1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
13 // for (i = 0; i < n; i++) {
20 // for (i = 0; i < n; i++) {
21 // guard(n - 1 < len);
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
30 // for (i = 0; i < n; i++) {
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49 // for (int i = b; i != e; i++)
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
77 // Informal proof that the transformation above is correct:
79 // By the definition of guards we can rewrite the guard condition to:
82 // Let's prove that for each iteration of the loop:
84 // And the condition above can be simplified to G(Start) && M.
89 // Induction step. Assuming G(0) && M => G(I) on the subsequent
92 // B(I) is true because it's the backedge condition.
93 // G(I) is true because the backedge is guarded by this condition.
95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
97 // Note that we can use anything stronger than M, i.e. any condition which
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
102 // * The loop has a single latch with the condition of the form:
103 // B(X) = latchStart + X <pred> latchLimit,
104 // where <pred> is u<, u<=, s<, or s<=.
105 // * The guard condition is of the form
106 // G(X) = guardStart + X u< guardLimit
108 // For the ult latch comparison case M is:
109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 // guardStart + X + 1 u< guardLimit
112 // The only way the antecedent can be true and the consequent can be false is
114 // X == guardLimit - 1 - guardStart
115 // (and guardLimit is non-zero, but we won't use this latter fact).
116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 // latchStart + guardLimit - 1 - guardStart u< latchLimit
118 // and its negation is
119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
121 // In other words, if
122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart
124 // (the ranges below are written in ConstantRange notation, where [A, B) is the
125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
127 // forall X . guardStart + X u< guardLimit &&
128 // latchStart + X u< latchLimit =>
129 // guardStart + X + 1 u< guardLimit
130 // == forall X . guardStart + X u< guardLimit &&
131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 // guardStart + X + 1 u< guardLimit
133 // == forall X . (guardStart + X) in [0, guardLimit) &&
134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 // (guardStart + X + 1) in [0, guardLimit)
136 // == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 // X in [-latchStart, guardLimit - 1 - guardStart) =>
138 // X in [-guardStart - 1, guardLimit - guardStart - 1)
141 // So the widened condition is:
142 // guardStart u< guardLimit &&
143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 // Similarly for ule condition the widened condition is:
145 // guardStart u< guardLimit &&
146 // latchStart + guardLimit - 1 - guardStart u> latchLimit
147 // For slt condition the widened condition is:
148 // guardStart u< guardLimit &&
149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 // For sle condition the widened condition is:
151 // guardStart u< guardLimit &&
152 // latchStart + guardLimit - 1 - guardStart s> latchLimit
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
156 // * The loop has a single latch with the condition of the form:
157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 // * The guard condition is of the form
159 // G(X) = X - 1 u< guardLimit
161 // For the ugt latch comparison case M is:
162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
164 // The only way the antecedent can be true and the consequent can be false is if
166 // If X == 1 then the second half of the antecedent is
167 // 1 u> latchLimit, and its negation is latchLimit u>= 1.
169 // So the widened condition is:
170 // guardStart u< guardLimit && latchLimit u>= 1.
171 // Similarly for sgt condition the widened condition is:
172 // guardStart u< guardLimit && latchLimit s>= 1.
173 // For uge condition the widened condition is:
174 // guardStart u< guardLimit && latchLimit u> 1.
175 // For sge condition the widened condition is:
176 // guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/MemorySSA.h"
187 #include "llvm/Analysis/MemorySSAUpdater.h"
188 #include "llvm/Analysis/ScalarEvolution.h"
189 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
190 #include "llvm/IR/Function.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/IR/ProfDataUtils.h"
195 #include "llvm/InitializePasses.h"
196 #include "llvm/Pass.h"
197 #include "llvm/Support/CommandLine.h"
198 #include "llvm/Support/Debug.h"
199 #include "llvm/Transforms/Scalar.h"
200 #include "llvm/Transforms/Utils/GuardUtils.h"
201 #include "llvm/Transforms/Utils/Local.h"
202 #include "llvm/Transforms/Utils/LoopUtils.h"
203 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
206 #define DEBUG_TYPE "loop-predication"
208 STATISTIC(TotalConsidered
, "Number of guards considered");
209 STATISTIC(TotalWidened
, "Number of checks widened");
211 using namespace llvm
;
213 static cl::opt
<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
214 cl::Hidden
, cl::init(true));
216 static cl::opt
<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
217 cl::Hidden
, cl::init(true));
220 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
221 cl::Hidden
, cl::init(false));
223 // This is the scale factor for the latch probability. We use this during
224 // profitability analysis to find other exiting blocks that have a much higher
225 // probability of exiting the loop instead of loop exiting via latch.
226 // This value should be greater than 1 for a sane profitability check.
227 static cl::opt
<float> LatchExitProbabilityScale(
228 "loop-predication-latch-probability-scale", cl::Hidden
, cl::init(2.0),
229 cl::desc("scale factor for the latch probability. Value should be greater "
230 "than 1. Lower values are ignored"));
232 static cl::opt
<bool> PredicateWidenableBranchGuards(
233 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden
,
234 cl::desc("Whether or not we should predicate guards "
235 "expressed as widenable branches to deoptimize blocks"),
238 static cl::opt
<bool> InsertAssumesOfPredicatedGuardsConditions(
239 "loop-predication-insert-assumes-of-predicated-guards-conditions",
241 cl::desc("Whether or not we should insert assumes of conditions of "
242 "predicated guards"),
246 /// Represents an induction variable check:
247 /// icmp Pred, <induction variable>, <loop invariant limit>
249 ICmpInst::Predicate Pred
;
250 const SCEVAddRecExpr
*IV
;
252 LoopICmp(ICmpInst::Predicate Pred
, const SCEVAddRecExpr
*IV
,
254 : Pred(Pred
), IV(IV
), Limit(Limit
) {}
255 LoopICmp() = default;
257 dbgs() << "LoopICmp Pred = " << Pred
<< ", IV = " << *IV
258 << ", Limit = " << *Limit
<< "\n";
262 class LoopPredication
{
267 MemorySSAUpdater
*MSSAU
;
270 const DataLayout
*DL
;
271 BasicBlock
*Preheader
;
274 bool isSupportedStep(const SCEV
* Step
);
275 std::optional
<LoopICmp
> parseLoopICmp(ICmpInst
*ICI
);
276 std::optional
<LoopICmp
> parseLoopLatchICmp();
278 /// Return an insertion point suitable for inserting a safe to speculate
279 /// instruction whose only user will be 'User' which has operands 'Ops'. A
280 /// trivial result would be the at the User itself, but we try to return a
281 /// loop invariant location if possible.
282 Instruction
*findInsertPt(Instruction
*User
, ArrayRef
<Value
*> Ops
);
283 /// Same as above, *except* that this uses the SCEV definition of invariant
284 /// which is that an expression *can be made* invariant via SCEVExpander.
285 /// Thus, this version is only suitable for finding an insert point to be
286 /// passed to SCEVExpander!
287 Instruction
*findInsertPt(const SCEVExpander
&Expander
, Instruction
*User
,
288 ArrayRef
<const SCEV
*> Ops
);
290 /// Return true if the value is known to produce a single fixed value across
291 /// all iterations on which it executes. Note that this does not imply
292 /// speculation safety. That must be established separately.
293 bool isLoopInvariantValue(const SCEV
* S
);
295 Value
*expandCheck(SCEVExpander
&Expander
, Instruction
*Guard
,
296 ICmpInst::Predicate Pred
, const SCEV
*LHS
,
299 std::optional
<Value
*> widenICmpRangeCheck(ICmpInst
*ICI
,
300 SCEVExpander
&Expander
,
302 std::optional
<Value
*>
303 widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck
, LoopICmp RangeCheck
,
304 SCEVExpander
&Expander
,
306 std::optional
<Value
*>
307 widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck
, LoopICmp RangeCheck
,
308 SCEVExpander
&Expander
,
310 void widenChecks(SmallVectorImpl
<Value
*> &Checks
,
311 SmallVectorImpl
<Value
*> &WidenedChecks
,
312 SCEVExpander
&Expander
, Instruction
*Guard
);
313 bool widenGuardConditions(IntrinsicInst
*II
, SCEVExpander
&Expander
);
314 bool widenWidenableBranchGuardConditions(BranchInst
*Guard
, SCEVExpander
&Expander
);
315 // If the loop always exits through another block in the loop, we should not
316 // predicate based on the latch check. For example, the latch check can be a
317 // very coarse grained check and there can be more fine grained exit checks
319 bool isLoopProfitableToPredicate();
321 bool predicateLoopExits(Loop
*L
, SCEVExpander
&Rewriter
);
324 LoopPredication(AliasAnalysis
*AA
, DominatorTree
*DT
, ScalarEvolution
*SE
,
325 LoopInfo
*LI
, MemorySSAUpdater
*MSSAU
)
326 : AA(AA
), DT(DT
), SE(SE
), LI(LI
), MSSAU(MSSAU
){};
327 bool runOnLoop(Loop
*L
);
332 PreservedAnalyses
LoopPredicationPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
333 LoopStandardAnalysisResults
&AR
,
335 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
337 MSSAU
= std::make_unique
<MemorySSAUpdater
>(AR
.MSSA
);
338 LoopPredication
LP(&AR
.AA
, &AR
.DT
, &AR
.SE
, &AR
.LI
,
339 MSSAU
? MSSAU
.get() : nullptr);
340 if (!LP
.runOnLoop(&L
))
341 return PreservedAnalyses::all();
343 auto PA
= getLoopPassPreservedAnalyses();
345 PA
.preserve
<MemorySSAAnalysis
>();
349 std::optional
<LoopICmp
> LoopPredication::parseLoopICmp(ICmpInst
*ICI
) {
350 auto Pred
= ICI
->getPredicate();
351 auto *LHS
= ICI
->getOperand(0);
352 auto *RHS
= ICI
->getOperand(1);
354 const SCEV
*LHSS
= SE
->getSCEV(LHS
);
355 if (isa
<SCEVCouldNotCompute
>(LHSS
))
357 const SCEV
*RHSS
= SE
->getSCEV(RHS
);
358 if (isa
<SCEVCouldNotCompute
>(RHSS
))
361 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
362 if (SE
->isLoopInvariant(LHSS
, L
)) {
364 std::swap(LHSS
, RHSS
);
365 Pred
= ICmpInst::getSwappedPredicate(Pred
);
368 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHSS
);
369 if (!AR
|| AR
->getLoop() != L
)
372 return LoopICmp(Pred
, AR
, RHSS
);
375 Value
*LoopPredication::expandCheck(SCEVExpander
&Expander
,
377 ICmpInst::Predicate Pred
, const SCEV
*LHS
,
379 Type
*Ty
= LHS
->getType();
380 assert(Ty
== RHS
->getType() && "expandCheck operands have different types?");
382 if (SE
->isLoopInvariant(LHS
, L
) && SE
->isLoopInvariant(RHS
, L
)) {
383 IRBuilder
<> Builder(Guard
);
384 if (SE
->isLoopEntryGuardedByCond(L
, Pred
, LHS
, RHS
))
385 return Builder
.getTrue();
386 if (SE
->isLoopEntryGuardedByCond(L
, ICmpInst::getInversePredicate(Pred
),
388 return Builder
.getFalse();
392 Expander
.expandCodeFor(LHS
, Ty
, findInsertPt(Expander
, Guard
, {LHS
}));
394 Expander
.expandCodeFor(RHS
, Ty
, findInsertPt(Expander
, Guard
, {RHS
}));
395 IRBuilder
<> Builder(findInsertPt(Guard
, {LHSV
, RHSV
}));
396 return Builder
.CreateICmp(Pred
, LHSV
, RHSV
);
399 // Returns true if its safe to truncate the IV to RangeCheckType.
400 // When the IV type is wider than the range operand type, we can still do loop
401 // predication, by generating SCEVs for the range and latch that are of the
402 // same type. We achieve this by generating a SCEV truncate expression for the
403 // latch IV. This is done iff truncation of the IV is a safe operation,
404 // without loss of information.
405 // Another way to achieve this is by generating a wider type SCEV for the
406 // range check operand, however, this needs a more involved check that
407 // operands do not overflow. This can lead to loss of information when the
408 // range operand is of the form: add i32 %offset, %iv. We need to prove that
409 // sext(x + y) is same as sext(x) + sext(y).
410 // This function returns true if we can safely represent the IV type in
411 // the RangeCheckType without loss of information.
412 static bool isSafeToTruncateWideIVType(const DataLayout
&DL
,
414 const LoopICmp LatchCheck
,
415 Type
*RangeCheckType
) {
416 if (!EnableIVTruncation
)
418 assert(DL
.getTypeSizeInBits(LatchCheck
.IV
->getType()).getFixedValue() >
419 DL
.getTypeSizeInBits(RangeCheckType
).getFixedValue() &&
420 "Expected latch check IV type to be larger than range check operand "
422 // The start and end values of the IV should be known. This is to guarantee
423 // that truncating the wide type will not lose information.
424 auto *Limit
= dyn_cast
<SCEVConstant
>(LatchCheck
.Limit
);
425 auto *Start
= dyn_cast
<SCEVConstant
>(LatchCheck
.IV
->getStart());
426 if (!Limit
|| !Start
)
428 // This check makes sure that the IV does not change sign during loop
429 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
430 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
431 // IV wraps around, and the truncation of the IV would lose the range of
432 // iterations between 2^32 and 2^64.
433 if (!SE
.getMonotonicPredicateType(LatchCheck
.IV
, LatchCheck
.Pred
))
435 // The active bits should be less than the bits in the RangeCheckType. This
436 // guarantees that truncating the latch check to RangeCheckType is a safe
438 auto RangeCheckTypeBitSize
=
439 DL
.getTypeSizeInBits(RangeCheckType
).getFixedValue();
440 return Start
->getAPInt().getActiveBits() < RangeCheckTypeBitSize
&&
441 Limit
->getAPInt().getActiveBits() < RangeCheckTypeBitSize
;
445 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
446 // the requested type if safe to do so. May involve the use of a new IV.
447 static std::optional
<LoopICmp
> generateLoopLatchCheck(const DataLayout
&DL
,
449 const LoopICmp LatchCheck
,
450 Type
*RangeCheckType
) {
452 auto *LatchType
= LatchCheck
.IV
->getType();
453 if (RangeCheckType
== LatchType
)
455 // For now, bail out if latch type is narrower than range type.
456 if (DL
.getTypeSizeInBits(LatchType
).getFixedValue() <
457 DL
.getTypeSizeInBits(RangeCheckType
).getFixedValue())
459 if (!isSafeToTruncateWideIVType(DL
, SE
, LatchCheck
, RangeCheckType
))
461 // We can now safely identify the truncated version of the IV and limit for
463 LoopICmp NewLatchCheck
;
464 NewLatchCheck
.Pred
= LatchCheck
.Pred
;
465 NewLatchCheck
.IV
= dyn_cast
<SCEVAddRecExpr
>(
466 SE
.getTruncateExpr(LatchCheck
.IV
, RangeCheckType
));
467 if (!NewLatchCheck
.IV
)
469 NewLatchCheck
.Limit
= SE
.getTruncateExpr(LatchCheck
.Limit
, RangeCheckType
);
470 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
471 << "can be represented as range check type:"
472 << *RangeCheckType
<< "\n");
473 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck
.IV
<< "\n");
474 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck
.Limit
<< "\n");
475 return NewLatchCheck
;
478 bool LoopPredication::isSupportedStep(const SCEV
* Step
) {
479 return Step
->isOne() || (Step
->isAllOnesValue() && EnableCountDownLoop
);
482 Instruction
*LoopPredication::findInsertPt(Instruction
*Use
,
483 ArrayRef
<Value
*> Ops
) {
484 for (Value
*Op
: Ops
)
485 if (!L
->isLoopInvariant(Op
))
487 return Preheader
->getTerminator();
490 Instruction
*LoopPredication::findInsertPt(const SCEVExpander
&Expander
,
492 ArrayRef
<const SCEV
*> Ops
) {
493 // Subtlety: SCEV considers things to be invariant if the value produced is
494 // the same across iterations. This is not the same as being able to
495 // evaluate outside the loop, which is what we actually need here.
496 for (const SCEV
*Op
: Ops
)
497 if (!SE
->isLoopInvariant(Op
, L
) ||
498 !Expander
.isSafeToExpandAt(Op
, Preheader
->getTerminator()))
500 return Preheader
->getTerminator();
503 bool LoopPredication::isLoopInvariantValue(const SCEV
* S
) {
504 // Handling expressions which produce invariant results, but *haven't* yet
505 // been removed from the loop serves two important purposes.
506 // 1) Most importantly, it resolves a pass ordering cycle which would
507 // otherwise need us to iteration licm, loop-predication, and either
508 // loop-unswitch or loop-peeling to make progress on examples with lots of
509 // predicable range checks in a row. (Since, in the general case, we can't
510 // hoist the length checks until the dominating checks have been discharged
511 // as we can't prove doing so is safe.)
512 // 2) As a nice side effect, this exposes the value of peeling or unswitching
513 // much more obviously in the IR. Otherwise, the cost modeling for other
514 // transforms would end up needing to duplicate all of this logic to model a
515 // check which becomes predictable based on a modeled peel or unswitch.
517 // The cost of doing so in the worst case is an extra fill from the stack in
518 // the loop to materialize the loop invariant test value instead of checking
519 // against the original IV which is presumable in a register inside the loop.
520 // Such cases are presumably rare, and hint at missing oppurtunities for
523 if (SE
->isLoopInvariant(S
, L
))
524 // Note: This the SCEV variant, so the original Value* may be within the
525 // loop even though SCEV has proven it is loop invariant.
528 // Handle a particular important case which SCEV doesn't yet know about which
529 // shows up in range checks on arrays with immutable lengths.
530 // TODO: This should be sunk inside SCEV.
531 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
))
532 if (const auto *LI
= dyn_cast
<LoadInst
>(U
->getValue()))
533 if (LI
->isUnordered() && L
->hasLoopInvariantOperands(LI
))
534 if (!isModSet(AA
->getModRefInfoMask(LI
->getOperand(0))) ||
535 LI
->hasMetadata(LLVMContext::MD_invariant_load
))
540 std::optional
<Value
*> LoopPredication::widenICmpRangeCheckIncrementingLoop(
541 LoopICmp LatchCheck
, LoopICmp RangeCheck
, SCEVExpander
&Expander
,
542 Instruction
*Guard
) {
543 auto *Ty
= RangeCheck
.IV
->getType();
544 // Generate the widened condition for the forward loop:
545 // guardStart u< guardLimit &&
546 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
547 // where <pred> depends on the latch condition predicate. See the file
548 // header comment for the reasoning.
549 // guardLimit - guardStart + latchStart - 1
550 const SCEV
*GuardStart
= RangeCheck
.IV
->getStart();
551 const SCEV
*GuardLimit
= RangeCheck
.Limit
;
552 const SCEV
*LatchStart
= LatchCheck
.IV
->getStart();
553 const SCEV
*LatchLimit
= LatchCheck
.Limit
;
554 // Subtlety: We need all the values to be *invariant* across all iterations,
555 // but we only need to check expansion safety for those which *aren't*
556 // already guaranteed to dominate the guard.
557 if (!isLoopInvariantValue(GuardStart
) ||
558 !isLoopInvariantValue(GuardLimit
) ||
559 !isLoopInvariantValue(LatchStart
) ||
560 !isLoopInvariantValue(LatchLimit
)) {
561 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
564 if (!Expander
.isSafeToExpandAt(LatchStart
, Guard
) ||
565 !Expander
.isSafeToExpandAt(LatchLimit
, Guard
)) {
566 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
570 // guardLimit - guardStart + latchStart - 1
572 SE
->getAddExpr(SE
->getMinusSCEV(GuardLimit
, GuardStart
),
573 SE
->getMinusSCEV(LatchStart
, SE
->getOne(Ty
)));
574 auto LimitCheckPred
=
575 ICmpInst::getFlippedStrictnessPredicate(LatchCheck
.Pred
);
577 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit
<< "\n");
578 LLVM_DEBUG(dbgs() << "RHS: " << *RHS
<< "\n");
579 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred
<< "\n");
582 expandCheck(Expander
, Guard
, LimitCheckPred
, LatchLimit
, RHS
);
583 auto *FirstIterationCheck
= expandCheck(Expander
, Guard
, RangeCheck
.Pred
,
584 GuardStart
, GuardLimit
);
585 IRBuilder
<> Builder(findInsertPt(Guard
, {FirstIterationCheck
, LimitCheck
}));
586 return Builder
.CreateFreeze(
587 Builder
.CreateAnd(FirstIterationCheck
, LimitCheck
));
590 std::optional
<Value
*> LoopPredication::widenICmpRangeCheckDecrementingLoop(
591 LoopICmp LatchCheck
, LoopICmp RangeCheck
, SCEVExpander
&Expander
,
592 Instruction
*Guard
) {
593 auto *Ty
= RangeCheck
.IV
->getType();
594 const SCEV
*GuardStart
= RangeCheck
.IV
->getStart();
595 const SCEV
*GuardLimit
= RangeCheck
.Limit
;
596 const SCEV
*LatchStart
= LatchCheck
.IV
->getStart();
597 const SCEV
*LatchLimit
= LatchCheck
.Limit
;
598 // Subtlety: We need all the values to be *invariant* across all iterations,
599 // but we only need to check expansion safety for those which *aren't*
600 // already guaranteed to dominate the guard.
601 if (!isLoopInvariantValue(GuardStart
) ||
602 !isLoopInvariantValue(GuardLimit
) ||
603 !isLoopInvariantValue(LatchStart
) ||
604 !isLoopInvariantValue(LatchLimit
)) {
605 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
608 if (!Expander
.isSafeToExpandAt(LatchStart
, Guard
) ||
609 !Expander
.isSafeToExpandAt(LatchLimit
, Guard
)) {
610 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
613 // The decrement of the latch check IV should be the same as the
615 auto *PostDecLatchCheckIV
= LatchCheck
.IV
->getPostIncExpr(*SE
);
616 if (RangeCheck
.IV
!= PostDecLatchCheckIV
) {
617 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
618 << *PostDecLatchCheckIV
619 << " and RangeCheckIV: " << *RangeCheck
.IV
<< "\n");
623 // Generate the widened condition for CountDownLoop:
624 // guardStart u< guardLimit &&
625 // latchLimit <pred> 1.
626 // See the header comment for reasoning of the checks.
627 auto LimitCheckPred
=
628 ICmpInst::getFlippedStrictnessPredicate(LatchCheck
.Pred
);
629 auto *FirstIterationCheck
= expandCheck(Expander
, Guard
,
631 GuardStart
, GuardLimit
);
632 auto *LimitCheck
= expandCheck(Expander
, Guard
, LimitCheckPred
, LatchLimit
,
634 IRBuilder
<> Builder(findInsertPt(Guard
, {FirstIterationCheck
, LimitCheck
}));
635 return Builder
.CreateFreeze(
636 Builder
.CreateAnd(FirstIterationCheck
, LimitCheck
));
639 static void normalizePredicate(ScalarEvolution
*SE
, Loop
*L
,
641 // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
642 // ULT/UGE form for ease of handling by our caller.
643 if (ICmpInst::isEquality(RC
.Pred
) &&
644 RC
.IV
->getStepRecurrence(*SE
)->isOne() &&
645 SE
->isKnownPredicate(ICmpInst::ICMP_ULE
, RC
.IV
->getStart(), RC
.Limit
))
646 RC
.Pred
= RC
.Pred
== ICmpInst::ICMP_NE
?
647 ICmpInst::ICMP_ULT
: ICmpInst::ICMP_UGE
;
650 /// If ICI can be widened to a loop invariant condition emits the loop
651 /// invariant condition in the loop preheader and return it, otherwise
652 /// returns std::nullopt.
653 std::optional
<Value
*>
654 LoopPredication::widenICmpRangeCheck(ICmpInst
*ICI
, SCEVExpander
&Expander
,
655 Instruction
*Guard
) {
656 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
657 LLVM_DEBUG(ICI
->dump());
659 // parseLoopStructure guarantees that the latch condition is:
660 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
661 // We are looking for the range checks of the form:
663 auto RangeCheck
= parseLoopICmp(ICI
);
665 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
668 LLVM_DEBUG(dbgs() << "Guard check:\n");
669 LLVM_DEBUG(RangeCheck
->dump());
670 if (RangeCheck
->Pred
!= ICmpInst::ICMP_ULT
) {
671 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
672 << RangeCheck
->Pred
<< ")!\n");
675 auto *RangeCheckIV
= RangeCheck
->IV
;
676 if (!RangeCheckIV
->isAffine()) {
677 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
680 auto *Step
= RangeCheckIV
->getStepRecurrence(*SE
);
681 // We cannot just compare with latch IV step because the latch and range IVs
682 // may have different types.
683 if (!isSupportedStep(Step
)) {
684 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
687 auto *Ty
= RangeCheckIV
->getType();
688 auto CurrLatchCheckOpt
= generateLoopLatchCheck(*DL
, *SE
, LatchCheck
, Ty
);
689 if (!CurrLatchCheckOpt
) {
690 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
691 "corresponding to range type: "
696 LoopICmp CurrLatchCheck
= *CurrLatchCheckOpt
;
697 // At this point, the range and latch step should have the same type, but need
698 // not have the same value (we support both 1 and -1 steps).
699 assert(Step
->getType() ==
700 CurrLatchCheck
.IV
->getStepRecurrence(*SE
)->getType() &&
701 "Range and latch steps should be of same type!");
702 if (Step
!= CurrLatchCheck
.IV
->getStepRecurrence(*SE
)) {
703 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
708 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck
, *RangeCheck
,
711 assert(Step
->isAllOnesValue() && "Step should be -1!");
712 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck
, *RangeCheck
,
717 void LoopPredication::widenChecks(SmallVectorImpl
<Value
*> &Checks
,
718 SmallVectorImpl
<Value
*> &WidenedChecks
,
719 SCEVExpander
&Expander
, Instruction
*Guard
) {
720 for (auto &Check
: Checks
)
721 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(Check
))
722 if (auto NewRangeCheck
= widenICmpRangeCheck(ICI
, Expander
, Guard
)) {
723 WidenedChecks
.push_back(Check
);
724 Check
= *NewRangeCheck
;
728 bool LoopPredication::widenGuardConditions(IntrinsicInst
*Guard
,
729 SCEVExpander
&Expander
) {
730 LLVM_DEBUG(dbgs() << "Processing guard:\n");
731 LLVM_DEBUG(Guard
->dump());
734 SmallVector
<Value
*, 4> Checks
;
735 SmallVector
<Value
*> WidenedChecks
;
736 parseWidenableGuard(Guard
, Checks
);
737 widenChecks(Checks
, WidenedChecks
, Expander
, Guard
);
738 if (WidenedChecks
.empty())
741 TotalWidened
+= WidenedChecks
.size();
743 // Emit the new guard condition
744 IRBuilder
<> Builder(findInsertPt(Guard
, Checks
));
745 Value
*AllChecks
= Builder
.CreateAnd(Checks
);
746 auto *OldCond
= Guard
->getOperand(0);
747 Guard
->setOperand(0, AllChecks
);
748 if (InsertAssumesOfPredicatedGuardsConditions
) {
749 Builder
.SetInsertPoint(&*++BasicBlock::iterator(Guard
));
750 Builder
.CreateAssumption(OldCond
);
752 RecursivelyDeleteTriviallyDeadInstructions(OldCond
, nullptr /* TLI */, MSSAU
);
754 LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks
.size() << "\n");
758 bool LoopPredication::widenWidenableBranchGuardConditions(
759 BranchInst
*BI
, SCEVExpander
&Expander
) {
760 assert(isGuardAsWidenableBranch(BI
) && "Must be!");
761 LLVM_DEBUG(dbgs() << "Processing guard:\n");
762 LLVM_DEBUG(BI
->dump());
765 SmallVector
<Value
*, 4> Checks
;
766 SmallVector
<Value
*> WidenedChecks
;
767 parseWidenableGuard(BI
, Checks
);
768 // At the moment, our matching logic for wideable conditions implicitly
769 // assumes we preserve the form: (br (and Cond, WC())). FIXME
770 auto WC
= extractWidenableCondition(BI
);
771 Checks
.push_back(WC
);
772 widenChecks(Checks
, WidenedChecks
, Expander
, BI
);
773 if (WidenedChecks
.empty())
776 TotalWidened
+= WidenedChecks
.size();
778 // Emit the new guard condition
779 IRBuilder
<> Builder(findInsertPt(BI
, Checks
));
780 Value
*AllChecks
= Builder
.CreateAnd(Checks
);
781 auto *OldCond
= BI
->getCondition();
782 BI
->setCondition(AllChecks
);
783 if (InsertAssumesOfPredicatedGuardsConditions
) {
784 BasicBlock
*IfTrueBB
= BI
->getSuccessor(0);
785 Builder
.SetInsertPoint(IfTrueBB
, IfTrueBB
->getFirstInsertionPt());
786 // If this block has other predecessors, we might not be able to use Cond.
787 // In this case, create a Phi where every other input is `true` and input
788 // from guard block is Cond.
789 Value
*AssumeCond
= Builder
.CreateAnd(WidenedChecks
);
790 if (!IfTrueBB
->getUniquePredecessor()) {
791 auto *GuardBB
= BI
->getParent();
792 auto *PN
= Builder
.CreatePHI(AssumeCond
->getType(), pred_size(IfTrueBB
),
794 for (auto *Pred
: predecessors(IfTrueBB
))
795 PN
->addIncoming(Pred
== GuardBB
? AssumeCond
: Builder
.getTrue(), Pred
);
798 Builder
.CreateAssumption(AssumeCond
);
800 RecursivelyDeleteTriviallyDeadInstructions(OldCond
, nullptr /* TLI */, MSSAU
);
801 assert(isGuardAsWidenableBranch(BI
) &&
802 "Stopped being a guard after transform?");
804 LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks
.size() << "\n");
808 std::optional
<LoopICmp
> LoopPredication::parseLoopLatchICmp() {
809 using namespace PatternMatch
;
811 BasicBlock
*LoopLatch
= L
->getLoopLatch();
813 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
817 auto *BI
= dyn_cast
<BranchInst
>(LoopLatch
->getTerminator());
818 if (!BI
|| !BI
->isConditional()) {
819 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
822 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
824 (TrueDest
== L
->getHeader() || BI
->getSuccessor(1) == L
->getHeader()) &&
825 "One of the latch's destinations must be the header");
827 auto *ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition());
829 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
832 auto Result
= parseLoopICmp(ICI
);
834 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
838 if (TrueDest
!= L
->getHeader())
839 Result
->Pred
= ICmpInst::getInversePredicate(Result
->Pred
);
841 // Check affine first, so if it's not we don't try to compute the step
843 if (!Result
->IV
->isAffine()) {
844 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
848 auto *Step
= Result
->IV
->getStepRecurrence(*SE
);
849 if (!isSupportedStep(Step
)) {
850 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step
<< ")!\n");
854 auto IsUnsupportedPredicate
= [](const SCEV
*Step
, ICmpInst::Predicate Pred
) {
856 return Pred
!= ICmpInst::ICMP_ULT
&& Pred
!= ICmpInst::ICMP_SLT
&&
857 Pred
!= ICmpInst::ICMP_ULE
&& Pred
!= ICmpInst::ICMP_SLE
;
859 assert(Step
->isAllOnesValue() && "Step should be -1!");
860 return Pred
!= ICmpInst::ICMP_UGT
&& Pred
!= ICmpInst::ICMP_SGT
&&
861 Pred
!= ICmpInst::ICMP_UGE
&& Pred
!= ICmpInst::ICMP_SGE
;
865 normalizePredicate(SE
, L
, *Result
);
866 if (IsUnsupportedPredicate(Step
, Result
->Pred
)) {
867 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result
->Pred
875 bool LoopPredication::isLoopProfitableToPredicate() {
876 if (SkipProfitabilityChecks
)
879 SmallVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 8> ExitEdges
;
880 L
->getExitEdges(ExitEdges
);
881 // If there is only one exiting edge in the loop, it is always profitable to
882 // predicate the loop.
883 if (ExitEdges
.size() == 1)
886 // Calculate the exiting probabilities of all exiting edges from the loop,
887 // starting with the LatchExitProbability.
888 // Heuristic for profitability: If any of the exiting blocks' probability of
889 // exiting the loop is larger than exiting through the latch block, it's not
890 // profitable to predicate the loop.
891 auto *LatchBlock
= L
->getLoopLatch();
892 assert(LatchBlock
&& "Should have a single latch at this point!");
893 auto *LatchTerm
= LatchBlock
->getTerminator();
894 assert(LatchTerm
->getNumSuccessors() == 2 &&
895 "expected to be an exiting block with 2 succs!");
896 unsigned LatchBrExitIdx
=
897 LatchTerm
->getSuccessor(0) == L
->getHeader() ? 1 : 0;
898 // We compute branch probabilities without BPI. We do not rely on BPI since
899 // Loop predication is usually run in an LPM and BPI is only preserved
900 // lossily within loop pass managers, while BPI has an inherent notion of
901 // being complete for an entire function.
903 // If the latch exits into a deoptimize or an unreachable block, do not
904 // predicate on that latch check.
905 auto *LatchExitBlock
= LatchTerm
->getSuccessor(LatchBrExitIdx
);
906 if (isa
<UnreachableInst
>(LatchTerm
) ||
907 LatchExitBlock
->getTerminatingDeoptimizeCall())
910 // Latch terminator has no valid profile data, so nothing to check
912 if (!hasValidBranchWeightMD(*LatchTerm
))
915 auto ComputeBranchProbability
=
916 [&](const BasicBlock
*ExitingBlock
,
917 const BasicBlock
*ExitBlock
) -> BranchProbability
{
918 auto *Term
= ExitingBlock
->getTerminator();
919 unsigned NumSucc
= Term
->getNumSuccessors();
920 if (MDNode
*ProfileData
= getValidBranchWeightMDNode(*Term
)) {
921 SmallVector
<uint32_t> Weights
;
922 extractBranchWeights(ProfileData
, Weights
);
923 uint64_t Numerator
= 0, Denominator
= 0;
924 for (auto [i
, Weight
] : llvm::enumerate(Weights
)) {
925 if (Term
->getSuccessor(i
) == ExitBlock
)
927 Denominator
+= Weight
;
929 // If all weights are zero act as if there was no profile data
930 if (Denominator
== 0)
931 return BranchProbability::getBranchProbability(1, NumSucc
);
932 return BranchProbability::getBranchProbability(Numerator
, Denominator
);
934 assert(LatchBlock
!= ExitingBlock
&&
935 "Latch term should always have profile data!");
936 // No profile data, so we choose the weight as 1/num_of_succ(Src)
937 return BranchProbability::getBranchProbability(1, NumSucc
);
941 BranchProbability LatchExitProbability
=
942 ComputeBranchProbability(LatchBlock
, LatchExitBlock
);
944 // Protect against degenerate inputs provided by the user. Providing a value
945 // less than one, can invert the definition of profitable loop predication.
946 float ScaleFactor
= LatchExitProbabilityScale
;
947 if (ScaleFactor
< 1) {
950 << "Ignored user setting for loop-predication-latch-probability-scale: "
951 << LatchExitProbabilityScale
<< "\n");
952 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
955 const auto LatchProbabilityThreshold
= LatchExitProbability
* ScaleFactor
;
957 for (const auto &ExitEdge
: ExitEdges
) {
958 BranchProbability ExitingBlockProbability
=
959 ComputeBranchProbability(ExitEdge
.first
, ExitEdge
.second
);
960 // Some exiting edge has higher probability than the latch exiting edge.
961 // No longer profitable to predicate.
962 if (ExitingBlockProbability
> LatchProbabilityThreshold
)
966 // We have concluded that the most probable way to exit from the
967 // loop is through the latch (or there's no profile information and all
968 // exits are equally likely).
972 /// If we can (cheaply) find a widenable branch which controls entry into the
974 static BranchInst
*FindWidenableTerminatorAboveLoop(Loop
*L
, LoopInfo
&LI
) {
975 // Walk back through any unconditional executed blocks and see if we can find
976 // a widenable condition which seems to control execution of this loop. Note
977 // that we predict that maythrow calls are likely untaken and thus that it's
978 // profitable to widen a branch before a maythrow call with a condition
979 // afterwards even though that may cause the slow path to run in a case where
980 // it wouldn't have otherwise.
981 BasicBlock
*BB
= L
->getLoopPreheader();
985 if (BasicBlock
*Pred
= BB
->getSinglePredecessor())
986 if (BB
== Pred
->getSingleSuccessor()) {
993 if (BasicBlock
*Pred
= BB
->getSinglePredecessor()) {
994 if (auto *BI
= dyn_cast
<BranchInst
>(Pred
->getTerminator()))
995 if (BI
->getSuccessor(0) == BB
&& isWidenableBranch(BI
))
1001 /// Return the minimum of all analyzeable exit counts. This is an upper bound
1002 /// on the actual exit count. If there are not at least two analyzeable exits,
1003 /// returns SCEVCouldNotCompute.
1004 static const SCEV
*getMinAnalyzeableBackedgeTakenCount(ScalarEvolution
&SE
,
1007 SmallVector
<BasicBlock
*, 16> ExitingBlocks
;
1008 L
->getExitingBlocks(ExitingBlocks
);
1010 SmallVector
<const SCEV
*, 4> ExitCounts
;
1011 for (BasicBlock
*ExitingBB
: ExitingBlocks
) {
1012 const SCEV
*ExitCount
= SE
.getExitCount(L
, ExitingBB
);
1013 if (isa
<SCEVCouldNotCompute
>(ExitCount
))
1015 assert(DT
.dominates(ExitingBB
, L
->getLoopLatch()) &&
1016 "We should only have known counts for exiting blocks that "
1018 ExitCounts
.push_back(ExitCount
);
1020 if (ExitCounts
.size() < 2)
1021 return SE
.getCouldNotCompute();
1022 return SE
.getUMinFromMismatchedTypes(ExitCounts
);
1025 /// This implements an analogous, but entirely distinct transform from the main
1026 /// loop predication transform. This one is phrased in terms of using a
1027 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1028 /// following loop. This is close in spirit to the IndVarSimplify transform
1029 /// of the same name, but is materially different widening loosens legality
1031 bool LoopPredication::predicateLoopExits(Loop
*L
, SCEVExpander
&Rewriter
) {
1032 // The transformation performed here aims to widen a widenable condition
1033 // above the loop such that all analyzeable exit leading to deopt are dead.
1034 // It assumes that the latch is the dominant exit for profitability and that
1035 // exits branching to deoptimizing blocks are rarely taken. It relies on the
1036 // semantics of widenable expressions for legality. (i.e. being able to fall
1037 // down the widenable path spuriously allows us to ignore exit order,
1038 // unanalyzeable exits, side effects, exceptional exits, and other challenges
1039 // which restrict the applicability of the non-WC based version of this
1040 // transform in IndVarSimplify.)
1042 // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1043 // imply flags on the expression being hoisted and inserting new uses (flags
1044 // are only correct for current uses). The result is that we may be
1045 // inserting a branch on the value which can be either poison or undef. In
1046 // this case, the branch can legally go either way; we just need to avoid
1047 // introducing UB. This is achieved through the use of the freeze
1050 SmallVector
<BasicBlock
*, 16> ExitingBlocks
;
1051 L
->getExitingBlocks(ExitingBlocks
);
1053 if (ExitingBlocks
.empty())
1054 return false; // Nothing to do.
1056 auto *Latch
= L
->getLoopLatch();
1060 auto *WidenableBR
= FindWidenableTerminatorAboveLoop(L
, *LI
);
1064 const SCEV
*LatchEC
= SE
->getExitCount(L
, Latch
);
1065 if (isa
<SCEVCouldNotCompute
>(LatchEC
))
1066 return false; // profitability - want hot exit in analyzeable set
1068 // At this point, we have found an analyzeable latch, and a widenable
1069 // condition above the loop. If we have a widenable exit within the loop
1070 // (for which we can't compute exit counts), drop the ability to further
1071 // widen so that we gain ability to analyze it's exit count and perform this
1072 // transform. TODO: It'd be nice to know for sure the exit became
1073 // analyzeable after dropping widenability.
1074 bool ChangedLoop
= false;
1076 for (auto *ExitingBB
: ExitingBlocks
) {
1077 if (LI
->getLoopFor(ExitingBB
) != L
)
1080 auto *BI
= dyn_cast
<BranchInst
>(ExitingBB
->getTerminator());
1084 if (auto WC
= extractWidenableCondition(BI
))
1085 if (L
->contains(BI
->getSuccessor(0))) {
1086 assert(WC
->hasOneUse() && "Not appropriate widenable branch!");
1087 WC
->user_back()->replaceUsesOfWith(
1088 WC
, ConstantInt::getTrue(BI
->getContext()));
1095 // The insertion point for the widening should be at the widenably call, not
1096 // at the WidenableBR. If we do this at the widenableBR, we can incorrectly
1097 // change a loop-invariant condition to a loop-varying one.
1098 auto *IP
= cast
<Instruction
>(WidenableBR
->getCondition());
1100 // The use of umin(all analyzeable exits) instead of latch is subtle, but
1101 // important for profitability. We may have a loop which hasn't been fully
1102 // canonicalized just yet. If the exit we chose to widen is provably never
1103 // taken, we want the widened form to *also* be provably never taken. We
1104 // can't guarantee this as a current unanalyzeable exit may later become
1105 // analyzeable, but we can at least avoid the obvious cases.
1106 const SCEV
*MinEC
= getMinAnalyzeableBackedgeTakenCount(*SE
, *DT
, L
);
1107 if (isa
<SCEVCouldNotCompute
>(MinEC
) || MinEC
->getType()->isPointerTy() ||
1108 !SE
->isLoopInvariant(MinEC
, L
) ||
1109 !Rewriter
.isSafeToExpandAt(MinEC
, IP
))
1112 Rewriter
.setInsertPoint(IP
);
1115 bool InvalidateLoop
= false;
1116 Value
*MinECV
= nullptr; // lazily generated if needed
1117 for (BasicBlock
*ExitingBB
: ExitingBlocks
) {
1118 // If our exiting block exits multiple loops, we can only rewrite the
1119 // innermost one. Otherwise, we're changing how many times the innermost
1120 // loop runs before it exits.
1121 if (LI
->getLoopFor(ExitingBB
) != L
)
1124 // Can't rewrite non-branch yet.
1125 auto *BI
= dyn_cast
<BranchInst
>(ExitingBB
->getTerminator());
1129 // If already constant, nothing to do.
1130 if (isa
<Constant
>(BI
->getCondition()))
1133 const SCEV
*ExitCount
= SE
->getExitCount(L
, ExitingBB
);
1134 if (isa
<SCEVCouldNotCompute
>(ExitCount
) ||
1135 ExitCount
->getType()->isPointerTy() ||
1136 !Rewriter
.isSafeToExpandAt(ExitCount
, WidenableBR
))
1139 const bool ExitIfTrue
= !L
->contains(*succ_begin(ExitingBB
));
1140 BasicBlock
*ExitBB
= BI
->getSuccessor(ExitIfTrue
? 0 : 1);
1141 if (!ExitBB
->getPostdominatingDeoptimizeCall())
1144 /// Here we can be fairly sure that executing this exit will most likely
1145 /// lead to executing llvm.experimental.deoptimize.
1146 /// This is a profitability heuristic, not a legality constraint.
1148 // If we found a widenable exit condition, do two things:
1149 // 1) fold the widened exit test into the widenable condition
1150 // 2) fold the branch to untaken - avoids infinite looping
1152 Value
*ECV
= Rewriter
.expandCodeFor(ExitCount
);
1154 MinECV
= Rewriter
.expandCodeFor(MinEC
);
1155 Value
*RHS
= MinECV
;
1156 if (ECV
->getType() != RHS
->getType()) {
1157 Type
*WiderTy
= SE
->getWiderType(ECV
->getType(), RHS
->getType());
1158 ECV
= B
.CreateZExt(ECV
, WiderTy
);
1159 RHS
= B
.CreateZExt(RHS
, WiderTy
);
1161 assert(!Latch
|| DT
->dominates(ExitingBB
, Latch
));
1162 Value
*NewCond
= B
.CreateICmp(ICmpInst::ICMP_UGT
, ECV
, RHS
);
1163 // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1164 // branch without introducing UB. See NOTE ON POISON/UNDEF above for
1166 NewCond
= B
.CreateFreeze(NewCond
);
1168 widenWidenableBranch(WidenableBR
, NewCond
);
1170 Value
*OldCond
= BI
->getCondition();
1171 BI
->setCondition(ConstantInt::get(OldCond
->getType(), !ExitIfTrue
));
1172 InvalidateLoop
= true;
1176 // We just mutated a bunch of loop exits changing there exit counts
1177 // widely. We need to force recomputation of the exit counts given these
1178 // changes. Note that all of the inserted exits are never taken, and
1179 // should be removed next time the CFG is modified.
1182 // Always return `true` since we have moved the WidenableBR's condition.
1186 bool LoopPredication::runOnLoop(Loop
*Loop
) {
1189 LLVM_DEBUG(dbgs() << "Analyzing ");
1190 LLVM_DEBUG(L
->dump());
1192 Module
*M
= L
->getHeader()->getModule();
1194 // There is nothing to do if the module doesn't use guards
1196 M
->getFunction(Intrinsic::getName(Intrinsic::experimental_guard
));
1197 bool HasIntrinsicGuards
= GuardDecl
&& !GuardDecl
->use_empty();
1198 auto *WCDecl
= M
->getFunction(
1199 Intrinsic::getName(Intrinsic::experimental_widenable_condition
));
1200 bool HasWidenableConditions
=
1201 PredicateWidenableBranchGuards
&& WCDecl
&& !WCDecl
->use_empty();
1202 if (!HasIntrinsicGuards
&& !HasWidenableConditions
)
1205 DL
= &M
->getDataLayout();
1207 Preheader
= L
->getLoopPreheader();
1211 auto LatchCheckOpt
= parseLoopLatchICmp();
1214 LatchCheck
= *LatchCheckOpt
;
1216 LLVM_DEBUG(dbgs() << "Latch check:\n");
1217 LLVM_DEBUG(LatchCheck
.dump());
1219 if (!isLoopProfitableToPredicate()) {
1220 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1223 // Collect all the guards into a vector and process later, so as not
1224 // to invalidate the instruction iterator.
1225 SmallVector
<IntrinsicInst
*, 4> Guards
;
1226 SmallVector
<BranchInst
*, 4> GuardsAsWidenableBranches
;
1227 for (const auto BB
: L
->blocks()) {
1230 Guards
.push_back(cast
<IntrinsicInst
>(&I
));
1231 if (PredicateWidenableBranchGuards
&&
1232 isGuardAsWidenableBranch(BB
->getTerminator()))
1233 GuardsAsWidenableBranches
.push_back(
1234 cast
<BranchInst
>(BB
->getTerminator()));
1237 SCEVExpander
Expander(*SE
, *DL
, "loop-predication");
1238 bool Changed
= false;
1239 for (auto *Guard
: Guards
)
1240 Changed
|= widenGuardConditions(Guard
, Expander
);
1241 for (auto *Guard
: GuardsAsWidenableBranches
)
1242 Changed
|= widenWidenableBranchGuardConditions(Guard
, Expander
);
1243 Changed
|= predicateLoopExits(L
, Expander
);
1245 if (MSSAU
&& VerifyMemorySSA
)
1246 MSSAU
->getMemorySSA()->verifyMemorySSA();