) {
779 CallInst *CopySign = Builder.CreateIntrinsic(Intrinsic::copysign,
780 {I.getType()}, {Op1, Op0}, &I);
781 return replaceInstUsesWith(I, CopySign);
784 // -X * C --> X * -C
785 Value *X, *Y;
786 Constant *C;
787 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
788 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
789 return BinaryOperator::CreateFMulFMF(X, NegC, &I);
791 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
792 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
793 return replaceInstUsesWith(I, V);
795 if (I.hasAllowReassoc())
796 if (Instruction *FoldedMul = foldFMulReassoc(I))
797 return FoldedMul;
799 // log2(X * 0.5) * Y = log2(X) * Y - Y
800 if (I.isFast()) {
801 IntrinsicInst *Log2 = nullptr;
802 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
803 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
804 Log2 = cast<IntrinsicInst>(Op0);
805 Y = Op1;
807 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
808 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
809 Log2 = cast<IntrinsicInst>(Op1);
810 Y = Op0;
812 if (Log2) {
813 Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
814 Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
815 return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
819 // Simplify FMUL recurrences starting with 0.0 to 0.0 if nnan and nsz are set.
820 // Given a phi node with entry value as 0 and it used in fmul operation,
821 // we can replace fmul with 0 safely and eleminate loop operation.
822 PHINode *PN = nullptr;
823 Value *Start = nullptr, *Step = nullptr;
824 if (matchSimpleRecurrence(&I, PN, Start, Step) && I.hasNoNaNs() &&
825 I.hasNoSignedZeros() && match(Start, m_Zero()))
826 return replaceInstUsesWith(I, Start);
828 // minimum(X, Y) * maximum(X, Y) => X * Y.
829 if (match(&I,
830 m_c_FMul(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)),
831 m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X),
832 m_Deferred(Y))))) {
833 BinaryOperator *Result = BinaryOperator::CreateFMulFMF(X, Y, &I);
834 // We cannot preserve ninf if nnan flag is not set.
835 // If X is NaN and Y is Inf then in original program we had NaN * NaN,
836 // while in optimized version NaN * Inf and this is a poison with ninf flag.
837 if (!Result->hasNoNaNs())
838 Result->setHasNoInfs(false);
839 return Result;
842 return nullptr;
845 /// Fold a divide or remainder with a select instruction divisor when one of the
846 /// select operands is zero. In that case, we can use the other select operand
847 /// because div/rem by zero is undefined.
848 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
849 SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
850 if (!SI)
851 return false;
853 int NonNullOperand;
854 if (match(SI->getTrueValue(), m_Zero()))
855 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
856 NonNullOperand = 2;
857 else if (match(SI->getFalseValue(), m_Zero()))
858 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
859 NonNullOperand = 1;
860 else
861 return false;
863 // Change the div/rem to use 'Y' instead of the select.
864 replaceOperand(I, 1, SI->getOperand(NonNullOperand));
866 // Okay, we know we replace the operand of the div/rem with 'Y' with no
867 // problem. However, the select, or the condition of the select may have
868 // multiple uses. Based on our knowledge that the operand must be non-zero,
869 // propagate the known value for the select into other uses of it, and
870 // propagate a known value of the condition into its other users.
872 // If the select and condition only have a single use, don't bother with this,
873 // early exit.
874 Value *SelectCond = SI->getCondition();
875 if (SI->use_empty() && SelectCond->hasOneUse())
876 return true;
878 // Scan the current block backward, looking for other uses of SI.
879 BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
880 Type *CondTy = SelectCond->getType();
881 while (BBI != BBFront) {
882 --BBI;
883 // If we found an instruction that we can't assume will return, so
884 // information from below it cannot be propagated above it.
885 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
886 break;
888 // Replace uses of the select or its condition with the known values.
889 for (Use &Op : BBI->operands()) {
890 if (Op == SI) {
891 replaceUse(Op, SI->getOperand(NonNullOperand));
892 Worklist.push(&*BBI);
893 } else if (Op == SelectCond) {
894 replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
895 : ConstantInt::getFalse(CondTy));
896 Worklist.push(&*BBI);
900 // If we past the instruction, quit looking for it.
901 if (&*BBI == SI)
902 SI = nullptr;
903 if (&*BBI == SelectCond)
904 SelectCond = nullptr;
906 // If we ran out of things to eliminate, break out of the loop.
907 if (!SelectCond && !SI)
908 break;
911 return true;
914 /// True if the multiply can not be expressed in an int this size.
915 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
916 bool IsSigned) {
917 bool Overflow;
918 Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
919 return Overflow;
922 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
923 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
924 bool IsSigned) {
925 assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
927 // Bail if we will divide by zero.
928 if (C2.isZero())
929 return false;
931 // Bail if we would divide INT_MIN by -1.
932 if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
933 return false;
935 APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
936 if (IsSigned)
937 APInt::sdivrem(C1, C2, Quotient, Remainder);
938 else
939 APInt::udivrem(C1, C2, Quotient, Remainder);
941 return Remainder.isMinValue();
944 static Value *foldIDivShl(BinaryOperator &I, InstCombiner::BuilderTy &Builder) {
945 assert((I.getOpcode() == Instruction::SDiv ||
946 I.getOpcode() == Instruction::UDiv) &&
947 "Expected integer divide");
949 bool IsSigned = I.getOpcode() == Instruction::SDiv;
950 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
951 Type *Ty = I.getType();
953 Value *X, *Y, *Z;
955 // With appropriate no-wrap constraints, remove a common factor in the
956 // dividend and divisor that is disguised as a left-shifted value.
957 if (match(Op1, m_Shl(m_Value(X), m_Value(Z))) &&
958 match(Op0, m_c_Mul(m_Specific(X), m_Value(Y)))) {
959 // Both operands must have the matching no-wrap for this kind of division.
960 auto *Mul = cast<OverflowingBinaryOperator>(Op0);
961 auto *Shl = cast<OverflowingBinaryOperator>(Op1);
962 bool HasNUW = Mul->hasNoUnsignedWrap() && Shl->hasNoUnsignedWrap();
963 bool HasNSW = Mul->hasNoSignedWrap() && Shl->hasNoSignedWrap();
965 // (X * Y) u/ (X << Z) --> Y u>> Z
966 if (!IsSigned && HasNUW)
967 return Builder.CreateLShr(Y, Z, "", I.isExact());
969 // (X * Y) s/ (X << Z) --> Y s/ (1 << Z)
970 if (IsSigned && HasNSW && (Op0->hasOneUse() || Op1->hasOneUse())) {
971 Value *Shl = Builder.CreateShl(ConstantInt::get(Ty, 1), Z);
972 return Builder.CreateSDiv(Y, Shl, "", I.isExact());
976 // With appropriate no-wrap constraints, remove a common factor in the
977 // dividend and divisor that is disguised as a left-shift amount.
978 if (match(Op0, m_Shl(m_Value(X), m_Value(Z))) &&
979 match(Op1, m_Shl(m_Value(Y), m_Specific(Z)))) {
980 auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
981 auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
983 // For unsigned div, we need 'nuw' on both shifts or
984 // 'nsw' on both shifts + 'nuw' on the dividend.
985 // (X << Z) / (Y << Z) --> X / Y
986 if (!IsSigned &&
987 ((Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap()) ||
988 (Shl0->hasNoUnsignedWrap() && Shl0->hasNoSignedWrap() &&
989 Shl1->hasNoSignedWrap())))
990 return Builder.CreateUDiv(X, Y, "", I.isExact());
992 // For signed div, we need 'nsw' on both shifts + 'nuw' on the divisor.
993 // (X << Z) / (Y << Z) --> X / Y
994 if (IsSigned && Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap() &&
995 Shl1->hasNoUnsignedWrap())
996 return Builder.CreateSDiv(X, Y, "", I.isExact());
999 // If X << Y and X << Z does not overflow, then:
1000 // (X << Y) / (X << Z) -> (1 << Y) / (1 << Z) -> 1 << Y >> Z
1001 if (match(Op0, m_Shl(m_Value(X), m_Value(Y))) &&
1002 match(Op1, m_Shl(m_Specific(X), m_Value(Z)))) {
1003 auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
1004 auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
1006 if (IsSigned ? (Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap())
1007 : (Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap())) {
1008 Constant *One = ConstantInt::get(X->getType(), 1);
1009 // Only preserve the nsw flag if dividend has nsw
1010 // or divisor has nsw and operator is sdiv.
1011 Value *Dividend = Builder.CreateShl(
1012 One, Y, "shl.dividend",
1013 /*HasNUW*/ true,
1014 /*HasNSW*/
1015 IsSigned ? (Shl0->hasNoUnsignedWrap() || Shl1->hasNoUnsignedWrap())
1016 : Shl0->hasNoSignedWrap());
1017 return Builder.CreateLShr(Dividend, Z, "", I.isExact());
1021 return nullptr;
1024 /// This function implements the transforms common to both integer division
1025 /// instructions (udiv and sdiv). It is called by the visitors to those integer
1026 /// division instructions.
1027 /// Common integer divide transforms
1028 Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
1029 if (Instruction *Phi = foldBinopWithPhiOperands(I))
1030 return Phi;
1032 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1033 bool IsSigned = I.getOpcode() == Instruction::SDiv;
1034 Type *Ty = I.getType();
1036 // The RHS is known non-zero.
1037 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1038 return replaceOperand(I, 1, V);
1040 // Handle cases involving: [su]div X, (select Cond, Y, Z)
1041 // This does not apply for fdiv.
1042 if (simplifyDivRemOfSelectWithZeroOp(I))
1043 return &I;
1045 // If the divisor is a select-of-constants, try to constant fold all div ops:
1046 // C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC)
1047 // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
1048 if (match(Op0, m_ImmConstant()) &&
1049 match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
1050 if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
1051 /*FoldWithMultiUse*/ true))
1052 return R;
1055 const APInt *C2;
1056 if (match(Op1, m_APInt(C2))) {
1057 Value *X;
1058 const APInt *C1;
1060 // (X / C1) / C2 -> X / (C1*C2)
1061 if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
1062 (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
1063 APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
1064 if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
1065 return BinaryOperator::Create(I.getOpcode(), X,
1066 ConstantInt::get(Ty, Product));
1069 APInt Quotient(C2->getBitWidth(), /*val=*/0ULL, IsSigned);
1070 if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
1071 (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
1073 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
1074 if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
1075 auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
1076 ConstantInt::get(Ty, Quotient));
1077 NewDiv->setIsExact(I.isExact());
1078 return NewDiv;
1081 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
1082 if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
1083 auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
1084 ConstantInt::get(Ty, Quotient));
1085 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
1086 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1087 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1088 return Mul;
1092 if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
1093 C1->ult(C1->getBitWidth() - 1)) ||
1094 (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
1095 C1->ult(C1->getBitWidth()))) {
1096 APInt C1Shifted = APInt::getOneBitSet(
1097 C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
1099 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
1100 if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
1101 auto *BO = BinaryOperator::Create(I.getOpcode(), X,
1102 ConstantInt::get(Ty, Quotient));
1103 BO->setIsExact(I.isExact());
1104 return BO;
1107 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
1108 if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
1109 auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
1110 ConstantInt::get(Ty, Quotient));
1111 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
1112 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1113 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1114 return Mul;
1118 // Distribute div over add to eliminate a matching div/mul pair:
1119 // ((X * C2) + C1) / C2 --> X + C1/C2
1120 // We need a multiple of the divisor for a signed add constant, but
1121 // unsigned is fine with any constant pair.
1122 if (IsSigned &&
1123 match(Op0, m_NSWAdd(m_NSWMul(m_Value(X), m_SpecificInt(*C2)),
1124 m_APInt(C1))) &&
1125 isMultiple(*C1, *C2, Quotient, IsSigned)) {
1126 return BinaryOperator::CreateNSWAdd(X, ConstantInt::get(Ty, Quotient));
1128 if (!IsSigned &&
1129 match(Op0, m_NUWAdd(m_NUWMul(m_Value(X), m_SpecificInt(*C2)),
1130 m_APInt(C1)))) {
1131 return BinaryOperator::CreateNUWAdd(X,
1132 ConstantInt::get(Ty, C1->udiv(*C2)));
1135 if (!C2->isZero()) // avoid X udiv 0
1136 if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
1137 return FoldedDiv;
1140 if (match(Op0, m_One())) {
1141 assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
1142 if (IsSigned) {
1143 // 1 / 0 --> undef ; 1 / 1 --> 1 ; 1 / -1 --> -1 ; 1 / anything else --> 0
1144 // (Op1 + 1) u< 3 ? Op1 : 0
1145 // Op1 must be frozen because we are increasing its number of uses.
1146 Value *F1 = Builder.CreateFreeze(Op1, Op1->getName() + ".fr");
1147 Value *Inc = Builder.CreateAdd(F1, Op0);
1148 Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
1149 return SelectInst::Create(Cmp, F1, ConstantInt::get(Ty, 0));
1150 } else {
1151 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
1152 // result is one, otherwise it's zero.
1153 return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
1157 // See if we can fold away this div instruction.
1158 if (SimplifyDemandedInstructionBits(I))
1159 return &I;
1161 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
1162 Value *X, *Z;
1163 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
1164 if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
1165 (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
1166 return BinaryOperator::Create(I.getOpcode(), X, Op1);
1168 // (X << Y) / X -> 1 << Y
1169 Value *Y;
1170 if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
1171 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
1172 if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
1173 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
1175 // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
1176 if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
1177 bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
1178 bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
1179 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
1180 replaceOperand(I, 0, ConstantInt::get(Ty, 1));
1181 replaceOperand(I, 1, Y);
1182 return &I;
1186 // (X << Z) / (X * Y) -> (1 << Z) / Y
1187 // TODO: Handle sdiv.
1188 if (!IsSigned && Op1->hasOneUse() &&
1189 match(Op0, m_NUWShl(m_Value(X), m_Value(Z))) &&
1190 match(Op1, m_c_Mul(m_Specific(X), m_Value(Y))))
1191 if (cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap()) {
1192 Instruction *NewDiv = BinaryOperator::CreateUDiv(
1193 Builder.CreateShl(ConstantInt::get(Ty, 1), Z, "", /*NUW*/ true), Y);
1194 NewDiv->setIsExact(I.isExact());
1195 return NewDiv;
1198 if (Value *R = foldIDivShl(I, Builder))
1199 return replaceInstUsesWith(I, R);
1201 // With the appropriate no-wrap constraint, remove a multiply by the divisor
1202 // after peeking through another divide:
1203 // ((Op1 * X) / Y) / Op1 --> X / Y
1204 if (match(Op0, m_BinOp(I.getOpcode(), m_c_Mul(m_Specific(Op1), m_Value(X)),
1205 m_Value(Y)))) {
1206 auto *InnerDiv = cast<PossiblyExactOperator>(Op0);
1207 auto *Mul = cast<OverflowingBinaryOperator>(InnerDiv->getOperand(0));
1208 Instruction *NewDiv = nullptr;
1209 if (!IsSigned && Mul->hasNoUnsignedWrap())
1210 NewDiv = BinaryOperator::CreateUDiv(X, Y);
1211 else if (IsSigned && Mul->hasNoSignedWrap())
1212 NewDiv = BinaryOperator::CreateSDiv(X, Y);
1214 // Exact propagates only if both of the original divides are exact.
1215 if (NewDiv) {
1216 NewDiv->setIsExact(I.isExact() && InnerDiv->isExact());
1217 return NewDiv;
1221 // (X * Y) / (X * Z) --> Y / Z (and commuted variants)
1222 if (match(Op0, m_Mul(m_Value(X), m_Value(Y)))) {
1223 auto OB0HasNSW = cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap();
1224 auto OB0HasNUW = cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap();
1226 auto CreateDivOrNull = [&](Value *A, Value *B) -> Instruction * {
1227 auto OB1HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
1228 auto OB1HasNUW =
1229 cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
1230 const APInt *C1, *C2;
1231 if (IsSigned && OB0HasNSW) {
1232 if (OB1HasNSW && match(B, m_APInt(C1)) && !C1->isAllOnes())
1233 return BinaryOperator::CreateSDiv(A, B);
1235 if (!IsSigned && OB0HasNUW) {
1236 if (OB1HasNUW)
1237 return BinaryOperator::CreateUDiv(A, B);
1238 if (match(A, m_APInt(C1)) && match(B, m_APInt(C2)) && C2->ule(*C1))
1239 return BinaryOperator::CreateUDiv(A, B);
1241 return nullptr;
1244 if (match(Op1, m_c_Mul(m_Specific(X), m_Value(Z)))) {
1245 if (auto *Val = CreateDivOrNull(Y, Z))
1246 return Val;
1248 if (match(Op1, m_c_Mul(m_Specific(Y), m_Value(Z)))) {
1249 if (auto *Val = CreateDivOrNull(X, Z))
1250 return Val;
1253 return nullptr;
1256 static const unsigned MaxDepth = 6;
1258 // Take the exact integer log2 of the value. If DoFold is true, create the
1259 // actual instructions, otherwise return a non-null dummy value. Return nullptr
1260 // on failure.
1261 static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth,
1262 bool AssumeNonZero, bool DoFold) {
1263 auto IfFold = [DoFold](function_ref<Value *()> Fn) {
1264 if (!DoFold)
1265 return reinterpret_cast<Value *>(-1);
1266 return Fn();
1269 // FIXME: assert that Op1 isn't/doesn't contain undef.
1271 // log2(2^C) -> C
1272 if (match(Op, m_Power2()))
1273 return IfFold([&]() {
1274 Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op));
1275 if (!C)
1276 llvm_unreachable("Failed to constant fold udiv -> logbase2");
1277 return C;
1280 // The remaining tests are all recursive, so bail out if we hit the limit.
1281 if (Depth++ == MaxDepth)
1282 return nullptr;
1284 // log2(zext X) -> zext log2(X)
1285 // FIXME: Require one use?
1286 Value *X, *Y;
1287 if (match(Op, m_ZExt(m_Value(X))))
1288 if (Value *LogX = takeLog2(Builder, X, Depth, AssumeNonZero, DoFold))
1289 return IfFold([&]() { return Builder.CreateZExt(LogX, Op->getType()); });
1291 // log2(X << Y) -> log2(X) + Y
1292 // FIXME: Require one use unless X is 1?
1293 if (match(Op, m_Shl(m_Value(X), m_Value(Y)))) {
1294 auto *BO = cast<OverflowingBinaryOperator>(Op);
1295 // nuw will be set if the `shl` is trivially non-zero.
1296 if (AssumeNonZero || BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap())
1297 if (Value *LogX = takeLog2(Builder, X, Depth, AssumeNonZero, DoFold))
1298 return IfFold([&]() { return Builder.CreateAdd(LogX, Y); });
1301 // log2(Cond ? X : Y) -> Cond ? log2(X) : log2(Y)
1302 // FIXME: missed optimization: if one of the hands of select is/contains
1303 // undef, just directly pick the other one.
1304 // FIXME: can both hands contain undef?
1305 // FIXME: Require one use?
1306 if (SelectInst *SI = dyn_cast<SelectInst>(Op))
1307 if (Value *LogX = takeLog2(Builder, SI->getOperand(1), Depth,
1308 AssumeNonZero, DoFold))
1309 if (Value *LogY = takeLog2(Builder, SI->getOperand(2), Depth,
1310 AssumeNonZero, DoFold))
1311 return IfFold([&]() {
1312 return Builder.CreateSelect(SI->getOperand(0), LogX, LogY);
1315 // log2(umin(X, Y)) -> umin(log2(X), log2(Y))
1316 // log2(umax(X, Y)) -> umax(log2(X), log2(Y))
1317 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op);
1318 if (MinMax && MinMax->hasOneUse() && !MinMax->isSigned()) {
1319 // Use AssumeNonZero as false here. Otherwise we can hit case where
1320 // log2(umax(X, Y)) != umax(log2(X), log2(Y)) (because overflow).
1321 if (Value *LogX = takeLog2(Builder, MinMax->getLHS(), Depth,
1322 /*AssumeNonZero*/ false, DoFold))
1323 if (Value *LogY = takeLog2(Builder, MinMax->getRHS(), Depth,
1324 /*AssumeNonZero*/ false, DoFold))
1325 return IfFold([&]() {
1326 return Builder.CreateBinaryIntrinsic(MinMax->getIntrinsicID(), LogX,
1327 LogY);
1331 return nullptr;
1334 /// If we have zero-extended operands of an unsigned div or rem, we may be able
1335 /// to narrow the operation (sink the zext below the math).
1336 static Instruction *narrowUDivURem(BinaryOperator &I,
1337 InstCombinerImpl &IC) {
1338 Instruction::BinaryOps Opcode = I.getOpcode();
1339 Value *N = I.getOperand(0);
1340 Value *D = I.getOperand(1);
1341 Type *Ty = I.getType();
1342 Value *X, *Y;
1343 if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
1344 X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
1345 // udiv (zext X), (zext Y) --> zext (udiv X, Y)
1346 // urem (zext X), (zext Y) --> zext (urem X, Y)
1347 Value *NarrowOp = IC.Builder.CreateBinOp(Opcode, X, Y);
1348 return new ZExtInst(NarrowOp, Ty);
1351 Constant *C;
1352 if (isa<Instruction>(N) && match(N, m_OneUse(m_ZExt(m_Value(X)))) &&
1353 match(D, m_Constant(C))) {
1354 // If the constant is the same in the smaller type, use the narrow version.
1355 Constant *TruncC = IC.getLosslessUnsignedTrunc(C, X->getType());
1356 if (!TruncC)
1357 return nullptr;
1359 // udiv (zext X), C --> zext (udiv X, C')
1360 // urem (zext X), C --> zext (urem X, C')
1361 return new ZExtInst(IC.Builder.CreateBinOp(Opcode, X, TruncC), Ty);
1363 if (isa<Instruction>(D) && match(D, m_OneUse(m_ZExt(m_Value(X)))) &&
1364 match(N, m_Constant(C))) {
1365 // If the constant is the same in the smaller type, use the narrow version.
1366 Constant *TruncC = IC.getLosslessUnsignedTrunc(C, X->getType());
1367 if (!TruncC)
1368 return nullptr;
1370 // udiv C, (zext X) --> zext (udiv C', X)
1371 // urem C, (zext X) --> zext (urem C', X)
1372 return new ZExtInst(IC.Builder.CreateBinOp(Opcode, TruncC, X), Ty);
1375 return nullptr;
1378 Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
1379 if (Value *V = simplifyUDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1380 SQ.getWithInstruction(&I)))
1381 return replaceInstUsesWith(I, V);
1383 if (Instruction *X = foldVectorBinop(I))
1384 return X;
1386 // Handle the integer div common cases
1387 if (Instruction *Common = commonIDivTransforms(I))
1388 return Common;
1390 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1391 Value *X;
1392 const APInt *C1, *C2;
1393 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1394 // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1395 bool Overflow;
1396 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1397 if (!Overflow) {
1398 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1399 BinaryOperator *BO = BinaryOperator::CreateUDiv(
1400 X, ConstantInt::get(X->getType(), C2ShlC1));
1401 if (IsExact)
1402 BO->setIsExact();
1403 return BO;
1407 // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1408 // TODO: Could use isKnownNegative() to handle non-constant values.
1409 Type *Ty = I.getType();
1410 if (match(Op1, m_Negative())) {
1411 Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1412 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1414 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1415 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1416 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1417 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1420 if (Instruction *NarrowDiv = narrowUDivURem(I, *this))
1421 return NarrowDiv;
1423 Value *A, *B;
1425 // Look through a right-shift to find the common factor:
1426 // ((Op1 *nuw A) >> B) / Op1 --> A >> B
1427 if (match(Op0, m_LShr(m_NUWMul(m_Specific(Op1), m_Value(A)), m_Value(B))) ||
1428 match(Op0, m_LShr(m_NUWMul(m_Value(A), m_Specific(Op1)), m_Value(B)))) {
1429 Instruction *Lshr = BinaryOperator::CreateLShr(A, B);
1430 if (I.isExact() && cast<PossiblyExactOperator>(Op0)->isExact())
1431 Lshr->setIsExact();
1432 return Lshr;
1435 // Op1 udiv Op2 -> Op1 lshr log2(Op2), if log2() folds away.
1436 if (takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ true,
1437 /*DoFold*/ false)) {
1438 Value *Res = takeLog2(Builder, Op1, /*Depth*/ 0,
1439 /*AssumeNonZero*/ true, /*DoFold*/ true);
1440 return replaceInstUsesWith(
1441 I, Builder.CreateLShr(Op0, Res, I.getName(), I.isExact()));
1444 return nullptr;
1447 Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
1448 if (Value *V = simplifySDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1449 SQ.getWithInstruction(&I)))
1450 return replaceInstUsesWith(I, V);
1452 if (Instruction *X = foldVectorBinop(I))
1453 return X;
1455 // Handle the integer div common cases
1456 if (Instruction *Common = commonIDivTransforms(I))
1457 return Common;
1459 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1460 Type *Ty = I.getType();
1461 Value *X;
1462 // sdiv Op0, -1 --> -Op0
1463 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1464 if (match(Op1, m_AllOnes()) ||
1465 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1466 return BinaryOperator::CreateNSWNeg(Op0);
1468 // X / INT_MIN --> X == INT_MIN
1469 if (match(Op1, m_SignMask()))
1470 return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1472 if (I.isExact()) {
1473 // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
1474 if (match(Op1, m_Power2()) && match(Op1, m_NonNegative())) {
1475 Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
1476 return BinaryOperator::CreateExactAShr(Op0, C);
1479 // sdiv exact X, (1<<ShAmt) --> ashr exact X, ShAmt (if shl is non-negative)
1480 Value *ShAmt;
1481 if (match(Op1, m_NSWShl(m_One(), m_Value(ShAmt))))
1482 return BinaryOperator::CreateExactAShr(Op0, ShAmt);
1484 // sdiv exact X, -1<<C --> -(ashr exact X, C)
1485 if (match(Op1, m_NegatedPower2())) {
1486 Constant *NegPow2C = ConstantExpr::getNeg(cast<Constant>(Op1));
1487 Constant *C = ConstantExpr::getExactLogBase2(NegPow2C);
1488 Value *Ashr = Builder.CreateAShr(Op0, C, I.getName() + ".neg", true);
1489 return BinaryOperator::CreateNSWNeg(Ashr);
1493 const APInt *Op1C;
1494 if (match(Op1, m_APInt(Op1C))) {
1495 // If the dividend is sign-extended and the constant divisor is small enough
1496 // to fit in the source type, shrink the division to the narrower type:
1497 // (sext X) sdiv C --> sext (X sdiv C)
1498 Value *Op0Src;
1499 if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1500 Op0Src->getType()->getScalarSizeInBits() >=
1501 Op1C->getSignificantBits()) {
1503 // In the general case, we need to make sure that the dividend is not the
1504 // minimum signed value because dividing that by -1 is UB. But here, we
1505 // know that the -1 divisor case is already handled above.
1507 Constant *NarrowDivisor =
1508 ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1509 Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1510 return new SExtInst(NarrowOp, Ty);
1513 // -X / C --> X / -C (if the negation doesn't overflow).
1514 // TODO: This could be enhanced to handle arbitrary vector constants by
1515 // checking if all elements are not the min-signed-val.
1516 if (!Op1C->isMinSignedValue() &&
1517 match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1518 Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1519 Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1520 BO->setIsExact(I.isExact());
1521 return BO;
1525 // -X / Y --> -(X / Y)
1526 Value *Y;
1527 if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1528 return BinaryOperator::CreateNSWNeg(
1529 Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1531 // abs(X) / X --> X > -1 ? 1 : -1
1532 // X / abs(X) --> X > -1 ? 1 : -1
1533 if (match(&I, m_c_BinOp(
1534 m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1535 m_Deferred(X)))) {
1536 Value *Cond = Builder.CreateIsNotNeg(X);
1537 return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
1538 ConstantInt::getAllOnesValue(Ty));
1541 KnownBits KnownDividend = computeKnownBits(Op0, 0, &I);
1542 if (!I.isExact() &&
1543 (match(Op1, m_Power2(Op1C)) || match(Op1, m_NegatedPower2(Op1C))) &&
1544 KnownDividend.countMinTrailingZeros() >= Op1C->countr_zero()) {
1545 I.setIsExact();
1546 return &I;
1549 if (KnownDividend.isNonNegative()) {
1550 // If both operands are unsigned, turn this into a udiv.
1551 if (isKnownNonNegative(Op1, SQ.getWithInstruction(&I))) {
1552 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1553 BO->setIsExact(I.isExact());
1554 return BO;
1557 if (match(Op1, m_NegatedPower2())) {
1558 // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1559 // -> -(X udiv (1 << C)) -> -(X u>> C)
1560 Constant *CNegLog2 = ConstantExpr::getExactLogBase2(
1561 ConstantExpr::getNeg(cast<Constant>(Op1)));
1562 Value *Shr = Builder.CreateLShr(Op0, CNegLog2, I.getName(), I.isExact());
1563 return BinaryOperator::CreateNeg(Shr);
1566 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1567 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1568 // Safe because the only negative value (1 << Y) can take on is
1569 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1570 // the sign bit set.
1571 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1572 BO->setIsExact(I.isExact());
1573 return BO;
1577 // -X / X --> X == INT_MIN ? 1 : -1
1578 if (isKnownNegation(Op0, Op1)) {
1579 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1580 Value *Cond = Builder.CreateICmpEQ(Op0, ConstantInt::get(Ty, MinVal));
1581 return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
1582 ConstantInt::getAllOnesValue(Ty));
1584 return nullptr;
1587 /// Remove negation and try to convert division into multiplication.
1588 Instruction *InstCombinerImpl::foldFDivConstantDivisor(BinaryOperator &I) {
1589 Constant *C;
1590 if (!match(I.getOperand(1), m_Constant(C)))
1591 return nullptr;
1593 // -X / C --> X / -C
1594 Value *X;
1595 const DataLayout &DL = I.getModule()->getDataLayout();
1596 if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1597 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
1598 return BinaryOperator::CreateFDivFMF(X, NegC, &I);
1600 // nnan X / +0.0 -> copysign(inf, X)
1601 if (I.hasNoNaNs() && match(I.getOperand(1), m_Zero())) {
1602 IRBuilder<> B(&I);
1603 // TODO: nnan nsz X / -0.0 -> copysign(inf, X)
1604 CallInst *CopySign = B.CreateIntrinsic(
1605 Intrinsic::copysign, {C->getType()},
1606 {ConstantFP::getInfinity(I.getType()), I.getOperand(0)}, &I);
1607 CopySign->takeName(&I);
1608 return replaceInstUsesWith(I, CopySign);
1611 // If the constant divisor has an exact inverse, this is always safe. If not,
1612 // then we can still create a reciprocal if fast-math-flags allow it and the
1613 // constant is a regular number (not zero, infinite, or denormal).
1614 if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1615 return nullptr;
1617 // Disallow denormal constants because we don't know what would happen
1618 // on all targets.
1619 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1620 // denorms are flushed?
1621 auto *RecipC = ConstantFoldBinaryOpOperands(
1622 Instruction::FDiv, ConstantFP::get(I.getType(), 1.0), C, DL);
1623 if (!RecipC || !RecipC->isNormalFP())
1624 return nullptr;
1626 // X / C --> X * (1 / C)
1627 return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1630 /// Remove negation and try to reassociate constant math.
1631 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1632 Constant *C;
1633 if (!match(I.getOperand(0), m_Constant(C)))
1634 return nullptr;
1636 // C / -X --> -C / X
1637 Value *X;
1638 const DataLayout &DL = I.getModule()->getDataLayout();
1639 if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1640 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
1641 return BinaryOperator::CreateFDivFMF(NegC, X, &I);
1643 if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1644 return nullptr;
1646 // Try to reassociate C / X expressions where X includes another constant.
1647 Constant *C2, *NewC = nullptr;
1648 if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1649 // C / (X * C2) --> (C / C2) / X
1650 NewC = ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C2, DL);
1651 } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1652 // C / (X / C2) --> (C * C2) / X
1653 NewC = ConstantFoldBinaryOpOperands(Instruction::FMul, C, C2, DL);
1655 // Disallow denormal constants because we don't know what would happen
1656 // on all targets.
1657 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1658 // denorms are flushed?
1659 if (!NewC || !NewC->isNormalFP())
1660 return nullptr;
1662 return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1665 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
1666 static Instruction *foldFDivPowDivisor(BinaryOperator &I,
1667 InstCombiner::BuilderTy &Builder) {
1668 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1669 auto *II = dyn_cast<IntrinsicInst>(Op1);
1670 if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
1671 !I.hasAllowReciprocal())
1672 return nullptr;
1674 // Z / pow(X, Y) --> Z * pow(X, -Y)
1675 // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1676 // In the general case, this creates an extra instruction, but fmul allows
1677 // for better canonicalization and optimization than fdiv.
1678 Intrinsic::ID IID = II->getIntrinsicID();
1679 SmallVector<Value *> Args;
1680 switch (IID) {
1681 case Intrinsic::pow:
1682 Args.push_back(II->getArgOperand(0));
1683 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
1684 break;
1685 case Intrinsic::powi: {
1686 // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1687 // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1688 // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1689 // non-standard results, so this corner case should be acceptable if the
1690 // code rules out INF values.
1691 if (!I.hasNoInfs())
1692 return nullptr;
1693 Args.push_back(II->getArgOperand(0));
1694 Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
1695 Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
1696 Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
1697 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1699 case Intrinsic::exp:
1700 case Intrinsic::exp2:
1701 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
1702 break;
1703 default:
1704 return nullptr;
1706 Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
1707 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1710 Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
1711 Module *M = I.getModule();
1713 if (Value *V = simplifyFDivInst(I.getOperand(0), I.getOperand(1),
1714 I.getFastMathFlags(),
1715 SQ.getWithInstruction(&I)))
1716 return replaceInstUsesWith(I, V);
1718 if (Instruction *X = foldVectorBinop(I))
1719 return X;
1721 if (Instruction *Phi = foldBinopWithPhiOperands(I))
1722 return Phi;
1724 if (Instruction *R = foldFDivConstantDivisor(I))
1725 return R;
1727 if (Instruction *R = foldFDivConstantDividend(I))
1728 return R;
1730 if (Instruction *R = foldFPSignBitOps(I))
1731 return R;
1733 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1734 if (isa<Constant>(Op0))
1735 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1736 if (Instruction *R = FoldOpIntoSelect(I, SI))
1737 return R;
1739 if (isa<Constant>(Op1))
1740 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1741 if (Instruction *R = FoldOpIntoSelect(I, SI))
1742 return R;
1744 if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1745 Value *X, *Y;
1746 if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1747 (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1748 // (X / Y) / Z => X / (Y * Z)
1749 Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1750 return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1752 if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1753 (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1754 // Z / (X / Y) => (Y * Z) / X
1755 Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1756 return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1758 // Z / (1.0 / Y) => (Y * Z)
1760 // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1761 // m_OneUse check is avoided because even in the case of the multiple uses
1762 // for 1.0/Y, the number of instructions remain the same and a division is
1763 // replaced by a multiplication.
1764 if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1765 return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1768 if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1769 // sin(X) / cos(X) -> tan(X)
1770 // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1771 Value *X;
1772 bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1773 match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1774 bool IsCot =
1775 !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1776 match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1778 if ((IsTan || IsCot) && hasFloatFn(M, &TLI, I.getType(), LibFunc_tan,
1779 LibFunc_tanf, LibFunc_tanl)) {
1780 IRBuilder<> B(&I);
1781 IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1782 B.setFastMathFlags(I.getFastMathFlags());
1783 AttributeList Attrs =
1784 cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1785 Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1786 LibFunc_tanl, B, Attrs);
1787 if (IsCot)
1788 Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1789 return replaceInstUsesWith(I, Res);
1793 // X / (X * Y) --> 1.0 / Y
1794 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1795 // We can ignore the possibility that X is infinity because INF/INF is NaN.
1796 Value *X, *Y;
1797 if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1798 match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1799 replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1800 replaceOperand(I, 1, Y);
1801 return &I;
1804 // X / fabs(X) -> copysign(1.0, X)
1805 // fabs(X) / X -> copysign(1.0, X)
1806 if (I.hasNoNaNs() && I.hasNoInfs() &&
1807 (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
1808 match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
1809 Value *V = Builder.CreateBinaryIntrinsic(
1810 Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1811 return replaceInstUsesWith(I, V);
1814 if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
1815 return Mul;
1817 // pow(X, Y) / X --> pow(X, Y-1)
1818 if (I.hasAllowReassoc() &&
1819 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Specific(Op1),
1820 m_Value(Y))))) {
1821 Value *Y1 =
1822 Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), -1.0), &I);
1823 Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, Op1, Y1, &I);
1824 return replaceInstUsesWith(I, Pow);
1827 // powi(X, Y) / X --> powi(X, Y-1)
1828 // This is legal when (Y - 1) can't wraparound, in which case reassoc and nnan
1829 // are required.
1830 // TODO: Multi-use may be also better off creating Powi(x,y-1)
1831 if (I.hasAllowReassoc() && I.hasNoNaNs() &&
1832 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::powi>(m_Specific(Op1),
1833 m_Value(Y)))) &&
1834 willNotOverflowSignedSub(Y, ConstantInt::get(Y->getType(), 1), I)) {
1835 Constant *NegOne = ConstantInt::getAllOnesValue(Y->getType());
1836 Value *Y1 = Builder.CreateAdd(Y, NegOne);
1837 Type *Types[] = {Op1->getType(), Y1->getType()};
1838 Value *Pow = Builder.CreateIntrinsic(Intrinsic::powi, Types, {Op1, Y1}, &I);
1839 return replaceInstUsesWith(I, Pow);
1842 return nullptr;
1845 // Variety of transform for:
1846 // (urem/srem (mul X, Y), (mul X, Z))
1847 // (urem/srem (shl X, Y), (shl X, Z))
1848 // (urem/srem (shl Y, X), (shl Z, X))
1849 // NB: The shift cases are really just extensions of the mul case. We treat
1850 // shift as Val * (1 << Amt).
1851 static Instruction *simplifyIRemMulShl(BinaryOperator &I,
1852 InstCombinerImpl &IC) {
1853 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *X = nullptr;
1854 APInt Y, Z;
1855 bool ShiftByX = false;
1857 // If V is not nullptr, it will be matched using m_Specific.
1858 auto MatchShiftOrMulXC = [](Value *Op, Value *&V, APInt &C) -> bool {
1859 const APInt *Tmp = nullptr;
1860 if ((!V && match(Op, m_Mul(m_Value(V), m_APInt(Tmp)))) ||
1861 (V && match(Op, m_Mul(m_Specific(V), m_APInt(Tmp)))))
1862 C = *Tmp;
1863 else if ((!V && match(Op, m_Shl(m_Value(V), m_APInt(Tmp)))) ||
1864 (V && match(Op, m_Shl(m_Specific(V), m_APInt(Tmp)))))
1865 C = APInt(Tmp->getBitWidth(), 1) << *Tmp;
1866 if (Tmp != nullptr)
1867 return true;
1869 // Reset `V` so we don't start with specific value on next match attempt.
1870 V = nullptr;
1871 return false;
1874 auto MatchShiftCX = [](Value *Op, APInt &C, Value *&V) -> bool {
1875 const APInt *Tmp = nullptr;
1876 if ((!V && match(Op, m_Shl(m_APInt(Tmp), m_Value(V)))) ||
1877 (V && match(Op, m_Shl(m_APInt(Tmp), m_Specific(V))))) {
1878 C = *Tmp;
1879 return true;
1882 // Reset `V` so we don't start with specific value on next match attempt.
1883 V = nullptr;
1884 return false;
1887 if (MatchShiftOrMulXC(Op0, X, Y) && MatchShiftOrMulXC(Op1, X, Z)) {
1888 // pass
1889 } else if (MatchShiftCX(Op0, Y, X) && MatchShiftCX(Op1, Z, X)) {
1890 ShiftByX = true;
1891 } else {
1892 return nullptr;
1895 bool IsSRem = I.getOpcode() == Instruction::SRem;
1897 OverflowingBinaryOperator *BO0 = cast<OverflowingBinaryOperator>(Op0);
1898 // TODO: We may be able to deduce more about nsw/nuw of BO0/BO1 based on Y >=
1899 // Z or Z >= Y.
1900 bool BO0HasNSW = BO0->hasNoSignedWrap();
1901 bool BO0HasNUW = BO0->hasNoUnsignedWrap();
1902 bool BO0NoWrap = IsSRem ? BO0HasNSW : BO0HasNUW;
1904 APInt RemYZ = IsSRem ? Y.srem(Z) : Y.urem(Z);
1905 // (rem (mul nuw/nsw X, Y), (mul X, Z))
1906 // if (rem Y, Z) == 0
1907 // -> 0
1908 if (RemYZ.isZero() && BO0NoWrap)
1909 return IC.replaceInstUsesWith(I, ConstantInt::getNullValue(I.getType()));
1911 // Helper function to emit either (RemSimplificationC << X) or
1912 // (RemSimplificationC * X) depending on whether we matched Op0/Op1 as
1913 // (shl V, X) or (mul V, X) respectively.
1914 auto CreateMulOrShift =
1915 [&](const APInt &RemSimplificationC) -> BinaryOperator * {
1916 Value *RemSimplification =
1917 ConstantInt::get(I.getType(), RemSimplificationC);
1918 return ShiftByX ? BinaryOperator::CreateShl(RemSimplification, X)
1919 : BinaryOperator::CreateMul(X, RemSimplification);
1922 OverflowingBinaryOperator *BO1 = cast<OverflowingBinaryOperator>(Op1);
1923 bool BO1HasNSW = BO1->hasNoSignedWrap();
1924 bool BO1HasNUW = BO1->hasNoUnsignedWrap();
1925 bool BO1NoWrap = IsSRem ? BO1HasNSW : BO1HasNUW;
1926 // (rem (mul X, Y), (mul nuw/nsw X, Z))
1927 // if (rem Y, Z) == Y
1928 // -> (mul nuw/nsw X, Y)
1929 if (RemYZ == Y && BO1NoWrap) {
1930 BinaryOperator *BO = CreateMulOrShift(Y);
1931 // Copy any overflow flags from Op0.
1932 BO->setHasNoSignedWrap(IsSRem || BO0HasNSW);
1933 BO->setHasNoUnsignedWrap(!IsSRem || BO0HasNUW);
1934 return BO;
1937 // (rem (mul nuw/nsw X, Y), (mul {nsw} X, Z))
1938 // if Y >= Z
1939 // -> (mul {nuw} nsw X, (rem Y, Z))
1940 if (Y.uge(Z) && (IsSRem ? (BO0HasNSW && BO1HasNSW) : BO0HasNUW)) {
1941 BinaryOperator *BO = CreateMulOrShift(RemYZ);
1942 BO->setHasNoSignedWrap();
1943 BO->setHasNoUnsignedWrap(BO0HasNUW);
1944 return BO;
1947 return nullptr;
1950 /// This function implements the transforms common to both integer remainder
1951 /// instructions (urem and srem). It is called by the visitors to those integer
1952 /// remainder instructions.
1953 /// Common integer remainder transforms
1954 Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
1955 if (Instruction *Phi = foldBinopWithPhiOperands(I))
1956 return Phi;
1958 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1960 // The RHS is known non-zero.
1961 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1962 return replaceOperand(I, 1, V);
1964 // Handle cases involving: rem X, (select Cond, Y, Z)
1965 if (simplifyDivRemOfSelectWithZeroOp(I))
1966 return &I;
1968 // If the divisor is a select-of-constants, try to constant fold all rem ops:
1969 // C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC)
1970 // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
1971 if (match(Op0, m_ImmConstant()) &&
1972 match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
1973 if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
1974 /*FoldWithMultiUse*/ true))
1975 return R;
1978 if (isa<Constant>(Op1)) {
1979 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1980 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1981 if (Instruction *R = FoldOpIntoSelect(I, SI))
1982 return R;
1983 } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1984 const APInt *Op1Int;
1985 if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1986 (I.getOpcode() == Instruction::URem ||
1987 !Op1Int->isMinSignedValue())) {
1988 // foldOpIntoPhi will speculate instructions to the end of the PHI's
1989 // predecessor blocks, so do this only if we know the srem or urem
1990 // will not fault.
1991 if (Instruction *NV = foldOpIntoPhi(I, PN))
1992 return NV;
1996 // See if we can fold away this rem instruction.
1997 if (SimplifyDemandedInstructionBits(I))
1998 return &I;
2002 if (Instruction *R = simplifyIRemMulShl(I, *this))
2003 return R;
2005 return nullptr;
2008 Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
2009 if (Value *V = simplifyURemInst(I.getOperand(0), I.getOperand(1),
2010 SQ.getWithInstruction(&I)))
2011 return replaceInstUsesWith(I, V);
2013 if (Instruction *X = foldVectorBinop(I))
2014 return X;
2016 if (Instruction *common = commonIRemTransforms(I))
2017 return common;
2019 if (Instruction *NarrowRem = narrowUDivURem(I, *this))
2020 return NarrowRem;
2022 // X urem Y -> X and Y-1, where Y is a power of 2,
2023 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2024 Type *Ty = I.getType();
2025 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
2026 // This may increase instruction count, we don't enforce that Y is a
2027 // constant.
2028 Constant *N1 = Constant::getAllOnesValue(Ty);
2029 Value *Add = Builder.CreateAdd(Op1, N1);
2030 return BinaryOperator::CreateAnd(Op0, Add);
2033 // 1 urem X -> zext(X != 1)
2034 if (match(Op0, m_One())) {
2035 Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
2036 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
2039 // Op0 urem C -> Op0 < C ? Op0 : Op0 - C, where C >= signbit.
2040 // Op0 must be frozen because we are increasing its number of uses.
2041 if (match(Op1, m_Negative())) {
2042 Value *F0 = Builder.CreateFreeze(Op0, Op0->getName() + ".fr");
2043 Value *Cmp = Builder.CreateICmpULT(F0, Op1);
2044 Value *Sub = Builder.CreateSub(F0, Op1);
2045 return SelectInst::Create(Cmp, F0, Sub);
2048 // If the divisor is a sext of a boolean, then the divisor must be max
2049 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
2050 // max unsigned value. In that case, the remainder is 0:
2051 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
2052 Value *X;
2053 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
2054 Value *FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen");
2055 Value *Cmp =
2056 Builder.CreateICmpEQ(FrozenOp0, ConstantInt::getAllOnesValue(Ty));
2057 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0);
2060 // For "(X + 1) % Op1" and if (X u< Op1) => (X + 1) == Op1 ? 0 : X + 1 .
2061 if (match(Op0, m_Add(m_Value(X), m_One()))) {
2062 Value *Val =
2063 simplifyICmpInst(ICmpInst::ICMP_ULT, X, Op1, SQ.getWithInstruction(&I));
2064 if (Val && match(Val, m_One())) {
2065 Value *FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen");
2066 Value *Cmp = Builder.CreateICmpEQ(FrozenOp0, Op1);
2067 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0);
2071 return nullptr;
2074 Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
2075 if (Value *V = simplifySRemInst(I.getOperand(0), I.getOperand(1),
2076 SQ.getWithInstruction(&I)))
2077 return replaceInstUsesWith(I, V);
2079 if (Instruction *X = foldVectorBinop(I))
2080 return X;
2082 // Handle the integer rem common cases
2083 if (Instruction *Common = commonIRemTransforms(I))
2084 return Common;
2086 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2088 const APInt *Y;
2089 // X % -Y -> X % Y
2090 if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
2091 return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
2094 // -X srem Y --> -(X srem Y)
2095 Value *X, *Y;
2096 if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
2097 return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
2099 // If the sign bits of both operands are zero (i.e. we can prove they are
2100 // unsigned inputs), turn this into a urem.
2101 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
2102 if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
2103 MaskedValueIsZero(Op0, Mask, 0, &I)) {
2104 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
2105 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
2108 // If it's a constant vector, flip any negative values positive.
2109 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
2110 Constant *C = cast<Constant>(Op1);
2111 unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
2113 bool hasNegative = false;
2114 bool hasMissing = false;
2115 for (unsigned i = 0; i != VWidth; ++i) {
2116 Constant *Elt = C->getAggregateElement(i);
2117 if (!Elt) {
2118 hasMissing = true;
2119 break;
2122 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
2123 if (RHS->isNegative())
2124 hasNegative = true;
2127 if (hasNegative && !hasMissing) {
2128 SmallVector<Constant *, 16> Elts(VWidth);
2129 for (unsigned i = 0; i != VWidth; ++i) {
2130 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
2131 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
2132 if (RHS->isNegative())
2133 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
2137 Constant *NewRHSV = ConstantVector::get(Elts);
2138 if (NewRHSV != C) // Don't loop on -MININT
2139 return replaceOperand(I, 1, NewRHSV);
2143 return nullptr;
2146 Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
2147 if (Value *V = simplifyFRemInst(I.getOperand(0), I.getOperand(1),
2148 I.getFastMathFlags(),
2149 SQ.getWithInstruction(&I)))
2150 return replaceInstUsesWith(I, V);
2152 if (Instruction *X = foldVectorBinop(I))
2153 return X;
2155 if (Instruction *Phi = foldBinopWithPhiOperands(I))
2156 return Phi;
2158 return nullptr;