1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Aggressive Dead Code Elimination pass. This pass
10 // optimistically assumes that all instructions are dead until proven otherwise,
11 // allowing it to eliminate dead computations that other DCE passes do not
12 // catch, particularly involving loop computations.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Scalar/ADCE.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/PostDominators.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/InstIterator.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/PassManager.h"
44 #include "llvm/IR/Use.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/ProfileData/InstrProf.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Utils/Local.h"
58 #define DEBUG_TYPE "adce"
60 STATISTIC(NumRemoved
, "Number of instructions removed");
61 STATISTIC(NumBranchesRemoved
, "Number of branch instructions removed");
63 // This is a temporary option until we change the interface to this pass based
64 // on optimization level.
65 static cl::opt
<bool> RemoveControlFlowFlag("adce-remove-control-flow",
66 cl::init(true), cl::Hidden
);
68 // This option enables removing of may-be-infinite loops which have no other
70 static cl::opt
<bool> RemoveLoops("adce-remove-loops", cl::init(false),
75 /// Information about Instructions
77 /// True if the associated instruction is live.
80 /// Quick access to information for block containing associated Instruction.
81 struct BlockInfoType
*Block
= nullptr;
84 /// Information about basic blocks relevant to dead code elimination.
85 struct BlockInfoType
{
86 /// True when this block contains a live instructions.
89 /// True when this block ends in an unconditional branch.
90 bool UnconditionalBranch
= false;
92 /// True when this block is known to have live PHI nodes.
93 bool HasLivePhiNodes
= false;
95 /// Control dependence sources need to be live for this block.
98 /// Quick access to the LiveInfo for the terminator,
99 /// holds the value &InstInfo[Terminator]
100 InstInfoType
*TerminatorLiveInfo
= nullptr;
102 /// Corresponding BasicBlock.
103 BasicBlock
*BB
= nullptr;
105 /// Cache of BB->getTerminator().
106 Instruction
*Terminator
= nullptr;
108 /// Post-order numbering of reverse control flow graph.
111 bool terminatorIsLive() const { return TerminatorLiveInfo
->Live
; }
115 bool ChangedAnything
= false;
116 bool ChangedNonDebugInstr
= false;
117 bool ChangedControlFlow
= false;
120 class AggressiveDeadCodeElimination
{
123 // ADCE does not use DominatorTree per se, but it updates it to preserve the
126 PostDominatorTree
&PDT
;
128 /// Mapping of blocks to associated information, an element in BlockInfoVec.
129 /// Use MapVector to get deterministic iteration order.
130 MapVector
<BasicBlock
*, BlockInfoType
> BlockInfo
;
131 bool isLive(BasicBlock
*BB
) { return BlockInfo
[BB
].Live
; }
133 /// Mapping of instructions to associated information.
134 DenseMap
<Instruction
*, InstInfoType
> InstInfo
;
135 bool isLive(Instruction
*I
) { return InstInfo
[I
].Live
; }
137 /// Instructions known to be live where we need to mark
138 /// reaching definitions as live.
139 SmallVector
<Instruction
*, 128> Worklist
;
141 /// Debug info scopes around a live instruction.
142 SmallPtrSet
<const Metadata
*, 32> AliveScopes
;
144 /// Set of blocks with not known to have live terminators.
145 SmallSetVector
<BasicBlock
*, 16> BlocksWithDeadTerminators
;
147 /// The set of blocks which we have determined whose control
148 /// dependence sources must be live and which have not had
149 /// those dependences analyzed.
150 SmallPtrSet
<BasicBlock
*, 16> NewLiveBlocks
;
152 /// Set up auxiliary data structures for Instructions and BasicBlocks and
153 /// initialize the Worklist to the set of must-be-live Instruscions.
156 /// Return true for operations which are always treated as live.
157 bool isAlwaysLive(Instruction
&I
);
159 /// Return true for instrumentation instructions for value profiling.
160 bool isInstrumentsConstant(Instruction
&I
);
162 /// Propagate liveness to reaching definitions.
163 void markLiveInstructions();
165 /// Mark an instruction as live.
166 void markLive(Instruction
*I
);
168 /// Mark a block as live.
169 void markLive(BlockInfoType
&BB
);
170 void markLive(BasicBlock
*BB
) { markLive(BlockInfo
[BB
]); }
172 /// Mark terminators of control predecessors of a PHI node live.
173 void markPhiLive(PHINode
*PN
);
175 /// Record the Debug Scopes which surround live debug information.
176 void collectLiveScopes(const DILocalScope
&LS
);
177 void collectLiveScopes(const DILocation
&DL
);
179 /// Analyze dead branches to find those whose branches are the sources
180 /// of control dependences impacting a live block. Those branches are
182 void markLiveBranchesFromControlDependences();
184 /// Remove instructions not marked live, return if any instruction was
186 ADCEChanged
removeDeadInstructions();
188 /// Identify connected sections of the control flow graph which have
189 /// dead terminators and rewrite the control flow graph to remove them.
190 bool updateDeadRegions();
192 /// Set the BlockInfo::PostOrder field based on a post-order
193 /// numbering of the reverse control flow graph.
194 void computeReversePostOrder();
196 /// Make the terminator of this block an unconditional branch to \p Target.
197 void makeUnconditional(BasicBlock
*BB
, BasicBlock
*Target
);
200 AggressiveDeadCodeElimination(Function
&F
, DominatorTree
*DT
,
201 PostDominatorTree
&PDT
)
202 : F(F
), DT(DT
), PDT(PDT
) {}
204 ADCEChanged
performDeadCodeElimination();
207 } // end anonymous namespace
209 ADCEChanged
AggressiveDeadCodeElimination::performDeadCodeElimination() {
211 markLiveInstructions();
212 return removeDeadInstructions();
215 static bool isUnconditionalBranch(Instruction
*Term
) {
216 auto *BR
= dyn_cast
<BranchInst
>(Term
);
217 return BR
&& BR
->isUnconditional();
220 void AggressiveDeadCodeElimination::initialize() {
221 auto NumBlocks
= F
.size();
223 // We will have an entry in the map for each block so we grow the
224 // structure to twice that size to keep the load factor low in the hash table.
225 BlockInfo
.reserve(NumBlocks
);
228 // Iterate over blocks and initialize BlockInfoVec entries, count
229 // instructions to size the InstInfo hash table.
231 NumInsts
+= BB
.size();
232 auto &Info
= BlockInfo
[&BB
];
234 Info
.Terminator
= BB
.getTerminator();
235 Info
.UnconditionalBranch
= isUnconditionalBranch(Info
.Terminator
);
238 // Initialize instruction map and set pointers to block info.
239 InstInfo
.reserve(NumInsts
);
240 for (auto &BBInfo
: BlockInfo
)
241 for (Instruction
&I
: *BBInfo
.second
.BB
)
242 InstInfo
[&I
].Block
= &BBInfo
.second
;
244 // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
245 // add any more elements to either after this point.
246 for (auto &BBInfo
: BlockInfo
)
247 BBInfo
.second
.TerminatorLiveInfo
= &InstInfo
[BBInfo
.second
.Terminator
];
249 // Collect the set of "root" instructions that are known live.
250 for (Instruction
&I
: instructions(F
))
254 if (!RemoveControlFlowFlag
)
258 // This stores state for the depth-first iterator. In addition
259 // to recording which nodes have been visited we also record whether
260 // a node is currently on the "stack" of active ancestors of the current
262 using StatusMap
= DenseMap
<BasicBlock
*, bool>;
264 class DFState
: public StatusMap
{
266 std::pair
<StatusMap::iterator
, bool> insert(BasicBlock
*BB
) {
267 return StatusMap::insert(std::make_pair(BB
, true));
270 // Invoked after we have visited all children of a node.
271 void completed(BasicBlock
*BB
) { (*this)[BB
] = false; }
273 // Return true if \p BB is currently on the active stack
275 bool onStack(BasicBlock
*BB
) {
276 auto Iter
= find(BB
);
277 return Iter
!= end() && Iter
->second
;
281 State
.reserve(F
.size());
282 // Iterate over blocks in depth-first pre-order and
283 // treat all edges to a block already seen as loop back edges
284 // and mark the branch live it if there is a back edge.
285 for (auto *BB
: depth_first_ext(&F
.getEntryBlock(), State
)) {
286 Instruction
*Term
= BB
->getTerminator();
290 for (auto *Succ
: successors(BB
))
291 if (State
.onStack(Succ
)) {
299 // Mark blocks live if there is no path from the block to a
300 // return of the function.
301 // We do this by seeing which of the postdomtree root children exit the
302 // program, and for all others, mark the subtree live.
303 for (const auto &PDTChild
: children
<DomTreeNode
*>(PDT
.getRootNode())) {
304 auto *BB
= PDTChild
->getBlock();
305 auto &Info
= BlockInfo
[BB
];
306 // Real function return
307 if (isa
<ReturnInst
>(Info
.Terminator
)) {
308 LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB
->getName()
313 // This child is something else, like an infinite loop.
314 for (auto *DFNode
: depth_first(PDTChild
))
315 markLive(BlockInfo
[DFNode
->getBlock()].Terminator
);
318 // Treat the entry block as always live
319 auto *BB
= &F
.getEntryBlock();
320 auto &EntryInfo
= BlockInfo
[BB
];
321 EntryInfo
.Live
= true;
322 if (EntryInfo
.UnconditionalBranch
)
323 markLive(EntryInfo
.Terminator
);
325 // Build initial collection of blocks with dead terminators
326 for (auto &BBInfo
: BlockInfo
)
327 if (!BBInfo
.second
.terminatorIsLive())
328 BlocksWithDeadTerminators
.insert(BBInfo
.second
.BB
);
331 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction
&I
) {
332 // TODO -- use llvm::isInstructionTriviallyDead
333 if (I
.isEHPad() || I
.mayHaveSideEffects()) {
334 // Skip any value profile instrumentation calls if they are
335 // instrumenting constants.
336 if (isInstrumentsConstant(I
))
340 if (!I
.isTerminator())
342 if (RemoveControlFlowFlag
&& (isa
<BranchInst
>(I
) || isa
<SwitchInst
>(I
)))
347 // Check if this instruction is a runtime call for value profiling and
348 // if it's instrumenting a constant.
349 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction
&I
) {
350 // TODO -- move this test into llvm::isInstructionTriviallyDead
351 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
352 if (Function
*Callee
= CI
->getCalledFunction())
353 if (Callee
->getName().equals(getInstrProfValueProfFuncName()))
354 if (isa
<Constant
>(CI
->getArgOperand(0)))
359 void AggressiveDeadCodeElimination::markLiveInstructions() {
360 // Propagate liveness backwards to operands.
362 // Worklist holds newly discovered live instructions
363 // where we need to mark the inputs as live.
364 while (!Worklist
.empty()) {
365 Instruction
*LiveInst
= Worklist
.pop_back_val();
366 LLVM_DEBUG(dbgs() << "work live: "; LiveInst
->dump(););
368 for (Use
&OI
: LiveInst
->operands())
369 if (Instruction
*Inst
= dyn_cast
<Instruction
>(OI
))
372 if (auto *PN
= dyn_cast
<PHINode
>(LiveInst
))
376 // After data flow liveness has been identified, examine which branch
377 // decisions are required to determine live instructions are executed.
378 markLiveBranchesFromControlDependences();
380 } while (!Worklist
.empty());
383 void AggressiveDeadCodeElimination::markLive(Instruction
*I
) {
384 auto &Info
= InstInfo
[I
];
388 LLVM_DEBUG(dbgs() << "mark live: "; I
->dump());
390 Worklist
.push_back(I
);
392 // Collect the live debug info scopes attached to this instruction.
393 if (const DILocation
*DL
= I
->getDebugLoc())
394 collectLiveScopes(*DL
);
396 // Mark the containing block live
397 auto &BBInfo
= *Info
.Block
;
398 if (BBInfo
.Terminator
== I
) {
399 BlocksWithDeadTerminators
.remove(BBInfo
.BB
);
400 // For live terminators, mark destination blocks
401 // live to preserve this control flow edges.
402 if (!BBInfo
.UnconditionalBranch
)
403 for (auto *BB
: successors(I
->getParent()))
409 void AggressiveDeadCodeElimination::markLive(BlockInfoType
&BBInfo
) {
412 LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo
.BB
->getName() << '\n');
414 if (!BBInfo
.CFLive
) {
415 BBInfo
.CFLive
= true;
416 NewLiveBlocks
.insert(BBInfo
.BB
);
419 // Mark unconditional branches at the end of live
420 // blocks as live since there is no work to do for them later
421 if (BBInfo
.UnconditionalBranch
)
422 markLive(BBInfo
.Terminator
);
425 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope
&LS
) {
426 if (!AliveScopes
.insert(&LS
).second
)
429 if (isa
<DISubprogram
>(LS
))
432 // Tail-recurse through the scope chain.
433 collectLiveScopes(cast
<DILocalScope
>(*LS
.getScope()));
436 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation
&DL
) {
437 // Even though DILocations are not scopes, shove them into AliveScopes so we
438 // don't revisit them.
439 if (!AliveScopes
.insert(&DL
).second
)
442 // Collect live scopes from the scope chain.
443 collectLiveScopes(*DL
.getScope());
445 // Tail-recurse through the inlined-at chain.
446 if (const DILocation
*IA
= DL
.getInlinedAt())
447 collectLiveScopes(*IA
);
450 void AggressiveDeadCodeElimination::markPhiLive(PHINode
*PN
) {
451 auto &Info
= BlockInfo
[PN
->getParent()];
452 // Only need to check this once per block.
453 if (Info
.HasLivePhiNodes
)
455 Info
.HasLivePhiNodes
= true;
457 // If a predecessor block is not live, mark it as control-flow live
458 // which will trigger marking live branches upon which
459 // that block is control dependent.
460 for (auto *PredBB
: predecessors(Info
.BB
)) {
461 auto &Info
= BlockInfo
[PredBB
];
464 NewLiveBlocks
.insert(PredBB
);
469 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
470 if (BlocksWithDeadTerminators
.empty())
474 dbgs() << "new live blocks:\n";
475 for (auto *BB
: NewLiveBlocks
)
476 dbgs() << "\t" << BB
->getName() << '\n';
477 dbgs() << "dead terminator blocks:\n";
478 for (auto *BB
: BlocksWithDeadTerminators
)
479 dbgs() << "\t" << BB
->getName() << '\n';
482 // The dominance frontier of a live block X in the reverse
483 // control graph is the set of blocks upon which X is control
484 // dependent. The following sequence computes the set of blocks
485 // which currently have dead terminators that are control
486 // dependence sources of a block which is in NewLiveBlocks.
488 const SmallPtrSet
<BasicBlock
*, 16> BWDT
{
489 BlocksWithDeadTerminators
.begin(),
490 BlocksWithDeadTerminators
.end()
492 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
493 ReverseIDFCalculator
IDFs(PDT
);
494 IDFs
.setDefiningBlocks(NewLiveBlocks
);
495 IDFs
.setLiveInBlocks(BWDT
);
496 IDFs
.calculate(IDFBlocks
);
497 NewLiveBlocks
.clear();
499 // Dead terminators which control live blocks are now marked live.
500 for (auto *BB
: IDFBlocks
) {
501 LLVM_DEBUG(dbgs() << "live control in: " << BB
->getName() << '\n');
502 markLive(BB
->getTerminator());
506 //===----------------------------------------------------------------------===//
508 // Routines to update the CFG and SSA information before removing dead code.
510 //===----------------------------------------------------------------------===//
511 ADCEChanged
AggressiveDeadCodeElimination::removeDeadInstructions() {
513 // Updates control and dataflow around dead blocks
514 Changed
.ChangedControlFlow
= updateDeadRegions();
517 for (Instruction
&I
: instructions(F
)) {
518 // Check if the instruction is alive.
522 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&I
)) {
523 // Check if the scope of this variable location is alive.
524 if (AliveScopes
.count(DII
->getDebugLoc()->getScope()))
527 // If intrinsic is pointing at a live SSA value, there may be an
528 // earlier optimization bug: if we know the location of the variable,
529 // why isn't the scope of the location alive?
530 for (Value
*V
: DII
->location_ops()) {
531 if (Instruction
*II
= dyn_cast
<Instruction
>(V
)) {
533 dbgs() << "Dropping debug info for " << *DII
<< "\n";
542 // The inverse of the live set is the dead set. These are those instructions
543 // that have no side effects and do not influence the control flow or return
544 // value of the function, and may therefore be deleted safely.
545 // NOTE: We reuse the Worklist vector here for memory efficiency.
546 for (Instruction
&I
: llvm::reverse(instructions(F
))) {
547 // With "RemoveDIs" debug-info stored in DPValue objects, debug-info
548 // attached to this instruction, and drop any for scopes that aren't alive,
549 // like the rest of this loop does. Extending support to assignment tracking
551 for (DPValue
&DPV
: make_early_inc_range(I
.getDbgValueRange())) {
552 // Avoid removing a DPV that is linked to instructions because it holds
553 // information about an existing store.
554 if (DPV
.isDbgAssign())
555 if (!at::getAssignmentInsts(&DPV
).empty())
557 if (AliveScopes
.count(DPV
.getDebugLoc()->getScope()))
559 I
.dropOneDbgValue(&DPV
);
562 // Check if the instruction is alive.
566 if (auto *DII
= dyn_cast
<DbgInfoIntrinsic
>(&I
)) {
567 // Avoid removing a dbg.assign that is linked to instructions because it
568 // holds information about an existing store.
569 if (auto *DAI
= dyn_cast
<DbgAssignIntrinsic
>(DII
))
570 if (!at::getAssignmentInsts(DAI
).empty())
572 // Check if the scope of this variable location is alive.
573 if (AliveScopes
.count(DII
->getDebugLoc()->getScope()))
576 // Fallthrough and drop the intrinsic.
578 Changed
.ChangedNonDebugInstr
= true;
581 // Prepare to delete.
582 Worklist
.push_back(&I
);
586 for (Instruction
*&I
: Worklist
)
587 I
->dropAllReferences();
589 for (Instruction
*&I
: Worklist
) {
591 I
->eraseFromParent();
594 Changed
.ChangedAnything
= Changed
.ChangedControlFlow
|| !Worklist
.empty();
599 // A dead region is the set of dead blocks with a common live post-dominator.
600 bool AggressiveDeadCodeElimination::updateDeadRegions() {
602 dbgs() << "final dead terminator blocks: " << '\n';
603 for (auto *BB
: BlocksWithDeadTerminators
)
604 dbgs() << '\t' << BB
->getName()
605 << (BlockInfo
[BB
].Live
? " LIVE\n" : "\n");
608 // Don't compute the post ordering unless we needed it.
609 bool HavePostOrder
= false;
610 bool Changed
= false;
611 SmallVector
<DominatorTree::UpdateType
, 10> DeletedEdges
;
613 for (auto *BB
: BlocksWithDeadTerminators
) {
614 auto &Info
= BlockInfo
[BB
];
615 if (Info
.UnconditionalBranch
) {
616 InstInfo
[Info
.Terminator
].Live
= true;
620 if (!HavePostOrder
) {
621 computeReversePostOrder();
622 HavePostOrder
= true;
625 // Add an unconditional branch to the successor closest to the
626 // end of the function which insures a path to the exit for each
628 BlockInfoType
*PreferredSucc
= nullptr;
629 for (auto *Succ
: successors(BB
)) {
630 auto *Info
= &BlockInfo
[Succ
];
631 if (!PreferredSucc
|| PreferredSucc
->PostOrder
< Info
->PostOrder
)
632 PreferredSucc
= Info
;
634 assert((PreferredSucc
&& PreferredSucc
->PostOrder
> 0) &&
635 "Failed to find safe successor for dead branch");
637 // Collect removed successors to update the (Post)DominatorTrees.
638 SmallPtrSet
<BasicBlock
*, 4> RemovedSuccessors
;
640 for (auto *Succ
: successors(BB
)) {
641 if (!First
|| Succ
!= PreferredSucc
->BB
) {
642 Succ
->removePredecessor(BB
);
643 RemovedSuccessors
.insert(Succ
);
647 makeUnconditional(BB
, PreferredSucc
->BB
);
649 // Inform the dominators about the deleted CFG edges.
650 for (auto *Succ
: RemovedSuccessors
) {
651 // It might have happened that the same successor appeared multiple times
652 // and the CFG edge wasn't really removed.
653 if (Succ
!= PreferredSucc
->BB
) {
654 LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
655 << BB
->getName() << " -> " << Succ
->getName()
657 DeletedEdges
.push_back({DominatorTree::Delete
, BB
, Succ
});
661 NumBranchesRemoved
+= 1;
665 if (!DeletedEdges
.empty())
666 DomTreeUpdater(DT
, &PDT
, DomTreeUpdater::UpdateStrategy::Eager
)
667 .applyUpdates(DeletedEdges
);
672 // reverse top-sort order
673 void AggressiveDeadCodeElimination::computeReversePostOrder() {
674 // This provides a post-order numbering of the reverse control flow graph
675 // Note that it is incomplete in the presence of infinite loops but we don't
676 // need numbers blocks which don't reach the end of the functions since
677 // all branches in those blocks are forced live.
679 // For each block without successors, extend the DFS from the block
680 // backward through the graph
681 SmallPtrSet
<BasicBlock
*, 16> Visited
;
682 unsigned PostOrder
= 0;
684 if (!succ_empty(&BB
))
686 for (BasicBlock
*Block
: inverse_post_order_ext(&BB
,Visited
))
687 BlockInfo
[Block
].PostOrder
= PostOrder
++;
691 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock
*BB
,
692 BasicBlock
*Target
) {
693 Instruction
*PredTerm
= BB
->getTerminator();
694 // Collect the live debug info scopes attached to this instruction.
695 if (const DILocation
*DL
= PredTerm
->getDebugLoc())
696 collectLiveScopes(*DL
);
698 // Just mark live an existing unconditional branch
699 if (isUnconditionalBranch(PredTerm
)) {
700 PredTerm
->setSuccessor(0, Target
);
701 InstInfo
[PredTerm
].Live
= true;
704 LLVM_DEBUG(dbgs() << "making unconditional " << BB
->getName() << '\n');
705 NumBranchesRemoved
+= 1;
706 IRBuilder
<> Builder(PredTerm
);
707 auto *NewTerm
= Builder
.CreateBr(Target
);
708 InstInfo
[NewTerm
].Live
= true;
709 if (const DILocation
*DL
= PredTerm
->getDebugLoc())
710 NewTerm
->setDebugLoc(DL
);
712 InstInfo
.erase(PredTerm
);
713 PredTerm
->eraseFromParent();
716 //===----------------------------------------------------------------------===//
718 // Pass Manager integration code
720 //===----------------------------------------------------------------------===//
721 PreservedAnalyses
ADCEPass::run(Function
&F
, FunctionAnalysisManager
&FAM
) {
722 // ADCE does not need DominatorTree, but require DominatorTree here
723 // to update analysis if it is already available.
724 auto *DT
= FAM
.getCachedResult
<DominatorTreeAnalysis
>(F
);
725 auto &PDT
= FAM
.getResult
<PostDominatorTreeAnalysis
>(F
);
726 ADCEChanged Changed
=
727 AggressiveDeadCodeElimination(F
, DT
, PDT
).performDeadCodeElimination();
728 if (!Changed
.ChangedAnything
)
729 return PreservedAnalyses::all();
731 PreservedAnalyses PA
;
732 if (!Changed
.ChangedControlFlow
) {
733 PA
.preserveSet
<CFGAnalyses
>();
734 if (!Changed
.ChangedNonDebugInstr
) {
735 // Only removing debug instructions does not affect MemorySSA.
737 // Therefore we preserve MemorySSA when only removing debug instructions
738 // since otherwise later passes may behave differently which then makes
739 // the presence of debug info affect code generation.
740 PA
.preserve
<MemorySSAAnalysis
>();
743 PA
.preserve
<DominatorTreeAnalysis
>();
744 PA
.preserve
<PostDominatorTreeAnalysis
>();