1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass hoists and/or decomposes/recomposes integer division and remainder
10 // instructions to enable CFG improvements and better codegen.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/DivRemPairs.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/Support/DebugCounter.h"
25 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
29 using namespace llvm::PatternMatch
;
31 #define DEBUG_TYPE "div-rem-pairs"
32 STATISTIC(NumPairs
, "Number of div/rem pairs");
33 STATISTIC(NumRecomposed
, "Number of instructions recomposed");
34 STATISTIC(NumHoisted
, "Number of instructions hoisted");
35 STATISTIC(NumDecomposed
, "Number of instructions decomposed");
36 DEBUG_COUNTER(DRPCounter
, "div-rem-pairs-transform",
37 "Controls transformations in div-rem-pairs pass");
40 struct ExpandedMatch
{
46 /// See if we can match: (which is the form we expand into)
47 /// X - ((X ?/ Y) * Y)
48 /// which is equivalent to:
50 static std::optional
<ExpandedMatch
> matchExpandedRem(Instruction
&I
) {
51 Value
*Dividend
, *XroundedDownToMultipleOfY
;
52 if (!match(&I
, m_Sub(m_Value(Dividend
), m_Value(XroundedDownToMultipleOfY
))))
57 // Look for ((X / Y) * Y)
59 XroundedDownToMultipleOfY
,
60 m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend
), m_Value(Divisor
)),
62 m_Deferred(Divisor
))))
66 M
.Key
.SignedOp
= Div
->getOpcode() == Instruction::SDiv
;
67 M
.Key
.Dividend
= Dividend
;
68 M
.Key
.Divisor
= Divisor
;
74 /// A thin wrapper to store two values that we matched as div-rem pair.
75 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
76 struct DivRemPairWorklistEntry
{
77 /// The actual udiv/sdiv instruction. Source of truth.
78 AssertingVH
<Instruction
> DivInst
;
80 /// The instruction that we have matched as a remainder instruction.
81 /// Should only be used as Value, don't introspect it.
82 AssertingVH
<Instruction
> RemInst
;
84 DivRemPairWorklistEntry(Instruction
*DivInst_
, Instruction
*RemInst_
)
85 : DivInst(DivInst_
), RemInst(RemInst_
) {
86 assert((DivInst
->getOpcode() == Instruction::UDiv
||
87 DivInst
->getOpcode() == Instruction::SDiv
) &&
89 assert(DivInst
->getType() == RemInst
->getType() && "Types should match.");
90 // We can't check anything else about remainder instruction,
91 // it's not strictly required to be a urem/srem.
94 /// The type for this pair, identical for both the div and rem.
95 Type
*getType() const { return DivInst
->getType(); }
97 /// Is this pair signed or unsigned?
98 bool isSigned() const { return DivInst
->getOpcode() == Instruction::SDiv
; }
100 /// In this pair, what are the divident and divisor?
101 Value
*getDividend() const { return DivInst
->getOperand(0); }
102 Value
*getDivisor() const { return DivInst
->getOperand(1); }
104 bool isRemExpanded() const {
105 switch (RemInst
->getOpcode()) {
106 case Instruction::SRem
:
107 case Instruction::URem
:
108 return false; // single 'rem' instruction - unexpanded form.
110 return true; // anything else means we have remainder in expanded form.
115 using DivRemWorklistTy
= SmallVector
<DivRemPairWorklistEntry
, 4>;
117 /// Find matching pairs of integer div/rem ops (they have the same numerator,
118 /// denominator, and signedness). Place those pairs into a worklist for further
119 /// processing. This indirection is needed because we have to use TrackingVH<>
120 /// because we will be doing RAUW, and if one of the rem instructions we change
121 /// happens to be an input to another div/rem in the maps, we'd have problems.
122 static DivRemWorklistTy
getWorklist(Function
&F
) {
123 // Insert all divide and remainder instructions into maps keyed by their
124 // operands and opcode (signed or unsigned).
125 DenseMap
<DivRemMapKey
, Instruction
*> DivMap
;
126 // Use a MapVector for RemMap so that instructions are moved/inserted in a
127 // deterministic order.
128 MapVector
<DivRemMapKey
, Instruction
*> RemMap
;
131 if (I
.getOpcode() == Instruction::SDiv
)
132 DivMap
[DivRemMapKey(true, I
.getOperand(0), I
.getOperand(1))] = &I
;
133 else if (I
.getOpcode() == Instruction::UDiv
)
134 DivMap
[DivRemMapKey(false, I
.getOperand(0), I
.getOperand(1))] = &I
;
135 else if (I
.getOpcode() == Instruction::SRem
)
136 RemMap
[DivRemMapKey(true, I
.getOperand(0), I
.getOperand(1))] = &I
;
137 else if (I
.getOpcode() == Instruction::URem
)
138 RemMap
[DivRemMapKey(false, I
.getOperand(0), I
.getOperand(1))] = &I
;
139 else if (auto Match
= matchExpandedRem(I
))
140 RemMap
[Match
->Key
] = Match
->Value
;
144 // We'll accumulate the matching pairs of div-rem instructions here.
145 DivRemWorklistTy Worklist
;
147 // We can iterate over either map because we are only looking for matched
148 // pairs. Choose remainders for efficiency because they are usually even more
149 // rare than division.
150 for (auto &RemPair
: RemMap
) {
151 // Find the matching division instruction from the division map.
152 auto It
= DivMap
.find(RemPair
.first
);
153 if (It
== DivMap
.end())
156 // We have a matching pair of div/rem instructions.
158 Instruction
*RemInst
= RemPair
.second
;
160 // Place it in the worklist.
161 Worklist
.emplace_back(It
->second
, RemInst
);
167 /// Find matching pairs of integer div/rem ops (they have the same numerator,
168 /// denominator, and signedness). If they exist in different basic blocks, bring
169 /// them together by hoisting or replace the common division operation that is
170 /// implicit in the remainder:
171 /// X % Y <--> X - ((X / Y) * Y).
173 /// We can largely ignore the normal safety and cost constraints on speculation
174 /// of these ops when we find a matching pair. This is because we are already
175 /// guaranteed that any exceptions and most cost are already incurred by the
176 /// first member of the pair.
178 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
179 /// SimplifyCFG, but it's split off on its own because it's different enough
180 /// that it doesn't quite match the stated objectives of those passes.
181 static bool optimizeDivRem(Function
&F
, const TargetTransformInfo
&TTI
,
182 const DominatorTree
&DT
) {
183 bool Changed
= false;
185 // Get the matching pairs of div-rem instructions. We want this extra
186 // indirection to avoid dealing with having to RAUW the keys of the maps.
187 DivRemWorklistTy Worklist
= getWorklist(F
);
189 // Process each entry in the worklist.
190 for (DivRemPairWorklistEntry
&E
: Worklist
) {
191 if (!DebugCounter::shouldExecute(DRPCounter
))
194 bool HasDivRemOp
= TTI
.hasDivRemOp(E
.getType(), E
.isSigned());
196 auto &DivInst
= E
.DivInst
;
197 auto &RemInst
= E
.RemInst
;
199 const bool RemOriginallyWasInExpandedForm
= E
.isRemExpanded();
200 (void)RemOriginallyWasInExpandedForm
; // suppress unused variable warning
202 if (HasDivRemOp
&& E
.isRemExpanded()) {
203 // The target supports div+rem but the rem is expanded.
204 // We should recompose it first.
205 Value
*X
= E
.getDividend();
206 Value
*Y
= E
.getDivisor();
207 Instruction
*RealRem
= E
.isSigned() ? BinaryOperator::CreateSRem(X
, Y
)
208 : BinaryOperator::CreateURem(X
, Y
);
209 // Note that we place it right next to the original expanded instruction,
210 // and letting further handling to move it if needed.
211 RealRem
->setName(RemInst
->getName() + ".recomposed");
212 RealRem
->insertAfter(RemInst
);
213 Instruction
*OrigRemInst
= RemInst
;
214 // Update AssertingVH<> with new instruction so it doesn't assert.
216 // And replace the original instruction with the new one.
217 OrigRemInst
->replaceAllUsesWith(RealRem
);
218 OrigRemInst
->eraseFromParent();
220 // Note that we have left ((X / Y) * Y) around.
221 // If it had other uses we could rewrite it as X - X % Y
225 assert((!E
.isRemExpanded() || !HasDivRemOp
) &&
226 "*If* the target supports div-rem, then by now the RemInst *is* "
227 "Instruction::[US]Rem.");
229 // If the target supports div+rem and the instructions are in the same block
230 // already, there's nothing to do. The backend should handle this. If the
231 // target does not support div+rem, then we will decompose the rem.
232 if (HasDivRemOp
&& RemInst
->getParent() == DivInst
->getParent())
235 bool DivDominates
= DT
.dominates(DivInst
, RemInst
);
236 if (!DivDominates
&& !DT
.dominates(RemInst
, DivInst
)) {
237 // We have matching div-rem pair, but they are in two different blocks,
238 // neither of which dominates one another.
240 BasicBlock
*PredBB
= nullptr;
241 BasicBlock
*DivBB
= DivInst
->getParent();
242 BasicBlock
*RemBB
= RemInst
->getParent();
244 // It's only safe to hoist if every instruction before the Div/Rem in the
245 // basic block is guaranteed to transfer execution.
246 auto IsSafeToHoist
= [](Instruction
*DivOrRem
, BasicBlock
*ParentBB
) {
247 for (auto I
= ParentBB
->begin(), E
= DivOrRem
->getIterator(); I
!= E
;
249 if (!isGuaranteedToTransferExecutionToSuccessor(&*I
))
255 // Look for something like this
262 // If the Rem block has a single predecessor and successor, and all paths
263 // from PredBB go to either RemBB or DivBB, and execution of RemBB and
264 // DivBB will always reach the Div/Rem, we can hoist Div to PredBB. If
265 // we have a DivRem operation we can also hoist Rem. Otherwise we'll leave
266 // Rem where it is and rewrite it to mul/sub.
267 if (RemBB
->getSingleSuccessor() == DivBB
) {
268 PredBB
= RemBB
->getUniquePredecessor();
270 // Look for something like this
275 // If the Rem and Din blocks share a unique predecessor, and all
276 // paths from PredBB go to either RemBB or DivBB, and execution of RemBB
277 // and DivBB will always reach the Div/Rem, we can hoist Div to PredBB.
278 // If we have a DivRem operation we can also hoist Rem. By hoisting both
279 // ops to the same block, we reduce code size and allow the DivRem to
280 // issue sooner. Without a DivRem op, this transformation is
281 // unprofitable because we would end up performing an extra Mul+Sub on
283 } else if (BasicBlock
*RemPredBB
= RemBB
->getUniquePredecessor()) {
284 // This hoist is only profitable when the target has a DivRem op.
285 if (HasDivRemOp
&& RemPredBB
== DivBB
->getUniquePredecessor())
288 // FIXME: We could handle more hoisting cases.
290 if (PredBB
&& !isa
<CatchSwitchInst
>(PredBB
->getTerminator()) &&
291 isGuaranteedToTransferExecutionToSuccessor(PredBB
->getTerminator()) &&
292 IsSafeToHoist(RemInst
, RemBB
) && IsSafeToHoist(DivInst
, DivBB
) &&
293 all_of(successors(PredBB
),
294 [&](BasicBlock
*BB
) { return BB
== DivBB
|| BB
== RemBB
; }) &&
295 all_of(predecessors(DivBB
),
296 [&](BasicBlock
*BB
) { return BB
== RemBB
|| BB
== PredBB
; })) {
298 DivInst
->moveBefore(PredBB
->getTerminator());
301 RemInst
->moveBefore(PredBB
->getTerminator());
308 // The target does not have a single div/rem operation,
309 // and the rem is already in expanded form. Nothing to do.
310 if (!HasDivRemOp
&& E
.isRemExpanded())
314 // The target has a single div/rem operation. Hoist the lower instruction
315 // to make the matched pair visible to the backend.
317 RemInst
->moveAfter(DivInst
);
319 DivInst
->moveAfter(RemInst
);
322 // The target does not have a single div/rem operation,
323 // and the rem is *not* in a already-expanded form.
324 // Decompose the remainder calculation as:
325 // X % Y --> X - ((X / Y) * Y).
327 assert(!RemOriginallyWasInExpandedForm
&&
328 "We should not be expanding if the rem was in expanded form to "
331 Value
*X
= E
.getDividend();
332 Value
*Y
= E
.getDivisor();
333 Instruction
*Mul
= BinaryOperator::CreateMul(DivInst
, Y
);
334 Instruction
*Sub
= BinaryOperator::CreateSub(X
, Mul
);
336 // If the remainder dominates, then hoist the division up to that block:
339 // %rem = srem %x, %y
341 // %div = sdiv %x, %y
344 // %div = sdiv %x, %y
345 // %mul = mul %div, %y
346 // %rem = sub %x, %mul
348 // If the division dominates, it's already in the right place. The mul+sub
349 // will be in a different block because we don't assume that they are
350 // cheap to speculatively execute:
353 // %div = sdiv %x, %y
355 // %rem = srem %x, %y
358 // %div = sdiv %x, %y
360 // %mul = mul %div, %y
361 // %rem = sub %x, %mul
363 // If the div and rem are in the same block, we do the same transform,
364 // but any code movement would be within the same block.
367 DivInst
->moveBefore(RemInst
);
368 Mul
->insertAfter(RemInst
);
369 Sub
->insertAfter(Mul
);
371 // If DivInst has the exact flag, remove it. Otherwise this optimization
372 // may replace a well-defined value 'X % Y' with poison.
373 DivInst
->dropPoisonGeneratingFlags();
375 // If X can be undef, X should be frozen first.
376 // For example, let's assume that Y = 1 & X = undef:
377 // %div = sdiv undef, 1 // %div = undef
378 // %rem = srem undef, 1 // %rem = 0
380 // %div = sdiv undef, 1 // %div = undef
381 // %mul = mul %div, 1 // %mul = undef
382 // %rem = sub %x, %mul // %rem = undef - undef = undef
383 // If X is not frozen, %rem becomes undef after transformation.
384 // TODO: We need a undef-specific checking function in ValueTracking
385 if (!isGuaranteedNotToBeUndefOrPoison(X
, nullptr, DivInst
, &DT
)) {
386 auto *FrX
= new FreezeInst(X
, X
->getName() + ".frozen", DivInst
);
387 DivInst
->setOperand(0, FrX
);
388 Sub
->setOperand(0, FrX
);
390 // Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0,
391 // but %rem in tgt can be one of many integer values.
392 if (!isGuaranteedNotToBeUndefOrPoison(Y
, nullptr, DivInst
, &DT
)) {
393 auto *FrY
= new FreezeInst(Y
, Y
->getName() + ".frozen", DivInst
);
394 DivInst
->setOperand(1, FrY
);
395 Mul
->setOperand(1, FrY
);
398 // Now kill the explicit remainder. We have replaced it with:
399 // (sub X, (mul (div X, Y), Y)
400 Sub
->setName(RemInst
->getName() + ".decomposed");
401 Instruction
*OrigRemInst
= RemInst
;
402 // Update AssertingVH<> with new instruction so it doesn't assert.
404 // And replace the original instruction with the new one.
405 OrigRemInst
->replaceAllUsesWith(Sub
);
406 OrigRemInst
->eraseFromParent();
415 // Pass manager boilerplate below here.
417 PreservedAnalyses
DivRemPairsPass::run(Function
&F
,
418 FunctionAnalysisManager
&FAM
) {
419 TargetTransformInfo
&TTI
= FAM
.getResult
<TargetIRAnalysis
>(F
);
420 DominatorTree
&DT
= FAM
.getResult
<DominatorTreeAnalysis
>(F
);
421 if (!optimizeDivRem(F
, TTI
, DT
))
422 return PreservedAnalyses::all();
423 // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
424 PreservedAnalyses PA
;
425 PA
.preserveSet
<CFGAnalyses
>();