[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopRerollPass.cpp
blob7f62526a4f6db1a15527a35e9d42acbd5f651a69
1 //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop reroller.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AliasSetTracker.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar/LoopReroll.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
52 #include <cassert>
53 #include <cstddef>
54 #include <cstdint>
55 #include <iterator>
56 #include <map>
57 #include <utility>
59 using namespace llvm;
61 #define DEBUG_TYPE "loop-reroll"
63 STATISTIC(NumRerolledLoops, "Number of rerolled loops");
65 static cl::opt<unsigned>
66 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
67 cl::Hidden,
68 cl::desc("The maximum number of failures to tolerate"
69 " during fuzzy matching. (default: 400)"));
71 // This loop re-rolling transformation aims to transform loops like this:
73 // int foo(int a);
74 // void bar(int *x) {
75 // for (int i = 0; i < 500; i += 3) {
76 // foo(i);
77 // foo(i+1);
78 // foo(i+2);
79 // }
80 // }
82 // into a loop like this:
84 // void bar(int *x) {
85 // for (int i = 0; i < 500; ++i)
86 // foo(i);
87 // }
89 // It does this by looking for loops that, besides the latch code, are composed
90 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
91 // to the induction variable, and where each DAG is isomorphic to the DAG
92 // rooted at the induction variable (excepting the sub-DAGs which root the
93 // other induction-variable increments). In other words, we're looking for loop
94 // bodies of the form:
96 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
97 // f(%iv)
98 // %iv.1 = add %iv, 1 <-- a root increment
99 // f(%iv.1)
100 // %iv.2 = add %iv, 2 <-- a root increment
101 // f(%iv.2)
102 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
103 // f(%iv.scale_m_1)
104 // ...
105 // %iv.next = add %iv, scale
106 // %cmp = icmp(%iv, ...)
107 // br %cmp, header, exit
109 // where each f(i) is a set of instructions that, collectively, are a function
110 // only of i (and other loop-invariant values).
112 // As a special case, we can also reroll loops like this:
114 // int foo(int);
115 // void bar(int *x) {
116 // for (int i = 0; i < 500; ++i) {
117 // x[3*i] = foo(0);
118 // x[3*i+1] = foo(0);
119 // x[3*i+2] = foo(0);
120 // }
121 // }
123 // into this:
125 // void bar(int *x) {
126 // for (int i = 0; i < 1500; ++i)
127 // x[i] = foo(0);
128 // }
130 // in which case, we're looking for inputs like this:
132 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
133 // %scaled.iv = mul %iv, scale
134 // f(%scaled.iv)
135 // %scaled.iv.1 = add %scaled.iv, 1
136 // f(%scaled.iv.1)
137 // %scaled.iv.2 = add %scaled.iv, 2
138 // f(%scaled.iv.2)
139 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
140 // f(%scaled.iv.scale_m_1)
141 // ...
142 // %iv.next = add %iv, 1
143 // %cmp = icmp(%iv, ...)
144 // br %cmp, header, exit
146 namespace {
148 enum IterationLimits {
149 /// The maximum number of iterations that we'll try and reroll.
150 IL_MaxRerollIterations = 32,
151 /// The bitvector index used by loop induction variables and other
152 /// instructions that belong to all iterations.
153 IL_All,
154 IL_End
157 class LoopReroll {
158 public:
159 LoopReroll(AliasAnalysis *AA, LoopInfo *LI, ScalarEvolution *SE,
160 TargetLibraryInfo *TLI, DominatorTree *DT, bool PreserveLCSSA)
161 : AA(AA), LI(LI), SE(SE), TLI(TLI), DT(DT),
162 PreserveLCSSA(PreserveLCSSA) {}
163 bool runOnLoop(Loop *L);
165 protected:
166 AliasAnalysis *AA;
167 LoopInfo *LI;
168 ScalarEvolution *SE;
169 TargetLibraryInfo *TLI;
170 DominatorTree *DT;
171 bool PreserveLCSSA;
173 using SmallInstructionVector = SmallVector<Instruction *, 16>;
174 using SmallInstructionSet = SmallPtrSet<Instruction *, 16>;
175 using TinyInstructionVector = SmallVector<Instruction *, 1>;
177 // Map between induction variable and its increment
178 DenseMap<Instruction *, int64_t> IVToIncMap;
180 // For loop with multiple induction variables, remember the ones used only to
181 // control the loop.
182 TinyInstructionVector LoopControlIVs;
184 // A chain of isomorphic instructions, identified by a single-use PHI
185 // representing a reduction. Only the last value may be used outside the
186 // loop.
187 struct SimpleLoopReduction {
188 SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) {
189 assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
190 add(L);
193 bool valid() const {
194 return Valid;
197 Instruction *getPHI() const {
198 assert(Valid && "Using invalid reduction");
199 return Instructions.front();
202 Instruction *getReducedValue() const {
203 assert(Valid && "Using invalid reduction");
204 return Instructions.back();
207 Instruction *get(size_t i) const {
208 assert(Valid && "Using invalid reduction");
209 return Instructions[i+1];
212 Instruction *operator [] (size_t i) const { return get(i); }
214 // The size, ignoring the initial PHI.
215 size_t size() const {
216 assert(Valid && "Using invalid reduction");
217 return Instructions.size()-1;
220 using iterator = SmallInstructionVector::iterator;
221 using const_iterator = SmallInstructionVector::const_iterator;
223 iterator begin() {
224 assert(Valid && "Using invalid reduction");
225 return std::next(Instructions.begin());
228 const_iterator begin() const {
229 assert(Valid && "Using invalid reduction");
230 return std::next(Instructions.begin());
233 iterator end() { return Instructions.end(); }
234 const_iterator end() const { return Instructions.end(); }
236 protected:
237 bool Valid = false;
238 SmallInstructionVector Instructions;
240 void add(Loop *L);
243 // The set of all reductions, and state tracking of possible reductions
244 // during loop instruction processing.
245 struct ReductionTracker {
246 using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>;
248 // Add a new possible reduction.
249 void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
251 // Setup to track possible reductions corresponding to the provided
252 // rerolling scale. Only reductions with a number of non-PHI instructions
253 // that is divisible by the scale are considered. Three instructions sets
254 // are filled in:
255 // - A set of all possible instructions in eligible reductions.
256 // - A set of all PHIs in eligible reductions
257 // - A set of all reduced values (last instructions) in eligible
258 // reductions.
259 void restrictToScale(uint64_t Scale,
260 SmallInstructionSet &PossibleRedSet,
261 SmallInstructionSet &PossibleRedPHISet,
262 SmallInstructionSet &PossibleRedLastSet) {
263 PossibleRedIdx.clear();
264 PossibleRedIter.clear();
265 Reds.clear();
267 for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
268 if (PossibleReds[i].size() % Scale == 0) {
269 PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
270 PossibleRedPHISet.insert(PossibleReds[i].getPHI());
272 PossibleRedSet.insert(PossibleReds[i].getPHI());
273 PossibleRedIdx[PossibleReds[i].getPHI()] = i;
274 for (Instruction *J : PossibleReds[i]) {
275 PossibleRedSet.insert(J);
276 PossibleRedIdx[J] = i;
281 // The functions below are used while processing the loop instructions.
283 // Are the two instructions both from reductions, and furthermore, from
284 // the same reduction?
285 bool isPairInSame(Instruction *J1, Instruction *J2) {
286 DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
287 if (J1I != PossibleRedIdx.end()) {
288 DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
289 if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
290 return true;
293 return false;
296 // The two provided instructions, the first from the base iteration, and
297 // the second from iteration i, form a matched pair. If these are part of
298 // a reduction, record that fact.
299 void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
300 if (PossibleRedIdx.count(J1)) {
301 assert(PossibleRedIdx.count(J2) &&
302 "Recording reduction vs. non-reduction instruction?");
304 PossibleRedIter[J1] = 0;
305 PossibleRedIter[J2] = i;
307 int Idx = PossibleRedIdx[J1];
308 assert(Idx == PossibleRedIdx[J2] &&
309 "Recording pair from different reductions?");
310 Reds.insert(Idx);
314 // The functions below can be called after we've finished processing all
315 // instructions in the loop, and we know which reductions were selected.
317 bool validateSelected();
318 void replaceSelected();
320 protected:
321 // The vector of all possible reductions (for any scale).
322 SmallReductionVector PossibleReds;
324 DenseMap<Instruction *, int> PossibleRedIdx;
325 DenseMap<Instruction *, int> PossibleRedIter;
326 DenseSet<int> Reds;
329 // A DAGRootSet models an induction variable being used in a rerollable
330 // loop. For example,
332 // x[i*3+0] = y1
333 // x[i*3+1] = y2
334 // x[i*3+2] = y3
336 // Base instruction -> i*3
337 // +---+----+
338 // / | \
339 // ST[y1] +1 +2 <-- Roots
340 // | |
341 // ST[y2] ST[y3]
343 // There may be multiple DAGRoots, for example:
345 // x[i*2+0] = ... (1)
346 // x[i*2+1] = ... (1)
347 // x[i*2+4] = ... (2)
348 // x[i*2+5] = ... (2)
349 // x[(i+1234)*2+5678] = ... (3)
350 // x[(i+1234)*2+5679] = ... (3)
352 // The loop will be rerolled by adding a new loop induction variable,
353 // one for the Base instruction in each DAGRootSet.
355 struct DAGRootSet {
356 Instruction *BaseInst;
357 SmallInstructionVector Roots;
359 // The instructions between IV and BaseInst (but not including BaseInst).
360 SmallInstructionSet SubsumedInsts;
363 // The set of all DAG roots, and state tracking of all roots
364 // for a particular induction variable.
365 struct DAGRootTracker {
366 DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
367 ScalarEvolution *SE, AliasAnalysis *AA,
368 TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
369 bool PreserveLCSSA,
370 DenseMap<Instruction *, int64_t> &IncrMap,
371 TinyInstructionVector LoopCtrlIVs)
372 : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
373 PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
374 LoopControlIVs(LoopCtrlIVs) {}
376 /// Stage 1: Find all the DAG roots for the induction variable.
377 bool findRoots();
379 /// Stage 2: Validate if the found roots are valid.
380 bool validate(ReductionTracker &Reductions);
382 /// Stage 3: Assuming validate() returned true, perform the
383 /// replacement.
384 /// @param BackedgeTakenCount The backedge-taken count of L.
385 void replace(const SCEV *BackedgeTakenCount);
387 protected:
388 using UsesTy = MapVector<Instruction *, BitVector>;
390 void findRootsRecursive(Instruction *IVU,
391 SmallInstructionSet SubsumedInsts);
392 bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
393 bool collectPossibleRoots(Instruction *Base,
394 std::map<int64_t,Instruction*> &Roots);
395 bool validateRootSet(DAGRootSet &DRS);
397 bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
398 void collectInLoopUserSet(const SmallInstructionVector &Roots,
399 const SmallInstructionSet &Exclude,
400 const SmallInstructionSet &Final,
401 DenseSet<Instruction *> &Users);
402 void collectInLoopUserSet(Instruction *Root,
403 const SmallInstructionSet &Exclude,
404 const SmallInstructionSet &Final,
405 DenseSet<Instruction *> &Users);
407 UsesTy::iterator nextInstr(int Val, UsesTy &In,
408 const SmallInstructionSet &Exclude,
409 UsesTy::iterator *StartI=nullptr);
410 bool isBaseInst(Instruction *I);
411 bool isRootInst(Instruction *I);
412 bool instrDependsOn(Instruction *I,
413 UsesTy::iterator Start,
414 UsesTy::iterator End);
415 void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr);
417 LoopReroll *Parent;
419 // Members of Parent, replicated here for brevity.
420 Loop *L;
421 ScalarEvolution *SE;
422 AliasAnalysis *AA;
423 TargetLibraryInfo *TLI;
424 DominatorTree *DT;
425 LoopInfo *LI;
426 bool PreserveLCSSA;
428 // The loop induction variable.
429 Instruction *IV;
431 // Loop step amount.
432 int64_t Inc;
434 // Loop reroll count; if Inc == 1, this records the scaling applied
435 // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
436 // If Inc is not 1, Scale = Inc.
437 uint64_t Scale;
439 // The roots themselves.
440 SmallVector<DAGRootSet,16> RootSets;
442 // All increment instructions for IV.
443 SmallInstructionVector LoopIncs;
445 // Map of all instructions in the loop (in order) to the iterations
446 // they are used in (or specially, IL_All for instructions
447 // used in the loop increment mechanism).
448 UsesTy Uses;
450 // Map between induction variable and its increment
451 DenseMap<Instruction *, int64_t> &IVToIncMap;
453 TinyInstructionVector LoopControlIVs;
456 // Check if it is a compare-like instruction whose user is a branch
457 bool isCompareUsedByBranch(Instruction *I) {
458 auto *TI = I->getParent()->getTerminator();
459 if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
460 return false;
461 return I->hasOneUse() && TI->getOperand(0) == I;
464 bool isLoopControlIV(Loop *L, Instruction *IV);
465 void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
466 void collectPossibleReductions(Loop *L,
467 ReductionTracker &Reductions);
468 bool reroll(Instruction *IV, Loop *L, BasicBlock *Header,
469 const SCEV *BackedgeTakenCount, ReductionTracker &Reductions);
472 } // end anonymous namespace
474 // Returns true if the provided instruction is used outside the given loop.
475 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
476 // non-loop blocks to be outside the loop.
477 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
478 for (User *U : I->users()) {
479 if (!L->contains(cast<Instruction>(U)))
480 return true;
482 return false;
485 // Check if an IV is only used to control the loop. There are two cases:
486 // 1. It only has one use which is loop increment, and the increment is only
487 // used by comparison and the PHI (could has sext with nsw in between), and the
488 // comparison is only used by branch.
489 // 2. It is used by loop increment and the comparison, the loop increment is
490 // only used by the PHI, and the comparison is used only by the branch.
491 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
492 unsigned IVUses = IV->getNumUses();
493 if (IVUses != 2 && IVUses != 1)
494 return false;
496 for (auto *User : IV->users()) {
497 int32_t IncOrCmpUses = User->getNumUses();
498 bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
500 // User can only have one or two uses.
501 if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
502 return false;
504 // Case 1
505 if (IVUses == 1) {
506 // The only user must be the loop increment.
507 // The loop increment must have two uses.
508 if (IsCompInst || IncOrCmpUses != 2)
509 return false;
512 // Case 2
513 if (IVUses == 2 && IncOrCmpUses != 1)
514 return false;
516 // The users of the IV must be a binary operation or a comparison
517 if (auto *BO = dyn_cast<BinaryOperator>(User)) {
518 if (BO->getOpcode() == Instruction::Add) {
519 // Loop Increment
520 // User of Loop Increment should be either PHI or CMP
521 for (auto *UU : User->users()) {
522 if (PHINode *PN = dyn_cast<PHINode>(UU)) {
523 if (PN != IV)
524 return false;
526 // Must be a CMP or an ext (of a value with nsw) then CMP
527 else {
528 auto *UUser = cast<Instruction>(UU);
529 // Skip SExt if we are extending an nsw value
530 // TODO: Allow ZExt too
531 if (BO->hasNoSignedWrap() && UUser->hasOneUse() &&
532 isa<SExtInst>(UUser))
533 UUser = cast<Instruction>(*(UUser->user_begin()));
534 if (!isCompareUsedByBranch(UUser))
535 return false;
538 } else
539 return false;
540 // Compare : can only have one use, and must be branch
541 } else if (!IsCompInst)
542 return false;
544 return true;
547 // Collect the list of loop induction variables with respect to which it might
548 // be possible to reroll the loop.
549 void LoopReroll::collectPossibleIVs(Loop *L,
550 SmallInstructionVector &PossibleIVs) {
551 for (Instruction &IV : L->getHeader()->phis()) {
552 if (!IV.getType()->isIntegerTy() && !IV.getType()->isPointerTy())
553 continue;
555 if (const SCEVAddRecExpr *PHISCEV =
556 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&IV))) {
557 if (PHISCEV->getLoop() != L)
558 continue;
559 if (!PHISCEV->isAffine())
560 continue;
561 const auto *IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
562 if (IncSCEV) {
563 IVToIncMap[&IV] = IncSCEV->getValue()->getSExtValue();
564 LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << IV << " = " << *PHISCEV
565 << "\n");
567 if (isLoopControlIV(L, &IV)) {
568 LoopControlIVs.push_back(&IV);
569 LLVM_DEBUG(dbgs() << "LRR: Loop control only IV: " << IV
570 << " = " << *PHISCEV << "\n");
571 } else
572 PossibleIVs.push_back(&IV);
578 // Add the remainder of the reduction-variable chain to the instruction vector
579 // (the initial PHINode has already been added). If successful, the object is
580 // marked as valid.
581 void LoopReroll::SimpleLoopReduction::add(Loop *L) {
582 assert(!Valid && "Cannot add to an already-valid chain");
584 // The reduction variable must be a chain of single-use instructions
585 // (including the PHI), except for the last value (which is used by the PHI
586 // and also outside the loop).
587 Instruction *C = Instructions.front();
588 if (C->user_empty())
589 return;
591 do {
592 C = cast<Instruction>(*C->user_begin());
593 if (C->hasOneUse()) {
594 if (!C->isBinaryOp())
595 return;
597 if (!(isa<PHINode>(Instructions.back()) ||
598 C->isSameOperationAs(Instructions.back())))
599 return;
601 Instructions.push_back(C);
603 } while (C->hasOneUse());
605 if (Instructions.size() < 2 ||
606 !C->isSameOperationAs(Instructions.back()) ||
607 C->use_empty())
608 return;
610 // C is now the (potential) last instruction in the reduction chain.
611 for (User *U : C->users()) {
612 // The only in-loop user can be the initial PHI.
613 if (L->contains(cast<Instruction>(U)))
614 if (cast<Instruction>(U) != Instructions.front())
615 return;
618 Instructions.push_back(C);
619 Valid = true;
622 // Collect the vector of possible reduction variables.
623 void LoopReroll::collectPossibleReductions(Loop *L,
624 ReductionTracker &Reductions) {
625 BasicBlock *Header = L->getHeader();
626 for (BasicBlock::iterator I = Header->begin(),
627 IE = Header->getFirstInsertionPt(); I != IE; ++I) {
628 if (!isa<PHINode>(I))
629 continue;
630 if (!I->getType()->isSingleValueType())
631 continue;
633 SimpleLoopReduction SLR(&*I, L);
634 if (!SLR.valid())
635 continue;
637 LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "
638 << SLR.size() << " chained instructions)\n");
639 Reductions.addSLR(SLR);
643 // Collect the set of all users of the provided root instruction. This set of
644 // users contains not only the direct users of the root instruction, but also
645 // all users of those users, and so on. There are two exceptions:
647 // 1. Instructions in the set of excluded instructions are never added to the
648 // use set (even if they are users). This is used, for example, to exclude
649 // including root increments in the use set of the primary IV.
651 // 2. Instructions in the set of final instructions are added to the use set
652 // if they are users, but their users are not added. This is used, for
653 // example, to prevent a reduction update from forcing all later reduction
654 // updates into the use set.
655 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
656 Instruction *Root, const SmallInstructionSet &Exclude,
657 const SmallInstructionSet &Final,
658 DenseSet<Instruction *> &Users) {
659 SmallInstructionVector Queue(1, Root);
660 while (!Queue.empty()) {
661 Instruction *I = Queue.pop_back_val();
662 if (!Users.insert(I).second)
663 continue;
665 if (!Final.count(I))
666 for (Use &U : I->uses()) {
667 Instruction *User = cast<Instruction>(U.getUser());
668 if (PHINode *PN = dyn_cast<PHINode>(User)) {
669 // Ignore "wrap-around" uses to PHIs of this loop's header.
670 if (PN->getIncomingBlock(U) == L->getHeader())
671 continue;
674 if (L->contains(User) && !Exclude.count(User)) {
675 Queue.push_back(User);
679 // We also want to collect single-user "feeder" values.
680 for (Use &U : I->operands()) {
681 if (Instruction *Op = dyn_cast<Instruction>(U))
682 if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
683 !Final.count(Op))
684 Queue.push_back(Op);
689 // Collect all of the users of all of the provided root instructions (combined
690 // into a single set).
691 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
692 const SmallInstructionVector &Roots,
693 const SmallInstructionSet &Exclude,
694 const SmallInstructionSet &Final,
695 DenseSet<Instruction *> &Users) {
696 for (Instruction *Root : Roots)
697 collectInLoopUserSet(Root, Exclude, Final, Users);
700 static bool isUnorderedLoadStore(Instruction *I) {
701 if (LoadInst *LI = dyn_cast<LoadInst>(I))
702 return LI->isUnordered();
703 if (StoreInst *SI = dyn_cast<StoreInst>(I))
704 return SI->isUnordered();
705 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
706 return !MI->isVolatile();
707 return false;
710 /// Return true if IVU is a "simple" arithmetic operation.
711 /// This is used for narrowing the search space for DAGRoots; only arithmetic
712 /// and GEPs can be part of a DAGRoot.
713 static bool isSimpleArithmeticOp(User *IVU) {
714 if (Instruction *I = dyn_cast<Instruction>(IVU)) {
715 switch (I->getOpcode()) {
716 default: return false;
717 case Instruction::Add:
718 case Instruction::Sub:
719 case Instruction::Mul:
720 case Instruction::Shl:
721 case Instruction::AShr:
722 case Instruction::LShr:
723 case Instruction::GetElementPtr:
724 case Instruction::Trunc:
725 case Instruction::ZExt:
726 case Instruction::SExt:
727 return true;
730 return false;
733 static bool isLoopIncrement(User *U, Instruction *IV) {
734 BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
736 if ((BO && BO->getOpcode() != Instruction::Add) ||
737 (!BO && !isa<GetElementPtrInst>(U)))
738 return false;
740 for (auto *UU : U->users()) {
741 PHINode *PN = dyn_cast<PHINode>(UU);
742 if (PN && PN == IV)
743 return true;
745 return false;
748 bool LoopReroll::DAGRootTracker::
749 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
750 SmallInstructionVector BaseUsers;
752 for (auto *I : Base->users()) {
753 ConstantInt *CI = nullptr;
755 if (isLoopIncrement(I, IV)) {
756 LoopIncs.push_back(cast<Instruction>(I));
757 continue;
760 // The root nodes must be either GEPs, ORs or ADDs.
761 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
762 if (BO->getOpcode() == Instruction::Add ||
763 BO->getOpcode() == Instruction::Or)
764 CI = dyn_cast<ConstantInt>(BO->getOperand(1));
765 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
766 Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
767 CI = dyn_cast<ConstantInt>(LastOperand);
770 if (!CI) {
771 if (Instruction *II = dyn_cast<Instruction>(I)) {
772 BaseUsers.push_back(II);
773 continue;
774 } else {
775 LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
776 << "\n");
777 return false;
781 int64_t V = std::abs(CI->getValue().getSExtValue());
782 if (Roots.find(V) != Roots.end())
783 // No duplicates, please.
784 return false;
786 Roots[V] = cast<Instruction>(I);
789 // Make sure we have at least two roots.
790 if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
791 return false;
793 // If we found non-loop-inc, non-root users of Base, assume they are
794 // for the zeroth root index. This is because "add %a, 0" gets optimized
795 // away.
796 if (BaseUsers.size()) {
797 if (Roots.find(0) != Roots.end()) {
798 LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
799 return false;
801 Roots[0] = Base;
804 // Calculate the number of users of the base, or lowest indexed, iteration.
805 unsigned NumBaseUses = BaseUsers.size();
806 if (NumBaseUses == 0)
807 NumBaseUses = Roots.begin()->second->getNumUses();
809 // Check that every node has the same number of users.
810 for (auto &KV : Roots) {
811 if (KV.first == 0)
812 continue;
813 if (!KV.second->hasNUses(NumBaseUses)) {
814 LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
815 << "#Base=" << NumBaseUses
816 << ", #Root=" << KV.second->getNumUses() << "\n");
817 return false;
821 return true;
824 void LoopReroll::DAGRootTracker::
825 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
826 // Does the user look like it could be part of a root set?
827 // All its users must be simple arithmetic ops.
828 if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
829 return;
831 if (I != IV && findRootsBase(I, SubsumedInsts))
832 return;
834 SubsumedInsts.insert(I);
836 for (User *V : I->users()) {
837 Instruction *I = cast<Instruction>(V);
838 if (is_contained(LoopIncs, I))
839 continue;
841 if (!isSimpleArithmeticOp(I))
842 continue;
844 // The recursive call makes a copy of SubsumedInsts.
845 findRootsRecursive(I, SubsumedInsts);
849 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
850 if (DRS.Roots.empty())
851 return false;
853 // If the value of the base instruction is used outside the loop, we cannot
854 // reroll the loop. Check for other root instructions is unnecessary because
855 // they don't match any base instructions if their values are used outside.
856 if (hasUsesOutsideLoop(DRS.BaseInst, L))
857 return false;
859 // Consider a DAGRootSet with N-1 roots (so N different values including
860 // BaseInst).
861 // Define d = Roots[0] - BaseInst, which should be the same as
862 // Roots[I] - Roots[I-1] for all I in [1..N).
863 // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
864 // loop iteration J.
866 // Now, For the loop iterations to be consecutive:
867 // D = d * N
868 const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
869 if (!ADR)
870 return false;
872 // Check that the first root is evenly spaced.
873 unsigned N = DRS.Roots.size() + 1;
874 const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
875 if (isa<SCEVCouldNotCompute>(StepSCEV) || StepSCEV->getType()->isPointerTy())
876 return false;
877 const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
878 if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
879 return false;
881 // Check that the remainling roots are evenly spaced.
882 for (unsigned i = 1; i < N - 1; ++i) {
883 const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]),
884 SE->getSCEV(DRS.Roots[i-1]));
885 if (NewStepSCEV != StepSCEV)
886 return false;
889 return true;
892 bool LoopReroll::DAGRootTracker::
893 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
894 // The base of a RootSet must be an AddRec, so it can be erased.
895 const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
896 if (!IVU_ADR || IVU_ADR->getLoop() != L)
897 return false;
899 std::map<int64_t, Instruction*> V;
900 if (!collectPossibleRoots(IVU, V))
901 return false;
903 // If we didn't get a root for index zero, then IVU must be
904 // subsumed.
905 if (V.find(0) == V.end())
906 SubsumedInsts.insert(IVU);
908 // Partition the vector into monotonically increasing indexes.
909 DAGRootSet DRS;
910 DRS.BaseInst = nullptr;
912 SmallVector<DAGRootSet, 16> PotentialRootSets;
914 for (auto &KV : V) {
915 if (!DRS.BaseInst) {
916 DRS.BaseInst = KV.second;
917 DRS.SubsumedInsts = SubsumedInsts;
918 } else if (DRS.Roots.empty()) {
919 DRS.Roots.push_back(KV.second);
920 } else if (V.find(KV.first - 1) != V.end()) {
921 DRS.Roots.push_back(KV.second);
922 } else {
923 // Linear sequence terminated.
924 if (!validateRootSet(DRS))
925 return false;
927 // Construct a new DAGRootSet with the next sequence.
928 PotentialRootSets.push_back(DRS);
929 DRS.BaseInst = KV.second;
930 DRS.Roots.clear();
934 if (!validateRootSet(DRS))
935 return false;
937 PotentialRootSets.push_back(DRS);
939 RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());
941 return true;
944 bool LoopReroll::DAGRootTracker::findRoots() {
945 Inc = IVToIncMap[IV];
947 assert(RootSets.empty() && "Unclean state!");
948 if (std::abs(Inc) == 1) {
949 for (auto *IVU : IV->users()) {
950 if (isLoopIncrement(IVU, IV))
951 LoopIncs.push_back(cast<Instruction>(IVU));
953 findRootsRecursive(IV, SmallInstructionSet());
954 LoopIncs.push_back(IV);
955 } else {
956 if (!findRootsBase(IV, SmallInstructionSet()))
957 return false;
960 // Ensure all sets have the same size.
961 if (RootSets.empty()) {
962 LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
963 return false;
965 for (auto &V : RootSets) {
966 if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
967 LLVM_DEBUG(
968 dbgs()
969 << "LRR: Aborting because not all root sets have the same size\n");
970 return false;
974 Scale = RootSets[0].Roots.size() + 1;
976 if (Scale > IL_MaxRerollIterations) {
977 LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
978 << "#Found=" << Scale
979 << ", #Max=" << IL_MaxRerollIterations << "\n");
980 return false;
983 LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
984 << "\n");
986 return true;
989 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
990 // Populate the MapVector with all instructions in the block, in order first,
991 // so we can iterate over the contents later in perfect order.
992 for (auto &I : *L->getHeader()) {
993 Uses[&I].resize(IL_End);
996 SmallInstructionSet Exclude;
997 for (auto &DRS : RootSets) {
998 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
999 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1000 Exclude.insert(DRS.BaseInst);
1002 Exclude.insert(LoopIncs.begin(), LoopIncs.end());
1004 for (auto &DRS : RootSets) {
1005 DenseSet<Instruction*> VBase;
1006 collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
1007 for (auto *I : VBase) {
1008 Uses[I].set(0);
1011 unsigned Idx = 1;
1012 for (auto *Root : DRS.Roots) {
1013 DenseSet<Instruction*> V;
1014 collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
1016 // While we're here, check the use sets are the same size.
1017 if (V.size() != VBase.size()) {
1018 LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
1019 return false;
1022 for (auto *I : V) {
1023 Uses[I].set(Idx);
1025 ++Idx;
1028 // Make sure our subsumed instructions are remembered too.
1029 for (auto *I : DRS.SubsumedInsts) {
1030 Uses[I].set(IL_All);
1034 // Make sure the loop increments are also accounted for.
1036 Exclude.clear();
1037 for (auto &DRS : RootSets) {
1038 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1039 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1040 Exclude.insert(DRS.BaseInst);
1043 DenseSet<Instruction*> V;
1044 collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
1045 for (auto *I : V) {
1046 if (I->mayHaveSideEffects()) {
1047 LLVM_DEBUG(dbgs() << "LRR: Aborting - "
1048 << "An instruction which does not belong to any root "
1049 << "sets must not have side effects: " << *I);
1050 return false;
1052 Uses[I].set(IL_All);
1055 return true;
1058 /// Get the next instruction in "In" that is a member of set Val.
1059 /// Start searching from StartI, and do not return anything in Exclude.
1060 /// If StartI is not given, start from In.begin().
1061 LoopReroll::DAGRootTracker::UsesTy::iterator
1062 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
1063 const SmallInstructionSet &Exclude,
1064 UsesTy::iterator *StartI) {
1065 UsesTy::iterator I = StartI ? *StartI : In.begin();
1066 while (I != In.end() && (I->second.test(Val) == 0 ||
1067 Exclude.contains(I->first)))
1068 ++I;
1069 return I;
1072 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
1073 for (auto &DRS : RootSets) {
1074 if (DRS.BaseInst == I)
1075 return true;
1077 return false;
1080 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
1081 for (auto &DRS : RootSets) {
1082 if (is_contained(DRS.Roots, I))
1083 return true;
1085 return false;
1088 /// Return true if instruction I depends on any instruction between
1089 /// Start and End.
1090 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
1091 UsesTy::iterator Start,
1092 UsesTy::iterator End) {
1093 for (auto *U : I->users()) {
1094 for (auto It = Start; It != End; ++It)
1095 if (U == It->first)
1096 return true;
1098 return false;
1101 static bool isIgnorableInst(const Instruction *I) {
1102 if (isa<DbgInfoIntrinsic>(I))
1103 return true;
1104 const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
1105 if (!II)
1106 return false;
1107 switch (II->getIntrinsicID()) {
1108 default:
1109 return false;
1110 case Intrinsic::annotation:
1111 case Intrinsic::ptr_annotation:
1112 case Intrinsic::var_annotation:
1113 // TODO: the following intrinsics may also be allowed:
1114 // lifetime_start, lifetime_end, invariant_start, invariant_end
1115 return true;
1117 return false;
1120 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
1121 // We now need to check for equivalence of the use graph of each root with
1122 // that of the primary induction variable (excluding the roots). Our goal
1123 // here is not to solve the full graph isomorphism problem, but rather to
1124 // catch common cases without a lot of work. As a result, we will assume
1125 // that the relative order of the instructions in each unrolled iteration
1126 // is the same (although we will not make an assumption about how the
1127 // different iterations are intermixed). Note that while the order must be
1128 // the same, the instructions may not be in the same basic block.
1130 // An array of just the possible reductions for this scale factor. When we
1131 // collect the set of all users of some root instructions, these reduction
1132 // instructions are treated as 'final' (their uses are not considered).
1133 // This is important because we don't want the root use set to search down
1134 // the reduction chain.
1135 SmallInstructionSet PossibleRedSet;
1136 SmallInstructionSet PossibleRedLastSet;
1137 SmallInstructionSet PossibleRedPHISet;
1138 Reductions.restrictToScale(Scale, PossibleRedSet,
1139 PossibleRedPHISet, PossibleRedLastSet);
1141 // Populate "Uses" with where each instruction is used.
1142 if (!collectUsedInstructions(PossibleRedSet))
1143 return false;
1145 // Make sure we mark the reduction PHIs as used in all iterations.
1146 for (auto *I : PossibleRedPHISet) {
1147 Uses[I].set(IL_All);
1150 // Make sure we mark loop-control-only PHIs as used in all iterations. See
1151 // comment above LoopReroll::isLoopControlIV for more information.
1152 BasicBlock *Header = L->getHeader();
1153 for (Instruction *LoopControlIV : LoopControlIVs) {
1154 for (auto *U : LoopControlIV->users()) {
1155 Instruction *IVUser = dyn_cast<Instruction>(U);
1156 // IVUser could be loop increment or compare
1157 Uses[IVUser].set(IL_All);
1158 for (auto *UU : IVUser->users()) {
1159 Instruction *UUser = dyn_cast<Instruction>(UU);
1160 // UUser could be compare, PHI or branch
1161 Uses[UUser].set(IL_All);
1162 // Skip SExt
1163 if (isa<SExtInst>(UUser)) {
1164 UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
1165 Uses[UUser].set(IL_All);
1167 // Is UUser a compare instruction?
1168 if (UU->hasOneUse()) {
1169 Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
1170 if (BI == cast<BranchInst>(Header->getTerminator()))
1171 Uses[BI].set(IL_All);
1177 // Make sure all instructions in the loop are in one and only one
1178 // set.
1179 for (auto &KV : Uses) {
1180 if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
1181 LLVM_DEBUG(
1182 dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
1183 << *KV.first << " (#uses=" << KV.second.count() << ")\n");
1184 return false;
1188 LLVM_DEBUG(for (auto &KV
1189 : Uses) {
1190 dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
1193 BatchAAResults BatchAA(*AA);
1194 for (unsigned Iter = 1; Iter < Scale; ++Iter) {
1195 // In addition to regular aliasing information, we need to look for
1196 // instructions from later (future) iterations that have side effects
1197 // preventing us from reordering them past other instructions with side
1198 // effects.
1199 bool FutureSideEffects = false;
1200 AliasSetTracker AST(BatchAA);
1201 // The map between instructions in f(%iv.(i+1)) and f(%iv).
1202 DenseMap<Value *, Value *> BaseMap;
1204 // Compare iteration Iter to the base.
1205 SmallInstructionSet Visited;
1206 auto BaseIt = nextInstr(0, Uses, Visited);
1207 auto RootIt = nextInstr(Iter, Uses, Visited);
1208 auto LastRootIt = Uses.begin();
1210 while (BaseIt != Uses.end() && RootIt != Uses.end()) {
1211 Instruction *BaseInst = BaseIt->first;
1212 Instruction *RootInst = RootIt->first;
1214 // Skip over the IV or root instructions; only match their users.
1215 bool Continue = false;
1216 if (isBaseInst(BaseInst)) {
1217 Visited.insert(BaseInst);
1218 BaseIt = nextInstr(0, Uses, Visited);
1219 Continue = true;
1221 if (isRootInst(RootInst)) {
1222 LastRootIt = RootIt;
1223 Visited.insert(RootInst);
1224 RootIt = nextInstr(Iter, Uses, Visited);
1225 Continue = true;
1227 if (Continue) continue;
1229 if (!BaseInst->isSameOperationAs(RootInst)) {
1230 // Last chance saloon. We don't try and solve the full isomorphism
1231 // problem, but try and at least catch the case where two instructions
1232 // *of different types* are round the wrong way. We won't be able to
1233 // efficiently tell, given two ADD instructions, which way around we
1234 // should match them, but given an ADD and a SUB, we can at least infer
1235 // which one is which.
1237 // This should allow us to deal with a greater subset of the isomorphism
1238 // problem. It does however change a linear algorithm into a quadratic
1239 // one, so limit the number of probes we do.
1240 auto TryIt = RootIt;
1241 unsigned N = NumToleratedFailedMatches;
1242 while (TryIt != Uses.end() &&
1243 !BaseInst->isSameOperationAs(TryIt->first) &&
1244 N--) {
1245 ++TryIt;
1246 TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
1249 if (TryIt == Uses.end() || TryIt == RootIt ||
1250 instrDependsOn(TryIt->first, RootIt, TryIt)) {
1251 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1252 << *BaseInst << " vs. " << *RootInst << "\n");
1253 return false;
1256 RootIt = TryIt;
1257 RootInst = TryIt->first;
1260 // All instructions between the last root and this root
1261 // may belong to some other iteration. If they belong to a
1262 // future iteration, then they're dangerous to alias with.
1264 // Note that because we allow a limited amount of flexibility in the order
1265 // that we visit nodes, LastRootIt might be *before* RootIt, in which
1266 // case we've already checked this set of instructions so we shouldn't
1267 // do anything.
1268 for (; LastRootIt < RootIt; ++LastRootIt) {
1269 Instruction *I = LastRootIt->first;
1270 if (LastRootIt->second.find_first() < (int)Iter)
1271 continue;
1272 if (I->mayWriteToMemory())
1273 AST.add(I);
1274 // Note: This is specifically guarded by a check on isa<PHINode>,
1275 // which while a valid (somewhat arbitrary) micro-optimization, is
1276 // needed because otherwise isSafeToSpeculativelyExecute returns
1277 // false on PHI nodes.
1278 if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
1279 !isSafeToSpeculativelyExecute(I))
1280 // Intervening instructions cause side effects.
1281 FutureSideEffects = true;
1284 // Make sure that this instruction, which is in the use set of this
1285 // root instruction, does not also belong to the base set or the set of
1286 // some other root instruction.
1287 if (RootIt->second.count() > 1) {
1288 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1289 << " vs. " << *RootInst << " (prev. case overlap)\n");
1290 return false;
1293 // Make sure that we don't alias with any instruction in the alias set
1294 // tracker. If we do, then we depend on a future iteration, and we
1295 // can't reroll.
1296 if (RootInst->mayReadFromMemory()) {
1297 for (auto &K : AST) {
1298 if (isModOrRefSet(K.aliasesUnknownInst(RootInst, BatchAA))) {
1299 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1300 << *BaseInst << " vs. " << *RootInst
1301 << " (depends on future store)\n");
1302 return false;
1307 // If we've past an instruction from a future iteration that may have
1308 // side effects, and this instruction might also, then we can't reorder
1309 // them, and this matching fails. As an exception, we allow the alias
1310 // set tracker to handle regular (unordered) load/store dependencies.
1311 if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
1312 !isSafeToSpeculativelyExecute(BaseInst)) ||
1313 (!isUnorderedLoadStore(RootInst) &&
1314 !isSafeToSpeculativelyExecute(RootInst)))) {
1315 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1316 << " vs. " << *RootInst
1317 << " (side effects prevent reordering)\n");
1318 return false;
1321 // For instructions that are part of a reduction, if the operation is
1322 // associative, then don't bother matching the operands (because we
1323 // already know that the instructions are isomorphic, and the order
1324 // within the iteration does not matter). For non-associative reductions,
1325 // we do need to match the operands, because we need to reject
1326 // out-of-order instructions within an iteration!
1327 // For example (assume floating-point addition), we need to reject this:
1328 // x += a[i]; x += b[i];
1329 // x += a[i+1]; x += b[i+1];
1330 // x += b[i+2]; x += a[i+2];
1331 bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
1333 if (!(InReduction && BaseInst->isAssociative())) {
1334 bool Swapped = false, SomeOpMatched = false;
1335 for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
1336 Value *Op2 = RootInst->getOperand(j);
1338 // If this is part of a reduction (and the operation is not
1339 // associatve), then we match all operands, but not those that are
1340 // part of the reduction.
1341 if (InReduction)
1342 if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
1343 if (Reductions.isPairInSame(RootInst, Op2I))
1344 continue;
1346 DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
1347 if (BMI != BaseMap.end()) {
1348 Op2 = BMI->second;
1349 } else {
1350 for (auto &DRS : RootSets) {
1351 if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
1352 Op2 = DRS.BaseInst;
1353 break;
1358 if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
1359 // If we've not already decided to swap the matched operands, and
1360 // we've not already matched our first operand (note that we could
1361 // have skipped matching the first operand because it is part of a
1362 // reduction above), and the instruction is commutative, then try
1363 // the swapped match.
1364 if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
1365 BaseInst->getOperand(!j) == Op2) {
1366 Swapped = true;
1367 } else {
1368 LLVM_DEBUG(dbgs()
1369 << "LRR: iteration root match failed at " << *BaseInst
1370 << " vs. " << *RootInst << " (operand " << j << ")\n");
1371 return false;
1375 SomeOpMatched = true;
1379 if ((!PossibleRedLastSet.count(BaseInst) &&
1380 hasUsesOutsideLoop(BaseInst, L)) ||
1381 (!PossibleRedLastSet.count(RootInst) &&
1382 hasUsesOutsideLoop(RootInst, L))) {
1383 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1384 << " vs. " << *RootInst << " (uses outside loop)\n");
1385 return false;
1388 Reductions.recordPair(BaseInst, RootInst, Iter);
1389 BaseMap.insert(std::make_pair(RootInst, BaseInst));
1391 LastRootIt = RootIt;
1392 Visited.insert(BaseInst);
1393 Visited.insert(RootInst);
1394 BaseIt = nextInstr(0, Uses, Visited);
1395 RootIt = nextInstr(Iter, Uses, Visited);
1397 assert(BaseIt == Uses.end() && RootIt == Uses.end() &&
1398 "Mismatched set sizes!");
1401 LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
1402 << "\n");
1404 return true;
1407 void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) {
1408 BasicBlock *Header = L->getHeader();
1410 // Compute the start and increment for each BaseInst before we start erasing
1411 // instructions.
1412 SmallVector<const SCEV *, 8> StartExprs;
1413 SmallVector<const SCEV *, 8> IncrExprs;
1414 for (auto &DRS : RootSets) {
1415 const SCEVAddRecExpr *IVSCEV =
1416 cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
1417 StartExprs.push_back(IVSCEV->getStart());
1418 IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV));
1421 // Remove instructions associated with non-base iterations.
1422 for (Instruction &Inst : llvm::make_early_inc_range(llvm::reverse(*Header))) {
1423 unsigned I = Uses[&Inst].find_first();
1424 if (I > 0 && I < IL_All) {
1425 LLVM_DEBUG(dbgs() << "LRR: removing: " << Inst << "\n");
1426 Inst.eraseFromParent();
1430 // Rewrite each BaseInst using SCEV.
1431 for (size_t i = 0, e = RootSets.size(); i != e; ++i)
1432 // Insert the new induction variable.
1433 replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]);
1435 { // Limit the lifetime of SCEVExpander.
1436 BranchInst *BI = cast<BranchInst>(Header->getTerminator());
1437 const DataLayout &DL = Header->getModule()->getDataLayout();
1438 SCEVExpander Expander(*SE, DL, "reroll");
1439 auto Zero = SE->getZero(BackedgeTakenCount->getType());
1440 auto One = SE->getOne(BackedgeTakenCount->getType());
1441 auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap);
1442 Value *NewIV =
1443 Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(),
1444 Header->getFirstNonPHIOrDbg());
1445 // FIXME: This arithmetic can overflow.
1446 auto TripCount = SE->getAddExpr(BackedgeTakenCount, One);
1447 auto ScaledTripCount = SE->getMulExpr(
1448 TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale));
1449 auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One);
1450 Value *TakenCount =
1451 Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(),
1452 Header->getFirstNonPHIOrDbg());
1453 Value *Cond =
1454 new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond");
1455 BI->setCondition(Cond);
1457 if (BI->getSuccessor(1) != Header)
1458 BI->swapSuccessors();
1461 SimplifyInstructionsInBlock(Header, TLI);
1462 DeleteDeadPHIs(Header, TLI);
1465 void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS,
1466 const SCEV *Start,
1467 const SCEV *IncrExpr) {
1468 BasicBlock *Header = L->getHeader();
1469 Instruction *Inst = DRS.BaseInst;
1471 const SCEV *NewIVSCEV =
1472 SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
1474 { // Limit the lifetime of SCEVExpander.
1475 const DataLayout &DL = Header->getModule()->getDataLayout();
1476 SCEVExpander Expander(*SE, DL, "reroll");
1477 Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
1478 Header->getFirstNonPHIOrDbg());
1480 for (auto &KV : Uses)
1481 if (KV.second.find_first() == 0)
1482 KV.first->replaceUsesOfWith(Inst, NewIV);
1486 // Validate the selected reductions. All iterations must have an isomorphic
1487 // part of the reduction chain and, for non-associative reductions, the chain
1488 // entries must appear in order.
1489 bool LoopReroll::ReductionTracker::validateSelected() {
1490 // For a non-associative reduction, the chain entries must appear in order.
1491 for (int i : Reds) {
1492 int PrevIter = 0, BaseCount = 0, Count = 0;
1493 for (Instruction *J : PossibleReds[i]) {
1494 // Note that all instructions in the chain must have been found because
1495 // all instructions in the function must have been assigned to some
1496 // iteration.
1497 int Iter = PossibleRedIter[J];
1498 if (Iter != PrevIter && Iter != PrevIter + 1 &&
1499 !PossibleReds[i].getReducedValue()->isAssociative()) {
1500 LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
1501 << J << "\n");
1502 return false;
1505 if (Iter != PrevIter) {
1506 if (Count != BaseCount) {
1507 LLVM_DEBUG(dbgs()
1508 << "LRR: Iteration " << PrevIter << " reduction use count "
1509 << Count << " is not equal to the base use count "
1510 << BaseCount << "\n");
1511 return false;
1514 Count = 0;
1517 ++Count;
1518 if (Iter == 0)
1519 ++BaseCount;
1521 PrevIter = Iter;
1525 return true;
1528 // For all selected reductions, remove all parts except those in the first
1529 // iteration (and the PHI). Replace outside uses of the reduced value with uses
1530 // of the first-iteration reduced value (in other words, reroll the selected
1531 // reductions).
1532 void LoopReroll::ReductionTracker::replaceSelected() {
1533 // Fixup reductions to refer to the last instruction associated with the
1534 // first iteration (not the last).
1535 for (int i : Reds) {
1536 int j = 0;
1537 for (int e = PossibleReds[i].size(); j != e; ++j)
1538 if (PossibleRedIter[PossibleReds[i][j]] != 0) {
1539 --j;
1540 break;
1543 // Replace users with the new end-of-chain value.
1544 SmallInstructionVector Users;
1545 for (User *U : PossibleReds[i].getReducedValue()->users()) {
1546 Users.push_back(cast<Instruction>(U));
1549 for (Instruction *User : Users)
1550 User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
1551 PossibleReds[i][j]);
1555 // Reroll the provided loop with respect to the provided induction variable.
1556 // Generally, we're looking for a loop like this:
1558 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
1559 // f(%iv)
1560 // %iv.1 = add %iv, 1 <-- a root increment
1561 // f(%iv.1)
1562 // %iv.2 = add %iv, 2 <-- a root increment
1563 // f(%iv.2)
1564 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
1565 // f(%iv.scale_m_1)
1566 // ...
1567 // %iv.next = add %iv, scale
1568 // %cmp = icmp(%iv, ...)
1569 // br %cmp, header, exit
1571 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
1572 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
1573 // be intermixed with eachother. The restriction imposed by this algorithm is
1574 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
1575 // etc. be the same.
1577 // First, we collect the use set of %iv, excluding the other increment roots.
1578 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
1579 // times, having collected the use set of f(%iv.(i+1)), during which we:
1580 // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
1581 // the next unmatched instruction in f(%iv.(i+1)).
1582 // - Ensure that both matched instructions don't have any external users
1583 // (with the exception of last-in-chain reduction instructions).
1584 // - Track the (aliasing) write set, and other side effects, of all
1585 // instructions that belong to future iterations that come before the matched
1586 // instructions. If the matched instructions read from that write set, then
1587 // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
1588 // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
1589 // if any of these future instructions had side effects (could not be
1590 // speculatively executed), and so do the matched instructions, when we
1591 // cannot reorder those side-effect-producing instructions, and rerolling
1592 // fails.
1594 // Finally, we make sure that all loop instructions are either loop increment
1595 // roots, belong to simple latch code, parts of validated reductions, part of
1596 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
1597 // have been validated), then we reroll the loop.
1598 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
1599 const SCEV *BackedgeTakenCount,
1600 ReductionTracker &Reductions) {
1601 DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
1602 IVToIncMap, LoopControlIVs);
1604 if (!DAGRoots.findRoots())
1605 return false;
1606 LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
1607 << "\n");
1609 if (!DAGRoots.validate(Reductions))
1610 return false;
1611 if (!Reductions.validateSelected())
1612 return false;
1613 // At this point, we've validated the rerolling, and we're committed to
1614 // making changes!
1616 Reductions.replaceSelected();
1617 DAGRoots.replace(BackedgeTakenCount);
1619 ++NumRerolledLoops;
1620 return true;
1623 bool LoopReroll::runOnLoop(Loop *L) {
1624 BasicBlock *Header = L->getHeader();
1625 LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"
1626 << Header->getName() << " (" << L->getNumBlocks()
1627 << " block(s))\n");
1629 // For now, we'll handle only single BB loops.
1630 if (L->getNumBlocks() > 1)
1631 return false;
1633 if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1634 return false;
1636 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1637 LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
1638 LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
1639 << "\n");
1641 // First, we need to find the induction variable with respect to which we can
1642 // reroll (there may be several possible options).
1643 SmallInstructionVector PossibleIVs;
1644 IVToIncMap.clear();
1645 LoopControlIVs.clear();
1646 collectPossibleIVs(L, PossibleIVs);
1648 if (PossibleIVs.empty()) {
1649 LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
1650 return false;
1653 ReductionTracker Reductions;
1654 collectPossibleReductions(L, Reductions);
1655 bool Changed = false;
1657 // For each possible IV, collect the associated possible set of 'root' nodes
1658 // (i+1, i+2, etc.).
1659 for (Instruction *PossibleIV : PossibleIVs)
1660 if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) {
1661 Changed = true;
1662 break;
1664 LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
1666 // Trip count of L has changed so SE must be re-evaluated.
1667 if (Changed)
1668 SE->forgetLoop(L);
1670 return Changed;
1673 PreservedAnalyses LoopRerollPass::run(Loop &L, LoopAnalysisManager &AM,
1674 LoopStandardAnalysisResults &AR,
1675 LPMUpdater &U) {
1676 return LoopReroll(&AR.AA, &AR.LI, &AR.SE, &AR.TLI, &AR.DT, true).runOnLoop(&L)
1677 ? getLoopPassPreservedAnalyses()
1678 : PreservedAnalyses::all();