1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/GetElementPtrTypeIterator.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
23 using namespace llvm::PatternMatch
;
25 #define DEBUG_TYPE "instcombine"
28 VerifyKnownBits("instcombine-verify-known-bits",
29 cl::desc("Verify that computeKnownBits() and "
30 "SimplifyDemandedBits() are consistent"),
31 cl::Hidden
, cl::init(false));
33 /// Check to see if the specified operand of the specified instruction is a
34 /// constant integer. If so, check to see if there are any bits set in the
35 /// constant that are not demanded. If so, shrink the constant and return true.
36 static bool ShrinkDemandedConstant(Instruction
*I
, unsigned OpNo
,
37 const APInt
&Demanded
) {
38 assert(I
&& "No instruction?");
39 assert(OpNo
< I
->getNumOperands() && "Operand index too large");
41 // The operand must be a constant integer or splat integer.
42 Value
*Op
= I
->getOperand(OpNo
);
44 if (!match(Op
, m_APInt(C
)))
47 // If there are no bits set that aren't demanded, nothing to do.
48 if (C
->isSubsetOf(Demanded
))
51 // This instruction is producing bits that are not demanded. Shrink the RHS.
52 I
->setOperand(OpNo
, ConstantInt::get(Op
->getType(), *C
& Demanded
));
57 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
58 /// returns the element type's bitwidth.
59 static unsigned getBitWidth(Type
*Ty
, const DataLayout
&DL
) {
60 if (unsigned BitWidth
= Ty
->getScalarSizeInBits())
63 return DL
.getPointerTypeSizeInBits(Ty
);
66 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
67 /// the instruction has any properties that allow us to simplify its operands.
68 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction
&Inst
,
70 APInt
DemandedMask(APInt::getAllOnes(Known
.getBitWidth()));
71 Value
*V
= SimplifyDemandedUseBits(&Inst
, DemandedMask
, Known
,
74 if (V
== &Inst
) return true;
75 replaceInstUsesWith(Inst
, V
);
79 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
80 /// the instruction has any properties that allow us to simplify its operands.
81 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction
&Inst
) {
82 KnownBits
Known(getBitWidth(Inst
.getType(), DL
));
83 return SimplifyDemandedInstructionBits(Inst
, Known
);
86 /// This form of SimplifyDemandedBits simplifies the specified instruction
87 /// operand if possible, updating it in place. It returns true if it made any
88 /// change and false otherwise.
89 bool InstCombinerImpl::SimplifyDemandedBits(Instruction
*I
, unsigned OpNo
,
90 const APInt
&DemandedMask
,
91 KnownBits
&Known
, unsigned Depth
) {
92 Use
&U
= I
->getOperandUse(OpNo
);
93 Value
*NewVal
= SimplifyDemandedUseBits(U
.get(), DemandedMask
, Known
,
95 if (!NewVal
) return false;
96 if (Instruction
* OpInst
= dyn_cast
<Instruction
>(U
))
97 salvageDebugInfo(*OpInst
);
99 replaceUse(U
, NewVal
);
103 /// This function attempts to replace V with a simpler value based on the
104 /// demanded bits. When this function is called, it is known that only the bits
105 /// set in DemandedMask of the result of V are ever used downstream.
106 /// Consequently, depending on the mask and V, it may be possible to replace V
107 /// with a constant or one of its operands. In such cases, this function does
108 /// the replacement and returns true. In all other cases, it returns false after
109 /// analyzing the expression and setting KnownOne and known to be one in the
110 /// expression. Known.Zero contains all the bits that are known to be zero in
111 /// the expression. These are provided to potentially allow the caller (which
112 /// might recursively be SimplifyDemandedBits itself) to simplify the
114 /// Known.One and Known.Zero always follow the invariant that:
115 /// Known.One & Known.Zero == 0.
116 /// That is, a bit can't be both 1 and 0. The bits in Known.One and Known.Zero
117 /// are accurate even for bits not in DemandedMask. Note
118 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
121 /// This returns null if it did not change anything and it permits no
122 /// simplification. This returns V itself if it did some simplification of V's
123 /// operands based on the information about what bits are demanded. This returns
124 /// some other non-null value if it found out that V is equal to another value
125 /// in the context where the specified bits are demanded, but not for all users.
126 Value
*InstCombinerImpl::SimplifyDemandedUseBits(Value
*V
, APInt DemandedMask
,
130 assert(V
!= nullptr && "Null pointer of Value???");
131 assert(Depth
<= MaxAnalysisRecursionDepth
&& "Limit Search Depth");
132 uint32_t BitWidth
= DemandedMask
.getBitWidth();
133 Type
*VTy
= V
->getType();
135 (!VTy
->isIntOrIntVectorTy() || VTy
->getScalarSizeInBits() == BitWidth
) &&
136 Known
.getBitWidth() == BitWidth
&&
137 "Value *V, DemandedMask and Known must have same BitWidth");
139 if (isa
<Constant
>(V
)) {
140 computeKnownBits(V
, Known
, Depth
, CxtI
);
145 if (DemandedMask
.isZero()) // Not demanding any bits from V.
146 return UndefValue::get(VTy
);
148 if (Depth
== MaxAnalysisRecursionDepth
)
151 Instruction
*I
= dyn_cast
<Instruction
>(V
);
153 computeKnownBits(V
, Known
, Depth
, CxtI
);
154 return nullptr; // Only analyze instructions.
157 // If there are multiple uses of this value and we aren't at the root, then
158 // we can't do any simplifications of the operands, because DemandedMask
159 // only reflects the bits demanded by *one* of the users.
160 if (Depth
!= 0 && !I
->hasOneUse())
161 return SimplifyMultipleUseDemandedBits(I
, DemandedMask
, Known
, Depth
, CxtI
);
163 KnownBits
LHSKnown(BitWidth
), RHSKnown(BitWidth
);
164 // If this is the root being simplified, allow it to have multiple uses,
165 // just set the DemandedMask to all bits so that we can try to simplify the
166 // operands. This allows visitTruncInst (for example) to simplify the
167 // operand of a trunc without duplicating all the logic below.
168 if (Depth
== 0 && !V
->hasOneUse())
169 DemandedMask
.setAllBits();
171 // Update flags after simplifying an operand based on the fact that some high
172 // order bits are not demanded.
173 auto disableWrapFlagsBasedOnUnusedHighBits
= [](Instruction
*I
,
176 // Disable the nsw and nuw flags here: We can no longer guarantee that
177 // we won't wrap after simplification. Removing the nsw/nuw flags is
178 // legal here because the top bit is not demanded.
179 I
->setHasNoSignedWrap(false);
180 I
->setHasNoUnsignedWrap(false);
185 // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care
186 // about the high bits of the operands.
187 auto simplifyOperandsBasedOnUnusedHighBits
= [&](APInt
&DemandedFromOps
) {
188 unsigned NLZ
= DemandedMask
.countl_zero();
189 // Right fill the mask of bits for the operands to demand the most
190 // significant bit and all those below it.
191 DemandedFromOps
= APInt::getLowBitsSet(BitWidth
, BitWidth
- NLZ
);
192 if (ShrinkDemandedConstant(I
, 0, DemandedFromOps
) ||
193 SimplifyDemandedBits(I
, 0, DemandedFromOps
, LHSKnown
, Depth
+ 1) ||
194 ShrinkDemandedConstant(I
, 1, DemandedFromOps
) ||
195 SimplifyDemandedBits(I
, 1, DemandedFromOps
, RHSKnown
, Depth
+ 1)) {
196 disableWrapFlagsBasedOnUnusedHighBits(I
, NLZ
);
202 switch (I
->getOpcode()) {
204 computeKnownBits(I
, Known
, Depth
, CxtI
);
206 case Instruction::And
: {
207 // If either the LHS or the RHS are Zero, the result is zero.
208 if (SimplifyDemandedBits(I
, 1, DemandedMask
, RHSKnown
, Depth
+ 1) ||
209 SimplifyDemandedBits(I
, 0, DemandedMask
& ~RHSKnown
.Zero
, LHSKnown
,
212 assert(!RHSKnown
.hasConflict() && "Bits known to be one AND zero?");
213 assert(!LHSKnown
.hasConflict() && "Bits known to be one AND zero?");
215 Known
= analyzeKnownBitsFromAndXorOr(cast
<Operator
>(I
), LHSKnown
, RHSKnown
,
216 Depth
, SQ
.getWithInstruction(CxtI
));
218 // If the client is only demanding bits that we know, return the known
220 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
221 return Constant::getIntegerValue(VTy
, Known
.One
);
223 // If all of the demanded bits are known 1 on one side, return the other.
224 // These bits cannot contribute to the result of the 'and'.
225 if (DemandedMask
.isSubsetOf(LHSKnown
.Zero
| RHSKnown
.One
))
226 return I
->getOperand(0);
227 if (DemandedMask
.isSubsetOf(RHSKnown
.Zero
| LHSKnown
.One
))
228 return I
->getOperand(1);
230 // If the RHS is a constant, see if we can simplify it.
231 if (ShrinkDemandedConstant(I
, 1, DemandedMask
& ~LHSKnown
.Zero
))
236 case Instruction::Or
: {
237 // If either the LHS or the RHS are One, the result is One.
238 if (SimplifyDemandedBits(I
, 1, DemandedMask
, RHSKnown
, Depth
+ 1) ||
239 SimplifyDemandedBits(I
, 0, DemandedMask
& ~RHSKnown
.One
, LHSKnown
,
241 // Disjoint flag may not longer hold.
242 I
->dropPoisonGeneratingFlags();
245 assert(!RHSKnown
.hasConflict() && "Bits known to be one AND zero?");
246 assert(!LHSKnown
.hasConflict() && "Bits known to be one AND zero?");
248 Known
= analyzeKnownBitsFromAndXorOr(cast
<Operator
>(I
), LHSKnown
, RHSKnown
,
249 Depth
, SQ
.getWithInstruction(CxtI
));
251 // If the client is only demanding bits that we know, return the known
253 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
254 return Constant::getIntegerValue(VTy
, Known
.One
);
256 // If all of the demanded bits are known zero on one side, return the other.
257 // These bits cannot contribute to the result of the 'or'.
258 if (DemandedMask
.isSubsetOf(LHSKnown
.One
| RHSKnown
.Zero
))
259 return I
->getOperand(0);
260 if (DemandedMask
.isSubsetOf(RHSKnown
.One
| LHSKnown
.Zero
))
261 return I
->getOperand(1);
263 // If the RHS is a constant, see if we can simplify it.
264 if (ShrinkDemandedConstant(I
, 1, DemandedMask
))
267 // Infer disjoint flag if no common bits are set.
268 if (!cast
<PossiblyDisjointInst
>(I
)->isDisjoint()) {
269 WithCache
<const Value
*> LHSCache(I
->getOperand(0), LHSKnown
),
270 RHSCache(I
->getOperand(1), RHSKnown
);
271 if (haveNoCommonBitsSet(LHSCache
, RHSCache
, SQ
.getWithInstruction(I
))) {
272 cast
<PossiblyDisjointInst
>(I
)->setIsDisjoint(true);
279 case Instruction::Xor
: {
280 if (SimplifyDemandedBits(I
, 1, DemandedMask
, RHSKnown
, Depth
+ 1) ||
281 SimplifyDemandedBits(I
, 0, DemandedMask
, LHSKnown
, Depth
+ 1))
284 if (DemandedMask
== 1 &&
285 match(I
->getOperand(0), m_Intrinsic
<Intrinsic::ctpop
>(m_Value(LHS
))) &&
286 match(I
->getOperand(1), m_Intrinsic
<Intrinsic::ctpop
>(m_Value(RHS
)))) {
287 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1
288 IRBuilderBase::InsertPointGuard
Guard(Builder
);
289 Builder
.SetInsertPoint(I
);
290 auto *Xor
= Builder
.CreateXor(LHS
, RHS
);
291 return Builder
.CreateUnaryIntrinsic(Intrinsic::ctpop
, Xor
);
294 assert(!RHSKnown
.hasConflict() && "Bits known to be one AND zero?");
295 assert(!LHSKnown
.hasConflict() && "Bits known to be one AND zero?");
297 Known
= analyzeKnownBitsFromAndXorOr(cast
<Operator
>(I
), LHSKnown
, RHSKnown
,
298 Depth
, SQ
.getWithInstruction(CxtI
));
300 // If the client is only demanding bits that we know, return the known
302 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
303 return Constant::getIntegerValue(VTy
, Known
.One
);
305 // If all of the demanded bits are known zero on one side, return the other.
306 // These bits cannot contribute to the result of the 'xor'.
307 if (DemandedMask
.isSubsetOf(RHSKnown
.Zero
))
308 return I
->getOperand(0);
309 if (DemandedMask
.isSubsetOf(LHSKnown
.Zero
))
310 return I
->getOperand(1);
312 // If all of the demanded bits are known to be zero on one side or the
313 // other, turn this into an *inclusive* or.
314 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
315 if (DemandedMask
.isSubsetOf(RHSKnown
.Zero
| LHSKnown
.Zero
)) {
317 BinaryOperator::CreateOr(I
->getOperand(0), I
->getOperand(1));
318 if (DemandedMask
.isAllOnes())
319 cast
<PossiblyDisjointInst
>(Or
)->setIsDisjoint(true);
321 return InsertNewInstWith(Or
, I
->getIterator());
324 // If all of the demanded bits on one side are known, and all of the set
325 // bits on that side are also known to be set on the other side, turn this
326 // into an AND, as we know the bits will be cleared.
327 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
328 if (DemandedMask
.isSubsetOf(RHSKnown
.Zero
|RHSKnown
.One
) &&
329 RHSKnown
.One
.isSubsetOf(LHSKnown
.One
)) {
330 Constant
*AndC
= Constant::getIntegerValue(VTy
,
331 ~RHSKnown
.One
& DemandedMask
);
332 Instruction
*And
= BinaryOperator::CreateAnd(I
->getOperand(0), AndC
);
333 return InsertNewInstWith(And
, I
->getIterator());
336 // If the RHS is a constant, see if we can change it. Don't alter a -1
337 // constant because that's a canonical 'not' op, and that is better for
338 // combining, SCEV, and codegen.
340 if (match(I
->getOperand(1), m_APInt(C
)) && !C
->isAllOnes()) {
341 if ((*C
| ~DemandedMask
).isAllOnes()) {
342 // Force bits to 1 to create a 'not' op.
343 I
->setOperand(1, ConstantInt::getAllOnesValue(VTy
));
346 // If we can't turn this into a 'not', try to shrink the constant.
347 if (ShrinkDemandedConstant(I
, 1, DemandedMask
))
351 // If our LHS is an 'and' and if it has one use, and if any of the bits we
352 // are flipping are known to be set, then the xor is just resetting those
353 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
354 // simplifying both of them.
355 if (Instruction
*LHSInst
= dyn_cast
<Instruction
>(I
->getOperand(0))) {
356 ConstantInt
*AndRHS
, *XorRHS
;
357 if (LHSInst
->getOpcode() == Instruction::And
&& LHSInst
->hasOneUse() &&
358 match(I
->getOperand(1), m_ConstantInt(XorRHS
)) &&
359 match(LHSInst
->getOperand(1), m_ConstantInt(AndRHS
)) &&
360 (LHSKnown
.One
& RHSKnown
.One
& DemandedMask
) != 0) {
361 APInt NewMask
= ~(LHSKnown
.One
& RHSKnown
.One
& DemandedMask
);
363 Constant
*AndC
= ConstantInt::get(VTy
, NewMask
& AndRHS
->getValue());
364 Instruction
*NewAnd
= BinaryOperator::CreateAnd(I
->getOperand(0), AndC
);
365 InsertNewInstWith(NewAnd
, I
->getIterator());
367 Constant
*XorC
= ConstantInt::get(VTy
, NewMask
& XorRHS
->getValue());
368 Instruction
*NewXor
= BinaryOperator::CreateXor(NewAnd
, XorC
);
369 return InsertNewInstWith(NewXor
, I
->getIterator());
374 case Instruction::Select
: {
375 if (SimplifyDemandedBits(I
, 2, DemandedMask
, RHSKnown
, Depth
+ 1) ||
376 SimplifyDemandedBits(I
, 1, DemandedMask
, LHSKnown
, Depth
+ 1))
378 assert(!RHSKnown
.hasConflict() && "Bits known to be one AND zero?");
379 assert(!LHSKnown
.hasConflict() && "Bits known to be one AND zero?");
381 // If the operands are constants, see if we can simplify them.
382 // This is similar to ShrinkDemandedConstant, but for a select we want to
383 // try to keep the selected constants the same as icmp value constants, if
384 // we can. This helps not break apart (or helps put back together)
385 // canonical patterns like min and max.
386 auto CanonicalizeSelectConstant
= [](Instruction
*I
, unsigned OpNo
,
387 const APInt
&DemandedMask
) {
389 if (!match(I
->getOperand(OpNo
), m_APInt(SelC
)))
392 // Get the constant out of the ICmp, if there is one.
393 // Only try this when exactly 1 operand is a constant (if both operands
394 // are constant, the icmp should eventually simplify). Otherwise, we may
395 // invert the transform that reduces set bits and infinite-loop.
398 ICmpInst::Predicate Pred
;
399 if (!match(I
->getOperand(0), m_ICmp(Pred
, m_Value(X
), m_APInt(CmpC
))) ||
400 isa
<Constant
>(X
) || CmpC
->getBitWidth() != SelC
->getBitWidth())
401 return ShrinkDemandedConstant(I
, OpNo
, DemandedMask
);
403 // If the constant is already the same as the ICmp, leave it as-is.
406 // If the constants are not already the same, but can be with the demand
407 // mask, use the constant value from the ICmp.
408 if ((*CmpC
& DemandedMask
) == (*SelC
& DemandedMask
)) {
409 I
->setOperand(OpNo
, ConstantInt::get(I
->getType(), *CmpC
));
412 return ShrinkDemandedConstant(I
, OpNo
, DemandedMask
);
414 if (CanonicalizeSelectConstant(I
, 1, DemandedMask
) ||
415 CanonicalizeSelectConstant(I
, 2, DemandedMask
))
418 // Only known if known in both the LHS and RHS.
419 Known
= LHSKnown
.intersectWith(RHSKnown
);
422 case Instruction::Trunc
: {
423 // If we do not demand the high bits of a right-shifted and truncated value,
424 // then we may be able to truncate it before the shift.
427 if (match(I
->getOperand(0), m_OneUse(m_LShr(m_Value(X
), m_APInt(C
))))) {
428 // The shift amount must be valid (not poison) in the narrow type, and
429 // it must not be greater than the high bits demanded of the result.
430 if (C
->ult(VTy
->getScalarSizeInBits()) &&
431 C
->ule(DemandedMask
.countl_zero())) {
432 // trunc (lshr X, C) --> lshr (trunc X), C
433 IRBuilderBase::InsertPointGuard
Guard(Builder
);
434 Builder
.SetInsertPoint(I
);
435 Value
*Trunc
= Builder
.CreateTrunc(X
, VTy
);
436 return Builder
.CreateLShr(Trunc
, C
->getZExtValue());
441 case Instruction::ZExt
: {
442 unsigned SrcBitWidth
= I
->getOperand(0)->getType()->getScalarSizeInBits();
444 APInt InputDemandedMask
= DemandedMask
.zextOrTrunc(SrcBitWidth
);
445 KnownBits
InputKnown(SrcBitWidth
);
446 if (SimplifyDemandedBits(I
, 0, InputDemandedMask
, InputKnown
, Depth
+ 1)) {
447 // For zext nneg, we may have dropped the instruction which made the
448 // input non-negative.
449 I
->dropPoisonGeneratingFlags();
452 assert(InputKnown
.getBitWidth() == SrcBitWidth
&& "Src width changed?");
453 if (I
->getOpcode() == Instruction::ZExt
&& I
->hasNonNeg() &&
454 !InputKnown
.isNegative())
455 InputKnown
.makeNonNegative();
456 Known
= InputKnown
.zextOrTrunc(BitWidth
);
458 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
461 case Instruction::SExt
: {
462 // Compute the bits in the result that are not present in the input.
463 unsigned SrcBitWidth
= I
->getOperand(0)->getType()->getScalarSizeInBits();
465 APInt InputDemandedBits
= DemandedMask
.trunc(SrcBitWidth
);
467 // If any of the sign extended bits are demanded, we know that the sign
469 if (DemandedMask
.getActiveBits() > SrcBitWidth
)
470 InputDemandedBits
.setBit(SrcBitWidth
-1);
472 KnownBits
InputKnown(SrcBitWidth
);
473 if (SimplifyDemandedBits(I
, 0, InputDemandedBits
, InputKnown
, Depth
+ 1))
476 // If the input sign bit is known zero, or if the NewBits are not demanded
477 // convert this into a zero extension.
478 if (InputKnown
.isNonNegative() ||
479 DemandedMask
.getActiveBits() <= SrcBitWidth
) {
480 // Convert to ZExt cast.
481 CastInst
*NewCast
= new ZExtInst(I
->getOperand(0), VTy
);
482 NewCast
->takeName(I
);
483 return InsertNewInstWith(NewCast
, I
->getIterator());
486 // If the sign bit of the input is known set or clear, then we know the
487 // top bits of the result.
488 Known
= InputKnown
.sext(BitWidth
);
489 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
492 case Instruction::Add
: {
493 if ((DemandedMask
& 1) == 0) {
494 // If we do not need the low bit, try to convert bool math to logic:
495 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
497 if (match(I
, m_c_Add(m_OneUse(m_ZExt(m_Value(X
))),
498 m_OneUse(m_SExt(m_Value(Y
))))) &&
499 X
->getType()->isIntOrIntVectorTy(1) && X
->getType() == Y
->getType()) {
500 // Truth table for inputs and output signbits:
506 IRBuilderBase::InsertPointGuard
Guard(Builder
);
507 Builder
.SetInsertPoint(I
);
508 Value
*AndNot
= Builder
.CreateAnd(Builder
.CreateNot(X
), Y
);
509 return Builder
.CreateSExt(AndNot
, VTy
);
512 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
513 // TODO: Relax the one-use checks because we are removing an instruction?
514 if (match(I
, m_Add(m_OneUse(m_SExt(m_Value(X
))),
515 m_OneUse(m_SExt(m_Value(Y
))))) &&
516 X
->getType()->isIntOrIntVectorTy(1) && X
->getType() == Y
->getType()) {
517 // Truth table for inputs and output signbits:
523 IRBuilderBase::InsertPointGuard
Guard(Builder
);
524 Builder
.SetInsertPoint(I
);
525 Value
*Or
= Builder
.CreateOr(X
, Y
);
526 return Builder
.CreateSExt(Or
, VTy
);
530 // Right fill the mask of bits for the operands to demand the most
531 // significant bit and all those below it.
532 unsigned NLZ
= DemandedMask
.countl_zero();
533 APInt DemandedFromOps
= APInt::getLowBitsSet(BitWidth
, BitWidth
- NLZ
);
534 if (ShrinkDemandedConstant(I
, 1, DemandedFromOps
) ||
535 SimplifyDemandedBits(I
, 1, DemandedFromOps
, RHSKnown
, Depth
+ 1))
536 return disableWrapFlagsBasedOnUnusedHighBits(I
, NLZ
);
538 // If low order bits are not demanded and known to be zero in one operand,
539 // then we don't need to demand them from the other operand, since they
540 // can't cause overflow into any bits that are demanded in the result.
541 unsigned NTZ
= (~DemandedMask
& RHSKnown
.Zero
).countr_one();
542 APInt DemandedFromLHS
= DemandedFromOps
;
543 DemandedFromLHS
.clearLowBits(NTZ
);
544 if (ShrinkDemandedConstant(I
, 0, DemandedFromLHS
) ||
545 SimplifyDemandedBits(I
, 0, DemandedFromLHS
, LHSKnown
, Depth
+ 1))
546 return disableWrapFlagsBasedOnUnusedHighBits(I
, NLZ
);
548 // If we are known to be adding zeros to every bit below
549 // the highest demanded bit, we just return the other side.
550 if (DemandedFromOps
.isSubsetOf(RHSKnown
.Zero
))
551 return I
->getOperand(0);
552 if (DemandedFromOps
.isSubsetOf(LHSKnown
.Zero
))
553 return I
->getOperand(1);
555 // (add X, C) --> (xor X, C) IFF C is equal to the top bit of the DemandMask
558 if (match(I
->getOperand(1), m_APInt(C
)) &&
559 C
->isOneBitSet(DemandedMask
.getActiveBits() - 1)) {
560 IRBuilderBase::InsertPointGuard
Guard(Builder
);
561 Builder
.SetInsertPoint(I
);
562 return Builder
.CreateXor(I
->getOperand(0), ConstantInt::get(VTy
, *C
));
566 // Otherwise just compute the known bits of the result.
567 bool NSW
= cast
<OverflowingBinaryOperator
>(I
)->hasNoSignedWrap();
568 Known
= KnownBits::computeForAddSub(true, NSW
, LHSKnown
, RHSKnown
);
571 case Instruction::Sub
: {
572 // Right fill the mask of bits for the operands to demand the most
573 // significant bit and all those below it.
574 unsigned NLZ
= DemandedMask
.countl_zero();
575 APInt DemandedFromOps
= APInt::getLowBitsSet(BitWidth
, BitWidth
- NLZ
);
576 if (ShrinkDemandedConstant(I
, 1, DemandedFromOps
) ||
577 SimplifyDemandedBits(I
, 1, DemandedFromOps
, RHSKnown
, Depth
+ 1))
578 return disableWrapFlagsBasedOnUnusedHighBits(I
, NLZ
);
580 // If low order bits are not demanded and are known to be zero in RHS,
581 // then we don't need to demand them from LHS, since they can't cause a
582 // borrow from any bits that are demanded in the result.
583 unsigned NTZ
= (~DemandedMask
& RHSKnown
.Zero
).countr_one();
584 APInt DemandedFromLHS
= DemandedFromOps
;
585 DemandedFromLHS
.clearLowBits(NTZ
);
586 if (ShrinkDemandedConstant(I
, 0, DemandedFromLHS
) ||
587 SimplifyDemandedBits(I
, 0, DemandedFromLHS
, LHSKnown
, Depth
+ 1))
588 return disableWrapFlagsBasedOnUnusedHighBits(I
, NLZ
);
590 // If we are known to be subtracting zeros from every bit below
591 // the highest demanded bit, we just return the other side.
592 if (DemandedFromOps
.isSubsetOf(RHSKnown
.Zero
))
593 return I
->getOperand(0);
594 // We can't do this with the LHS for subtraction, unless we are only
595 // demanding the LSB.
596 if (DemandedFromOps
.isOne() && DemandedFromOps
.isSubsetOf(LHSKnown
.Zero
))
597 return I
->getOperand(1);
599 // Otherwise just compute the known bits of the result.
600 bool NSW
= cast
<OverflowingBinaryOperator
>(I
)->hasNoSignedWrap();
601 Known
= KnownBits::computeForAddSub(false, NSW
, LHSKnown
, RHSKnown
);
604 case Instruction::Mul
: {
605 APInt DemandedFromOps
;
606 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps
))
609 if (DemandedMask
.isPowerOf2()) {
610 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
611 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
612 // odd (has LSB set), then the left-shifted low bit of X is the answer.
613 unsigned CTZ
= DemandedMask
.countr_zero();
615 if (match(I
->getOperand(1), m_APInt(C
)) && C
->countr_zero() == CTZ
) {
616 Constant
*ShiftC
= ConstantInt::get(VTy
, CTZ
);
617 Instruction
*Shl
= BinaryOperator::CreateShl(I
->getOperand(0), ShiftC
);
618 return InsertNewInstWith(Shl
, I
->getIterator());
621 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
622 // X * X is odd iff X is odd.
623 // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
624 if (I
->getOperand(0) == I
->getOperand(1) && DemandedMask
.ult(4)) {
625 Constant
*One
= ConstantInt::get(VTy
, 1);
626 Instruction
*And1
= BinaryOperator::CreateAnd(I
->getOperand(0), One
);
627 return InsertNewInstWith(And1
, I
->getIterator());
630 computeKnownBits(I
, Known
, Depth
, CxtI
);
633 case Instruction::Shl
: {
635 if (match(I
->getOperand(1), m_APInt(SA
))) {
637 if (match(I
->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt
))))
638 if (Instruction
*Shr
= dyn_cast
<Instruction
>(I
->getOperand(0)))
639 if (Value
*R
= simplifyShrShlDemandedBits(Shr
, *ShrAmt
, I
, *SA
,
640 DemandedMask
, Known
))
643 // TODO: If we only want bits that already match the signbit then we don't
646 // If we can pre-shift a right-shifted constant to the left without
647 // losing any high bits amd we don't demand the low bits, then eliminate
649 // (C >> X) << LeftShiftAmtC --> (C << RightShiftAmtC) >> X
650 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
-1);
653 if (DemandedMask
.countr_zero() >= ShiftAmt
&&
654 match(I
->getOperand(0), m_LShr(m_ImmConstant(C
), m_Value(X
)))) {
655 Constant
*LeftShiftAmtC
= ConstantInt::get(VTy
, ShiftAmt
);
656 Constant
*NewC
= ConstantFoldBinaryOpOperands(Instruction::Shl
, C
,
658 if (ConstantFoldBinaryOpOperands(Instruction::LShr
, NewC
, LeftShiftAmtC
,
660 Instruction
*Lshr
= BinaryOperator::CreateLShr(NewC
, X
);
661 return InsertNewInstWith(Lshr
, I
->getIterator());
665 APInt
DemandedMaskIn(DemandedMask
.lshr(ShiftAmt
));
667 // If the shift is NUW/NSW, then it does demand the high bits.
668 ShlOperator
*IOp
= cast
<ShlOperator
>(I
);
669 if (IOp
->hasNoSignedWrap())
670 DemandedMaskIn
.setHighBits(ShiftAmt
+1);
671 else if (IOp
->hasNoUnsignedWrap())
672 DemandedMaskIn
.setHighBits(ShiftAmt
);
674 if (SimplifyDemandedBits(I
, 0, DemandedMaskIn
, Known
, Depth
+ 1))
676 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
678 Known
= KnownBits::shl(Known
,
679 KnownBits::makeConstant(APInt(BitWidth
, ShiftAmt
)),
680 /* NUW */ IOp
->hasNoUnsignedWrap(),
681 /* NSW */ IOp
->hasNoSignedWrap());
683 // This is a variable shift, so we can't shift the demand mask by a known
684 // amount. But if we are not demanding high bits, then we are not
685 // demanding those bits from the pre-shifted operand either.
686 if (unsigned CTLZ
= DemandedMask
.countl_zero()) {
687 APInt
DemandedFromOp(APInt::getLowBitsSet(BitWidth
, BitWidth
- CTLZ
));
688 if (SimplifyDemandedBits(I
, 0, DemandedFromOp
, Known
, Depth
+ 1)) {
689 // We can't guarantee that nsw/nuw hold after simplifying the operand.
690 I
->dropPoisonGeneratingFlags();
694 computeKnownBits(I
, Known
, Depth
, CxtI
);
698 case Instruction::LShr
: {
700 if (match(I
->getOperand(1), m_APInt(SA
))) {
701 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
-1);
703 // If we are just demanding the shifted sign bit and below, then this can
704 // be treated as an ASHR in disguise.
705 if (DemandedMask
.countl_zero() >= ShiftAmt
) {
706 // If we only want bits that already match the signbit then we don't
708 unsigned NumHiDemandedBits
= BitWidth
- DemandedMask
.countr_zero();
710 ComputeNumSignBits(I
->getOperand(0), Depth
+ 1, CxtI
);
711 if (SignBits
>= NumHiDemandedBits
)
712 return I
->getOperand(0);
714 // If we can pre-shift a left-shifted constant to the right without
715 // losing any low bits (we already know we don't demand the high bits),
716 // then eliminate the right-shift:
717 // (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X
720 if (match(I
->getOperand(0), m_Shl(m_ImmConstant(C
), m_Value(X
)))) {
721 Constant
*RightShiftAmtC
= ConstantInt::get(VTy
, ShiftAmt
);
722 Constant
*NewC
= ConstantFoldBinaryOpOperands(Instruction::LShr
, C
,
724 if (ConstantFoldBinaryOpOperands(Instruction::Shl
, NewC
,
725 RightShiftAmtC
, DL
) == C
) {
726 Instruction
*Shl
= BinaryOperator::CreateShl(NewC
, X
);
727 return InsertNewInstWith(Shl
, I
->getIterator());
732 // Unsigned shift right.
733 APInt
DemandedMaskIn(DemandedMask
.shl(ShiftAmt
));
734 if (SimplifyDemandedBits(I
, 0, DemandedMaskIn
, Known
, Depth
+ 1)) {
735 // exact flag may not longer hold.
736 I
->dropPoisonGeneratingFlags();
739 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
740 Known
.Zero
.lshrInPlace(ShiftAmt
);
741 Known
.One
.lshrInPlace(ShiftAmt
);
743 Known
.Zero
.setHighBits(ShiftAmt
); // high bits known zero.
745 computeKnownBits(I
, Known
, Depth
, CxtI
);
749 case Instruction::AShr
: {
750 unsigned SignBits
= ComputeNumSignBits(I
->getOperand(0), Depth
+ 1, CxtI
);
752 // If we only want bits that already match the signbit then we don't need
754 unsigned NumHiDemandedBits
= BitWidth
- DemandedMask
.countr_zero();
755 if (SignBits
>= NumHiDemandedBits
)
756 return I
->getOperand(0);
758 // If this is an arithmetic shift right and only the low-bit is set, we can
759 // always convert this into a logical shr, even if the shift amount is
760 // variable. The low bit of the shift cannot be an input sign bit unless
761 // the shift amount is >= the size of the datatype, which is undefined.
762 if (DemandedMask
.isOne()) {
763 // Perform the logical shift right.
764 Instruction
*NewVal
= BinaryOperator::CreateLShr(
765 I
->getOperand(0), I
->getOperand(1), I
->getName());
766 return InsertNewInstWith(NewVal
, I
->getIterator());
770 if (match(I
->getOperand(1), m_APInt(SA
))) {
771 uint32_t ShiftAmt
= SA
->getLimitedValue(BitWidth
-1);
773 // Signed shift right.
774 APInt
DemandedMaskIn(DemandedMask
.shl(ShiftAmt
));
775 // If any of the high bits are demanded, we should set the sign bit as
777 if (DemandedMask
.countl_zero() <= ShiftAmt
)
778 DemandedMaskIn
.setSignBit();
780 if (SimplifyDemandedBits(I
, 0, DemandedMaskIn
, Known
, Depth
+ 1)) {
781 // exact flag may not longer hold.
782 I
->dropPoisonGeneratingFlags();
786 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
787 // Compute the new bits that are at the top now plus sign bits.
788 APInt
HighBits(APInt::getHighBitsSet(
789 BitWidth
, std::min(SignBits
+ ShiftAmt
- 1, BitWidth
)));
790 Known
.Zero
.lshrInPlace(ShiftAmt
);
791 Known
.One
.lshrInPlace(ShiftAmt
);
793 // If the input sign bit is known to be zero, or if none of the top bits
794 // are demanded, turn this into an unsigned shift right.
795 assert(BitWidth
> ShiftAmt
&& "Shift amount not saturated?");
796 if (Known
.Zero
[BitWidth
-ShiftAmt
-1] ||
797 !DemandedMask
.intersects(HighBits
)) {
798 BinaryOperator
*LShr
= BinaryOperator::CreateLShr(I
->getOperand(0),
800 LShr
->setIsExact(cast
<BinaryOperator
>(I
)->isExact());
802 return InsertNewInstWith(LShr
, I
->getIterator());
803 } else if (Known
.One
[BitWidth
-ShiftAmt
-1]) { // New bits are known one.
804 Known
.One
|= HighBits
;
805 // SignBits may be out-of-sync with Known.countMinSignBits(). Mask out
806 // high bits of Known.Zero to avoid conflicts.
807 Known
.Zero
&= ~HighBits
;
810 computeKnownBits(I
, Known
, Depth
, CxtI
);
814 case Instruction::UDiv
: {
815 // UDiv doesn't demand low bits that are zero in the divisor.
817 if (match(I
->getOperand(1), m_APInt(SA
))) {
818 // TODO: Take the demanded mask of the result into account.
819 unsigned RHSTrailingZeros
= SA
->countr_zero();
820 APInt DemandedMaskIn
=
821 APInt::getHighBitsSet(BitWidth
, BitWidth
- RHSTrailingZeros
);
822 if (SimplifyDemandedBits(I
, 0, DemandedMaskIn
, LHSKnown
, Depth
+ 1)) {
823 // We can't guarantee that "exact" is still true after changing the
825 I
->dropPoisonGeneratingFlags();
829 Known
= KnownBits::udiv(LHSKnown
, KnownBits::makeConstant(*SA
),
830 cast
<BinaryOperator
>(I
)->isExact());
832 computeKnownBits(I
, Known
, Depth
, CxtI
);
836 case Instruction::SRem
: {
838 if (match(I
->getOperand(1), m_APInt(Rem
))) {
839 // X % -1 demands all the bits because we don't want to introduce
840 // INT_MIN % -1 (== undef) by accident.
841 if (Rem
->isAllOnes())
843 APInt RA
= Rem
->abs();
844 if (RA
.isPowerOf2()) {
845 if (DemandedMask
.ult(RA
)) // srem won't affect demanded bits
846 return I
->getOperand(0);
848 APInt LowBits
= RA
- 1;
849 APInt Mask2
= LowBits
| APInt::getSignMask(BitWidth
);
850 if (SimplifyDemandedBits(I
, 0, Mask2
, LHSKnown
, Depth
+ 1))
853 // The low bits of LHS are unchanged by the srem.
854 Known
.Zero
= LHSKnown
.Zero
& LowBits
;
855 Known
.One
= LHSKnown
.One
& LowBits
;
857 // If LHS is non-negative or has all low bits zero, then the upper bits
859 if (LHSKnown
.isNonNegative() || LowBits
.isSubsetOf(LHSKnown
.Zero
))
860 Known
.Zero
|= ~LowBits
;
862 // If LHS is negative and not all low bits are zero, then the upper bits
864 if (LHSKnown
.isNegative() && LowBits
.intersects(LHSKnown
.One
))
865 Known
.One
|= ~LowBits
;
867 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
872 computeKnownBits(I
, Known
, Depth
, CxtI
);
875 case Instruction::URem
: {
876 APInt AllOnes
= APInt::getAllOnes(BitWidth
);
877 if (SimplifyDemandedBits(I
, 0, AllOnes
, LHSKnown
, Depth
+ 1) ||
878 SimplifyDemandedBits(I
, 1, AllOnes
, RHSKnown
, Depth
+ 1))
881 Known
= KnownBits::urem(LHSKnown
, RHSKnown
);
884 case Instruction::Call
: {
885 bool KnownBitsComputed
= false;
886 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
887 switch (II
->getIntrinsicID()) {
888 case Intrinsic::abs
: {
889 if (DemandedMask
== 1)
890 return II
->getArgOperand(0);
893 case Intrinsic::ctpop
: {
894 // Checking if the number of clear bits is odd (parity)? If the type has
895 // an even number of bits, that's the same as checking if the number of
896 // set bits is odd, so we can eliminate the 'not' op.
898 if (DemandedMask
== 1 && VTy
->getScalarSizeInBits() % 2 == 0 &&
899 match(II
->getArgOperand(0), m_Not(m_Value(X
)))) {
900 Function
*Ctpop
= Intrinsic::getDeclaration(
901 II
->getModule(), Intrinsic::ctpop
, VTy
);
902 return InsertNewInstWith(CallInst::Create(Ctpop
, {X
}), I
->getIterator());
906 case Intrinsic::bswap
: {
907 // If the only bits demanded come from one byte of the bswap result,
908 // just shift the input byte into position to eliminate the bswap.
909 unsigned NLZ
= DemandedMask
.countl_zero();
910 unsigned NTZ
= DemandedMask
.countr_zero();
912 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
913 // we need all the bits down to bit 8. Likewise, round NLZ. If we
914 // have 14 leading zeros, round to 8.
915 NLZ
= alignDown(NLZ
, 8);
916 NTZ
= alignDown(NTZ
, 8);
917 // If we need exactly one byte, we can do this transformation.
918 if (BitWidth
- NLZ
- NTZ
== 8) {
919 // Replace this with either a left or right shift to get the byte into
923 NewVal
= BinaryOperator::CreateLShr(
924 II
->getArgOperand(0), ConstantInt::get(VTy
, NLZ
- NTZ
));
926 NewVal
= BinaryOperator::CreateShl(
927 II
->getArgOperand(0), ConstantInt::get(VTy
, NTZ
- NLZ
));
929 return InsertNewInstWith(NewVal
, I
->getIterator());
933 case Intrinsic::ptrmask
: {
934 unsigned MaskWidth
= I
->getOperand(1)->getType()->getScalarSizeInBits();
935 RHSKnown
= KnownBits(MaskWidth
);
936 // If either the LHS or the RHS are Zero, the result is zero.
937 if (SimplifyDemandedBits(I
, 0, DemandedMask
, LHSKnown
, Depth
+ 1) ||
938 SimplifyDemandedBits(
939 I
, 1, (DemandedMask
& ~LHSKnown
.Zero
).zextOrTrunc(MaskWidth
),
940 RHSKnown
, Depth
+ 1))
943 // TODO: Should be 1-extend
944 RHSKnown
= RHSKnown
.anyextOrTrunc(BitWidth
);
945 assert(!RHSKnown
.hasConflict() && "Bits known to be one AND zero?");
946 assert(!LHSKnown
.hasConflict() && "Bits known to be one AND zero?");
948 Known
= LHSKnown
& RHSKnown
;
949 KnownBitsComputed
= true;
951 // If the client is only demanding bits we know to be zero, return
952 // `llvm.ptrmask(p, 0)`. We can't return `null` here due to pointer
953 // provenance, but making the mask zero will be easily optimizable in
955 if (DemandedMask
.isSubsetOf(Known
.Zero
) &&
956 !match(I
->getOperand(1), m_Zero()))
957 return replaceOperand(
958 *I
, 1, Constant::getNullValue(I
->getOperand(1)->getType()));
960 // Mask in demanded space does nothing.
961 // NOTE: We may have attributes associated with the return value of the
962 // llvm.ptrmask intrinsic that will be lost when we just return the
963 // operand. We should try to preserve them.
964 if (DemandedMask
.isSubsetOf(RHSKnown
.One
| LHSKnown
.Zero
))
965 return I
->getOperand(0);
967 // If the RHS is a constant, see if we can simplify it.
968 if (ShrinkDemandedConstant(
969 I
, 1, (DemandedMask
& ~LHSKnown
.Zero
).zextOrTrunc(MaskWidth
)))
975 case Intrinsic::fshr
:
976 case Intrinsic::fshl
: {
978 if (!match(I
->getOperand(2), m_APInt(SA
)))
981 // Normalize to funnel shift left. APInt shifts of BitWidth are well-
982 // defined, so no need to special-case zero shifts here.
983 uint64_t ShiftAmt
= SA
->urem(BitWidth
);
984 if (II
->getIntrinsicID() == Intrinsic::fshr
)
985 ShiftAmt
= BitWidth
- ShiftAmt
;
987 APInt
DemandedMaskLHS(DemandedMask
.lshr(ShiftAmt
));
988 APInt
DemandedMaskRHS(DemandedMask
.shl(BitWidth
- ShiftAmt
));
989 if (I
->getOperand(0) != I
->getOperand(1)) {
990 if (SimplifyDemandedBits(I
, 0, DemandedMaskLHS
, LHSKnown
,
992 SimplifyDemandedBits(I
, 1, DemandedMaskRHS
, RHSKnown
, Depth
+ 1))
994 } else { // fshl is a rotate
995 // Avoid converting rotate into funnel shift.
996 // Only simplify if one operand is constant.
997 LHSKnown
= computeKnownBits(I
->getOperand(0), Depth
+ 1, I
);
998 if (DemandedMaskLHS
.isSubsetOf(LHSKnown
.Zero
| LHSKnown
.One
) &&
999 !match(I
->getOperand(0), m_SpecificInt(LHSKnown
.One
))) {
1000 replaceOperand(*I
, 0, Constant::getIntegerValue(VTy
, LHSKnown
.One
));
1004 RHSKnown
= computeKnownBits(I
->getOperand(1), Depth
+ 1, I
);
1005 if (DemandedMaskRHS
.isSubsetOf(RHSKnown
.Zero
| RHSKnown
.One
) &&
1006 !match(I
->getOperand(1), m_SpecificInt(RHSKnown
.One
))) {
1007 replaceOperand(*I
, 1, Constant::getIntegerValue(VTy
, RHSKnown
.One
));
1012 Known
.Zero
= LHSKnown
.Zero
.shl(ShiftAmt
) |
1013 RHSKnown
.Zero
.lshr(BitWidth
- ShiftAmt
);
1014 Known
.One
= LHSKnown
.One
.shl(ShiftAmt
) |
1015 RHSKnown
.One
.lshr(BitWidth
- ShiftAmt
);
1016 KnownBitsComputed
= true;
1019 case Intrinsic::umax
: {
1020 // UMax(A, C) == A if ...
1021 // The lowest non-zero bit of DemandMask is higher than the highest
1022 // non-zero bit of C.
1024 unsigned CTZ
= DemandedMask
.countr_zero();
1025 if (match(II
->getArgOperand(1), m_APInt(C
)) &&
1026 CTZ
>= C
->getActiveBits())
1027 return II
->getArgOperand(0);
1030 case Intrinsic::umin
: {
1031 // UMin(A, C) == A if ...
1032 // The lowest non-zero bit of DemandMask is higher than the highest
1033 // non-one bit of C.
1034 // This comes from using DeMorgans on the above umax example.
1036 unsigned CTZ
= DemandedMask
.countr_zero();
1037 if (match(II
->getArgOperand(1), m_APInt(C
)) &&
1038 CTZ
>= C
->getBitWidth() - C
->countl_one())
1039 return II
->getArgOperand(0);
1043 // Handle target specific intrinsics
1044 std::optional
<Value
*> V
= targetSimplifyDemandedUseBitsIntrinsic(
1045 *II
, DemandedMask
, Known
, KnownBitsComputed
);
1053 if (!KnownBitsComputed
)
1054 computeKnownBits(V
, Known
, Depth
, CxtI
);
1059 if (V
->getType()->isPointerTy()) {
1060 Align Alignment
= V
->getPointerAlignment(DL
);
1061 Known
.Zero
.setLowBits(Log2(Alignment
));
1064 // If the client is only demanding bits that we know, return the known
1065 // constant. We can't directly simplify pointers as a constant because of
1066 // pointer provenance.
1067 // TODO: We could return `(inttoptr const)` for pointers.
1068 if (!V
->getType()->isPointerTy() && DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
1069 return Constant::getIntegerValue(VTy
, Known
.One
);
1071 if (VerifyKnownBits
) {
1072 KnownBits ReferenceKnown
= computeKnownBits(V
, Depth
, CxtI
);
1073 if (Known
!= ReferenceKnown
) {
1074 errs() << "Mismatched known bits for " << *V
<< " in "
1075 << I
->getFunction()->getName() << "\n";
1076 errs() << "computeKnownBits(): " << ReferenceKnown
<< "\n";
1077 errs() << "SimplifyDemandedBits(): " << Known
<< "\n";
1085 /// Helper routine of SimplifyDemandedUseBits. It computes Known
1086 /// bits. It also tries to handle simplifications that can be done based on
1087 /// DemandedMask, but without modifying the Instruction.
1088 Value
*InstCombinerImpl::SimplifyMultipleUseDemandedBits(
1089 Instruction
*I
, const APInt
&DemandedMask
, KnownBits
&Known
, unsigned Depth
,
1090 Instruction
*CxtI
) {
1091 unsigned BitWidth
= DemandedMask
.getBitWidth();
1092 Type
*ITy
= I
->getType();
1094 KnownBits
LHSKnown(BitWidth
);
1095 KnownBits
RHSKnown(BitWidth
);
1097 // Despite the fact that we can't simplify this instruction in all User's
1098 // context, we can at least compute the known bits, and we can
1099 // do simplifications that apply to *just* the one user if we know that
1100 // this instruction has a simpler value in that context.
1101 switch (I
->getOpcode()) {
1102 case Instruction::And
: {
1103 computeKnownBits(I
->getOperand(1), RHSKnown
, Depth
+ 1, CxtI
);
1104 computeKnownBits(I
->getOperand(0), LHSKnown
, Depth
+ 1, CxtI
);
1105 Known
= analyzeKnownBitsFromAndXorOr(cast
<Operator
>(I
), LHSKnown
, RHSKnown
,
1106 Depth
, SQ
.getWithInstruction(CxtI
));
1107 computeKnownBitsFromContext(I
, Known
, Depth
, SQ
.getWithInstruction(CxtI
));
1109 // If the client is only demanding bits that we know, return the known
1111 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
1112 return Constant::getIntegerValue(ITy
, Known
.One
);
1114 // If all of the demanded bits are known 1 on one side, return the other.
1115 // These bits cannot contribute to the result of the 'and' in this context.
1116 if (DemandedMask
.isSubsetOf(LHSKnown
.Zero
| RHSKnown
.One
))
1117 return I
->getOperand(0);
1118 if (DemandedMask
.isSubsetOf(RHSKnown
.Zero
| LHSKnown
.One
))
1119 return I
->getOperand(1);
1123 case Instruction::Or
: {
1124 computeKnownBits(I
->getOperand(1), RHSKnown
, Depth
+ 1, CxtI
);
1125 computeKnownBits(I
->getOperand(0), LHSKnown
, Depth
+ 1, CxtI
);
1126 Known
= analyzeKnownBitsFromAndXorOr(cast
<Operator
>(I
), LHSKnown
, RHSKnown
,
1127 Depth
, SQ
.getWithInstruction(CxtI
));
1128 computeKnownBitsFromContext(I
, Known
, Depth
, SQ
.getWithInstruction(CxtI
));
1130 // If the client is only demanding bits that we know, return the known
1132 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
1133 return Constant::getIntegerValue(ITy
, Known
.One
);
1135 // We can simplify (X|Y) -> X or Y in the user's context if we know that
1136 // only bits from X or Y are demanded.
1137 // If all of the demanded bits are known zero on one side, return the other.
1138 // These bits cannot contribute to the result of the 'or' in this context.
1139 if (DemandedMask
.isSubsetOf(LHSKnown
.One
| RHSKnown
.Zero
))
1140 return I
->getOperand(0);
1141 if (DemandedMask
.isSubsetOf(RHSKnown
.One
| LHSKnown
.Zero
))
1142 return I
->getOperand(1);
1146 case Instruction::Xor
: {
1147 computeKnownBits(I
->getOperand(1), RHSKnown
, Depth
+ 1, CxtI
);
1148 computeKnownBits(I
->getOperand(0), LHSKnown
, Depth
+ 1, CxtI
);
1149 Known
= analyzeKnownBitsFromAndXorOr(cast
<Operator
>(I
), LHSKnown
, RHSKnown
,
1150 Depth
, SQ
.getWithInstruction(CxtI
));
1151 computeKnownBitsFromContext(I
, Known
, Depth
, SQ
.getWithInstruction(CxtI
));
1153 // If the client is only demanding bits that we know, return the known
1155 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
1156 return Constant::getIntegerValue(ITy
, Known
.One
);
1158 // We can simplify (X^Y) -> X or Y in the user's context if we know that
1159 // only bits from X or Y are demanded.
1160 // If all of the demanded bits are known zero on one side, return the other.
1161 if (DemandedMask
.isSubsetOf(RHSKnown
.Zero
))
1162 return I
->getOperand(0);
1163 if (DemandedMask
.isSubsetOf(LHSKnown
.Zero
))
1164 return I
->getOperand(1);
1168 case Instruction::Add
: {
1169 unsigned NLZ
= DemandedMask
.countl_zero();
1170 APInt DemandedFromOps
= APInt::getLowBitsSet(BitWidth
, BitWidth
- NLZ
);
1172 // If an operand adds zeros to every bit below the highest demanded bit,
1173 // that operand doesn't change the result. Return the other side.
1174 computeKnownBits(I
->getOperand(1), RHSKnown
, Depth
+ 1, CxtI
);
1175 if (DemandedFromOps
.isSubsetOf(RHSKnown
.Zero
))
1176 return I
->getOperand(0);
1178 computeKnownBits(I
->getOperand(0), LHSKnown
, Depth
+ 1, CxtI
);
1179 if (DemandedFromOps
.isSubsetOf(LHSKnown
.Zero
))
1180 return I
->getOperand(1);
1182 bool NSW
= cast
<OverflowingBinaryOperator
>(I
)->hasNoSignedWrap();
1183 Known
= KnownBits::computeForAddSub(/*Add*/ true, NSW
, LHSKnown
, RHSKnown
);
1184 computeKnownBitsFromContext(I
, Known
, Depth
, SQ
.getWithInstruction(CxtI
));
1187 case Instruction::Sub
: {
1188 unsigned NLZ
= DemandedMask
.countl_zero();
1189 APInt DemandedFromOps
= APInt::getLowBitsSet(BitWidth
, BitWidth
- NLZ
);
1191 // If an operand subtracts zeros from every bit below the highest demanded
1192 // bit, that operand doesn't change the result. Return the other side.
1193 computeKnownBits(I
->getOperand(1), RHSKnown
, Depth
+ 1, CxtI
);
1194 if (DemandedFromOps
.isSubsetOf(RHSKnown
.Zero
))
1195 return I
->getOperand(0);
1197 bool NSW
= cast
<OverflowingBinaryOperator
>(I
)->hasNoSignedWrap();
1198 computeKnownBits(I
->getOperand(0), LHSKnown
, Depth
+ 1, CxtI
);
1199 Known
= KnownBits::computeForAddSub(/*Add*/ false, NSW
, LHSKnown
, RHSKnown
);
1200 computeKnownBitsFromContext(I
, Known
, Depth
, SQ
.getWithInstruction(CxtI
));
1203 case Instruction::AShr
: {
1204 // Compute the Known bits to simplify things downstream.
1205 computeKnownBits(I
, Known
, Depth
, CxtI
);
1207 // If this user is only demanding bits that we know, return the known
1209 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
1210 return Constant::getIntegerValue(ITy
, Known
.One
);
1212 // If the right shift operand 0 is a result of a left shift by the same
1213 // amount, this is probably a zero/sign extension, which may be unnecessary,
1214 // if we do not demand any of the new sign bits. So, return the original
1216 const APInt
*ShiftRC
;
1217 const APInt
*ShiftLC
;
1219 unsigned BitWidth
= DemandedMask
.getBitWidth();
1221 m_AShr(m_Shl(m_Value(X
), m_APInt(ShiftLC
)), m_APInt(ShiftRC
))) &&
1222 ShiftLC
== ShiftRC
&& ShiftLC
->ult(BitWidth
) &&
1223 DemandedMask
.isSubsetOf(APInt::getLowBitsSet(
1224 BitWidth
, BitWidth
- ShiftRC
->getZExtValue()))) {
1231 // Compute the Known bits to simplify things downstream.
1232 computeKnownBits(I
, Known
, Depth
, CxtI
);
1234 // If this user is only demanding bits that we know, return the known
1236 if (DemandedMask
.isSubsetOf(Known
.Zero
|Known
.One
))
1237 return Constant::getIntegerValue(ITy
, Known
.One
);
1245 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
1246 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
1247 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
1250 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
1251 /// ..., bn}, without considering the specific value X is holding.
1252 /// This transformation is legal iff one of following conditions is hold:
1253 /// 1) All the bit in S are 0, in this case E1 == E2.
1254 /// 2) We don't care those bits in S, per the input DemandedMask.
1255 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
1258 /// Currently we only test condition 2).
1260 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
1262 Value
*InstCombinerImpl::simplifyShrShlDemandedBits(
1263 Instruction
*Shr
, const APInt
&ShrOp1
, Instruction
*Shl
,
1264 const APInt
&ShlOp1
, const APInt
&DemandedMask
, KnownBits
&Known
) {
1265 if (!ShlOp1
|| !ShrOp1
)
1266 return nullptr; // No-op.
1268 Value
*VarX
= Shr
->getOperand(0);
1269 Type
*Ty
= VarX
->getType();
1270 unsigned BitWidth
= Ty
->getScalarSizeInBits();
1271 if (ShlOp1
.uge(BitWidth
) || ShrOp1
.uge(BitWidth
))
1272 return nullptr; // Undef.
1274 unsigned ShlAmt
= ShlOp1
.getZExtValue();
1275 unsigned ShrAmt
= ShrOp1
.getZExtValue();
1277 Known
.One
.clearAllBits();
1278 Known
.Zero
.setLowBits(ShlAmt
- 1);
1279 Known
.Zero
&= DemandedMask
;
1281 APInt
BitMask1(APInt::getAllOnes(BitWidth
));
1282 APInt
BitMask2(APInt::getAllOnes(BitWidth
));
1284 bool isLshr
= (Shr
->getOpcode() == Instruction::LShr
);
1285 BitMask1
= isLshr
? (BitMask1
.lshr(ShrAmt
) << ShlAmt
) :
1286 (BitMask1
.ashr(ShrAmt
) << ShlAmt
);
1288 if (ShrAmt
<= ShlAmt
) {
1289 BitMask2
<<= (ShlAmt
- ShrAmt
);
1291 BitMask2
= isLshr
? BitMask2
.lshr(ShrAmt
- ShlAmt
):
1292 BitMask2
.ashr(ShrAmt
- ShlAmt
);
1295 // Check if condition-2 (see the comment to this function) is satified.
1296 if ((BitMask1
& DemandedMask
) == (BitMask2
& DemandedMask
)) {
1297 if (ShrAmt
== ShlAmt
)
1300 if (!Shr
->hasOneUse())
1303 BinaryOperator
*New
;
1304 if (ShrAmt
< ShlAmt
) {
1305 Constant
*Amt
= ConstantInt::get(VarX
->getType(), ShlAmt
- ShrAmt
);
1306 New
= BinaryOperator::CreateShl(VarX
, Amt
);
1307 BinaryOperator
*Orig
= cast
<BinaryOperator
>(Shl
);
1308 New
->setHasNoSignedWrap(Orig
->hasNoSignedWrap());
1309 New
->setHasNoUnsignedWrap(Orig
->hasNoUnsignedWrap());
1311 Constant
*Amt
= ConstantInt::get(VarX
->getType(), ShrAmt
- ShlAmt
);
1312 New
= isLshr
? BinaryOperator::CreateLShr(VarX
, Amt
) :
1313 BinaryOperator::CreateAShr(VarX
, Amt
);
1314 if (cast
<BinaryOperator
>(Shr
)->isExact())
1315 New
->setIsExact(true);
1318 return InsertNewInstWith(New
, Shl
->getIterator());
1324 /// The specified value produces a vector with any number of elements.
1325 /// This method analyzes which elements of the operand are poison and
1326 /// returns that information in PoisonElts.
1328 /// DemandedElts contains the set of elements that are actually used by the
1329 /// caller, and by default (AllowMultipleUsers equals false) the value is
1330 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1331 /// to true, DemandedElts refers to the union of sets of elements that are
1332 /// used by all callers.
1334 /// If the information about demanded elements can be used to simplify the
1335 /// operation, the operation is simplified, then the resultant value is
1336 /// returned. This returns null if no change was made.
1337 Value
*InstCombinerImpl::SimplifyDemandedVectorElts(Value
*V
,
1341 bool AllowMultipleUsers
) {
1342 // Cannot analyze scalable type. The number of vector elements is not a
1343 // compile-time constant.
1344 if (isa
<ScalableVectorType
>(V
->getType()))
1347 unsigned VWidth
= cast
<FixedVectorType
>(V
->getType())->getNumElements();
1348 APInt
EltMask(APInt::getAllOnes(VWidth
));
1349 assert((DemandedElts
& ~EltMask
) == 0 && "Invalid DemandedElts!");
1351 if (match(V
, m_Poison())) {
1352 // If the entire vector is poison, just return this info.
1353 PoisonElts
= EltMask
;
1357 if (DemandedElts
.isZero()) { // If nothing is demanded, provide poison.
1358 PoisonElts
= EltMask
;
1359 return PoisonValue::get(V
->getType());
1364 if (auto *C
= dyn_cast
<Constant
>(V
)) {
1365 // Check if this is identity. If so, return 0 since we are not simplifying
1367 if (DemandedElts
.isAllOnes())
1370 Type
*EltTy
= cast
<VectorType
>(V
->getType())->getElementType();
1371 Constant
*Poison
= PoisonValue::get(EltTy
);
1372 SmallVector
<Constant
*, 16> Elts
;
1373 for (unsigned i
= 0; i
!= VWidth
; ++i
) {
1374 if (!DemandedElts
[i
]) { // If not demanded, set to poison.
1375 Elts
.push_back(Poison
);
1376 PoisonElts
.setBit(i
);
1380 Constant
*Elt
= C
->getAggregateElement(i
);
1381 if (!Elt
) return nullptr;
1383 Elts
.push_back(Elt
);
1384 if (isa
<PoisonValue
>(Elt
)) // Already poison.
1385 PoisonElts
.setBit(i
);
1388 // If we changed the constant, return it.
1389 Constant
*NewCV
= ConstantVector::get(Elts
);
1390 return NewCV
!= C
? NewCV
: nullptr;
1393 // Limit search depth.
1397 if (!AllowMultipleUsers
) {
1398 // If multiple users are using the root value, proceed with
1399 // simplification conservatively assuming that all elements
1401 if (!V
->hasOneUse()) {
1402 // Quit if we find multiple users of a non-root value though.
1403 // They'll be handled when it's their turn to be visited by
1404 // the main instcombine process.
1406 // TODO: Just compute the PoisonElts information recursively.
1409 // Conservatively assume that all elements are needed.
1410 DemandedElts
= EltMask
;
1414 Instruction
*I
= dyn_cast
<Instruction
>(V
);
1415 if (!I
) return nullptr; // Only analyze instructions.
1417 bool MadeChange
= false;
1418 auto simplifyAndSetOp
= [&](Instruction
*Inst
, unsigned OpNum
,
1419 APInt Demanded
, APInt
&Undef
) {
1420 auto *II
= dyn_cast
<IntrinsicInst
>(Inst
);
1421 Value
*Op
= II
? II
->getArgOperand(OpNum
) : Inst
->getOperand(OpNum
);
1422 if (Value
*V
= SimplifyDemandedVectorElts(Op
, Demanded
, Undef
, Depth
+ 1)) {
1423 replaceOperand(*Inst
, OpNum
, V
);
1428 APInt
PoisonElts2(VWidth
, 0);
1429 APInt
PoisonElts3(VWidth
, 0);
1430 switch (I
->getOpcode()) {
1433 case Instruction::GetElementPtr
: {
1434 // The LangRef requires that struct geps have all constant indices. As
1435 // such, we can't convert any operand to partial undef.
1436 auto mayIndexStructType
= [](GetElementPtrInst
&GEP
) {
1437 for (auto I
= gep_type_begin(GEP
), E
= gep_type_end(GEP
);
1443 if (mayIndexStructType(cast
<GetElementPtrInst
>(*I
)))
1446 // Conservatively track the demanded elements back through any vector
1447 // operands we may have. We know there must be at least one, or we
1448 // wouldn't have a vector result to get here. Note that we intentionally
1449 // merge the undef bits here since gepping with either an poison base or
1450 // index results in poison.
1451 for (unsigned i
= 0; i
< I
->getNumOperands(); i
++) {
1452 if (i
== 0 ? match(I
->getOperand(i
), m_Undef())
1453 : match(I
->getOperand(i
), m_Poison())) {
1454 // If the entire vector is undefined, just return this info.
1455 PoisonElts
= EltMask
;
1458 if (I
->getOperand(i
)->getType()->isVectorTy()) {
1459 APInt
PoisonEltsOp(VWidth
, 0);
1460 simplifyAndSetOp(I
, i
, DemandedElts
, PoisonEltsOp
);
1461 // gep(x, undef) is not undef, so skip considering idx ops here
1462 // Note that we could propagate poison, but we can't distinguish between
1463 // undef & poison bits ATM
1465 PoisonElts
|= PoisonEltsOp
;
1471 case Instruction::InsertElement
: {
1472 // If this is a variable index, we don't know which element it overwrites.
1473 // demand exactly the same input as we produce.
1474 ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(I
->getOperand(2));
1476 // Note that we can't propagate undef elt info, because we don't know
1477 // which elt is getting updated.
1478 simplifyAndSetOp(I
, 0, DemandedElts
, PoisonElts2
);
1482 // The element inserted overwrites whatever was there, so the input demanded
1483 // set is simpler than the output set.
1484 unsigned IdxNo
= Idx
->getZExtValue();
1485 APInt PreInsertDemandedElts
= DemandedElts
;
1487 PreInsertDemandedElts
.clearBit(IdxNo
);
1489 // If we only demand the element that is being inserted and that element
1490 // was extracted from the same index in another vector with the same type,
1491 // replace this insert with that other vector.
1492 // Note: This is attempted before the call to simplifyAndSetOp because that
1493 // may change PoisonElts to a value that does not match with Vec.
1495 if (PreInsertDemandedElts
== 0 &&
1496 match(I
->getOperand(1),
1497 m_ExtractElt(m_Value(Vec
), m_SpecificInt(IdxNo
))) &&
1498 Vec
->getType() == I
->getType()) {
1502 simplifyAndSetOp(I
, 0, PreInsertDemandedElts
, PoisonElts
);
1504 // If this is inserting an element that isn't demanded, remove this
1506 if (IdxNo
>= VWidth
|| !DemandedElts
[IdxNo
]) {
1508 return I
->getOperand(0);
1511 // The inserted element is defined.
1512 PoisonElts
.clearBit(IdxNo
);
1515 case Instruction::ShuffleVector
: {
1516 auto *Shuffle
= cast
<ShuffleVectorInst
>(I
);
1517 assert(Shuffle
->getOperand(0)->getType() ==
1518 Shuffle
->getOperand(1)->getType() &&
1519 "Expected shuffle operands to have same type");
1520 unsigned OpWidth
= cast
<FixedVectorType
>(Shuffle
->getOperand(0)->getType())
1522 // Handle trivial case of a splat. Only check the first element of LHS
1524 if (all_of(Shuffle
->getShuffleMask(), [](int Elt
) { return Elt
== 0; }) &&
1525 DemandedElts
.isAllOnes()) {
1526 if (!isa
<PoisonValue
>(I
->getOperand(1))) {
1527 I
->setOperand(1, PoisonValue::get(I
->getOperand(1)->getType()));
1530 APInt
LeftDemanded(OpWidth
, 1);
1531 APInt
LHSPoisonElts(OpWidth
, 0);
1532 simplifyAndSetOp(I
, 0, LeftDemanded
, LHSPoisonElts
);
1533 if (LHSPoisonElts
[0])
1534 PoisonElts
= EltMask
;
1536 PoisonElts
.clearAllBits();
1540 APInt
LeftDemanded(OpWidth
, 0), RightDemanded(OpWidth
, 0);
1541 for (unsigned i
= 0; i
< VWidth
; i
++) {
1542 if (DemandedElts
[i
]) {
1543 unsigned MaskVal
= Shuffle
->getMaskValue(i
);
1544 if (MaskVal
!= -1u) {
1545 assert(MaskVal
< OpWidth
* 2 &&
1546 "shufflevector mask index out of range!");
1547 if (MaskVal
< OpWidth
)
1548 LeftDemanded
.setBit(MaskVal
);
1550 RightDemanded
.setBit(MaskVal
- OpWidth
);
1555 APInt
LHSPoisonElts(OpWidth
, 0);
1556 simplifyAndSetOp(I
, 0, LeftDemanded
, LHSPoisonElts
);
1558 APInt
RHSPoisonElts(OpWidth
, 0);
1559 simplifyAndSetOp(I
, 1, RightDemanded
, RHSPoisonElts
);
1561 // If this shuffle does not change the vector length and the elements
1562 // demanded by this shuffle are an identity mask, then this shuffle is
1565 // We are assuming canonical form for the mask, so the source vector is
1566 // operand 0 and operand 1 is not used.
1568 // Note that if an element is demanded and this shuffle mask is undefined
1569 // for that element, then the shuffle is not considered an identity
1570 // operation. The shuffle prevents poison from the operand vector from
1571 // leaking to the result by replacing poison with an undefined value.
1572 if (VWidth
== OpWidth
) {
1573 bool IsIdentityShuffle
= true;
1574 for (unsigned i
= 0; i
< VWidth
; i
++) {
1575 unsigned MaskVal
= Shuffle
->getMaskValue(i
);
1576 if (DemandedElts
[i
] && i
!= MaskVal
) {
1577 IsIdentityShuffle
= false;
1581 if (IsIdentityShuffle
)
1582 return Shuffle
->getOperand(0);
1585 bool NewPoisonElts
= false;
1586 unsigned LHSIdx
= -1u, LHSValIdx
= -1u;
1587 unsigned RHSIdx
= -1u, RHSValIdx
= -1u;
1588 bool LHSUniform
= true;
1589 bool RHSUniform
= true;
1590 for (unsigned i
= 0; i
< VWidth
; i
++) {
1591 unsigned MaskVal
= Shuffle
->getMaskValue(i
);
1592 if (MaskVal
== -1u) {
1593 PoisonElts
.setBit(i
);
1594 } else if (!DemandedElts
[i
]) {
1595 NewPoisonElts
= true;
1596 PoisonElts
.setBit(i
);
1597 } else if (MaskVal
< OpWidth
) {
1598 if (LHSPoisonElts
[MaskVal
]) {
1599 NewPoisonElts
= true;
1600 PoisonElts
.setBit(i
);
1602 LHSIdx
= LHSIdx
== -1u ? i
: OpWidth
;
1603 LHSValIdx
= LHSValIdx
== -1u ? MaskVal
: OpWidth
;
1604 LHSUniform
= LHSUniform
&& (MaskVal
== i
);
1607 if (RHSPoisonElts
[MaskVal
- OpWidth
]) {
1608 NewPoisonElts
= true;
1609 PoisonElts
.setBit(i
);
1611 RHSIdx
= RHSIdx
== -1u ? i
: OpWidth
;
1612 RHSValIdx
= RHSValIdx
== -1u ? MaskVal
- OpWidth
: OpWidth
;
1613 RHSUniform
= RHSUniform
&& (MaskVal
- OpWidth
== i
);
1618 // Try to transform shuffle with constant vector and single element from
1619 // this constant vector to single insertelement instruction.
1620 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1621 // insertelement V, C[ci], ci-n
1623 cast
<FixedVectorType
>(Shuffle
->getType())->getNumElements()) {
1624 Value
*Op
= nullptr;
1625 Constant
*Value
= nullptr;
1628 // Find constant vector with the single element in shuffle (LHS or RHS).
1629 if (LHSIdx
< OpWidth
&& RHSUniform
) {
1630 if (auto *CV
= dyn_cast
<ConstantVector
>(Shuffle
->getOperand(0))) {
1631 Op
= Shuffle
->getOperand(1);
1632 Value
= CV
->getOperand(LHSValIdx
);
1636 if (RHSIdx
< OpWidth
&& LHSUniform
) {
1637 if (auto *CV
= dyn_cast
<ConstantVector
>(Shuffle
->getOperand(1))) {
1638 Op
= Shuffle
->getOperand(0);
1639 Value
= CV
->getOperand(RHSValIdx
);
1643 // Found constant vector with single element - convert to insertelement.
1645 Instruction
*New
= InsertElementInst::Create(
1646 Op
, Value
, ConstantInt::get(Type::getInt64Ty(I
->getContext()), Idx
),
1647 Shuffle
->getName());
1648 InsertNewInstWith(New
, Shuffle
->getIterator());
1652 if (NewPoisonElts
) {
1653 // Add additional discovered undefs.
1654 SmallVector
<int, 16> Elts
;
1655 for (unsigned i
= 0; i
< VWidth
; ++i
) {
1657 Elts
.push_back(PoisonMaskElem
);
1659 Elts
.push_back(Shuffle
->getMaskValue(i
));
1661 Shuffle
->setShuffleMask(Elts
);
1666 case Instruction::Select
: {
1667 // If this is a vector select, try to transform the select condition based
1668 // on the current demanded elements.
1669 SelectInst
*Sel
= cast
<SelectInst
>(I
);
1670 if (Sel
->getCondition()->getType()->isVectorTy()) {
1671 // TODO: We are not doing anything with PoisonElts based on this call.
1672 // It is overwritten below based on the other select operands. If an
1673 // element of the select condition is known undef, then we are free to
1674 // choose the output value from either arm of the select. If we know that
1675 // one of those values is undef, then the output can be undef.
1676 simplifyAndSetOp(I
, 0, DemandedElts
, PoisonElts
);
1679 // Next, see if we can transform the arms of the select.
1680 APInt
DemandedLHS(DemandedElts
), DemandedRHS(DemandedElts
);
1681 if (auto *CV
= dyn_cast
<ConstantVector
>(Sel
->getCondition())) {
1682 for (unsigned i
= 0; i
< VWidth
; i
++) {
1683 // isNullValue() always returns false when called on a ConstantExpr.
1684 // Skip constant expressions to avoid propagating incorrect information.
1685 Constant
*CElt
= CV
->getAggregateElement(i
);
1686 if (isa
<ConstantExpr
>(CElt
))
1688 // TODO: If a select condition element is undef, we can demand from
1689 // either side. If one side is known undef, choosing that side would
1691 if (CElt
->isNullValue())
1692 DemandedLHS
.clearBit(i
);
1694 DemandedRHS
.clearBit(i
);
1698 simplifyAndSetOp(I
, 1, DemandedLHS
, PoisonElts2
);
1699 simplifyAndSetOp(I
, 2, DemandedRHS
, PoisonElts3
);
1701 // Output elements are undefined if the element from each arm is undefined.
1702 // TODO: This can be improved. See comment in select condition handling.
1703 PoisonElts
= PoisonElts2
& PoisonElts3
;
1706 case Instruction::BitCast
: {
1707 // Vector->vector casts only.
1708 VectorType
*VTy
= dyn_cast
<VectorType
>(I
->getOperand(0)->getType());
1710 unsigned InVWidth
= cast
<FixedVectorType
>(VTy
)->getNumElements();
1711 APInt
InputDemandedElts(InVWidth
, 0);
1712 PoisonElts2
= APInt(InVWidth
, 0);
1715 if (VWidth
== InVWidth
) {
1716 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1717 // elements as are demanded of us.
1719 InputDemandedElts
= DemandedElts
;
1720 } else if ((VWidth
% InVWidth
) == 0) {
1721 // If the number of elements in the output is a multiple of the number of
1722 // elements in the input then an input element is live if any of the
1723 // corresponding output elements are live.
1724 Ratio
= VWidth
/ InVWidth
;
1725 for (unsigned OutIdx
= 0; OutIdx
!= VWidth
; ++OutIdx
)
1726 if (DemandedElts
[OutIdx
])
1727 InputDemandedElts
.setBit(OutIdx
/ Ratio
);
1728 } else if ((InVWidth
% VWidth
) == 0) {
1729 // If the number of elements in the input is a multiple of the number of
1730 // elements in the output then an input element is live if the
1731 // corresponding output element is live.
1732 Ratio
= InVWidth
/ VWidth
;
1733 for (unsigned InIdx
= 0; InIdx
!= InVWidth
; ++InIdx
)
1734 if (DemandedElts
[InIdx
/ Ratio
])
1735 InputDemandedElts
.setBit(InIdx
);
1737 // Unsupported so far.
1741 simplifyAndSetOp(I
, 0, InputDemandedElts
, PoisonElts2
);
1743 if (VWidth
== InVWidth
) {
1744 PoisonElts
= PoisonElts2
;
1745 } else if ((VWidth
% InVWidth
) == 0) {
1746 // If the number of elements in the output is a multiple of the number of
1747 // elements in the input then an output element is undef if the
1748 // corresponding input element is undef.
1749 for (unsigned OutIdx
= 0; OutIdx
!= VWidth
; ++OutIdx
)
1750 if (PoisonElts2
[OutIdx
/ Ratio
])
1751 PoisonElts
.setBit(OutIdx
);
1752 } else if ((InVWidth
% VWidth
) == 0) {
1753 // If the number of elements in the input is a multiple of the number of
1754 // elements in the output then an output element is undef if all of the
1755 // corresponding input elements are undef.
1756 for (unsigned OutIdx
= 0; OutIdx
!= VWidth
; ++OutIdx
) {
1757 APInt SubUndef
= PoisonElts2
.lshr(OutIdx
* Ratio
).zextOrTrunc(Ratio
);
1758 if (SubUndef
.popcount() == Ratio
)
1759 PoisonElts
.setBit(OutIdx
);
1762 llvm_unreachable("Unimp");
1766 case Instruction::FPTrunc
:
1767 case Instruction::FPExt
:
1768 simplifyAndSetOp(I
, 0, DemandedElts
, PoisonElts
);
1771 case Instruction::Call
: {
1772 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
);
1774 switch (II
->getIntrinsicID()) {
1775 case Intrinsic::masked_gather
: // fallthrough
1776 case Intrinsic::masked_load
: {
1777 // Subtlety: If we load from a pointer, the pointer must be valid
1778 // regardless of whether the element is demanded. Doing otherwise risks
1779 // segfaults which didn't exist in the original program.
1780 APInt
DemandedPtrs(APInt::getAllOnes(VWidth
)),
1781 DemandedPassThrough(DemandedElts
);
1782 if (auto *CV
= dyn_cast
<ConstantVector
>(II
->getOperand(2)))
1783 for (unsigned i
= 0; i
< VWidth
; i
++) {
1784 Constant
*CElt
= CV
->getAggregateElement(i
);
1785 if (CElt
->isNullValue())
1786 DemandedPtrs
.clearBit(i
);
1787 else if (CElt
->isAllOnesValue())
1788 DemandedPassThrough
.clearBit(i
);
1790 if (II
->getIntrinsicID() == Intrinsic::masked_gather
)
1791 simplifyAndSetOp(II
, 0, DemandedPtrs
, PoisonElts2
);
1792 simplifyAndSetOp(II
, 3, DemandedPassThrough
, PoisonElts3
);
1794 // Output elements are undefined if the element from both sources are.
1795 // TODO: can strengthen via mask as well.
1796 PoisonElts
= PoisonElts2
& PoisonElts3
;
1800 // Handle target specific intrinsics
1801 std::optional
<Value
*> V
= targetSimplifyDemandedVectorEltsIntrinsic(
1802 *II
, DemandedElts
, PoisonElts
, PoisonElts2
, PoisonElts3
,
1808 } // switch on IntrinsicID
1811 } // switch on Opcode
1813 // TODO: We bail completely on integer div/rem and shifts because they have
1814 // UB/poison potential, but that should be refined.
1816 if (match(I
, m_BinOp(BO
)) && !BO
->isIntDivRem() && !BO
->isShift()) {
1817 Value
*X
= BO
->getOperand(0);
1818 Value
*Y
= BO
->getOperand(1);
1820 // Look for an equivalent binop except that one operand has been shuffled.
1821 // If the demand for this binop only includes elements that are the same as
1822 // the other binop, then we may be able to replace this binop with a use of
1826 // %other_bo = bo (shuf X, {0}), Y
1827 // %this_extracted_bo = extelt (bo X, Y), 0
1829 // %other_bo = bo (shuf X, {0}), Y
1830 // %this_extracted_bo = extelt %other_bo, 0
1832 // TODO: Handle demand of an arbitrary single element or more than one
1833 // element instead of just element 0.
1834 // TODO: Unlike general demanded elements transforms, this should be safe
1835 // for any (div/rem/shift) opcode too.
1836 if (DemandedElts
== 1 && !X
->hasOneUse() && !Y
->hasOneUse() &&
1839 auto findShufBO
= [&](bool MatchShufAsOp0
) -> User
* {
1840 // Try to use shuffle-of-operand in place of an operand:
1841 // bo X, Y --> bo (shuf X), Y
1842 // bo X, Y --> bo X, (shuf Y)
1843 BinaryOperator::BinaryOps Opcode
= BO
->getOpcode();
1844 Value
*ShufOp
= MatchShufAsOp0
? X
: Y
;
1845 Value
*OtherOp
= MatchShufAsOp0
? Y
: X
;
1846 for (User
*U
: OtherOp
->users()) {
1847 auto Shuf
= m_Shuffle(m_Specific(ShufOp
), m_Value(), m_ZeroMask());
1848 if (BO
->isCommutative()
1849 ? match(U
, m_c_BinOp(Opcode
, Shuf
, m_Specific(OtherOp
)))
1851 ? match(U
, m_BinOp(Opcode
, Shuf
, m_Specific(OtherOp
)))
1852 : match(U
, m_BinOp(Opcode
, m_Specific(OtherOp
), Shuf
)))
1853 if (DT
.dominates(U
, I
))
1859 if (User
*ShufBO
= findShufBO(/* MatchShufAsOp0 */ true))
1861 if (User
*ShufBO
= findShufBO(/* MatchShufAsOp0 */ false))
1865 simplifyAndSetOp(I
, 0, DemandedElts
, PoisonElts
);
1866 simplifyAndSetOp(I
, 1, DemandedElts
, PoisonElts2
);
1868 // Output elements are undefined if both are undefined. Consider things
1869 // like undef & 0. The result is known zero, not undef.
1870 PoisonElts
&= PoisonElts2
;
1873 // If we've proven all of the lanes poison, return a poison value.
1874 // TODO: Intersect w/demanded lanes
1875 if (PoisonElts
.isAllOnes())
1876 return PoisonValue::get(I
->getType());
1878 return MadeChange
? I
: nullptr;