[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Instrumentation / ThreadSanitizer.cpp
blob0f42ff790869940962d9063b05138b88ed013812
1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer, a race detector.
11 // The tool is under development, for the details about previous versions see
12 // http://code.google.com/p/data-race-test
14 // The instrumentation phase is quite simple:
15 // - Insert calls to run-time library before every memory access.
16 // - Optimizations may apply to avoid instrumenting some of the accesses.
17 // - Insert calls at function entry/exit.
18 // The rest is handled by the run-time library.
19 //===----------------------------------------------------------------------===//
21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/ProfileData/InstrProf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Instrumentation.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include "llvm/Transforms/Utils/ModuleUtils.h"
51 using namespace llvm;
53 #define DEBUG_TYPE "tsan"
55 static cl::opt<bool> ClInstrumentMemoryAccesses(
56 "tsan-instrument-memory-accesses", cl::init(true),
57 cl::desc("Instrument memory accesses"), cl::Hidden);
58 static cl::opt<bool>
59 ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true),
60 cl::desc("Instrument function entry and exit"),
61 cl::Hidden);
62 static cl::opt<bool> ClHandleCxxExceptions(
63 "tsan-handle-cxx-exceptions", cl::init(true),
64 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
65 cl::Hidden);
66 static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics",
67 cl::init(true),
68 cl::desc("Instrument atomics"),
69 cl::Hidden);
70 static cl::opt<bool> ClInstrumentMemIntrinsics(
71 "tsan-instrument-memintrinsics", cl::init(true),
72 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
73 static cl::opt<bool> ClDistinguishVolatile(
74 "tsan-distinguish-volatile", cl::init(false),
75 cl::desc("Emit special instrumentation for accesses to volatiles"),
76 cl::Hidden);
77 static cl::opt<bool> ClInstrumentReadBeforeWrite(
78 "tsan-instrument-read-before-write", cl::init(false),
79 cl::desc("Do not eliminate read instrumentation for read-before-writes"),
80 cl::Hidden);
81 static cl::opt<bool> ClCompoundReadBeforeWrite(
82 "tsan-compound-read-before-write", cl::init(false),
83 cl::desc("Emit special compound instrumentation for reads-before-writes"),
84 cl::Hidden);
86 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
87 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
88 STATISTIC(NumOmittedReadsBeforeWrite,
89 "Number of reads ignored due to following writes");
90 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
91 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
92 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
93 STATISTIC(NumOmittedReadsFromConstantGlobals,
94 "Number of reads from constant globals");
95 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
96 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
98 const char kTsanModuleCtorName[] = "tsan.module_ctor";
99 const char kTsanInitName[] = "__tsan_init";
101 namespace {
103 /// ThreadSanitizer: instrument the code in module to find races.
105 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
106 /// declarations into the module if they don't exist already. Instantiating
107 /// ensures the __tsan_init function is in the list of global constructors for
108 /// the module.
109 struct ThreadSanitizer {
110 ThreadSanitizer() {
111 // Check options and warn user.
112 if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) {
113 errs()
114 << "warning: Option -tsan-compound-read-before-write has no effect "
115 "when -tsan-instrument-read-before-write is set.\n";
119 bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
121 private:
122 // Internal Instruction wrapper that contains more information about the
123 // Instruction from prior analysis.
124 struct InstructionInfo {
125 // Instrumentation emitted for this instruction is for a compounded set of
126 // read and write operations in the same basic block.
127 static constexpr unsigned kCompoundRW = (1U << 0);
129 explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {}
131 Instruction *Inst;
132 unsigned Flags = 0;
135 void initialize(Module &M, const TargetLibraryInfo &TLI);
136 bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL);
137 bool instrumentAtomic(Instruction *I, const DataLayout &DL);
138 bool instrumentMemIntrinsic(Instruction *I);
139 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
140 SmallVectorImpl<InstructionInfo> &All,
141 const DataLayout &DL);
142 bool addrPointsToConstantData(Value *Addr);
143 int getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, const DataLayout &DL);
144 void InsertRuntimeIgnores(Function &F);
146 Type *IntptrTy;
147 FunctionCallee TsanFuncEntry;
148 FunctionCallee TsanFuncExit;
149 FunctionCallee TsanIgnoreBegin;
150 FunctionCallee TsanIgnoreEnd;
151 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
152 static const size_t kNumberOfAccessSizes = 5;
153 FunctionCallee TsanRead[kNumberOfAccessSizes];
154 FunctionCallee TsanWrite[kNumberOfAccessSizes];
155 FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
156 FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
157 FunctionCallee TsanVolatileRead[kNumberOfAccessSizes];
158 FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes];
159 FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes];
160 FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes];
161 FunctionCallee TsanCompoundRW[kNumberOfAccessSizes];
162 FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes];
163 FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
164 FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
165 FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
166 [kNumberOfAccessSizes];
167 FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
168 FunctionCallee TsanAtomicThreadFence;
169 FunctionCallee TsanAtomicSignalFence;
170 FunctionCallee TsanVptrUpdate;
171 FunctionCallee TsanVptrLoad;
172 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
175 void insertModuleCtor(Module &M) {
176 getOrCreateSanitizerCtorAndInitFunctions(
177 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
178 /*InitArgs=*/{},
179 // This callback is invoked when the functions are created the first
180 // time. Hook them into the global ctors list in that case:
181 [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
183 } // namespace
185 PreservedAnalyses ThreadSanitizerPass::run(Function &F,
186 FunctionAnalysisManager &FAM) {
187 ThreadSanitizer TSan;
188 if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
189 return PreservedAnalyses::none();
190 return PreservedAnalyses::all();
193 PreservedAnalyses ModuleThreadSanitizerPass::run(Module &M,
194 ModuleAnalysisManager &MAM) {
195 insertModuleCtor(M);
196 return PreservedAnalyses::none();
198 void ThreadSanitizer::initialize(Module &M, const TargetLibraryInfo &TLI) {
199 const DataLayout &DL = M.getDataLayout();
200 LLVMContext &Ctx = M.getContext();
201 IntptrTy = DL.getIntPtrType(Ctx);
203 IRBuilder<> IRB(Ctx);
204 AttributeList Attr;
205 Attr = Attr.addFnAttribute(Ctx, Attribute::NoUnwind);
206 // Initialize the callbacks.
207 TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
208 IRB.getVoidTy(), IRB.getPtrTy());
209 TsanFuncExit =
210 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
211 TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
212 IRB.getVoidTy());
213 TsanIgnoreEnd =
214 M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
215 IntegerType *OrdTy = IRB.getInt32Ty();
216 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
217 const unsigned ByteSize = 1U << i;
218 const unsigned BitSize = ByteSize * 8;
219 std::string ByteSizeStr = utostr(ByteSize);
220 std::string BitSizeStr = utostr(BitSize);
221 SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
222 TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
223 IRB.getPtrTy());
225 SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
226 TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
227 IRB.getPtrTy());
229 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
230 TsanUnalignedRead[i] = M.getOrInsertFunction(
231 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
233 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
234 TsanUnalignedWrite[i] = M.getOrInsertFunction(
235 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
237 SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr);
238 TsanVolatileRead[i] = M.getOrInsertFunction(
239 VolatileReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
241 SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr);
242 TsanVolatileWrite[i] = M.getOrInsertFunction(
243 VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
245 SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" +
246 ByteSizeStr);
247 TsanUnalignedVolatileRead[i] = M.getOrInsertFunction(
248 UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
250 SmallString<64> UnalignedVolatileWriteName(
251 "__tsan_unaligned_volatile_write" + ByteSizeStr);
252 TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction(
253 UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
255 SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr);
256 TsanCompoundRW[i] = M.getOrInsertFunction(
257 CompoundRWName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
259 SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" +
260 ByteSizeStr);
261 TsanUnalignedCompoundRW[i] = M.getOrInsertFunction(
262 UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
264 Type *Ty = Type::getIntNTy(Ctx, BitSize);
265 Type *PtrTy = PointerType::get(Ctx, 0);
266 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
267 TsanAtomicLoad[i] =
268 M.getOrInsertFunction(AtomicLoadName,
269 TLI.getAttrList(&Ctx, {1}, /*Signed=*/true,
270 /*Ret=*/BitSize <= 32, Attr),
271 Ty, PtrTy, OrdTy);
273 // Args of type Ty need extension only when BitSize is 32 or less.
274 using Idxs = std::vector<unsigned>;
275 Idxs Idxs2Or12 ((BitSize <= 32) ? Idxs({1, 2}) : Idxs({2}));
276 Idxs Idxs34Or1234((BitSize <= 32) ? Idxs({1, 2, 3, 4}) : Idxs({3, 4}));
277 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
278 TsanAtomicStore[i] = M.getOrInsertFunction(
279 AtomicStoreName,
280 TLI.getAttrList(&Ctx, Idxs2Or12, /*Signed=*/true, /*Ret=*/false, Attr),
281 IRB.getVoidTy(), PtrTy, Ty, OrdTy);
283 for (unsigned Op = AtomicRMWInst::FIRST_BINOP;
284 Op <= AtomicRMWInst::LAST_BINOP; ++Op) {
285 TsanAtomicRMW[Op][i] = nullptr;
286 const char *NamePart = nullptr;
287 if (Op == AtomicRMWInst::Xchg)
288 NamePart = "_exchange";
289 else if (Op == AtomicRMWInst::Add)
290 NamePart = "_fetch_add";
291 else if (Op == AtomicRMWInst::Sub)
292 NamePart = "_fetch_sub";
293 else if (Op == AtomicRMWInst::And)
294 NamePart = "_fetch_and";
295 else if (Op == AtomicRMWInst::Or)
296 NamePart = "_fetch_or";
297 else if (Op == AtomicRMWInst::Xor)
298 NamePart = "_fetch_xor";
299 else if (Op == AtomicRMWInst::Nand)
300 NamePart = "_fetch_nand";
301 else
302 continue;
303 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
304 TsanAtomicRMW[Op][i] = M.getOrInsertFunction(
305 RMWName,
306 TLI.getAttrList(&Ctx, Idxs2Or12, /*Signed=*/true,
307 /*Ret=*/BitSize <= 32, Attr),
308 Ty, PtrTy, Ty, OrdTy);
311 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
312 "_compare_exchange_val");
313 TsanAtomicCAS[i] = M.getOrInsertFunction(
314 AtomicCASName,
315 TLI.getAttrList(&Ctx, Idxs34Or1234, /*Signed=*/true,
316 /*Ret=*/BitSize <= 32, Attr),
317 Ty, PtrTy, Ty, Ty, OrdTy, OrdTy);
319 TsanVptrUpdate =
320 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
321 IRB.getPtrTy(), IRB.getPtrTy());
322 TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
323 IRB.getVoidTy(), IRB.getPtrTy());
324 TsanAtomicThreadFence = M.getOrInsertFunction(
325 "__tsan_atomic_thread_fence",
326 TLI.getAttrList(&Ctx, {0}, /*Signed=*/true, /*Ret=*/false, Attr),
327 IRB.getVoidTy(), OrdTy);
329 TsanAtomicSignalFence = M.getOrInsertFunction(
330 "__tsan_atomic_signal_fence",
331 TLI.getAttrList(&Ctx, {0}, /*Signed=*/true, /*Ret=*/false, Attr),
332 IRB.getVoidTy(), OrdTy);
334 MemmoveFn =
335 M.getOrInsertFunction("__tsan_memmove", Attr, IRB.getPtrTy(),
336 IRB.getPtrTy(), IRB.getPtrTy(), IntptrTy);
337 MemcpyFn =
338 M.getOrInsertFunction("__tsan_memcpy", Attr, IRB.getPtrTy(),
339 IRB.getPtrTy(), IRB.getPtrTy(), IntptrTy);
340 MemsetFn = M.getOrInsertFunction(
341 "__tsan_memset",
342 TLI.getAttrList(&Ctx, {1}, /*Signed=*/true, /*Ret=*/false, Attr),
343 IRB.getPtrTy(), IRB.getPtrTy(), IRB.getInt32Ty(), IntptrTy);
346 static bool isVtableAccess(Instruction *I) {
347 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
348 return Tag->isTBAAVtableAccess();
349 return false;
352 // Do not instrument known races/"benign races" that come from compiler
353 // instrumentatin. The user has no way of suppressing them.
354 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
355 // Peel off GEPs and BitCasts.
356 Addr = Addr->stripInBoundsOffsets();
358 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
359 if (GV->hasSection()) {
360 StringRef SectionName = GV->getSection();
361 // Check if the global is in the PGO counters section.
362 auto OF = Triple(M->getTargetTriple()).getObjectFormat();
363 if (SectionName.ends_with(
364 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
365 return false;
369 // Do not instrument accesses from different address spaces; we cannot deal
370 // with them.
371 if (Addr) {
372 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
373 if (PtrTy->getPointerAddressSpace() != 0)
374 return false;
377 return true;
380 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
381 // If this is a GEP, just analyze its pointer operand.
382 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
383 Addr = GEP->getPointerOperand();
385 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
386 if (GV->isConstant()) {
387 // Reads from constant globals can not race with any writes.
388 NumOmittedReadsFromConstantGlobals++;
389 return true;
391 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
392 if (isVtableAccess(L)) {
393 // Reads from a vtable pointer can not race with any writes.
394 NumOmittedReadsFromVtable++;
395 return true;
398 return false;
401 // Instrumenting some of the accesses may be proven redundant.
402 // Currently handled:
403 // - read-before-write (within same BB, no calls between)
404 // - not captured variables
406 // We do not handle some of the patterns that should not survive
407 // after the classic compiler optimizations.
408 // E.g. two reads from the same temp should be eliminated by CSE,
409 // two writes should be eliminated by DSE, etc.
411 // 'Local' is a vector of insns within the same BB (no calls between).
412 // 'All' is a vector of insns that will be instrumented.
413 void ThreadSanitizer::chooseInstructionsToInstrument(
414 SmallVectorImpl<Instruction *> &Local,
415 SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) {
416 DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All
417 // Iterate from the end.
418 for (Instruction *I : reverse(Local)) {
419 const bool IsWrite = isa<StoreInst>(*I);
420 Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand()
421 : cast<LoadInst>(I)->getPointerOperand();
423 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
424 continue;
426 if (!IsWrite) {
427 const auto WriteEntry = WriteTargets.find(Addr);
428 if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) {
429 auto &WI = All[WriteEntry->second];
430 // If we distinguish volatile accesses and if either the read or write
431 // is volatile, do not omit any instrumentation.
432 const bool AnyVolatile =
433 ClDistinguishVolatile && (cast<LoadInst>(I)->isVolatile() ||
434 cast<StoreInst>(WI.Inst)->isVolatile());
435 if (!AnyVolatile) {
436 // We will write to this temp, so no reason to analyze the read.
437 // Mark the write instruction as compound.
438 WI.Flags |= InstructionInfo::kCompoundRW;
439 NumOmittedReadsBeforeWrite++;
440 continue;
444 if (addrPointsToConstantData(Addr)) {
445 // Addr points to some constant data -- it can not race with any writes.
446 continue;
450 if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
451 !PointerMayBeCaptured(Addr, true, true)) {
452 // The variable is addressable but not captured, so it cannot be
453 // referenced from a different thread and participate in a data race
454 // (see llvm/Analysis/CaptureTracking.h for details).
455 NumOmittedNonCaptured++;
456 continue;
459 // Instrument this instruction.
460 All.emplace_back(I);
461 if (IsWrite) {
462 // For read-before-write and compound instrumentation we only need one
463 // write target, and we can override any previous entry if it exists.
464 WriteTargets[Addr] = All.size() - 1;
467 Local.clear();
470 static bool isTsanAtomic(const Instruction *I) {
471 // TODO: Ask TTI whether synchronization scope is between threads.
472 auto SSID = getAtomicSyncScopeID(I);
473 if (!SSID)
474 return false;
475 if (isa<LoadInst>(I) || isa<StoreInst>(I))
476 return *SSID != SyncScope::SingleThread;
477 return true;
480 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
481 InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI());
482 IRB.CreateCall(TsanIgnoreBegin);
483 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
484 while (IRBuilder<> *AtExit = EE.Next()) {
485 InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
486 AtExit->CreateCall(TsanIgnoreEnd);
490 bool ThreadSanitizer::sanitizeFunction(Function &F,
491 const TargetLibraryInfo &TLI) {
492 // This is required to prevent instrumenting call to __tsan_init from within
493 // the module constructor.
494 if (F.getName() == kTsanModuleCtorName)
495 return false;
496 // Naked functions can not have prologue/epilogue
497 // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at
498 // all.
499 if (F.hasFnAttribute(Attribute::Naked))
500 return false;
502 // __attribute__(disable_sanitizer_instrumentation) prevents all kinds of
503 // instrumentation.
504 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
505 return false;
507 initialize(*F.getParent(), TLI);
508 SmallVector<InstructionInfo, 8> AllLoadsAndStores;
509 SmallVector<Instruction*, 8> LocalLoadsAndStores;
510 SmallVector<Instruction*, 8> AtomicAccesses;
511 SmallVector<Instruction*, 8> MemIntrinCalls;
512 bool Res = false;
513 bool HasCalls = false;
514 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
515 const DataLayout &DL = F.getParent()->getDataLayout();
517 // Traverse all instructions, collect loads/stores/returns, check for calls.
518 for (auto &BB : F) {
519 for (auto &Inst : BB) {
520 // Skip instructions inserted by another instrumentation.
521 if (Inst.hasMetadata(LLVMContext::MD_nosanitize))
522 continue;
523 if (isTsanAtomic(&Inst))
524 AtomicAccesses.push_back(&Inst);
525 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
526 LocalLoadsAndStores.push_back(&Inst);
527 else if ((isa<CallInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst)) ||
528 isa<InvokeInst>(Inst)) {
529 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
530 maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
531 if (isa<MemIntrinsic>(Inst))
532 MemIntrinCalls.push_back(&Inst);
533 HasCalls = true;
534 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
535 DL);
538 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
541 // We have collected all loads and stores.
542 // FIXME: many of these accesses do not need to be checked for races
543 // (e.g. variables that do not escape, etc).
545 // Instrument memory accesses only if we want to report bugs in the function.
546 if (ClInstrumentMemoryAccesses && SanitizeFunction)
547 for (const auto &II : AllLoadsAndStores) {
548 Res |= instrumentLoadOrStore(II, DL);
551 // Instrument atomic memory accesses in any case (they can be used to
552 // implement synchronization).
553 if (ClInstrumentAtomics)
554 for (auto *Inst : AtomicAccesses) {
555 Res |= instrumentAtomic(Inst, DL);
558 if (ClInstrumentMemIntrinsics && SanitizeFunction)
559 for (auto *Inst : MemIntrinCalls) {
560 Res |= instrumentMemIntrinsic(Inst);
563 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
564 assert(!F.hasFnAttribute(Attribute::SanitizeThread));
565 if (HasCalls)
566 InsertRuntimeIgnores(F);
569 // Instrument function entry/exit points if there were instrumented accesses.
570 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
571 InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI());
572 Value *ReturnAddress = IRB.CreateCall(
573 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
574 IRB.getInt32(0));
575 IRB.CreateCall(TsanFuncEntry, ReturnAddress);
577 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
578 while (IRBuilder<> *AtExit = EE.Next()) {
579 InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
580 AtExit->CreateCall(TsanFuncExit, {});
582 Res = true;
584 return Res;
587 bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II,
588 const DataLayout &DL) {
589 InstrumentationIRBuilder IRB(II.Inst);
590 const bool IsWrite = isa<StoreInst>(*II.Inst);
591 Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand()
592 : cast<LoadInst>(II.Inst)->getPointerOperand();
593 Type *OrigTy = getLoadStoreType(II.Inst);
595 // swifterror memory addresses are mem2reg promoted by instruction selection.
596 // As such they cannot have regular uses like an instrumentation function and
597 // it makes no sense to track them as memory.
598 if (Addr->isSwiftError())
599 return false;
601 int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
602 if (Idx < 0)
603 return false;
604 if (IsWrite && isVtableAccess(II.Inst)) {
605 LLVM_DEBUG(dbgs() << " VPTR : " << *II.Inst << "\n");
606 Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand();
607 // StoredValue may be a vector type if we are storing several vptrs at once.
608 // In this case, just take the first element of the vector since this is
609 // enough to find vptr races.
610 if (isa<VectorType>(StoredValue->getType()))
611 StoredValue = IRB.CreateExtractElement(
612 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
613 if (StoredValue->getType()->isIntegerTy())
614 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getPtrTy());
615 // Call TsanVptrUpdate.
616 IRB.CreateCall(TsanVptrUpdate, {Addr, StoredValue});
617 NumInstrumentedVtableWrites++;
618 return true;
620 if (!IsWrite && isVtableAccess(II.Inst)) {
621 IRB.CreateCall(TsanVptrLoad, Addr);
622 NumInstrumentedVtableReads++;
623 return true;
626 const Align Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlign()
627 : cast<LoadInst>(II.Inst)->getAlign();
628 const bool IsCompoundRW =
629 ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW);
630 const bool IsVolatile = ClDistinguishVolatile &&
631 (IsWrite ? cast<StoreInst>(II.Inst)->isVolatile()
632 : cast<LoadInst>(II.Inst)->isVolatile());
633 assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!");
635 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
636 FunctionCallee OnAccessFunc = nullptr;
637 if (Alignment >= Align(8) || (Alignment.value() % (TypeSize / 8)) == 0) {
638 if (IsCompoundRW)
639 OnAccessFunc = TsanCompoundRW[Idx];
640 else if (IsVolatile)
641 OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx];
642 else
643 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
644 } else {
645 if (IsCompoundRW)
646 OnAccessFunc = TsanUnalignedCompoundRW[Idx];
647 else if (IsVolatile)
648 OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx]
649 : TsanUnalignedVolatileRead[Idx];
650 else
651 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
653 IRB.CreateCall(OnAccessFunc, Addr);
654 if (IsCompoundRW || IsWrite)
655 NumInstrumentedWrites++;
656 if (IsCompoundRW || !IsWrite)
657 NumInstrumentedReads++;
658 return true;
661 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
662 uint32_t v = 0;
663 switch (ord) {
664 case AtomicOrdering::NotAtomic:
665 llvm_unreachable("unexpected atomic ordering!");
666 case AtomicOrdering::Unordered: [[fallthrough]];
667 case AtomicOrdering::Monotonic: v = 0; break;
668 // Not specified yet:
669 // case AtomicOrdering::Consume: v = 1; break;
670 case AtomicOrdering::Acquire: v = 2; break;
671 case AtomicOrdering::Release: v = 3; break;
672 case AtomicOrdering::AcquireRelease: v = 4; break;
673 case AtomicOrdering::SequentiallyConsistent: v = 5; break;
675 return IRB->getInt32(v);
678 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
679 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
680 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
681 // instead we simply replace them with regular function calls, which are then
682 // intercepted by the run-time.
683 // Since tsan is running after everyone else, the calls should not be
684 // replaced back with intrinsics. If that becomes wrong at some point,
685 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
686 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
687 InstrumentationIRBuilder IRB(I);
688 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
689 Value *Cast1 = IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false);
690 Value *Cast2 = IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false);
691 IRB.CreateCall(
692 MemsetFn,
693 {M->getArgOperand(0),
694 Cast1,
695 Cast2});
696 I->eraseFromParent();
697 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
698 IRB.CreateCall(
699 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
700 {M->getArgOperand(0),
701 M->getArgOperand(1),
702 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
703 I->eraseFromParent();
705 return false;
708 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
709 // standards. For background see C++11 standard. A slightly older, publicly
710 // available draft of the standard (not entirely up-to-date, but close enough
711 // for casual browsing) is available here:
712 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
713 // The following page contains more background information:
714 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
716 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
717 InstrumentationIRBuilder IRB(I);
718 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
719 Value *Addr = LI->getPointerOperand();
720 Type *OrigTy = LI->getType();
721 int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
722 if (Idx < 0)
723 return false;
724 Value *Args[] = {Addr,
725 createOrdering(&IRB, LI->getOrdering())};
726 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
727 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
728 I->replaceAllUsesWith(Cast);
729 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
730 Value *Addr = SI->getPointerOperand();
731 int Idx =
732 getMemoryAccessFuncIndex(SI->getValueOperand()->getType(), Addr, DL);
733 if (Idx < 0)
734 return false;
735 const unsigned ByteSize = 1U << Idx;
736 const unsigned BitSize = ByteSize * 8;
737 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
738 Value *Args[] = {Addr,
739 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
740 createOrdering(&IRB, SI->getOrdering())};
741 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
742 ReplaceInstWithInst(I, C);
743 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
744 Value *Addr = RMWI->getPointerOperand();
745 int Idx =
746 getMemoryAccessFuncIndex(RMWI->getValOperand()->getType(), Addr, DL);
747 if (Idx < 0)
748 return false;
749 FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
750 if (!F)
751 return false;
752 const unsigned ByteSize = 1U << Idx;
753 const unsigned BitSize = ByteSize * 8;
754 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
755 Value *Val = RMWI->getValOperand();
756 Value *Args[] = {Addr, IRB.CreateBitOrPointerCast(Val, Ty),
757 createOrdering(&IRB, RMWI->getOrdering())};
758 Value *C = IRB.CreateCall(F, Args);
759 I->replaceAllUsesWith(IRB.CreateBitOrPointerCast(C, Val->getType()));
760 I->eraseFromParent();
761 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
762 Value *Addr = CASI->getPointerOperand();
763 Type *OrigOldValTy = CASI->getNewValOperand()->getType();
764 int Idx = getMemoryAccessFuncIndex(OrigOldValTy, Addr, DL);
765 if (Idx < 0)
766 return false;
767 const unsigned ByteSize = 1U << Idx;
768 const unsigned BitSize = ByteSize * 8;
769 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
770 Value *CmpOperand =
771 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
772 Value *NewOperand =
773 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
774 Value *Args[] = {Addr,
775 CmpOperand,
776 NewOperand,
777 createOrdering(&IRB, CASI->getSuccessOrdering()),
778 createOrdering(&IRB, CASI->getFailureOrdering())};
779 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
780 Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
781 Value *OldVal = C;
782 if (Ty != OrigOldValTy) {
783 // The value is a pointer, so we need to cast the return value.
784 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
787 Value *Res =
788 IRB.CreateInsertValue(PoisonValue::get(CASI->getType()), OldVal, 0);
789 Res = IRB.CreateInsertValue(Res, Success, 1);
791 I->replaceAllUsesWith(Res);
792 I->eraseFromParent();
793 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
794 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
795 FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
796 ? TsanAtomicSignalFence
797 : TsanAtomicThreadFence;
798 CallInst *C = CallInst::Create(F, Args);
799 ReplaceInstWithInst(I, C);
801 return true;
804 int ThreadSanitizer::getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr,
805 const DataLayout &DL) {
806 assert(OrigTy->isSized());
807 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
808 if (TypeSize != 8 && TypeSize != 16 &&
809 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
810 NumAccessesWithBadSize++;
811 // Ignore all unusual sizes.
812 return -1;
814 size_t Idx = llvm::countr_zero(TypeSize / 8);
815 assert(Idx < kNumberOfAccessSizes);
816 return Idx;