[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombinePHI.cpp
blob20b34c1379d575d73316de427660274f88a3c59f
1 //===- InstCombinePHI.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitPHINode function.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include <optional>
25 using namespace llvm;
26 using namespace llvm::PatternMatch;
28 #define DEBUG_TYPE "instcombine"
30 static cl::opt<unsigned>
31 MaxNumPhis("instcombine-max-num-phis", cl::init(512),
32 cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
34 STATISTIC(NumPHIsOfInsertValues,
35 "Number of phi-of-insertvalue turned into insertvalue-of-phis");
36 STATISTIC(NumPHIsOfExtractValues,
37 "Number of phi-of-extractvalue turned into extractvalue-of-phi");
38 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
40 /// The PHI arguments will be folded into a single operation with a PHI node
41 /// as input. The debug location of the single operation will be the merged
42 /// locations of the original PHI node arguments.
43 void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
44 auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
45 Inst->setDebugLoc(FirstInst->getDebugLoc());
46 // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
47 // will be inefficient.
48 assert(!isa<CallInst>(Inst));
50 for (Value *V : drop_begin(PN.incoming_values())) {
51 auto *I = cast<Instruction>(V);
52 Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
56 // Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
57 // If there is an existing pointer typed PHI that produces the same value as PN,
58 // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
59 // PHI node:
61 // Case-1:
62 // bb1:
63 // int_init = PtrToInt(ptr_init)
64 // br label %bb2
65 // bb2:
66 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
67 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
68 // ptr_val2 = IntToPtr(int_val)
69 // ...
70 // use(ptr_val2)
71 // ptr_val_inc = ...
72 // inc_val_inc = PtrToInt(ptr_val_inc)
74 // ==>
75 // bb1:
76 // br label %bb2
77 // bb2:
78 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
79 // ...
80 // use(ptr_val)
81 // ptr_val_inc = ...
83 // Case-2:
84 // bb1:
85 // int_ptr = BitCast(ptr_ptr)
86 // int_init = Load(int_ptr)
87 // br label %bb2
88 // bb2:
89 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
90 // ptr_val2 = IntToPtr(int_val)
91 // ...
92 // use(ptr_val2)
93 // ptr_val_inc = ...
94 // inc_val_inc = PtrToInt(ptr_val_inc)
95 // ==>
96 // bb1:
97 // ptr_init = Load(ptr_ptr)
98 // br label %bb2
99 // bb2:
100 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
101 // ...
102 // use(ptr_val)
103 // ptr_val_inc = ...
104 // ...
106 bool InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) {
107 if (!PN.getType()->isIntegerTy())
108 return false;
109 if (!PN.hasOneUse())
110 return false;
112 auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
113 if (!IntToPtr)
114 return false;
116 // Check if the pointer is actually used as pointer:
117 auto HasPointerUse = [](Instruction *IIP) {
118 for (User *U : IIP->users()) {
119 Value *Ptr = nullptr;
120 if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
121 Ptr = LoadI->getPointerOperand();
122 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
123 Ptr = SI->getPointerOperand();
124 } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
125 Ptr = GI->getPointerOperand();
128 if (Ptr && Ptr == IIP)
129 return true;
131 return false;
134 if (!HasPointerUse(IntToPtr))
135 return false;
137 if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
138 DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
139 return false;
141 SmallVector<Value *, 4> AvailablePtrVals;
142 for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) {
143 BasicBlock *BB = std::get<0>(Incoming);
144 Value *Arg = std::get<1>(Incoming);
146 // First look backward:
147 if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
148 AvailablePtrVals.emplace_back(PI->getOperand(0));
149 continue;
152 // Next look forward:
153 Value *ArgIntToPtr = nullptr;
154 for (User *U : Arg->users()) {
155 if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
156 (DT.dominates(cast<Instruction>(U), BB) ||
157 cast<Instruction>(U)->getParent() == BB)) {
158 ArgIntToPtr = U;
159 break;
163 if (ArgIntToPtr) {
164 AvailablePtrVals.emplace_back(ArgIntToPtr);
165 continue;
168 // If Arg is defined by a PHI, allow it. This will also create
169 // more opportunities iteratively.
170 if (isa<PHINode>(Arg)) {
171 AvailablePtrVals.emplace_back(Arg);
172 continue;
175 // For a single use integer load:
176 auto *LoadI = dyn_cast<LoadInst>(Arg);
177 if (!LoadI)
178 return false;
180 if (!LoadI->hasOneUse())
181 return false;
183 // Push the integer typed Load instruction into the available
184 // value set, and fix it up later when the pointer typed PHI
185 // is synthesized.
186 AvailablePtrVals.emplace_back(LoadI);
189 // Now search for a matching PHI
190 auto *BB = PN.getParent();
191 assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
192 "Not enough available ptr typed incoming values");
193 PHINode *MatchingPtrPHI = nullptr;
194 unsigned NumPhis = 0;
195 for (PHINode &PtrPHI : BB->phis()) {
196 // FIXME: consider handling this in AggressiveInstCombine
197 if (NumPhis++ > MaxNumPhis)
198 return false;
199 if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType())
200 continue;
201 if (any_of(zip(PN.blocks(), AvailablePtrVals),
202 [&](const auto &BlockAndValue) {
203 BasicBlock *BB = std::get<0>(BlockAndValue);
204 Value *V = std::get<1>(BlockAndValue);
205 return PtrPHI.getIncomingValueForBlock(BB) != V;
207 continue;
208 MatchingPtrPHI = &PtrPHI;
209 break;
212 if (MatchingPtrPHI) {
213 assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
214 "Phi's Type does not match with IntToPtr");
215 // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
216 // to make sure another transform can't undo it in the meantime.
217 replaceInstUsesWith(*IntToPtr, MatchingPtrPHI);
218 eraseInstFromFunction(*IntToPtr);
219 eraseInstFromFunction(PN);
220 return true;
223 // If it requires a conversion for every PHI operand, do not do it.
224 if (all_of(AvailablePtrVals, [&](Value *V) {
225 return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
227 return false;
229 // If any of the operand that requires casting is a terminator
230 // instruction, do not do it. Similarly, do not do the transform if the value
231 // is PHI in a block with no insertion point, for example, a catchswitch
232 // block, since we will not be able to insert a cast after the PHI.
233 if (any_of(AvailablePtrVals, [&](Value *V) {
234 if (V->getType() == IntToPtr->getType())
235 return false;
236 auto *Inst = dyn_cast<Instruction>(V);
237 if (!Inst)
238 return false;
239 if (Inst->isTerminator())
240 return true;
241 auto *BB = Inst->getParent();
242 if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end())
243 return true;
244 return false;
246 return false;
248 PHINode *NewPtrPHI = PHINode::Create(
249 IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
251 InsertNewInstBefore(NewPtrPHI, PN.getIterator());
252 SmallDenseMap<Value *, Instruction *> Casts;
253 for (auto Incoming : zip(PN.blocks(), AvailablePtrVals)) {
254 auto *IncomingBB = std::get<0>(Incoming);
255 auto *IncomingVal = std::get<1>(Incoming);
257 if (IncomingVal->getType() == IntToPtr->getType()) {
258 NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
259 continue;
262 #ifndef NDEBUG
263 LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
264 assert((isa<PHINode>(IncomingVal) ||
265 IncomingVal->getType()->isPointerTy() ||
266 (LoadI && LoadI->hasOneUse())) &&
267 "Can not replace LoadInst with multiple uses");
268 #endif
269 // Need to insert a BitCast.
270 // For an integer Load instruction with a single use, the load + IntToPtr
271 // cast will be simplified into a pointer load:
272 // %v = load i64, i64* %a.ip, align 8
273 // %v.cast = inttoptr i64 %v to float **
274 // ==>
275 // %v.ptrp = bitcast i64 * %a.ip to float **
276 // %v.cast = load float *, float ** %v.ptrp, align 8
277 Instruction *&CI = Casts[IncomingVal];
278 if (!CI) {
279 CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
280 IncomingVal->getName() + ".ptr");
281 if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
282 BasicBlock::iterator InsertPos(IncomingI);
283 InsertPos++;
284 BasicBlock *BB = IncomingI->getParent();
285 if (isa<PHINode>(IncomingI))
286 InsertPos = BB->getFirstInsertionPt();
287 assert(InsertPos != BB->end() && "should have checked above");
288 InsertNewInstBefore(CI, InsertPos);
289 } else {
290 auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
291 InsertNewInstBefore(CI, InsertBB->getFirstInsertionPt());
294 NewPtrPHI->addIncoming(CI, IncomingBB);
297 // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
298 // to make sure another transform can't undo it in the meantime.
299 replaceInstUsesWith(*IntToPtr, NewPtrPHI);
300 eraseInstFromFunction(*IntToPtr);
301 eraseInstFromFunction(PN);
302 return true;
305 // Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and
306 // fold Phi-operand to bitcast.
307 Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) {
308 // convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] )
309 // Make sure all uses of phi are ptr2int.
310 if (!all_of(PN.users(), [](User *U) { return isa<PtrToIntInst>(U); }))
311 return nullptr;
313 // Iterating over all operands to check presence of target pointers for
314 // optimization.
315 bool OperandWithRoundTripCast = false;
316 for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) {
317 if (auto *NewOp =
318 simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) {
319 replaceOperand(PN, OpNum, NewOp);
320 OperandWithRoundTripCast = true;
323 if (!OperandWithRoundTripCast)
324 return nullptr;
325 return &PN;
328 /// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)],
329 /// turn this into a phi[a,c] and phi[b,d] and a single insertvalue.
330 Instruction *
331 InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) {
332 auto *FirstIVI = cast<InsertValueInst>(PN.getIncomingValue(0));
334 // Scan to see if all operands are `insertvalue`'s with the same indicies,
335 // and all have a single use.
336 for (Value *V : drop_begin(PN.incoming_values())) {
337 auto *I = dyn_cast<InsertValueInst>(V);
338 if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices())
339 return nullptr;
342 // For each operand of an `insertvalue`
343 std::array<PHINode *, 2> NewOperands;
344 for (int OpIdx : {0, 1}) {
345 auto *&NewOperand = NewOperands[OpIdx];
346 // Create a new PHI node to receive the values the operand has in each
347 // incoming basic block.
348 NewOperand = PHINode::Create(
349 FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(),
350 FirstIVI->getOperand(OpIdx)->getName() + ".pn");
351 // And populate each operand's PHI with said values.
352 for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
353 NewOperand->addIncoming(
354 cast<InsertValueInst>(std::get<1>(Incoming))->getOperand(OpIdx),
355 std::get<0>(Incoming));
356 InsertNewInstBefore(NewOperand, PN.getIterator());
359 // And finally, create `insertvalue` over the newly-formed PHI nodes.
360 auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1],
361 FirstIVI->getIndices(), PN.getName());
363 PHIArgMergedDebugLoc(NewIVI, PN);
364 ++NumPHIsOfInsertValues;
365 return NewIVI;
368 /// If we have something like phi [extractvalue(a,0), extractvalue(b,0)],
369 /// turn this into a phi[a,b] and a single extractvalue.
370 Instruction *
371 InstCombinerImpl::foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN) {
372 auto *FirstEVI = cast<ExtractValueInst>(PN.getIncomingValue(0));
374 // Scan to see if all operands are `extractvalue`'s with the same indicies,
375 // and all have a single use.
376 for (Value *V : drop_begin(PN.incoming_values())) {
377 auto *I = dyn_cast<ExtractValueInst>(V);
378 if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() ||
379 I->getAggregateOperand()->getType() !=
380 FirstEVI->getAggregateOperand()->getType())
381 return nullptr;
384 // Create a new PHI node to receive the values the aggregate operand has
385 // in each incoming basic block.
386 auto *NewAggregateOperand = PHINode::Create(
387 FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(),
388 FirstEVI->getAggregateOperand()->getName() + ".pn");
389 // And populate the PHI with said values.
390 for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
391 NewAggregateOperand->addIncoming(
392 cast<ExtractValueInst>(std::get<1>(Incoming))->getAggregateOperand(),
393 std::get<0>(Incoming));
394 InsertNewInstBefore(NewAggregateOperand, PN.getIterator());
396 // And finally, create `extractvalue` over the newly-formed PHI nodes.
397 auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand,
398 FirstEVI->getIndices(), PN.getName());
400 PHIArgMergedDebugLoc(NewEVI, PN);
401 ++NumPHIsOfExtractValues;
402 return NewEVI;
405 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
406 /// adds all have a single user, turn this into a phi and a single binop.
407 Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) {
408 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
409 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
410 unsigned Opc = FirstInst->getOpcode();
411 Value *LHSVal = FirstInst->getOperand(0);
412 Value *RHSVal = FirstInst->getOperand(1);
414 Type *LHSType = LHSVal->getType();
415 Type *RHSType = RHSVal->getType();
417 // Scan to see if all operands are the same opcode, and all have one user.
418 for (Value *V : drop_begin(PN.incoming_values())) {
419 Instruction *I = dyn_cast<Instruction>(V);
420 if (!I || I->getOpcode() != Opc || !I->hasOneUser() ||
421 // Verify type of the LHS matches so we don't fold cmp's of different
422 // types.
423 I->getOperand(0)->getType() != LHSType ||
424 I->getOperand(1)->getType() != RHSType)
425 return nullptr;
427 // If they are CmpInst instructions, check their predicates
428 if (CmpInst *CI = dyn_cast<CmpInst>(I))
429 if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
430 return nullptr;
432 // Keep track of which operand needs a phi node.
433 if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
434 if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
437 // If both LHS and RHS would need a PHI, don't do this transformation,
438 // because it would increase the number of PHIs entering the block,
439 // which leads to higher register pressure. This is especially
440 // bad when the PHIs are in the header of a loop.
441 if (!LHSVal && !RHSVal)
442 return nullptr;
444 // Otherwise, this is safe to transform!
446 Value *InLHS = FirstInst->getOperand(0);
447 Value *InRHS = FirstInst->getOperand(1);
448 PHINode *NewLHS = nullptr, *NewRHS = nullptr;
449 if (!LHSVal) {
450 NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
451 FirstInst->getOperand(0)->getName() + ".pn");
452 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
453 InsertNewInstBefore(NewLHS, PN.getIterator());
454 LHSVal = NewLHS;
457 if (!RHSVal) {
458 NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
459 FirstInst->getOperand(1)->getName() + ".pn");
460 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
461 InsertNewInstBefore(NewRHS, PN.getIterator());
462 RHSVal = NewRHS;
465 // Add all operands to the new PHIs.
466 if (NewLHS || NewRHS) {
467 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
468 BasicBlock *InBB = std::get<0>(Incoming);
469 Value *InVal = std::get<1>(Incoming);
470 Instruction *InInst = cast<Instruction>(InVal);
471 if (NewLHS) {
472 Value *NewInLHS = InInst->getOperand(0);
473 NewLHS->addIncoming(NewInLHS, InBB);
475 if (NewRHS) {
476 Value *NewInRHS = InInst->getOperand(1);
477 NewRHS->addIncoming(NewInRHS, InBB);
482 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
483 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
484 LHSVal, RHSVal);
485 PHIArgMergedDebugLoc(NewCI, PN);
486 return NewCI;
489 BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
490 BinaryOperator *NewBinOp =
491 BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
493 NewBinOp->copyIRFlags(PN.getIncomingValue(0));
495 for (Value *V : drop_begin(PN.incoming_values()))
496 NewBinOp->andIRFlags(V);
498 PHIArgMergedDebugLoc(NewBinOp, PN);
499 return NewBinOp;
502 Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) {
503 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
505 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
506 FirstInst->op_end());
507 // This is true if all GEP bases are allocas and if all indices into them are
508 // constants.
509 bool AllBasePointersAreAllocas = true;
511 // We don't want to replace this phi if the replacement would require
512 // more than one phi, which leads to higher register pressure. This is
513 // especially bad when the PHIs are in the header of a loop.
514 bool NeededPhi = false;
516 bool AllInBounds = true;
518 // Scan to see if all operands are the same opcode, and all have one user.
519 for (Value *V : drop_begin(PN.incoming_values())) {
520 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V);
521 if (!GEP || !GEP->hasOneUser() ||
522 GEP->getSourceElementType() != FirstInst->getSourceElementType() ||
523 GEP->getNumOperands() != FirstInst->getNumOperands())
524 return nullptr;
526 AllInBounds &= GEP->isInBounds();
528 // Keep track of whether or not all GEPs are of alloca pointers.
529 if (AllBasePointersAreAllocas &&
530 (!isa<AllocaInst>(GEP->getOperand(0)) ||
531 !GEP->hasAllConstantIndices()))
532 AllBasePointersAreAllocas = false;
534 // Compare the operand lists.
535 for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) {
536 if (FirstInst->getOperand(Op) == GEP->getOperand(Op))
537 continue;
539 // Don't merge two GEPs when two operands differ (introducing phi nodes)
540 // if one of the PHIs has a constant for the index. The index may be
541 // substantially cheaper to compute for the constants, so making it a
542 // variable index could pessimize the path. This also handles the case
543 // for struct indices, which must always be constant.
544 if (isa<ConstantInt>(FirstInst->getOperand(Op)) ||
545 isa<ConstantInt>(GEP->getOperand(Op)))
546 return nullptr;
548 if (FirstInst->getOperand(Op)->getType() !=
549 GEP->getOperand(Op)->getType())
550 return nullptr;
552 // If we already needed a PHI for an earlier operand, and another operand
553 // also requires a PHI, we'd be introducing more PHIs than we're
554 // eliminating, which increases register pressure on entry to the PHI's
555 // block.
556 if (NeededPhi)
557 return nullptr;
559 FixedOperands[Op] = nullptr; // Needs a PHI.
560 NeededPhi = true;
564 // If all of the base pointers of the PHI'd GEPs are from allocas, don't
565 // bother doing this transformation. At best, this will just save a bit of
566 // offset calculation, but all the predecessors will have to materialize the
567 // stack address into a register anyway. We'd actually rather *clone* the
568 // load up into the predecessors so that we have a load of a gep of an alloca,
569 // which can usually all be folded into the load.
570 if (AllBasePointersAreAllocas)
571 return nullptr;
573 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
574 // that is variable.
575 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
577 bool HasAnyPHIs = false;
578 for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) {
579 if (FixedOperands[I])
580 continue; // operand doesn't need a phi.
581 Value *FirstOp = FirstInst->getOperand(I);
582 PHINode *NewPN =
583 PHINode::Create(FirstOp->getType(), E, FirstOp->getName() + ".pn");
584 InsertNewInstBefore(NewPN, PN.getIterator());
586 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
587 OperandPhis[I] = NewPN;
588 FixedOperands[I] = NewPN;
589 HasAnyPHIs = true;
592 // Add all operands to the new PHIs.
593 if (HasAnyPHIs) {
594 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
595 BasicBlock *InBB = std::get<0>(Incoming);
596 Value *InVal = std::get<1>(Incoming);
597 GetElementPtrInst *InGEP = cast<GetElementPtrInst>(InVal);
599 for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op)
600 if (PHINode *OpPhi = OperandPhis[Op])
601 OpPhi->addIncoming(InGEP->getOperand(Op), InBB);
605 Value *Base = FixedOperands[0];
606 GetElementPtrInst *NewGEP =
607 GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
608 ArrayRef(FixedOperands).slice(1));
609 if (AllInBounds) NewGEP->setIsInBounds();
610 PHIArgMergedDebugLoc(NewGEP, PN);
611 return NewGEP;
614 /// Return true if we know that it is safe to sink the load out of the block
615 /// that defines it. This means that it must be obvious the value of the load is
616 /// not changed from the point of the load to the end of the block it is in.
618 /// Finally, it is safe, but not profitable, to sink a load targeting a
619 /// non-address-taken alloca. Doing so will cause us to not promote the alloca
620 /// to a register.
621 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
622 BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
624 for (++BBI; BBI != E; ++BBI)
625 if (BBI->mayWriteToMemory()) {
626 // Calls that only access inaccessible memory do not block sinking the
627 // load.
628 if (auto *CB = dyn_cast<CallBase>(BBI))
629 if (CB->onlyAccessesInaccessibleMemory())
630 continue;
631 return false;
634 // Check for non-address taken alloca. If not address-taken already, it isn't
635 // profitable to do this xform.
636 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
637 bool IsAddressTaken = false;
638 for (User *U : AI->users()) {
639 if (isa<LoadInst>(U)) continue;
640 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
641 // If storing TO the alloca, then the address isn't taken.
642 if (SI->getOperand(1) == AI) continue;
644 IsAddressTaken = true;
645 break;
648 if (!IsAddressTaken && AI->isStaticAlloca())
649 return false;
652 // If this load is a load from a GEP with a constant offset from an alloca,
653 // then we don't want to sink it. In its present form, it will be
654 // load [constant stack offset]. Sinking it will cause us to have to
655 // materialize the stack addresses in each predecessor in a register only to
656 // do a shared load from register in the successor.
657 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
658 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
659 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
660 return false;
662 return true;
665 Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) {
666 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
668 // Can't forward swifterror through a phi.
669 if (FirstLI->getOperand(0)->isSwiftError())
670 return nullptr;
672 // FIXME: This is overconservative; this transform is allowed in some cases
673 // for atomic operations.
674 if (FirstLI->isAtomic())
675 return nullptr;
677 // When processing loads, we need to propagate two bits of information to the
678 // sunk load: whether it is volatile, and what its alignment is.
679 bool IsVolatile = FirstLI->isVolatile();
680 Align LoadAlignment = FirstLI->getAlign();
681 const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
683 // We can't sink the load if the loaded value could be modified between the
684 // load and the PHI.
685 if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
686 !isSafeAndProfitableToSinkLoad(FirstLI))
687 return nullptr;
689 // If the PHI is of volatile loads and the load block has multiple
690 // successors, sinking it would remove a load of the volatile value from
691 // the path through the other successor.
692 if (IsVolatile &&
693 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
694 return nullptr;
696 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
697 BasicBlock *InBB = std::get<0>(Incoming);
698 Value *InVal = std::get<1>(Incoming);
699 LoadInst *LI = dyn_cast<LoadInst>(InVal);
700 if (!LI || !LI->hasOneUser() || LI->isAtomic())
701 return nullptr;
703 // Make sure all arguments are the same type of operation.
704 if (LI->isVolatile() != IsVolatile ||
705 LI->getPointerAddressSpace() != LoadAddrSpace)
706 return nullptr;
708 // Can't forward swifterror through a phi.
709 if (LI->getOperand(0)->isSwiftError())
710 return nullptr;
712 // We can't sink the load if the loaded value could be modified between
713 // the load and the PHI.
714 if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(LI))
715 return nullptr;
717 LoadAlignment = std::min(LoadAlignment, LI->getAlign());
719 // If the PHI is of volatile loads and the load block has multiple
720 // successors, sinking it would remove a load of the volatile value from
721 // the path through the other successor.
722 if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1)
723 return nullptr;
726 // Okay, they are all the same operation. Create a new PHI node of the
727 // correct type, and PHI together all of the LHS's of the instructions.
728 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
729 PN.getNumIncomingValues(),
730 PN.getName()+".in");
732 Value *InVal = FirstLI->getOperand(0);
733 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
734 LoadInst *NewLI =
735 new LoadInst(FirstLI->getType(), NewPN, "", IsVolatile, LoadAlignment);
737 unsigned KnownIDs[] = {
738 LLVMContext::MD_tbaa,
739 LLVMContext::MD_range,
740 LLVMContext::MD_invariant_load,
741 LLVMContext::MD_alias_scope,
742 LLVMContext::MD_noalias,
743 LLVMContext::MD_nonnull,
744 LLVMContext::MD_align,
745 LLVMContext::MD_dereferenceable,
746 LLVMContext::MD_dereferenceable_or_null,
747 LLVMContext::MD_access_group,
748 LLVMContext::MD_noundef,
751 for (unsigned ID : KnownIDs)
752 NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
754 // Add all operands to the new PHI and combine TBAA metadata.
755 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
756 BasicBlock *BB = std::get<0>(Incoming);
757 Value *V = std::get<1>(Incoming);
758 LoadInst *LI = cast<LoadInst>(V);
759 combineMetadata(NewLI, LI, KnownIDs, true);
760 Value *NewInVal = LI->getOperand(0);
761 if (NewInVal != InVal)
762 InVal = nullptr;
763 NewPN->addIncoming(NewInVal, BB);
766 if (InVal) {
767 // The new PHI unions all of the same values together. This is really
768 // common, so we handle it intelligently here for compile-time speed.
769 NewLI->setOperand(0, InVal);
770 delete NewPN;
771 } else {
772 InsertNewInstBefore(NewPN, PN.getIterator());
775 // If this was a volatile load that we are merging, make sure to loop through
776 // and mark all the input loads as non-volatile. If we don't do this, we will
777 // insert a new volatile load and the old ones will not be deletable.
778 if (IsVolatile)
779 for (Value *IncValue : PN.incoming_values())
780 cast<LoadInst>(IncValue)->setVolatile(false);
782 PHIArgMergedDebugLoc(NewLI, PN);
783 return NewLI;
786 /// TODO: This function could handle other cast types, but then it might
787 /// require special-casing a cast from the 'i1' type. See the comment in
788 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
789 Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) {
790 // We cannot create a new instruction after the PHI if the terminator is an
791 // EHPad because there is no valid insertion point.
792 if (Instruction *TI = Phi.getParent()->getTerminator())
793 if (TI->isEHPad())
794 return nullptr;
796 // Early exit for the common case of a phi with two operands. These are
797 // handled elsewhere. See the comment below where we check the count of zexts
798 // and constants for more details.
799 unsigned NumIncomingValues = Phi.getNumIncomingValues();
800 if (NumIncomingValues < 3)
801 return nullptr;
803 // Find the narrower type specified by the first zext.
804 Type *NarrowType = nullptr;
805 for (Value *V : Phi.incoming_values()) {
806 if (auto *Zext = dyn_cast<ZExtInst>(V)) {
807 NarrowType = Zext->getSrcTy();
808 break;
811 if (!NarrowType)
812 return nullptr;
814 // Walk the phi operands checking that we only have zexts or constants that
815 // we can shrink for free. Store the new operands for the new phi.
816 SmallVector<Value *, 4> NewIncoming;
817 unsigned NumZexts = 0;
818 unsigned NumConsts = 0;
819 for (Value *V : Phi.incoming_values()) {
820 if (auto *Zext = dyn_cast<ZExtInst>(V)) {
821 // All zexts must be identical and have one user.
822 if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser())
823 return nullptr;
824 NewIncoming.push_back(Zext->getOperand(0));
825 NumZexts++;
826 } else if (auto *C = dyn_cast<Constant>(V)) {
827 // Make sure that constants can fit in the new type.
828 Constant *Trunc = getLosslessUnsignedTrunc(C, NarrowType);
829 if (!Trunc)
830 return nullptr;
831 NewIncoming.push_back(Trunc);
832 NumConsts++;
833 } else {
834 // If it's not a cast or a constant, bail out.
835 return nullptr;
839 // The more common cases of a phi with no constant operands or just one
840 // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
841 // respectively. foldOpIntoPhi() wants to do the opposite transform that is
842 // performed here. It tries to replicate a cast in the phi operand's basic
843 // block to expose other folding opportunities. Thus, InstCombine will
844 // infinite loop without this check.
845 if (NumConsts == 0 || NumZexts < 2)
846 return nullptr;
848 // All incoming values are zexts or constants that are safe to truncate.
849 // Create a new phi node of the narrow type, phi together all of the new
850 // operands, and zext the result back to the original type.
851 PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
852 Phi.getName() + ".shrunk");
853 for (unsigned I = 0; I != NumIncomingValues; ++I)
854 NewPhi->addIncoming(NewIncoming[I], Phi.getIncomingBlock(I));
856 InsertNewInstBefore(NewPhi, Phi.getIterator());
857 return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
860 /// If all operands to a PHI node are the same "unary" operator and they all are
861 /// only used by the PHI, PHI together their inputs, and do the operation once,
862 /// to the result of the PHI.
863 Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) {
864 // We cannot create a new instruction after the PHI if the terminator is an
865 // EHPad because there is no valid insertion point.
866 if (Instruction *TI = PN.getParent()->getTerminator())
867 if (TI->isEHPad())
868 return nullptr;
870 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
872 if (isa<GetElementPtrInst>(FirstInst))
873 return foldPHIArgGEPIntoPHI(PN);
874 if (isa<LoadInst>(FirstInst))
875 return foldPHIArgLoadIntoPHI(PN);
876 if (isa<InsertValueInst>(FirstInst))
877 return foldPHIArgInsertValueInstructionIntoPHI(PN);
878 if (isa<ExtractValueInst>(FirstInst))
879 return foldPHIArgExtractValueInstructionIntoPHI(PN);
881 // Scan the instruction, looking for input operations that can be folded away.
882 // If all input operands to the phi are the same instruction (e.g. a cast from
883 // the same type or "+42") we can pull the operation through the PHI, reducing
884 // code size and simplifying code.
885 Constant *ConstantOp = nullptr;
886 Type *CastSrcTy = nullptr;
888 if (isa<CastInst>(FirstInst)) {
889 CastSrcTy = FirstInst->getOperand(0)->getType();
891 // Be careful about transforming integer PHIs. We don't want to pessimize
892 // the code by turning an i32 into an i1293.
893 if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
894 if (!shouldChangeType(PN.getType(), CastSrcTy))
895 return nullptr;
897 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
898 // Can fold binop, compare or shift here if the RHS is a constant,
899 // otherwise call FoldPHIArgBinOpIntoPHI.
900 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
901 if (!ConstantOp)
902 return foldPHIArgBinOpIntoPHI(PN);
903 } else {
904 return nullptr; // Cannot fold this operation.
907 // Check to see if all arguments are the same operation.
908 for (Value *V : drop_begin(PN.incoming_values())) {
909 Instruction *I = dyn_cast<Instruction>(V);
910 if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst))
911 return nullptr;
912 if (CastSrcTy) {
913 if (I->getOperand(0)->getType() != CastSrcTy)
914 return nullptr; // Cast operation must match.
915 } else if (I->getOperand(1) != ConstantOp) {
916 return nullptr;
920 // Okay, they are all the same operation. Create a new PHI node of the
921 // correct type, and PHI together all of the LHS's of the instructions.
922 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
923 PN.getNumIncomingValues(),
924 PN.getName()+".in");
926 Value *InVal = FirstInst->getOperand(0);
927 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
929 // Add all operands to the new PHI.
930 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
931 BasicBlock *BB = std::get<0>(Incoming);
932 Value *V = std::get<1>(Incoming);
933 Value *NewInVal = cast<Instruction>(V)->getOperand(0);
934 if (NewInVal != InVal)
935 InVal = nullptr;
936 NewPN->addIncoming(NewInVal, BB);
939 Value *PhiVal;
940 if (InVal) {
941 // The new PHI unions all of the same values together. This is really
942 // common, so we handle it intelligently here for compile-time speed.
943 PhiVal = InVal;
944 delete NewPN;
945 } else {
946 InsertNewInstBefore(NewPN, PN.getIterator());
947 PhiVal = NewPN;
950 // Insert and return the new operation.
951 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
952 CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
953 PN.getType());
954 PHIArgMergedDebugLoc(NewCI, PN);
955 return NewCI;
958 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
959 BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
960 BinOp->copyIRFlags(PN.getIncomingValue(0));
962 for (Value *V : drop_begin(PN.incoming_values()))
963 BinOp->andIRFlags(V);
965 PHIArgMergedDebugLoc(BinOp, PN);
966 return BinOp;
969 CmpInst *CIOp = cast<CmpInst>(FirstInst);
970 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
971 PhiVal, ConstantOp);
972 PHIArgMergedDebugLoc(NewCI, PN);
973 return NewCI;
976 /// Return true if this PHI node is only used by a PHI node cycle that is dead.
977 static bool isDeadPHICycle(PHINode *PN,
978 SmallPtrSetImpl<PHINode *> &PotentiallyDeadPHIs) {
979 if (PN->use_empty()) return true;
980 if (!PN->hasOneUse()) return false;
982 // Remember this node, and if we find the cycle, return.
983 if (!PotentiallyDeadPHIs.insert(PN).second)
984 return true;
986 // Don't scan crazily complex things.
987 if (PotentiallyDeadPHIs.size() == 16)
988 return false;
990 if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
991 return isDeadPHICycle(PU, PotentiallyDeadPHIs);
993 return false;
996 /// Return true if this phi node is always equal to NonPhiInVal.
997 /// This happens with mutually cyclic phi nodes like:
998 /// z = some value; x = phi (y, z); y = phi (x, z)
999 static bool PHIsEqualValue(PHINode *PN, Value *&NonPhiInVal,
1000 SmallPtrSetImpl<PHINode *> &ValueEqualPHIs) {
1001 // See if we already saw this PHI node.
1002 if (!ValueEqualPHIs.insert(PN).second)
1003 return true;
1005 // Don't scan crazily complex things.
1006 if (ValueEqualPHIs.size() == 16)
1007 return false;
1009 // Scan the operands to see if they are either phi nodes or are equal to
1010 // the value.
1011 for (Value *Op : PN->incoming_values()) {
1012 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
1013 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) {
1014 if (NonPhiInVal)
1015 return false;
1016 NonPhiInVal = OpPN;
1018 } else if (Op != NonPhiInVal)
1019 return false;
1022 return true;
1025 /// Return an existing non-zero constant if this phi node has one, otherwise
1026 /// return constant 1.
1027 static ConstantInt *getAnyNonZeroConstInt(PHINode &PN) {
1028 assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
1029 for (Value *V : PN.operands())
1030 if (auto *ConstVA = dyn_cast<ConstantInt>(V))
1031 if (!ConstVA->isZero())
1032 return ConstVA;
1033 return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
1036 namespace {
1037 struct PHIUsageRecord {
1038 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
1039 unsigned Shift; // The amount shifted.
1040 Instruction *Inst; // The trunc instruction.
1042 PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User)
1043 : PHIId(Pn), Shift(Sh), Inst(User) {}
1045 bool operator<(const PHIUsageRecord &RHS) const {
1046 if (PHIId < RHS.PHIId) return true;
1047 if (PHIId > RHS.PHIId) return false;
1048 if (Shift < RHS.Shift) return true;
1049 if (Shift > RHS.Shift) return false;
1050 return Inst->getType()->getPrimitiveSizeInBits() <
1051 RHS.Inst->getType()->getPrimitiveSizeInBits();
1055 struct LoweredPHIRecord {
1056 PHINode *PN; // The PHI that was lowered.
1057 unsigned Shift; // The amount shifted.
1058 unsigned Width; // The width extracted.
1060 LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty)
1061 : PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
1063 // Ctor form used by DenseMap.
1064 LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {}
1066 } // namespace
1068 namespace llvm {
1069 template<>
1070 struct DenseMapInfo<LoweredPHIRecord> {
1071 static inline LoweredPHIRecord getEmptyKey() {
1072 return LoweredPHIRecord(nullptr, 0);
1074 static inline LoweredPHIRecord getTombstoneKey() {
1075 return LoweredPHIRecord(nullptr, 1);
1077 static unsigned getHashValue(const LoweredPHIRecord &Val) {
1078 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
1079 (Val.Width>>3);
1081 static bool isEqual(const LoweredPHIRecord &LHS,
1082 const LoweredPHIRecord &RHS) {
1083 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
1084 LHS.Width == RHS.Width;
1087 } // namespace llvm
1090 /// This is an integer PHI and we know that it has an illegal type: see if it is
1091 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
1092 /// the various pieces being extracted. This sort of thing is introduced when
1093 /// SROA promotes an aggregate to large integer values.
1095 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
1096 /// inttoptr. We should produce new PHIs in the right type.
1098 Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
1099 // PHIUsers - Keep track of all of the truncated values extracted from a set
1100 // of PHIs, along with their offset. These are the things we want to rewrite.
1101 SmallVector<PHIUsageRecord, 16> PHIUsers;
1103 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
1104 // nodes which are extracted from. PHIsToSlice is a set we use to avoid
1105 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
1106 // check the uses of (to ensure they are all extracts).
1107 SmallVector<PHINode*, 8> PHIsToSlice;
1108 SmallPtrSet<PHINode*, 8> PHIsInspected;
1110 PHIsToSlice.push_back(&FirstPhi);
1111 PHIsInspected.insert(&FirstPhi);
1113 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
1114 PHINode *PN = PHIsToSlice[PHIId];
1116 // Scan the input list of the PHI. If any input is an invoke, and if the
1117 // input is defined in the predecessor, then we won't be split the critical
1118 // edge which is required to insert a truncate. Because of this, we have to
1119 // bail out.
1120 for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
1121 BasicBlock *BB = std::get<0>(Incoming);
1122 Value *V = std::get<1>(Incoming);
1123 InvokeInst *II = dyn_cast<InvokeInst>(V);
1124 if (!II)
1125 continue;
1126 if (II->getParent() != BB)
1127 continue;
1129 // If we have a phi, and if it's directly in the predecessor, then we have
1130 // a critical edge where we need to put the truncate. Since we can't
1131 // split the edge in instcombine, we have to bail out.
1132 return nullptr;
1135 // If the incoming value is a PHI node before a catchswitch, we cannot
1136 // extract the value within that BB because we cannot insert any non-PHI
1137 // instructions in the BB.
1138 for (auto *Pred : PN->blocks())
1139 if (Pred->getFirstInsertionPt() == Pred->end())
1140 return nullptr;
1142 for (User *U : PN->users()) {
1143 Instruction *UserI = cast<Instruction>(U);
1145 // If the user is a PHI, inspect its uses recursively.
1146 if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
1147 if (PHIsInspected.insert(UserPN).second)
1148 PHIsToSlice.push_back(UserPN);
1149 continue;
1152 // Truncates are always ok.
1153 if (isa<TruncInst>(UserI)) {
1154 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
1155 continue;
1158 // Otherwise it must be a lshr which can only be used by one trunc.
1159 if (UserI->getOpcode() != Instruction::LShr ||
1160 !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
1161 !isa<ConstantInt>(UserI->getOperand(1)))
1162 return nullptr;
1164 // Bail on out of range shifts.
1165 unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
1166 if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
1167 return nullptr;
1169 unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
1170 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
1174 // If we have no users, they must be all self uses, just nuke the PHI.
1175 if (PHIUsers.empty())
1176 return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType()));
1178 // If this phi node is transformable, create new PHIs for all the pieces
1179 // extracted out of it. First, sort the users by their offset and size.
1180 array_pod_sort(PHIUsers.begin(), PHIUsers.end());
1182 LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
1183 for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs()
1184 << "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n');
1186 // PredValues - This is a temporary used when rewriting PHI nodes. It is
1187 // hoisted out here to avoid construction/destruction thrashing.
1188 DenseMap<BasicBlock*, Value*> PredValues;
1190 // ExtractedVals - Each new PHI we introduce is saved here so we don't
1191 // introduce redundant PHIs.
1192 DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
1194 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
1195 unsigned PHIId = PHIUsers[UserI].PHIId;
1196 PHINode *PN = PHIsToSlice[PHIId];
1197 unsigned Offset = PHIUsers[UserI].Shift;
1198 Type *Ty = PHIUsers[UserI].Inst->getType();
1200 PHINode *EltPHI;
1202 // If we've already lowered a user like this, reuse the previously lowered
1203 // value.
1204 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
1206 // Otherwise, Create the new PHI node for this user.
1207 EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
1208 PN->getName()+".off"+Twine(Offset), PN);
1209 assert(EltPHI->getType() != PN->getType() &&
1210 "Truncate didn't shrink phi?");
1212 for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
1213 BasicBlock *Pred = std::get<0>(Incoming);
1214 Value *InVal = std::get<1>(Incoming);
1215 Value *&PredVal = PredValues[Pred];
1217 // If we already have a value for this predecessor, reuse it.
1218 if (PredVal) {
1219 EltPHI->addIncoming(PredVal, Pred);
1220 continue;
1223 // Handle the PHI self-reuse case.
1224 if (InVal == PN) {
1225 PredVal = EltPHI;
1226 EltPHI->addIncoming(PredVal, Pred);
1227 continue;
1230 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
1231 // If the incoming value was a PHI, and if it was one of the PHIs we
1232 // already rewrote it, just use the lowered value.
1233 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
1234 PredVal = Res;
1235 EltPHI->addIncoming(PredVal, Pred);
1236 continue;
1240 // Otherwise, do an extract in the predecessor.
1241 Builder.SetInsertPoint(Pred->getTerminator());
1242 Value *Res = InVal;
1243 if (Offset)
1244 Res = Builder.CreateLShr(
1245 Res, ConstantInt::get(InVal->getType(), Offset), "extract");
1246 Res = Builder.CreateTrunc(Res, Ty, "extract.t");
1247 PredVal = Res;
1248 EltPHI->addIncoming(Res, Pred);
1250 // If the incoming value was a PHI, and if it was one of the PHIs we are
1251 // rewriting, we will ultimately delete the code we inserted. This
1252 // means we need to revisit that PHI to make sure we extract out the
1253 // needed piece.
1254 if (PHINode *OldInVal = dyn_cast<PHINode>(InVal))
1255 if (PHIsInspected.count(OldInVal)) {
1256 unsigned RefPHIId =
1257 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
1258 PHIUsers.push_back(
1259 PHIUsageRecord(RefPHIId, Offset, cast<Instruction>(Res)));
1260 ++UserE;
1263 PredValues.clear();
1265 LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": "
1266 << *EltPHI << '\n');
1267 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
1270 // Replace the use of this piece with the PHI node.
1271 replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
1274 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
1275 // with poison.
1276 Value *Poison = PoisonValue::get(FirstPhi.getType());
1277 for (PHINode *PHI : drop_begin(PHIsToSlice))
1278 replaceInstUsesWith(*PHI, Poison);
1279 return replaceInstUsesWith(FirstPhi, Poison);
1282 static Value *simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN,
1283 const DominatorTree &DT) {
1284 // Simplify the following patterns:
1285 // if (cond)
1286 // / \
1287 // ... ...
1288 // \ /
1289 // phi [true] [false]
1290 // and
1291 // switch (cond)
1292 // case v1: / \ case v2:
1293 // ... ...
1294 // \ /
1295 // phi [v1] [v2]
1296 // Make sure all inputs are constants.
1297 if (!all_of(PN.operands(), [](Value *V) { return isa<ConstantInt>(V); }))
1298 return nullptr;
1300 BasicBlock *BB = PN.getParent();
1301 // Do not bother with unreachable instructions.
1302 if (!DT.isReachableFromEntry(BB))
1303 return nullptr;
1305 // Determine which value the condition of the idom has for which successor.
1306 LLVMContext &Context = PN.getContext();
1307 auto *IDom = DT.getNode(BB)->getIDom()->getBlock();
1308 Value *Cond;
1309 SmallDenseMap<ConstantInt *, BasicBlock *, 8> SuccForValue;
1310 SmallDenseMap<BasicBlock *, unsigned, 8> SuccCount;
1311 auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) {
1312 SuccForValue[C] = Succ;
1313 ++SuccCount[Succ];
1315 if (auto *BI = dyn_cast<BranchInst>(IDom->getTerminator())) {
1316 if (BI->isUnconditional())
1317 return nullptr;
1319 Cond = BI->getCondition();
1320 AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(0));
1321 AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(1));
1322 } else if (auto *SI = dyn_cast<SwitchInst>(IDom->getTerminator())) {
1323 Cond = SI->getCondition();
1324 ++SuccCount[SI->getDefaultDest()];
1325 for (auto Case : SI->cases())
1326 AddSucc(Case.getCaseValue(), Case.getCaseSuccessor());
1327 } else {
1328 return nullptr;
1331 if (Cond->getType() != PN.getType())
1332 return nullptr;
1334 // Check that edges outgoing from the idom's terminators dominate respective
1335 // inputs of the Phi.
1336 std::optional<bool> Invert;
1337 for (auto Pair : zip(PN.incoming_values(), PN.blocks())) {
1338 auto *Input = cast<ConstantInt>(std::get<0>(Pair));
1339 BasicBlock *Pred = std::get<1>(Pair);
1340 auto IsCorrectInput = [&](ConstantInt *Input) {
1341 // The input needs to be dominated by the corresponding edge of the idom.
1342 // This edge cannot be a multi-edge, as that would imply that multiple
1343 // different condition values follow the same edge.
1344 auto It = SuccForValue.find(Input);
1345 return It != SuccForValue.end() && SuccCount[It->second] == 1 &&
1346 DT.dominates(BasicBlockEdge(IDom, It->second),
1347 BasicBlockEdge(Pred, BB));
1350 // Depending on the constant, the condition may need to be inverted.
1351 bool NeedsInvert;
1352 if (IsCorrectInput(Input))
1353 NeedsInvert = false;
1354 else if (IsCorrectInput(cast<ConstantInt>(ConstantExpr::getNot(Input))))
1355 NeedsInvert = true;
1356 else
1357 return nullptr;
1359 // Make sure the inversion requirement is always the same.
1360 if (Invert && *Invert != NeedsInvert)
1361 return nullptr;
1363 Invert = NeedsInvert;
1366 if (!*Invert)
1367 return Cond;
1369 // This Phi is actually opposite to branching condition of IDom. We invert
1370 // the condition that will potentially open up some opportunities for
1371 // sinking.
1372 auto InsertPt = BB->getFirstInsertionPt();
1373 if (InsertPt != BB->end()) {
1374 Self.Builder.SetInsertPoint(&*BB, InsertPt);
1375 return Self.Builder.CreateNot(Cond);
1378 return nullptr;
1381 // PHINode simplification
1383 Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) {
1384 if (Value *V = simplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
1385 return replaceInstUsesWith(PN, V);
1387 if (Instruction *Result = foldPHIArgZextsIntoPHI(PN))
1388 return Result;
1390 if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN))
1391 return Result;
1393 // If all PHI operands are the same operation, pull them through the PHI,
1394 // reducing code size.
1395 auto *Inst0 = dyn_cast<Instruction>(PN.getIncomingValue(0));
1396 auto *Inst1 = dyn_cast<Instruction>(PN.getIncomingValue(1));
1397 if (Inst0 && Inst1 && Inst0->getOpcode() == Inst1->getOpcode() &&
1398 Inst0->hasOneUser())
1399 if (Instruction *Result = foldPHIArgOpIntoPHI(PN))
1400 return Result;
1402 // If the incoming values are pointer casts of the same original value,
1403 // replace the phi with a single cast iff we can insert a non-PHI instruction.
1404 if (PN.getType()->isPointerTy() &&
1405 PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) {
1406 Value *IV0 = PN.getIncomingValue(0);
1407 Value *IV0Stripped = IV0->stripPointerCasts();
1408 // Set to keep track of values known to be equal to IV0Stripped after
1409 // stripping pointer casts.
1410 SmallPtrSet<Value *, 4> CheckedIVs;
1411 CheckedIVs.insert(IV0);
1412 if (IV0 != IV0Stripped &&
1413 all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) {
1414 return !CheckedIVs.insert(IV).second ||
1415 IV0Stripped == IV->stripPointerCasts();
1416 })) {
1417 return CastInst::CreatePointerCast(IV0Stripped, PN.getType());
1421 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
1422 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
1423 // PHI)... break the cycle.
1424 if (PN.hasOneUse()) {
1425 if (foldIntegerTypedPHI(PN))
1426 return nullptr;
1428 Instruction *PHIUser = cast<Instruction>(PN.user_back());
1429 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
1430 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
1431 PotentiallyDeadPHIs.insert(&PN);
1432 if (isDeadPHICycle(PU, PotentiallyDeadPHIs))
1433 return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
1436 // If this phi has a single use, and if that use just computes a value for
1437 // the next iteration of a loop, delete the phi. This occurs with unused
1438 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
1439 // common case here is good because the only other things that catch this
1440 // are induction variable analysis (sometimes) and ADCE, which is only run
1441 // late.
1442 if (PHIUser->hasOneUse() &&
1443 (isa<BinaryOperator>(PHIUser) || isa<UnaryOperator>(PHIUser) ||
1444 isa<GetElementPtrInst>(PHIUser)) &&
1445 PHIUser->user_back() == &PN) {
1446 return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
1450 // When a PHI is used only to be compared with zero, it is safe to replace
1451 // an incoming value proved as known nonzero with any non-zero constant.
1452 // For example, in the code below, the incoming value %v can be replaced
1453 // with any non-zero constant based on the fact that the PHI is only used to
1454 // be compared with zero and %v is a known non-zero value:
1455 // %v = select %cond, 1, 2
1456 // %p = phi [%v, BB] ...
1457 // icmp eq, %p, 0
1458 // FIXME: To be simple, handle only integer type for now.
1459 // This handles a small number of uses to keep the complexity down, and an
1460 // icmp(or(phi)) can equally be replaced with any non-zero constant as the
1461 // "or" will only add bits.
1462 if (!PN.hasNUsesOrMore(3)) {
1463 SmallVector<Instruction *> DropPoisonFlags;
1464 bool AllUsesOfPhiEndsInCmp = all_of(PN.users(), [&](User *U) {
1465 auto *CmpInst = dyn_cast<ICmpInst>(U);
1466 if (!CmpInst) {
1467 // This is always correct as OR only add bits and we are checking
1468 // against 0.
1469 if (U->hasOneUse() && match(U, m_c_Or(m_Specific(&PN), m_Value()))) {
1470 DropPoisonFlags.push_back(cast<Instruction>(U));
1471 CmpInst = dyn_cast<ICmpInst>(U->user_back());
1474 if (!CmpInst || !isa<IntegerType>(PN.getType()) ||
1475 !CmpInst->isEquality() || !match(CmpInst->getOperand(1), m_Zero())) {
1476 return false;
1478 return true;
1480 // All uses of PHI results in a compare with zero.
1481 if (AllUsesOfPhiEndsInCmp) {
1482 ConstantInt *NonZeroConst = nullptr;
1483 bool MadeChange = false;
1484 for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
1485 Instruction *CtxI = PN.getIncomingBlock(I)->getTerminator();
1486 Value *VA = PN.getIncomingValue(I);
1487 if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) {
1488 if (!NonZeroConst)
1489 NonZeroConst = getAnyNonZeroConstInt(PN);
1490 if (NonZeroConst != VA) {
1491 replaceOperand(PN, I, NonZeroConst);
1492 // The "disjoint" flag may no longer hold after the transform.
1493 for (Instruction *I : DropPoisonFlags)
1494 I->dropPoisonGeneratingFlags();
1495 MadeChange = true;
1499 if (MadeChange)
1500 return &PN;
1504 // We sometimes end up with phi cycles that non-obviously end up being the
1505 // same value, for example:
1506 // z = some value; x = phi (y, z); y = phi (x, z)
1507 // where the phi nodes don't necessarily need to be in the same block. Do a
1508 // quick check to see if the PHI node only contains a single non-phi value, if
1509 // so, scan to see if the phi cycle is actually equal to that value. If the
1510 // phi has no non-phi values then allow the "NonPhiInVal" to be set later if
1511 // one of the phis itself does not have a single input.
1513 unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
1514 // Scan for the first non-phi operand.
1515 while (InValNo != NumIncomingVals &&
1516 isa<PHINode>(PN.getIncomingValue(InValNo)))
1517 ++InValNo;
1519 Value *NonPhiInVal =
1520 InValNo != NumIncomingVals ? PN.getIncomingValue(InValNo) : nullptr;
1522 // Scan the rest of the operands to see if there are any conflicts, if so
1523 // there is no need to recursively scan other phis.
1524 if (NonPhiInVal)
1525 for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
1526 Value *OpVal = PN.getIncomingValue(InValNo);
1527 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
1528 break;
1531 // If we scanned over all operands, then we have one unique value plus
1532 // phi values. Scan PHI nodes to see if they all merge in each other or
1533 // the value.
1534 if (InValNo == NumIncomingVals) {
1535 SmallPtrSet<PHINode *, 16> ValueEqualPHIs;
1536 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
1537 return replaceInstUsesWith(PN, NonPhiInVal);
1541 // If there are multiple PHIs, sort their operands so that they all list
1542 // the blocks in the same order. This will help identical PHIs be eliminated
1543 // by other passes. Other passes shouldn't depend on this for correctness
1544 // however.
1545 auto Res = PredOrder.try_emplace(PN.getParent());
1546 if (!Res.second) {
1547 const auto &Preds = Res.first->second;
1548 for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
1549 BasicBlock *BBA = PN.getIncomingBlock(I);
1550 BasicBlock *BBB = Preds[I];
1551 if (BBA != BBB) {
1552 Value *VA = PN.getIncomingValue(I);
1553 unsigned J = PN.getBasicBlockIndex(BBB);
1554 Value *VB = PN.getIncomingValue(J);
1555 PN.setIncomingBlock(I, BBB);
1556 PN.setIncomingValue(I, VB);
1557 PN.setIncomingBlock(J, BBA);
1558 PN.setIncomingValue(J, VA);
1559 // NOTE: Instcombine normally would want us to "return &PN" if we
1560 // modified any of the operands of an instruction. However, since we
1561 // aren't adding or removing uses (just rearranging them) we don't do
1562 // this in this case.
1565 } else {
1566 // Remember the block order of the first encountered phi node.
1567 append_range(Res.first->second, PN.blocks());
1570 // Is there an identical PHI node in this basic block?
1571 for (PHINode &IdenticalPN : PN.getParent()->phis()) {
1572 // Ignore the PHI node itself.
1573 if (&IdenticalPN == &PN)
1574 continue;
1575 // Note that even though we've just canonicalized this PHI, due to the
1576 // worklist visitation order, there are no guarantess that *every* PHI
1577 // has been canonicalized, so we can't just compare operands ranges.
1578 if (!PN.isIdenticalToWhenDefined(&IdenticalPN))
1579 continue;
1580 // Just use that PHI instead then.
1581 ++NumPHICSEs;
1582 return replaceInstUsesWith(PN, &IdenticalPN);
1585 // If this is an integer PHI and we know that it has an illegal type, see if
1586 // it is only used by trunc or trunc(lshr) operations. If so, we split the
1587 // PHI into the various pieces being extracted. This sort of thing is
1588 // introduced when SROA promotes an aggregate to a single large integer type.
1589 if (PN.getType()->isIntegerTy() &&
1590 !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
1591 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
1592 return Res;
1594 // Ultimately, try to replace this Phi with a dominating condition.
1595 if (auto *V = simplifyUsingControlFlow(*this, PN, DT))
1596 return replaceInstUsesWith(PN, V);
1598 return nullptr;