[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopIdiomRecognize.cpp
blob3721564890ddb4e9d529250954e3cffac0ff3777
1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form. In cases that this kicks in, it can be a significant
11 // performance win.
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
19 //===----------------------------------------------------------------------===//
21 // TODO List:
23 // Future loop memory idioms to recognize:
24 // memcmp, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 // fpowi
28 // This could recognize common matrix multiplies and dot product idioms and
29 // replace them with calls to BLAS (if linked in??).
31 //===----------------------------------------------------------------------===//
33 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
34 #include "llvm/ADT/APInt.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SetVector.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/StringRef.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/CmpInstAnalysis.h"
45 #include "llvm/Analysis/LoopAccessAnalysis.h"
46 #include "llvm/Analysis/LoopInfo.h"
47 #include "llvm/Analysis/LoopPass.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/MemorySSA.h"
50 #include "llvm/Analysis/MemorySSAUpdater.h"
51 #include "llvm/Analysis/MustExecute.h"
52 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
53 #include "llvm/Analysis/ScalarEvolution.h"
54 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/Analysis/TargetTransformInfo.h"
57 #include "llvm/Analysis/ValueTracking.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Dominators.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/GlobalVariable.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/InstrTypes.h"
69 #include "llvm/IR/Instruction.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/IntrinsicInst.h"
72 #include "llvm/IR/Intrinsics.h"
73 #include "llvm/IR/LLVMContext.h"
74 #include "llvm/IR/Module.h"
75 #include "llvm/IR/PassManager.h"
76 #include "llvm/IR/PatternMatch.h"
77 #include "llvm/IR/Type.h"
78 #include "llvm/IR/User.h"
79 #include "llvm/IR/Value.h"
80 #include "llvm/IR/ValueHandle.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/InstructionCost.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Transforms/Utils/BuildLibCalls.h"
87 #include "llvm/Transforms/Utils/Local.h"
88 #include "llvm/Transforms/Utils/LoopUtils.h"
89 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <utility>
94 #include <vector>
96 using namespace llvm;
98 #define DEBUG_TYPE "loop-idiom"
100 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
101 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
102 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores");
103 STATISTIC(
104 NumShiftUntilBitTest,
105 "Number of uncountable loops recognized as 'shift until bitttest' idiom");
106 STATISTIC(NumShiftUntilZero,
107 "Number of uncountable loops recognized as 'shift until zero' idiom");
109 bool DisableLIRP::All;
110 static cl::opt<bool, true>
111 DisableLIRPAll("disable-" DEBUG_TYPE "-all",
112 cl::desc("Options to disable Loop Idiom Recognize Pass."),
113 cl::location(DisableLIRP::All), cl::init(false),
114 cl::ReallyHidden);
116 bool DisableLIRP::Memset;
117 static cl::opt<bool, true>
118 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
119 cl::desc("Proceed with loop idiom recognize pass, but do "
120 "not convert loop(s) to memset."),
121 cl::location(DisableLIRP::Memset), cl::init(false),
122 cl::ReallyHidden);
124 bool DisableLIRP::Memcpy;
125 static cl::opt<bool, true>
126 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
127 cl::desc("Proceed with loop idiom recognize pass, but do "
128 "not convert loop(s) to memcpy."),
129 cl::location(DisableLIRP::Memcpy), cl::init(false),
130 cl::ReallyHidden);
132 static cl::opt<bool> UseLIRCodeSizeHeurs(
133 "use-lir-code-size-heurs",
134 cl::desc("Use loop idiom recognition code size heuristics when compiling"
135 "with -Os/-Oz"),
136 cl::init(true), cl::Hidden);
138 namespace {
140 class LoopIdiomRecognize {
141 Loop *CurLoop = nullptr;
142 AliasAnalysis *AA;
143 DominatorTree *DT;
144 LoopInfo *LI;
145 ScalarEvolution *SE;
146 TargetLibraryInfo *TLI;
147 const TargetTransformInfo *TTI;
148 const DataLayout *DL;
149 OptimizationRemarkEmitter &ORE;
150 bool ApplyCodeSizeHeuristics;
151 std::unique_ptr<MemorySSAUpdater> MSSAU;
153 public:
154 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
155 LoopInfo *LI, ScalarEvolution *SE,
156 TargetLibraryInfo *TLI,
157 const TargetTransformInfo *TTI, MemorySSA *MSSA,
158 const DataLayout *DL,
159 OptimizationRemarkEmitter &ORE)
160 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
161 if (MSSA)
162 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
165 bool runOnLoop(Loop *L);
167 private:
168 using StoreList = SmallVector<StoreInst *, 8>;
169 using StoreListMap = MapVector<Value *, StoreList>;
171 StoreListMap StoreRefsForMemset;
172 StoreListMap StoreRefsForMemsetPattern;
173 StoreList StoreRefsForMemcpy;
174 bool HasMemset;
175 bool HasMemsetPattern;
176 bool HasMemcpy;
178 /// Return code for isLegalStore()
179 enum LegalStoreKind {
180 None = 0,
181 Memset,
182 MemsetPattern,
183 Memcpy,
184 UnorderedAtomicMemcpy,
185 DontUse // Dummy retval never to be used. Allows catching errors in retval
186 // handling.
189 /// \name Countable Loop Idiom Handling
190 /// @{
192 bool runOnCountableLoop();
193 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
194 SmallVectorImpl<BasicBlock *> &ExitBlocks);
196 void collectStores(BasicBlock *BB);
197 LegalStoreKind isLegalStore(StoreInst *SI);
198 enum class ForMemset { No, Yes };
199 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
200 ForMemset For);
202 template <typename MemInst>
203 bool processLoopMemIntrinsic(
204 BasicBlock *BB,
205 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
206 const SCEV *BECount);
207 bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount);
208 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
210 bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV,
211 MaybeAlign StoreAlignment, Value *StoredVal,
212 Instruction *TheStore,
213 SmallPtrSetImpl<Instruction *> &Stores,
214 const SCEVAddRecExpr *Ev, const SCEV *BECount,
215 bool IsNegStride, bool IsLoopMemset = false);
216 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
217 bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr,
218 const SCEV *StoreSize, MaybeAlign StoreAlign,
219 MaybeAlign LoadAlign, Instruction *TheStore,
220 Instruction *TheLoad,
221 const SCEVAddRecExpr *StoreEv,
222 const SCEVAddRecExpr *LoadEv,
223 const SCEV *BECount);
224 bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
225 bool IsLoopMemset = false);
227 /// @}
228 /// \name Noncountable Loop Idiom Handling
229 /// @{
231 bool runOnNoncountableLoop();
233 bool recognizePopcount();
234 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
235 PHINode *CntPhi, Value *Var);
236 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz
237 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
238 Instruction *CntInst, PHINode *CntPhi,
239 Value *Var, Instruction *DefX,
240 const DebugLoc &DL, bool ZeroCheck,
241 bool IsCntPhiUsedOutsideLoop);
243 bool recognizeShiftUntilBitTest();
244 bool recognizeShiftUntilZero();
246 /// @}
248 } // end anonymous namespace
250 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
251 LoopStandardAnalysisResults &AR,
252 LPMUpdater &) {
253 if (DisableLIRP::All)
254 return PreservedAnalyses::all();
256 const auto *DL = &L.getHeader()->getModule()->getDataLayout();
258 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
259 // pass. Function analyses need to be preserved across loop transformations
260 // but ORE cannot be preserved (see comment before the pass definition).
261 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
263 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
264 AR.MSSA, DL, ORE);
265 if (!LIR.runOnLoop(&L))
266 return PreservedAnalyses::all();
268 auto PA = getLoopPassPreservedAnalyses();
269 if (AR.MSSA)
270 PA.preserve<MemorySSAAnalysis>();
271 return PA;
274 static void deleteDeadInstruction(Instruction *I) {
275 I->replaceAllUsesWith(PoisonValue::get(I->getType()));
276 I->eraseFromParent();
279 //===----------------------------------------------------------------------===//
281 // Implementation of LoopIdiomRecognize
283 //===----------------------------------------------------------------------===//
285 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
286 CurLoop = L;
287 // If the loop could not be converted to canonical form, it must have an
288 // indirectbr in it, just give up.
289 if (!L->getLoopPreheader())
290 return false;
292 // Disable loop idiom recognition if the function's name is a common idiom.
293 StringRef Name = L->getHeader()->getParent()->getName();
294 if (Name == "memset" || Name == "memcpy")
295 return false;
297 // Determine if code size heuristics need to be applied.
298 ApplyCodeSizeHeuristics =
299 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
301 HasMemset = TLI->has(LibFunc_memset);
302 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
303 HasMemcpy = TLI->has(LibFunc_memcpy);
305 if (HasMemset || HasMemsetPattern || HasMemcpy)
306 if (SE->hasLoopInvariantBackedgeTakenCount(L))
307 return runOnCountableLoop();
309 return runOnNoncountableLoop();
312 bool LoopIdiomRecognize::runOnCountableLoop() {
313 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
314 assert(!isa<SCEVCouldNotCompute>(BECount) &&
315 "runOnCountableLoop() called on a loop without a predictable"
316 "backedge-taken count");
318 // If this loop executes exactly one time, then it should be peeled, not
319 // optimized by this pass.
320 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
321 if (BECst->getAPInt() == 0)
322 return false;
324 SmallVector<BasicBlock *, 8> ExitBlocks;
325 CurLoop->getUniqueExitBlocks(ExitBlocks);
327 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
328 << CurLoop->getHeader()->getParent()->getName()
329 << "] Countable Loop %" << CurLoop->getHeader()->getName()
330 << "\n");
332 // The following transforms hoist stores/memsets into the loop pre-header.
333 // Give up if the loop has instructions that may throw.
334 SimpleLoopSafetyInfo SafetyInfo;
335 SafetyInfo.computeLoopSafetyInfo(CurLoop);
336 if (SafetyInfo.anyBlockMayThrow())
337 return false;
339 bool MadeChange = false;
341 // Scan all the blocks in the loop that are not in subloops.
342 for (auto *BB : CurLoop->getBlocks()) {
343 // Ignore blocks in subloops.
344 if (LI->getLoopFor(BB) != CurLoop)
345 continue;
347 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
349 return MadeChange;
352 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
353 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
354 return ConstStride->getAPInt();
357 /// getMemSetPatternValue - If a strided store of the specified value is safe to
358 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
359 /// be passed in. Otherwise, return null.
361 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
362 /// just replicate their input array and then pass on to memset_pattern16.
363 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
364 // FIXME: This could check for UndefValue because it can be merged into any
365 // other valid pattern.
367 // If the value isn't a constant, we can't promote it to being in a constant
368 // array. We could theoretically do a store to an alloca or something, but
369 // that doesn't seem worthwhile.
370 Constant *C = dyn_cast<Constant>(V);
371 if (!C || isa<ConstantExpr>(C))
372 return nullptr;
374 // Only handle simple values that are a power of two bytes in size.
375 uint64_t Size = DL->getTypeSizeInBits(V->getType());
376 if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
377 return nullptr;
379 // Don't care enough about darwin/ppc to implement this.
380 if (DL->isBigEndian())
381 return nullptr;
383 // Convert to size in bytes.
384 Size /= 8;
386 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
387 // if the top and bottom are the same (e.g. for vectors and large integers).
388 if (Size > 16)
389 return nullptr;
391 // If the constant is exactly 16 bytes, just use it.
392 if (Size == 16)
393 return C;
395 // Otherwise, we'll use an array of the constants.
396 unsigned ArraySize = 16 / Size;
397 ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
398 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
401 LoopIdiomRecognize::LegalStoreKind
402 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
403 // Don't touch volatile stores.
404 if (SI->isVolatile())
405 return LegalStoreKind::None;
406 // We only want simple or unordered-atomic stores.
407 if (!SI->isUnordered())
408 return LegalStoreKind::None;
410 // Avoid merging nontemporal stores.
411 if (SI->getMetadata(LLVMContext::MD_nontemporal))
412 return LegalStoreKind::None;
414 Value *StoredVal = SI->getValueOperand();
415 Value *StorePtr = SI->getPointerOperand();
417 // Don't convert stores of non-integral pointer types to memsets (which stores
418 // integers).
419 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
420 return LegalStoreKind::None;
422 // Reject stores that are so large that they overflow an unsigned.
423 // When storing out scalable vectors we bail out for now, since the code
424 // below currently only works for constant strides.
425 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
426 if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) ||
427 (SizeInBits.getFixedValue() >> 32) != 0)
428 return LegalStoreKind::None;
430 // See if the pointer expression is an AddRec like {base,+,1} on the current
431 // loop, which indicates a strided store. If we have something else, it's a
432 // random store we can't handle.
433 const SCEVAddRecExpr *StoreEv =
434 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
435 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
436 return LegalStoreKind::None;
438 // Check to see if we have a constant stride.
439 if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
440 return LegalStoreKind::None;
442 // See if the store can be turned into a memset.
444 // If the stored value is a byte-wise value (like i32 -1), then it may be
445 // turned into a memset of i8 -1, assuming that all the consecutive bytes
446 // are stored. A store of i32 0x01020304 can never be turned into a memset,
447 // but it can be turned into memset_pattern if the target supports it.
448 Value *SplatValue = isBytewiseValue(StoredVal, *DL);
450 // Note: memset and memset_pattern on unordered-atomic is yet not supported
451 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
453 // If we're allowed to form a memset, and the stored value would be
454 // acceptable for memset, use it.
455 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
456 // Verify that the stored value is loop invariant. If not, we can't
457 // promote the memset.
458 CurLoop->isLoopInvariant(SplatValue)) {
459 // It looks like we can use SplatValue.
460 return LegalStoreKind::Memset;
462 if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
463 // Don't create memset_pattern16s with address spaces.
464 StorePtr->getType()->getPointerAddressSpace() == 0 &&
465 getMemSetPatternValue(StoredVal, DL)) {
466 // It looks like we can use PatternValue!
467 return LegalStoreKind::MemsetPattern;
470 // Otherwise, see if the store can be turned into a memcpy.
471 if (HasMemcpy && !DisableLIRP::Memcpy) {
472 // Check to see if the stride matches the size of the store. If so, then we
473 // know that every byte is touched in the loop.
474 APInt Stride = getStoreStride(StoreEv);
475 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
476 if (StoreSize != Stride && StoreSize != -Stride)
477 return LegalStoreKind::None;
479 // The store must be feeding a non-volatile load.
480 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
482 // Only allow non-volatile loads
483 if (!LI || LI->isVolatile())
484 return LegalStoreKind::None;
485 // Only allow simple or unordered-atomic loads
486 if (!LI->isUnordered())
487 return LegalStoreKind::None;
489 // See if the pointer expression is an AddRec like {base,+,1} on the current
490 // loop, which indicates a strided load. If we have something else, it's a
491 // random load we can't handle.
492 const SCEVAddRecExpr *LoadEv =
493 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
494 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
495 return LegalStoreKind::None;
497 // The store and load must share the same stride.
498 if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
499 return LegalStoreKind::None;
501 // Success. This store can be converted into a memcpy.
502 UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
503 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
504 : LegalStoreKind::Memcpy;
506 // This store can't be transformed into a memset/memcpy.
507 return LegalStoreKind::None;
510 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
511 StoreRefsForMemset.clear();
512 StoreRefsForMemsetPattern.clear();
513 StoreRefsForMemcpy.clear();
514 for (Instruction &I : *BB) {
515 StoreInst *SI = dyn_cast<StoreInst>(&I);
516 if (!SI)
517 continue;
519 // Make sure this is a strided store with a constant stride.
520 switch (isLegalStore(SI)) {
521 case LegalStoreKind::None:
522 // Nothing to do
523 break;
524 case LegalStoreKind::Memset: {
525 // Find the base pointer.
526 Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
527 StoreRefsForMemset[Ptr].push_back(SI);
528 } break;
529 case LegalStoreKind::MemsetPattern: {
530 // Find the base pointer.
531 Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
532 StoreRefsForMemsetPattern[Ptr].push_back(SI);
533 } break;
534 case LegalStoreKind::Memcpy:
535 case LegalStoreKind::UnorderedAtomicMemcpy:
536 StoreRefsForMemcpy.push_back(SI);
537 break;
538 default:
539 assert(false && "unhandled return value");
540 break;
545 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
546 /// with the specified backedge count. This block is known to be in the current
547 /// loop and not in any subloops.
548 bool LoopIdiomRecognize::runOnLoopBlock(
549 BasicBlock *BB, const SCEV *BECount,
550 SmallVectorImpl<BasicBlock *> &ExitBlocks) {
551 // We can only promote stores in this block if they are unconditionally
552 // executed in the loop. For a block to be unconditionally executed, it has
553 // to dominate all the exit blocks of the loop. Verify this now.
554 for (BasicBlock *ExitBlock : ExitBlocks)
555 if (!DT->dominates(BB, ExitBlock))
556 return false;
558 bool MadeChange = false;
559 // Look for store instructions, which may be optimized to memset/memcpy.
560 collectStores(BB);
562 // Look for a single store or sets of stores with a common base, which can be
563 // optimized into a memset (memset_pattern). The latter most commonly happens
564 // with structs and handunrolled loops.
565 for (auto &SL : StoreRefsForMemset)
566 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
568 for (auto &SL : StoreRefsForMemsetPattern)
569 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
571 // Optimize the store into a memcpy, if it feeds an similarly strided load.
572 for (auto &SI : StoreRefsForMemcpy)
573 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
575 MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
576 BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
577 MadeChange |= processLoopMemIntrinsic<MemSetInst>(
578 BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
580 return MadeChange;
583 /// See if this store(s) can be promoted to a memset.
584 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
585 const SCEV *BECount, ForMemset For) {
586 // Try to find consecutive stores that can be transformed into memsets.
587 SetVector<StoreInst *> Heads, Tails;
588 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
590 // Do a quadratic search on all of the given stores and find
591 // all of the pairs of stores that follow each other.
592 SmallVector<unsigned, 16> IndexQueue;
593 for (unsigned i = 0, e = SL.size(); i < e; ++i) {
594 assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
596 Value *FirstStoredVal = SL[i]->getValueOperand();
597 Value *FirstStorePtr = SL[i]->getPointerOperand();
598 const SCEVAddRecExpr *FirstStoreEv =
599 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
600 APInt FirstStride = getStoreStride(FirstStoreEv);
601 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
603 // See if we can optimize just this store in isolation.
604 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
605 Heads.insert(SL[i]);
606 continue;
609 Value *FirstSplatValue = nullptr;
610 Constant *FirstPatternValue = nullptr;
612 if (For == ForMemset::Yes)
613 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
614 else
615 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
617 assert((FirstSplatValue || FirstPatternValue) &&
618 "Expected either splat value or pattern value.");
620 IndexQueue.clear();
621 // If a store has multiple consecutive store candidates, search Stores
622 // array according to the sequence: from i+1 to e, then from i-1 to 0.
623 // This is because usually pairing with immediate succeeding or preceding
624 // candidate create the best chance to find memset opportunity.
625 unsigned j = 0;
626 for (j = i + 1; j < e; ++j)
627 IndexQueue.push_back(j);
628 for (j = i; j > 0; --j)
629 IndexQueue.push_back(j - 1);
631 for (auto &k : IndexQueue) {
632 assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
633 Value *SecondStorePtr = SL[k]->getPointerOperand();
634 const SCEVAddRecExpr *SecondStoreEv =
635 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
636 APInt SecondStride = getStoreStride(SecondStoreEv);
638 if (FirstStride != SecondStride)
639 continue;
641 Value *SecondStoredVal = SL[k]->getValueOperand();
642 Value *SecondSplatValue = nullptr;
643 Constant *SecondPatternValue = nullptr;
645 if (For == ForMemset::Yes)
646 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
647 else
648 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
650 assert((SecondSplatValue || SecondPatternValue) &&
651 "Expected either splat value or pattern value.");
653 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
654 if (For == ForMemset::Yes) {
655 if (isa<UndefValue>(FirstSplatValue))
656 FirstSplatValue = SecondSplatValue;
657 if (FirstSplatValue != SecondSplatValue)
658 continue;
659 } else {
660 if (isa<UndefValue>(FirstPatternValue))
661 FirstPatternValue = SecondPatternValue;
662 if (FirstPatternValue != SecondPatternValue)
663 continue;
665 Tails.insert(SL[k]);
666 Heads.insert(SL[i]);
667 ConsecutiveChain[SL[i]] = SL[k];
668 break;
673 // We may run into multiple chains that merge into a single chain. We mark the
674 // stores that we transformed so that we don't visit the same store twice.
675 SmallPtrSet<Value *, 16> TransformedStores;
676 bool Changed = false;
678 // For stores that start but don't end a link in the chain:
679 for (StoreInst *I : Heads) {
680 if (Tails.count(I))
681 continue;
683 // We found a store instr that starts a chain. Now follow the chain and try
684 // to transform it.
685 SmallPtrSet<Instruction *, 8> AdjacentStores;
686 StoreInst *HeadStore = I;
687 unsigned StoreSize = 0;
689 // Collect the chain into a list.
690 while (Tails.count(I) || Heads.count(I)) {
691 if (TransformedStores.count(I))
692 break;
693 AdjacentStores.insert(I);
695 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
696 // Move to the next value in the chain.
697 I = ConsecutiveChain[I];
700 Value *StoredVal = HeadStore->getValueOperand();
701 Value *StorePtr = HeadStore->getPointerOperand();
702 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
703 APInt Stride = getStoreStride(StoreEv);
705 // Check to see if the stride matches the size of the stores. If so, then
706 // we know that every byte is touched in the loop.
707 if (StoreSize != Stride && StoreSize != -Stride)
708 continue;
710 bool IsNegStride = StoreSize == -Stride;
712 Type *IntIdxTy = DL->getIndexType(StorePtr->getType());
713 const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize);
714 if (processLoopStridedStore(StorePtr, StoreSizeSCEV,
715 MaybeAlign(HeadStore->getAlign()), StoredVal,
716 HeadStore, AdjacentStores, StoreEv, BECount,
717 IsNegStride)) {
718 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
719 Changed = true;
723 return Changed;
726 /// processLoopMemIntrinsic - Template function for calling different processor
727 /// functions based on mem intrinsic type.
728 template <typename MemInst>
729 bool LoopIdiomRecognize::processLoopMemIntrinsic(
730 BasicBlock *BB,
731 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
732 const SCEV *BECount) {
733 bool MadeChange = false;
734 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
735 Instruction *Inst = &*I++;
736 // Look for memory instructions, which may be optimized to a larger one.
737 if (MemInst *MI = dyn_cast<MemInst>(Inst)) {
738 WeakTrackingVH InstPtr(&*I);
739 if (!(this->*Processor)(MI, BECount))
740 continue;
741 MadeChange = true;
743 // If processing the instruction invalidated our iterator, start over from
744 // the top of the block.
745 if (!InstPtr)
746 I = BB->begin();
749 return MadeChange;
752 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy
753 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI,
754 const SCEV *BECount) {
755 // We can only handle non-volatile memcpys with a constant size.
756 if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength()))
757 return false;
759 // If we're not allowed to hack on memcpy, we fail.
760 if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy)
761 return false;
763 Value *Dest = MCI->getDest();
764 Value *Source = MCI->getSource();
765 if (!Dest || !Source)
766 return false;
768 // See if the load and store pointer expressions are AddRec like {base,+,1} on
769 // the current loop, which indicates a strided load and store. If we have
770 // something else, it's a random load or store we can't handle.
771 const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest));
772 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
773 return false;
774 const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source));
775 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
776 return false;
778 // Reject memcpys that are so large that they overflow an unsigned.
779 uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue();
780 if ((SizeInBytes >> 32) != 0)
781 return false;
783 // Check if the stride matches the size of the memcpy. If so, then we know
784 // that every byte is touched in the loop.
785 const SCEVConstant *ConstStoreStride =
786 dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
787 const SCEVConstant *ConstLoadStride =
788 dyn_cast<SCEVConstant>(LoadEv->getOperand(1));
789 if (!ConstStoreStride || !ConstLoadStride)
790 return false;
792 APInt StoreStrideValue = ConstStoreStride->getAPInt();
793 APInt LoadStrideValue = ConstLoadStride->getAPInt();
794 // Huge stride value - give up
795 if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64)
796 return false;
798 if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) {
799 ORE.emit([&]() {
800 return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI)
801 << ore::NV("Inst", "memcpy") << " in "
802 << ore::NV("Function", MCI->getFunction())
803 << " function will not be hoisted: "
804 << ore::NV("Reason", "memcpy size is not equal to stride");
806 return false;
809 int64_t StoreStrideInt = StoreStrideValue.getSExtValue();
810 int64_t LoadStrideInt = LoadStrideValue.getSExtValue();
811 // Check if the load stride matches the store stride.
812 if (StoreStrideInt != LoadStrideInt)
813 return false;
815 return processLoopStoreOfLoopLoad(
816 Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes),
817 MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv,
818 BECount);
821 /// processLoopMemSet - See if this memset can be promoted to a large memset.
822 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
823 const SCEV *BECount) {
824 // We can only handle non-volatile memsets.
825 if (MSI->isVolatile())
826 return false;
828 // If we're not allowed to hack on memset, we fail.
829 if (!HasMemset || DisableLIRP::Memset)
830 return false;
832 Value *Pointer = MSI->getDest();
834 // See if the pointer expression is an AddRec like {base,+,1} on the current
835 // loop, which indicates a strided store. If we have something else, it's a
836 // random store we can't handle.
837 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
838 if (!Ev || Ev->getLoop() != CurLoop)
839 return false;
840 if (!Ev->isAffine()) {
841 LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n");
842 return false;
845 const SCEV *PointerStrideSCEV = Ev->getOperand(1);
846 const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength());
847 if (!PointerStrideSCEV || !MemsetSizeSCEV)
848 return false;
850 bool IsNegStride = false;
851 const bool IsConstantSize = isa<ConstantInt>(MSI->getLength());
853 if (IsConstantSize) {
854 // Memset size is constant.
855 // Check if the pointer stride matches the memset size. If so, then
856 // we know that every byte is touched in the loop.
857 LLVM_DEBUG(dbgs() << " memset size is constant\n");
858 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
859 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
860 if (!ConstStride)
861 return false;
863 APInt Stride = ConstStride->getAPInt();
864 if (SizeInBytes != Stride && SizeInBytes != -Stride)
865 return false;
867 IsNegStride = SizeInBytes == -Stride;
868 } else {
869 // Memset size is non-constant.
870 // Check if the pointer stride matches the memset size.
871 // To be conservative, the pass would not promote pointers that aren't in
872 // address space zero. Also, the pass only handles memset length and stride
873 // that are invariant for the top level loop.
874 LLVM_DEBUG(dbgs() << " memset size is non-constant\n");
875 if (Pointer->getType()->getPointerAddressSpace() != 0) {
876 LLVM_DEBUG(dbgs() << " pointer is not in address space zero, "
877 << "abort\n");
878 return false;
880 if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) {
881 LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, "
882 << "abort\n");
883 return false;
886 // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV
887 IsNegStride = PointerStrideSCEV->isNonConstantNegative();
888 const SCEV *PositiveStrideSCEV =
889 IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV)
890 : PointerStrideSCEV;
891 LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n"
892 << " PositiveStrideSCEV: " << *PositiveStrideSCEV
893 << "\n");
895 if (PositiveStrideSCEV != MemsetSizeSCEV) {
896 // If an expression is covered by the loop guard, compare again and
897 // proceed with optimization if equal.
898 const SCEV *FoldedPositiveStride =
899 SE->applyLoopGuards(PositiveStrideSCEV, CurLoop);
900 const SCEV *FoldedMemsetSize =
901 SE->applyLoopGuards(MemsetSizeSCEV, CurLoop);
903 LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n"
904 << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n"
905 << " FoldedPositiveStride: " << *FoldedPositiveStride
906 << "\n");
908 if (FoldedPositiveStride != FoldedMemsetSize) {
909 LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n");
910 return false;
915 // Verify that the memset value is loop invariant. If not, we can't promote
916 // the memset.
917 Value *SplatValue = MSI->getValue();
918 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
919 return false;
921 SmallPtrSet<Instruction *, 1> MSIs;
922 MSIs.insert(MSI);
923 return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()),
924 MSI->getDestAlign(), SplatValue, MSI, MSIs, Ev,
925 BECount, IsNegStride, /*IsLoopMemset=*/true);
928 /// mayLoopAccessLocation - Return true if the specified loop might access the
929 /// specified pointer location, which is a loop-strided access. The 'Access'
930 /// argument specifies what the verboten forms of access are (read or write).
931 static bool
932 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
933 const SCEV *BECount, const SCEV *StoreSizeSCEV,
934 AliasAnalysis &AA,
935 SmallPtrSetImpl<Instruction *> &IgnoredInsts) {
936 // Get the location that may be stored across the loop. Since the access is
937 // strided positively through memory, we say that the modified location starts
938 // at the pointer and has infinite size.
939 LocationSize AccessSize = LocationSize::afterPointer();
941 // If the loop iterates a fixed number of times, we can refine the access size
942 // to be exactly the size of the memset, which is (BECount+1)*StoreSize
943 const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount);
944 const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
945 if (BECst && ConstSize) {
946 std::optional<uint64_t> BEInt = BECst->getAPInt().tryZExtValue();
947 std::optional<uint64_t> SizeInt = ConstSize->getAPInt().tryZExtValue();
948 // FIXME: Should this check for overflow?
949 if (BEInt && SizeInt)
950 AccessSize = LocationSize::precise((*BEInt + 1) * *SizeInt);
953 // TODO: For this to be really effective, we have to dive into the pointer
954 // operand in the store. Store to &A[i] of 100 will always return may alias
955 // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
956 // which will then no-alias a store to &A[100].
957 MemoryLocation StoreLoc(Ptr, AccessSize);
959 for (BasicBlock *B : L->blocks())
960 for (Instruction &I : *B)
961 if (!IgnoredInsts.contains(&I) &&
962 isModOrRefSet(AA.getModRefInfo(&I, StoreLoc) & Access))
963 return true;
964 return false;
967 // If we have a negative stride, Start refers to the end of the memory location
968 // we're trying to memset. Therefore, we need to recompute the base pointer,
969 // which is just Start - BECount*Size.
970 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
971 Type *IntPtr, const SCEV *StoreSizeSCEV,
972 ScalarEvolution *SE) {
973 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
974 if (!StoreSizeSCEV->isOne()) {
975 // index = back edge count * store size
976 Index = SE->getMulExpr(Index,
977 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
978 SCEV::FlagNUW);
980 // base pointer = start - index * store size
981 return SE->getMinusSCEV(Start, Index);
984 /// Compute the number of bytes as a SCEV from the backedge taken count.
986 /// This also maps the SCEV into the provided type and tries to handle the
987 /// computation in a way that will fold cleanly.
988 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
989 const SCEV *StoreSizeSCEV, Loop *CurLoop,
990 const DataLayout *DL, ScalarEvolution *SE) {
991 const SCEV *TripCountSCEV =
992 SE->getTripCountFromExitCount(BECount, IntPtr, CurLoop);
993 return SE->getMulExpr(TripCountSCEV,
994 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
995 SCEV::FlagNUW);
998 /// processLoopStridedStore - We see a strided store of some value. If we can
999 /// transform this into a memset or memset_pattern in the loop preheader, do so.
1000 bool LoopIdiomRecognize::processLoopStridedStore(
1001 Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment,
1002 Value *StoredVal, Instruction *TheStore,
1003 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
1004 const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) {
1005 Module *M = TheStore->getModule();
1006 Value *SplatValue = isBytewiseValue(StoredVal, *DL);
1007 Constant *PatternValue = nullptr;
1009 if (!SplatValue)
1010 PatternValue = getMemSetPatternValue(StoredVal, DL);
1012 assert((SplatValue || PatternValue) &&
1013 "Expected either splat value or pattern value.");
1015 // The trip count of the loop and the base pointer of the addrec SCEV is
1016 // guaranteed to be loop invariant, which means that it should dominate the
1017 // header. This allows us to insert code for it in the preheader.
1018 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
1019 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1020 IRBuilder<> Builder(Preheader->getTerminator());
1021 SCEVExpander Expander(*SE, *DL, "loop-idiom");
1022 SCEVExpanderCleaner ExpCleaner(Expander);
1024 Type *DestInt8PtrTy = Builder.getPtrTy(DestAS);
1025 Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
1027 bool Changed = false;
1028 const SCEV *Start = Ev->getStart();
1029 // Handle negative strided loops.
1030 if (IsNegStride)
1031 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE);
1033 // TODO: ideally we should still be able to generate memset if SCEV expander
1034 // is taught to generate the dependencies at the latest point.
1035 if (!Expander.isSafeToExpand(Start))
1036 return Changed;
1038 // Okay, we have a strided store "p[i]" of a splattable value. We can turn
1039 // this into a memset in the loop preheader now if we want. However, this
1040 // would be unsafe to do if there is anything else in the loop that may read
1041 // or write to the aliased location. Check for any overlap by generating the
1042 // base pointer and checking the region.
1043 Value *BasePtr =
1044 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
1046 // From here on out, conservatively report to the pass manager that we've
1047 // changed the IR, even if we later clean up these added instructions. There
1048 // may be structural differences e.g. in the order of use lists not accounted
1049 // for in just a textual dump of the IR. This is written as a variable, even
1050 // though statically all the places this dominates could be replaced with
1051 // 'true', with the hope that anyone trying to be clever / "more precise" with
1052 // the return value will read this comment, and leave them alone.
1053 Changed = true;
1055 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1056 StoreSizeSCEV, *AA, Stores))
1057 return Changed;
1059 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
1060 return Changed;
1062 // Okay, everything looks good, insert the memset.
1064 const SCEV *NumBytesS =
1065 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1067 // TODO: ideally we should still be able to generate memset if SCEV expander
1068 // is taught to generate the dependencies at the latest point.
1069 if (!Expander.isSafeToExpand(NumBytesS))
1070 return Changed;
1072 Value *NumBytes =
1073 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1075 if (!SplatValue && !isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16))
1076 return Changed;
1078 AAMDNodes AATags = TheStore->getAAMetadata();
1079 for (Instruction *Store : Stores)
1080 AATags = AATags.merge(Store->getAAMetadata());
1081 if (auto CI = dyn_cast<ConstantInt>(NumBytes))
1082 AATags = AATags.extendTo(CI->getZExtValue());
1083 else
1084 AATags = AATags.extendTo(-1);
1086 CallInst *NewCall;
1087 if (SplatValue) {
1088 NewCall = Builder.CreateMemSet(
1089 BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment),
1090 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
1091 } else {
1092 assert (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16));
1093 // Everything is emitted in default address space
1094 Type *Int8PtrTy = DestInt8PtrTy;
1096 StringRef FuncName = "memset_pattern16";
1097 FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16,
1098 Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy);
1099 inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI);
1101 // Otherwise we should form a memset_pattern16. PatternValue is known to be
1102 // an constant array of 16-bytes. Plop the value into a mergable global.
1103 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1104 GlobalValue::PrivateLinkage,
1105 PatternValue, ".memset_pattern");
1106 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1107 GV->setAlignment(Align(16));
1108 Value *PatternPtr = GV;
1109 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1111 // Set the TBAA info if present.
1112 if (AATags.TBAA)
1113 NewCall->setMetadata(LLVMContext::MD_tbaa, AATags.TBAA);
1115 if (AATags.Scope)
1116 NewCall->setMetadata(LLVMContext::MD_alias_scope, AATags.Scope);
1118 if (AATags.NoAlias)
1119 NewCall->setMetadata(LLVMContext::MD_noalias, AATags.NoAlias);
1122 NewCall->setDebugLoc(TheStore->getDebugLoc());
1124 if (MSSAU) {
1125 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1126 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1127 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1130 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
1131 << " from store to: " << *Ev << " at: " << *TheStore
1132 << "\n");
1134 ORE.emit([&]() {
1135 OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore",
1136 NewCall->getDebugLoc(), Preheader);
1137 R << "Transformed loop-strided store in "
1138 << ore::NV("Function", TheStore->getFunction())
1139 << " function into a call to "
1140 << ore::NV("NewFunction", NewCall->getCalledFunction())
1141 << "() intrinsic";
1142 if (!Stores.empty())
1143 R << ore::setExtraArgs();
1144 for (auto *I : Stores) {
1145 R << ore::NV("FromBlock", I->getParent()->getName())
1146 << ore::NV("ToBlock", Preheader->getName());
1148 return R;
1151 // Okay, the memset has been formed. Zap the original store and anything that
1152 // feeds into it.
1153 for (auto *I : Stores) {
1154 if (MSSAU)
1155 MSSAU->removeMemoryAccess(I, true);
1156 deleteDeadInstruction(I);
1158 if (MSSAU && VerifyMemorySSA)
1159 MSSAU->getMemorySSA()->verifyMemorySSA();
1160 ++NumMemSet;
1161 ExpCleaner.markResultUsed();
1162 return true;
1165 /// If the stored value is a strided load in the same loop with the same stride
1166 /// this may be transformable into a memcpy. This kicks in for stuff like
1167 /// for (i) A[i] = B[i];
1168 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1169 const SCEV *BECount) {
1170 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1172 Value *StorePtr = SI->getPointerOperand();
1173 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1174 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1176 // The store must be feeding a non-volatile load.
1177 LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1178 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1180 // See if the pointer expression is an AddRec like {base,+,1} on the current
1181 // loop, which indicates a strided load. If we have something else, it's a
1182 // random load we can't handle.
1183 Value *LoadPtr = LI->getPointerOperand();
1184 const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1186 const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize);
1187 return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV,
1188 SI->getAlign(), LI->getAlign(), SI, LI,
1189 StoreEv, LoadEv, BECount);
1192 namespace {
1193 class MemmoveVerifier {
1194 public:
1195 explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr,
1196 const DataLayout &DL)
1197 : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset(
1198 LoadBasePtr.stripPointerCasts(), LoadOff, DL)),
1199 BP2(llvm::GetPointerBaseWithConstantOffset(
1200 StoreBasePtr.stripPointerCasts(), StoreOff, DL)),
1201 IsSameObject(BP1 == BP2) {}
1203 bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride,
1204 const Instruction &TheLoad,
1205 bool IsMemCpy) const {
1206 if (IsMemCpy) {
1207 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1208 // for negative stride.
1209 if ((!IsNegStride && LoadOff <= StoreOff) ||
1210 (IsNegStride && LoadOff >= StoreOff))
1211 return false;
1212 } else {
1213 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1214 // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr.
1215 int64_t LoadSize =
1216 DL.getTypeSizeInBits(TheLoad.getType()).getFixedValue() / 8;
1217 if (BP1 != BP2 || LoadSize != int64_t(StoreSize))
1218 return false;
1219 if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) ||
1220 (IsNegStride && LoadOff + LoadSize > StoreOff))
1221 return false;
1223 return true;
1226 private:
1227 const DataLayout &DL;
1228 int64_t LoadOff = 0;
1229 int64_t StoreOff = 0;
1230 const Value *BP1;
1231 const Value *BP2;
1233 public:
1234 const bool IsSameObject;
1236 } // namespace
1238 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
1239 Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV,
1240 MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore,
1241 Instruction *TheLoad, const SCEVAddRecExpr *StoreEv,
1242 const SCEVAddRecExpr *LoadEv, const SCEV *BECount) {
1244 // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to
1245 // conservatively bail here, since otherwise we may have to transform
1246 // llvm.memcpy.inline into llvm.memcpy which is illegal.
1247 if (isa<MemCpyInlineInst>(TheStore))
1248 return false;
1250 // The trip count of the loop and the base pointer of the addrec SCEV is
1251 // guaranteed to be loop invariant, which means that it should dominate the
1252 // header. This allows us to insert code for it in the preheader.
1253 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1254 IRBuilder<> Builder(Preheader->getTerminator());
1255 SCEVExpander Expander(*SE, *DL, "loop-idiom");
1257 SCEVExpanderCleaner ExpCleaner(Expander);
1259 bool Changed = false;
1260 const SCEV *StrStart = StoreEv->getStart();
1261 unsigned StrAS = DestPtr->getType()->getPointerAddressSpace();
1262 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1264 APInt Stride = getStoreStride(StoreEv);
1265 const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
1267 // TODO: Deal with non-constant size; Currently expect constant store size
1268 assert(ConstStoreSize && "store size is expected to be a constant");
1270 int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue();
1271 bool IsNegStride = StoreSize == -Stride;
1273 // Handle negative strided loops.
1274 if (IsNegStride)
1275 StrStart =
1276 getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1278 // Okay, we have a strided store "p[i]" of a loaded value. We can turn
1279 // this into a memcpy in the loop preheader now if we want. However, this
1280 // would be unsafe to do if there is anything else in the loop that may read
1281 // or write the memory region we're storing to. This includes the load that
1282 // feeds the stores. Check for an alias by generating the base address and
1283 // checking everything.
1284 Value *StoreBasePtr = Expander.expandCodeFor(
1285 StrStart, Builder.getPtrTy(StrAS), Preheader->getTerminator());
1287 // From here on out, conservatively report to the pass manager that we've
1288 // changed the IR, even if we later clean up these added instructions. There
1289 // may be structural differences e.g. in the order of use lists not accounted
1290 // for in just a textual dump of the IR. This is written as a variable, even
1291 // though statically all the places this dominates could be replaced with
1292 // 'true', with the hope that anyone trying to be clever / "more precise" with
1293 // the return value will read this comment, and leave them alone.
1294 Changed = true;
1296 SmallPtrSet<Instruction *, 2> IgnoredInsts;
1297 IgnoredInsts.insert(TheStore);
1299 bool IsMemCpy = isa<MemCpyInst>(TheStore);
1300 const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store";
1302 bool LoopAccessStore =
1303 mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1304 StoreSizeSCEV, *AA, IgnoredInsts);
1305 if (LoopAccessStore) {
1306 // For memmove case it's not enough to guarantee that loop doesn't access
1307 // TheStore and TheLoad. Additionally we need to make sure that TheStore is
1308 // the only user of TheLoad.
1309 if (!TheLoad->hasOneUse())
1310 return Changed;
1311 IgnoredInsts.insert(TheLoad);
1312 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
1313 BECount, StoreSizeSCEV, *AA, IgnoredInsts)) {
1314 ORE.emit([&]() {
1315 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore",
1316 TheStore)
1317 << ore::NV("Inst", InstRemark) << " in "
1318 << ore::NV("Function", TheStore->getFunction())
1319 << " function will not be hoisted: "
1320 << ore::NV("Reason", "The loop may access store location");
1322 return Changed;
1324 IgnoredInsts.erase(TheLoad);
1327 const SCEV *LdStart = LoadEv->getStart();
1328 unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace();
1330 // Handle negative strided loops.
1331 if (IsNegStride)
1332 LdStart =
1333 getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1335 // For a memcpy, we have to make sure that the input array is not being
1336 // mutated by the loop.
1337 Value *LoadBasePtr = Expander.expandCodeFor(LdStart, Builder.getPtrTy(LdAS),
1338 Preheader->getTerminator());
1340 // If the store is a memcpy instruction, we must check if it will write to
1341 // the load memory locations. So remove it from the ignored stores.
1342 MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL);
1343 if (IsMemCpy && !Verifier.IsSameObject)
1344 IgnoredInsts.erase(TheStore);
1345 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1346 StoreSizeSCEV, *AA, IgnoredInsts)) {
1347 ORE.emit([&]() {
1348 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad)
1349 << ore::NV("Inst", InstRemark) << " in "
1350 << ore::NV("Function", TheStore->getFunction())
1351 << " function will not be hoisted: "
1352 << ore::NV("Reason", "The loop may access load location");
1354 return Changed;
1357 bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore;
1358 if (UseMemMove)
1359 if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad,
1360 IsMemCpy))
1361 return Changed;
1363 if (avoidLIRForMultiBlockLoop())
1364 return Changed;
1366 // Okay, everything is safe, we can transform this!
1368 const SCEV *NumBytesS =
1369 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1371 Value *NumBytes =
1372 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1374 AAMDNodes AATags = TheLoad->getAAMetadata();
1375 AAMDNodes StoreAATags = TheStore->getAAMetadata();
1376 AATags = AATags.merge(StoreAATags);
1377 if (auto CI = dyn_cast<ConstantInt>(NumBytes))
1378 AATags = AATags.extendTo(CI->getZExtValue());
1379 else
1380 AATags = AATags.extendTo(-1);
1382 CallInst *NewCall = nullptr;
1383 // Check whether to generate an unordered atomic memcpy:
1384 // If the load or store are atomic, then they must necessarily be unordered
1385 // by previous checks.
1386 if (!TheStore->isAtomic() && !TheLoad->isAtomic()) {
1387 if (UseMemMove)
1388 NewCall = Builder.CreateMemMove(
1389 StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes,
1390 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
1391 else
1392 NewCall =
1393 Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign,
1394 NumBytes, /*isVolatile=*/false, AATags.TBAA,
1395 AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
1396 } else {
1397 // For now don't support unordered atomic memmove.
1398 if (UseMemMove)
1399 return Changed;
1400 // We cannot allow unaligned ops for unordered load/store, so reject
1401 // anything where the alignment isn't at least the element size.
1402 assert((StoreAlign && LoadAlign) &&
1403 "Expect unordered load/store to have align.");
1404 if (*StoreAlign < StoreSize || *LoadAlign < StoreSize)
1405 return Changed;
1407 // If the element.atomic memcpy is not lowered into explicit
1408 // loads/stores later, then it will be lowered into an element-size
1409 // specific lib call. If the lib call doesn't exist for our store size, then
1410 // we shouldn't generate the memcpy.
1411 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1412 return Changed;
1414 // Create the call.
1415 // Note that unordered atomic loads/stores are *required* by the spec to
1416 // have an alignment but non-atomic loads/stores may not.
1417 NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1418 StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize,
1419 AATags.TBAA, AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
1421 NewCall->setDebugLoc(TheStore->getDebugLoc());
1423 if (MSSAU) {
1424 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1425 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1426 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1429 LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n"
1430 << " from load ptr=" << *LoadEv << " at: " << *TheLoad
1431 << "\n"
1432 << " from store ptr=" << *StoreEv << " at: " << *TheStore
1433 << "\n");
1435 ORE.emit([&]() {
1436 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1437 NewCall->getDebugLoc(), Preheader)
1438 << "Formed a call to "
1439 << ore::NV("NewFunction", NewCall->getCalledFunction())
1440 << "() intrinsic from " << ore::NV("Inst", InstRemark)
1441 << " instruction in " << ore::NV("Function", TheStore->getFunction())
1442 << " function"
1443 << ore::setExtraArgs()
1444 << ore::NV("FromBlock", TheStore->getParent()->getName())
1445 << ore::NV("ToBlock", Preheader->getName());
1448 // Okay, a new call to memcpy/memmove has been formed. Zap the original store
1449 // and anything that feeds into it.
1450 if (MSSAU)
1451 MSSAU->removeMemoryAccess(TheStore, true);
1452 deleteDeadInstruction(TheStore);
1453 if (MSSAU && VerifyMemorySSA)
1454 MSSAU->getMemorySSA()->verifyMemorySSA();
1455 if (UseMemMove)
1456 ++NumMemMove;
1457 else
1458 ++NumMemCpy;
1459 ExpCleaner.markResultUsed();
1460 return true;
1463 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1464 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1466 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1467 bool IsLoopMemset) {
1468 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1469 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
1470 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName()
1471 << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1472 << " avoided: multi-block top-level loop\n");
1473 return true;
1477 return false;
1480 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1481 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1482 << CurLoop->getHeader()->getParent()->getName()
1483 << "] Noncountable Loop %"
1484 << CurLoop->getHeader()->getName() << "\n");
1486 return recognizePopcount() || recognizeAndInsertFFS() ||
1487 recognizeShiftUntilBitTest() || recognizeShiftUntilZero();
1490 /// Check if the given conditional branch is based on the comparison between
1491 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1492 /// true), the control yields to the loop entry. If the branch matches the
1493 /// behavior, the variable involved in the comparison is returned. This function
1494 /// will be called to see if the precondition and postcondition of the loop are
1495 /// in desirable form.
1496 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1497 bool JmpOnZero = false) {
1498 if (!BI || !BI->isConditional())
1499 return nullptr;
1501 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1502 if (!Cond)
1503 return nullptr;
1505 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1506 if (!CmpZero || !CmpZero->isZero())
1507 return nullptr;
1509 BasicBlock *TrueSucc = BI->getSuccessor(0);
1510 BasicBlock *FalseSucc = BI->getSuccessor(1);
1511 if (JmpOnZero)
1512 std::swap(TrueSucc, FalseSucc);
1514 ICmpInst::Predicate Pred = Cond->getPredicate();
1515 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1516 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1517 return Cond->getOperand(0);
1519 return nullptr;
1522 // Check if the recurrence variable `VarX` is in the right form to create
1523 // the idiom. Returns the value coerced to a PHINode if so.
1524 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1525 BasicBlock *LoopEntry) {
1526 auto *PhiX = dyn_cast<PHINode>(VarX);
1527 if (PhiX && PhiX->getParent() == LoopEntry &&
1528 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1529 return PhiX;
1530 return nullptr;
1533 /// Return true iff the idiom is detected in the loop.
1535 /// Additionally:
1536 /// 1) \p CntInst is set to the instruction counting the population bit.
1537 /// 2) \p CntPhi is set to the corresponding phi node.
1538 /// 3) \p Var is set to the value whose population bits are being counted.
1540 /// The core idiom we are trying to detect is:
1541 /// \code
1542 /// if (x0 != 0)
1543 /// goto loop-exit // the precondition of the loop
1544 /// cnt0 = init-val;
1545 /// do {
1546 /// x1 = phi (x0, x2);
1547 /// cnt1 = phi(cnt0, cnt2);
1549 /// cnt2 = cnt1 + 1;
1550 /// ...
1551 /// x2 = x1 & (x1 - 1);
1552 /// ...
1553 /// } while(x != 0);
1555 /// loop-exit:
1556 /// \endcode
1557 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1558 Instruction *&CntInst, PHINode *&CntPhi,
1559 Value *&Var) {
1560 // step 1: Check to see if the look-back branch match this pattern:
1561 // "if (a!=0) goto loop-entry".
1562 BasicBlock *LoopEntry;
1563 Instruction *DefX2, *CountInst;
1564 Value *VarX1, *VarX0;
1565 PHINode *PhiX, *CountPhi;
1567 DefX2 = CountInst = nullptr;
1568 VarX1 = VarX0 = nullptr;
1569 PhiX = CountPhi = nullptr;
1570 LoopEntry = *(CurLoop->block_begin());
1572 // step 1: Check if the loop-back branch is in desirable form.
1574 if (Value *T = matchCondition(
1575 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1576 DefX2 = dyn_cast<Instruction>(T);
1577 else
1578 return false;
1581 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1583 if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1584 return false;
1586 BinaryOperator *SubOneOp;
1588 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1589 VarX1 = DefX2->getOperand(1);
1590 else {
1591 VarX1 = DefX2->getOperand(0);
1592 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1594 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1595 return false;
1597 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1598 if (!Dec ||
1599 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1600 (SubOneOp->getOpcode() == Instruction::Add &&
1601 Dec->isMinusOne()))) {
1602 return false;
1606 // step 3: Check the recurrence of variable X
1607 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1608 if (!PhiX)
1609 return false;
1611 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1613 CountInst = nullptr;
1614 for (Instruction &Inst : llvm::make_range(
1615 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1616 if (Inst.getOpcode() != Instruction::Add)
1617 continue;
1619 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1620 if (!Inc || !Inc->isOne())
1621 continue;
1623 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1624 if (!Phi)
1625 continue;
1627 // Check if the result of the instruction is live of the loop.
1628 bool LiveOutLoop = false;
1629 for (User *U : Inst.users()) {
1630 if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1631 LiveOutLoop = true;
1632 break;
1636 if (LiveOutLoop) {
1637 CountInst = &Inst;
1638 CountPhi = Phi;
1639 break;
1643 if (!CountInst)
1644 return false;
1647 // step 5: check if the precondition is in this form:
1648 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1650 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1651 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1652 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1653 return false;
1655 CntInst = CountInst;
1656 CntPhi = CountPhi;
1657 Var = T;
1660 return true;
1663 /// Return true if the idiom is detected in the loop.
1665 /// Additionally:
1666 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1667 /// or nullptr if there is no such.
1668 /// 2) \p CntPhi is set to the corresponding phi node
1669 /// or nullptr if there is no such.
1670 /// 3) \p Var is set to the value whose CTLZ could be used.
1671 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1673 /// The core idiom we are trying to detect is:
1674 /// \code
1675 /// if (x0 == 0)
1676 /// goto loop-exit // the precondition of the loop
1677 /// cnt0 = init-val;
1678 /// do {
1679 /// x = phi (x0, x.next); //PhiX
1680 /// cnt = phi(cnt0, cnt.next);
1682 /// cnt.next = cnt + 1;
1683 /// ...
1684 /// x.next = x >> 1; // DefX
1685 /// ...
1686 /// } while(x.next != 0);
1688 /// loop-exit:
1689 /// \endcode
1690 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1691 Intrinsic::ID &IntrinID, Value *&InitX,
1692 Instruction *&CntInst, PHINode *&CntPhi,
1693 Instruction *&DefX) {
1694 BasicBlock *LoopEntry;
1695 Value *VarX = nullptr;
1697 DefX = nullptr;
1698 CntInst = nullptr;
1699 CntPhi = nullptr;
1700 LoopEntry = *(CurLoop->block_begin());
1702 // step 1: Check if the loop-back branch is in desirable form.
1703 if (Value *T = matchCondition(
1704 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1705 DefX = dyn_cast<Instruction>(T);
1706 else
1707 return false;
1709 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1710 if (!DefX || !DefX->isShift())
1711 return false;
1712 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1713 Intrinsic::ctlz;
1714 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1715 if (!Shft || !Shft->isOne())
1716 return false;
1717 VarX = DefX->getOperand(0);
1719 // step 3: Check the recurrence of variable X
1720 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1721 if (!PhiX)
1722 return false;
1724 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1726 // Make sure the initial value can't be negative otherwise the ashr in the
1727 // loop might never reach zero which would make the loop infinite.
1728 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1729 return false;
1731 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1732 // or cnt.next = cnt + -1.
1733 // TODO: We can skip the step. If loop trip count is known (CTLZ),
1734 // then all uses of "cnt.next" could be optimized to the trip count
1735 // plus "cnt0". Currently it is not optimized.
1736 // This step could be used to detect POPCNT instruction:
1737 // cnt.next = cnt + (x.next & 1)
1738 for (Instruction &Inst : llvm::make_range(
1739 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1740 if (Inst.getOpcode() != Instruction::Add)
1741 continue;
1743 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1744 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1745 continue;
1747 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1748 if (!Phi)
1749 continue;
1751 CntInst = &Inst;
1752 CntPhi = Phi;
1753 break;
1755 if (!CntInst)
1756 return false;
1758 return true;
1761 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1762 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1763 /// trip count returns true; otherwise, returns false.
1764 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1765 // Give up if the loop has multiple blocks or multiple backedges.
1766 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1767 return false;
1769 Intrinsic::ID IntrinID;
1770 Value *InitX;
1771 Instruction *DefX = nullptr;
1772 PHINode *CntPhi = nullptr;
1773 Instruction *CntInst = nullptr;
1774 // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1775 // this is always 6.
1776 size_t IdiomCanonicalSize = 6;
1778 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1779 CntInst, CntPhi, DefX))
1780 return false;
1782 bool IsCntPhiUsedOutsideLoop = false;
1783 for (User *U : CntPhi->users())
1784 if (!CurLoop->contains(cast<Instruction>(U))) {
1785 IsCntPhiUsedOutsideLoop = true;
1786 break;
1788 bool IsCntInstUsedOutsideLoop = false;
1789 for (User *U : CntInst->users())
1790 if (!CurLoop->contains(cast<Instruction>(U))) {
1791 IsCntInstUsedOutsideLoop = true;
1792 break;
1794 // If both CntInst and CntPhi are used outside the loop the profitability
1795 // is questionable.
1796 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1797 return false;
1799 // For some CPUs result of CTLZ(X) intrinsic is undefined
1800 // when X is 0. If we can not guarantee X != 0, we need to check this
1801 // when expand.
1802 bool ZeroCheck = false;
1803 // It is safe to assume Preheader exist as it was checked in
1804 // parent function RunOnLoop.
1805 BasicBlock *PH = CurLoop->getLoopPreheader();
1807 // If we are using the count instruction outside the loop, make sure we
1808 // have a zero check as a precondition. Without the check the loop would run
1809 // one iteration for before any check of the input value. This means 0 and 1
1810 // would have identical behavior in the original loop and thus
1811 if (!IsCntPhiUsedOutsideLoop) {
1812 auto *PreCondBB = PH->getSinglePredecessor();
1813 if (!PreCondBB)
1814 return false;
1815 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1816 if (!PreCondBI)
1817 return false;
1818 if (matchCondition(PreCondBI, PH) != InitX)
1819 return false;
1820 ZeroCheck = true;
1823 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1824 // profitable if we delete the loop.
1826 // the loop has only 6 instructions:
1827 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1828 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1829 // %shr = ashr %n.addr.0, 1
1830 // %tobool = icmp eq %shr, 0
1831 // %inc = add nsw %i.0, 1
1832 // br i1 %tobool
1834 const Value *Args[] = {InitX,
1835 ConstantInt::getBool(InitX->getContext(), ZeroCheck)};
1837 // @llvm.dbg doesn't count as they have no semantic effect.
1838 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1839 uint32_t HeaderSize =
1840 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1842 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1843 InstructionCost Cost =
1844 TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1845 if (HeaderSize != IdiomCanonicalSize &&
1846 Cost > TargetTransformInfo::TCC_Basic)
1847 return false;
1849 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1850 DefX->getDebugLoc(), ZeroCheck,
1851 IsCntPhiUsedOutsideLoop);
1852 return true;
1855 /// Recognizes a population count idiom in a non-countable loop.
1857 /// If detected, transforms the relevant code to issue the popcount intrinsic
1858 /// function call, and returns true; otherwise, returns false.
1859 bool LoopIdiomRecognize::recognizePopcount() {
1860 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1861 return false;
1863 // Counting population are usually conducted by few arithmetic instructions.
1864 // Such instructions can be easily "absorbed" by vacant slots in a
1865 // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1866 // in a compact loop.
1868 // Give up if the loop has multiple blocks or multiple backedges.
1869 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1870 return false;
1872 BasicBlock *LoopBody = *(CurLoop->block_begin());
1873 if (LoopBody->size() >= 20) {
1874 // The loop is too big, bail out.
1875 return false;
1878 // It should have a preheader containing nothing but an unconditional branch.
1879 BasicBlock *PH = CurLoop->getLoopPreheader();
1880 if (!PH || &PH->front() != PH->getTerminator())
1881 return false;
1882 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1883 if (!EntryBI || EntryBI->isConditional())
1884 return false;
1886 // It should have a precondition block where the generated popcount intrinsic
1887 // function can be inserted.
1888 auto *PreCondBB = PH->getSinglePredecessor();
1889 if (!PreCondBB)
1890 return false;
1891 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1892 if (!PreCondBI || PreCondBI->isUnconditional())
1893 return false;
1895 Instruction *CntInst;
1896 PHINode *CntPhi;
1897 Value *Val;
1898 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1899 return false;
1901 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1902 return true;
1905 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1906 const DebugLoc &DL) {
1907 Value *Ops[] = {Val};
1908 Type *Tys[] = {Val->getType()};
1910 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1911 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1912 CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1913 CI->setDebugLoc(DL);
1915 return CI;
1918 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1919 const DebugLoc &DL, bool ZeroCheck,
1920 Intrinsic::ID IID) {
1921 Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)};
1922 Type *Tys[] = {Val->getType()};
1924 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1925 Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1926 CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1927 CI->setDebugLoc(DL);
1929 return CI;
1932 /// Transform the following loop (Using CTLZ, CTTZ is similar):
1933 /// loop:
1934 /// CntPhi = PHI [Cnt0, CntInst]
1935 /// PhiX = PHI [InitX, DefX]
1936 /// CntInst = CntPhi + 1
1937 /// DefX = PhiX >> 1
1938 /// LOOP_BODY
1939 /// Br: loop if (DefX != 0)
1940 /// Use(CntPhi) or Use(CntInst)
1942 /// Into:
1943 /// If CntPhi used outside the loop:
1944 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1945 /// Count = CountPrev + 1
1946 /// else
1947 /// Count = BitWidth(InitX) - CTLZ(InitX)
1948 /// loop:
1949 /// CntPhi = PHI [Cnt0, CntInst]
1950 /// PhiX = PHI [InitX, DefX]
1951 /// PhiCount = PHI [Count, Dec]
1952 /// CntInst = CntPhi + 1
1953 /// DefX = PhiX >> 1
1954 /// Dec = PhiCount - 1
1955 /// LOOP_BODY
1956 /// Br: loop if (Dec != 0)
1957 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1958 /// or
1959 /// Use(Count + Cnt0) // Use(CntInst)
1961 /// If LOOP_BODY is empty the loop will be deleted.
1962 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1963 void LoopIdiomRecognize::transformLoopToCountable(
1964 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1965 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1966 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1967 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1969 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1970 IRBuilder<> Builder(PreheaderBr);
1971 Builder.SetCurrentDebugLocation(DL);
1973 // If there are no uses of CntPhi crate:
1974 // Count = BitWidth - CTLZ(InitX);
1975 // NewCount = Count;
1976 // If there are uses of CntPhi create:
1977 // NewCount = BitWidth - CTLZ(InitX >> 1);
1978 // Count = NewCount + 1;
1979 Value *InitXNext;
1980 if (IsCntPhiUsedOutsideLoop) {
1981 if (DefX->getOpcode() == Instruction::AShr)
1982 InitXNext = Builder.CreateAShr(InitX, 1);
1983 else if (DefX->getOpcode() == Instruction::LShr)
1984 InitXNext = Builder.CreateLShr(InitX, 1);
1985 else if (DefX->getOpcode() == Instruction::Shl) // cttz
1986 InitXNext = Builder.CreateShl(InitX, 1);
1987 else
1988 llvm_unreachable("Unexpected opcode!");
1989 } else
1990 InitXNext = InitX;
1991 Value *Count =
1992 createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1993 Type *CountTy = Count->getType();
1994 Count = Builder.CreateSub(
1995 ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count);
1996 Value *NewCount = Count;
1997 if (IsCntPhiUsedOutsideLoop)
1998 Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1));
2000 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType());
2002 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
2003 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
2004 // If the counter was being incremented in the loop, add NewCount to the
2005 // counter's initial value, but only if the initial value is not zero.
2006 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2007 if (!InitConst || !InitConst->isZero())
2008 NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2009 } else {
2010 // If the count was being decremented in the loop, subtract NewCount from
2011 // the counter's initial value.
2012 NewCount = Builder.CreateSub(CntInitVal, NewCount);
2015 // Step 2: Insert new IV and loop condition:
2016 // loop:
2017 // ...
2018 // PhiCount = PHI [Count, Dec]
2019 // ...
2020 // Dec = PhiCount - 1
2021 // ...
2022 // Br: loop if (Dec != 0)
2023 BasicBlock *Body = *(CurLoop->block_begin());
2024 auto *LbBr = cast<BranchInst>(Body->getTerminator());
2025 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2027 PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi");
2028 TcPhi->insertBefore(Body->begin());
2030 Builder.SetInsertPoint(LbCond);
2031 Instruction *TcDec = cast<Instruction>(Builder.CreateSub(
2032 TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true));
2034 TcPhi->addIncoming(Count, Preheader);
2035 TcPhi->addIncoming(TcDec, Body);
2037 CmpInst::Predicate Pred =
2038 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
2039 LbCond->setPredicate(Pred);
2040 LbCond->setOperand(0, TcDec);
2041 LbCond->setOperand(1, ConstantInt::get(CountTy, 0));
2043 // Step 3: All the references to the original counter outside
2044 // the loop are replaced with the NewCount
2045 if (IsCntPhiUsedOutsideLoop)
2046 CntPhi->replaceUsesOutsideBlock(NewCount, Body);
2047 else
2048 CntInst->replaceUsesOutsideBlock(NewCount, Body);
2050 // step 4: Forget the "non-computable" trip-count SCEV associated with the
2051 // loop. The loop would otherwise not be deleted even if it becomes empty.
2052 SE->forgetLoop(CurLoop);
2055 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
2056 Instruction *CntInst,
2057 PHINode *CntPhi, Value *Var) {
2058 BasicBlock *PreHead = CurLoop->getLoopPreheader();
2059 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
2060 const DebugLoc &DL = CntInst->getDebugLoc();
2062 // Assuming before transformation, the loop is following:
2063 // if (x) // the precondition
2064 // do { cnt++; x &= x - 1; } while(x);
2066 // Step 1: Insert the ctpop instruction at the end of the precondition block
2067 IRBuilder<> Builder(PreCondBr);
2068 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
2070 PopCnt = createPopcntIntrinsic(Builder, Var, DL);
2071 NewCount = PopCntZext =
2072 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
2074 if (NewCount != PopCnt)
2075 (cast<Instruction>(NewCount))->setDebugLoc(DL);
2077 // TripCnt is exactly the number of iterations the loop has
2078 TripCnt = NewCount;
2080 // If the population counter's initial value is not zero, insert Add Inst.
2081 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
2082 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2083 if (!InitConst || !InitConst->isZero()) {
2084 NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2085 (cast<Instruction>(NewCount))->setDebugLoc(DL);
2089 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
2090 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic
2091 // function would be partial dead code, and downstream passes will drag
2092 // it back from the precondition block to the preheader.
2094 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
2096 Value *Opnd0 = PopCntZext;
2097 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
2098 if (PreCond->getOperand(0) != Var)
2099 std::swap(Opnd0, Opnd1);
2101 ICmpInst *NewPreCond = cast<ICmpInst>(
2102 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
2103 PreCondBr->setCondition(NewPreCond);
2105 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
2108 // Step 3: Note that the population count is exactly the trip count of the
2109 // loop in question, which enable us to convert the loop from noncountable
2110 // loop into a countable one. The benefit is twofold:
2112 // - If the loop only counts population, the entire loop becomes dead after
2113 // the transformation. It is a lot easier to prove a countable loop dead
2114 // than to prove a noncountable one. (In some C dialects, an infinite loop
2115 // isn't dead even if it computes nothing useful. In general, DCE needs
2116 // to prove a noncountable loop finite before safely delete it.)
2118 // - If the loop also performs something else, it remains alive.
2119 // Since it is transformed to countable form, it can be aggressively
2120 // optimized by some optimizations which are in general not applicable
2121 // to a noncountable loop.
2123 // After this step, this loop (conceptually) would look like following:
2124 // newcnt = __builtin_ctpop(x);
2125 // t = newcnt;
2126 // if (x)
2127 // do { cnt++; x &= x-1; t--) } while (t > 0);
2128 BasicBlock *Body = *(CurLoop->block_begin());
2130 auto *LbBr = cast<BranchInst>(Body->getTerminator());
2131 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2132 Type *Ty = TripCnt->getType();
2134 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi");
2135 TcPhi->insertBefore(Body->begin());
2137 Builder.SetInsertPoint(LbCond);
2138 Instruction *TcDec = cast<Instruction>(
2139 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
2140 "tcdec", false, true));
2142 TcPhi->addIncoming(TripCnt, PreHead);
2143 TcPhi->addIncoming(TcDec, Body);
2145 CmpInst::Predicate Pred =
2146 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
2147 LbCond->setPredicate(Pred);
2148 LbCond->setOperand(0, TcDec);
2149 LbCond->setOperand(1, ConstantInt::get(Ty, 0));
2152 // Step 4: All the references to the original population counter outside
2153 // the loop are replaced with the NewCount -- the value returned from
2154 // __builtin_ctpop().
2155 CntInst->replaceUsesOutsideBlock(NewCount, Body);
2157 // step 5: Forget the "non-computable" trip-count SCEV associated with the
2158 // loop. The loop would otherwise not be deleted even if it becomes empty.
2159 SE->forgetLoop(CurLoop);
2162 /// Match loop-invariant value.
2163 template <typename SubPattern_t> struct match_LoopInvariant {
2164 SubPattern_t SubPattern;
2165 const Loop *L;
2167 match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
2168 : SubPattern(SP), L(L) {}
2170 template <typename ITy> bool match(ITy *V) {
2171 return L->isLoopInvariant(V) && SubPattern.match(V);
2175 /// Matches if the value is loop-invariant.
2176 template <typename Ty>
2177 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
2178 return match_LoopInvariant<Ty>(M, L);
2181 /// Return true if the idiom is detected in the loop.
2183 /// The core idiom we are trying to detect is:
2184 /// \code
2185 /// entry:
2186 /// <...>
2187 /// %bitmask = shl i32 1, %bitpos
2188 /// br label %loop
2190 /// loop:
2191 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2192 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask
2193 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2194 /// %x.next = shl i32 %x.curr, 1
2195 /// <...>
2196 /// br i1 %x.curr.isbitunset, label %loop, label %end
2198 /// end:
2199 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2200 /// %x.next.res = phi i32 [ %x.next, %loop ] <...>
2201 /// <...>
2202 /// \endcode
2203 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
2204 Value *&BitMask, Value *&BitPos,
2205 Value *&CurrX, Instruction *&NextX) {
2206 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2207 " Performing shift-until-bittest idiom detection.\n");
2209 // Give up if the loop has multiple blocks or multiple backedges.
2210 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2211 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2212 return false;
2215 BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2216 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2217 assert(LoopPreheaderBB && "There is always a loop preheader.");
2219 using namespace PatternMatch;
2221 // Step 1: Check if the loop backedge is in desirable form.
2223 ICmpInst::Predicate Pred;
2224 Value *CmpLHS, *CmpRHS;
2225 BasicBlock *TrueBB, *FalseBB;
2226 if (!match(LoopHeaderBB->getTerminator(),
2227 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
2228 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
2229 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2230 return false;
2233 // Step 2: Check if the backedge's condition is in desirable form.
2235 auto MatchVariableBitMask = [&]() {
2236 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2237 match(CmpLHS,
2238 m_c_And(m_Value(CurrX),
2239 m_CombineAnd(
2240 m_Value(BitMask),
2241 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
2242 CurLoop))));
2244 auto MatchConstantBitMask = [&]() {
2245 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2246 match(CmpLHS, m_And(m_Value(CurrX),
2247 m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
2248 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
2250 auto MatchDecomposableConstantBitMask = [&]() {
2251 APInt Mask;
2252 return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) &&
2253 ICmpInst::isEquality(Pred) && Mask.isPowerOf2() &&
2254 (BitMask = ConstantInt::get(CurrX->getType(), Mask)) &&
2255 (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2()));
2258 if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
2259 !MatchDecomposableConstantBitMask()) {
2260 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
2261 return false;
2264 // Step 3: Check if the recurrence is in desirable form.
2265 auto *CurrXPN = dyn_cast<PHINode>(CurrX);
2266 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
2267 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2268 return false;
2271 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
2272 NextX =
2273 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
2275 assert(CurLoop->isLoopInvariant(BaseX) &&
2276 "Expected BaseX to be avaliable in the preheader!");
2278 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
2279 // FIXME: support right-shift?
2280 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2281 return false;
2284 // Step 4: Check if the backedge's destinations are in desirable form.
2286 assert(ICmpInst::isEquality(Pred) &&
2287 "Should only get equality predicates here.");
2289 // cmp-br is commutative, so canonicalize to a single variant.
2290 if (Pred != ICmpInst::Predicate::ICMP_EQ) {
2291 Pred = ICmpInst::getInversePredicate(Pred);
2292 std::swap(TrueBB, FalseBB);
2295 // We expect to exit loop when comparison yields false,
2296 // so when it yields true we should branch back to loop header.
2297 if (TrueBB != LoopHeaderBB) {
2298 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2299 return false;
2302 // Okay, idiom checks out.
2303 return true;
2306 /// Look for the following loop:
2307 /// \code
2308 /// entry:
2309 /// <...>
2310 /// %bitmask = shl i32 1, %bitpos
2311 /// br label %loop
2313 /// loop:
2314 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2315 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask
2316 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2317 /// %x.next = shl i32 %x.curr, 1
2318 /// <...>
2319 /// br i1 %x.curr.isbitunset, label %loop, label %end
2321 /// end:
2322 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2323 /// %x.next.res = phi i32 [ %x.next, %loop ] <...>
2324 /// <...>
2325 /// \endcode
2327 /// And transform it into:
2328 /// \code
2329 /// entry:
2330 /// %bitmask = shl i32 1, %bitpos
2331 /// %lowbitmask = add i32 %bitmask, -1
2332 /// %mask = or i32 %lowbitmask, %bitmask
2333 /// %x.masked = and i32 %x, %mask
2334 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
2335 /// i1 true)
2336 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
2337 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
2338 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
2339 /// %tripcount = add i32 %backedgetakencount, 1
2340 /// %x.curr = shl i32 %x, %backedgetakencount
2341 /// %x.next = shl i32 %x, %tripcount
2342 /// br label %loop
2344 /// loop:
2345 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
2346 /// %loop.iv.next = add nuw i32 %loop.iv, 1
2347 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
2348 /// <...>
2349 /// br i1 %loop.ivcheck, label %end, label %loop
2351 /// end:
2352 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2353 /// %x.next.res = phi i32 [ %x.next, %loop ] <...>
2354 /// <...>
2355 /// \endcode
2356 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
2357 bool MadeChange = false;
2359 Value *X, *BitMask, *BitPos, *XCurr;
2360 Instruction *XNext;
2361 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
2362 XNext)) {
2363 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2364 " shift-until-bittest idiom detection failed.\n");
2365 return MadeChange;
2367 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
2369 // Ok, it is the idiom we were looking for, we *could* transform this loop,
2370 // but is it profitable to transform?
2372 BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2373 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2374 assert(LoopPreheaderBB && "There is always a loop preheader.");
2376 BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2377 assert(SuccessorBB && "There is only a single successor.");
2379 IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2380 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
2382 Intrinsic::ID IntrID = Intrinsic::ctlz;
2383 Type *Ty = X->getType();
2384 unsigned Bitwidth = Ty->getScalarSizeInBits();
2386 TargetTransformInfo::TargetCostKind CostKind =
2387 TargetTransformInfo::TCK_SizeAndLatency;
2389 // The rewrite is considered to be unprofitable iff and only iff the
2390 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
2391 // making the loop countable, even if nothing else changes.
2392 IntrinsicCostAttributes Attrs(
2393 IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getTrue()});
2394 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2395 if (Cost > TargetTransformInfo::TCC_Basic) {
2396 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2397 " Intrinsic is too costly, not beneficial\n");
2398 return MadeChange;
2400 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
2401 TargetTransformInfo::TCC_Basic) {
2402 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
2403 return MadeChange;
2406 // Ok, transform appears worthwhile.
2407 MadeChange = true;
2409 if (!isGuaranteedNotToBeUndefOrPoison(BitPos)) {
2410 // BitMask may be computed from BitPos, Freeze BitPos so we can increase
2411 // it's use count.
2412 Instruction *InsertPt = nullptr;
2413 if (auto *BitPosI = dyn_cast<Instruction>(BitPos))
2414 InsertPt = &**BitPosI->getInsertionPointAfterDef();
2415 else
2416 InsertPt = &*DT->getRoot()->getFirstNonPHIOrDbgOrAlloca();
2417 if (!InsertPt)
2418 return false;
2419 FreezeInst *BitPosFrozen =
2420 new FreezeInst(BitPos, BitPos->getName() + ".fr", InsertPt);
2421 BitPos->replaceUsesWithIf(BitPosFrozen, [BitPosFrozen](Use &U) {
2422 return U.getUser() != BitPosFrozen;
2424 BitPos = BitPosFrozen;
2427 // Step 1: Compute the loop trip count.
2429 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
2430 BitPos->getName() + ".lowbitmask");
2431 Value *Mask =
2432 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
2433 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
2434 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
2435 IntrID, Ty, {XMasked, /*is_zero_poison=*/Builder.getTrue()},
2436 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
2437 Value *XMaskedNumActiveBits = Builder.CreateSub(
2438 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
2439 XMasked->getName() + ".numactivebits", /*HasNUW=*/true,
2440 /*HasNSW=*/Bitwidth != 2);
2441 Value *XMaskedLeadingOnePos =
2442 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
2443 XMasked->getName() + ".leadingonepos", /*HasNUW=*/false,
2444 /*HasNSW=*/Bitwidth > 2);
2446 Value *LoopBackedgeTakenCount = Builder.CreateSub(
2447 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount",
2448 /*HasNUW=*/true, /*HasNSW=*/true);
2449 // We know loop's backedge-taken count, but what's loop's trip count?
2450 // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2451 Value *LoopTripCount =
2452 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2453 CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2454 /*HasNSW=*/Bitwidth != 2);
2456 // Step 2: Compute the recurrence's final value without a loop.
2458 // NewX is always safe to compute, because `LoopBackedgeTakenCount`
2459 // will always be smaller than `bitwidth(X)`, i.e. we never get poison.
2460 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
2461 NewX->takeName(XCurr);
2462 if (auto *I = dyn_cast<Instruction>(NewX))
2463 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2465 Value *NewXNext;
2466 // Rewriting XNext is more complicated, however, because `X << LoopTripCount`
2467 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
2468 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
2469 // that isn't the case, we'll need to emit an alternative, safe IR.
2470 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
2471 PatternMatch::match(
2472 BitPos, PatternMatch::m_SpecificInt_ICMP(
2473 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
2474 Ty->getScalarSizeInBits() - 1))))
2475 NewXNext = Builder.CreateShl(X, LoopTripCount);
2476 else {
2477 // Otherwise, just additionally shift by one. It's the smallest solution,
2478 // alternatively, we could check that NewX is INT_MIN (or BitPos is )
2479 // and select 0 instead.
2480 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
2483 NewXNext->takeName(XNext);
2484 if (auto *I = dyn_cast<Instruction>(NewXNext))
2485 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2487 // Step 3: Adjust the successor basic block to recieve the computed
2488 // recurrence's final value instead of the recurrence itself.
2490 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
2491 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
2493 // Step 4: Rewrite the loop into a countable form, with canonical IV.
2495 // The new canonical induction variable.
2496 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin());
2497 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2499 // The induction itself.
2500 // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2501 Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2502 auto *IVNext =
2503 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
2504 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2506 // The loop trip count check.
2507 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
2508 CurLoop->getName() + ".ivcheck");
2509 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
2510 LoopHeaderBB->getTerminator()->eraseFromParent();
2512 // Populate the IV PHI.
2513 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2514 IV->addIncoming(IVNext, LoopHeaderBB);
2516 // Step 5: Forget the "non-computable" trip-count SCEV associated with the
2517 // loop. The loop would otherwise not be deleted even if it becomes empty.
2519 SE->forgetLoop(CurLoop);
2521 // Other passes will take care of actually deleting the loop if possible.
2523 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
2525 ++NumShiftUntilBitTest;
2526 return MadeChange;
2529 /// Return true if the idiom is detected in the loop.
2531 /// The core idiom we are trying to detect is:
2532 /// \code
2533 /// entry:
2534 /// <...>
2535 /// %start = <...>
2536 /// %extraoffset = <...>
2537 /// <...>
2538 /// br label %for.cond
2540 /// loop:
2541 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2542 /// %nbits = add nsw i8 %iv, %extraoffset
2543 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2544 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2545 /// %iv.next = add i8 %iv, 1
2546 /// <...>
2547 /// br i1 %val.shifted.iszero, label %end, label %loop
2549 /// end:
2550 /// %iv.res = phi i8 [ %iv, %loop ] <...>
2551 /// %nbits.res = phi i8 [ %nbits, %loop ] <...>
2552 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2553 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2554 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2555 /// <...>
2556 /// \endcode
2557 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE,
2558 Instruction *&ValShiftedIsZero,
2559 Intrinsic::ID &IntrinID, Instruction *&IV,
2560 Value *&Start, Value *&Val,
2561 const SCEV *&ExtraOffsetExpr,
2562 bool &InvertedCond) {
2563 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2564 " Performing shift-until-zero idiom detection.\n");
2566 // Give up if the loop has multiple blocks or multiple backedges.
2567 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2568 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2569 return false;
2572 Instruction *ValShifted, *NBits, *IVNext;
2573 Value *ExtraOffset;
2575 BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2576 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2577 assert(LoopPreheaderBB && "There is always a loop preheader.");
2579 using namespace PatternMatch;
2581 // Step 1: Check if the loop backedge, condition is in desirable form.
2583 ICmpInst::Predicate Pred;
2584 BasicBlock *TrueBB, *FalseBB;
2585 if (!match(LoopHeaderBB->getTerminator(),
2586 m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB),
2587 m_BasicBlock(FalseBB))) ||
2588 !match(ValShiftedIsZero,
2589 m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) ||
2590 !ICmpInst::isEquality(Pred)) {
2591 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2592 return false;
2595 // Step 2: Check if the comparison's operand is in desirable form.
2596 // FIXME: Val could be a one-input PHI node, which we should look past.
2597 if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop),
2598 m_Instruction(NBits)))) {
2599 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n");
2600 return false;
2602 IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz
2603 : Intrinsic::ctlz;
2605 // Step 3: Check if the shift amount is in desirable form.
2607 if (match(NBits, m_c_Add(m_Instruction(IV),
2608 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2609 (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap()))
2610 ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset));
2611 else if (match(NBits,
2612 m_Sub(m_Instruction(IV),
2613 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2614 NBits->hasNoSignedWrap())
2615 ExtraOffsetExpr = SE->getSCEV(ExtraOffset);
2616 else {
2617 IV = NBits;
2618 ExtraOffsetExpr = SE->getZero(NBits->getType());
2621 // Step 4: Check if the recurrence is in desirable form.
2622 auto *IVPN = dyn_cast<PHINode>(IV);
2623 if (!IVPN || IVPN->getParent() != LoopHeaderBB) {
2624 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2625 return false;
2628 Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB);
2629 IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB));
2631 if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) {
2632 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2633 return false;
2636 // Step 4: Check if the backedge's destinations are in desirable form.
2638 assert(ICmpInst::isEquality(Pred) &&
2639 "Should only get equality predicates here.");
2641 // cmp-br is commutative, so canonicalize to a single variant.
2642 InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ;
2643 if (InvertedCond) {
2644 Pred = ICmpInst::getInversePredicate(Pred);
2645 std::swap(TrueBB, FalseBB);
2648 // We expect to exit loop when comparison yields true,
2649 // so when it yields false we should branch back to loop header.
2650 if (FalseBB != LoopHeaderBB) {
2651 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2652 return false;
2655 // The new, countable, loop will certainly only run a known number of
2656 // iterations, It won't be infinite. But the old loop might be infinite
2657 // under certain conditions. For logical shifts, the value will become zero
2658 // after at most bitwidth(%Val) loop iterations. However, for arithmetic
2659 // right-shift, iff the sign bit was set, the value will never become zero,
2660 // and the loop may never finish.
2661 if (ValShifted->getOpcode() == Instruction::AShr &&
2662 !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) {
2663 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n");
2664 return false;
2667 // Okay, idiom checks out.
2668 return true;
2671 /// Look for the following loop:
2672 /// \code
2673 /// entry:
2674 /// <...>
2675 /// %start = <...>
2676 /// %extraoffset = <...>
2677 /// <...>
2678 /// br label %for.cond
2680 /// loop:
2681 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2682 /// %nbits = add nsw i8 %iv, %extraoffset
2683 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2684 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2685 /// %iv.next = add i8 %iv, 1
2686 /// <...>
2687 /// br i1 %val.shifted.iszero, label %end, label %loop
2689 /// end:
2690 /// %iv.res = phi i8 [ %iv, %loop ] <...>
2691 /// %nbits.res = phi i8 [ %nbits, %loop ] <...>
2692 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2693 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2694 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2695 /// <...>
2696 /// \endcode
2698 /// And transform it into:
2699 /// \code
2700 /// entry:
2701 /// <...>
2702 /// %start = <...>
2703 /// %extraoffset = <...>
2704 /// <...>
2705 /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0)
2706 /// %val.numactivebits = sub i8 8, %val.numleadingzeros
2707 /// %extraoffset.neg = sub i8 0, %extraoffset
2708 /// %tmp = add i8 %val.numactivebits, %extraoffset.neg
2709 /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start)
2710 /// %loop.tripcount = sub i8 %iv.final, %start
2711 /// br label %loop
2713 /// loop:
2714 /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ]
2715 /// %loop.iv.next = add i8 %loop.iv, 1
2716 /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount
2717 /// %iv = add i8 %loop.iv, %start
2718 /// <...>
2719 /// br i1 %loop.ivcheck, label %end, label %loop
2721 /// end:
2722 /// %iv.res = phi i8 [ %iv.final, %loop ] <...>
2723 /// <...>
2724 /// \endcode
2725 bool LoopIdiomRecognize::recognizeShiftUntilZero() {
2726 bool MadeChange = false;
2728 Instruction *ValShiftedIsZero;
2729 Intrinsic::ID IntrID;
2730 Instruction *IV;
2731 Value *Start, *Val;
2732 const SCEV *ExtraOffsetExpr;
2733 bool InvertedCond;
2734 if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV,
2735 Start, Val, ExtraOffsetExpr, InvertedCond)) {
2736 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2737 " shift-until-zero idiom detection failed.\n");
2738 return MadeChange;
2740 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n");
2742 // Ok, it is the idiom we were looking for, we *could* transform this loop,
2743 // but is it profitable to transform?
2745 BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2746 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2747 assert(LoopPreheaderBB && "There is always a loop preheader.");
2749 BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2750 assert(SuccessorBB && "There is only a single successor.");
2752 IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2753 Builder.SetCurrentDebugLocation(IV->getDebugLoc());
2755 Type *Ty = Val->getType();
2756 unsigned Bitwidth = Ty->getScalarSizeInBits();
2758 TargetTransformInfo::TargetCostKind CostKind =
2759 TargetTransformInfo::TCK_SizeAndLatency;
2761 // The rewrite is considered to be unprofitable iff and only iff the
2762 // intrinsic we'll use are not cheap. Note that we are okay with *just*
2763 // making the loop countable, even if nothing else changes.
2764 IntrinsicCostAttributes Attrs(
2765 IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getFalse()});
2766 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2767 if (Cost > TargetTransformInfo::TCC_Basic) {
2768 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2769 " Intrinsic is too costly, not beneficial\n");
2770 return MadeChange;
2773 // Ok, transform appears worthwhile.
2774 MadeChange = true;
2776 bool OffsetIsZero = false;
2777 if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr))
2778 OffsetIsZero = ExtraOffsetExprC->isZero();
2780 // Step 1: Compute the loop's final IV value / trip count.
2782 CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic(
2783 IntrID, Ty, {Val, /*is_zero_poison=*/Builder.getFalse()},
2784 /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros");
2785 Value *ValNumActiveBits = Builder.CreateSub(
2786 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros,
2787 Val->getName() + ".numactivebits", /*HasNUW=*/true,
2788 /*HasNSW=*/Bitwidth != 2);
2790 SCEVExpander Expander(*SE, *DL, "loop-idiom");
2791 Expander.setInsertPoint(&*Builder.GetInsertPoint());
2792 Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr);
2794 Value *ValNumActiveBitsOffset = Builder.CreateAdd(
2795 ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset",
2796 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true);
2797 Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty},
2798 {ValNumActiveBitsOffset, Start},
2799 /*FMFSource=*/nullptr, "iv.final");
2801 auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub(
2802 IVFinal, Start, CurLoop->getName() + ".backedgetakencount",
2803 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true));
2804 // FIXME: or when the offset was `add nuw`
2806 // We know loop's backedge-taken count, but what's loop's trip count?
2807 Value *LoopTripCount =
2808 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2809 CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2810 /*HasNSW=*/Bitwidth != 2);
2812 // Step 2: Adjust the successor basic block to recieve the original
2813 // induction variable's final value instead of the orig. IV itself.
2815 IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB);
2817 // Step 3: Rewrite the loop into a countable form, with canonical IV.
2819 // The new canonical induction variable.
2820 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin());
2821 auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2823 // The induction itself.
2824 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->getFirstNonPHIIt());
2825 auto *CIVNext =
2826 Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next",
2827 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2829 // The loop trip count check.
2830 auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount,
2831 CurLoop->getName() + ".ivcheck");
2832 auto *NewIVCheck = CIVCheck;
2833 if (InvertedCond) {
2834 NewIVCheck = Builder.CreateNot(CIVCheck);
2835 NewIVCheck->takeName(ValShiftedIsZero);
2838 // The original IV, but rebased to be an offset to the CIV.
2839 auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false,
2840 /*HasNSW=*/true); // FIXME: what about NUW?
2841 IVDePHId->takeName(IV);
2843 // The loop terminator.
2844 Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2845 Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB);
2846 LoopHeaderBB->getTerminator()->eraseFromParent();
2848 // Populate the IV PHI.
2849 CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2850 CIV->addIncoming(CIVNext, LoopHeaderBB);
2852 // Step 4: Forget the "non-computable" trip-count SCEV associated with the
2853 // loop. The loop would otherwise not be deleted even if it becomes empty.
2855 SE->forgetLoop(CurLoop);
2857 // Step 5: Try to cleanup the loop's body somewhat.
2858 IV->replaceAllUsesWith(IVDePHId);
2859 IV->eraseFromParent();
2861 ValShiftedIsZero->replaceAllUsesWith(NewIVCheck);
2862 ValShiftedIsZero->eraseFromParent();
2864 // Other passes will take care of actually deleting the loop if possible.
2866 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n");
2868 ++NumShiftUntilZero;
2869 return MadeChange;