[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombineNegator.cpp
blob62e49469cb019872a0053ac791c4337902517f23
1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sinking of negation into expression trees,
10 // as long as that can be done without increasing instruction count.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/TargetFolder.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Use.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/DebugCounter.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/InstCombine/InstCombiner.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <functional>
46 #include <type_traits>
47 #include <utility>
49 namespace llvm {
50 class DataLayout;
51 class LLVMContext;
52 } // namespace llvm
54 using namespace llvm;
56 #define DEBUG_TYPE "instcombine"
58 STATISTIC(NegatorTotalNegationsAttempted,
59 "Negator: Number of negations attempted to be sinked");
60 STATISTIC(NegatorNumTreesNegated,
61 "Negator: Number of negations successfully sinked");
62 STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
63 "reached while attempting to sink negation");
64 STATISTIC(NegatorTimesDepthLimitReached,
65 "Negator: How many times did the traversal depth limit was reached "
66 "during sinking");
67 STATISTIC(
68 NegatorNumValuesVisited,
69 "Negator: Total number of values visited during attempts to sink negation");
70 STATISTIC(NegatorNumNegationsFoundInCache,
71 "Negator: How many negations did we retrieve/reuse from cache");
72 STATISTIC(NegatorMaxTotalValuesVisited,
73 "Negator: Maximal number of values ever visited while attempting to "
74 "sink negation");
75 STATISTIC(NegatorNumInstructionsCreatedTotal,
76 "Negator: Number of new negated instructions created, total");
77 STATISTIC(NegatorMaxInstructionsCreated,
78 "Negator: Maximal number of new instructions created during negation "
79 "attempt");
80 STATISTIC(NegatorNumInstructionsNegatedSuccess,
81 "Negator: Number of new negated instructions created in successful "
82 "negation sinking attempts");
84 DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
85 "Controls Negator transformations in InstCombine pass");
87 static cl::opt<bool>
88 NegatorEnabled("instcombine-negator-enabled", cl::init(true),
89 cl::desc("Should we attempt to sink negations?"));
91 static cl::opt<unsigned>
92 NegatorMaxDepth("instcombine-negator-max-depth",
93 cl::init(NegatorDefaultMaxDepth),
94 cl::desc("What is the maximal lookup depth when trying to "
95 "check for viability of negation sinking."));
97 Negator::Negator(LLVMContext &C, const DataLayout &DL, bool IsTrulyNegation_)
98 : Builder(C, TargetFolder(DL),
99 IRBuilderCallbackInserter([&](Instruction *I) {
100 ++NegatorNumInstructionsCreatedTotal;
101 NewInstructions.push_back(I);
102 })),
103 IsTrulyNegation(IsTrulyNegation_) {}
105 #if LLVM_ENABLE_STATS
106 Negator::~Negator() {
107 NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
109 #endif
111 // Due to the InstCombine's worklist management, there are no guarantees that
112 // each instruction we'll encounter has been visited by InstCombine already.
113 // In particular, most importantly for us, that means we have to canonicalize
114 // constants to RHS ourselves, since that is helpful sometimes.
115 std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) {
116 assert(I->getNumOperands() == 2 && "Only for binops!");
117 std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)};
118 if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) <
119 InstCombiner::getComplexity(I->getOperand(1)))
120 std::swap(Ops[0], Ops[1]);
121 return Ops;
124 // FIXME: can this be reworked into a worklist-based algorithm while preserving
125 // the depth-first, early bailout traversal?
126 [[nodiscard]] Value *Negator::visitImpl(Value *V, bool IsNSW, unsigned Depth) {
127 // -(undef) -> undef.
128 if (match(V, m_Undef()))
129 return V;
131 // In i1, negation can simply be ignored.
132 if (V->getType()->isIntOrIntVectorTy(1))
133 return V;
135 Value *X;
137 // -(-(X)) -> X.
138 if (match(V, m_Neg(m_Value(X))))
139 return X;
141 // Integral constants can be freely negated.
142 if (match(V, m_AnyIntegralConstant()))
143 return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false,
144 /*HasNSW=*/false);
146 // If we have a non-instruction, then give up.
147 if (!isa<Instruction>(V))
148 return nullptr;
150 // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
151 // got instruction that does not require recursive reasoning, we can still
152 // negate it even if it has other uses, without increasing instruction count.
153 if (!V->hasOneUse() && !IsTrulyNegation)
154 return nullptr;
156 auto *I = cast<Instruction>(V);
157 unsigned BitWidth = I->getType()->getScalarSizeInBits();
159 // We must preserve the insertion point and debug info that is set in the
160 // builder at the time this function is called.
161 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
162 // And since we are trying to negate instruction I, that tells us about the
163 // insertion point and the debug info that we need to keep.
164 Builder.SetInsertPoint(I);
166 // In some cases we can give the answer without further recursion.
167 switch (I->getOpcode()) {
168 case Instruction::Add: {
169 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
170 // `inc` is always negatible.
171 if (match(Ops[1], m_One()))
172 return Builder.CreateNot(Ops[0], I->getName() + ".neg");
173 break;
175 case Instruction::Xor:
176 // `not` is always negatible.
177 if (match(I, m_Not(m_Value(X))))
178 return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
179 I->getName() + ".neg");
180 break;
181 case Instruction::AShr:
182 case Instruction::LShr: {
183 // Right-shift sign bit smear is negatible.
184 const APInt *Op1Val;
185 if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
186 Value *BO = I->getOpcode() == Instruction::AShr
187 ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
188 : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
189 if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
190 NewInstr->copyIRFlags(I);
191 NewInstr->setName(I->getName() + ".neg");
193 return BO;
195 // While we could negate exact arithmetic shift:
196 // ashr exact %x, C --> sdiv exact i8 %x, -1<<C
197 // iff C != 0 and C u< bitwidth(%x), we don't want to,
198 // because division is *THAT* much worse than a shift.
199 break;
201 case Instruction::SExt:
202 case Instruction::ZExt:
203 // `*ext` of i1 is always negatible
204 if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
205 return I->getOpcode() == Instruction::SExt
206 ? Builder.CreateZExt(I->getOperand(0), I->getType(),
207 I->getName() + ".neg")
208 : Builder.CreateSExt(I->getOperand(0), I->getType(),
209 I->getName() + ".neg");
210 break;
211 case Instruction::Select: {
212 // If both arms of the select are constants, we don't need to recurse.
213 // Therefore, this transform is not limited by uses.
214 auto *Sel = cast<SelectInst>(I);
215 Constant *TrueC, *FalseC;
216 if (match(Sel->getTrueValue(), m_ImmConstant(TrueC)) &&
217 match(Sel->getFalseValue(), m_ImmConstant(FalseC))) {
218 Constant *NegTrueC = ConstantExpr::getNeg(TrueC);
219 Constant *NegFalseC = ConstantExpr::getNeg(FalseC);
220 return Builder.CreateSelect(Sel->getCondition(), NegTrueC, NegFalseC,
221 I->getName() + ".neg", /*MDFrom=*/I);
223 break;
225 default:
226 break; // Other instructions require recursive reasoning.
229 if (I->getOpcode() == Instruction::Sub &&
230 (I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) {
231 // `sub` is always negatible.
232 // However, only do this either if the old `sub` doesn't stick around, or
233 // it was subtracting from a constant. Otherwise, this isn't profitable.
234 return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
235 I->getName() + ".neg", /* HasNUW */ false,
236 IsNSW && I->hasNoSignedWrap());
239 // Some other cases, while still don't require recursion,
240 // are restricted to the one-use case.
241 if (!V->hasOneUse())
242 return nullptr;
244 switch (I->getOpcode()) {
245 case Instruction::ZExt: {
246 // Negation of zext of signbit is signbit splat:
247 // 0 - (zext (i8 X u>> 7) to iN) --> sext (i8 X s>> 7) to iN
248 Value *SrcOp = I->getOperand(0);
249 unsigned SrcWidth = SrcOp->getType()->getScalarSizeInBits();
250 const APInt &FullShift = APInt(SrcWidth, SrcWidth - 1);
251 if (IsTrulyNegation &&
252 match(SrcOp, m_LShr(m_Value(X), m_SpecificIntAllowUndef(FullShift)))) {
253 Value *Ashr = Builder.CreateAShr(X, FullShift);
254 return Builder.CreateSExt(Ashr, I->getType());
256 break;
258 case Instruction::And: {
259 Constant *ShAmt;
260 // sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y)
261 if (match(I, m_c_And(m_OneUse(m_TruncOrSelf(
262 m_LShr(m_Value(X), m_ImmConstant(ShAmt)))),
263 m_One()))) {
264 unsigned BW = X->getType()->getScalarSizeInBits();
265 Constant *BWMinusOne = ConstantInt::get(X->getType(), BW - 1);
266 Value *R = Builder.CreateShl(X, Builder.CreateSub(BWMinusOne, ShAmt));
267 R = Builder.CreateAShr(R, BWMinusOne);
268 return Builder.CreateTruncOrBitCast(R, I->getType());
270 break;
272 case Instruction::SDiv:
273 // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
274 // While this is normally not behind a use-check,
275 // let's consider division to be special since it's costly.
276 if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
277 if (!Op1C->containsUndefOrPoisonElement() &&
278 Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) {
279 Value *BO =
280 Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
281 I->getName() + ".neg");
282 if (auto *NewInstr = dyn_cast<Instruction>(BO))
283 NewInstr->setIsExact(I->isExact());
284 return BO;
287 break;
290 // Rest of the logic is recursive, so if it's time to give up then it's time.
291 if (Depth > NegatorMaxDepth) {
292 LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
293 << *V << ". Giving up.\n");
294 ++NegatorTimesDepthLimitReached;
295 return nullptr;
298 switch (I->getOpcode()) {
299 case Instruction::Freeze: {
300 // `freeze` is negatible if its operand is negatible.
301 Value *NegOp = negate(I->getOperand(0), IsNSW, Depth + 1);
302 if (!NegOp) // Early return.
303 return nullptr;
304 return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
306 case Instruction::PHI: {
307 // `phi` is negatible if all the incoming values are negatible.
308 auto *PHI = cast<PHINode>(I);
309 SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
310 for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
311 if (!(std::get<1>(I) =
312 negate(std::get<0>(I), IsNSW, Depth + 1))) // Early return.
313 return nullptr;
315 // All incoming values are indeed negatible. Create negated PHI node.
316 PHINode *NegatedPHI = Builder.CreatePHI(
317 PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
318 for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
319 NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
320 return NegatedPHI;
322 case Instruction::Select: {
323 if (isKnownNegation(I->getOperand(1), I->getOperand(2))) {
324 // Of one hand of select is known to be negation of another hand,
325 // just swap the hands around.
326 auto *NewSelect = cast<SelectInst>(I->clone());
327 // Just swap the operands of the select.
328 NewSelect->swapValues();
329 // Don't swap prof metadata, we didn't change the branch behavior.
330 NewSelect->setName(I->getName() + ".neg");
331 Builder.Insert(NewSelect);
332 return NewSelect;
334 // `select` is negatible if both hands of `select` are negatible.
335 Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1);
336 if (!NegOp1) // Early return.
337 return nullptr;
338 Value *NegOp2 = negate(I->getOperand(2), IsNSW, Depth + 1);
339 if (!NegOp2)
340 return nullptr;
341 // Do preserve the metadata!
342 return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
343 I->getName() + ".neg", /*MDFrom=*/I);
345 case Instruction::ShuffleVector: {
346 // `shufflevector` is negatible if both operands are negatible.
347 auto *Shuf = cast<ShuffleVectorInst>(I);
348 Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1);
349 if (!NegOp0) // Early return.
350 return nullptr;
351 Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1);
352 if (!NegOp1)
353 return nullptr;
354 return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
355 I->getName() + ".neg");
357 case Instruction::ExtractElement: {
358 // `extractelement` is negatible if source operand is negatible.
359 auto *EEI = cast<ExtractElementInst>(I);
360 Value *NegVector = negate(EEI->getVectorOperand(), IsNSW, Depth + 1);
361 if (!NegVector) // Early return.
362 return nullptr;
363 return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
364 I->getName() + ".neg");
366 case Instruction::InsertElement: {
367 // `insertelement` is negatible if both the source vector and
368 // element-to-be-inserted are negatible.
369 auto *IEI = cast<InsertElementInst>(I);
370 Value *NegVector = negate(IEI->getOperand(0), IsNSW, Depth + 1);
371 if (!NegVector) // Early return.
372 return nullptr;
373 Value *NegNewElt = negate(IEI->getOperand(1), IsNSW, Depth + 1);
374 if (!NegNewElt) // Early return.
375 return nullptr;
376 return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
377 I->getName() + ".neg");
379 case Instruction::Trunc: {
380 // `trunc` is negatible if its operand is negatible.
381 Value *NegOp = negate(I->getOperand(0), /* IsNSW */ false, Depth + 1);
382 if (!NegOp) // Early return.
383 return nullptr;
384 return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
386 case Instruction::Shl: {
387 // `shl` is negatible if the first operand is negatible.
388 IsNSW &= I->hasNoSignedWrap();
389 if (Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1))
390 return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg",
391 /* HasNUW */ false, IsNSW);
392 // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
393 auto *Op1C = dyn_cast<Constant>(I->getOperand(1));
394 if (!Op1C || !IsTrulyNegation)
395 return nullptr;
396 return Builder.CreateMul(
397 I->getOperand(0),
398 ConstantExpr::getShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
399 I->getName() + ".neg", /* HasNUW */ false, IsNSW);
401 case Instruction::Or: {
402 if (!cast<PossiblyDisjointInst>(I)->isDisjoint())
403 return nullptr; // Don't know how to handle `or` in general.
404 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
405 // `or`/`add` are interchangeable when operands have no common bits set.
406 // `inc` is always negatible.
407 if (match(Ops[1], m_One()))
408 return Builder.CreateNot(Ops[0], I->getName() + ".neg");
409 // Else, just defer to Instruction::Add handling.
410 [[fallthrough]];
412 case Instruction::Add: {
413 // `add` is negatible if both of its operands are negatible.
414 SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
415 for (Value *Op : I->operands()) {
416 // Can we sink the negation into this operand?
417 if (Value *NegOp = negate(Op, /* IsNSW */ false, Depth + 1)) {
418 NegatedOps.emplace_back(NegOp); // Successfully negated operand!
419 continue;
421 // Failed to sink negation into this operand. IFF we started from negation
422 // and we manage to sink negation into one operand, we can still do this.
423 if (!IsTrulyNegation)
424 return nullptr;
425 NonNegatedOps.emplace_back(Op); // Just record which operand that was.
427 assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
428 "Internal consistency check failed.");
429 // Did we manage to sink negation into both of the operands?
430 if (NegatedOps.size() == 2) // Then we get to keep the `add`!
431 return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
432 I->getName() + ".neg");
433 assert(IsTrulyNegation && "We should have early-exited then.");
434 // Completely failed to sink negation?
435 if (NonNegatedOps.size() == 2)
436 return nullptr;
437 // 0-(a+b) --> (-a)-b
438 return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
439 I->getName() + ".neg");
441 case Instruction::Xor: {
442 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
443 // `xor` is negatible if one of its operands is invertible.
444 // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
445 if (auto *C = dyn_cast<Constant>(Ops[1])) {
446 if (IsTrulyNegation) {
447 Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C));
448 return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
449 I->getName() + ".neg");
452 return nullptr;
454 case Instruction::Mul: {
455 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
456 // `mul` is negatible if one of its operands is negatible.
457 Value *NegatedOp, *OtherOp;
458 // First try the second operand, in case it's a constant it will be best to
459 // just invert it instead of sinking the `neg` deeper.
460 if (Value *NegOp1 = negate(Ops[1], /* IsNSW */ false, Depth + 1)) {
461 NegatedOp = NegOp1;
462 OtherOp = Ops[0];
463 } else if (Value *NegOp0 = negate(Ops[0], /* IsNSW */ false, Depth + 1)) {
464 NegatedOp = NegOp0;
465 OtherOp = Ops[1];
466 } else
467 // Can't negate either of them.
468 return nullptr;
469 return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg",
470 /* HasNUW */ false, IsNSW && I->hasNoSignedWrap());
472 default:
473 return nullptr; // Don't know, likely not negatible for free.
476 llvm_unreachable("Can't get here. We always return from switch.");
479 [[nodiscard]] Value *Negator::negate(Value *V, bool IsNSW, unsigned Depth) {
480 NegatorMaxDepthVisited.updateMax(Depth);
481 ++NegatorNumValuesVisited;
483 #if LLVM_ENABLE_STATS
484 ++NumValuesVisitedInThisNegator;
485 #endif
487 #ifndef NDEBUG
488 // We can't ever have a Value with such an address.
489 Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
490 #endif
492 // Did we already try to negate this value?
493 auto NegationsCacheIterator = NegationsCache.find(V);
494 if (NegationsCacheIterator != NegationsCache.end()) {
495 ++NegatorNumNegationsFoundInCache;
496 Value *NegatedV = NegationsCacheIterator->second;
497 assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
498 return NegatedV;
501 #ifndef NDEBUG
502 // We did not find a cached result for negation of V. While there,
503 // let's temporairly cache a placeholder value, with the idea that if later
504 // during negation we fetch it from cache, we'll know we're in a cycle.
505 NegationsCache[V] = Placeholder;
506 #endif
508 // No luck. Try negating it for real.
509 Value *NegatedV = visitImpl(V, IsNSW, Depth);
510 // And cache the (real) result for the future.
511 NegationsCache[V] = NegatedV;
513 return NegatedV;
516 [[nodiscard]] std::optional<Negator::Result> Negator::run(Value *Root,
517 bool IsNSW) {
518 Value *Negated = negate(Root, IsNSW, /*Depth=*/0);
519 if (!Negated) {
520 // We must cleanup newly-inserted instructions, to avoid any potential
521 // endless combine looping.
522 for (Instruction *I : llvm::reverse(NewInstructions))
523 I->eraseFromParent();
524 return std::nullopt;
526 return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
529 [[nodiscard]] Value *Negator::Negate(bool LHSIsZero, bool IsNSW, Value *Root,
530 InstCombinerImpl &IC) {
531 ++NegatorTotalNegationsAttempted;
532 LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
533 << "\n");
535 if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
536 return nullptr;
538 Negator N(Root->getContext(), IC.getDataLayout(), LHSIsZero);
539 std::optional<Result> Res = N.run(Root, IsNSW);
540 if (!Res) { // Negation failed.
541 LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
542 << "\n");
543 return nullptr;
546 LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
547 << "\n NEW: " << *Res->second << "\n");
548 ++NegatorNumTreesNegated;
550 // We must temporarily unset the 'current' insertion point and DebugLoc of the
551 // InstCombine's IRBuilder so that it won't interfere with the ones we have
552 // already specified when producing negated instructions.
553 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
554 IC.Builder.ClearInsertionPoint();
555 IC.Builder.SetCurrentDebugLocation(DebugLoc());
557 // And finally, we must add newly-created instructions into the InstCombine's
558 // worklist (in a proper order!) so it can attempt to combine them.
559 LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
560 << " instrs to InstCombine\n");
561 NegatorMaxInstructionsCreated.updateMax(Res->first.size());
562 NegatorNumInstructionsNegatedSuccess += Res->first.size();
564 // They are in def-use order, so nothing fancy, just insert them in order.
565 for (Instruction *I : Res->first)
566 IC.Builder.Insert(I, I->getName());
568 // And return the new root.
569 return Res->second;