[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Scalar / AlignmentFromAssumptions.cpp
blobf3422a705dca7a86189e879418831e72e2abe8e3
1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 // Set Load/Store Alignments From Assumptions
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a ScalarEvolution-based transformation to set
11 // the alignments of load, stores and memory intrinsics based on the truth
12 // expressions of assume intrinsics. The primary motivation is to handle
13 // complex alignment assumptions that apply to vector loads and stores that
14 // appear after vectorization and unrolling.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
34 #define DEBUG_TYPE "alignment-from-assumptions"
35 using namespace llvm;
37 STATISTIC(NumLoadAlignChanged,
38 "Number of loads changed by alignment assumptions");
39 STATISTIC(NumStoreAlignChanged,
40 "Number of stores changed by alignment assumptions");
41 STATISTIC(NumMemIntAlignChanged,
42 "Number of memory intrinsics changed by alignment assumptions");
44 // Given an expression for the (constant) alignment, AlignSCEV, and an
45 // expression for the displacement between a pointer and the aligned address,
46 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
47 // to a constant. Using SCEV to compute alignment handles the case where
48 // DiffSCEV is a recurrence with constant start such that the aligned offset
49 // is constant. e.g. {16,+,32} % 32 -> 16.
50 static MaybeAlign getNewAlignmentDiff(const SCEV *DiffSCEV,
51 const SCEV *AlignSCEV,
52 ScalarEvolution *SE) {
53 // DiffUnits = Diff % int64_t(Alignment)
54 const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV);
56 LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
57 << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
59 if (const SCEVConstant *ConstDUSCEV =
60 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
61 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
63 // If the displacement is an exact multiple of the alignment, then the
64 // displaced pointer has the same alignment as the aligned pointer, so
65 // return the alignment value.
66 if (!DiffUnits)
67 return cast<SCEVConstant>(AlignSCEV)->getValue()->getAlignValue();
69 // If the displacement is not an exact multiple, but the remainder is a
70 // constant, then return this remainder (but only if it is a power of 2).
71 uint64_t DiffUnitsAbs = std::abs(DiffUnits);
72 if (isPowerOf2_64(DiffUnitsAbs))
73 return Align(DiffUnitsAbs);
76 return std::nullopt;
79 // There is an address given by an offset OffSCEV from AASCEV which has an
80 // alignment AlignSCEV. Use that information, if possible, to compute a new
81 // alignment for Ptr.
82 static Align getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
83 const SCEV *OffSCEV, Value *Ptr,
84 ScalarEvolution *SE) {
85 const SCEV *PtrSCEV = SE->getSCEV(Ptr);
87 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
88 if (isa<SCEVCouldNotCompute>(DiffSCEV))
89 return Align(1);
91 // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
92 // sign-extended OffSCEV to i64, so make sure they agree again.
93 DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
95 // What we really want to know is the overall offset to the aligned
96 // address. This address is displaced by the provided offset.
97 DiffSCEV = SE->getAddExpr(DiffSCEV, OffSCEV);
99 LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
100 << *AlignSCEV << " and offset " << *OffSCEV
101 << " using diff " << *DiffSCEV << "\n");
103 if (MaybeAlign NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE)) {
104 LLVM_DEBUG(dbgs() << "\tnew alignment: " << DebugStr(NewAlignment) << "\n");
105 return *NewAlignment;
108 if (const SCEVAddRecExpr *DiffARSCEV = dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
109 // The relative offset to the alignment assumption did not yield a constant,
110 // but we should try harder: if we assume that a is 32-byte aligned, then in
111 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
112 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
113 // As a result, the new alignment will not be a constant, but can still
114 // be improved over the default (of 4) to 16.
116 const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
117 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
119 LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
120 << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
122 // Now compute the new alignment using the displacement to the value in the
123 // first iteration, and also the alignment using the per-iteration delta.
124 // If these are the same, then use that answer. Otherwise, use the smaller
125 // one, but only if it divides the larger one.
126 MaybeAlign NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
127 MaybeAlign NewIncAlignment =
128 getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
130 LLVM_DEBUG(dbgs() << "\tnew start alignment: " << DebugStr(NewAlignment)
131 << "\n");
132 LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << DebugStr(NewIncAlignment)
133 << "\n");
135 if (!NewAlignment || !NewIncAlignment)
136 return Align(1);
138 const Align NewAlign = *NewAlignment;
139 const Align NewIncAlign = *NewIncAlignment;
140 if (NewAlign > NewIncAlign) {
141 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: "
142 << DebugStr(NewIncAlign) << "\n");
143 return NewIncAlign;
145 if (NewIncAlign > NewAlign) {
146 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
147 << "\n");
148 return NewAlign;
150 assert(NewIncAlign == NewAlign);
151 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
152 << "\n");
153 return NewAlign;
156 return Align(1);
159 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
160 unsigned Idx,
161 Value *&AAPtr,
162 const SCEV *&AlignSCEV,
163 const SCEV *&OffSCEV) {
164 Type *Int64Ty = Type::getInt64Ty(I->getContext());
165 OperandBundleUse AlignOB = I->getOperandBundleAt(Idx);
166 if (AlignOB.getTagName() != "align")
167 return false;
168 assert(AlignOB.Inputs.size() >= 2);
169 AAPtr = AlignOB.Inputs[0].get();
170 // TODO: Consider accumulating the offset to the base.
171 AAPtr = AAPtr->stripPointerCastsSameRepresentation();
172 AlignSCEV = SE->getSCEV(AlignOB.Inputs[1].get());
173 AlignSCEV = SE->getTruncateOrZeroExtend(AlignSCEV, Int64Ty);
174 if (!isa<SCEVConstant>(AlignSCEV))
175 // Added to suppress a crash because consumer doesn't expect non-constant
176 // alignments in the assume bundle. TODO: Consider generalizing caller.
177 return false;
178 if (!cast<SCEVConstant>(AlignSCEV)->getAPInt().isPowerOf2())
179 // Only power of two alignments are supported.
180 return false;
181 if (AlignOB.Inputs.size() == 3)
182 OffSCEV = SE->getSCEV(AlignOB.Inputs[2].get());
183 else
184 OffSCEV = SE->getZero(Int64Ty);
185 OffSCEV = SE->getTruncateOrZeroExtend(OffSCEV, Int64Ty);
186 return true;
189 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall,
190 unsigned Idx) {
191 Value *AAPtr;
192 const SCEV *AlignSCEV, *OffSCEV;
193 if (!extractAlignmentInfo(ACall, Idx, AAPtr, AlignSCEV, OffSCEV))
194 return false;
196 // Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't
197 // affect other users.
198 if (isa<ConstantData>(AAPtr))
199 return false;
201 const SCEV *AASCEV = SE->getSCEV(AAPtr);
203 // Apply the assumption to all other users of the specified pointer.
204 SmallPtrSet<Instruction *, 32> Visited;
205 SmallVector<Instruction*, 16> WorkList;
206 for (User *J : AAPtr->users()) {
207 if (J == ACall)
208 continue;
210 if (Instruction *K = dyn_cast<Instruction>(J))
211 WorkList.push_back(K);
214 while (!WorkList.empty()) {
215 Instruction *J = WorkList.pop_back_val();
216 if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
217 if (!isValidAssumeForContext(ACall, J, DT))
218 continue;
219 Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
220 LI->getPointerOperand(), SE);
221 if (NewAlignment > LI->getAlign()) {
222 LI->setAlignment(NewAlignment);
223 ++NumLoadAlignChanged;
225 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
226 if (!isValidAssumeForContext(ACall, J, DT))
227 continue;
228 Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
229 SI->getPointerOperand(), SE);
230 if (NewAlignment > SI->getAlign()) {
231 SI->setAlignment(NewAlignment);
232 ++NumStoreAlignChanged;
234 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
235 if (!isValidAssumeForContext(ACall, J, DT))
236 continue;
237 Align NewDestAlignment =
238 getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MI->getDest(), SE);
240 LLVM_DEBUG(dbgs() << "\tmem inst: " << DebugStr(NewDestAlignment)
241 << "\n";);
242 if (NewDestAlignment > *MI->getDestAlign()) {
243 MI->setDestAlignment(NewDestAlignment);
244 ++NumMemIntAlignChanged;
247 // For memory transfers, there is also a source alignment that
248 // can be set.
249 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
250 Align NewSrcAlignment =
251 getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MTI->getSource(), SE);
253 LLVM_DEBUG(dbgs() << "\tmem trans: " << DebugStr(NewSrcAlignment)
254 << "\n";);
256 if (NewSrcAlignment > *MTI->getSourceAlign()) {
257 MTI->setSourceAlignment(NewSrcAlignment);
258 ++NumMemIntAlignChanged;
263 // Now that we've updated that use of the pointer, look for other uses of
264 // the pointer to update.
265 Visited.insert(J);
266 if (isa<GetElementPtrInst>(J) || isa<PHINode>(J))
267 for (auto &U : J->uses()) {
268 if (U->getType()->isPointerTy()) {
269 Instruction *K = cast<Instruction>(U.getUser());
270 StoreInst *SI = dyn_cast<StoreInst>(K);
271 if (SI && SI->getPointerOperandIndex() != U.getOperandNo())
272 continue;
273 if (!Visited.count(K))
274 WorkList.push_back(K);
279 return true;
282 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
283 ScalarEvolution *SE_,
284 DominatorTree *DT_) {
285 SE = SE_;
286 DT = DT_;
288 bool Changed = false;
289 for (auto &AssumeVH : AC.assumptions())
290 if (AssumeVH) {
291 CallInst *Call = cast<CallInst>(AssumeVH);
292 for (unsigned Idx = 0; Idx < Call->getNumOperandBundles(); Idx++)
293 Changed |= processAssumption(Call, Idx);
296 return Changed;
299 PreservedAnalyses
300 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
302 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
303 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
304 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
305 if (!runImpl(F, AC, &SE, &DT))
306 return PreservedAnalyses::all();
308 PreservedAnalyses PA;
309 PA.preserveSet<CFGAnalyses>();
310 PA.preserve<ScalarEvolutionAnalysis>();
311 return PA;