1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of ThreadSanitizer, a race detector.
11 // The tool is under development, for the details about previous versions see
12 // http://code.google.com/p/data-race-test
14 // The instrumentation phase is quite simple:
15 // - Insert calls to run-time library before every memory access.
16 // - Optimizations may apply to avoid instrumenting some of the accesses.
17 // - Insert calls at function entry/exit.
18 // The rest is handled by the run-time library.
19 //===----------------------------------------------------------------------===//
21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/ProfileData/InstrProf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Instrumentation.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include "llvm/Transforms/Utils/ModuleUtils.h"
53 #define DEBUG_TYPE "tsan"
55 static cl::opt
<bool> ClInstrumentMemoryAccesses(
56 "tsan-instrument-memory-accesses", cl::init(true),
57 cl::desc("Instrument memory accesses"), cl::Hidden
);
59 ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true),
60 cl::desc("Instrument function entry and exit"),
62 static cl::opt
<bool> ClHandleCxxExceptions(
63 "tsan-handle-cxx-exceptions", cl::init(true),
64 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
66 static cl::opt
<bool> ClInstrumentAtomics("tsan-instrument-atomics",
68 cl::desc("Instrument atomics"),
70 static cl::opt
<bool> ClInstrumentMemIntrinsics(
71 "tsan-instrument-memintrinsics", cl::init(true),
72 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden
);
73 static cl::opt
<bool> ClDistinguishVolatile(
74 "tsan-distinguish-volatile", cl::init(false),
75 cl::desc("Emit special instrumentation for accesses to volatiles"),
77 static cl::opt
<bool> ClInstrumentReadBeforeWrite(
78 "tsan-instrument-read-before-write", cl::init(false),
79 cl::desc("Do not eliminate read instrumentation for read-before-writes"),
81 static cl::opt
<bool> ClCompoundReadBeforeWrite(
82 "tsan-compound-read-before-write", cl::init(false),
83 cl::desc("Emit special compound instrumentation for reads-before-writes"),
86 STATISTIC(NumInstrumentedReads
, "Number of instrumented reads");
87 STATISTIC(NumInstrumentedWrites
, "Number of instrumented writes");
88 STATISTIC(NumOmittedReadsBeforeWrite
,
89 "Number of reads ignored due to following writes");
90 STATISTIC(NumAccessesWithBadSize
, "Number of accesses with bad size");
91 STATISTIC(NumInstrumentedVtableWrites
, "Number of vtable ptr writes");
92 STATISTIC(NumInstrumentedVtableReads
, "Number of vtable ptr reads");
93 STATISTIC(NumOmittedReadsFromConstantGlobals
,
94 "Number of reads from constant globals");
95 STATISTIC(NumOmittedReadsFromVtable
, "Number of vtable reads");
96 STATISTIC(NumOmittedNonCaptured
, "Number of accesses ignored due to capturing");
98 const char kTsanModuleCtorName
[] = "tsan.module_ctor";
99 const char kTsanInitName
[] = "__tsan_init";
103 /// ThreadSanitizer: instrument the code in module to find races.
105 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
106 /// declarations into the module if they don't exist already. Instantiating
107 /// ensures the __tsan_init function is in the list of global constructors for
109 struct ThreadSanitizer
{
111 // Check options and warn user.
112 if (ClInstrumentReadBeforeWrite
&& ClCompoundReadBeforeWrite
) {
114 << "warning: Option -tsan-compound-read-before-write has no effect "
115 "when -tsan-instrument-read-before-write is set.\n";
119 bool sanitizeFunction(Function
&F
, const TargetLibraryInfo
&TLI
);
122 // Internal Instruction wrapper that contains more information about the
123 // Instruction from prior analysis.
124 struct InstructionInfo
{
125 // Instrumentation emitted for this instruction is for a compounded set of
126 // read and write operations in the same basic block.
127 static constexpr unsigned kCompoundRW
= (1U << 0);
129 explicit InstructionInfo(Instruction
*Inst
) : Inst(Inst
) {}
135 void initialize(Module
&M
, const TargetLibraryInfo
&TLI
);
136 bool instrumentLoadOrStore(const InstructionInfo
&II
, const DataLayout
&DL
);
137 bool instrumentAtomic(Instruction
*I
, const DataLayout
&DL
);
138 bool instrumentMemIntrinsic(Instruction
*I
);
139 void chooseInstructionsToInstrument(SmallVectorImpl
<Instruction
*> &Local
,
140 SmallVectorImpl
<InstructionInfo
> &All
,
141 const DataLayout
&DL
);
142 bool addrPointsToConstantData(Value
*Addr
);
143 int getMemoryAccessFuncIndex(Type
*OrigTy
, Value
*Addr
, const DataLayout
&DL
);
144 void InsertRuntimeIgnores(Function
&F
);
147 FunctionCallee TsanFuncEntry
;
148 FunctionCallee TsanFuncExit
;
149 FunctionCallee TsanIgnoreBegin
;
150 FunctionCallee TsanIgnoreEnd
;
151 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
152 static const size_t kNumberOfAccessSizes
= 5;
153 FunctionCallee TsanRead
[kNumberOfAccessSizes
];
154 FunctionCallee TsanWrite
[kNumberOfAccessSizes
];
155 FunctionCallee TsanUnalignedRead
[kNumberOfAccessSizes
];
156 FunctionCallee TsanUnalignedWrite
[kNumberOfAccessSizes
];
157 FunctionCallee TsanVolatileRead
[kNumberOfAccessSizes
];
158 FunctionCallee TsanVolatileWrite
[kNumberOfAccessSizes
];
159 FunctionCallee TsanUnalignedVolatileRead
[kNumberOfAccessSizes
];
160 FunctionCallee TsanUnalignedVolatileWrite
[kNumberOfAccessSizes
];
161 FunctionCallee TsanCompoundRW
[kNumberOfAccessSizes
];
162 FunctionCallee TsanUnalignedCompoundRW
[kNumberOfAccessSizes
];
163 FunctionCallee TsanAtomicLoad
[kNumberOfAccessSizes
];
164 FunctionCallee TsanAtomicStore
[kNumberOfAccessSizes
];
165 FunctionCallee TsanAtomicRMW
[AtomicRMWInst::LAST_BINOP
+ 1]
166 [kNumberOfAccessSizes
];
167 FunctionCallee TsanAtomicCAS
[kNumberOfAccessSizes
];
168 FunctionCallee TsanAtomicThreadFence
;
169 FunctionCallee TsanAtomicSignalFence
;
170 FunctionCallee TsanVptrUpdate
;
171 FunctionCallee TsanVptrLoad
;
172 FunctionCallee MemmoveFn
, MemcpyFn
, MemsetFn
;
175 void insertModuleCtor(Module
&M
) {
176 getOrCreateSanitizerCtorAndInitFunctions(
177 M
, kTsanModuleCtorName
, kTsanInitName
, /*InitArgTypes=*/{},
179 // This callback is invoked when the functions are created the first
180 // time. Hook them into the global ctors list in that case:
181 [&](Function
*Ctor
, FunctionCallee
) { appendToGlobalCtors(M
, Ctor
, 0); });
185 PreservedAnalyses
ThreadSanitizerPass::run(Function
&F
,
186 FunctionAnalysisManager
&FAM
) {
187 ThreadSanitizer TSan
;
188 if (TSan
.sanitizeFunction(F
, FAM
.getResult
<TargetLibraryAnalysis
>(F
)))
189 return PreservedAnalyses::none();
190 return PreservedAnalyses::all();
193 PreservedAnalyses
ModuleThreadSanitizerPass::run(Module
&M
,
194 ModuleAnalysisManager
&MAM
) {
196 return PreservedAnalyses::none();
198 void ThreadSanitizer::initialize(Module
&M
, const TargetLibraryInfo
&TLI
) {
199 const DataLayout
&DL
= M
.getDataLayout();
200 LLVMContext
&Ctx
= M
.getContext();
201 IntptrTy
= DL
.getIntPtrType(Ctx
);
203 IRBuilder
<> IRB(Ctx
);
205 Attr
= Attr
.addFnAttribute(Ctx
, Attribute::NoUnwind
);
206 // Initialize the callbacks.
207 TsanFuncEntry
= M
.getOrInsertFunction("__tsan_func_entry", Attr
,
208 IRB
.getVoidTy(), IRB
.getPtrTy());
210 M
.getOrInsertFunction("__tsan_func_exit", Attr
, IRB
.getVoidTy());
211 TsanIgnoreBegin
= M
.getOrInsertFunction("__tsan_ignore_thread_begin", Attr
,
214 M
.getOrInsertFunction("__tsan_ignore_thread_end", Attr
, IRB
.getVoidTy());
215 IntegerType
*OrdTy
= IRB
.getInt32Ty();
216 for (size_t i
= 0; i
< kNumberOfAccessSizes
; ++i
) {
217 const unsigned ByteSize
= 1U << i
;
218 const unsigned BitSize
= ByteSize
* 8;
219 std::string ByteSizeStr
= utostr(ByteSize
);
220 std::string BitSizeStr
= utostr(BitSize
);
221 SmallString
<32> ReadName("__tsan_read" + ByteSizeStr
);
222 TsanRead
[i
] = M
.getOrInsertFunction(ReadName
, Attr
, IRB
.getVoidTy(),
225 SmallString
<32> WriteName("__tsan_write" + ByteSizeStr
);
226 TsanWrite
[i
] = M
.getOrInsertFunction(WriteName
, Attr
, IRB
.getVoidTy(),
229 SmallString
<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr
);
230 TsanUnalignedRead
[i
] = M
.getOrInsertFunction(
231 UnalignedReadName
, Attr
, IRB
.getVoidTy(), IRB
.getPtrTy());
233 SmallString
<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr
);
234 TsanUnalignedWrite
[i
] = M
.getOrInsertFunction(
235 UnalignedWriteName
, Attr
, IRB
.getVoidTy(), IRB
.getPtrTy());
237 SmallString
<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr
);
238 TsanVolatileRead
[i
] = M
.getOrInsertFunction(
239 VolatileReadName
, Attr
, IRB
.getVoidTy(), IRB
.getPtrTy());
241 SmallString
<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr
);
242 TsanVolatileWrite
[i
] = M
.getOrInsertFunction(
243 VolatileWriteName
, Attr
, IRB
.getVoidTy(), IRB
.getPtrTy());
245 SmallString
<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" +
247 TsanUnalignedVolatileRead
[i
] = M
.getOrInsertFunction(
248 UnalignedVolatileReadName
, Attr
, IRB
.getVoidTy(), IRB
.getPtrTy());
250 SmallString
<64> UnalignedVolatileWriteName(
251 "__tsan_unaligned_volatile_write" + ByteSizeStr
);
252 TsanUnalignedVolatileWrite
[i
] = M
.getOrInsertFunction(
253 UnalignedVolatileWriteName
, Attr
, IRB
.getVoidTy(), IRB
.getPtrTy());
255 SmallString
<64> CompoundRWName("__tsan_read_write" + ByteSizeStr
);
256 TsanCompoundRW
[i
] = M
.getOrInsertFunction(
257 CompoundRWName
, Attr
, IRB
.getVoidTy(), IRB
.getPtrTy());
259 SmallString
<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" +
261 TsanUnalignedCompoundRW
[i
] = M
.getOrInsertFunction(
262 UnalignedCompoundRWName
, Attr
, IRB
.getVoidTy(), IRB
.getPtrTy());
264 Type
*Ty
= Type::getIntNTy(Ctx
, BitSize
);
265 Type
*PtrTy
= PointerType::get(Ctx
, 0);
266 SmallString
<32> AtomicLoadName("__tsan_atomic" + BitSizeStr
+ "_load");
268 M
.getOrInsertFunction(AtomicLoadName
,
269 TLI
.getAttrList(&Ctx
, {1}, /*Signed=*/true,
270 /*Ret=*/BitSize
<= 32, Attr
),
273 // Args of type Ty need extension only when BitSize is 32 or less.
274 using Idxs
= std::vector
<unsigned>;
275 Idxs
Idxs2Or12 ((BitSize
<= 32) ? Idxs({1, 2}) : Idxs({2}));
276 Idxs
Idxs34Or1234((BitSize
<= 32) ? Idxs({1, 2, 3, 4}) : Idxs({3, 4}));
277 SmallString
<32> AtomicStoreName("__tsan_atomic" + BitSizeStr
+ "_store");
278 TsanAtomicStore
[i
] = M
.getOrInsertFunction(
280 TLI
.getAttrList(&Ctx
, Idxs2Or12
, /*Signed=*/true, /*Ret=*/false, Attr
),
281 IRB
.getVoidTy(), PtrTy
, Ty
, OrdTy
);
283 for (unsigned Op
= AtomicRMWInst::FIRST_BINOP
;
284 Op
<= AtomicRMWInst::LAST_BINOP
; ++Op
) {
285 TsanAtomicRMW
[Op
][i
] = nullptr;
286 const char *NamePart
= nullptr;
287 if (Op
== AtomicRMWInst::Xchg
)
288 NamePart
= "_exchange";
289 else if (Op
== AtomicRMWInst::Add
)
290 NamePart
= "_fetch_add";
291 else if (Op
== AtomicRMWInst::Sub
)
292 NamePart
= "_fetch_sub";
293 else if (Op
== AtomicRMWInst::And
)
294 NamePart
= "_fetch_and";
295 else if (Op
== AtomicRMWInst::Or
)
296 NamePart
= "_fetch_or";
297 else if (Op
== AtomicRMWInst::Xor
)
298 NamePart
= "_fetch_xor";
299 else if (Op
== AtomicRMWInst::Nand
)
300 NamePart
= "_fetch_nand";
303 SmallString
<32> RMWName("__tsan_atomic" + itostr(BitSize
) + NamePart
);
304 TsanAtomicRMW
[Op
][i
] = M
.getOrInsertFunction(
306 TLI
.getAttrList(&Ctx
, Idxs2Or12
, /*Signed=*/true,
307 /*Ret=*/BitSize
<= 32, Attr
),
308 Ty
, PtrTy
, Ty
, OrdTy
);
311 SmallString
<32> AtomicCASName("__tsan_atomic" + BitSizeStr
+
312 "_compare_exchange_val");
313 TsanAtomicCAS
[i
] = M
.getOrInsertFunction(
315 TLI
.getAttrList(&Ctx
, Idxs34Or1234
, /*Signed=*/true,
316 /*Ret=*/BitSize
<= 32, Attr
),
317 Ty
, PtrTy
, Ty
, Ty
, OrdTy
, OrdTy
);
320 M
.getOrInsertFunction("__tsan_vptr_update", Attr
, IRB
.getVoidTy(),
321 IRB
.getPtrTy(), IRB
.getPtrTy());
322 TsanVptrLoad
= M
.getOrInsertFunction("__tsan_vptr_read", Attr
,
323 IRB
.getVoidTy(), IRB
.getPtrTy());
324 TsanAtomicThreadFence
= M
.getOrInsertFunction(
325 "__tsan_atomic_thread_fence",
326 TLI
.getAttrList(&Ctx
, {0}, /*Signed=*/true, /*Ret=*/false, Attr
),
327 IRB
.getVoidTy(), OrdTy
);
329 TsanAtomicSignalFence
= M
.getOrInsertFunction(
330 "__tsan_atomic_signal_fence",
331 TLI
.getAttrList(&Ctx
, {0}, /*Signed=*/true, /*Ret=*/false, Attr
),
332 IRB
.getVoidTy(), OrdTy
);
335 M
.getOrInsertFunction("__tsan_memmove", Attr
, IRB
.getPtrTy(),
336 IRB
.getPtrTy(), IRB
.getPtrTy(), IntptrTy
);
338 M
.getOrInsertFunction("__tsan_memcpy", Attr
, IRB
.getPtrTy(),
339 IRB
.getPtrTy(), IRB
.getPtrTy(), IntptrTy
);
340 MemsetFn
= M
.getOrInsertFunction(
342 TLI
.getAttrList(&Ctx
, {1}, /*Signed=*/true, /*Ret=*/false, Attr
),
343 IRB
.getPtrTy(), IRB
.getPtrTy(), IRB
.getInt32Ty(), IntptrTy
);
346 static bool isVtableAccess(Instruction
*I
) {
347 if (MDNode
*Tag
= I
->getMetadata(LLVMContext::MD_tbaa
))
348 return Tag
->isTBAAVtableAccess();
352 // Do not instrument known races/"benign races" that come from compiler
353 // instrumentatin. The user has no way of suppressing them.
354 static bool shouldInstrumentReadWriteFromAddress(const Module
*M
, Value
*Addr
) {
355 // Peel off GEPs and BitCasts.
356 Addr
= Addr
->stripInBoundsOffsets();
358 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Addr
)) {
359 if (GV
->hasSection()) {
360 StringRef SectionName
= GV
->getSection();
361 // Check if the global is in the PGO counters section.
362 auto OF
= Triple(M
->getTargetTriple()).getObjectFormat();
363 if (SectionName
.ends_with(
364 getInstrProfSectionName(IPSK_cnts
, OF
, /*AddSegmentInfo=*/false)))
369 // Do not instrument accesses from different address spaces; we cannot deal
372 Type
*PtrTy
= cast
<PointerType
>(Addr
->getType()->getScalarType());
373 if (PtrTy
->getPointerAddressSpace() != 0)
380 bool ThreadSanitizer::addrPointsToConstantData(Value
*Addr
) {
381 // If this is a GEP, just analyze its pointer operand.
382 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Addr
))
383 Addr
= GEP
->getPointerOperand();
385 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Addr
)) {
386 if (GV
->isConstant()) {
387 // Reads from constant globals can not race with any writes.
388 NumOmittedReadsFromConstantGlobals
++;
391 } else if (LoadInst
*L
= dyn_cast
<LoadInst
>(Addr
)) {
392 if (isVtableAccess(L
)) {
393 // Reads from a vtable pointer can not race with any writes.
394 NumOmittedReadsFromVtable
++;
401 // Instrumenting some of the accesses may be proven redundant.
402 // Currently handled:
403 // - read-before-write (within same BB, no calls between)
404 // - not captured variables
406 // We do not handle some of the patterns that should not survive
407 // after the classic compiler optimizations.
408 // E.g. two reads from the same temp should be eliminated by CSE,
409 // two writes should be eliminated by DSE, etc.
411 // 'Local' is a vector of insns within the same BB (no calls between).
412 // 'All' is a vector of insns that will be instrumented.
413 void ThreadSanitizer::chooseInstructionsToInstrument(
414 SmallVectorImpl
<Instruction
*> &Local
,
415 SmallVectorImpl
<InstructionInfo
> &All
, const DataLayout
&DL
) {
416 DenseMap
<Value
*, size_t> WriteTargets
; // Map of addresses to index in All
417 // Iterate from the end.
418 for (Instruction
*I
: reverse(Local
)) {
419 const bool IsWrite
= isa
<StoreInst
>(*I
);
420 Value
*Addr
= IsWrite
? cast
<StoreInst
>(I
)->getPointerOperand()
421 : cast
<LoadInst
>(I
)->getPointerOperand();
423 if (!shouldInstrumentReadWriteFromAddress(I
->getModule(), Addr
))
427 const auto WriteEntry
= WriteTargets
.find(Addr
);
428 if (!ClInstrumentReadBeforeWrite
&& WriteEntry
!= WriteTargets
.end()) {
429 auto &WI
= All
[WriteEntry
->second
];
430 // If we distinguish volatile accesses and if either the read or write
431 // is volatile, do not omit any instrumentation.
432 const bool AnyVolatile
=
433 ClDistinguishVolatile
&& (cast
<LoadInst
>(I
)->isVolatile() ||
434 cast
<StoreInst
>(WI
.Inst
)->isVolatile());
436 // We will write to this temp, so no reason to analyze the read.
437 // Mark the write instruction as compound.
438 WI
.Flags
|= InstructionInfo::kCompoundRW
;
439 NumOmittedReadsBeforeWrite
++;
444 if (addrPointsToConstantData(Addr
)) {
445 // Addr points to some constant data -- it can not race with any writes.
450 if (isa
<AllocaInst
>(getUnderlyingObject(Addr
)) &&
451 !PointerMayBeCaptured(Addr
, true, true)) {
452 // The variable is addressable but not captured, so it cannot be
453 // referenced from a different thread and participate in a data race
454 // (see llvm/Analysis/CaptureTracking.h for details).
455 NumOmittedNonCaptured
++;
459 // Instrument this instruction.
462 // For read-before-write and compound instrumentation we only need one
463 // write target, and we can override any previous entry if it exists.
464 WriteTargets
[Addr
] = All
.size() - 1;
470 static bool isTsanAtomic(const Instruction
*I
) {
471 // TODO: Ask TTI whether synchronization scope is between threads.
472 auto SSID
= getAtomicSyncScopeID(I
);
475 if (isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
))
476 return *SSID
!= SyncScope::SingleThread
;
480 void ThreadSanitizer::InsertRuntimeIgnores(Function
&F
) {
481 InstrumentationIRBuilder
IRB(F
.getEntryBlock().getFirstNonPHI());
482 IRB
.CreateCall(TsanIgnoreBegin
);
483 EscapeEnumerator
EE(F
, "tsan_ignore_cleanup", ClHandleCxxExceptions
);
484 while (IRBuilder
<> *AtExit
= EE
.Next()) {
485 InstrumentationIRBuilder::ensureDebugInfo(*AtExit
, F
);
486 AtExit
->CreateCall(TsanIgnoreEnd
);
490 bool ThreadSanitizer::sanitizeFunction(Function
&F
,
491 const TargetLibraryInfo
&TLI
) {
492 // This is required to prevent instrumenting call to __tsan_init from within
493 // the module constructor.
494 if (F
.getName() == kTsanModuleCtorName
)
496 // Naked functions can not have prologue/epilogue
497 // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at
499 if (F
.hasFnAttribute(Attribute::Naked
))
502 // __attribute__(disable_sanitizer_instrumentation) prevents all kinds of
504 if (F
.hasFnAttribute(Attribute::DisableSanitizerInstrumentation
))
507 initialize(*F
.getParent(), TLI
);
508 SmallVector
<InstructionInfo
, 8> AllLoadsAndStores
;
509 SmallVector
<Instruction
*, 8> LocalLoadsAndStores
;
510 SmallVector
<Instruction
*, 8> AtomicAccesses
;
511 SmallVector
<Instruction
*, 8> MemIntrinCalls
;
513 bool HasCalls
= false;
514 bool SanitizeFunction
= F
.hasFnAttribute(Attribute::SanitizeThread
);
515 const DataLayout
&DL
= F
.getParent()->getDataLayout();
517 // Traverse all instructions, collect loads/stores/returns, check for calls.
519 for (auto &Inst
: BB
) {
520 // Skip instructions inserted by another instrumentation.
521 if (Inst
.hasMetadata(LLVMContext::MD_nosanitize
))
523 if (isTsanAtomic(&Inst
))
524 AtomicAccesses
.push_back(&Inst
);
525 else if (isa
<LoadInst
>(Inst
) || isa
<StoreInst
>(Inst
))
526 LocalLoadsAndStores
.push_back(&Inst
);
527 else if ((isa
<CallInst
>(Inst
) && !isa
<DbgInfoIntrinsic
>(Inst
)) ||
528 isa
<InvokeInst
>(Inst
)) {
529 if (CallInst
*CI
= dyn_cast
<CallInst
>(&Inst
))
530 maybeMarkSanitizerLibraryCallNoBuiltin(CI
, &TLI
);
531 if (isa
<MemIntrinsic
>(Inst
))
532 MemIntrinCalls
.push_back(&Inst
);
534 chooseInstructionsToInstrument(LocalLoadsAndStores
, AllLoadsAndStores
,
538 chooseInstructionsToInstrument(LocalLoadsAndStores
, AllLoadsAndStores
, DL
);
541 // We have collected all loads and stores.
542 // FIXME: many of these accesses do not need to be checked for races
543 // (e.g. variables that do not escape, etc).
545 // Instrument memory accesses only if we want to report bugs in the function.
546 if (ClInstrumentMemoryAccesses
&& SanitizeFunction
)
547 for (const auto &II
: AllLoadsAndStores
) {
548 Res
|= instrumentLoadOrStore(II
, DL
);
551 // Instrument atomic memory accesses in any case (they can be used to
552 // implement synchronization).
553 if (ClInstrumentAtomics
)
554 for (auto *Inst
: AtomicAccesses
) {
555 Res
|= instrumentAtomic(Inst
, DL
);
558 if (ClInstrumentMemIntrinsics
&& SanitizeFunction
)
559 for (auto *Inst
: MemIntrinCalls
) {
560 Res
|= instrumentMemIntrinsic(Inst
);
563 if (F
.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
564 assert(!F
.hasFnAttribute(Attribute::SanitizeThread
));
566 InsertRuntimeIgnores(F
);
569 // Instrument function entry/exit points if there were instrumented accesses.
570 if ((Res
|| HasCalls
) && ClInstrumentFuncEntryExit
) {
571 InstrumentationIRBuilder
IRB(F
.getEntryBlock().getFirstNonPHI());
572 Value
*ReturnAddress
= IRB
.CreateCall(
573 Intrinsic::getDeclaration(F
.getParent(), Intrinsic::returnaddress
),
575 IRB
.CreateCall(TsanFuncEntry
, ReturnAddress
);
577 EscapeEnumerator
EE(F
, "tsan_cleanup", ClHandleCxxExceptions
);
578 while (IRBuilder
<> *AtExit
= EE
.Next()) {
579 InstrumentationIRBuilder::ensureDebugInfo(*AtExit
, F
);
580 AtExit
->CreateCall(TsanFuncExit
, {});
587 bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo
&II
,
588 const DataLayout
&DL
) {
589 InstrumentationIRBuilder
IRB(II
.Inst
);
590 const bool IsWrite
= isa
<StoreInst
>(*II
.Inst
);
591 Value
*Addr
= IsWrite
? cast
<StoreInst
>(II
.Inst
)->getPointerOperand()
592 : cast
<LoadInst
>(II
.Inst
)->getPointerOperand();
593 Type
*OrigTy
= getLoadStoreType(II
.Inst
);
595 // swifterror memory addresses are mem2reg promoted by instruction selection.
596 // As such they cannot have regular uses like an instrumentation function and
597 // it makes no sense to track them as memory.
598 if (Addr
->isSwiftError())
601 int Idx
= getMemoryAccessFuncIndex(OrigTy
, Addr
, DL
);
604 if (IsWrite
&& isVtableAccess(II
.Inst
)) {
605 LLVM_DEBUG(dbgs() << " VPTR : " << *II
.Inst
<< "\n");
606 Value
*StoredValue
= cast
<StoreInst
>(II
.Inst
)->getValueOperand();
607 // StoredValue may be a vector type if we are storing several vptrs at once.
608 // In this case, just take the first element of the vector since this is
609 // enough to find vptr races.
610 if (isa
<VectorType
>(StoredValue
->getType()))
611 StoredValue
= IRB
.CreateExtractElement(
612 StoredValue
, ConstantInt::get(IRB
.getInt32Ty(), 0));
613 if (StoredValue
->getType()->isIntegerTy())
614 StoredValue
= IRB
.CreateIntToPtr(StoredValue
, IRB
.getPtrTy());
615 // Call TsanVptrUpdate.
616 IRB
.CreateCall(TsanVptrUpdate
, {Addr
, StoredValue
});
617 NumInstrumentedVtableWrites
++;
620 if (!IsWrite
&& isVtableAccess(II
.Inst
)) {
621 IRB
.CreateCall(TsanVptrLoad
, Addr
);
622 NumInstrumentedVtableReads
++;
626 const Align Alignment
= IsWrite
? cast
<StoreInst
>(II
.Inst
)->getAlign()
627 : cast
<LoadInst
>(II
.Inst
)->getAlign();
628 const bool IsCompoundRW
=
629 ClCompoundReadBeforeWrite
&& (II
.Flags
& InstructionInfo::kCompoundRW
);
630 const bool IsVolatile
= ClDistinguishVolatile
&&
631 (IsWrite
? cast
<StoreInst
>(II
.Inst
)->isVolatile()
632 : cast
<LoadInst
>(II
.Inst
)->isVolatile());
633 assert((!IsVolatile
|| !IsCompoundRW
) && "Compound volatile invalid!");
635 const uint32_t TypeSize
= DL
.getTypeStoreSizeInBits(OrigTy
);
636 FunctionCallee OnAccessFunc
= nullptr;
637 if (Alignment
>= Align(8) || (Alignment
.value() % (TypeSize
/ 8)) == 0) {
639 OnAccessFunc
= TsanCompoundRW
[Idx
];
641 OnAccessFunc
= IsWrite
? TsanVolatileWrite
[Idx
] : TsanVolatileRead
[Idx
];
643 OnAccessFunc
= IsWrite
? TsanWrite
[Idx
] : TsanRead
[Idx
];
646 OnAccessFunc
= TsanUnalignedCompoundRW
[Idx
];
648 OnAccessFunc
= IsWrite
? TsanUnalignedVolatileWrite
[Idx
]
649 : TsanUnalignedVolatileRead
[Idx
];
651 OnAccessFunc
= IsWrite
? TsanUnalignedWrite
[Idx
] : TsanUnalignedRead
[Idx
];
653 IRB
.CreateCall(OnAccessFunc
, Addr
);
654 if (IsCompoundRW
|| IsWrite
)
655 NumInstrumentedWrites
++;
656 if (IsCompoundRW
|| !IsWrite
)
657 NumInstrumentedReads
++;
661 static ConstantInt
*createOrdering(IRBuilder
<> *IRB
, AtomicOrdering ord
) {
664 case AtomicOrdering::NotAtomic
:
665 llvm_unreachable("unexpected atomic ordering!");
666 case AtomicOrdering::Unordered
: [[fallthrough
]];
667 case AtomicOrdering::Monotonic
: v
= 0; break;
668 // Not specified yet:
669 // case AtomicOrdering::Consume: v = 1; break;
670 case AtomicOrdering::Acquire
: v
= 2; break;
671 case AtomicOrdering::Release
: v
= 3; break;
672 case AtomicOrdering::AcquireRelease
: v
= 4; break;
673 case AtomicOrdering::SequentiallyConsistent
: v
= 5; break;
675 return IRB
->getInt32(v
);
678 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
679 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
680 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
681 // instead we simply replace them with regular function calls, which are then
682 // intercepted by the run-time.
683 // Since tsan is running after everyone else, the calls should not be
684 // replaced back with intrinsics. If that becomes wrong at some point,
685 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
686 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction
*I
) {
687 InstrumentationIRBuilder
IRB(I
);
688 if (MemSetInst
*M
= dyn_cast
<MemSetInst
>(I
)) {
689 Value
*Cast1
= IRB
.CreateIntCast(M
->getArgOperand(1), IRB
.getInt32Ty(), false);
690 Value
*Cast2
= IRB
.CreateIntCast(M
->getArgOperand(2), IntptrTy
, false);
693 {M
->getArgOperand(0),
696 I
->eraseFromParent();
697 } else if (MemTransferInst
*M
= dyn_cast
<MemTransferInst
>(I
)) {
699 isa
<MemCpyInst
>(M
) ? MemcpyFn
: MemmoveFn
,
700 {M
->getArgOperand(0),
702 IRB
.CreateIntCast(M
->getArgOperand(2), IntptrTy
, false)});
703 I
->eraseFromParent();
708 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
709 // standards. For background see C++11 standard. A slightly older, publicly
710 // available draft of the standard (not entirely up-to-date, but close enough
711 // for casual browsing) is available here:
712 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
713 // The following page contains more background information:
714 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
716 bool ThreadSanitizer::instrumentAtomic(Instruction
*I
, const DataLayout
&DL
) {
717 InstrumentationIRBuilder
IRB(I
);
718 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
719 Value
*Addr
= LI
->getPointerOperand();
720 Type
*OrigTy
= LI
->getType();
721 int Idx
= getMemoryAccessFuncIndex(OrigTy
, Addr
, DL
);
724 Value
*Args
[] = {Addr
,
725 createOrdering(&IRB
, LI
->getOrdering())};
726 Value
*C
= IRB
.CreateCall(TsanAtomicLoad
[Idx
], Args
);
727 Value
*Cast
= IRB
.CreateBitOrPointerCast(C
, OrigTy
);
728 I
->replaceAllUsesWith(Cast
);
729 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
730 Value
*Addr
= SI
->getPointerOperand();
732 getMemoryAccessFuncIndex(SI
->getValueOperand()->getType(), Addr
, DL
);
735 const unsigned ByteSize
= 1U << Idx
;
736 const unsigned BitSize
= ByteSize
* 8;
737 Type
*Ty
= Type::getIntNTy(IRB
.getContext(), BitSize
);
738 Value
*Args
[] = {Addr
,
739 IRB
.CreateBitOrPointerCast(SI
->getValueOperand(), Ty
),
740 createOrdering(&IRB
, SI
->getOrdering())};
741 CallInst
*C
= CallInst::Create(TsanAtomicStore
[Idx
], Args
);
742 ReplaceInstWithInst(I
, C
);
743 } else if (AtomicRMWInst
*RMWI
= dyn_cast
<AtomicRMWInst
>(I
)) {
744 Value
*Addr
= RMWI
->getPointerOperand();
746 getMemoryAccessFuncIndex(RMWI
->getValOperand()->getType(), Addr
, DL
);
749 FunctionCallee F
= TsanAtomicRMW
[RMWI
->getOperation()][Idx
];
752 const unsigned ByteSize
= 1U << Idx
;
753 const unsigned BitSize
= ByteSize
* 8;
754 Type
*Ty
= Type::getIntNTy(IRB
.getContext(), BitSize
);
755 Value
*Val
= RMWI
->getValOperand();
756 Value
*Args
[] = {Addr
, IRB
.CreateBitOrPointerCast(Val
, Ty
),
757 createOrdering(&IRB
, RMWI
->getOrdering())};
758 Value
*C
= IRB
.CreateCall(F
, Args
);
759 I
->replaceAllUsesWith(IRB
.CreateBitOrPointerCast(C
, Val
->getType()));
760 I
->eraseFromParent();
761 } else if (AtomicCmpXchgInst
*CASI
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
762 Value
*Addr
= CASI
->getPointerOperand();
763 Type
*OrigOldValTy
= CASI
->getNewValOperand()->getType();
764 int Idx
= getMemoryAccessFuncIndex(OrigOldValTy
, Addr
, DL
);
767 const unsigned ByteSize
= 1U << Idx
;
768 const unsigned BitSize
= ByteSize
* 8;
769 Type
*Ty
= Type::getIntNTy(IRB
.getContext(), BitSize
);
771 IRB
.CreateBitOrPointerCast(CASI
->getCompareOperand(), Ty
);
773 IRB
.CreateBitOrPointerCast(CASI
->getNewValOperand(), Ty
);
774 Value
*Args
[] = {Addr
,
777 createOrdering(&IRB
, CASI
->getSuccessOrdering()),
778 createOrdering(&IRB
, CASI
->getFailureOrdering())};
779 CallInst
*C
= IRB
.CreateCall(TsanAtomicCAS
[Idx
], Args
);
780 Value
*Success
= IRB
.CreateICmpEQ(C
, CmpOperand
);
782 if (Ty
!= OrigOldValTy
) {
783 // The value is a pointer, so we need to cast the return value.
784 OldVal
= IRB
.CreateIntToPtr(C
, OrigOldValTy
);
788 IRB
.CreateInsertValue(PoisonValue::get(CASI
->getType()), OldVal
, 0);
789 Res
= IRB
.CreateInsertValue(Res
, Success
, 1);
791 I
->replaceAllUsesWith(Res
);
792 I
->eraseFromParent();
793 } else if (FenceInst
*FI
= dyn_cast
<FenceInst
>(I
)) {
794 Value
*Args
[] = {createOrdering(&IRB
, FI
->getOrdering())};
795 FunctionCallee F
= FI
->getSyncScopeID() == SyncScope::SingleThread
796 ? TsanAtomicSignalFence
797 : TsanAtomicThreadFence
;
798 CallInst
*C
= CallInst::Create(F
, Args
);
799 ReplaceInstWithInst(I
, C
);
804 int ThreadSanitizer::getMemoryAccessFuncIndex(Type
*OrigTy
, Value
*Addr
,
805 const DataLayout
&DL
) {
806 assert(OrigTy
->isSized());
807 uint32_t TypeSize
= DL
.getTypeStoreSizeInBits(OrigTy
);
808 if (TypeSize
!= 8 && TypeSize
!= 16 &&
809 TypeSize
!= 32 && TypeSize
!= 64 && TypeSize
!= 128) {
810 NumAccessesWithBadSize
++;
811 // Ignore all unusual sizes.
814 size_t Idx
= llvm::countr_zero(TypeSize
/ 8);
815 assert(Idx
< kNumberOfAccessSizes
);