1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements instcombine for ExtractElement, InsertElement and
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Transforms/InstCombine/InstCombiner.h"
44 #define DEBUG_TYPE "instcombine"
47 using namespace PatternMatch
;
49 STATISTIC(NumAggregateReconstructionsSimplified
,
50 "Number of aggregate reconstructions turned into reuse of the "
51 "original aggregate");
53 /// Return true if the value is cheaper to scalarize than it is to leave as a
54 /// vector operation. If the extract index \p EI is a constant integer then
55 /// some operations may be cheap to scalarize.
57 /// FIXME: It's possible to create more instructions than previously existed.
58 static bool cheapToScalarize(Value
*V
, Value
*EI
) {
59 ConstantInt
*CEI
= dyn_cast
<ConstantInt
>(EI
);
61 // If we can pick a scalar constant value out of a vector, that is free.
62 if (auto *C
= dyn_cast
<Constant
>(V
))
63 return CEI
|| C
->getSplatValue();
65 if (CEI
&& match(V
, m_Intrinsic
<Intrinsic::experimental_stepvector
>())) {
66 ElementCount EC
= cast
<VectorType
>(V
->getType())->getElementCount();
67 // Index needs to be lower than the minimum size of the vector, because
68 // for scalable vector, the vector size is known at run time.
69 return CEI
->getValue().ult(EC
.getKnownMinValue());
72 // An insertelement to the same constant index as our extract will simplify
73 // to the scalar inserted element. An insertelement to a different constant
74 // index is irrelevant to our extract.
75 if (match(V
, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
78 if (match(V
, m_OneUse(m_Load(m_Value()))))
81 if (match(V
, m_OneUse(m_UnOp())))
85 if (match(V
, m_OneUse(m_BinOp(m_Value(V0
), m_Value(V1
)))))
86 if (cheapToScalarize(V0
, EI
) || cheapToScalarize(V1
, EI
))
89 CmpInst::Predicate UnusedPred
;
90 if (match(V
, m_OneUse(m_Cmp(UnusedPred
, m_Value(V0
), m_Value(V1
)))))
91 if (cheapToScalarize(V0
, EI
) || cheapToScalarize(V1
, EI
))
97 // If we have a PHI node with a vector type that is only used to feed
98 // itself and be an operand of extractelement at a constant location,
99 // try to replace the PHI of the vector type with a PHI of a scalar type.
100 Instruction
*InstCombinerImpl::scalarizePHI(ExtractElementInst
&EI
,
102 SmallVector
<Instruction
*, 2> Extracts
;
103 // The users we want the PHI to have are:
104 // 1) The EI ExtractElement (we already know this)
105 // 2) Possibly more ExtractElements with the same index.
106 // 3) Another operand, which will feed back into the PHI.
107 Instruction
*PHIUser
= nullptr;
108 for (auto *U
: PN
->users()) {
109 if (ExtractElementInst
*EU
= dyn_cast
<ExtractElementInst
>(U
)) {
110 if (EI
.getIndexOperand() == EU
->getIndexOperand())
111 Extracts
.push_back(EU
);
114 } else if (!PHIUser
) {
115 PHIUser
= cast
<Instruction
>(U
);
124 // Verify that this PHI user has one use, which is the PHI itself,
125 // and that it is a binary operation which is cheap to scalarize.
126 // otherwise return nullptr.
127 if (!PHIUser
->hasOneUse() || !(PHIUser
->user_back() == PN
) ||
128 !(isa
<BinaryOperator
>(PHIUser
)) ||
129 !cheapToScalarize(PHIUser
, EI
.getIndexOperand()))
132 // Create a scalar PHI node that will replace the vector PHI node
133 // just before the current PHI node.
134 PHINode
*scalarPHI
= cast
<PHINode
>(InsertNewInstWith(
135 PHINode::Create(EI
.getType(), PN
->getNumIncomingValues(), ""), PN
->getIterator()));
136 // Scalarize each PHI operand.
137 for (unsigned i
= 0; i
< PN
->getNumIncomingValues(); i
++) {
138 Value
*PHIInVal
= PN
->getIncomingValue(i
);
139 BasicBlock
*inBB
= PN
->getIncomingBlock(i
);
140 Value
*Elt
= EI
.getIndexOperand();
141 // If the operand is the PHI induction variable:
142 if (PHIInVal
== PHIUser
) {
143 // Scalarize the binary operation. Its first operand is the
144 // scalar PHI, and the second operand is extracted from the other
146 BinaryOperator
*B0
= cast
<BinaryOperator
>(PHIUser
);
147 unsigned opId
= (B0
->getOperand(0) == PN
) ? 1 : 0;
148 Value
*Op
= InsertNewInstWith(
149 ExtractElementInst::Create(B0
->getOperand(opId
), Elt
,
150 B0
->getOperand(opId
)->getName() + ".Elt"),
152 Value
*newPHIUser
= InsertNewInstWith(
153 BinaryOperator::CreateWithCopiedFlags(B0
->getOpcode(),
154 scalarPHI
, Op
, B0
), B0
->getIterator());
155 scalarPHI
->addIncoming(newPHIUser
, inBB
);
157 // Scalarize PHI input:
158 Instruction
*newEI
= ExtractElementInst::Create(PHIInVal
, Elt
, "");
159 // Insert the new instruction into the predecessor basic block.
160 Instruction
*pos
= dyn_cast
<Instruction
>(PHIInVal
);
161 BasicBlock::iterator InsertPos
;
162 if (pos
&& !isa
<PHINode
>(pos
)) {
163 InsertPos
= ++pos
->getIterator();
165 InsertPos
= inBB
->getFirstInsertionPt();
168 InsertNewInstWith(newEI
, InsertPos
);
170 scalarPHI
->addIncoming(newEI
, inBB
);
174 for (auto *E
: Extracts
) {
175 replaceInstUsesWith(*E
, scalarPHI
);
176 // Add old extract to worklist for DCE.
183 Instruction
*InstCombinerImpl::foldBitcastExtElt(ExtractElementInst
&Ext
) {
186 if (!match(Ext
.getVectorOperand(), m_BitCast(m_Value(X
))) ||
187 !match(Ext
.getIndexOperand(), m_ConstantInt(ExtIndexC
)))
190 ElementCount NumElts
=
191 cast
<VectorType
>(Ext
.getVectorOperandType())->getElementCount();
192 Type
*DestTy
= Ext
.getType();
193 unsigned DestWidth
= DestTy
->getPrimitiveSizeInBits();
194 bool IsBigEndian
= DL
.isBigEndian();
196 // If we are casting an integer to vector and extracting a portion, that is
197 // a shift-right and truncate.
198 if (X
->getType()->isIntegerTy()) {
199 assert(isa
<FixedVectorType
>(Ext
.getVectorOperand()->getType()) &&
200 "Expected fixed vector type for bitcast from scalar integer");
202 // Big endian requires adjusting the extract index since MSB is at index 0.
203 // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8
204 // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8
206 ExtIndexC
= NumElts
.getKnownMinValue() - 1 - ExtIndexC
;
207 unsigned ShiftAmountC
= ExtIndexC
* DestWidth
;
209 (isDesirableIntType(X
->getType()->getPrimitiveSizeInBits()) &&
210 Ext
.getVectorOperand()->hasOneUse())) {
212 X
= Builder
.CreateLShr(X
, ShiftAmountC
, "extelt.offset");
213 if (DestTy
->isFloatingPointTy()) {
214 Type
*DstIntTy
= IntegerType::getIntNTy(X
->getContext(), DestWidth
);
215 Value
*Trunc
= Builder
.CreateTrunc(X
, DstIntTy
);
216 return new BitCastInst(Trunc
, DestTy
);
218 return new TruncInst(X
, DestTy
);
222 if (!X
->getType()->isVectorTy())
225 // If this extractelement is using a bitcast from a vector of the same number
226 // of elements, see if we can find the source element from the source vector:
227 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
228 auto *SrcTy
= cast
<VectorType
>(X
->getType());
229 ElementCount NumSrcElts
= SrcTy
->getElementCount();
230 if (NumSrcElts
== NumElts
)
231 if (Value
*Elt
= findScalarElement(X
, ExtIndexC
))
232 return new BitCastInst(Elt
, DestTy
);
234 assert(NumSrcElts
.isScalable() == NumElts
.isScalable() &&
235 "Src and Dst must be the same sort of vector type");
237 // If the source elements are wider than the destination, try to shift and
238 // truncate a subset of scalar bits of an insert op.
239 if (NumSrcElts
.getKnownMinValue() < NumElts
.getKnownMinValue()) {
243 if (!match(X
, m_InsertElt(m_Value(Vec
), m_Value(Scalar
),
244 m_ConstantInt(InsIndexC
))))
247 // The extract must be from the subset of vector elements that we inserted
248 // into. Example: if we inserted element 1 of a <2 x i64> and we are
249 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
250 // of elements 4-7 of the bitcasted vector.
251 unsigned NarrowingRatio
=
252 NumElts
.getKnownMinValue() / NumSrcElts
.getKnownMinValue();
254 if (ExtIndexC
/ NarrowingRatio
!= InsIndexC
) {
255 // Remove insertelement, if we don't use the inserted element.
256 // extractelement (bitcast (insertelement (Vec, b)), a) ->
257 // extractelement (bitcast (Vec), a)
258 // FIXME: this should be removed to SimplifyDemandedVectorElts,
259 // once scale vectors are supported.
260 if (X
->hasOneUse() && Ext
.getVectorOperand()->hasOneUse()) {
261 Value
*NewBC
= Builder
.CreateBitCast(Vec
, Ext
.getVectorOperandType());
262 return ExtractElementInst::Create(NewBC
, Ext
.getIndexOperand());
267 // We are extracting part of the original scalar. How that scalar is
268 // inserted into the vector depends on the endian-ness. Example:
269 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7
270 // +--+--+--+--+--+--+--+--+
271 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
272 // extelt <4 x i16> V', 3: | |S2|S3|
273 // +--+--+--+--+--+--+--+--+
274 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
275 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
276 // In this example, we must right-shift little-endian. Big-endian is just a
278 unsigned Chunk
= ExtIndexC
% NarrowingRatio
;
280 Chunk
= NarrowingRatio
- 1 - Chunk
;
282 // Bail out if this is an FP vector to FP vector sequence. That would take
283 // more instructions than we started with unless there is no shift, and it
284 // may not be handled as well in the backend.
285 bool NeedSrcBitcast
= SrcTy
->getScalarType()->isFloatingPointTy();
286 bool NeedDestBitcast
= DestTy
->isFloatingPointTy();
287 if (NeedSrcBitcast
&& NeedDestBitcast
)
290 unsigned SrcWidth
= SrcTy
->getScalarSizeInBits();
291 unsigned ShAmt
= Chunk
* DestWidth
;
293 // TODO: This limitation is more strict than necessary. We could sum the
294 // number of new instructions and subtract the number eliminated to know if
296 if (!X
->hasOneUse() || !Ext
.getVectorOperand()->hasOneUse())
297 if (NeedSrcBitcast
|| NeedDestBitcast
)
300 if (NeedSrcBitcast
) {
301 Type
*SrcIntTy
= IntegerType::getIntNTy(Scalar
->getContext(), SrcWidth
);
302 Scalar
= Builder
.CreateBitCast(Scalar
, SrcIntTy
);
306 // Bail out if we could end with more instructions than we started with.
307 if (!Ext
.getVectorOperand()->hasOneUse())
309 Scalar
= Builder
.CreateLShr(Scalar
, ShAmt
);
312 if (NeedDestBitcast
) {
313 Type
*DestIntTy
= IntegerType::getIntNTy(Scalar
->getContext(), DestWidth
);
314 return new BitCastInst(Builder
.CreateTrunc(Scalar
, DestIntTy
), DestTy
);
316 return new TruncInst(Scalar
, DestTy
);
322 /// Find elements of V demanded by UserInstr.
323 static APInt
findDemandedEltsBySingleUser(Value
*V
, Instruction
*UserInstr
) {
324 unsigned VWidth
= cast
<FixedVectorType
>(V
->getType())->getNumElements();
326 // Conservatively assume that all elements are needed.
327 APInt
UsedElts(APInt::getAllOnes(VWidth
));
329 switch (UserInstr
->getOpcode()) {
330 case Instruction::ExtractElement
: {
331 ExtractElementInst
*EEI
= cast
<ExtractElementInst
>(UserInstr
);
332 assert(EEI
->getVectorOperand() == V
);
333 ConstantInt
*EEIIndexC
= dyn_cast
<ConstantInt
>(EEI
->getIndexOperand());
334 if (EEIIndexC
&& EEIIndexC
->getValue().ult(VWidth
)) {
335 UsedElts
= APInt::getOneBitSet(VWidth
, EEIIndexC
->getZExtValue());
339 case Instruction::ShuffleVector
: {
340 ShuffleVectorInst
*Shuffle
= cast
<ShuffleVectorInst
>(UserInstr
);
341 unsigned MaskNumElts
=
342 cast
<FixedVectorType
>(UserInstr
->getType())->getNumElements();
344 UsedElts
= APInt(VWidth
, 0);
345 for (unsigned i
= 0; i
< MaskNumElts
; i
++) {
346 unsigned MaskVal
= Shuffle
->getMaskValue(i
);
347 if (MaskVal
== -1u || MaskVal
>= 2 * VWidth
)
349 if (Shuffle
->getOperand(0) == V
&& (MaskVal
< VWidth
))
350 UsedElts
.setBit(MaskVal
);
351 if (Shuffle
->getOperand(1) == V
&&
352 ((MaskVal
>= VWidth
) && (MaskVal
< 2 * VWidth
)))
353 UsedElts
.setBit(MaskVal
- VWidth
);
363 /// Find union of elements of V demanded by all its users.
364 /// If it is known by querying findDemandedEltsBySingleUser that
365 /// no user demands an element of V, then the corresponding bit
366 /// remains unset in the returned value.
367 static APInt
findDemandedEltsByAllUsers(Value
*V
) {
368 unsigned VWidth
= cast
<FixedVectorType
>(V
->getType())->getNumElements();
370 APInt
UnionUsedElts(VWidth
, 0);
371 for (const Use
&U
: V
->uses()) {
372 if (Instruction
*I
= dyn_cast
<Instruction
>(U
.getUser())) {
373 UnionUsedElts
|= findDemandedEltsBySingleUser(V
, I
);
375 UnionUsedElts
= APInt::getAllOnes(VWidth
);
379 if (UnionUsedElts
.isAllOnes())
383 return UnionUsedElts
;
386 /// Given a constant index for a extractelement or insertelement instruction,
387 /// return it with the canonical type if it isn't already canonical. We
388 /// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't
389 /// matter, we just want a consistent type to simplify CSE.
390 static ConstantInt
*getPreferredVectorIndex(ConstantInt
*IndexC
) {
391 const unsigned IndexBW
= IndexC
->getBitWidth();
392 if (IndexBW
== 64 || IndexC
->getValue().getActiveBits() > 64)
394 return ConstantInt::get(IndexC
->getContext(),
395 IndexC
->getValue().zextOrTrunc(64));
398 Instruction
*InstCombinerImpl::visitExtractElementInst(ExtractElementInst
&EI
) {
399 Value
*SrcVec
= EI
.getVectorOperand();
400 Value
*Index
= EI
.getIndexOperand();
401 if (Value
*V
= simplifyExtractElementInst(SrcVec
, Index
,
402 SQ
.getWithInstruction(&EI
)))
403 return replaceInstUsesWith(EI
, V
);
405 // extractelt (select %x, %vec1, %vec2), %const ->
406 // select %x, %vec1[%const], %vec2[%const]
407 // TODO: Support constant folding of multiple select operands:
408 // extractelt (select %x, %vec1, %vec2), (select %x, %c1, %c2)
409 // If the extractelement will for instance try to do out of bounds accesses
410 // because of the values of %c1 and/or %c2, the sequence could be optimized
411 // early. This is currently not possible because constant folding will reach
412 // an unreachable assertion if it doesn't find a constant operand.
413 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(EI
.getVectorOperand()))
414 if (SI
->getCondition()->getType()->isIntegerTy() &&
415 isa
<Constant
>(EI
.getIndexOperand()))
416 if (Instruction
*R
= FoldOpIntoSelect(EI
, SI
))
419 // If extracting a specified index from the vector, see if we can recursively
420 // find a previously computed scalar that was inserted into the vector.
421 auto *IndexC
= dyn_cast
<ConstantInt
>(Index
);
423 // Canonicalize type of constant indices to i64 to simplify CSE
424 if (auto *NewIdx
= getPreferredVectorIndex(IndexC
))
425 return replaceOperand(EI
, 1, NewIdx
);
427 ElementCount EC
= EI
.getVectorOperandType()->getElementCount();
428 unsigned NumElts
= EC
.getKnownMinValue();
430 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(SrcVec
)) {
431 Intrinsic::ID IID
= II
->getIntrinsicID();
432 // Index needs to be lower than the minimum size of the vector, because
433 // for scalable vector, the vector size is known at run time.
434 if (IID
== Intrinsic::experimental_stepvector
&&
435 IndexC
->getValue().ult(NumElts
)) {
436 Type
*Ty
= EI
.getType();
437 unsigned BitWidth
= Ty
->getIntegerBitWidth();
439 // Return index when its value does not exceed the allowed limit
440 // for the element type of the vector, otherwise return undefined.
441 if (IndexC
->getValue().getActiveBits() <= BitWidth
)
442 Idx
= ConstantInt::get(Ty
, IndexC
->getValue().zextOrTrunc(BitWidth
));
444 Idx
= PoisonValue::get(Ty
);
445 return replaceInstUsesWith(EI
, Idx
);
449 // InstSimplify should handle cases where the index is invalid.
450 // For fixed-length vector, it's invalid to extract out-of-range element.
451 if (!EC
.isScalable() && IndexC
->getValue().uge(NumElts
))
454 if (Instruction
*I
= foldBitcastExtElt(EI
))
457 // If there's a vector PHI feeding a scalar use through this extractelement
458 // instruction, try to scalarize the PHI.
459 if (auto *Phi
= dyn_cast
<PHINode
>(SrcVec
))
460 if (Instruction
*ScalarPHI
= scalarizePHI(EI
, Phi
))
464 // TODO come up with a n-ary matcher that subsumes both unary and
467 if (match(SrcVec
, m_UnOp(UO
)) && cheapToScalarize(SrcVec
, Index
)) {
468 // extelt (unop X), Index --> unop (extelt X, Index)
469 Value
*X
= UO
->getOperand(0);
470 Value
*E
= Builder
.CreateExtractElement(X
, Index
);
471 return UnaryOperator::CreateWithCopiedFlags(UO
->getOpcode(), E
, UO
);
475 if (match(SrcVec
, m_BinOp(BO
)) && cheapToScalarize(SrcVec
, Index
)) {
476 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
477 Value
*X
= BO
->getOperand(0), *Y
= BO
->getOperand(1);
478 Value
*E0
= Builder
.CreateExtractElement(X
, Index
);
479 Value
*E1
= Builder
.CreateExtractElement(Y
, Index
);
480 return BinaryOperator::CreateWithCopiedFlags(BO
->getOpcode(), E0
, E1
, BO
);
484 CmpInst::Predicate Pred
;
485 if (match(SrcVec
, m_Cmp(Pred
, m_Value(X
), m_Value(Y
))) &&
486 cheapToScalarize(SrcVec
, Index
)) {
487 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
488 Value
*E0
= Builder
.CreateExtractElement(X
, Index
);
489 Value
*E1
= Builder
.CreateExtractElement(Y
, Index
);
490 return CmpInst::Create(cast
<CmpInst
>(SrcVec
)->getOpcode(), Pred
, E0
, E1
);
493 if (auto *I
= dyn_cast
<Instruction
>(SrcVec
)) {
494 if (auto *IE
= dyn_cast
<InsertElementInst
>(I
)) {
495 // instsimplify already handled the case where the indices are constants
496 // and equal by value, if both are constants, they must not be the same
497 // value, extract from the pre-inserted value instead.
498 if (isa
<Constant
>(IE
->getOperand(2)) && IndexC
)
499 return replaceOperand(EI
, 0, IE
->getOperand(0));
500 } else if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
501 auto *VecType
= cast
<VectorType
>(GEP
->getType());
502 ElementCount EC
= VecType
->getElementCount();
503 uint64_t IdxVal
= IndexC
? IndexC
->getZExtValue() : 0;
504 if (IndexC
&& IdxVal
< EC
.getKnownMinValue() && GEP
->hasOneUse()) {
505 // Find out why we have a vector result - these are a few examples:
506 // 1. We have a scalar pointer and a vector of indices, or
507 // 2. We have a vector of pointers and a scalar index, or
508 // 3. We have a vector of pointers and a vector of indices, etc.
509 // Here we only consider combining when there is exactly one vector
510 // operand, since the optimization is less obviously a win due to
511 // needing more than one extractelements.
514 llvm::count_if(GEP
->operands(), [](const Value
*V
) {
515 return isa
<VectorType
>(V
->getType());
517 if (VectorOps
== 1) {
518 Value
*NewPtr
= GEP
->getPointerOperand();
519 if (isa
<VectorType
>(NewPtr
->getType()))
520 NewPtr
= Builder
.CreateExtractElement(NewPtr
, IndexC
);
522 SmallVector
<Value
*> NewOps
;
523 for (unsigned I
= 1; I
!= GEP
->getNumOperands(); ++I
) {
524 Value
*Op
= GEP
->getOperand(I
);
525 if (isa
<VectorType
>(Op
->getType()))
526 NewOps
.push_back(Builder
.CreateExtractElement(Op
, IndexC
));
528 NewOps
.push_back(Op
);
531 GetElementPtrInst
*NewGEP
= GetElementPtrInst::Create(
532 GEP
->getSourceElementType(), NewPtr
, NewOps
);
533 NewGEP
->setIsInBounds(GEP
->isInBounds());
537 } else if (auto *SVI
= dyn_cast
<ShuffleVectorInst
>(I
)) {
538 // If this is extracting an element from a shufflevector, figure out where
539 // it came from and extract from the appropriate input element instead.
540 // Restrict the following transformation to fixed-length vector.
541 if (isa
<FixedVectorType
>(SVI
->getType()) && isa
<ConstantInt
>(Index
)) {
543 SVI
->getMaskValue(cast
<ConstantInt
>(Index
)->getZExtValue());
545 unsigned LHSWidth
= cast
<FixedVectorType
>(SVI
->getOperand(0)->getType())
549 return replaceInstUsesWith(EI
, PoisonValue::get(EI
.getType()));
550 if (SrcIdx
< (int)LHSWidth
)
551 Src
= SVI
->getOperand(0);
554 Src
= SVI
->getOperand(1);
556 Type
*Int64Ty
= Type::getInt64Ty(EI
.getContext());
557 return ExtractElementInst::Create(
558 Src
, ConstantInt::get(Int64Ty
, SrcIdx
, false));
560 } else if (auto *CI
= dyn_cast
<CastInst
>(I
)) {
561 // Canonicalize extractelement(cast) -> cast(extractelement).
562 // Bitcasts can change the number of vector elements, and they cost
564 if (CI
->hasOneUse() && (CI
->getOpcode() != Instruction::BitCast
)) {
565 Value
*EE
= Builder
.CreateExtractElement(CI
->getOperand(0), Index
);
566 return CastInst::Create(CI
->getOpcode(), EE
, EI
.getType());
571 // Run demanded elements after other transforms as this can drop flags on
572 // binops. If there's two paths to the same final result, we prefer the
573 // one which doesn't force us to drop flags.
575 ElementCount EC
= EI
.getVectorOperandType()->getElementCount();
576 unsigned NumElts
= EC
.getKnownMinValue();
577 // This instruction only demands the single element from the input vector.
578 // Skip for scalable type, the number of elements is unknown at
580 if (!EC
.isScalable() && NumElts
!= 1) {
581 // If the input vector has a single use, simplify it based on this use
583 if (SrcVec
->hasOneUse()) {
584 APInt
PoisonElts(NumElts
, 0);
585 APInt
DemandedElts(NumElts
, 0);
586 DemandedElts
.setBit(IndexC
->getZExtValue());
588 SimplifyDemandedVectorElts(SrcVec
, DemandedElts
, PoisonElts
))
589 return replaceOperand(EI
, 0, V
);
591 // If the input vector has multiple uses, simplify it based on a union
592 // of all elements used.
593 APInt DemandedElts
= findDemandedEltsByAllUsers(SrcVec
);
594 if (!DemandedElts
.isAllOnes()) {
595 APInt
PoisonElts(NumElts
, 0);
596 if (Value
*V
= SimplifyDemandedVectorElts(
597 SrcVec
, DemandedElts
, PoisonElts
, 0 /* Depth */,
598 true /* AllowMultipleUsers */)) {
600 Worklist
.addValue(SrcVec
);
601 SrcVec
->replaceAllUsesWith(V
);
612 /// If V is a shuffle of values that ONLY returns elements from either LHS or
613 /// RHS, return the shuffle mask and true. Otherwise, return false.
614 static bool collectSingleShuffleElements(Value
*V
, Value
*LHS
, Value
*RHS
,
615 SmallVectorImpl
<int> &Mask
) {
616 assert(LHS
->getType() == RHS
->getType() &&
617 "Invalid CollectSingleShuffleElements");
618 unsigned NumElts
= cast
<FixedVectorType
>(V
->getType())->getNumElements();
620 if (match(V
, m_Undef())) {
621 Mask
.assign(NumElts
, -1);
626 for (unsigned i
= 0; i
!= NumElts
; ++i
)
632 for (unsigned i
= 0; i
!= NumElts
; ++i
)
633 Mask
.push_back(i
+ NumElts
);
637 if (InsertElementInst
*IEI
= dyn_cast
<InsertElementInst
>(V
)) {
638 // If this is an insert of an extract from some other vector, include it.
639 Value
*VecOp
= IEI
->getOperand(0);
640 Value
*ScalarOp
= IEI
->getOperand(1);
641 Value
*IdxOp
= IEI
->getOperand(2);
643 if (!isa
<ConstantInt
>(IdxOp
))
645 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
647 if (isa
<PoisonValue
>(ScalarOp
)) { // inserting poison into vector.
648 // We can handle this if the vector we are inserting into is
650 if (collectSingleShuffleElements(VecOp
, LHS
, RHS
, Mask
)) {
651 // If so, update the mask to reflect the inserted poison.
652 Mask
[InsertedIdx
] = -1;
655 } else if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)){
656 if (isa
<ConstantInt
>(EI
->getOperand(1))) {
657 unsigned ExtractedIdx
=
658 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
659 unsigned NumLHSElts
=
660 cast
<FixedVectorType
>(LHS
->getType())->getNumElements();
662 // This must be extracting from either LHS or RHS.
663 if (EI
->getOperand(0) == LHS
|| EI
->getOperand(0) == RHS
) {
664 // We can handle this if the vector we are inserting into is
666 if (collectSingleShuffleElements(VecOp
, LHS
, RHS
, Mask
)) {
667 // If so, update the mask to reflect the inserted value.
668 if (EI
->getOperand(0) == LHS
) {
669 Mask
[InsertedIdx
% NumElts
] = ExtractedIdx
;
671 assert(EI
->getOperand(0) == RHS
);
672 Mask
[InsertedIdx
% NumElts
] = ExtractedIdx
+ NumLHSElts
;
684 /// If we have insertion into a vector that is wider than the vector that we
685 /// are extracting from, try to widen the source vector to allow a single
686 /// shufflevector to replace one or more insert/extract pairs.
687 static bool replaceExtractElements(InsertElementInst
*InsElt
,
688 ExtractElementInst
*ExtElt
,
689 InstCombinerImpl
&IC
) {
690 auto *InsVecType
= cast
<FixedVectorType
>(InsElt
->getType());
691 auto *ExtVecType
= cast
<FixedVectorType
>(ExtElt
->getVectorOperandType());
692 unsigned NumInsElts
= InsVecType
->getNumElements();
693 unsigned NumExtElts
= ExtVecType
->getNumElements();
695 // The inserted-to vector must be wider than the extracted-from vector.
696 if (InsVecType
->getElementType() != ExtVecType
->getElementType() ||
697 NumExtElts
>= NumInsElts
)
700 // Create a shuffle mask to widen the extended-from vector using poison
701 // values. The mask selects all of the values of the original vector followed
702 // by as many poison values as needed to create a vector of the same length
703 // as the inserted-to vector.
704 SmallVector
<int, 16> ExtendMask
;
705 for (unsigned i
= 0; i
< NumExtElts
; ++i
)
706 ExtendMask
.push_back(i
);
707 for (unsigned i
= NumExtElts
; i
< NumInsElts
; ++i
)
708 ExtendMask
.push_back(-1);
710 Value
*ExtVecOp
= ExtElt
->getVectorOperand();
711 auto *ExtVecOpInst
= dyn_cast
<Instruction
>(ExtVecOp
);
712 BasicBlock
*InsertionBlock
= (ExtVecOpInst
&& !isa
<PHINode
>(ExtVecOpInst
))
713 ? ExtVecOpInst
->getParent()
714 : ExtElt
->getParent();
716 // TODO: This restriction matches the basic block check below when creating
717 // new extractelement instructions. If that limitation is removed, this one
718 // could also be removed. But for now, we just bail out to ensure that we
719 // will replace the extractelement instruction that is feeding our
720 // insertelement instruction. This allows the insertelement to then be
721 // replaced by a shufflevector. If the insertelement is not replaced, we can
722 // induce infinite looping because there's an optimization for extractelement
723 // that will delete our widening shuffle. This would trigger another attempt
724 // here to create that shuffle, and we spin forever.
725 if (InsertionBlock
!= InsElt
->getParent())
728 // TODO: This restriction matches the check in visitInsertElementInst() and
729 // prevents an infinite loop caused by not turning the extract/insert pair
730 // into a shuffle. We really should not need either check, but we're lacking
731 // folds for shufflevectors because we're afraid to generate shuffle masks
732 // that the backend can't handle.
733 if (InsElt
->hasOneUse() && isa
<InsertElementInst
>(InsElt
->user_back()))
736 auto *WideVec
= new ShuffleVectorInst(ExtVecOp
, ExtendMask
);
738 // Insert the new shuffle after the vector operand of the extract is defined
739 // (as long as it's not a PHI) or at the start of the basic block of the
740 // extract, so any subsequent extracts in the same basic block can use it.
741 // TODO: Insert before the earliest ExtractElementInst that is replaced.
742 if (ExtVecOpInst
&& !isa
<PHINode
>(ExtVecOpInst
))
743 WideVec
->insertAfter(ExtVecOpInst
);
745 IC
.InsertNewInstWith(WideVec
, ExtElt
->getParent()->getFirstInsertionPt());
747 // Replace extracts from the original narrow vector with extracts from the new
749 for (User
*U
: ExtVecOp
->users()) {
750 ExtractElementInst
*OldExt
= dyn_cast
<ExtractElementInst
>(U
);
751 if (!OldExt
|| OldExt
->getParent() != WideVec
->getParent())
753 auto *NewExt
= ExtractElementInst::Create(WideVec
, OldExt
->getOperand(1));
754 IC
.InsertNewInstWith(NewExt
, OldExt
->getIterator());
755 IC
.replaceInstUsesWith(*OldExt
, NewExt
);
756 // Add the old extracts to the worklist for DCE. We can't remove the
757 // extracts directly, because they may still be used by the calling code.
758 IC
.addToWorklist(OldExt
);
764 /// We are building a shuffle to create V, which is a sequence of insertelement,
765 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
766 /// not rely on the second vector source. Return a std::pair containing the
767 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
768 /// parameter as required.
770 /// Note: we intentionally don't try to fold earlier shuffles since they have
771 /// often been chosen carefully to be efficiently implementable on the target.
772 using ShuffleOps
= std::pair
<Value
*, Value
*>;
774 static ShuffleOps
collectShuffleElements(Value
*V
, SmallVectorImpl
<int> &Mask
,
776 InstCombinerImpl
&IC
, bool &Rerun
) {
777 assert(V
->getType()->isVectorTy() && "Invalid shuffle!");
778 unsigned NumElts
= cast
<FixedVectorType
>(V
->getType())->getNumElements();
780 if (match(V
, m_Poison())) {
781 Mask
.assign(NumElts
, -1);
782 return std::make_pair(
783 PermittedRHS
? PoisonValue::get(PermittedRHS
->getType()) : V
, nullptr);
786 if (isa
<ConstantAggregateZero
>(V
)) {
787 Mask
.assign(NumElts
, 0);
788 return std::make_pair(V
, nullptr);
791 if (InsertElementInst
*IEI
= dyn_cast
<InsertElementInst
>(V
)) {
792 // If this is an insert of an extract from some other vector, include it.
793 Value
*VecOp
= IEI
->getOperand(0);
794 Value
*ScalarOp
= IEI
->getOperand(1);
795 Value
*IdxOp
= IEI
->getOperand(2);
797 if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)) {
798 if (isa
<ConstantInt
>(EI
->getOperand(1)) && isa
<ConstantInt
>(IdxOp
)) {
799 unsigned ExtractedIdx
=
800 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
801 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
803 // Either the extracted from or inserted into vector must be RHSVec,
804 // otherwise we'd end up with a shuffle of three inputs.
805 if (EI
->getOperand(0) == PermittedRHS
|| PermittedRHS
== nullptr) {
806 Value
*RHS
= EI
->getOperand(0);
807 ShuffleOps LR
= collectShuffleElements(VecOp
, Mask
, RHS
, IC
, Rerun
);
808 assert(LR
.second
== nullptr || LR
.second
== RHS
);
810 if (LR
.first
->getType() != RHS
->getType()) {
811 // Although we are giving up for now, see if we can create extracts
812 // that match the inserts for another round of combining.
813 if (replaceExtractElements(IEI
, EI
, IC
))
816 // We tried our best, but we can't find anything compatible with RHS
817 // further up the chain. Return a trivial shuffle.
818 for (unsigned i
= 0; i
< NumElts
; ++i
)
820 return std::make_pair(V
, nullptr);
823 unsigned NumLHSElts
=
824 cast
<FixedVectorType
>(RHS
->getType())->getNumElements();
825 Mask
[InsertedIdx
% NumElts
] = NumLHSElts
+ ExtractedIdx
;
826 return std::make_pair(LR
.first
, RHS
);
829 if (VecOp
== PermittedRHS
) {
830 // We've gone as far as we can: anything on the other side of the
831 // extractelement will already have been converted into a shuffle.
832 unsigned NumLHSElts
=
833 cast
<FixedVectorType
>(EI
->getOperand(0)->getType())
835 for (unsigned i
= 0; i
!= NumElts
; ++i
)
836 Mask
.push_back(i
== InsertedIdx
? ExtractedIdx
: NumLHSElts
+ i
);
837 return std::make_pair(EI
->getOperand(0), PermittedRHS
);
840 // If this insertelement is a chain that comes from exactly these two
841 // vectors, return the vector and the effective shuffle.
842 if (EI
->getOperand(0)->getType() == PermittedRHS
->getType() &&
843 collectSingleShuffleElements(IEI
, EI
->getOperand(0), PermittedRHS
,
845 return std::make_pair(EI
->getOperand(0), PermittedRHS
);
850 // Otherwise, we can't do anything fancy. Return an identity vector.
851 for (unsigned i
= 0; i
!= NumElts
; ++i
)
853 return std::make_pair(V
, nullptr);
856 /// Look for chain of insertvalue's that fully define an aggregate, and trace
857 /// back the values inserted, see if they are all were extractvalue'd from
858 /// the same source aggregate from the exact same element indexes.
859 /// If they were, just reuse the source aggregate.
860 /// This potentially deals with PHI indirections.
861 Instruction
*InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
862 InsertValueInst
&OrigIVI
) {
863 Type
*AggTy
= OrigIVI
.getType();
865 switch (AggTy
->getTypeID()) {
866 case Type::StructTyID
:
867 NumAggElts
= AggTy
->getStructNumElements();
869 case Type::ArrayTyID
:
870 NumAggElts
= AggTy
->getArrayNumElements();
873 llvm_unreachable("Unhandled aggregate type?");
876 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
877 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
878 // FIXME: any interesting patterns to be caught with larger limit?
879 assert(NumAggElts
> 0 && "Aggregate should have elements.");
883 static constexpr auto NotFound
= std::nullopt
;
884 static constexpr auto FoundMismatch
= nullptr;
886 // Try to find a value of each element of an aggregate.
887 // FIXME: deal with more complex, not one-dimensional, aggregate types
888 SmallVector
<std::optional
<Instruction
*>, 2> AggElts(NumAggElts
, NotFound
);
890 // Do we know values for each element of the aggregate?
891 auto KnowAllElts
= [&AggElts
]() {
892 return !llvm::is_contained(AggElts
, NotFound
);
897 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
898 // every element being overwritten twice, which should never happen.
899 static const int DepthLimit
= 2 * NumAggElts
;
901 // Recurse up the chain of `insertvalue` aggregate operands until either we've
902 // reconstructed full initializer or can't visit any more `insertvalue`'s.
903 for (InsertValueInst
*CurrIVI
= &OrigIVI
;
904 Depth
< DepthLimit
&& CurrIVI
&& !KnowAllElts();
905 CurrIVI
= dyn_cast
<InsertValueInst
>(CurrIVI
->getAggregateOperand()),
907 auto *InsertedValue
=
908 dyn_cast
<Instruction
>(CurrIVI
->getInsertedValueOperand());
910 return nullptr; // Inserted value must be produced by an instruction.
912 ArrayRef
<unsigned int> Indices
= CurrIVI
->getIndices();
914 // Don't bother with more than single-level aggregates.
915 if (Indices
.size() != 1)
916 return nullptr; // FIXME: deal with more complex aggregates?
918 // Now, we may have already previously recorded the value for this element
919 // of an aggregate. If we did, that means the CurrIVI will later be
920 // overwritten with the already-recorded value. But if not, let's record it!
921 std::optional
<Instruction
*> &Elt
= AggElts
[Indices
.front()];
922 Elt
= Elt
.value_or(InsertedValue
);
924 // FIXME: should we handle chain-terminating undef base operand?
927 // Was that sufficient to deduce the full initializer for the aggregate?
929 return nullptr; // Give up then.
931 // We now want to find the source[s] of the aggregate elements we've found.
932 // And with "source" we mean the original aggregate[s] from which
933 // the inserted elements were extracted. This may require PHI translation.
935 enum class AggregateDescription
{
936 /// When analyzing the value that was inserted into an aggregate, we did
937 /// not manage to find defining `extractvalue` instruction to analyze.
939 /// When analyzing the value that was inserted into an aggregate, we did
940 /// manage to find defining `extractvalue` instruction[s], and everything
941 /// matched perfectly - aggregate type, element insertion/extraction index.
943 /// When analyzing the value that was inserted into an aggregate, we did
944 /// manage to find defining `extractvalue` instruction, but there was
945 /// a mismatch: either the source type from which the extraction was didn't
946 /// match the aggregate type into which the insertion was,
947 /// or the extraction/insertion channels mismatched,
948 /// or different elements had different source aggregates.
951 auto Describe
= [](std::optional
<Value
*> SourceAggregate
) {
952 if (SourceAggregate
== NotFound
)
953 return AggregateDescription::NotFound
;
954 if (*SourceAggregate
== FoundMismatch
)
955 return AggregateDescription::FoundMismatch
;
956 return AggregateDescription::Found
;
959 // Given the value \p Elt that was being inserted into element \p EltIdx of an
960 // aggregate AggTy, see if \p Elt was originally defined by an
961 // appropriate extractvalue (same element index, same aggregate type).
962 // If found, return the source aggregate from which the extraction was.
963 // If \p PredBB is provided, does PHI translation of an \p Elt first.
964 auto FindSourceAggregate
=
965 [&](Instruction
*Elt
, unsigned EltIdx
, std::optional
<BasicBlock
*> UseBB
,
966 std::optional
<BasicBlock
*> PredBB
) -> std::optional
<Value
*> {
967 // For now(?), only deal with, at most, a single level of PHI indirection.
969 Elt
= dyn_cast
<Instruction
>(Elt
->DoPHITranslation(*UseBB
, *PredBB
));
970 // FIXME: deal with multiple levels of PHI indirection?
972 // Did we find an extraction?
973 auto *EVI
= dyn_cast_or_null
<ExtractValueInst
>(Elt
);
977 Value
*SourceAggregate
= EVI
->getAggregateOperand();
979 // Is the extraction from the same type into which the insertion was?
980 if (SourceAggregate
->getType() != AggTy
)
981 return FoundMismatch
;
982 // And the element index doesn't change between extraction and insertion?
983 if (EVI
->getNumIndices() != 1 || EltIdx
!= EVI
->getIndices().front())
984 return FoundMismatch
;
986 return SourceAggregate
; // AggregateDescription::Found
989 // Given elements AggElts that were constructing an aggregate OrigIVI,
990 // see if we can find appropriate source aggregate for each of the elements,
991 // and see it's the same aggregate for each element. If so, return it.
992 auto FindCommonSourceAggregate
=
993 [&](std::optional
<BasicBlock
*> UseBB
,
994 std::optional
<BasicBlock
*> PredBB
) -> std::optional
<Value
*> {
995 std::optional
<Value
*> SourceAggregate
;
997 for (auto I
: enumerate(AggElts
)) {
998 assert(Describe(SourceAggregate
) != AggregateDescription::FoundMismatch
&&
999 "We don't store nullptr in SourceAggregate!");
1000 assert((Describe(SourceAggregate
) == AggregateDescription::Found
) ==
1002 "SourceAggregate should be valid after the first element,");
1004 // For this element, is there a plausible source aggregate?
1005 // FIXME: we could special-case undef element, IFF we know that in the
1006 // source aggregate said element isn't poison.
1007 std::optional
<Value
*> SourceAggregateForElement
=
1008 FindSourceAggregate(*I
.value(), I
.index(), UseBB
, PredBB
);
1010 // Okay, what have we found? Does that correlate with previous findings?
1012 // Regardless of whether or not we have previously found source
1013 // aggregate for previous elements (if any), if we didn't find one for
1014 // this element, passthrough whatever we have just found.
1015 if (Describe(SourceAggregateForElement
) != AggregateDescription::Found
)
1016 return SourceAggregateForElement
;
1018 // Okay, we have found source aggregate for this element.
1019 // Let's see what we already know from previous elements, if any.
1020 switch (Describe(SourceAggregate
)) {
1021 case AggregateDescription::NotFound
:
1022 // This is apparently the first element that we have examined.
1023 SourceAggregate
= SourceAggregateForElement
; // Record the aggregate!
1024 continue; // Great, now look at next element.
1025 case AggregateDescription::Found
:
1026 // We have previously already successfully examined other elements.
1027 // Is this the same source aggregate we've found for other elements?
1028 if (*SourceAggregateForElement
!= *SourceAggregate
)
1029 return FoundMismatch
;
1030 continue; // Still the same aggregate, look at next element.
1031 case AggregateDescription::FoundMismatch
:
1032 llvm_unreachable("Can't happen. We would have early-exited then.");
1036 assert(Describe(SourceAggregate
) == AggregateDescription::Found
&&
1037 "Must be a valid Value");
1038 return *SourceAggregate
;
1041 std::optional
<Value
*> SourceAggregate
;
1043 // Can we find the source aggregate without looking at predecessors?
1044 SourceAggregate
= FindCommonSourceAggregate(/*UseBB=*/std::nullopt
,
1045 /*PredBB=*/std::nullopt
);
1046 if (Describe(SourceAggregate
) != AggregateDescription::NotFound
) {
1047 if (Describe(SourceAggregate
) == AggregateDescription::FoundMismatch
)
1048 return nullptr; // Conflicting source aggregates!
1049 ++NumAggregateReconstructionsSimplified
;
1050 return replaceInstUsesWith(OrigIVI
, *SourceAggregate
);
1053 // Okay, apparently we need to look at predecessors.
1055 // We should be smart about picking the "use" basic block, which will be the
1056 // merge point for aggregate, where we'll insert the final PHI that will be
1057 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
1058 // We should look in which blocks each of the AggElts is being defined,
1059 // they all should be defined in the same basic block.
1060 BasicBlock
*UseBB
= nullptr;
1062 for (const std::optional
<Instruction
*> &I
: AggElts
) {
1063 BasicBlock
*BB
= (*I
)->getParent();
1064 // If it's the first instruction we've encountered, record the basic block.
1069 // Otherwise, this must be the same basic block we've seen previously.
1074 // If *all* of the elements are basic-block-independent, meaning they are
1075 // either function arguments, or constant expressions, then if we didn't
1076 // handle them without predecessor-aware handling, we won't handle them now.
1080 // If we didn't manage to find source aggregate without looking at
1081 // predecessors, and there are no predecessors to look at, then we're done.
1082 if (pred_empty(UseBB
))
1085 // Arbitrary predecessor count limit.
1086 static const int PredCountLimit
= 64;
1088 // Cache the (non-uniqified!) list of predecessors in a vector,
1089 // checking the limit at the same time for efficiency.
1090 SmallVector
<BasicBlock
*, 4> Preds
; // May have duplicates!
1091 for (BasicBlock
*Pred
: predecessors(UseBB
)) {
1092 // Don't bother if there are too many predecessors.
1093 if (Preds
.size() >= PredCountLimit
) // FIXME: only count duplicates once?
1095 Preds
.emplace_back(Pred
);
1098 // For each predecessor, what is the source aggregate,
1099 // from which all the elements were originally extracted from?
1100 // Note that we want for the map to have stable iteration order!
1101 SmallDenseMap
<BasicBlock
*, Value
*, 4> SourceAggregates
;
1102 for (BasicBlock
*Pred
: Preds
) {
1103 std::pair
<decltype(SourceAggregates
)::iterator
, bool> IV
=
1104 SourceAggregates
.insert({Pred
, nullptr});
1105 // Did we already evaluate this predecessor?
1109 // Let's hope that when coming from predecessor Pred, all elements of the
1110 // aggregate produced by OrigIVI must have been originally extracted from
1111 // the same aggregate. Is that so? Can we find said original aggregate?
1112 SourceAggregate
= FindCommonSourceAggregate(UseBB
, Pred
);
1113 if (Describe(SourceAggregate
) != AggregateDescription::Found
)
1114 return nullptr; // Give up.
1115 IV
.first
->second
= *SourceAggregate
;
1118 // All good! Now we just need to thread the source aggregates here.
1119 // Note that we have to insert the new PHI here, ourselves, because we can't
1120 // rely on InstCombinerImpl::run() inserting it into the right basic block.
1121 // Note that the same block can be a predecessor more than once,
1122 // and we need to preserve that invariant for the PHI node.
1123 BuilderTy::InsertPointGuard
Guard(Builder
);
1124 Builder
.SetInsertPoint(UseBB
, UseBB
->getFirstNonPHIIt());
1126 Builder
.CreatePHI(AggTy
, Preds
.size(), OrigIVI
.getName() + ".merged");
1127 for (BasicBlock
*Pred
: Preds
)
1128 PHI
->addIncoming(SourceAggregates
[Pred
], Pred
);
1130 ++NumAggregateReconstructionsSimplified
;
1131 return replaceInstUsesWith(OrigIVI
, PHI
);
1134 /// Try to find redundant insertvalue instructions, like the following ones:
1135 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1136 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
1137 /// Here the second instruction inserts values at the same indices, as the
1138 /// first one, making the first one redundant.
1139 /// It should be transformed to:
1140 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
1141 Instruction
*InstCombinerImpl::visitInsertValueInst(InsertValueInst
&I
) {
1142 if (Value
*V
= simplifyInsertValueInst(
1143 I
.getAggregateOperand(), I
.getInsertedValueOperand(), I
.getIndices(),
1144 SQ
.getWithInstruction(&I
)))
1145 return replaceInstUsesWith(I
, V
);
1147 bool IsRedundant
= false;
1148 ArrayRef
<unsigned int> FirstIndices
= I
.getIndices();
1150 // If there is a chain of insertvalue instructions (each of them except the
1151 // last one has only one use and it's another insertvalue insn from this
1152 // chain), check if any of the 'children' uses the same indices as the first
1153 // instruction. In this case, the first one is redundant.
1156 while (V
->hasOneUse() && Depth
< 10) {
1157 User
*U
= V
->user_back();
1158 auto UserInsInst
= dyn_cast
<InsertValueInst
>(U
);
1159 if (!UserInsInst
|| U
->getOperand(0) != V
)
1161 if (UserInsInst
->getIndices() == FirstIndices
) {
1170 return replaceInstUsesWith(I
, I
.getOperand(0));
1172 if (Instruction
*NewI
= foldAggregateConstructionIntoAggregateReuse(I
))
1178 static bool isShuffleEquivalentToSelect(ShuffleVectorInst
&Shuf
) {
1179 // Can not analyze scalable type, the number of elements is not a compile-time
1181 if (isa
<ScalableVectorType
>(Shuf
.getOperand(0)->getType()))
1184 int MaskSize
= Shuf
.getShuffleMask().size();
1186 cast
<FixedVectorType
>(Shuf
.getOperand(0)->getType())->getNumElements();
1188 // A vector select does not change the size of the operands.
1189 if (MaskSize
!= VecSize
)
1192 // Each mask element must be undefined or choose a vector element from one of
1193 // the source operands without crossing vector lanes.
1194 for (int i
= 0; i
!= MaskSize
; ++i
) {
1195 int Elt
= Shuf
.getMaskValue(i
);
1196 if (Elt
!= -1 && Elt
!= i
&& Elt
!= i
+ VecSize
)
1203 /// Turn a chain of inserts that splats a value into an insert + shuffle:
1204 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1205 /// shufflevector(insertelt(X, %k, 0), poison, zero)
1206 static Instruction
*foldInsSequenceIntoSplat(InsertElementInst
&InsElt
) {
1207 // We are interested in the last insert in a chain. So if this insert has a
1208 // single user and that user is an insert, bail.
1209 if (InsElt
.hasOneUse() && isa
<InsertElementInst
>(InsElt
.user_back()))
1212 VectorType
*VecTy
= InsElt
.getType();
1213 // Can not handle scalable type, the number of elements is not a compile-time
1215 if (isa
<ScalableVectorType
>(VecTy
))
1217 unsigned NumElements
= cast
<FixedVectorType
>(VecTy
)->getNumElements();
1219 // Do not try to do this for a one-element vector, since that's a nop,
1220 // and will cause an inf-loop.
1221 if (NumElements
== 1)
1224 Value
*SplatVal
= InsElt
.getOperand(1);
1225 InsertElementInst
*CurrIE
= &InsElt
;
1226 SmallBitVector
ElementPresent(NumElements
, false);
1227 InsertElementInst
*FirstIE
= nullptr;
1229 // Walk the chain backwards, keeping track of which indices we inserted into,
1230 // until we hit something that isn't an insert of the splatted value.
1232 auto *Idx
= dyn_cast
<ConstantInt
>(CurrIE
->getOperand(2));
1233 if (!Idx
|| CurrIE
->getOperand(1) != SplatVal
)
1236 auto *NextIE
= dyn_cast
<InsertElementInst
>(CurrIE
->getOperand(0));
1237 // Check none of the intermediate steps have any additional uses, except
1238 // for the root insertelement instruction, which can be re-used, if it
1239 // inserts at position 0.
1240 if (CurrIE
!= &InsElt
&&
1241 (!CurrIE
->hasOneUse() && (NextIE
!= nullptr || !Idx
->isZero())))
1244 ElementPresent
[Idx
->getZExtValue()] = true;
1249 // If this is just a single insertelement (not a sequence), we are done.
1250 if (FirstIE
== &InsElt
)
1253 // If we are not inserting into a poison vector, make sure we've seen an
1254 // insert into every element.
1255 // TODO: If the base vector is not undef, it might be better to create a splat
1256 // and then a select-shuffle (blend) with the base vector.
1257 if (!match(FirstIE
->getOperand(0), m_Poison()))
1258 if (!ElementPresent
.all())
1261 // Create the insert + shuffle.
1262 Type
*Int64Ty
= Type::getInt64Ty(InsElt
.getContext());
1263 PoisonValue
*PoisonVec
= PoisonValue::get(VecTy
);
1264 Constant
*Zero
= ConstantInt::get(Int64Ty
, 0);
1265 if (!cast
<ConstantInt
>(FirstIE
->getOperand(2))->isZero())
1266 FirstIE
= InsertElementInst::Create(PoisonVec
, SplatVal
, Zero
, "", &InsElt
);
1268 // Splat from element 0, but replace absent elements with poison in the mask.
1269 SmallVector
<int, 16> Mask(NumElements
, 0);
1270 for (unsigned i
= 0; i
!= NumElements
; ++i
)
1271 if (!ElementPresent
[i
])
1274 return new ShuffleVectorInst(FirstIE
, Mask
);
1277 /// Try to fold an insert element into an existing splat shuffle by changing
1278 /// the shuffle's mask to include the index of this insert element.
1279 static Instruction
*foldInsEltIntoSplat(InsertElementInst
&InsElt
) {
1280 // Check if the vector operand of this insert is a canonical splat shuffle.
1281 auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(InsElt
.getOperand(0));
1282 if (!Shuf
|| !Shuf
->isZeroEltSplat())
1285 // Bail out early if shuffle is scalable type. The number of elements in
1286 // shuffle mask is unknown at compile-time.
1287 if (isa
<ScalableVectorType
>(Shuf
->getType()))
1290 // Check for a constant insertion index.
1292 if (!match(InsElt
.getOperand(2), m_ConstantInt(IdxC
)))
1295 // Check if the splat shuffle's input is the same as this insert's scalar op.
1296 Value
*X
= InsElt
.getOperand(1);
1297 Value
*Op0
= Shuf
->getOperand(0);
1298 if (!match(Op0
, m_InsertElt(m_Undef(), m_Specific(X
), m_ZeroInt())))
1301 // Replace the shuffle mask element at the index of this insert with a zero.
1303 // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1
1304 // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef>
1305 unsigned NumMaskElts
=
1306 cast
<FixedVectorType
>(Shuf
->getType())->getNumElements();
1307 SmallVector
<int, 16> NewMask(NumMaskElts
);
1308 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
)
1309 NewMask
[i
] = i
== IdxC
? 0 : Shuf
->getMaskValue(i
);
1311 return new ShuffleVectorInst(Op0
, NewMask
);
1314 /// Try to fold an extract+insert element into an existing identity shuffle by
1315 /// changing the shuffle's mask to include the index of this insert element.
1316 static Instruction
*foldInsEltIntoIdentityShuffle(InsertElementInst
&InsElt
) {
1317 // Check if the vector operand of this insert is an identity shuffle.
1318 auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(InsElt
.getOperand(0));
1319 if (!Shuf
|| !match(Shuf
->getOperand(1), m_Undef()) ||
1320 !(Shuf
->isIdentityWithExtract() || Shuf
->isIdentityWithPadding()))
1323 // Bail out early if shuffle is scalable type. The number of elements in
1324 // shuffle mask is unknown at compile-time.
1325 if (isa
<ScalableVectorType
>(Shuf
->getType()))
1328 // Check for a constant insertion index.
1330 if (!match(InsElt
.getOperand(2), m_ConstantInt(IdxC
)))
1333 // Check if this insert's scalar op is extracted from the identity shuffle's
1335 Value
*Scalar
= InsElt
.getOperand(1);
1336 Value
*X
= Shuf
->getOperand(0);
1337 if (!match(Scalar
, m_ExtractElt(m_Specific(X
), m_SpecificInt(IdxC
))))
1340 // Replace the shuffle mask element at the index of this extract+insert with
1341 // that same index value.
1343 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1344 unsigned NumMaskElts
=
1345 cast
<FixedVectorType
>(Shuf
->getType())->getNumElements();
1346 SmallVector
<int, 16> NewMask(NumMaskElts
);
1347 ArrayRef
<int> OldMask
= Shuf
->getShuffleMask();
1348 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
) {
1350 // All mask elements besides the inserted element remain the same.
1351 NewMask
[i
] = OldMask
[i
];
1352 } else if (OldMask
[i
] == (int)IdxC
) {
1353 // If the mask element was already set, there's nothing to do
1354 // (demanded elements analysis may unset it later).
1357 assert(OldMask
[i
] == PoisonMaskElem
&&
1358 "Unexpected shuffle mask element for identity shuffle");
1363 return new ShuffleVectorInst(X
, Shuf
->getOperand(1), NewMask
);
1366 /// If we have an insertelement instruction feeding into another insertelement
1367 /// and the 2nd is inserting a constant into the vector, canonicalize that
1368 /// constant insertion before the insertion of a variable:
1370 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1371 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1373 /// This has the potential of eliminating the 2nd insertelement instruction
1374 /// via constant folding of the scalar constant into a vector constant.
1375 static Instruction
*hoistInsEltConst(InsertElementInst
&InsElt2
,
1376 InstCombiner::BuilderTy
&Builder
) {
1377 auto *InsElt1
= dyn_cast
<InsertElementInst
>(InsElt2
.getOperand(0));
1378 if (!InsElt1
|| !InsElt1
->hasOneUse())
1383 ConstantInt
*IdxC1
, *IdxC2
;
1384 if (match(InsElt1
->getOperand(0), m_Value(X
)) &&
1385 match(InsElt1
->getOperand(1), m_Value(Y
)) && !isa
<Constant
>(Y
) &&
1386 match(InsElt1
->getOperand(2), m_ConstantInt(IdxC1
)) &&
1387 match(InsElt2
.getOperand(1), m_Constant(ScalarC
)) &&
1388 match(InsElt2
.getOperand(2), m_ConstantInt(IdxC2
)) && IdxC1
!= IdxC2
) {
1389 Value
*NewInsElt1
= Builder
.CreateInsertElement(X
, ScalarC
, IdxC2
);
1390 return InsertElementInst::Create(NewInsElt1
, Y
, IdxC1
);
1396 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1397 /// --> shufflevector X, CVec', Mask'
1398 static Instruction
*foldConstantInsEltIntoShuffle(InsertElementInst
&InsElt
) {
1399 auto *Inst
= dyn_cast
<Instruction
>(InsElt
.getOperand(0));
1400 // Bail out if the parent has more than one use. In that case, we'd be
1401 // replacing the insertelt with a shuffle, and that's not a clear win.
1402 if (!Inst
|| !Inst
->hasOneUse())
1404 if (auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(InsElt
.getOperand(0))) {
1405 // The shuffle must have a constant vector operand. The insertelt must have
1406 // a constant scalar being inserted at a constant position in the vector.
1407 Constant
*ShufConstVec
, *InsEltScalar
;
1408 uint64_t InsEltIndex
;
1409 if (!match(Shuf
->getOperand(1), m_Constant(ShufConstVec
)) ||
1410 !match(InsElt
.getOperand(1), m_Constant(InsEltScalar
)) ||
1411 !match(InsElt
.getOperand(2), m_ConstantInt(InsEltIndex
)))
1414 // Adding an element to an arbitrary shuffle could be expensive, but a
1415 // shuffle that selects elements from vectors without crossing lanes is
1417 // If we're just adding a constant into that shuffle, it will still be
1419 if (!isShuffleEquivalentToSelect(*Shuf
))
1422 // From the above 'select' check, we know that the mask has the same number
1423 // of elements as the vector input operands. We also know that each constant
1424 // input element is used in its lane and can not be used more than once by
1425 // the shuffle. Therefore, replace the constant in the shuffle's constant
1426 // vector with the insertelt constant. Replace the constant in the shuffle's
1427 // mask vector with the insertelt index plus the length of the vector
1428 // (because the constant vector operand of a shuffle is always the 2nd
1430 ArrayRef
<int> Mask
= Shuf
->getShuffleMask();
1431 unsigned NumElts
= Mask
.size();
1432 SmallVector
<Constant
*, 16> NewShufElts(NumElts
);
1433 SmallVector
<int, 16> NewMaskElts(NumElts
);
1434 for (unsigned I
= 0; I
!= NumElts
; ++I
) {
1435 if (I
== InsEltIndex
) {
1436 NewShufElts
[I
] = InsEltScalar
;
1437 NewMaskElts
[I
] = InsEltIndex
+ NumElts
;
1439 // Copy over the existing values.
1440 NewShufElts
[I
] = ShufConstVec
->getAggregateElement(I
);
1441 NewMaskElts
[I
] = Mask
[I
];
1444 // Bail if we failed to find an element.
1445 if (!NewShufElts
[I
])
1449 // Create new operands for a shuffle that includes the constant of the
1450 // original insertelt. The old shuffle will be dead now.
1451 return new ShuffleVectorInst(Shuf
->getOperand(0),
1452 ConstantVector::get(NewShufElts
), NewMaskElts
);
1453 } else if (auto *IEI
= dyn_cast
<InsertElementInst
>(Inst
)) {
1454 // Transform sequences of insertelements ops with constant data/indexes into
1455 // a single shuffle op.
1456 // Can not handle scalable type, the number of elements needed to create
1457 // shuffle mask is not a compile-time constant.
1458 if (isa
<ScalableVectorType
>(InsElt
.getType()))
1461 cast
<FixedVectorType
>(InsElt
.getType())->getNumElements();
1463 uint64_t InsertIdx
[2];
1465 if (!match(InsElt
.getOperand(2), m_ConstantInt(InsertIdx
[0])) ||
1466 !match(InsElt
.getOperand(1), m_Constant(Val
[0])) ||
1467 !match(IEI
->getOperand(2), m_ConstantInt(InsertIdx
[1])) ||
1468 !match(IEI
->getOperand(1), m_Constant(Val
[1])))
1470 SmallVector
<Constant
*, 16> Values(NumElts
);
1471 SmallVector
<int, 16> Mask(NumElts
);
1472 auto ValI
= std::begin(Val
);
1473 // Generate new constant vector and mask.
1474 // We have 2 values/masks from the insertelements instructions. Insert them
1475 // into new value/mask vectors.
1476 for (uint64_t I
: InsertIdx
) {
1479 Mask
[I
] = NumElts
+ I
;
1483 // Remaining values are filled with 'poison' values.
1484 for (unsigned I
= 0; I
< NumElts
; ++I
) {
1486 Values
[I
] = PoisonValue::get(InsElt
.getType()->getElementType());
1490 // Create new operands for a shuffle that includes the constant of the
1491 // original insertelt.
1492 return new ShuffleVectorInst(IEI
->getOperand(0),
1493 ConstantVector::get(Values
), Mask
);
1498 /// If both the base vector and the inserted element are extended from the same
1499 /// type, do the insert element in the narrow source type followed by extend.
1500 /// TODO: This can be extended to include other cast opcodes, but particularly
1501 /// if we create a wider insertelement, make sure codegen is not harmed.
1502 static Instruction
*narrowInsElt(InsertElementInst
&InsElt
,
1503 InstCombiner::BuilderTy
&Builder
) {
1504 // We are creating a vector extend. If the original vector extend has another
1505 // use, that would mean we end up with 2 vector extends, so avoid that.
1506 // TODO: We could ease the use-clause to "if at least one op has one use"
1507 // (assuming that the source types match - see next TODO comment).
1508 Value
*Vec
= InsElt
.getOperand(0);
1509 if (!Vec
->hasOneUse())
1512 Value
*Scalar
= InsElt
.getOperand(1);
1514 CastInst::CastOps CastOpcode
;
1515 if (match(Vec
, m_FPExt(m_Value(X
))) && match(Scalar
, m_FPExt(m_Value(Y
))))
1516 CastOpcode
= Instruction::FPExt
;
1517 else if (match(Vec
, m_SExt(m_Value(X
))) && match(Scalar
, m_SExt(m_Value(Y
))))
1518 CastOpcode
= Instruction::SExt
;
1519 else if (match(Vec
, m_ZExt(m_Value(X
))) && match(Scalar
, m_ZExt(m_Value(Y
))))
1520 CastOpcode
= Instruction::ZExt
;
1524 // TODO: We can allow mismatched types by creating an intermediate cast.
1525 if (X
->getType()->getScalarType() != Y
->getType())
1528 // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
1529 Value
*NewInsElt
= Builder
.CreateInsertElement(X
, Y
, InsElt
.getOperand(2));
1530 return CastInst::Create(CastOpcode
, NewInsElt
, InsElt
.getType());
1533 /// If we are inserting 2 halves of a value into adjacent elements of a vector,
1534 /// try to convert to a single insert with appropriate bitcasts.
1535 static Instruction
*foldTruncInsEltPair(InsertElementInst
&InsElt
,
1537 InstCombiner::BuilderTy
&Builder
) {
1538 Value
*VecOp
= InsElt
.getOperand(0);
1539 Value
*ScalarOp
= InsElt
.getOperand(1);
1540 Value
*IndexOp
= InsElt
.getOperand(2);
1542 // Pattern depends on endian because we expect lower index is inserted first.
1544 // inselt (inselt BaseVec, (trunc (lshr X, BW/2), Index0), (trunc X), Index1
1546 // inselt (inselt BaseVec, (trunc X), Index0), (trunc (lshr X, BW/2)), Index1
1547 // Note: It is not safe to do this transform with an arbitrary base vector
1548 // because the bitcast of that vector to fewer/larger elements could
1549 // allow poison to spill into an element that was not poison before.
1550 // TODO: Detect smaller fractions of the scalar.
1551 // TODO: One-use checks are conservative.
1552 auto *VTy
= dyn_cast
<FixedVectorType
>(InsElt
.getType());
1553 Value
*Scalar0
, *BaseVec
;
1554 uint64_t Index0
, Index1
;
1555 if (!VTy
|| (VTy
->getNumElements() & 1) ||
1556 !match(IndexOp
, m_ConstantInt(Index1
)) ||
1557 !match(VecOp
, m_InsertElt(m_Value(BaseVec
), m_Value(Scalar0
),
1558 m_ConstantInt(Index0
))) ||
1559 !match(BaseVec
, m_Undef()))
1562 // The first insert must be to the index one less than this one, and
1563 // the first insert must be to an even index.
1564 if (Index0
+ 1 != Index1
|| Index0
& 1)
1567 // For big endian, the high half of the value should be inserted first.
1568 // For little endian, the low half of the value should be inserted first.
1572 if (!match(ScalarOp
, m_Trunc(m_Value(X
))) ||
1573 !match(Scalar0
, m_Trunc(m_LShr(m_Specific(X
), m_ConstantInt(ShAmt
)))))
1576 if (!match(Scalar0
, m_Trunc(m_Value(X
))) ||
1577 !match(ScalarOp
, m_Trunc(m_LShr(m_Specific(X
), m_ConstantInt(ShAmt
)))))
1581 Type
*SrcTy
= X
->getType();
1582 unsigned ScalarWidth
= SrcTy
->getScalarSizeInBits();
1583 unsigned VecEltWidth
= VTy
->getScalarSizeInBits();
1584 if (ScalarWidth
!= VecEltWidth
* 2 || ShAmt
!= VecEltWidth
)
1587 // Bitcast the base vector to a vector type with the source element type.
1588 Type
*CastTy
= FixedVectorType::get(SrcTy
, VTy
->getNumElements() / 2);
1589 Value
*CastBaseVec
= Builder
.CreateBitCast(BaseVec
, CastTy
);
1591 // Scale the insert index for a vector with half as many elements.
1592 // bitcast (inselt (bitcast BaseVec), X, NewIndex)
1593 uint64_t NewIndex
= IsBigEndian
? Index1
/ 2 : Index0
/ 2;
1594 Value
*NewInsert
= Builder
.CreateInsertElement(CastBaseVec
, X
, NewIndex
);
1595 return new BitCastInst(NewInsert
, VTy
);
1598 Instruction
*InstCombinerImpl::visitInsertElementInst(InsertElementInst
&IE
) {
1599 Value
*VecOp
= IE
.getOperand(0);
1600 Value
*ScalarOp
= IE
.getOperand(1);
1601 Value
*IdxOp
= IE
.getOperand(2);
1603 if (auto *V
= simplifyInsertElementInst(
1604 VecOp
, ScalarOp
, IdxOp
, SQ
.getWithInstruction(&IE
)))
1605 return replaceInstUsesWith(IE
, V
);
1607 // Canonicalize type of constant indices to i64 to simplify CSE
1608 if (auto *IndexC
= dyn_cast
<ConstantInt
>(IdxOp
)) {
1609 if (auto *NewIdx
= getPreferredVectorIndex(IndexC
))
1610 return replaceOperand(IE
, 2, NewIdx
);
1612 Value
*BaseVec
, *OtherScalar
;
1613 uint64_t OtherIndexVal
;
1614 if (match(VecOp
, m_OneUse(m_InsertElt(m_Value(BaseVec
),
1615 m_Value(OtherScalar
),
1616 m_ConstantInt(OtherIndexVal
)))) &&
1617 !isa
<Constant
>(OtherScalar
) && OtherIndexVal
> IndexC
->getZExtValue()) {
1618 Value
*NewIns
= Builder
.CreateInsertElement(BaseVec
, ScalarOp
, IdxOp
);
1619 return InsertElementInst::Create(NewIns
, OtherScalar
,
1620 Builder
.getInt64(OtherIndexVal
));
1624 // If the scalar is bitcast and inserted into undef, do the insert in the
1625 // source type followed by bitcast.
1626 // TODO: Generalize for insert into any constant, not just undef?
1628 if (match(VecOp
, m_Undef()) &&
1629 match(ScalarOp
, m_OneUse(m_BitCast(m_Value(ScalarSrc
)))) &&
1630 (ScalarSrc
->getType()->isIntegerTy() ||
1631 ScalarSrc
->getType()->isFloatingPointTy())) {
1632 // inselt undef, (bitcast ScalarSrc), IdxOp -->
1633 // bitcast (inselt undef, ScalarSrc, IdxOp)
1634 Type
*ScalarTy
= ScalarSrc
->getType();
1635 Type
*VecTy
= VectorType::get(ScalarTy
, IE
.getType()->getElementCount());
1636 Constant
*NewUndef
= isa
<PoisonValue
>(VecOp
) ? PoisonValue::get(VecTy
)
1637 : UndefValue::get(VecTy
);
1638 Value
*NewInsElt
= Builder
.CreateInsertElement(NewUndef
, ScalarSrc
, IdxOp
);
1639 return new BitCastInst(NewInsElt
, IE
.getType());
1642 // If the vector and scalar are both bitcast from the same element type, do
1643 // the insert in that source type followed by bitcast.
1645 if (match(VecOp
, m_BitCast(m_Value(VecSrc
))) &&
1646 match(ScalarOp
, m_BitCast(m_Value(ScalarSrc
))) &&
1647 (VecOp
->hasOneUse() || ScalarOp
->hasOneUse()) &&
1648 VecSrc
->getType()->isVectorTy() && !ScalarSrc
->getType()->isVectorTy() &&
1649 cast
<VectorType
>(VecSrc
->getType())->getElementType() ==
1650 ScalarSrc
->getType()) {
1651 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1652 // bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1653 Value
*NewInsElt
= Builder
.CreateInsertElement(VecSrc
, ScalarSrc
, IdxOp
);
1654 return new BitCastInst(NewInsElt
, IE
.getType());
1657 // If the inserted element was extracted from some other fixed-length vector
1658 // and both indexes are valid constants, try to turn this into a shuffle.
1659 // Can not handle scalable vector type, the number of elements needed to
1660 // create shuffle mask is not a compile-time constant.
1661 uint64_t InsertedIdx
, ExtractedIdx
;
1663 if (isa
<FixedVectorType
>(IE
.getType()) &&
1664 match(IdxOp
, m_ConstantInt(InsertedIdx
)) &&
1666 m_ExtractElt(m_Value(ExtVecOp
), m_ConstantInt(ExtractedIdx
))) &&
1667 isa
<FixedVectorType
>(ExtVecOp
->getType()) &&
1669 cast
<FixedVectorType
>(ExtVecOp
->getType())->getNumElements()) {
1670 // TODO: Looking at the user(s) to determine if this insert is a
1671 // fold-to-shuffle opportunity does not match the usual instcombine
1672 // constraints. We should decide if the transform is worthy based only
1673 // on this instruction and its operands, but that may not work currently.
1675 // Here, we are trying to avoid creating shuffles before reaching
1676 // the end of a chain of extract-insert pairs. This is complicated because
1677 // we do not generally form arbitrary shuffle masks in instcombine
1678 // (because those may codegen poorly), but collectShuffleElements() does
1681 // The rules for determining what is an acceptable target-independent
1682 // shuffle mask are fuzzy because they evolve based on the backend's
1683 // capabilities and real-world impact.
1684 auto isShuffleRootCandidate
= [](InsertElementInst
&Insert
) {
1685 if (!Insert
.hasOneUse())
1687 auto *InsertUser
= dyn_cast
<InsertElementInst
>(Insert
.user_back());
1693 // Try to form a shuffle from a chain of extract-insert ops.
1694 if (isShuffleRootCandidate(IE
)) {
1699 SmallVector
<int, 16> Mask
;
1701 collectShuffleElements(&IE
, Mask
, nullptr, *this, Rerun
);
1703 // The proposed shuffle may be trivial, in which case we shouldn't
1704 // perform the combine.
1705 if (LR
.first
!= &IE
&& LR
.second
!= &IE
) {
1706 // We now have a shuffle of LHS, RHS, Mask.
1707 if (LR
.second
== nullptr)
1708 LR
.second
= PoisonValue::get(LR
.first
->getType());
1709 return new ShuffleVectorInst(LR
.first
, LR
.second
, Mask
);
1715 if (auto VecTy
= dyn_cast
<FixedVectorType
>(VecOp
->getType())) {
1716 unsigned VWidth
= VecTy
->getNumElements();
1717 APInt
PoisonElts(VWidth
, 0);
1718 APInt
AllOnesEltMask(APInt::getAllOnes(VWidth
));
1719 if (Value
*V
= SimplifyDemandedVectorElts(&IE
, AllOnesEltMask
,
1722 return replaceInstUsesWith(IE
, V
);
1727 if (Instruction
*Shuf
= foldConstantInsEltIntoShuffle(IE
))
1730 if (Instruction
*NewInsElt
= hoistInsEltConst(IE
, Builder
))
1733 if (Instruction
*Broadcast
= foldInsSequenceIntoSplat(IE
))
1736 if (Instruction
*Splat
= foldInsEltIntoSplat(IE
))
1739 if (Instruction
*IdentityShuf
= foldInsEltIntoIdentityShuffle(IE
))
1740 return IdentityShuf
;
1742 if (Instruction
*Ext
= narrowInsElt(IE
, Builder
))
1745 if (Instruction
*Ext
= foldTruncInsEltPair(IE
, DL
.isBigEndian(), Builder
))
1751 /// Return true if we can evaluate the specified expression tree if the vector
1752 /// elements were shuffled in a different order.
1753 static bool canEvaluateShuffled(Value
*V
, ArrayRef
<int> Mask
,
1754 unsigned Depth
= 5) {
1755 // We can always reorder the elements of a constant.
1756 if (isa
<Constant
>(V
))
1759 // We won't reorder vector arguments. No IPO here.
1760 Instruction
*I
= dyn_cast
<Instruction
>(V
);
1761 if (!I
) return false;
1763 // Two users may expect different orders of the elements. Don't try it.
1764 if (!I
->hasOneUse())
1767 if (Depth
== 0) return false;
1769 switch (I
->getOpcode()) {
1770 case Instruction::UDiv
:
1771 case Instruction::SDiv
:
1772 case Instruction::URem
:
1773 case Instruction::SRem
:
1774 // Propagating an undefined shuffle mask element to integer div/rem is not
1775 // allowed because those opcodes can create immediate undefined behavior
1776 // from an undefined element in an operand.
1777 if (llvm::is_contained(Mask
, -1))
1780 case Instruction::Add
:
1781 case Instruction::FAdd
:
1782 case Instruction::Sub
:
1783 case Instruction::FSub
:
1784 case Instruction::Mul
:
1785 case Instruction::FMul
:
1786 case Instruction::FDiv
:
1787 case Instruction::FRem
:
1788 case Instruction::Shl
:
1789 case Instruction::LShr
:
1790 case Instruction::AShr
:
1791 case Instruction::And
:
1792 case Instruction::Or
:
1793 case Instruction::Xor
:
1794 case Instruction::ICmp
:
1795 case Instruction::FCmp
:
1796 case Instruction::Trunc
:
1797 case Instruction::ZExt
:
1798 case Instruction::SExt
:
1799 case Instruction::FPToUI
:
1800 case Instruction::FPToSI
:
1801 case Instruction::UIToFP
:
1802 case Instruction::SIToFP
:
1803 case Instruction::FPTrunc
:
1804 case Instruction::FPExt
:
1805 case Instruction::GetElementPtr
: {
1806 // Bail out if we would create longer vector ops. We could allow creating
1807 // longer vector ops, but that may result in more expensive codegen.
1808 Type
*ITy
= I
->getType();
1809 if (ITy
->isVectorTy() &&
1810 Mask
.size() > cast
<FixedVectorType
>(ITy
)->getNumElements())
1812 for (Value
*Operand
: I
->operands()) {
1813 if (!canEvaluateShuffled(Operand
, Mask
, Depth
- 1))
1818 case Instruction::InsertElement
: {
1819 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(2));
1820 if (!CI
) return false;
1821 int ElementNumber
= CI
->getLimitedValue();
1823 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1824 // can't put an element into multiple indices.
1825 bool SeenOnce
= false;
1826 for (int I
: Mask
) {
1827 if (I
== ElementNumber
) {
1833 return canEvaluateShuffled(I
->getOperand(0), Mask
, Depth
- 1);
1839 /// Rebuild a new instruction just like 'I' but with the new operands given.
1840 /// In the event of type mismatch, the type of the operands is correct.
1841 static Value
*buildNew(Instruction
*I
, ArrayRef
<Value
*> NewOps
,
1842 IRBuilderBase
&Builder
) {
1843 Builder
.SetInsertPoint(I
);
1844 switch (I
->getOpcode()) {
1845 case Instruction::Add
:
1846 case Instruction::FAdd
:
1847 case Instruction::Sub
:
1848 case Instruction::FSub
:
1849 case Instruction::Mul
:
1850 case Instruction::FMul
:
1851 case Instruction::UDiv
:
1852 case Instruction::SDiv
:
1853 case Instruction::FDiv
:
1854 case Instruction::URem
:
1855 case Instruction::SRem
:
1856 case Instruction::FRem
:
1857 case Instruction::Shl
:
1858 case Instruction::LShr
:
1859 case Instruction::AShr
:
1860 case Instruction::And
:
1861 case Instruction::Or
:
1862 case Instruction::Xor
: {
1863 BinaryOperator
*BO
= cast
<BinaryOperator
>(I
);
1864 assert(NewOps
.size() == 2 && "binary operator with #ops != 2");
1865 Value
*New
= Builder
.CreateBinOp(cast
<BinaryOperator
>(I
)->getOpcode(),
1866 NewOps
[0], NewOps
[1]);
1867 if (auto *NewI
= dyn_cast
<Instruction
>(New
)) {
1868 if (isa
<OverflowingBinaryOperator
>(BO
)) {
1869 NewI
->setHasNoUnsignedWrap(BO
->hasNoUnsignedWrap());
1870 NewI
->setHasNoSignedWrap(BO
->hasNoSignedWrap());
1872 if (isa
<PossiblyExactOperator
>(BO
)) {
1873 NewI
->setIsExact(BO
->isExact());
1875 if (isa
<FPMathOperator
>(BO
))
1876 NewI
->copyFastMathFlags(I
);
1880 case Instruction::ICmp
:
1881 assert(NewOps
.size() == 2 && "icmp with #ops != 2");
1882 return Builder
.CreateICmp(cast
<ICmpInst
>(I
)->getPredicate(), NewOps
[0],
1884 case Instruction::FCmp
:
1885 assert(NewOps
.size() == 2 && "fcmp with #ops != 2");
1886 return Builder
.CreateFCmp(cast
<FCmpInst
>(I
)->getPredicate(), NewOps
[0],
1888 case Instruction::Trunc
:
1889 case Instruction::ZExt
:
1890 case Instruction::SExt
:
1891 case Instruction::FPToUI
:
1892 case Instruction::FPToSI
:
1893 case Instruction::UIToFP
:
1894 case Instruction::SIToFP
:
1895 case Instruction::FPTrunc
:
1896 case Instruction::FPExt
: {
1897 // It's possible that the mask has a different number of elements from
1898 // the original cast. We recompute the destination type to match the mask.
1899 Type
*DestTy
= VectorType::get(
1900 I
->getType()->getScalarType(),
1901 cast
<VectorType
>(NewOps
[0]->getType())->getElementCount());
1902 assert(NewOps
.size() == 1 && "cast with #ops != 1");
1903 return Builder
.CreateCast(cast
<CastInst
>(I
)->getOpcode(), NewOps
[0],
1906 case Instruction::GetElementPtr
: {
1907 Value
*Ptr
= NewOps
[0];
1908 ArrayRef
<Value
*> Idx
= NewOps
.slice(1);
1909 return Builder
.CreateGEP(cast
<GEPOperator
>(I
)->getSourceElementType(),
1911 cast
<GEPOperator
>(I
)->isInBounds());
1914 llvm_unreachable("failed to rebuild vector instructions");
1917 static Value
*evaluateInDifferentElementOrder(Value
*V
, ArrayRef
<int> Mask
,
1918 IRBuilderBase
&Builder
) {
1919 // Mask.size() does not need to be equal to the number of vector elements.
1921 assert(V
->getType()->isVectorTy() && "can't reorder non-vector elements");
1922 Type
*EltTy
= V
->getType()->getScalarType();
1924 if (isa
<PoisonValue
>(V
))
1925 return PoisonValue::get(FixedVectorType::get(EltTy
, Mask
.size()));
1927 if (match(V
, m_Undef()))
1928 return UndefValue::get(FixedVectorType::get(EltTy
, Mask
.size()));
1930 if (isa
<ConstantAggregateZero
>(V
))
1931 return ConstantAggregateZero::get(FixedVectorType::get(EltTy
, Mask
.size()));
1933 if (Constant
*C
= dyn_cast
<Constant
>(V
))
1934 return ConstantExpr::getShuffleVector(C
, PoisonValue::get(C
->getType()),
1937 Instruction
*I
= cast
<Instruction
>(V
);
1938 switch (I
->getOpcode()) {
1939 case Instruction::Add
:
1940 case Instruction::FAdd
:
1941 case Instruction::Sub
:
1942 case Instruction::FSub
:
1943 case Instruction::Mul
:
1944 case Instruction::FMul
:
1945 case Instruction::UDiv
:
1946 case Instruction::SDiv
:
1947 case Instruction::FDiv
:
1948 case Instruction::URem
:
1949 case Instruction::SRem
:
1950 case Instruction::FRem
:
1951 case Instruction::Shl
:
1952 case Instruction::LShr
:
1953 case Instruction::AShr
:
1954 case Instruction::And
:
1955 case Instruction::Or
:
1956 case Instruction::Xor
:
1957 case Instruction::ICmp
:
1958 case Instruction::FCmp
:
1959 case Instruction::Trunc
:
1960 case Instruction::ZExt
:
1961 case Instruction::SExt
:
1962 case Instruction::FPToUI
:
1963 case Instruction::FPToSI
:
1964 case Instruction::UIToFP
:
1965 case Instruction::SIToFP
:
1966 case Instruction::FPTrunc
:
1967 case Instruction::FPExt
:
1968 case Instruction::Select
:
1969 case Instruction::GetElementPtr
: {
1970 SmallVector
<Value
*, 8> NewOps
;
1973 cast
<FixedVectorType
>(I
->getType())->getNumElements());
1974 for (int i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
1976 // Recursively call evaluateInDifferentElementOrder on vector arguments
1977 // as well. E.g. GetElementPtr may have scalar operands even if the
1978 // return value is a vector, so we need to examine the operand type.
1979 if (I
->getOperand(i
)->getType()->isVectorTy())
1980 V
= evaluateInDifferentElementOrder(I
->getOperand(i
), Mask
, Builder
);
1982 V
= I
->getOperand(i
);
1983 NewOps
.push_back(V
);
1984 NeedsRebuild
|= (V
!= I
->getOperand(i
));
1987 return buildNew(I
, NewOps
, Builder
);
1990 case Instruction::InsertElement
: {
1991 int Element
= cast
<ConstantInt
>(I
->getOperand(2))->getLimitedValue();
1993 // The insertelement was inserting at Element. Figure out which element
1994 // that becomes after shuffling. The answer is guaranteed to be unique
1995 // by CanEvaluateShuffled.
1998 for (int e
= Mask
.size(); Index
!= e
; ++Index
) {
1999 if (Mask
[Index
] == Element
) {
2005 // If element is not in Mask, no need to handle the operand 1 (element to
2006 // be inserted). Just evaluate values in operand 0 according to Mask.
2008 return evaluateInDifferentElementOrder(I
->getOperand(0), Mask
, Builder
);
2010 Value
*V
= evaluateInDifferentElementOrder(I
->getOperand(0), Mask
,
2012 Builder
.SetInsertPoint(I
);
2013 return Builder
.CreateInsertElement(V
, I
->getOperand(1), Index
);
2016 llvm_unreachable("failed to reorder elements of vector instruction!");
2019 // Returns true if the shuffle is extracting a contiguous range of values from
2020 // LHS, for example:
2021 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2022 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
2023 // Shuffles to: |EE|FF|GG|HH|
2025 static bool isShuffleExtractingFromLHS(ShuffleVectorInst
&SVI
,
2026 ArrayRef
<int> Mask
) {
2028 cast
<FixedVectorType
>(SVI
.getOperand(0)->getType())->getNumElements();
2029 unsigned MaskElems
= Mask
.size();
2030 unsigned BegIdx
= Mask
.front();
2031 unsigned EndIdx
= Mask
.back();
2032 if (BegIdx
> EndIdx
|| EndIdx
>= LHSElems
|| EndIdx
- BegIdx
!= MaskElems
- 1)
2034 for (unsigned I
= 0; I
!= MaskElems
; ++I
)
2035 if (static_cast<unsigned>(Mask
[I
]) != BegIdx
+ I
)
2040 /// These are the ingredients in an alternate form binary operator as described
2043 BinaryOperator::BinaryOps Opcode
;
2046 BinopElts(BinaryOperator::BinaryOps Opc
= (BinaryOperator::BinaryOps
)0,
2047 Value
*V0
= nullptr, Value
*V1
= nullptr) :
2048 Opcode(Opc
), Op0(V0
), Op1(V1
) {}
2049 operator bool() const { return Opcode
!= 0; }
2052 /// Binops may be transformed into binops with different opcodes and operands.
2053 /// Reverse the usual canonicalization to enable folds with the non-canonical
2054 /// form of the binop. If a transform is possible, return the elements of the
2055 /// new binop. If not, return invalid elements.
2056 static BinopElts
getAlternateBinop(BinaryOperator
*BO
, const DataLayout
&DL
) {
2057 Value
*BO0
= BO
->getOperand(0), *BO1
= BO
->getOperand(1);
2058 Type
*Ty
= BO
->getType();
2059 switch (BO
->getOpcode()) {
2060 case Instruction::Shl
: {
2061 // shl X, C --> mul X, (1 << C)
2063 if (match(BO1
, m_Constant(C
))) {
2064 Constant
*ShlOne
= ConstantExpr::getShl(ConstantInt::get(Ty
, 1), C
);
2065 return {Instruction::Mul
, BO0
, ShlOne
};
2069 case Instruction::Or
: {
2070 // or X, C --> add X, C (when X and C have no common bits set)
2072 if (match(BO1
, m_APInt(C
)) && MaskedValueIsZero(BO0
, *C
, DL
))
2073 return {Instruction::Add
, BO0
, BO1
};
2076 case Instruction::Sub
:
2077 // sub 0, X --> mul X, -1
2078 if (match(BO0
, m_ZeroInt()))
2079 return {Instruction::Mul
, BO1
, ConstantInt::getAllOnesValue(Ty
)};
2087 /// A select shuffle of a select shuffle with a shared operand can be reduced
2088 /// to a single select shuffle. This is an obvious improvement in IR, and the
2089 /// backend is expected to lower select shuffles efficiently.
2090 static Instruction
*foldSelectShuffleOfSelectShuffle(ShuffleVectorInst
&Shuf
) {
2091 assert(Shuf
.isSelect() && "Must have select-equivalent shuffle");
2093 Value
*Op0
= Shuf
.getOperand(0), *Op1
= Shuf
.getOperand(1);
2094 SmallVector
<int, 16> Mask
;
2095 Shuf
.getShuffleMask(Mask
);
2096 unsigned NumElts
= Mask
.size();
2098 // Canonicalize a select shuffle with common operand as Op1.
2099 auto *ShufOp
= dyn_cast
<ShuffleVectorInst
>(Op0
);
2100 if (ShufOp
&& ShufOp
->isSelect() &&
2101 (ShufOp
->getOperand(0) == Op1
|| ShufOp
->getOperand(1) == Op1
)) {
2102 std::swap(Op0
, Op1
);
2103 ShuffleVectorInst::commuteShuffleMask(Mask
, NumElts
);
2106 ShufOp
= dyn_cast
<ShuffleVectorInst
>(Op1
);
2107 if (!ShufOp
|| !ShufOp
->isSelect() ||
2108 (ShufOp
->getOperand(0) != Op0
&& ShufOp
->getOperand(1) != Op0
))
2111 Value
*X
= ShufOp
->getOperand(0), *Y
= ShufOp
->getOperand(1);
2112 SmallVector
<int, 16> Mask1
;
2113 ShufOp
->getShuffleMask(Mask1
);
2114 assert(Mask1
.size() == NumElts
&& "Vector size changed with select shuffle");
2116 // Canonicalize common operand (Op0) as X (first operand of first shuffle).
2119 ShuffleVectorInst::commuteShuffleMask(Mask1
, NumElts
);
2122 // If the mask chooses from X (operand 0), it stays the same.
2123 // If the mask chooses from the earlier shuffle, the other mask value is
2124 // transferred to the combined select shuffle:
2125 // shuf X, (shuf X, Y, M1), M --> shuf X, Y, M'
2126 SmallVector
<int, 16> NewMask(NumElts
);
2127 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2128 NewMask
[i
] = Mask
[i
] < (signed)NumElts
? Mask
[i
] : Mask1
[i
];
2130 // A select mask with undef elements might look like an identity mask.
2131 assert((ShuffleVectorInst::isSelectMask(NewMask
, NumElts
) ||
2132 ShuffleVectorInst::isIdentityMask(NewMask
, NumElts
)) &&
2133 "Unexpected shuffle mask");
2134 return new ShuffleVectorInst(X
, Y
, NewMask
);
2137 static Instruction
*foldSelectShuffleWith1Binop(ShuffleVectorInst
&Shuf
) {
2138 assert(Shuf
.isSelect() && "Must have select-equivalent shuffle");
2140 // Are we shuffling together some value and that same value after it has been
2141 // modified by a binop with a constant?
2142 Value
*Op0
= Shuf
.getOperand(0), *Op1
= Shuf
.getOperand(1);
2145 if (match(Op0
, m_BinOp(m_Specific(Op1
), m_Constant(C
))))
2147 else if (match(Op1
, m_BinOp(m_Specific(Op0
), m_Constant(C
))))
2152 // The identity constant for a binop leaves a variable operand unchanged. For
2153 // a vector, this is a splat of something like 0, -1, or 1.
2154 // If there's no identity constant for this binop, we're done.
2155 auto *BO
= cast
<BinaryOperator
>(Op0IsBinop
? Op0
: Op1
);
2156 BinaryOperator::BinaryOps BOpcode
= BO
->getOpcode();
2157 Constant
*IdC
= ConstantExpr::getBinOpIdentity(BOpcode
, Shuf
.getType(), true);
2161 // Shuffle identity constants into the lanes that return the original value.
2162 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
2163 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
2164 // The existing binop constant vector remains in the same operand position.
2165 ArrayRef
<int> Mask
= Shuf
.getShuffleMask();
2166 Constant
*NewC
= Op0IsBinop
? ConstantExpr::getShuffleVector(C
, IdC
, Mask
) :
2167 ConstantExpr::getShuffleVector(IdC
, C
, Mask
);
2169 bool MightCreatePoisonOrUB
=
2170 is_contained(Mask
, PoisonMaskElem
) &&
2171 (Instruction::isIntDivRem(BOpcode
) || Instruction::isShift(BOpcode
));
2172 if (MightCreatePoisonOrUB
)
2173 NewC
= InstCombiner::getSafeVectorConstantForBinop(BOpcode
, NewC
, true);
2175 // shuf (bop X, C), X, M --> bop X, C'
2176 // shuf X, (bop X, C), M --> bop X, C'
2177 Value
*X
= Op0IsBinop
? Op1
: Op0
;
2178 Instruction
*NewBO
= BinaryOperator::Create(BOpcode
, X
, NewC
);
2179 NewBO
->copyIRFlags(BO
);
2181 // An undef shuffle mask element may propagate as an undef constant element in
2182 // the new binop. That would produce poison where the original code might not.
2183 // If we already made a safe constant, then there's no danger.
2184 if (is_contained(Mask
, PoisonMaskElem
) && !MightCreatePoisonOrUB
)
2185 NewBO
->dropPoisonGeneratingFlags();
2189 /// If we have an insert of a scalar to a non-zero element of an undefined
2190 /// vector and then shuffle that value, that's the same as inserting to the zero
2191 /// element and shuffling. Splatting from the zero element is recognized as the
2192 /// canonical form of splat.
2193 static Instruction
*canonicalizeInsertSplat(ShuffleVectorInst
&Shuf
,
2194 InstCombiner::BuilderTy
&Builder
) {
2195 Value
*Op0
= Shuf
.getOperand(0), *Op1
= Shuf
.getOperand(1);
2196 ArrayRef
<int> Mask
= Shuf
.getShuffleMask();
2200 // Match a shuffle that is a splat to a non-zero element.
2201 if (!match(Op0
, m_OneUse(m_InsertElt(m_Undef(), m_Value(X
),
2202 m_ConstantInt(IndexC
)))) ||
2203 !match(Op1
, m_Undef()) || match(Mask
, m_ZeroMask()) || IndexC
== 0)
2206 // Insert into element 0 of a poison vector.
2207 PoisonValue
*PoisonVec
= PoisonValue::get(Shuf
.getType());
2208 Value
*NewIns
= Builder
.CreateInsertElement(PoisonVec
, X
, (uint64_t)0);
2210 // Splat from element 0. Any mask element that is undefined remains undefined.
2212 // shuf (inselt undef, X, 2), _, <2,2,undef>
2213 // --> shuf (inselt undef, X, 0), poison, <0,0,undef>
2214 unsigned NumMaskElts
=
2215 cast
<FixedVectorType
>(Shuf
.getType())->getNumElements();
2216 SmallVector
<int, 16> NewMask(NumMaskElts
, 0);
2217 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
)
2218 if (Mask
[i
] == PoisonMaskElem
)
2219 NewMask
[i
] = Mask
[i
];
2221 return new ShuffleVectorInst(NewIns
, NewMask
);
2224 /// Try to fold shuffles that are the equivalent of a vector select.
2225 Instruction
*InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst
&Shuf
) {
2226 if (!Shuf
.isSelect())
2229 // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
2230 // Commuting undef to operand 0 conflicts with another canonicalization.
2231 unsigned NumElts
= cast
<FixedVectorType
>(Shuf
.getType())->getNumElements();
2232 if (!match(Shuf
.getOperand(1), m_Undef()) &&
2233 Shuf
.getMaskValue(0) >= (int)NumElts
) {
2234 // TODO: Can we assert that both operands of a shuffle-select are not undef
2235 // (otherwise, it would have been folded by instsimplify?
2240 if (Instruction
*I
= foldSelectShuffleOfSelectShuffle(Shuf
))
2243 if (Instruction
*I
= foldSelectShuffleWith1Binop(Shuf
))
2246 BinaryOperator
*B0
, *B1
;
2247 if (!match(Shuf
.getOperand(0), m_BinOp(B0
)) ||
2248 !match(Shuf
.getOperand(1), m_BinOp(B1
)))
2251 // If one operand is "0 - X", allow that to be viewed as "X * -1"
2252 // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired
2253 // with a multiply, we will exit because C0/C1 will not be set.
2255 Constant
*C0
= nullptr, *C1
= nullptr;
2256 bool ConstantsAreOp1
;
2257 if (match(B0
, m_BinOp(m_Constant(C0
), m_Value(X
))) &&
2258 match(B1
, m_BinOp(m_Constant(C1
), m_Value(Y
))))
2259 ConstantsAreOp1
= false;
2260 else if (match(B0
, m_CombineOr(m_BinOp(m_Value(X
), m_Constant(C0
)),
2261 m_Neg(m_Value(X
)))) &&
2262 match(B1
, m_CombineOr(m_BinOp(m_Value(Y
), m_Constant(C1
)),
2263 m_Neg(m_Value(Y
)))))
2264 ConstantsAreOp1
= true;
2268 // We need matching binops to fold the lanes together.
2269 BinaryOperator::BinaryOps Opc0
= B0
->getOpcode();
2270 BinaryOperator::BinaryOps Opc1
= B1
->getOpcode();
2271 bool DropNSW
= false;
2272 if (ConstantsAreOp1
&& Opc0
!= Opc1
) {
2273 // TODO: We drop "nsw" if shift is converted into multiply because it may
2274 // not be correct when the shift amount is BitWidth - 1. We could examine
2275 // each vector element to determine if it is safe to keep that flag.
2276 if (Opc0
== Instruction::Shl
|| Opc1
== Instruction::Shl
)
2278 if (BinopElts AltB0
= getAlternateBinop(B0
, DL
)) {
2279 assert(isa
<Constant
>(AltB0
.Op1
) && "Expecting constant with alt binop");
2280 Opc0
= AltB0
.Opcode
;
2281 C0
= cast
<Constant
>(AltB0
.Op1
);
2282 } else if (BinopElts AltB1
= getAlternateBinop(B1
, DL
)) {
2283 assert(isa
<Constant
>(AltB1
.Op1
) && "Expecting constant with alt binop");
2284 Opc1
= AltB1
.Opcode
;
2285 C1
= cast
<Constant
>(AltB1
.Op1
);
2289 if (Opc0
!= Opc1
|| !C0
|| !C1
)
2292 // The opcodes must be the same. Use a new name to make that clear.
2293 BinaryOperator::BinaryOps BOpc
= Opc0
;
2295 // Select the constant elements needed for the single binop.
2296 ArrayRef
<int> Mask
= Shuf
.getShuffleMask();
2297 Constant
*NewC
= ConstantExpr::getShuffleVector(C0
, C1
, Mask
);
2299 // We are moving a binop after a shuffle. When a shuffle has an undefined
2300 // mask element, the result is undefined, but it is not poison or undefined
2301 // behavior. That is not necessarily true for div/rem/shift.
2302 bool MightCreatePoisonOrUB
=
2303 is_contained(Mask
, PoisonMaskElem
) &&
2304 (Instruction::isIntDivRem(BOpc
) || Instruction::isShift(BOpc
));
2305 if (MightCreatePoisonOrUB
)
2306 NewC
= InstCombiner::getSafeVectorConstantForBinop(BOpc
, NewC
,
2311 // Remove a binop and the shuffle by rearranging the constant:
2312 // shuffle (op V, C0), (op V, C1), M --> op V, C'
2313 // shuffle (op C0, V), (op C1, V), M --> op C', V
2316 // If there are 2 different variable operands, we must create a new shuffle
2317 // (select) first, so check uses to ensure that we don't end up with more
2318 // instructions than we started with.
2319 if (!B0
->hasOneUse() && !B1
->hasOneUse())
2322 // If we use the original shuffle mask and op1 is *variable*, we would be
2323 // putting an undef into operand 1 of div/rem/shift. This is either UB or
2324 // poison. We do not have to guard against UB when *constants* are op1
2325 // because safe constants guarantee that we do not overflow sdiv/srem (and
2326 // there's no danger for other opcodes).
2327 // TODO: To allow this case, create a new shuffle mask with no undefs.
2328 if (MightCreatePoisonOrUB
&& !ConstantsAreOp1
)
2331 // Note: In general, we do not create new shuffles in InstCombine because we
2332 // do not know if a target can lower an arbitrary shuffle optimally. In this
2333 // case, the shuffle uses the existing mask, so there is no additional risk.
2335 // Select the variable vectors first, then perform the binop:
2336 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2337 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2338 V
= Builder
.CreateShuffleVector(X
, Y
, Mask
);
2341 Value
*NewBO
= ConstantsAreOp1
? Builder
.CreateBinOp(BOpc
, V
, NewC
) :
2342 Builder
.CreateBinOp(BOpc
, NewC
, V
);
2344 // Flags are intersected from the 2 source binops. But there are 2 exceptions:
2345 // 1. If we changed an opcode, poison conditions might have changed.
2346 // 2. If the shuffle had undef mask elements, the new binop might have undefs
2347 // where the original code did not. But if we already made a safe constant,
2348 // then there's no danger.
2349 if (auto *NewI
= dyn_cast
<Instruction
>(NewBO
)) {
2350 NewI
->copyIRFlags(B0
);
2351 NewI
->andIRFlags(B1
);
2353 NewI
->setHasNoSignedWrap(false);
2354 if (is_contained(Mask
, PoisonMaskElem
) && !MightCreatePoisonOrUB
)
2355 NewI
->dropPoisonGeneratingFlags();
2357 return replaceInstUsesWith(Shuf
, NewBO
);
2360 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2361 /// Example (little endian):
2362 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
2363 static Instruction
*foldTruncShuffle(ShuffleVectorInst
&Shuf
,
2365 // This must be a bitcasted shuffle of 1 vector integer operand.
2366 Type
*DestType
= Shuf
.getType();
2368 if (!match(Shuf
.getOperand(0), m_BitCast(m_Value(X
))) ||
2369 !match(Shuf
.getOperand(1), m_Undef()) || !DestType
->isIntOrIntVectorTy())
2372 // The source type must have the same number of elements as the shuffle,
2373 // and the source element type must be larger than the shuffle element type.
2374 Type
*SrcType
= X
->getType();
2375 if (!SrcType
->isVectorTy() || !SrcType
->isIntOrIntVectorTy() ||
2376 cast
<FixedVectorType
>(SrcType
)->getNumElements() !=
2377 cast
<FixedVectorType
>(DestType
)->getNumElements() ||
2378 SrcType
->getScalarSizeInBits() % DestType
->getScalarSizeInBits() != 0)
2381 assert(Shuf
.changesLength() && !Shuf
.increasesLength() &&
2382 "Expected a shuffle that decreases length");
2384 // Last, check that the mask chooses the correct low bits for each narrow
2385 // element in the result.
2386 uint64_t TruncRatio
=
2387 SrcType
->getScalarSizeInBits() / DestType
->getScalarSizeInBits();
2388 ArrayRef
<int> Mask
= Shuf
.getShuffleMask();
2389 for (unsigned i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
2390 if (Mask
[i
] == PoisonMaskElem
)
2392 uint64_t LSBIndex
= IsBigEndian
? (i
+ 1) * TruncRatio
- 1 : i
* TruncRatio
;
2393 assert(LSBIndex
<= INT32_MAX
&& "Overflowed 32-bits");
2394 if (Mask
[i
] != (int)LSBIndex
)
2398 return new TruncInst(X
, DestType
);
2401 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2402 /// narrowing (concatenating with undef and extracting back to the original
2403 /// length). This allows replacing the wide select with a narrow select.
2404 static Instruction
*narrowVectorSelect(ShuffleVectorInst
&Shuf
,
2405 InstCombiner::BuilderTy
&Builder
) {
2406 // This must be a narrowing identity shuffle. It extracts the 1st N elements
2407 // of the 1st vector operand of a shuffle.
2408 if (!match(Shuf
.getOperand(1), m_Undef()) || !Shuf
.isIdentityWithExtract())
2411 // The vector being shuffled must be a vector select that we can eliminate.
2412 // TODO: The one-use requirement could be eased if X and/or Y are constants.
2413 Value
*Cond
, *X
, *Y
;
2414 if (!match(Shuf
.getOperand(0),
2415 m_OneUse(m_Select(m_Value(Cond
), m_Value(X
), m_Value(Y
)))))
2418 // We need a narrow condition value. It must be extended with undef elements
2419 // and have the same number of elements as this shuffle.
2420 unsigned NarrowNumElts
=
2421 cast
<FixedVectorType
>(Shuf
.getType())->getNumElements();
2423 if (!match(Cond
, m_OneUse(m_Shuffle(m_Value(NarrowCond
), m_Undef()))) ||
2424 cast
<FixedVectorType
>(NarrowCond
->getType())->getNumElements() !=
2426 !cast
<ShuffleVectorInst
>(Cond
)->isIdentityWithPadding())
2429 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
2430 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
2431 Value
*NarrowX
= Builder
.CreateShuffleVector(X
, Shuf
.getShuffleMask());
2432 Value
*NarrowY
= Builder
.CreateShuffleVector(Y
, Shuf
.getShuffleMask());
2433 return SelectInst::Create(NarrowCond
, NarrowX
, NarrowY
);
2436 /// Canonicalize FP negate/abs after shuffle.
2437 static Instruction
*foldShuffleOfUnaryOps(ShuffleVectorInst
&Shuf
,
2438 InstCombiner::BuilderTy
&Builder
) {
2439 auto *S0
= dyn_cast
<Instruction
>(Shuf
.getOperand(0));
2441 if (!S0
|| !match(S0
, m_CombineOr(m_FNeg(m_Value(X
)), m_FAbs(m_Value(X
)))))
2444 bool IsFNeg
= S0
->getOpcode() == Instruction::FNeg
;
2446 // Match 1-input (unary) shuffle.
2447 // shuffle (fneg/fabs X), Mask --> fneg/fabs (shuffle X, Mask)
2448 if (S0
->hasOneUse() && match(Shuf
.getOperand(1), m_Undef())) {
2449 Value
*NewShuf
= Builder
.CreateShuffleVector(X
, Shuf
.getShuffleMask());
2451 return UnaryOperator::CreateFNegFMF(NewShuf
, S0
);
2453 Function
*FAbs
= Intrinsic::getDeclaration(Shuf
.getModule(),
2454 Intrinsic::fabs
, Shuf
.getType());
2455 CallInst
*NewF
= CallInst::Create(FAbs
, {NewShuf
});
2456 NewF
->setFastMathFlags(S0
->getFastMathFlags());
2460 // Match 2-input (binary) shuffle.
2461 auto *S1
= dyn_cast
<Instruction
>(Shuf
.getOperand(1));
2463 if (!S1
|| !match(S1
, m_CombineOr(m_FNeg(m_Value(Y
)), m_FAbs(m_Value(Y
)))) ||
2464 S0
->getOpcode() != S1
->getOpcode() ||
2465 (!S0
->hasOneUse() && !S1
->hasOneUse()))
2468 // shuf (fneg/fabs X), (fneg/fabs Y), Mask --> fneg/fabs (shuf X, Y, Mask)
2469 Value
*NewShuf
= Builder
.CreateShuffleVector(X
, Y
, Shuf
.getShuffleMask());
2472 NewF
= UnaryOperator::CreateFNeg(NewShuf
);
2474 Function
*FAbs
= Intrinsic::getDeclaration(Shuf
.getModule(),
2475 Intrinsic::fabs
, Shuf
.getType());
2476 NewF
= CallInst::Create(FAbs
, {NewShuf
});
2478 NewF
->copyIRFlags(S0
);
2479 NewF
->andIRFlags(S1
);
2483 /// Canonicalize casts after shuffle.
2484 static Instruction
*foldCastShuffle(ShuffleVectorInst
&Shuf
,
2485 InstCombiner::BuilderTy
&Builder
) {
2486 // Do we have 2 matching cast operands?
2487 auto *Cast0
= dyn_cast
<CastInst
>(Shuf
.getOperand(0));
2488 auto *Cast1
= dyn_cast
<CastInst
>(Shuf
.getOperand(1));
2489 if (!Cast0
|| !Cast1
|| Cast0
->getOpcode() != Cast1
->getOpcode() ||
2490 Cast0
->getSrcTy() != Cast1
->getSrcTy())
2493 // TODO: Allow other opcodes? That would require easing the type restrictions
2495 CastInst::CastOps CastOpcode
= Cast0
->getOpcode();
2496 switch (CastOpcode
) {
2497 case Instruction::FPToSI
:
2498 case Instruction::FPToUI
:
2499 case Instruction::SIToFP
:
2500 case Instruction::UIToFP
:
2506 VectorType
*ShufTy
= Shuf
.getType();
2507 VectorType
*ShufOpTy
= cast
<VectorType
>(Shuf
.getOperand(0)->getType());
2508 VectorType
*CastSrcTy
= cast
<VectorType
>(Cast0
->getSrcTy());
2510 // TODO: Allow length-increasing shuffles?
2511 if (ShufTy
->getElementCount().getKnownMinValue() >
2512 ShufOpTy
->getElementCount().getKnownMinValue())
2515 // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)?
2516 assert(isa
<FixedVectorType
>(CastSrcTy
) && isa
<FixedVectorType
>(ShufOpTy
) &&
2517 "Expected fixed vector operands for casts and binary shuffle");
2518 if (CastSrcTy
->getPrimitiveSizeInBits() > ShufOpTy
->getPrimitiveSizeInBits())
2521 // At least one of the operands must have only one use (the shuffle).
2522 if (!Cast0
->hasOneUse() && !Cast1
->hasOneUse())
2525 // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
2526 Value
*X
= Cast0
->getOperand(0);
2527 Value
*Y
= Cast1
->getOperand(0);
2528 Value
*NewShuf
= Builder
.CreateShuffleVector(X
, Y
, Shuf
.getShuffleMask());
2529 return CastInst::Create(CastOpcode
, NewShuf
, ShufTy
);
2532 /// Try to fold an extract subvector operation.
2533 static Instruction
*foldIdentityExtractShuffle(ShuffleVectorInst
&Shuf
) {
2534 Value
*Op0
= Shuf
.getOperand(0), *Op1
= Shuf
.getOperand(1);
2535 if (!Shuf
.isIdentityWithExtract() || !match(Op1
, m_Undef()))
2538 // Check if we are extracting all bits of an inserted scalar:
2539 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2541 if (match(Op0
, m_BitCast(m_InsertElt(m_Value(), m_Value(X
), m_Zero()))) &&
2542 X
->getType()->getPrimitiveSizeInBits() ==
2543 Shuf
.getType()->getPrimitiveSizeInBits())
2544 return new BitCastInst(X
, Shuf
.getType());
2546 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2549 if (!match(Op0
, m_Shuffle(m_Value(X
), m_Value(Y
), m_Mask(Mask
))))
2552 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2553 // then combining may result in worse codegen.
2554 if (!Op0
->hasOneUse())
2557 // We are extracting a subvector from a shuffle. Remove excess elements from
2558 // the 1st shuffle mask to eliminate the extract.
2560 // This transform is conservatively limited to identity extracts because we do
2561 // not allow arbitrary shuffle mask creation as a target-independent transform
2562 // (because we can't guarantee that will lower efficiently).
2564 // If the extracting shuffle has an undef mask element, it transfers to the
2565 // new shuffle mask. Otherwise, copy the original mask element. Example:
2566 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
2567 // shuf X, Y, <C0, undef, C2, undef>
2568 unsigned NumElts
= cast
<FixedVectorType
>(Shuf
.getType())->getNumElements();
2569 SmallVector
<int, 16> NewMask(NumElts
);
2570 assert(NumElts
< Mask
.size() &&
2571 "Identity with extract must have less elements than its inputs");
2573 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2574 int ExtractMaskElt
= Shuf
.getMaskValue(i
);
2575 int MaskElt
= Mask
[i
];
2576 NewMask
[i
] = ExtractMaskElt
== PoisonMaskElem
? ExtractMaskElt
: MaskElt
;
2578 return new ShuffleVectorInst(X
, Y
, NewMask
);
2581 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
2582 /// operand with the operand of an insertelement.
2583 static Instruction
*foldShuffleWithInsert(ShuffleVectorInst
&Shuf
,
2584 InstCombinerImpl
&IC
) {
2585 Value
*V0
= Shuf
.getOperand(0), *V1
= Shuf
.getOperand(1);
2586 SmallVector
<int, 16> Mask
;
2587 Shuf
.getShuffleMask(Mask
);
2589 int NumElts
= Mask
.size();
2590 int InpNumElts
= cast
<FixedVectorType
>(V0
->getType())->getNumElements();
2592 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2593 // not be able to handle it there if the insertelement has >1 use.
2594 // If the shuffle has an insertelement operand but does not choose the
2595 // inserted scalar element from that value, then we can replace that shuffle
2596 // operand with the source vector of the insertelement.
2599 if (match(V0
, m_InsertElt(m_Value(X
), m_Value(), m_ConstantInt(IdxC
)))) {
2600 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2601 if (!is_contained(Mask
, (int)IdxC
))
2602 return IC
.replaceOperand(Shuf
, 0, X
);
2604 if (match(V1
, m_InsertElt(m_Value(X
), m_Value(), m_ConstantInt(IdxC
)))) {
2605 // Offset the index constant by the vector width because we are checking for
2606 // accesses to the 2nd vector input of the shuffle.
2608 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2609 if (!is_contained(Mask
, (int)IdxC
))
2610 return IC
.replaceOperand(Shuf
, 1, X
);
2612 // For the rest of the transform, the shuffle must not change vector sizes.
2613 // TODO: This restriction could be removed if the insert has only one use
2614 // (because the transform would require a new length-changing shuffle).
2615 if (NumElts
!= InpNumElts
)
2618 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2619 auto isShufflingScalarIntoOp1
= [&](Value
*&Scalar
, ConstantInt
*&IndexC
) {
2620 // We need an insertelement with a constant index.
2621 if (!match(V0
, m_InsertElt(m_Value(), m_Value(Scalar
),
2622 m_ConstantInt(IndexC
))))
2625 // Test the shuffle mask to see if it splices the inserted scalar into the
2626 // operand 1 vector of the shuffle.
2627 int NewInsIndex
= -1;
2628 for (int i
= 0; i
!= NumElts
; ++i
) {
2629 // Ignore undef mask elements.
2633 // The shuffle takes elements of operand 1 without lane changes.
2634 if (Mask
[i
] == NumElts
+ i
)
2637 // The shuffle must choose the inserted scalar exactly once.
2638 if (NewInsIndex
!= -1 || Mask
[i
] != IndexC
->getSExtValue())
2641 // The shuffle is placing the inserted scalar into element i.
2645 assert(NewInsIndex
!= -1 && "Did not fold shuffle with unused operand?");
2647 // Index is updated to the potentially translated insertion lane.
2648 IndexC
= ConstantInt::get(IndexC
->getIntegerType(), NewInsIndex
);
2652 // If the shuffle is unnecessary, insert the scalar operand directly into
2653 // operand 1 of the shuffle. Example:
2654 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2656 ConstantInt
*IndexC
;
2657 if (isShufflingScalarIntoOp1(Scalar
, IndexC
))
2658 return InsertElementInst::Create(V1
, Scalar
, IndexC
);
2660 // Try again after commuting shuffle. Example:
2661 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2662 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2664 ShuffleVectorInst::commuteShuffleMask(Mask
, NumElts
);
2665 if (isShufflingScalarIntoOp1(Scalar
, IndexC
))
2666 return InsertElementInst::Create(V1
, Scalar
, IndexC
);
2671 static Instruction
*foldIdentityPaddedShuffles(ShuffleVectorInst
&Shuf
) {
2672 // Match the operands as identity with padding (also known as concatenation
2673 // with undef) shuffles of the same source type. The backend is expected to
2674 // recreate these concatenations from a shuffle of narrow operands.
2675 auto *Shuffle0
= dyn_cast
<ShuffleVectorInst
>(Shuf
.getOperand(0));
2676 auto *Shuffle1
= dyn_cast
<ShuffleVectorInst
>(Shuf
.getOperand(1));
2677 if (!Shuffle0
|| !Shuffle0
->isIdentityWithPadding() ||
2678 !Shuffle1
|| !Shuffle1
->isIdentityWithPadding())
2681 // We limit this transform to power-of-2 types because we expect that the
2682 // backend can convert the simplified IR patterns to identical nodes as the
2684 // TODO: If we can verify the same behavior for arbitrary types, the
2685 // power-of-2 checks can be removed.
2686 Value
*X
= Shuffle0
->getOperand(0);
2687 Value
*Y
= Shuffle1
->getOperand(0);
2688 if (X
->getType() != Y
->getType() ||
2689 !isPowerOf2_32(cast
<FixedVectorType
>(Shuf
.getType())->getNumElements()) ||
2691 cast
<FixedVectorType
>(Shuffle0
->getType())->getNumElements()) ||
2692 !isPowerOf2_32(cast
<FixedVectorType
>(X
->getType())->getNumElements()) ||
2693 match(X
, m_Undef()) || match(Y
, m_Undef()))
2695 assert(match(Shuffle0
->getOperand(1), m_Undef()) &&
2696 match(Shuffle1
->getOperand(1), m_Undef()) &&
2697 "Unexpected operand for identity shuffle");
2699 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2700 // operands directly by adjusting the shuffle mask to account for the narrower
2702 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2703 int NarrowElts
= cast
<FixedVectorType
>(X
->getType())->getNumElements();
2704 int WideElts
= cast
<FixedVectorType
>(Shuffle0
->getType())->getNumElements();
2705 assert(WideElts
> NarrowElts
&& "Unexpected types for identity with padding");
2707 ArrayRef
<int> Mask
= Shuf
.getShuffleMask();
2708 SmallVector
<int, 16> NewMask(Mask
.size(), -1);
2709 for (int i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
2713 // If this shuffle is choosing an undef element from 1 of the sources, that
2714 // element is undef.
2715 if (Mask
[i
] < WideElts
) {
2716 if (Shuffle0
->getMaskValue(Mask
[i
]) == -1)
2719 if (Shuffle1
->getMaskValue(Mask
[i
] - WideElts
) == -1)
2723 // If this shuffle is choosing from the 1st narrow op, the mask element is
2724 // the same. If this shuffle is choosing from the 2nd narrow op, the mask
2725 // element is offset down to adjust for the narrow vector widths.
2726 if (Mask
[i
] < WideElts
) {
2727 assert(Mask
[i
] < NarrowElts
&& "Unexpected shuffle mask");
2728 NewMask
[i
] = Mask
[i
];
2730 assert(Mask
[i
] < (WideElts
+ NarrowElts
) && "Unexpected shuffle mask");
2731 NewMask
[i
] = Mask
[i
] - (WideElts
- NarrowElts
);
2734 return new ShuffleVectorInst(X
, Y
, NewMask
);
2737 // Splatting the first element of the result of a BinOp, where any of the
2738 // BinOp's operands are the result of a first element splat can be simplified to
2739 // splatting the first element of the result of the BinOp
2740 Instruction
*InstCombinerImpl::simplifyBinOpSplats(ShuffleVectorInst
&SVI
) {
2741 if (!match(SVI
.getOperand(1), m_Undef()) ||
2742 !match(SVI
.getShuffleMask(), m_ZeroMask()) ||
2743 !SVI
.getOperand(0)->hasOneUse())
2746 Value
*Op0
= SVI
.getOperand(0);
2748 if (!match(Op0
, m_BinOp(m_Shuffle(m_Value(X
), m_Undef(), m_ZeroMask()),
2750 !match(Op0
, m_BinOp(m_Value(X
),
2751 m_Shuffle(m_Value(Y
), m_Undef(), m_ZeroMask()))))
2753 if (X
->getType() != Y
->getType())
2756 auto *BinOp
= cast
<BinaryOperator
>(Op0
);
2757 if (!isSafeToSpeculativelyExecute(BinOp
))
2760 Value
*NewBO
= Builder
.CreateBinOp(BinOp
->getOpcode(), X
, Y
);
2761 if (auto NewBOI
= dyn_cast
<Instruction
>(NewBO
))
2762 NewBOI
->copyIRFlags(BinOp
);
2764 return new ShuffleVectorInst(NewBO
, SVI
.getShuffleMask());
2767 Instruction
*InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst
&SVI
) {
2768 Value
*LHS
= SVI
.getOperand(0);
2769 Value
*RHS
= SVI
.getOperand(1);
2770 SimplifyQuery ShufQuery
= SQ
.getWithInstruction(&SVI
);
2771 if (auto *V
= simplifyShuffleVectorInst(LHS
, RHS
, SVI
.getShuffleMask(),
2772 SVI
.getType(), ShufQuery
))
2773 return replaceInstUsesWith(SVI
, V
);
2775 if (Instruction
*I
= simplifyBinOpSplats(SVI
))
2778 // Canonicalize splat shuffle to use poison RHS. Handle this explicitly in
2779 // order to support scalable vectors.
2780 if (match(SVI
.getShuffleMask(), m_ZeroMask()) && !isa
<PoisonValue
>(RHS
))
2781 return replaceOperand(SVI
, 1, PoisonValue::get(RHS
->getType()));
2783 if (isa
<ScalableVectorType
>(LHS
->getType()))
2786 unsigned VWidth
= cast
<FixedVectorType
>(SVI
.getType())->getNumElements();
2787 unsigned LHSWidth
= cast
<FixedVectorType
>(LHS
->getType())->getNumElements();
2789 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2791 // if X and Y are of the same (vector) type, and the element size is not
2792 // changed by the bitcasts, we can distribute the bitcasts through the
2793 // shuffle, hopefully reducing the number of instructions. We make sure that
2794 // at least one bitcast only has one use, so we don't *increase* the number of
2795 // instructions here.
2797 if (match(LHS
, m_BitCast(m_Value(X
))) && match(RHS
, m_BitCast(m_Value(Y
))) &&
2798 X
->getType()->isVectorTy() && X
->getType() == Y
->getType() &&
2799 X
->getType()->getScalarSizeInBits() ==
2800 SVI
.getType()->getScalarSizeInBits() &&
2801 (LHS
->hasOneUse() || RHS
->hasOneUse())) {
2802 Value
*V
= Builder
.CreateShuffleVector(X
, Y
, SVI
.getShuffleMask(),
2803 SVI
.getName() + ".uncasted");
2804 return new BitCastInst(V
, SVI
.getType());
2807 ArrayRef
<int> Mask
= SVI
.getShuffleMask();
2809 // Peek through a bitcasted shuffle operand by scaling the mask. If the
2810 // simulated shuffle can simplify, then this shuffle is unnecessary:
2811 // shuf (bitcast X), undef, Mask --> bitcast X'
2812 // TODO: This could be extended to allow length-changing shuffles.
2813 // The transform might also be obsoleted if we allowed canonicalization
2814 // of bitcasted shuffles.
2815 if (match(LHS
, m_BitCast(m_Value(X
))) && match(RHS
, m_Undef()) &&
2816 X
->getType()->isVectorTy() && VWidth
== LHSWidth
) {
2817 // Try to create a scaled mask constant.
2818 auto *XType
= cast
<FixedVectorType
>(X
->getType());
2819 unsigned XNumElts
= XType
->getNumElements();
2820 SmallVector
<int, 16> ScaledMask
;
2821 if (XNumElts
>= VWidth
) {
2822 assert(XNumElts
% VWidth
== 0 && "Unexpected vector bitcast");
2823 narrowShuffleMaskElts(XNumElts
/ VWidth
, Mask
, ScaledMask
);
2825 assert(VWidth
% XNumElts
== 0 && "Unexpected vector bitcast");
2826 if (!widenShuffleMaskElts(VWidth
/ XNumElts
, Mask
, ScaledMask
))
2829 if (!ScaledMask
.empty()) {
2830 // If the shuffled source vector simplifies, cast that value to this
2832 if (auto *V
= simplifyShuffleVectorInst(X
, UndefValue::get(XType
),
2833 ScaledMask
, XType
, ShufQuery
))
2834 return BitCastInst::Create(Instruction::BitCast
, V
, SVI
.getType());
2838 // shuffle x, x, mask --> shuffle x, undef, mask'
2840 assert(!match(RHS
, m_Undef()) &&
2841 "Shuffle with 2 undef ops not simplified?");
2842 return new ShuffleVectorInst(LHS
, createUnaryMask(Mask
, LHSWidth
));
2845 // shuffle undef, x, mask --> shuffle x, undef, mask'
2846 if (match(LHS
, m_Undef())) {
2851 if (Instruction
*I
= canonicalizeInsertSplat(SVI
, Builder
))
2854 if (Instruction
*I
= foldSelectShuffle(SVI
))
2857 if (Instruction
*I
= foldTruncShuffle(SVI
, DL
.isBigEndian()))
2860 if (Instruction
*I
= narrowVectorSelect(SVI
, Builder
))
2863 if (Instruction
*I
= foldShuffleOfUnaryOps(SVI
, Builder
))
2866 if (Instruction
*I
= foldCastShuffle(SVI
, Builder
))
2869 APInt
PoisonElts(VWidth
, 0);
2870 APInt
AllOnesEltMask(APInt::getAllOnes(VWidth
));
2871 if (Value
*V
= SimplifyDemandedVectorElts(&SVI
, AllOnesEltMask
, PoisonElts
)) {
2873 return replaceInstUsesWith(SVI
, V
);
2877 if (Instruction
*I
= foldIdentityExtractShuffle(SVI
))
2880 // These transforms have the potential to lose undef knowledge, so they are
2881 // intentionally placed after SimplifyDemandedVectorElts().
2882 if (Instruction
*I
= foldShuffleWithInsert(SVI
, *this))
2884 if (Instruction
*I
= foldIdentityPaddedShuffles(SVI
))
2887 if (match(RHS
, m_Undef()) && canEvaluateShuffled(LHS
, Mask
)) {
2888 Value
*V
= evaluateInDifferentElementOrder(LHS
, Mask
, Builder
);
2889 return replaceInstUsesWith(SVI
, V
);
2892 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2893 // a non-vector type. We can instead bitcast the original vector followed by
2894 // an extract of the desired element:
2896 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2897 // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2898 // %1 = bitcast <4 x i8> %sroa to i32
2900 // %bc = bitcast <16 x i8> %in to <4 x i32>
2901 // %ext = extractelement <4 x i32> %bc, i32 0
2903 // If the shuffle is extracting a contiguous range of values from the input
2904 // vector then each use which is a bitcast of the extracted size can be
2905 // replaced. This will work if the vector types are compatible, and the begin
2906 // index is aligned to a value in the casted vector type. If the begin index
2907 // isn't aligned then we can shuffle the original vector (keeping the same
2908 // vector type) before extracting.
2910 // This code will bail out if the target type is fundamentally incompatible
2911 // with vectors of the source type.
2913 // Example of <16 x i8>, target type i32:
2914 // Index range [4,8): v-----------v Will work.
2915 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2916 // <16 x i8>: | | | | | | | | | | | | | | | | |
2917 // <4 x i32>: | | | | |
2918 // +-----------+-----------+-----------+-----------+
2919 // Index range [6,10): ^-----------^ Needs an extra shuffle.
2920 // Target type i40: ^--------------^ Won't work, bail.
2921 bool MadeChange
= false;
2922 if (isShuffleExtractingFromLHS(SVI
, Mask
)) {
2924 unsigned MaskElems
= Mask
.size();
2925 auto *SrcTy
= cast
<FixedVectorType
>(V
->getType());
2926 unsigned VecBitWidth
= SrcTy
->getPrimitiveSizeInBits().getFixedValue();
2927 unsigned SrcElemBitWidth
= DL
.getTypeSizeInBits(SrcTy
->getElementType());
2928 assert(SrcElemBitWidth
&& "vector elements must have a bitwidth");
2929 unsigned SrcNumElems
= SrcTy
->getNumElements();
2930 SmallVector
<BitCastInst
*, 8> BCs
;
2931 DenseMap
<Type
*, Value
*> NewBCs
;
2932 for (User
*U
: SVI
.users())
2933 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(U
))
2934 if (!BC
->use_empty())
2935 // Only visit bitcasts that weren't previously handled.
2937 for (BitCastInst
*BC
: BCs
) {
2938 unsigned BegIdx
= Mask
.front();
2939 Type
*TgtTy
= BC
->getDestTy();
2940 unsigned TgtElemBitWidth
= DL
.getTypeSizeInBits(TgtTy
);
2941 if (!TgtElemBitWidth
)
2943 unsigned TgtNumElems
= VecBitWidth
/ TgtElemBitWidth
;
2944 bool VecBitWidthsEqual
= VecBitWidth
== TgtNumElems
* TgtElemBitWidth
;
2945 bool BegIsAligned
= 0 == ((SrcElemBitWidth
* BegIdx
) % TgtElemBitWidth
);
2946 if (!VecBitWidthsEqual
)
2948 if (!VectorType::isValidElementType(TgtTy
))
2950 auto *CastSrcTy
= FixedVectorType::get(TgtTy
, TgtNumElems
);
2951 if (!BegIsAligned
) {
2952 // Shuffle the input so [0,NumElements) contains the output, and
2953 // [NumElems,SrcNumElems) is undef.
2954 SmallVector
<int, 16> ShuffleMask(SrcNumElems
, -1);
2955 for (unsigned I
= 0, E
= MaskElems
, Idx
= BegIdx
; I
!= E
; ++Idx
, ++I
)
2956 ShuffleMask
[I
] = Idx
;
2957 V
= Builder
.CreateShuffleVector(V
, ShuffleMask
,
2958 SVI
.getName() + ".extract");
2961 unsigned SrcElemsPerTgtElem
= TgtElemBitWidth
/ SrcElemBitWidth
;
2962 assert(SrcElemsPerTgtElem
);
2963 BegIdx
/= SrcElemsPerTgtElem
;
2964 bool BCAlreadyExists
= NewBCs
.contains(CastSrcTy
);
2968 : Builder
.CreateBitCast(V
, CastSrcTy
, SVI
.getName() + ".bc");
2969 if (!BCAlreadyExists
)
2970 NewBCs
[CastSrcTy
] = NewBC
;
2971 auto *Ext
= Builder
.CreateExtractElement(NewBC
, BegIdx
,
2972 SVI
.getName() + ".extract");
2973 // The shufflevector isn't being replaced: the bitcast that used it
2974 // is. InstCombine will visit the newly-created instructions.
2975 replaceInstUsesWith(*BC
, Ext
);
2980 // If the LHS is a shufflevector itself, see if we can combine it with this
2981 // one without producing an unusual shuffle.
2982 // Cases that might be simplified:
2984 // x1=shuffle(v1,v2,mask1)
2985 // x=shuffle(x1,undef,mask)
2987 // x=shuffle(v1,undef,newMask)
2988 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2990 // x1=shuffle(v1,undef,mask1)
2991 // x=shuffle(x1,x2,mask)
2992 // where v1.size() == mask1.size()
2994 // x=shuffle(v1,x2,newMask)
2995 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2997 // x2=shuffle(v2,undef,mask2)
2998 // x=shuffle(x1,x2,mask)
2999 // where v2.size() == mask2.size()
3001 // x=shuffle(x1,v2,newMask)
3002 // newMask[i] = (mask[i] < x1.size())
3003 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
3005 // x1=shuffle(v1,undef,mask1)
3006 // x2=shuffle(v2,undef,mask2)
3007 // x=shuffle(x1,x2,mask)
3008 // where v1.size() == v2.size()
3010 // x=shuffle(v1,v2,newMask)
3011 // newMask[i] = (mask[i] < x1.size())
3012 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
3014 // Here we are really conservative:
3015 // we are absolutely afraid of producing a shuffle mask not in the input
3016 // program, because the code gen may not be smart enough to turn a merged
3017 // shuffle into two specific shuffles: it may produce worse code. As such,
3018 // we only merge two shuffles if the result is either a splat or one of the
3019 // input shuffle masks. In this case, merging the shuffles just removes
3020 // one instruction, which we know is safe. This is good for things like
3021 // turning: (splat(splat)) -> splat, or
3022 // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
3023 ShuffleVectorInst
* LHSShuffle
= dyn_cast
<ShuffleVectorInst
>(LHS
);
3024 ShuffleVectorInst
* RHSShuffle
= dyn_cast
<ShuffleVectorInst
>(RHS
);
3026 if (!match(LHSShuffle
->getOperand(1), m_Poison()) &&
3027 !match(RHS
, m_Poison()))
3028 LHSShuffle
= nullptr;
3030 if (!match(RHSShuffle
->getOperand(1), m_Poison()))
3031 RHSShuffle
= nullptr;
3032 if (!LHSShuffle
&& !RHSShuffle
)
3033 return MadeChange
? &SVI
: nullptr;
3035 Value
* LHSOp0
= nullptr;
3036 Value
* LHSOp1
= nullptr;
3037 Value
* RHSOp0
= nullptr;
3038 unsigned LHSOp0Width
= 0;
3039 unsigned RHSOp0Width
= 0;
3041 LHSOp0
= LHSShuffle
->getOperand(0);
3042 LHSOp1
= LHSShuffle
->getOperand(1);
3043 LHSOp0Width
= cast
<FixedVectorType
>(LHSOp0
->getType())->getNumElements();
3046 RHSOp0
= RHSShuffle
->getOperand(0);
3047 RHSOp0Width
= cast
<FixedVectorType
>(RHSOp0
->getType())->getNumElements();
3049 Value
* newLHS
= LHS
;
3050 Value
* newRHS
= RHS
;
3053 if (match(RHS
, m_Poison())) {
3058 else if (LHSOp0Width
== LHSWidth
) {
3063 if (RHSShuffle
&& RHSOp0Width
== LHSWidth
) {
3067 if (LHSOp0
== RHSOp0
) {
3072 if (newLHS
== LHS
&& newRHS
== RHS
)
3073 return MadeChange
? &SVI
: nullptr;
3075 ArrayRef
<int> LHSMask
;
3076 ArrayRef
<int> RHSMask
;
3078 LHSMask
= LHSShuffle
->getShuffleMask();
3079 if (RHSShuffle
&& newRHS
!= RHS
)
3080 RHSMask
= RHSShuffle
->getShuffleMask();
3082 unsigned newLHSWidth
= (newLHS
!= LHS
) ? LHSOp0Width
: LHSWidth
;
3083 SmallVector
<int, 16> newMask
;
3084 bool isSplat
= true;
3086 // Create a new mask for the new ShuffleVectorInst so that the new
3087 // ShuffleVectorInst is equivalent to the original one.
3088 for (unsigned i
= 0; i
< VWidth
; ++i
) {
3091 // This element is a poison value.
3093 } else if (Mask
[i
] < (int)LHSWidth
) {
3094 // This element is from left hand side vector operand.
3096 // If LHS is going to be replaced (case 1, 2, or 4), calculate the
3097 // new mask value for the element.
3098 if (newLHS
!= LHS
) {
3099 eltMask
= LHSMask
[Mask
[i
]];
3100 // If the value selected is an poison value, explicitly specify it
3101 // with a -1 mask value.
3102 if (eltMask
>= (int)LHSOp0Width
&& isa
<PoisonValue
>(LHSOp1
))
3107 // This element is from right hand side vector operand
3109 // If the value selected is a poison value, explicitly specify it
3110 // with a -1 mask value. (case 1)
3111 if (match(RHS
, m_Poison()))
3113 // If RHS is going to be replaced (case 3 or 4), calculate the
3114 // new mask value for the element.
3115 else if (newRHS
!= RHS
) {
3116 eltMask
= RHSMask
[Mask
[i
]-LHSWidth
];
3117 // If the value selected is an poison value, explicitly specify it
3118 // with a -1 mask value.
3119 if (eltMask
>= (int)RHSOp0Width
) {
3120 assert(match(RHSShuffle
->getOperand(1), m_Poison()) &&
3121 "should have been check above");
3125 eltMask
= Mask
[i
]-LHSWidth
;
3127 // If LHS's width is changed, shift the mask value accordingly.
3128 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
3129 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
3130 // If newRHS == newLHS, we want to remap any references from newRHS to
3131 // newLHS so that we can properly identify splats that may occur due to
3132 // obfuscation across the two vectors.
3133 if (eltMask
>= 0 && newRHS
!= nullptr && newLHS
!= newRHS
)
3134 eltMask
+= newLHSWidth
;
3137 // Check if this could still be a splat.
3139 if (SplatElt
>= 0 && SplatElt
!= eltMask
)
3144 newMask
.push_back(eltMask
);
3147 // If the result mask is equal to one of the original shuffle masks,
3148 // or is a splat, do the replacement.
3149 if (isSplat
|| newMask
== LHSMask
|| newMask
== RHSMask
|| newMask
== Mask
) {
3151 newRHS
= PoisonValue::get(newLHS
->getType());
3152 return new ShuffleVectorInst(newLHS
, newRHS
, newMask
);
3155 return MadeChange
? &SVI
: nullptr;