1 //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass does the inverse transformation of what LICM does.
10 // It traverses all of the instructions in the loop's preheader and sinks
11 // them to the loop body where frequency is lower than the loop's preheader.
12 // This pass is a reverse-transformation of LICM. It differs from the Sink
13 // pass in the following ways:
15 // * It only handles sinking of instructions from the loop's preheader to the
17 // * It uses alias set tracker to get more accurate alias info
18 // * It uses block frequency info to find the optimal sinking locations
22 // For I in Preheader:
23 // InsertBBs = BBs that uses I
24 // For BB in sorted(LoopBBs):
25 // DomBBs = BBs in InsertBBs that are dominated by BB
26 // if freq(DomBBs) > freq(BB)
27 // InsertBBs = UseBBs - DomBBs + BB
28 // For BB in InsertBBs:
29 // Insert I at BB's beginning
31 //===----------------------------------------------------------------------===//
33 #include "llvm/Transforms/Scalar/LoopSink.h"
34 #include "llvm/ADT/SetOperations.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/BlockFrequencyInfo.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/Support/BranchProbability.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #define DEBUG_TYPE "loopsink"
53 STATISTIC(NumLoopSunk
, "Number of instructions sunk into loop");
54 STATISTIC(NumLoopSunkCloned
, "Number of cloned instructions sunk into loop");
56 static cl::opt
<unsigned> SinkFrequencyPercentThreshold(
57 "sink-freq-percent-threshold", cl::Hidden
, cl::init(90),
58 cl::desc("Do not sink instructions that require cloning unless they "
59 "execute less than this percent of the time."));
61 static cl::opt
<unsigned> MaxNumberOfUseBBsForSinking(
62 "max-uses-for-sinking", cl::Hidden
, cl::init(30),
63 cl::desc("Do not sink instructions that have too many uses."));
65 /// Return adjusted total frequency of \p BBs.
67 /// * If there is only one BB, sinking instruction will not introduce code
68 /// size increase. Thus there is no need to adjust the frequency.
69 /// * If there are more than one BB, sinking would lead to code size increase.
70 /// In this case, we add some "tax" to the total frequency to make it harder
72 /// Freq(Preheader) = 100
73 /// Freq(BBs) = sum(50, 49) = 99
74 /// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
75 /// BBs as the difference is too small to justify the code size increase.
76 /// To model this, The adjusted Freq(BBs) will be:
77 /// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
78 static BlockFrequency
adjustedSumFreq(SmallPtrSetImpl
<BasicBlock
*> &BBs
,
79 BlockFrequencyInfo
&BFI
) {
81 for (BasicBlock
*B
: BBs
)
82 T
+= BFI
.getBlockFreq(B
);
84 T
/= BranchProbability(SinkFrequencyPercentThreshold
, 100);
88 /// Return a set of basic blocks to insert sinked instructions.
90 /// The returned set of basic blocks (BBsToSinkInto) should satisfy:
92 /// * Inside the loop \p L
93 /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
94 /// that domintates the UseBB
95 /// * Has minimum total frequency that is no greater than preheader frequency
97 /// The purpose of the function is to find the optimal sinking points to
98 /// minimize execution cost, which is defined as "sum of frequency of
100 /// As a result, the returned BBsToSinkInto needs to have minimum total
102 /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
103 /// frequency, the optimal solution is not sinking (return empty set).
105 /// \p ColdLoopBBs is used to help find the optimal sinking locations.
106 /// It stores a list of BBs that is:
108 /// * Inside the loop \p L
109 /// * Has a frequency no larger than the loop's preheader
110 /// * Sorted by BB frequency
112 /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
113 /// To avoid expensive computation, we cap the maximum UseBBs.size() in its
115 static SmallPtrSet
<BasicBlock
*, 2>
116 findBBsToSinkInto(const Loop
&L
, const SmallPtrSetImpl
<BasicBlock
*> &UseBBs
,
117 const SmallVectorImpl
<BasicBlock
*> &ColdLoopBBs
,
118 DominatorTree
&DT
, BlockFrequencyInfo
&BFI
) {
119 SmallPtrSet
<BasicBlock
*, 2> BBsToSinkInto
;
120 if (UseBBs
.size() == 0)
121 return BBsToSinkInto
;
123 BBsToSinkInto
.insert(UseBBs
.begin(), UseBBs
.end());
124 SmallPtrSet
<BasicBlock
*, 2> BBsDominatedByColdestBB
;
126 // For every iteration:
127 // * Pick the ColdestBB from ColdLoopBBs
128 // * Find the set BBsDominatedByColdestBB that satisfy:
129 // - BBsDominatedByColdestBB is a subset of BBsToSinkInto
130 // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
131 // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
132 // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
134 for (BasicBlock
*ColdestBB
: ColdLoopBBs
) {
135 BBsDominatedByColdestBB
.clear();
136 for (BasicBlock
*SinkedBB
: BBsToSinkInto
)
137 if (DT
.dominates(ColdestBB
, SinkedBB
))
138 BBsDominatedByColdestBB
.insert(SinkedBB
);
139 if (BBsDominatedByColdestBB
.size() == 0)
141 if (adjustedSumFreq(BBsDominatedByColdestBB
, BFI
) >
142 BFI
.getBlockFreq(ColdestBB
)) {
143 for (BasicBlock
*DominatedBB
: BBsDominatedByColdestBB
) {
144 BBsToSinkInto
.erase(DominatedBB
);
146 BBsToSinkInto
.insert(ColdestBB
);
150 // Can't sink into blocks that have no valid insertion point.
151 for (BasicBlock
*BB
: BBsToSinkInto
) {
152 if (BB
->getFirstInsertionPt() == BB
->end()) {
153 BBsToSinkInto
.clear();
158 // If the total frequency of BBsToSinkInto is larger than preheader frequency,
160 if (adjustedSumFreq(BBsToSinkInto
, BFI
) >
161 BFI
.getBlockFreq(L
.getLoopPreheader()))
162 BBsToSinkInto
.clear();
163 return BBsToSinkInto
;
166 // Sinks \p I from the loop \p L's preheader to its uses. Returns true if
167 // sinking is successful.
168 // \p LoopBlockNumber is used to sort the insertion blocks to ensure
170 static bool sinkInstruction(
171 Loop
&L
, Instruction
&I
, const SmallVectorImpl
<BasicBlock
*> &ColdLoopBBs
,
172 const SmallDenseMap
<BasicBlock
*, int, 16> &LoopBlockNumber
, LoopInfo
&LI
,
173 DominatorTree
&DT
, BlockFrequencyInfo
&BFI
, MemorySSAUpdater
*MSSAU
) {
174 // Compute the set of blocks in loop L which contain a use of I.
175 SmallPtrSet
<BasicBlock
*, 2> BBs
;
176 for (auto &U
: I
.uses()) {
177 Instruction
*UI
= cast
<Instruction
>(U
.getUser());
179 // We cannot sink I if it has uses outside of the loop.
180 if (!L
.contains(LI
.getLoopFor(UI
->getParent())))
183 if (!isa
<PHINode
>(UI
)) {
184 BBs
.insert(UI
->getParent());
188 // We cannot sink I to PHI-uses, try to look through PHI to find the incoming
189 // block of the value being used.
190 PHINode
*PN
= dyn_cast
<PHINode
>(UI
);
191 BasicBlock
*PhiBB
= PN
->getIncomingBlock(U
);
193 // If value's incoming block is from loop preheader directly, there's no
194 // place to sink to, bailout.
195 if (L
.getLoopPreheader() == PhiBB
)
201 // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
202 // BBs.size() to avoid expensive computation.
203 // FIXME: Handle code size growth for min_size and opt_size.
204 if (BBs
.size() > MaxNumberOfUseBBsForSinking
)
207 // Find the set of BBs that we should insert a copy of I.
208 SmallPtrSet
<BasicBlock
*, 2> BBsToSinkInto
=
209 findBBsToSinkInto(L
, BBs
, ColdLoopBBs
, DT
, BFI
);
210 if (BBsToSinkInto
.empty())
213 // Return if any of the candidate blocks to sink into is non-cold.
214 if (BBsToSinkInto
.size() > 1 &&
215 !llvm::set_is_subset(BBsToSinkInto
, LoopBlockNumber
))
218 // Copy the final BBs into a vector and sort them using the total ordering
219 // of the loop block numbers as iterating the set doesn't give a useful
220 // order. No need to stable sort as the block numbers are a total ordering.
221 SmallVector
<BasicBlock
*, 2> SortedBBsToSinkInto
;
222 llvm::append_range(SortedBBsToSinkInto
, BBsToSinkInto
);
223 if (SortedBBsToSinkInto
.size() > 1) {
224 llvm::sort(SortedBBsToSinkInto
, [&](BasicBlock
*A
, BasicBlock
*B
) {
225 return LoopBlockNumber
.find(A
)->second
< LoopBlockNumber
.find(B
)->second
;
229 BasicBlock
*MoveBB
= *SortedBBsToSinkInto
.begin();
230 // FIXME: Optimize the efficiency for cloned value replacement. The current
231 // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
232 for (BasicBlock
*N
: ArrayRef(SortedBBsToSinkInto
).drop_front(1)) {
233 assert(LoopBlockNumber
.find(N
)->second
>
234 LoopBlockNumber
.find(MoveBB
)->second
&&
236 // Clone I and replace its uses.
237 Instruction
*IC
= I
.clone();
238 IC
->setName(I
.getName());
239 IC
->insertBefore(&*N
->getFirstInsertionPt());
241 if (MSSAU
&& MSSAU
->getMemorySSA()->getMemoryAccess(&I
)) {
242 // Create a new MemoryAccess and let MemorySSA set its defining access.
243 MemoryAccess
*NewMemAcc
=
244 MSSAU
->createMemoryAccessInBB(IC
, nullptr, N
, MemorySSA::Beginning
);
246 if (auto *MemDef
= dyn_cast
<MemoryDef
>(NewMemAcc
))
247 MSSAU
->insertDef(MemDef
, /*RenameUses=*/true);
249 auto *MemUse
= cast
<MemoryUse
>(NewMemAcc
);
250 MSSAU
->insertUse(MemUse
, /*RenameUses=*/true);
255 // Replaces uses of I with IC in N, except PHI-use which is being taken
256 // care of by defs in PHI's incoming blocks.
257 I
.replaceUsesWithIf(IC
, [N
](Use
&U
) {
258 Instruction
*UIToReplace
= cast
<Instruction
>(U
.getUser());
259 return UIToReplace
->getParent() == N
&& !isa
<PHINode
>(UIToReplace
);
261 // Replaces uses of I with IC in blocks dominated by N
262 replaceDominatedUsesWith(&I
, IC
, DT
, N
);
263 LLVM_DEBUG(dbgs() << "Sinking a clone of " << I
<< " To: " << N
->getName()
267 LLVM_DEBUG(dbgs() << "Sinking " << I
<< " To: " << MoveBB
->getName() << '\n');
269 I
.moveBefore(&*MoveBB
->getFirstInsertionPt());
272 if (MemoryUseOrDef
*OldMemAcc
= cast_or_null
<MemoryUseOrDef
>(
273 MSSAU
->getMemorySSA()->getMemoryAccess(&I
)))
274 MSSAU
->moveToPlace(OldMemAcc
, MoveBB
, MemorySSA::Beginning
);
279 /// Sinks instructions from loop's preheader to the loop body if the
280 /// sum frequency of inserted copy is smaller than preheader's frequency.
281 static bool sinkLoopInvariantInstructions(Loop
&L
, AAResults
&AA
, LoopInfo
&LI
,
283 BlockFrequencyInfo
&BFI
,
285 ScalarEvolution
*SE
) {
286 BasicBlock
*Preheader
= L
.getLoopPreheader();
287 assert(Preheader
&& "Expected loop to have preheader");
289 assert(Preheader
->getParent()->hasProfileData() &&
290 "Unexpected call when profile data unavailable.");
292 const BlockFrequency PreheaderFreq
= BFI
.getBlockFreq(Preheader
);
293 // If there are no basic blocks with lower frequency than the preheader then
294 // we can avoid the detailed analysis as we will never find profitable sinking
296 if (all_of(L
.blocks(), [&](const BasicBlock
*BB
) {
297 return BFI
.getBlockFreq(BB
) > PreheaderFreq
;
301 MemorySSAUpdater
MSSAU(&MSSA
);
302 SinkAndHoistLICMFlags
LICMFlags(/*IsSink=*/true, L
, MSSA
);
304 bool Changed
= false;
306 // Sort loop's basic blocks by frequency
307 SmallVector
<BasicBlock
*, 10> ColdLoopBBs
;
308 SmallDenseMap
<BasicBlock
*, int, 16> LoopBlockNumber
;
310 for (BasicBlock
*B
: L
.blocks())
311 if (BFI
.getBlockFreq(B
) < BFI
.getBlockFreq(L
.getLoopPreheader())) {
312 ColdLoopBBs
.push_back(B
);
313 LoopBlockNumber
[B
] = ++i
;
315 llvm::stable_sort(ColdLoopBBs
, [&](BasicBlock
*A
, BasicBlock
*B
) {
316 return BFI
.getBlockFreq(A
) < BFI
.getBlockFreq(B
);
319 // Traverse preheader's instructions in reverse order because if A depends
320 // on B (A appears after B), A needs to be sunk first before B can be
322 for (Instruction
&I
: llvm::make_early_inc_range(llvm::reverse(*Preheader
))) {
323 if (isa
<PHINode
>(&I
))
325 // No need to check for instruction's operands are loop invariant.
326 assert(L
.hasLoopInvariantOperands(&I
) &&
327 "Insts in a loop's preheader should have loop invariant operands!");
328 if (!canSinkOrHoistInst(I
, &AA
, &DT
, &L
, MSSAU
, false, LICMFlags
))
330 if (sinkInstruction(L
, I
, ColdLoopBBs
, LoopBlockNumber
, LI
, DT
, BFI
,
334 SE
->forgetBlockAndLoopDispositions(&I
);
341 PreservedAnalyses
LoopSinkPass::run(Function
&F
, FunctionAnalysisManager
&FAM
) {
342 // Enable LoopSink only when runtime profile is available.
343 // With static profile, the sinking decision may be sub-optimal.
344 if (!F
.hasProfileData())
345 return PreservedAnalyses::all();
347 LoopInfo
&LI
= FAM
.getResult
<LoopAnalysis
>(F
);
348 // Nothing to do if there are no loops.
350 return PreservedAnalyses::all();
352 AAResults
&AA
= FAM
.getResult
<AAManager
>(F
);
353 DominatorTree
&DT
= FAM
.getResult
<DominatorTreeAnalysis
>(F
);
354 BlockFrequencyInfo
&BFI
= FAM
.getResult
<BlockFrequencyAnalysis
>(F
);
355 MemorySSA
&MSSA
= FAM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA();
357 // We want to do a postorder walk over the loops. Since loops are a tree this
358 // is equivalent to a reversed preorder walk and preorder is easy to compute
359 // without recursion. Since we reverse the preorder, we will visit siblings
360 // in reverse program order. This isn't expected to matter at all but is more
361 // consistent with sinking algorithms which generally work bottom-up.
362 SmallVector
<Loop
*, 4> PreorderLoops
= LI
.getLoopsInPreorder();
364 bool Changed
= false;
366 Loop
&L
= *PreorderLoops
.pop_back_val();
368 BasicBlock
*Preheader
= L
.getLoopPreheader();
372 // Note that we don't pass SCEV here because it is only used to invalidate
373 // loops in SCEV and we don't preserve (or request) SCEV at all making that
375 Changed
|= sinkLoopInvariantInstructions(L
, AA
, LI
, DT
, BFI
, MSSA
,
376 /*ScalarEvolution*/ nullptr);
377 } while (!PreorderLoops
.empty());
380 return PreservedAnalyses::all();
382 PreservedAnalyses PA
;
383 PA
.preserveSet
<CFGAnalyses
>();
384 PA
.preserve
<MemorySSAAnalysis
>();
387 MSSA
.verifyMemorySSA();