1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements sinking of negation into expression trees,
10 // as long as that can be done without increasing instruction count.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/TargetFolder.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Use.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/DebugCounter.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/InstCombine/InstCombiner.h"
46 #include <type_traits>
56 #define DEBUG_TYPE "instcombine"
58 STATISTIC(NegatorTotalNegationsAttempted
,
59 "Negator: Number of negations attempted to be sinked");
60 STATISTIC(NegatorNumTreesNegated
,
61 "Negator: Number of negations successfully sinked");
62 STATISTIC(NegatorMaxDepthVisited
, "Negator: Maximal traversal depth ever "
63 "reached while attempting to sink negation");
64 STATISTIC(NegatorTimesDepthLimitReached
,
65 "Negator: How many times did the traversal depth limit was reached "
68 NegatorNumValuesVisited
,
69 "Negator: Total number of values visited during attempts to sink negation");
70 STATISTIC(NegatorNumNegationsFoundInCache
,
71 "Negator: How many negations did we retrieve/reuse from cache");
72 STATISTIC(NegatorMaxTotalValuesVisited
,
73 "Negator: Maximal number of values ever visited while attempting to "
75 STATISTIC(NegatorNumInstructionsCreatedTotal
,
76 "Negator: Number of new negated instructions created, total");
77 STATISTIC(NegatorMaxInstructionsCreated
,
78 "Negator: Maximal number of new instructions created during negation "
80 STATISTIC(NegatorNumInstructionsNegatedSuccess
,
81 "Negator: Number of new negated instructions created in successful "
82 "negation sinking attempts");
84 DEBUG_COUNTER(NegatorCounter
, "instcombine-negator",
85 "Controls Negator transformations in InstCombine pass");
88 NegatorEnabled("instcombine-negator-enabled", cl::init(true),
89 cl::desc("Should we attempt to sink negations?"));
91 static cl::opt
<unsigned>
92 NegatorMaxDepth("instcombine-negator-max-depth",
93 cl::init(NegatorDefaultMaxDepth
),
94 cl::desc("What is the maximal lookup depth when trying to "
95 "check for viability of negation sinking."));
97 Negator::Negator(LLVMContext
&C
, const DataLayout
&DL
, bool IsTrulyNegation_
)
98 : Builder(C
, TargetFolder(DL
),
99 IRBuilderCallbackInserter([&](Instruction
*I
) {
100 ++NegatorNumInstructionsCreatedTotal
;
101 NewInstructions
.push_back(I
);
103 IsTrulyNegation(IsTrulyNegation_
) {}
105 #if LLVM_ENABLE_STATS
106 Negator::~Negator() {
107 NegatorMaxTotalValuesVisited
.updateMax(NumValuesVisitedInThisNegator
);
111 // Due to the InstCombine's worklist management, there are no guarantees that
112 // each instruction we'll encounter has been visited by InstCombine already.
113 // In particular, most importantly for us, that means we have to canonicalize
114 // constants to RHS ourselves, since that is helpful sometimes.
115 std::array
<Value
*, 2> Negator::getSortedOperandsOfBinOp(Instruction
*I
) {
116 assert(I
->getNumOperands() == 2 && "Only for binops!");
117 std::array
<Value
*, 2> Ops
{I
->getOperand(0), I
->getOperand(1)};
118 if (I
->isCommutative() && InstCombiner::getComplexity(I
->getOperand(0)) <
119 InstCombiner::getComplexity(I
->getOperand(1)))
120 std::swap(Ops
[0], Ops
[1]);
124 // FIXME: can this be reworked into a worklist-based algorithm while preserving
125 // the depth-first, early bailout traversal?
126 [[nodiscard
]] Value
*Negator::visitImpl(Value
*V
, bool IsNSW
, unsigned Depth
) {
127 // -(undef) -> undef.
128 if (match(V
, m_Undef()))
131 // In i1, negation can simply be ignored.
132 if (V
->getType()->isIntOrIntVectorTy(1))
138 if (match(V
, m_Neg(m_Value(X
))))
141 // Integral constants can be freely negated.
142 if (match(V
, m_AnyIntegralConstant()))
143 return ConstantExpr::getNeg(cast
<Constant
>(V
), /*HasNUW=*/false,
146 // If we have a non-instruction, then give up.
147 if (!isa
<Instruction
>(V
))
150 // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
151 // got instruction that does not require recursive reasoning, we can still
152 // negate it even if it has other uses, without increasing instruction count.
153 if (!V
->hasOneUse() && !IsTrulyNegation
)
156 auto *I
= cast
<Instruction
>(V
);
157 unsigned BitWidth
= I
->getType()->getScalarSizeInBits();
159 // We must preserve the insertion point and debug info that is set in the
160 // builder at the time this function is called.
161 InstCombiner::BuilderTy::InsertPointGuard
Guard(Builder
);
162 // And since we are trying to negate instruction I, that tells us about the
163 // insertion point and the debug info that we need to keep.
164 Builder
.SetInsertPoint(I
);
166 // In some cases we can give the answer without further recursion.
167 switch (I
->getOpcode()) {
168 case Instruction::Add
: {
169 std::array
<Value
*, 2> Ops
= getSortedOperandsOfBinOp(I
);
170 // `inc` is always negatible.
171 if (match(Ops
[1], m_One()))
172 return Builder
.CreateNot(Ops
[0], I
->getName() + ".neg");
175 case Instruction::Xor
:
176 // `not` is always negatible.
177 if (match(I
, m_Not(m_Value(X
))))
178 return Builder
.CreateAdd(X
, ConstantInt::get(X
->getType(), 1),
179 I
->getName() + ".neg");
181 case Instruction::AShr
:
182 case Instruction::LShr
: {
183 // Right-shift sign bit smear is negatible.
185 if (match(I
->getOperand(1), m_APInt(Op1Val
)) && *Op1Val
== BitWidth
- 1) {
186 Value
*BO
= I
->getOpcode() == Instruction::AShr
187 ? Builder
.CreateLShr(I
->getOperand(0), I
->getOperand(1))
188 : Builder
.CreateAShr(I
->getOperand(0), I
->getOperand(1));
189 if (auto *NewInstr
= dyn_cast
<Instruction
>(BO
)) {
190 NewInstr
->copyIRFlags(I
);
191 NewInstr
->setName(I
->getName() + ".neg");
195 // While we could negate exact arithmetic shift:
196 // ashr exact %x, C --> sdiv exact i8 %x, -1<<C
197 // iff C != 0 and C u< bitwidth(%x), we don't want to,
198 // because division is *THAT* much worse than a shift.
201 case Instruction::SExt
:
202 case Instruction::ZExt
:
203 // `*ext` of i1 is always negatible
204 if (I
->getOperand(0)->getType()->isIntOrIntVectorTy(1))
205 return I
->getOpcode() == Instruction::SExt
206 ? Builder
.CreateZExt(I
->getOperand(0), I
->getType(),
207 I
->getName() + ".neg")
208 : Builder
.CreateSExt(I
->getOperand(0), I
->getType(),
209 I
->getName() + ".neg");
211 case Instruction::Select
: {
212 // If both arms of the select are constants, we don't need to recurse.
213 // Therefore, this transform is not limited by uses.
214 auto *Sel
= cast
<SelectInst
>(I
);
215 Constant
*TrueC
, *FalseC
;
216 if (match(Sel
->getTrueValue(), m_ImmConstant(TrueC
)) &&
217 match(Sel
->getFalseValue(), m_ImmConstant(FalseC
))) {
218 Constant
*NegTrueC
= ConstantExpr::getNeg(TrueC
);
219 Constant
*NegFalseC
= ConstantExpr::getNeg(FalseC
);
220 return Builder
.CreateSelect(Sel
->getCondition(), NegTrueC
, NegFalseC
,
221 I
->getName() + ".neg", /*MDFrom=*/I
);
226 break; // Other instructions require recursive reasoning.
229 if (I
->getOpcode() == Instruction::Sub
&&
230 (I
->hasOneUse() || match(I
->getOperand(0), m_ImmConstant()))) {
231 // `sub` is always negatible.
232 // However, only do this either if the old `sub` doesn't stick around, or
233 // it was subtracting from a constant. Otherwise, this isn't profitable.
234 return Builder
.CreateSub(I
->getOperand(1), I
->getOperand(0),
235 I
->getName() + ".neg", /* HasNUW */ false,
236 IsNSW
&& I
->hasNoSignedWrap());
239 // Some other cases, while still don't require recursion,
240 // are restricted to the one-use case.
244 switch (I
->getOpcode()) {
245 case Instruction::ZExt
: {
246 // Negation of zext of signbit is signbit splat:
247 // 0 - (zext (i8 X u>> 7) to iN) --> sext (i8 X s>> 7) to iN
248 Value
*SrcOp
= I
->getOperand(0);
249 unsigned SrcWidth
= SrcOp
->getType()->getScalarSizeInBits();
250 const APInt
&FullShift
= APInt(SrcWidth
, SrcWidth
- 1);
251 if (IsTrulyNegation
&&
252 match(SrcOp
, m_LShr(m_Value(X
), m_SpecificIntAllowUndef(FullShift
)))) {
253 Value
*Ashr
= Builder
.CreateAShr(X
, FullShift
);
254 return Builder
.CreateSExt(Ashr
, I
->getType());
258 case Instruction::And
: {
260 // sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y)
261 if (match(I
, m_c_And(m_OneUse(m_TruncOrSelf(
262 m_LShr(m_Value(X
), m_ImmConstant(ShAmt
)))),
264 unsigned BW
= X
->getType()->getScalarSizeInBits();
265 Constant
*BWMinusOne
= ConstantInt::get(X
->getType(), BW
- 1);
266 Value
*R
= Builder
.CreateShl(X
, Builder
.CreateSub(BWMinusOne
, ShAmt
));
267 R
= Builder
.CreateAShr(R
, BWMinusOne
);
268 return Builder
.CreateTruncOrBitCast(R
, I
->getType());
272 case Instruction::SDiv
:
273 // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
274 // While this is normally not behind a use-check,
275 // let's consider division to be special since it's costly.
276 if (auto *Op1C
= dyn_cast
<Constant
>(I
->getOperand(1))) {
277 if (!Op1C
->containsUndefOrPoisonElement() &&
278 Op1C
->isNotMinSignedValue() && Op1C
->isNotOneValue()) {
280 Builder
.CreateSDiv(I
->getOperand(0), ConstantExpr::getNeg(Op1C
),
281 I
->getName() + ".neg");
282 if (auto *NewInstr
= dyn_cast
<Instruction
>(BO
))
283 NewInstr
->setIsExact(I
->isExact());
290 // Rest of the logic is recursive, so if it's time to give up then it's time.
291 if (Depth
> NegatorMaxDepth
) {
292 LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
293 << *V
<< ". Giving up.\n");
294 ++NegatorTimesDepthLimitReached
;
298 switch (I
->getOpcode()) {
299 case Instruction::Freeze
: {
300 // `freeze` is negatible if its operand is negatible.
301 Value
*NegOp
= negate(I
->getOperand(0), IsNSW
, Depth
+ 1);
302 if (!NegOp
) // Early return.
304 return Builder
.CreateFreeze(NegOp
, I
->getName() + ".neg");
306 case Instruction::PHI
: {
307 // `phi` is negatible if all the incoming values are negatible.
308 auto *PHI
= cast
<PHINode
>(I
);
309 SmallVector
<Value
*, 4> NegatedIncomingValues(PHI
->getNumOperands());
310 for (auto I
: zip(PHI
->incoming_values(), NegatedIncomingValues
)) {
311 if (!(std::get
<1>(I
) =
312 negate(std::get
<0>(I
), IsNSW
, Depth
+ 1))) // Early return.
315 // All incoming values are indeed negatible. Create negated PHI node.
316 PHINode
*NegatedPHI
= Builder
.CreatePHI(
317 PHI
->getType(), PHI
->getNumOperands(), PHI
->getName() + ".neg");
318 for (auto I
: zip(NegatedIncomingValues
, PHI
->blocks()))
319 NegatedPHI
->addIncoming(std::get
<0>(I
), std::get
<1>(I
));
322 case Instruction::Select
: {
323 if (isKnownNegation(I
->getOperand(1), I
->getOperand(2))) {
324 // Of one hand of select is known to be negation of another hand,
325 // just swap the hands around.
326 auto *NewSelect
= cast
<SelectInst
>(I
->clone());
327 // Just swap the operands of the select.
328 NewSelect
->swapValues();
329 // Don't swap prof metadata, we didn't change the branch behavior.
330 NewSelect
->setName(I
->getName() + ".neg");
331 Builder
.Insert(NewSelect
);
334 // `select` is negatible if both hands of `select` are negatible.
335 Value
*NegOp1
= negate(I
->getOperand(1), IsNSW
, Depth
+ 1);
336 if (!NegOp1
) // Early return.
338 Value
*NegOp2
= negate(I
->getOperand(2), IsNSW
, Depth
+ 1);
341 // Do preserve the metadata!
342 return Builder
.CreateSelect(I
->getOperand(0), NegOp1
, NegOp2
,
343 I
->getName() + ".neg", /*MDFrom=*/I
);
345 case Instruction::ShuffleVector
: {
346 // `shufflevector` is negatible if both operands are negatible.
347 auto *Shuf
= cast
<ShuffleVectorInst
>(I
);
348 Value
*NegOp0
= negate(I
->getOperand(0), IsNSW
, Depth
+ 1);
349 if (!NegOp0
) // Early return.
351 Value
*NegOp1
= negate(I
->getOperand(1), IsNSW
, Depth
+ 1);
354 return Builder
.CreateShuffleVector(NegOp0
, NegOp1
, Shuf
->getShuffleMask(),
355 I
->getName() + ".neg");
357 case Instruction::ExtractElement
: {
358 // `extractelement` is negatible if source operand is negatible.
359 auto *EEI
= cast
<ExtractElementInst
>(I
);
360 Value
*NegVector
= negate(EEI
->getVectorOperand(), IsNSW
, Depth
+ 1);
361 if (!NegVector
) // Early return.
363 return Builder
.CreateExtractElement(NegVector
, EEI
->getIndexOperand(),
364 I
->getName() + ".neg");
366 case Instruction::InsertElement
: {
367 // `insertelement` is negatible if both the source vector and
368 // element-to-be-inserted are negatible.
369 auto *IEI
= cast
<InsertElementInst
>(I
);
370 Value
*NegVector
= negate(IEI
->getOperand(0), IsNSW
, Depth
+ 1);
371 if (!NegVector
) // Early return.
373 Value
*NegNewElt
= negate(IEI
->getOperand(1), IsNSW
, Depth
+ 1);
374 if (!NegNewElt
) // Early return.
376 return Builder
.CreateInsertElement(NegVector
, NegNewElt
, IEI
->getOperand(2),
377 I
->getName() + ".neg");
379 case Instruction::Trunc
: {
380 // `trunc` is negatible if its operand is negatible.
381 Value
*NegOp
= negate(I
->getOperand(0), /* IsNSW */ false, Depth
+ 1);
382 if (!NegOp
) // Early return.
384 return Builder
.CreateTrunc(NegOp
, I
->getType(), I
->getName() + ".neg");
386 case Instruction::Shl
: {
387 // `shl` is negatible if the first operand is negatible.
388 IsNSW
&= I
->hasNoSignedWrap();
389 if (Value
*NegOp0
= negate(I
->getOperand(0), IsNSW
, Depth
+ 1))
390 return Builder
.CreateShl(NegOp0
, I
->getOperand(1), I
->getName() + ".neg",
391 /* HasNUW */ false, IsNSW
);
392 // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
393 auto *Op1C
= dyn_cast
<Constant
>(I
->getOperand(1));
394 if (!Op1C
|| !IsTrulyNegation
)
396 return Builder
.CreateMul(
398 ConstantExpr::getShl(Constant::getAllOnesValue(Op1C
->getType()), Op1C
),
399 I
->getName() + ".neg", /* HasNUW */ false, IsNSW
);
401 case Instruction::Or
: {
402 if (!cast
<PossiblyDisjointInst
>(I
)->isDisjoint())
403 return nullptr; // Don't know how to handle `or` in general.
404 std::array
<Value
*, 2> Ops
= getSortedOperandsOfBinOp(I
);
405 // `or`/`add` are interchangeable when operands have no common bits set.
406 // `inc` is always negatible.
407 if (match(Ops
[1], m_One()))
408 return Builder
.CreateNot(Ops
[0], I
->getName() + ".neg");
409 // Else, just defer to Instruction::Add handling.
412 case Instruction::Add
: {
413 // `add` is negatible if both of its operands are negatible.
414 SmallVector
<Value
*, 2> NegatedOps
, NonNegatedOps
;
415 for (Value
*Op
: I
->operands()) {
416 // Can we sink the negation into this operand?
417 if (Value
*NegOp
= negate(Op
, /* IsNSW */ false, Depth
+ 1)) {
418 NegatedOps
.emplace_back(NegOp
); // Successfully negated operand!
421 // Failed to sink negation into this operand. IFF we started from negation
422 // and we manage to sink negation into one operand, we can still do this.
423 if (!IsTrulyNegation
)
425 NonNegatedOps
.emplace_back(Op
); // Just record which operand that was.
427 assert((NegatedOps
.size() + NonNegatedOps
.size()) == 2 &&
428 "Internal consistency check failed.");
429 // Did we manage to sink negation into both of the operands?
430 if (NegatedOps
.size() == 2) // Then we get to keep the `add`!
431 return Builder
.CreateAdd(NegatedOps
[0], NegatedOps
[1],
432 I
->getName() + ".neg");
433 assert(IsTrulyNegation
&& "We should have early-exited then.");
434 // Completely failed to sink negation?
435 if (NonNegatedOps
.size() == 2)
437 // 0-(a+b) --> (-a)-b
438 return Builder
.CreateSub(NegatedOps
[0], NonNegatedOps
[0],
439 I
->getName() + ".neg");
441 case Instruction::Xor
: {
442 std::array
<Value
*, 2> Ops
= getSortedOperandsOfBinOp(I
);
443 // `xor` is negatible if one of its operands is invertible.
444 // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
445 if (auto *C
= dyn_cast
<Constant
>(Ops
[1])) {
446 if (IsTrulyNegation
) {
447 Value
*Xor
= Builder
.CreateXor(Ops
[0], ConstantExpr::getNot(C
));
448 return Builder
.CreateAdd(Xor
, ConstantInt::get(Xor
->getType(), 1),
449 I
->getName() + ".neg");
454 case Instruction::Mul
: {
455 std::array
<Value
*, 2> Ops
= getSortedOperandsOfBinOp(I
);
456 // `mul` is negatible if one of its operands is negatible.
457 Value
*NegatedOp
, *OtherOp
;
458 // First try the second operand, in case it's a constant it will be best to
459 // just invert it instead of sinking the `neg` deeper.
460 if (Value
*NegOp1
= negate(Ops
[1], /* IsNSW */ false, Depth
+ 1)) {
463 } else if (Value
*NegOp0
= negate(Ops
[0], /* IsNSW */ false, Depth
+ 1)) {
467 // Can't negate either of them.
469 return Builder
.CreateMul(NegatedOp
, OtherOp
, I
->getName() + ".neg",
470 /* HasNUW */ false, IsNSW
&& I
->hasNoSignedWrap());
473 return nullptr; // Don't know, likely not negatible for free.
476 llvm_unreachable("Can't get here. We always return from switch.");
479 [[nodiscard
]] Value
*Negator::negate(Value
*V
, bool IsNSW
, unsigned Depth
) {
480 NegatorMaxDepthVisited
.updateMax(Depth
);
481 ++NegatorNumValuesVisited
;
483 #if LLVM_ENABLE_STATS
484 ++NumValuesVisitedInThisNegator
;
488 // We can't ever have a Value with such an address.
489 Value
*Placeholder
= reinterpret_cast<Value
*>(static_cast<uintptr_t>(-1));
492 // Did we already try to negate this value?
493 auto NegationsCacheIterator
= NegationsCache
.find(V
);
494 if (NegationsCacheIterator
!= NegationsCache
.end()) {
495 ++NegatorNumNegationsFoundInCache
;
496 Value
*NegatedV
= NegationsCacheIterator
->second
;
497 assert(NegatedV
!= Placeholder
&& "Encountered a cycle during negation.");
502 // We did not find a cached result for negation of V. While there,
503 // let's temporairly cache a placeholder value, with the idea that if later
504 // during negation we fetch it from cache, we'll know we're in a cycle.
505 NegationsCache
[V
] = Placeholder
;
508 // No luck. Try negating it for real.
509 Value
*NegatedV
= visitImpl(V
, IsNSW
, Depth
);
510 // And cache the (real) result for the future.
511 NegationsCache
[V
] = NegatedV
;
516 [[nodiscard
]] std::optional
<Negator::Result
> Negator::run(Value
*Root
,
518 Value
*Negated
= negate(Root
, IsNSW
, /*Depth=*/0);
520 // We must cleanup newly-inserted instructions, to avoid any potential
521 // endless combine looping.
522 for (Instruction
*I
: llvm::reverse(NewInstructions
))
523 I
->eraseFromParent();
526 return std::make_pair(ArrayRef
<Instruction
*>(NewInstructions
), Negated
);
529 [[nodiscard
]] Value
*Negator::Negate(bool LHSIsZero
, bool IsNSW
, Value
*Root
,
530 InstCombinerImpl
&IC
) {
531 ++NegatorTotalNegationsAttempted
;
532 LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
535 if (!NegatorEnabled
|| !DebugCounter::shouldExecute(NegatorCounter
))
538 Negator
N(Root
->getContext(), IC
.getDataLayout(), LHSIsZero
);
539 std::optional
<Result
> Res
= N
.run(Root
, IsNSW
);
540 if (!Res
) { // Negation failed.
541 LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
546 LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
547 << "\n NEW: " << *Res
->second
<< "\n");
548 ++NegatorNumTreesNegated
;
550 // We must temporarily unset the 'current' insertion point and DebugLoc of the
551 // InstCombine's IRBuilder so that it won't interfere with the ones we have
552 // already specified when producing negated instructions.
553 InstCombiner::BuilderTy::InsertPointGuard
Guard(IC
.Builder
);
554 IC
.Builder
.ClearInsertionPoint();
555 IC
.Builder
.SetCurrentDebugLocation(DebugLoc());
557 // And finally, we must add newly-created instructions into the InstCombine's
558 // worklist (in a proper order!) so it can attempt to combine them.
559 LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res
->first
.size()
560 << " instrs to InstCombine\n");
561 NegatorMaxInstructionsCreated
.updateMax(Res
->first
.size());
562 NegatorNumInstructionsNegatedSuccess
+= Res
->first
.size();
564 // They are in def-use order, so nothing fancy, just insert them in order.
565 for (Instruction
*I
: Res
->first
)
566 IC
.Builder
.Insert(I
, I
->getName());
568 // And return the new root.