[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Scalar / RewriteStatepointsForGC.cpp
blob45ce3bf3ceae23f96fb90b156ec4798a865bf054
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/AttributeMask.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GCStrategy.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InstIterator.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/Statepoint.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueHandle.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstddef>
70 #include <cstdint>
71 #include <iterator>
72 #include <optional>
73 #include <set>
74 #include <string>
75 #include <utility>
76 #include <vector>
78 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 using namespace llvm;
82 // Print the liveset found at the insert location
83 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
84 cl::init(false));
85 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
86 cl::init(false));
88 // Print out the base pointers for debugging
89 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
90 cl::init(false));
92 // Cost threshold measuring when it is profitable to rematerialize value instead
93 // of relocating it
94 static cl::opt<unsigned>
95 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
96 cl::init(6));
98 #ifdef EXPENSIVE_CHECKS
99 static bool ClobberNonLive = true;
100 #else
101 static bool ClobberNonLive = false;
102 #endif
104 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
105 cl::location(ClobberNonLive),
106 cl::Hidden);
108 static cl::opt<bool>
109 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
110 cl::Hidden, cl::init(true));
112 static cl::opt<bool> RematDerivedAtUses("rs4gc-remat-derived-at-uses",
113 cl::Hidden, cl::init(true));
115 /// The IR fed into RewriteStatepointsForGC may have had attributes and
116 /// metadata implying dereferenceability that are no longer valid/correct after
117 /// RewriteStatepointsForGC has run. This is because semantically, after
118 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
119 /// heap. stripNonValidData (conservatively) restores
120 /// correctness by erasing all attributes in the module that externally imply
121 /// dereferenceability. Similar reasoning also applies to the noalias
122 /// attributes and metadata. gc.statepoint can touch the entire heap including
123 /// noalias objects.
124 /// Apart from attributes and metadata, we also remove instructions that imply
125 /// constant physical memory: llvm.invariant.start.
126 static void stripNonValidData(Module &M);
128 // Find the GC strategy for a function, or null if it doesn't have one.
129 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F);
131 static bool shouldRewriteStatepointsIn(Function &F);
133 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
134 ModuleAnalysisManager &AM) {
135 bool Changed = false;
136 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
137 for (Function &F : M) {
138 // Nothing to do for declarations.
139 if (F.isDeclaration() || F.empty())
140 continue;
142 // Policy choice says not to rewrite - the most common reason is that we're
143 // compiling code without a GCStrategy.
144 if (!shouldRewriteStatepointsIn(F))
145 continue;
147 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
148 auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
149 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
150 Changed |= runOnFunction(F, DT, TTI, TLI);
152 if (!Changed)
153 return PreservedAnalyses::all();
155 // stripNonValidData asserts that shouldRewriteStatepointsIn
156 // returns true for at least one function in the module. Since at least
157 // one function changed, we know that the precondition is satisfied.
158 stripNonValidData(M);
160 PreservedAnalyses PA;
161 PA.preserve<TargetIRAnalysis>();
162 PA.preserve<TargetLibraryAnalysis>();
163 return PA;
166 namespace {
168 struct GCPtrLivenessData {
169 /// Values defined in this block.
170 MapVector<BasicBlock *, SetVector<Value *>> KillSet;
172 /// Values used in this block (and thus live); does not included values
173 /// killed within this block.
174 MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
176 /// Values live into this basic block (i.e. used by any
177 /// instruction in this basic block or ones reachable from here)
178 MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
180 /// Values live out of this basic block (i.e. live into
181 /// any successor block)
182 MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
185 // The type of the internal cache used inside the findBasePointers family
186 // of functions. From the callers perspective, this is an opaque type and
187 // should not be inspected.
189 // In the actual implementation this caches two relations:
190 // - The base relation itself (i.e. this pointer is based on that one)
191 // - The base defining value relation (i.e. before base_phi insertion)
192 // Generally, after the execution of a full findBasePointer call, only the
193 // base relation will remain. Internally, we add a mixture of the two
194 // types, then update all the second type to the first type
195 using DefiningValueMapTy = MapVector<Value *, Value *>;
196 using IsKnownBaseMapTy = MapVector<Value *, bool>;
197 using PointerToBaseTy = MapVector<Value *, Value *>;
198 using StatepointLiveSetTy = SetVector<Value *>;
199 using RematerializedValueMapTy =
200 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
202 struct PartiallyConstructedSafepointRecord {
203 /// The set of values known to be live across this safepoint
204 StatepointLiveSetTy LiveSet;
206 /// The *new* gc.statepoint instruction itself. This produces the token
207 /// that normal path gc.relocates and the gc.result are tied to.
208 GCStatepointInst *StatepointToken;
210 /// Instruction to which exceptional gc relocates are attached
211 /// Makes it easier to iterate through them during relocationViaAlloca.
212 Instruction *UnwindToken;
214 /// Record live values we are rematerialized instead of relocating.
215 /// They are not included into 'LiveSet' field.
216 /// Maps rematerialized copy to it's original value.
217 RematerializedValueMapTy RematerializedValues;
220 struct RematerizlizationCandidateRecord {
221 // Chain from derived pointer to base.
222 SmallVector<Instruction *, 3> ChainToBase;
223 // Original base.
224 Value *RootOfChain;
225 // Cost of chain.
226 InstructionCost Cost;
228 using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>;
230 } // end anonymous namespace
232 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
233 std::optional<OperandBundleUse> DeoptBundle =
234 Call->getOperandBundle(LLVMContext::OB_deopt);
236 if (!DeoptBundle) {
237 assert(AllowStatepointWithNoDeoptInfo &&
238 "Found non-leaf call without deopt info!");
239 return std::nullopt;
242 return DeoptBundle->Inputs;
245 /// Compute the live-in set for every basic block in the function
246 static void computeLiveInValues(DominatorTree &DT, Function &F,
247 GCPtrLivenessData &Data, GCStrategy *GC);
249 /// Given results from the dataflow liveness computation, find the set of live
250 /// Values at a particular instruction.
251 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
252 StatepointLiveSetTy &out, GCStrategy *GC);
254 static bool isGCPointerType(Type *T, GCStrategy *GC) {
255 assert(GC && "GC Strategy for isGCPointerType cannot be null");
257 if (!isa<PointerType>(T))
258 return false;
260 // conservative - same as StatepointLowering
261 return GC->isGCManagedPointer(T).value_or(true);
264 // Return true if this type is one which a) is a gc pointer or contains a GC
265 // pointer and b) is of a type this code expects to encounter as a live value.
266 // (The insertion code will assert that a type which matches (a) and not (b)
267 // is not encountered.)
268 static bool isHandledGCPointerType(Type *T, GCStrategy *GC) {
269 // We fully support gc pointers
270 if (isGCPointerType(T, GC))
271 return true;
272 // We partially support vectors of gc pointers. The code will assert if it
273 // can't handle something.
274 if (auto VT = dyn_cast<VectorType>(T))
275 if (isGCPointerType(VT->getElementType(), GC))
276 return true;
277 return false;
280 #ifndef NDEBUG
281 /// Returns true if this type contains a gc pointer whether we know how to
282 /// handle that type or not.
283 static bool containsGCPtrType(Type *Ty, GCStrategy *GC) {
284 if (isGCPointerType(Ty, GC))
285 return true;
286 if (VectorType *VT = dyn_cast<VectorType>(Ty))
287 return isGCPointerType(VT->getScalarType(), GC);
288 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
289 return containsGCPtrType(AT->getElementType(), GC);
290 if (StructType *ST = dyn_cast<StructType>(Ty))
291 return llvm::any_of(ST->elements(),
292 [GC](Type *Ty) { return containsGCPtrType(Ty, GC); });
293 return false;
296 // Returns true if this is a type which a) is a gc pointer or contains a GC
297 // pointer and b) is of a type which the code doesn't expect (i.e. first class
298 // aggregates). Used to trip assertions.
299 static bool isUnhandledGCPointerType(Type *Ty, GCStrategy *GC) {
300 return containsGCPtrType(Ty, GC) && !isHandledGCPointerType(Ty, GC);
302 #endif
304 // Return the name of the value suffixed with the provided value, or if the
305 // value didn't have a name, the default value specified.
306 static std::string suffixed_name_or(Value *V, StringRef Suffix,
307 StringRef DefaultName) {
308 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
311 // Conservatively identifies any definitions which might be live at the
312 // given instruction. The analysis is performed immediately before the
313 // given instruction. Values defined by that instruction are not considered
314 // live. Values used by that instruction are considered live.
315 static void analyzeParsePointLiveness(
316 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
317 PartiallyConstructedSafepointRecord &Result, GCStrategy *GC) {
318 StatepointLiveSetTy LiveSet;
319 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet, GC);
321 if (PrintLiveSet) {
322 dbgs() << "Live Variables:\n";
323 for (Value *V : LiveSet)
324 dbgs() << " " << V->getName() << " " << *V << "\n";
326 if (PrintLiveSetSize) {
327 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
328 dbgs() << "Number live values: " << LiveSet.size() << "\n";
330 Result.LiveSet = LiveSet;
333 /// Returns true if V is a known base.
334 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases);
336 /// Caches the IsKnownBase flag for a value and asserts that it wasn't present
337 /// in the cache before.
338 static void setKnownBase(Value *V, bool IsKnownBase,
339 IsKnownBaseMapTy &KnownBases);
341 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache,
342 IsKnownBaseMapTy &KnownBases);
344 /// Return a base defining value for the 'Index' element of the given vector
345 /// instruction 'I'. If Index is null, returns a BDV for the entire vector
346 /// 'I'. As an optimization, this method will try to determine when the
347 /// element is known to already be a base pointer. If this can be established,
348 /// the second value in the returned pair will be true. Note that either a
349 /// vector or a pointer typed value can be returned. For the former, the
350 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
351 /// If the later, the return pointer is a BDV (or possibly a base) for the
352 /// particular element in 'I'.
353 static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache,
354 IsKnownBaseMapTy &KnownBases) {
355 // Each case parallels findBaseDefiningValue below, see that code for
356 // detailed motivation.
358 auto Cached = Cache.find(I);
359 if (Cached != Cache.end())
360 return Cached->second;
362 if (isa<Argument>(I)) {
363 // An incoming argument to the function is a base pointer
364 Cache[I] = I;
365 setKnownBase(I, /* IsKnownBase */true, KnownBases);
366 return I;
369 if (isa<Constant>(I)) {
370 // Base of constant vector consists only of constant null pointers.
371 // For reasoning see similar case inside 'findBaseDefiningValue' function.
372 auto *CAZ = ConstantAggregateZero::get(I->getType());
373 Cache[I] = CAZ;
374 setKnownBase(CAZ, /* IsKnownBase */true, KnownBases);
375 return CAZ;
378 if (isa<LoadInst>(I)) {
379 Cache[I] = I;
380 setKnownBase(I, /* IsKnownBase */true, KnownBases);
381 return I;
384 if (isa<InsertElementInst>(I)) {
385 // We don't know whether this vector contains entirely base pointers or
386 // not. To be conservatively correct, we treat it as a BDV and will
387 // duplicate code as needed to construct a parallel vector of bases.
388 Cache[I] = I;
389 setKnownBase(I, /* IsKnownBase */false, KnownBases);
390 return I;
393 if (isa<ShuffleVectorInst>(I)) {
394 // We don't know whether this vector contains entirely base pointers or
395 // not. To be conservatively correct, we treat it as a BDV and will
396 // duplicate code as needed to construct a parallel vector of bases.
397 // TODO: There a number of local optimizations which could be applied here
398 // for particular sufflevector patterns.
399 Cache[I] = I;
400 setKnownBase(I, /* IsKnownBase */false, KnownBases);
401 return I;
404 // The behavior of getelementptr instructions is the same for vector and
405 // non-vector data types.
406 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
407 auto *BDV =
408 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases);
409 Cache[GEP] = BDV;
410 return BDV;
413 // The behavior of freeze instructions is the same for vector and
414 // non-vector data types.
415 if (auto *Freeze = dyn_cast<FreezeInst>(I)) {
416 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases);
417 Cache[Freeze] = BDV;
418 return BDV;
421 // If the pointer comes through a bitcast of a vector of pointers to
422 // a vector of another type of pointer, then look through the bitcast
423 if (auto *BC = dyn_cast<BitCastInst>(I)) {
424 auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases);
425 Cache[BC] = BDV;
426 return BDV;
429 // We assume that functions in the source language only return base
430 // pointers. This should probably be generalized via attributes to support
431 // both source language and internal functions.
432 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
433 Cache[I] = I;
434 setKnownBase(I, /* IsKnownBase */true, KnownBases);
435 return I;
438 // A PHI or Select is a base defining value. The outer findBasePointer
439 // algorithm is responsible for constructing a base value for this BDV.
440 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
441 "unknown vector instruction - no base found for vector element");
442 Cache[I] = I;
443 setKnownBase(I, /* IsKnownBase */false, KnownBases);
444 return I;
447 /// Helper function for findBasePointer - Will return a value which either a)
448 /// defines the base pointer for the input, b) blocks the simple search
449 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
450 /// from pointer to vector type or back.
451 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache,
452 IsKnownBaseMapTy &KnownBases) {
453 assert(I->getType()->isPtrOrPtrVectorTy() &&
454 "Illegal to ask for the base pointer of a non-pointer type");
455 auto Cached = Cache.find(I);
456 if (Cached != Cache.end())
457 return Cached->second;
459 if (I->getType()->isVectorTy())
460 return findBaseDefiningValueOfVector(I, Cache, KnownBases);
462 if (isa<Argument>(I)) {
463 // An incoming argument to the function is a base pointer
464 // We should have never reached here if this argument isn't an gc value
465 Cache[I] = I;
466 setKnownBase(I, /* IsKnownBase */true, KnownBases);
467 return I;
470 if (isa<Constant>(I)) {
471 // We assume that objects with a constant base (e.g. a global) can't move
472 // and don't need to be reported to the collector because they are always
473 // live. Besides global references, all kinds of constants (e.g. undef,
474 // constant expressions, null pointers) can be introduced by the inliner or
475 // the optimizer, especially on dynamically dead paths.
476 // Here we treat all of them as having single null base. By doing this we
477 // trying to avoid problems reporting various conflicts in a form of
478 // "phi (const1, const2)" or "phi (const, regular gc ptr)".
479 // See constant.ll file for relevant test cases.
481 auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType()));
482 Cache[I] = CPN;
483 setKnownBase(CPN, /* IsKnownBase */true, KnownBases);
484 return CPN;
487 // inttoptrs in an integral address space are currently ill-defined. We
488 // treat them as defining base pointers here for consistency with the
489 // constant rule above and because we don't really have a better semantic
490 // to give them. Note that the optimizer is always free to insert undefined
491 // behavior on dynamically dead paths as well.
492 if (isa<IntToPtrInst>(I)) {
493 Cache[I] = I;
494 setKnownBase(I, /* IsKnownBase */true, KnownBases);
495 return I;
498 if (CastInst *CI = dyn_cast<CastInst>(I)) {
499 Value *Def = CI->stripPointerCasts();
500 // If stripping pointer casts changes the address space there is an
501 // addrspacecast in between.
502 assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
503 cast<PointerType>(CI->getType())->getAddressSpace() &&
504 "unsupported addrspacecast");
505 // If we find a cast instruction here, it means we've found a cast which is
506 // not simply a pointer cast (i.e. an inttoptr). We don't know how to
507 // handle int->ptr conversion.
508 assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
509 auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases);
510 Cache[CI] = BDV;
511 return BDV;
514 if (isa<LoadInst>(I)) {
515 // The value loaded is an gc base itself
516 Cache[I] = I;
517 setKnownBase(I, /* IsKnownBase */true, KnownBases);
518 return I;
521 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
522 // The base of this GEP is the base
523 auto *BDV =
524 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases);
525 Cache[GEP] = BDV;
526 return BDV;
529 if (auto *Freeze = dyn_cast<FreezeInst>(I)) {
530 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases);
531 Cache[Freeze] = BDV;
532 return BDV;
535 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
536 switch (II->getIntrinsicID()) {
537 default:
538 // fall through to general call handling
539 break;
540 case Intrinsic::experimental_gc_statepoint:
541 llvm_unreachable("statepoints don't produce pointers");
542 case Intrinsic::experimental_gc_relocate:
543 // Rerunning safepoint insertion after safepoints are already
544 // inserted is not supported. It could probably be made to work,
545 // but why are you doing this? There's no good reason.
546 llvm_unreachable("repeat safepoint insertion is not supported");
547 case Intrinsic::gcroot:
548 // Currently, this mechanism hasn't been extended to work with gcroot.
549 // There's no reason it couldn't be, but I haven't thought about the
550 // implications much.
551 llvm_unreachable(
552 "interaction with the gcroot mechanism is not supported");
553 case Intrinsic::experimental_gc_get_pointer_base:
554 auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases);
555 Cache[II] = BDV;
556 return BDV;
559 // We assume that functions in the source language only return base
560 // pointers. This should probably be generalized via attributes to support
561 // both source language and internal functions.
562 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
563 Cache[I] = I;
564 setKnownBase(I, /* IsKnownBase */true, KnownBases);
565 return I;
568 // TODO: I have absolutely no idea how to implement this part yet. It's not
569 // necessarily hard, I just haven't really looked at it yet.
570 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
572 if (isa<AtomicCmpXchgInst>(I)) {
573 // A CAS is effectively a atomic store and load combined under a
574 // predicate. From the perspective of base pointers, we just treat it
575 // like a load.
576 Cache[I] = I;
577 setKnownBase(I, /* IsKnownBase */true, KnownBases);
578 return I;
581 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
582 "binary ops which don't apply to pointers");
584 // The aggregate ops. Aggregates can either be in the heap or on the
585 // stack, but in either case, this is simply a field load. As a result,
586 // this is a defining definition of the base just like a load is.
587 if (isa<ExtractValueInst>(I)) {
588 Cache[I] = I;
589 setKnownBase(I, /* IsKnownBase */true, KnownBases);
590 return I;
593 // We should never see an insert vector since that would require we be
594 // tracing back a struct value not a pointer value.
595 assert(!isa<InsertValueInst>(I) &&
596 "Base pointer for a struct is meaningless");
598 // This value might have been generated by findBasePointer() called when
599 // substituting gc.get.pointer.base() intrinsic.
600 bool IsKnownBase =
601 isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value");
602 setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases);
603 Cache[I] = I;
605 // An extractelement produces a base result exactly when it's input does.
606 // We may need to insert a parallel instruction to extract the appropriate
607 // element out of the base vector corresponding to the input. Given this,
608 // it's analogous to the phi and select case even though it's not a merge.
609 if (isa<ExtractElementInst>(I))
610 // Note: There a lot of obvious peephole cases here. This are deliberately
611 // handled after the main base pointer inference algorithm to make writing
612 // test cases to exercise that code easier.
613 return I;
615 // The last two cases here don't return a base pointer. Instead, they
616 // return a value which dynamically selects from among several base
617 // derived pointers (each with it's own base potentially). It's the job of
618 // the caller to resolve these.
619 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
620 "missing instruction case in findBaseDefiningValue");
621 return I;
624 /// Returns the base defining value for this value.
625 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache,
626 IsKnownBaseMapTy &KnownBases) {
627 if (!Cache.contains(I)) {
628 auto *BDV = findBaseDefiningValue(I, Cache, KnownBases);
629 Cache[I] = BDV;
630 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
631 << Cache[I]->getName() << ", is known base = "
632 << KnownBases[I] << "\n");
634 assert(Cache[I] != nullptr);
635 assert(KnownBases.contains(Cache[I]) &&
636 "Cached value must be present in known bases map");
637 return Cache[I];
640 /// Return a base pointer for this value if known. Otherwise, return it's
641 /// base defining value.
642 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache,
643 IsKnownBaseMapTy &KnownBases) {
644 Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases);
645 auto Found = Cache.find(Def);
646 if (Found != Cache.end()) {
647 // Either a base-of relation, or a self reference. Caller must check.
648 return Found->second;
650 // Only a BDV available
651 return Def;
654 #ifndef NDEBUG
655 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
656 /// exists in the code.
657 static bool isOriginalBaseResult(Value *V) {
658 // no recursion possible
659 return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
660 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
661 !isa<ShuffleVectorInst>(V);
663 #endif
665 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) {
666 auto It = KnownBases.find(V);
667 assert(It != KnownBases.end() && "Value not present in the map");
668 return It->second;
671 static void setKnownBase(Value *V, bool IsKnownBase,
672 IsKnownBaseMapTy &KnownBases) {
673 #ifndef NDEBUG
674 auto It = KnownBases.find(V);
675 if (It != KnownBases.end())
676 assert(It->second == IsKnownBase && "Changing already present value");
677 #endif
678 KnownBases[V] = IsKnownBase;
681 // Returns true if First and Second values are both scalar or both vector.
682 static bool areBothVectorOrScalar(Value *First, Value *Second) {
683 return isa<VectorType>(First->getType()) ==
684 isa<VectorType>(Second->getType());
687 namespace {
689 /// Models the state of a single base defining value in the findBasePointer
690 /// algorithm for determining where a new instruction is needed to propagate
691 /// the base of this BDV.
692 class BDVState {
693 public:
694 enum StatusTy {
695 // Starting state of lattice
696 Unknown,
697 // Some specific base value -- does *not* mean that instruction
698 // propagates the base of the object
699 // ex: gep %arg, 16 -> %arg is the base value
700 Base,
701 // Need to insert a node to represent a merge.
702 Conflict
705 BDVState() {
706 llvm_unreachable("missing state in map");
709 explicit BDVState(Value *OriginalValue)
710 : OriginalValue(OriginalValue) {}
711 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
712 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
713 assert(Status != Base || BaseValue);
716 StatusTy getStatus() const { return Status; }
717 Value *getOriginalValue() const { return OriginalValue; }
718 Value *getBaseValue() const { return BaseValue; }
720 bool isBase() const { return getStatus() == Base; }
721 bool isUnknown() const { return getStatus() == Unknown; }
722 bool isConflict() const { return getStatus() == Conflict; }
724 // Values of type BDVState form a lattice, and this function implements the
725 // meet
726 // operation.
727 void meet(const BDVState &Other) {
728 auto markConflict = [&]() {
729 Status = BDVState::Conflict;
730 BaseValue = nullptr;
732 // Conflict is a final state.
733 if (isConflict())
734 return;
735 // if we are not known - just take other state.
736 if (isUnknown()) {
737 Status = Other.getStatus();
738 BaseValue = Other.getBaseValue();
739 return;
741 // We are base.
742 assert(isBase() && "Unknown state");
743 // If other is unknown - just keep our state.
744 if (Other.isUnknown())
745 return;
746 // If other is conflict - it is a final state.
747 if (Other.isConflict())
748 return markConflict();
749 // Other is base as well.
750 assert(Other.isBase() && "Unknown state");
751 // If bases are different - Conflict.
752 if (getBaseValue() != Other.getBaseValue())
753 return markConflict();
754 // We are identical, do nothing.
757 bool operator==(const BDVState &Other) const {
758 return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue &&
759 Status == Other.Status;
762 bool operator!=(const BDVState &other) const { return !(*this == other); }
764 LLVM_DUMP_METHOD
765 void dump() const {
766 print(dbgs());
767 dbgs() << '\n';
770 void print(raw_ostream &OS) const {
771 switch (getStatus()) {
772 case Unknown:
773 OS << "U";
774 break;
775 case Base:
776 OS << "B";
777 break;
778 case Conflict:
779 OS << "C";
780 break;
782 OS << " (base " << getBaseValue() << " - "
783 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
784 << " for " << OriginalValue->getName() << ":";
787 private:
788 AssertingVH<Value> OriginalValue; // instruction this state corresponds to
789 StatusTy Status = Unknown;
790 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
793 } // end anonymous namespace
795 #ifndef NDEBUG
796 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
797 State.print(OS);
798 return OS;
800 #endif
802 /// For a given value or instruction, figure out what base ptr its derived from.
803 /// For gc objects, this is simply itself. On success, returns a value which is
804 /// the base pointer. (This is reliable and can be used for relocation.) On
805 /// failure, returns nullptr.
806 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache,
807 IsKnownBaseMapTy &KnownBases) {
808 Value *Def = findBaseOrBDV(I, Cache, KnownBases);
810 if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I))
811 return Def;
813 // Here's the rough algorithm:
814 // - For every SSA value, construct a mapping to either an actual base
815 // pointer or a PHI which obscures the base pointer.
816 // - Construct a mapping from PHI to unknown TOP state. Use an
817 // optimistic algorithm to propagate base pointer information. Lattice
818 // looks like:
819 // UNKNOWN
820 // b1 b2 b3 b4
821 // CONFLICT
822 // When algorithm terminates, all PHIs will either have a single concrete
823 // base or be in a conflict state.
824 // - For every conflict, insert a dummy PHI node without arguments. Add
825 // these to the base[Instruction] = BasePtr mapping. For every
826 // non-conflict, add the actual base.
827 // - For every conflict, add arguments for the base[a] of each input
828 // arguments.
830 // Note: A simpler form of this would be to add the conflict form of all
831 // PHIs without running the optimistic algorithm. This would be
832 // analogous to pessimistic data flow and would likely lead to an
833 // overall worse solution.
835 #ifndef NDEBUG
836 auto isExpectedBDVType = [](Value *BDV) {
837 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
838 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
839 isa<ShuffleVectorInst>(BDV);
841 #endif
843 // Once populated, will contain a mapping from each potentially non-base BDV
844 // to a lattice value (described above) which corresponds to that BDV.
845 // We use the order of insertion (DFS over the def/use graph) to provide a
846 // stable deterministic ordering for visiting DenseMaps (which are unordered)
847 // below. This is important for deterministic compilation.
848 MapVector<Value *, BDVState> States;
850 #ifndef NDEBUG
851 auto VerifyStates = [&]() {
852 for (auto &Entry : States) {
853 assert(Entry.first == Entry.second.getOriginalValue());
856 #endif
858 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
859 if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
860 for (Value *InVal : PN->incoming_values())
861 F(InVal);
862 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
863 F(SI->getTrueValue());
864 F(SI->getFalseValue());
865 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
866 F(EE->getVectorOperand());
867 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
868 F(IE->getOperand(0));
869 F(IE->getOperand(1));
870 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
871 // For a canonical broadcast, ignore the undef argument
872 // (without this, we insert a parallel base shuffle for every broadcast)
873 F(SV->getOperand(0));
874 if (!SV->isZeroEltSplat())
875 F(SV->getOperand(1));
876 } else {
877 llvm_unreachable("unexpected BDV type");
882 // Recursively fill in all base defining values reachable from the initial
883 // one for which we don't already know a definite base value for
884 /* scope */ {
885 SmallVector<Value*, 16> Worklist;
886 Worklist.push_back(Def);
887 States.insert({Def, BDVState(Def)});
888 while (!Worklist.empty()) {
889 Value *Current = Worklist.pop_back_val();
890 assert(!isOriginalBaseResult(Current) && "why did it get added?");
892 auto visitIncomingValue = [&](Value *InVal) {
893 Value *Base = findBaseOrBDV(InVal, Cache, KnownBases);
894 if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal))
895 // Known bases won't need new instructions introduced and can be
896 // ignored safely. However, this can only be done when InVal and Base
897 // are both scalar or both vector. Otherwise, we need to find a
898 // correct BDV for InVal, by creating an entry in the lattice
899 // (States).
900 return;
901 assert(isExpectedBDVType(Base) && "the only non-base values "
902 "we see should be base defining values");
903 if (States.insert(std::make_pair(Base, BDVState(Base))).second)
904 Worklist.push_back(Base);
907 visitBDVOperands(Current, visitIncomingValue);
911 #ifndef NDEBUG
912 VerifyStates();
913 LLVM_DEBUG(dbgs() << "States after initialization:\n");
914 for (const auto &Pair : States) {
915 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
917 #endif
919 // Iterate forward through the value graph pruning any node from the state
920 // list where all of the inputs are base pointers. The purpose of this is to
921 // reuse existing values when the derived pointer we were asked to materialize
922 // a base pointer for happens to be a base pointer itself. (Or a sub-graph
923 // feeding it does.)
924 SmallVector<Value *> ToRemove;
925 do {
926 ToRemove.clear();
927 for (auto Pair : States) {
928 Value *BDV = Pair.first;
929 auto canPruneInput = [&](Value *V) {
930 // If the input of the BDV is the BDV itself we can prune it. This is
931 // only possible if the BDV is a PHI node.
932 if (V->stripPointerCasts() == BDV)
933 return true;
934 Value *VBDV = findBaseOrBDV(V, Cache, KnownBases);
935 if (V->stripPointerCasts() != VBDV)
936 return false;
937 // The assumption is that anything not in the state list is
938 // propagates a base pointer.
939 return States.count(VBDV) == 0;
942 bool CanPrune = true;
943 visitBDVOperands(BDV, [&](Value *Op) {
944 CanPrune = CanPrune && canPruneInput(Op);
946 if (CanPrune)
947 ToRemove.push_back(BDV);
949 for (Value *V : ToRemove) {
950 States.erase(V);
951 // Cache the fact V is it's own base for later usage.
952 Cache[V] = V;
954 } while (!ToRemove.empty());
956 // Did we manage to prove that Def itself must be a base pointer?
957 if (!States.count(Def))
958 return Def;
960 // Return a phi state for a base defining value. We'll generate a new
961 // base state for known bases and expect to find a cached state otherwise.
962 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
963 auto I = States.find(BaseValue);
964 if (I != States.end())
965 return I->second;
966 assert(areBothVectorOrScalar(BaseValue, Input));
967 return BDVState(BaseValue, BDVState::Base, BaseValue);
970 // Even though we have identified a concrete base (or a conflict) for all live
971 // pointers at this point, there are cases where the base is of an
972 // incompatible type compared to the original instruction. We conservatively
973 // mark those as conflicts to ensure that corresponding BDVs will be generated
974 // in the next steps.
976 // this is a rather explicit check for all cases where we should mark the
977 // state as a conflict to force the latter stages of the algorithm to emit
978 // the BDVs.
979 // TODO: in many cases the instructions emited for the conflicting states
980 // will be identical to the I itself (if the I's operate on their BDVs
981 // themselves). We should exploit this, but can't do it here since it would
982 // break the invariant about the BDVs not being known to be a base.
983 // TODO: the code also does not handle constants at all - the algorithm relies
984 // on all constants having the same BDV and therefore constant-only insns
985 // will never be in conflict, but this check is ignored here. If the
986 // constant conflicts will be to BDVs themselves, they will be identical
987 // instructions and will get optimized away (as in the above TODO)
988 auto MarkConflict = [&](Instruction *I, Value *BaseValue) {
989 // II and EE mixes vector & scalar so is always a conflict
990 if (isa<InsertElementInst>(I) || isa<ExtractElementInst>(I))
991 return true;
992 // Shuffle vector is always a conflict as it creates new vector from
993 // existing ones.
994 if (isa<ShuffleVectorInst>(I))
995 return true;
996 // Any instructions where the computed base type differs from the
997 // instruction type. An example is where an extract instruction is used by a
998 // select. Here the select's BDV is a vector (because of extract's BDV),
999 // while the select itself is a scalar type. Note that the IE and EE
1000 // instruction check is not fully subsumed by the vector<->scalar check at
1001 // the end, this is due to the BDV algorithm being ignorant of BDV types at
1002 // this junction.
1003 if (!areBothVectorOrScalar(BaseValue, I))
1004 return true;
1005 return false;
1008 bool Progress = true;
1009 while (Progress) {
1010 #ifndef NDEBUG
1011 const size_t OldSize = States.size();
1012 #endif
1013 Progress = false;
1014 // We're only changing values in this loop, thus safe to keep iterators.
1015 // Since this is computing a fixed point, the order of visit does not
1016 // effect the result. TODO: We could use a worklist here and make this run
1017 // much faster.
1018 for (auto Pair : States) {
1019 Value *BDV = Pair.first;
1020 // Only values that do not have known bases or those that have differing
1021 // type (scalar versus vector) from a possible known base should be in the
1022 // lattice.
1023 assert((!isKnownBase(BDV, KnownBases) ||
1024 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
1025 "why did it get added?");
1027 BDVState NewState(BDV);
1028 visitBDVOperands(BDV, [&](Value *Op) {
1029 Value *BDV = findBaseOrBDV(Op, Cache, KnownBases);
1030 auto OpState = GetStateForBDV(BDV, Op);
1031 NewState.meet(OpState);
1034 // if the instruction has known base, but should in fact be marked as
1035 // conflict because of incompatible in/out types, we mark it as such
1036 // ensuring that it will propagate through the fixpoint iteration
1037 auto I = cast<Instruction>(BDV);
1038 auto BV = NewState.getBaseValue();
1039 if (BV && MarkConflict(I, BV))
1040 NewState = BDVState(I, BDVState::Conflict);
1042 BDVState OldState = Pair.second;
1043 if (OldState != NewState) {
1044 Progress = true;
1045 States[BDV] = NewState;
1049 assert(OldSize == States.size() &&
1050 "fixed point shouldn't be adding any new nodes to state");
1053 #ifndef NDEBUG
1054 VerifyStates();
1055 LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
1056 for (const auto &Pair : States) {
1057 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
1060 // since we do the conflict marking as part of the fixpoint iteration this
1061 // loop only asserts that invariants are met
1062 for (auto Pair : States) {
1063 Instruction *I = cast<Instruction>(Pair.first);
1064 BDVState State = Pair.second;
1065 auto *BaseValue = State.getBaseValue();
1066 // Only values that do not have known bases or those that have differing
1067 // type (scalar versus vector) from a possible known base should be in the
1068 // lattice.
1069 assert(
1070 (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) &&
1071 "why did it get added?");
1072 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1074 #endif
1076 // Insert Phis for all conflicts
1077 // TODO: adjust naming patterns to avoid this order of iteration dependency
1078 for (auto Pair : States) {
1079 Instruction *I = cast<Instruction>(Pair.first);
1080 BDVState State = Pair.second;
1081 // Only values that do not have known bases or those that have differing
1082 // type (scalar versus vector) from a possible known base should be in the
1083 // lattice.
1084 assert((!isKnownBase(I, KnownBases) ||
1085 !areBothVectorOrScalar(I, State.getBaseValue())) &&
1086 "why did it get added?");
1087 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1089 // Since we're joining a vector and scalar base, they can never be the
1090 // same. As a result, we should always see insert element having reached
1091 // the conflict state.
1092 assert(!isa<InsertElementInst>(I) || State.isConflict());
1094 if (!State.isConflict())
1095 continue;
1097 auto getMangledName = [](Instruction *I) -> std::string {
1098 if (isa<PHINode>(I)) {
1099 return suffixed_name_or(I, ".base", "base_phi");
1100 } else if (isa<SelectInst>(I)) {
1101 return suffixed_name_or(I, ".base", "base_select");
1102 } else if (isa<ExtractElementInst>(I)) {
1103 return suffixed_name_or(I, ".base", "base_ee");
1104 } else if (isa<InsertElementInst>(I)) {
1105 return suffixed_name_or(I, ".base", "base_ie");
1106 } else {
1107 return suffixed_name_or(I, ".base", "base_sv");
1111 Instruction *BaseInst = I->clone();
1112 BaseInst->insertBefore(I);
1113 BaseInst->setName(getMangledName(I));
1114 // Add metadata marking this as a base value
1115 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1116 States[I] = BDVState(I, BDVState::Conflict, BaseInst);
1117 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases);
1120 #ifndef NDEBUG
1121 VerifyStates();
1122 #endif
1124 // Returns a instruction which produces the base pointer for a given
1125 // instruction. The instruction is assumed to be an input to one of the BDVs
1126 // seen in the inference algorithm above. As such, we must either already
1127 // know it's base defining value is a base, or have inserted a new
1128 // instruction to propagate the base of it's BDV and have entered that newly
1129 // introduced instruction into the state table. In either case, we are
1130 // assured to be able to determine an instruction which produces it's base
1131 // pointer.
1132 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1133 Value *BDV = findBaseOrBDV(Input, Cache, KnownBases);
1134 Value *Base = nullptr;
1135 if (!States.count(BDV)) {
1136 assert(areBothVectorOrScalar(BDV, Input));
1137 Base = BDV;
1138 } else {
1139 // Either conflict or base.
1140 assert(States.count(BDV));
1141 Base = States[BDV].getBaseValue();
1143 assert(Base && "Can't be null");
1144 // The cast is needed since base traversal may strip away bitcasts
1145 if (Base->getType() != Input->getType() && InsertPt)
1146 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1147 return Base;
1150 // Fixup all the inputs of the new PHIs. Visit order needs to be
1151 // deterministic and predictable because we're naming newly created
1152 // instructions.
1153 for (auto Pair : States) {
1154 Instruction *BDV = cast<Instruction>(Pair.first);
1155 BDVState State = Pair.second;
1157 // Only values that do not have known bases or those that have differing
1158 // type (scalar versus vector) from a possible known base should be in the
1159 // lattice.
1160 assert((!isKnownBase(BDV, KnownBases) ||
1161 !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1162 "why did it get added?");
1163 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1164 if (!State.isConflict())
1165 continue;
1167 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1168 PHINode *PN = cast<PHINode>(BDV);
1169 const unsigned NumPHIValues = PN->getNumIncomingValues();
1171 // The IR verifier requires phi nodes with multiple entries from the
1172 // same basic block to have the same incoming value for each of those
1173 // entries. Since we're inserting bitcasts in the loop, make sure we
1174 // do so at least once per incoming block.
1175 DenseMap<BasicBlock *, Value*> BlockToValue;
1176 for (unsigned i = 0; i < NumPHIValues; i++) {
1177 Value *InVal = PN->getIncomingValue(i);
1178 BasicBlock *InBB = PN->getIncomingBlock(i);
1179 if (!BlockToValue.count(InBB))
1180 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator());
1181 else {
1182 #ifndef NDEBUG
1183 Value *OldBase = BlockToValue[InBB];
1184 Value *Base = getBaseForInput(InVal, nullptr);
1186 // We can't use `stripPointerCasts` instead of this function because
1187 // `stripPointerCasts` doesn't handle vectors of pointers.
1188 auto StripBitCasts = [](Value *V) -> Value * {
1189 while (auto *BC = dyn_cast<BitCastInst>(V))
1190 V = BC->getOperand(0);
1191 return V;
1193 // In essence this assert states: the only way two values
1194 // incoming from the same basic block may be different is by
1195 // being different bitcasts of the same value. A cleanup
1196 // that remains TODO is changing findBaseOrBDV to return an
1197 // llvm::Value of the correct type (and still remain pure).
1198 // This will remove the need to add bitcasts.
1199 assert(StripBitCasts(Base) == StripBitCasts(OldBase) &&
1200 "findBaseOrBDV should be pure!");
1201 #endif
1203 Value *Base = BlockToValue[InBB];
1204 BasePHI->setIncomingValue(i, Base);
1206 } else if (SelectInst *BaseSI =
1207 dyn_cast<SelectInst>(State.getBaseValue())) {
1208 SelectInst *SI = cast<SelectInst>(BDV);
1210 // Find the instruction which produces the base for each input.
1211 // We may need to insert a bitcast.
1212 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1213 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1214 } else if (auto *BaseEE =
1215 dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1216 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1217 // Find the instruction which produces the base for each input. We may
1218 // need to insert a bitcast.
1219 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1220 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1221 auto *BdvIE = cast<InsertElementInst>(BDV);
1222 auto UpdateOperand = [&](int OperandIdx) {
1223 Value *InVal = BdvIE->getOperand(OperandIdx);
1224 Value *Base = getBaseForInput(InVal, BaseIE);
1225 BaseIE->setOperand(OperandIdx, Base);
1227 UpdateOperand(0); // vector operand
1228 UpdateOperand(1); // scalar operand
1229 } else {
1230 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1231 auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1232 auto UpdateOperand = [&](int OperandIdx) {
1233 Value *InVal = BdvSV->getOperand(OperandIdx);
1234 Value *Base = getBaseForInput(InVal, BaseSV);
1235 BaseSV->setOperand(OperandIdx, Base);
1237 UpdateOperand(0); // vector operand
1238 if (!BdvSV->isZeroEltSplat())
1239 UpdateOperand(1); // vector operand
1240 else {
1241 // Never read, so just use poison
1242 Value *InVal = BdvSV->getOperand(1);
1243 BaseSV->setOperand(1, PoisonValue::get(InVal->getType()));
1248 #ifndef NDEBUG
1249 VerifyStates();
1250 #endif
1252 // get the data layout to compare the sizes of base/derived pointer values
1253 [[maybe_unused]] auto &DL =
1254 cast<llvm::Instruction>(Def)->getModule()->getDataLayout();
1255 // Cache all of our results so we can cheaply reuse them
1256 // NOTE: This is actually two caches: one of the base defining value
1257 // relation and one of the base pointer relation! FIXME
1258 for (auto Pair : States) {
1259 auto *BDV = Pair.first;
1260 Value *Base = Pair.second.getBaseValue();
1261 assert(BDV && Base);
1262 // Whenever we have a derived ptr(s), their base
1263 // ptr(s) must be of the same size, not necessarily the same type
1264 assert(DL.getTypeAllocSize(BDV->getType()) ==
1265 DL.getTypeAllocSize(Base->getType()) &&
1266 "Derived and base values should have same size");
1267 // Only values that do not have known bases or those that have differing
1268 // type (scalar versus vector) from a possible known base should be in the
1269 // lattice.
1270 assert(
1271 (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) &&
1272 "why did it get added?");
1274 LLVM_DEBUG(
1275 dbgs() << "Updating base value cache"
1276 << " for: " << BDV->getName() << " from: "
1277 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1278 << " to: " << Base->getName() << "\n");
1280 Cache[BDV] = Base;
1282 assert(Cache.count(Def));
1283 return Cache[Def];
1286 // For a set of live pointers (base and/or derived), identify the base
1287 // pointer of the object which they are derived from. This routine will
1288 // mutate the IR graph as needed to make the 'base' pointer live at the
1289 // definition site of 'derived'. This ensures that any use of 'derived' can
1290 // also use 'base'. This may involve the insertion of a number of
1291 // additional PHI nodes.
1293 // preconditions: live is a set of pointer type Values
1295 // side effects: may insert PHI nodes into the existing CFG, will preserve
1296 // CFG, will not remove or mutate any existing nodes
1298 // post condition: PointerToBase contains one (derived, base) pair for every
1299 // pointer in live. Note that derived can be equal to base if the original
1300 // pointer was a base pointer.
1301 static void findBasePointers(const StatepointLiveSetTy &live,
1302 PointerToBaseTy &PointerToBase, DominatorTree *DT,
1303 DefiningValueMapTy &DVCache,
1304 IsKnownBaseMapTy &KnownBases) {
1305 for (Value *ptr : live) {
1306 Value *base = findBasePointer(ptr, DVCache, KnownBases);
1307 assert(base && "failed to find base pointer");
1308 PointerToBase[ptr] = base;
1309 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1310 DT->dominates(cast<Instruction>(base)->getParent(),
1311 cast<Instruction>(ptr)->getParent())) &&
1312 "The base we found better dominate the derived pointer");
1316 /// Find the required based pointers (and adjust the live set) for the given
1317 /// parse point.
1318 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1319 CallBase *Call,
1320 PartiallyConstructedSafepointRecord &result,
1321 PointerToBaseTy &PointerToBase,
1322 IsKnownBaseMapTy &KnownBases) {
1323 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
1324 // We assume that all pointers passed to deopt are base pointers; as an
1325 // optimization, we can use this to avoid seperately materializing the base
1326 // pointer graph. This is only relevant since we're very conservative about
1327 // generating new conflict nodes during base pointer insertion. If we were
1328 // smarter there, this would be irrelevant.
1329 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
1330 for (Value *V : Opt->Inputs) {
1331 if (!PotentiallyDerivedPointers.count(V))
1332 continue;
1333 PotentiallyDerivedPointers.remove(V);
1334 PointerToBase[V] = V;
1336 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache,
1337 KnownBases);
1340 /// Given an updated version of the dataflow liveness results, update the
1341 /// liveset and base pointer maps for the call site CS.
1342 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1343 CallBase *Call,
1344 PartiallyConstructedSafepointRecord &result,
1345 PointerToBaseTy &PointerToBase,
1346 GCStrategy *GC);
1348 static void recomputeLiveInValues(
1349 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1350 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records,
1351 PointerToBaseTy &PointerToBase, GCStrategy *GC) {
1352 // TODO-PERF: reuse the original liveness, then simply run the dataflow
1353 // again. The old values are still live and will help it stabilize quickly.
1354 GCPtrLivenessData RevisedLivenessData;
1355 computeLiveInValues(DT, F, RevisedLivenessData, GC);
1356 for (size_t i = 0; i < records.size(); i++) {
1357 struct PartiallyConstructedSafepointRecord &info = records[i];
1358 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info, PointerToBase,
1359 GC);
1363 // Utility function which clones all instructions from "ChainToBase"
1364 // and inserts them before "InsertBefore". Returns rematerialized value
1365 // which should be used after statepoint.
1366 static Instruction *rematerializeChain(ArrayRef<Instruction *> ChainToBase,
1367 Instruction *InsertBefore,
1368 Value *RootOfChain,
1369 Value *AlternateLiveBase) {
1370 Instruction *LastClonedValue = nullptr;
1371 Instruction *LastValue = nullptr;
1372 // Walk backwards to visit top-most instructions first.
1373 for (Instruction *Instr :
1374 make_range(ChainToBase.rbegin(), ChainToBase.rend())) {
1375 // Only GEP's and casts are supported as we need to be careful to not
1376 // introduce any new uses of pointers not in the liveset.
1377 // Note that it's fine to introduce new uses of pointers which were
1378 // otherwise not used after this statepoint.
1379 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1381 Instruction *ClonedValue = Instr->clone();
1382 ClonedValue->insertBefore(InsertBefore);
1383 ClonedValue->setName(Instr->getName() + ".remat");
1385 // If it is not first instruction in the chain then it uses previously
1386 // cloned value. We should update it to use cloned value.
1387 if (LastClonedValue) {
1388 assert(LastValue);
1389 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1390 #ifndef NDEBUG
1391 for (auto *OpValue : ClonedValue->operand_values()) {
1392 // Assert that cloned instruction does not use any instructions from
1393 // this chain other than LastClonedValue
1394 assert(!is_contained(ChainToBase, OpValue) &&
1395 "incorrect use in rematerialization chain");
1396 // Assert that the cloned instruction does not use the RootOfChain
1397 // or the AlternateLiveBase.
1398 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
1400 #endif
1401 } else {
1402 // For the first instruction, replace the use of unrelocated base i.e.
1403 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
1404 // live set. They have been proved to be the same PHI nodes. Note
1405 // that the *only* use of the RootOfChain in the ChainToBase list is
1406 // the first Value in the list.
1407 if (RootOfChain != AlternateLiveBase)
1408 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
1411 LastClonedValue = ClonedValue;
1412 LastValue = Instr;
1414 assert(LastClonedValue);
1415 return LastClonedValue;
1418 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1419 // no uses of the original value / return value between the gc.statepoint and
1420 // the gc.relocate / gc.result call. One case which can arise is a phi node
1421 // starting one of the successor blocks. We also need to be able to insert the
1422 // gc.relocates only on the path which goes through the statepoint. We might
1423 // need to split an edge to make this possible.
1424 static BasicBlock *
1425 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1426 DominatorTree &DT) {
1427 BasicBlock *Ret = BB;
1428 if (!BB->getUniquePredecessor())
1429 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1431 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1432 // from it
1433 FoldSingleEntryPHINodes(Ret);
1434 assert(!isa<PHINode>(Ret->begin()) &&
1435 "All PHI nodes should have been removed!");
1437 // At this point, we can safely insert a gc.relocate or gc.result as the first
1438 // instruction in Ret if needed.
1439 return Ret;
1442 // List of all function attributes which must be stripped when lowering from
1443 // abstract machine model to physical machine model. Essentially, these are
1444 // all the effects a safepoint might have which we ignored in the abstract
1445 // machine model for purposes of optimization. We have to strip these on
1446 // both function declarations and call sites.
1447 static constexpr Attribute::AttrKind FnAttrsToStrip[] =
1448 {Attribute::Memory, Attribute::NoSync, Attribute::NoFree};
1450 // Create new attribute set containing only attributes which can be transferred
1451 // from the original call to the safepoint.
1452 static AttributeList legalizeCallAttributes(CallBase *Call, bool IsMemIntrinsic,
1453 AttributeList StatepointAL) {
1454 AttributeList OrigAL = Call->getAttributes();
1455 if (OrigAL.isEmpty())
1456 return StatepointAL;
1458 // Remove the readonly, readnone, and statepoint function attributes.
1459 LLVMContext &Ctx = Call->getContext();
1460 AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs());
1461 for (auto Attr : FnAttrsToStrip)
1462 FnAttrs.removeAttribute(Attr);
1464 for (Attribute A : OrigAL.getFnAttrs()) {
1465 if (isStatepointDirectiveAttr(A))
1466 FnAttrs.removeAttribute(A);
1469 StatepointAL = StatepointAL.addFnAttributes(Ctx, FnAttrs);
1471 // The memory intrinsics do not have a 1:1 correspondence of the original
1472 // call arguments to the produced statepoint. Do not transfer the argument
1473 // attributes to avoid putting them on incorrect arguments.
1474 if (IsMemIntrinsic)
1475 return StatepointAL;
1477 // Attach the argument attributes from the original call at the corresponding
1478 // arguments in the statepoint. Note that any argument attributes that are
1479 // invalid after lowering are stripped in stripNonValidDataFromBody.
1480 for (unsigned I : llvm::seq(Call->arg_size()))
1481 StatepointAL = StatepointAL.addParamAttributes(
1482 Ctx, GCStatepointInst::CallArgsBeginPos + I,
1483 AttrBuilder(Ctx, OrigAL.getParamAttrs(I)));
1485 // Return attributes are later attached to the gc.result intrinsic.
1486 return StatepointAL;
1489 /// Helper function to place all gc relocates necessary for the given
1490 /// statepoint.
1491 /// Inputs:
1492 /// liveVariables - list of variables to be relocated.
1493 /// basePtrs - base pointers.
1494 /// statepointToken - statepoint instruction to which relocates should be
1495 /// bound.
1496 /// Builder - Llvm IR builder to be used to construct new calls.
1497 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1498 ArrayRef<Value *> BasePtrs,
1499 Instruction *StatepointToken,
1500 IRBuilder<> &Builder, GCStrategy *GC) {
1501 if (LiveVariables.empty())
1502 return;
1504 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1505 auto ValIt = llvm::find(LiveVec, Val);
1506 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1507 size_t Index = std::distance(LiveVec.begin(), ValIt);
1508 assert(Index < LiveVec.size() && "Bug in std::find?");
1509 return Index;
1511 Module *M = StatepointToken->getModule();
1513 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1514 // element type is i8 addrspace(1)*). We originally generated unique
1515 // declarations for each pointer type, but this proved problematic because
1516 // the intrinsic mangling code is incomplete and fragile. Since we're moving
1517 // towards a single unified pointer type anyways, we can just cast everything
1518 // to an i8* of the right address space. A bitcast is added later to convert
1519 // gc_relocate to the actual value's type.
1520 auto getGCRelocateDecl = [&](Type *Ty) {
1521 assert(isHandledGCPointerType(Ty, GC));
1522 auto AS = Ty->getScalarType()->getPointerAddressSpace();
1523 Type *NewTy = PointerType::get(M->getContext(), AS);
1524 if (auto *VT = dyn_cast<VectorType>(Ty))
1525 NewTy = FixedVectorType::get(NewTy,
1526 cast<FixedVectorType>(VT)->getNumElements());
1527 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1528 {NewTy});
1531 // Lazily populated map from input types to the canonicalized form mentioned
1532 // in the comment above. This should probably be cached somewhere more
1533 // broadly.
1534 DenseMap<Type *, Function *> TypeToDeclMap;
1536 for (unsigned i = 0; i < LiveVariables.size(); i++) {
1537 // Generate the gc.relocate call and save the result
1538 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1539 Value *LiveIdx = Builder.getInt32(i);
1541 Type *Ty = LiveVariables[i]->getType();
1542 if (!TypeToDeclMap.count(Ty))
1543 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1544 Function *GCRelocateDecl = TypeToDeclMap[Ty];
1546 // only specify a debug name if we can give a useful one
1547 CallInst *Reloc = Builder.CreateCall(
1548 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1549 suffixed_name_or(LiveVariables[i], ".relocated", ""));
1550 // Trick CodeGen into thinking there are lots of free registers at this
1551 // fake call.
1552 Reloc->setCallingConv(CallingConv::Cold);
1556 namespace {
1558 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
1559 /// avoids having to worry about keeping around dangling pointers to Values.
1560 class DeferredReplacement {
1561 AssertingVH<Instruction> Old;
1562 AssertingVH<Instruction> New;
1563 bool IsDeoptimize = false;
1565 DeferredReplacement() = default;
1567 public:
1568 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1569 assert(Old != New && Old && New &&
1570 "Cannot RAUW equal values or to / from null!");
1572 DeferredReplacement D;
1573 D.Old = Old;
1574 D.New = New;
1575 return D;
1578 static DeferredReplacement createDelete(Instruction *ToErase) {
1579 DeferredReplacement D;
1580 D.Old = ToErase;
1581 return D;
1584 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1585 #ifndef NDEBUG
1586 auto *F = cast<CallInst>(Old)->getCalledFunction();
1587 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1588 "Only way to construct a deoptimize deferred replacement");
1589 #endif
1590 DeferredReplacement D;
1591 D.Old = Old;
1592 D.IsDeoptimize = true;
1593 return D;
1596 /// Does the task represented by this instance.
1597 void doReplacement() {
1598 Instruction *OldI = Old;
1599 Instruction *NewI = New;
1601 assert(OldI != NewI && "Disallowed at construction?!");
1602 assert((!IsDeoptimize || !New) &&
1603 "Deoptimize intrinsics are not replaced!");
1605 Old = nullptr;
1606 New = nullptr;
1608 if (NewI)
1609 OldI->replaceAllUsesWith(NewI);
1611 if (IsDeoptimize) {
1612 // Note: we've inserted instructions, so the call to llvm.deoptimize may
1613 // not necessarily be followed by the matching return.
1614 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1615 new UnreachableInst(RI->getContext(), RI);
1616 RI->eraseFromParent();
1619 OldI->eraseFromParent();
1623 } // end anonymous namespace
1625 static StringRef getDeoptLowering(CallBase *Call) {
1626 const char *DeoptLowering = "deopt-lowering";
1627 if (Call->hasFnAttr(DeoptLowering)) {
1628 // FIXME: Calls have a *really* confusing interface around attributes
1629 // with values.
1630 const AttributeList &CSAS = Call->getAttributes();
1631 if (CSAS.hasFnAttr(DeoptLowering))
1632 return CSAS.getFnAttr(DeoptLowering).getValueAsString();
1633 Function *F = Call->getCalledFunction();
1634 assert(F && F->hasFnAttribute(DeoptLowering));
1635 return F->getFnAttribute(DeoptLowering).getValueAsString();
1637 return "live-through";
1640 static void
1641 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1642 const SmallVectorImpl<Value *> &BasePtrs,
1643 const SmallVectorImpl<Value *> &LiveVariables,
1644 PartiallyConstructedSafepointRecord &Result,
1645 std::vector<DeferredReplacement> &Replacements,
1646 const PointerToBaseTy &PointerToBase,
1647 GCStrategy *GC) {
1648 assert(BasePtrs.size() == LiveVariables.size());
1650 // Then go ahead and use the builder do actually do the inserts. We insert
1651 // immediately before the previous instruction under the assumption that all
1652 // arguments will be available here. We can't insert afterwards since we may
1653 // be replacing a terminator.
1654 IRBuilder<> Builder(Call);
1656 ArrayRef<Value *> GCArgs(LiveVariables);
1657 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1658 uint32_t NumPatchBytes = 0;
1659 uint32_t Flags = uint32_t(StatepointFlags::None);
1661 SmallVector<Value *, 8> CallArgs(Call->args());
1662 std::optional<ArrayRef<Use>> DeoptArgs;
1663 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1664 DeoptArgs = Bundle->Inputs;
1665 std::optional<ArrayRef<Use>> TransitionArgs;
1666 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1667 TransitionArgs = Bundle->Inputs;
1668 // TODO: This flag no longer serves a purpose and can be removed later
1669 Flags |= uint32_t(StatepointFlags::GCTransition);
1672 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1673 // with a return value, we lower then as never returning calls to
1674 // __llvm_deoptimize that are followed by unreachable to get better codegen.
1675 bool IsDeoptimize = false;
1676 bool IsMemIntrinsic = false;
1678 StatepointDirectives SD =
1679 parseStatepointDirectivesFromAttrs(Call->getAttributes());
1680 if (SD.NumPatchBytes)
1681 NumPatchBytes = *SD.NumPatchBytes;
1682 if (SD.StatepointID)
1683 StatepointID = *SD.StatepointID;
1685 // Pass through the requested lowering if any. The default is live-through.
1686 StringRef DeoptLowering = getDeoptLowering(Call);
1687 if (DeoptLowering.equals("live-in"))
1688 Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1689 else {
1690 assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1693 FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand());
1694 if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) {
1695 auto IID = F->getIntrinsicID();
1696 if (IID == Intrinsic::experimental_deoptimize) {
1697 // Calls to llvm.experimental.deoptimize are lowered to calls to the
1698 // __llvm_deoptimize symbol. We want to resolve this now, since the
1699 // verifier does not allow taking the address of an intrinsic function.
1701 SmallVector<Type *, 8> DomainTy;
1702 for (Value *Arg : CallArgs)
1703 DomainTy.push_back(Arg->getType());
1704 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1705 /* isVarArg = */ false);
1707 // Note: CallTarget can be a bitcast instruction of a symbol if there are
1708 // calls to @llvm.experimental.deoptimize with different argument types in
1709 // the same module. This is fine -- we assume the frontend knew what it
1710 // was doing when generating this kind of IR.
1711 CallTarget = F->getParent()
1712 ->getOrInsertFunction("__llvm_deoptimize", FTy);
1714 IsDeoptimize = true;
1715 } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1716 IID == Intrinsic::memmove_element_unordered_atomic) {
1717 IsMemIntrinsic = true;
1719 // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1720 // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1721 // Specifically, these calls should be lowered to the
1722 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1723 // Similarly to __llvm_deoptimize we want to resolve this now, since the
1724 // verifier does not allow taking the address of an intrinsic function.
1726 // Moreover we need to shuffle the arguments for the call in order to
1727 // accommodate GC. The underlying source and destination objects might be
1728 // relocated during copy operation should the GC occur. To relocate the
1729 // derived source and destination pointers the implementation of the
1730 // intrinsic should know the corresponding base pointers.
1732 // To make the base pointers available pass them explicitly as arguments:
1733 // memcpy(dest_derived, source_derived, ...) =>
1734 // memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1735 auto &Context = Call->getContext();
1736 auto &DL = Call->getModule()->getDataLayout();
1737 auto GetBaseAndOffset = [&](Value *Derived) {
1738 Value *Base = nullptr;
1739 // Optimizations in unreachable code might substitute the real pointer
1740 // with undef, poison or null-derived constant. Return null base for
1741 // them to be consistent with the handling in the main algorithm in
1742 // findBaseDefiningValue.
1743 if (isa<Constant>(Derived))
1744 Base =
1745 ConstantPointerNull::get(cast<PointerType>(Derived->getType()));
1746 else {
1747 assert(PointerToBase.count(Derived));
1748 Base = PointerToBase.find(Derived)->second;
1750 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1751 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1752 Value *Base_int = Builder.CreatePtrToInt(
1753 Base, Type::getIntNTy(Context, IntPtrSize));
1754 Value *Derived_int = Builder.CreatePtrToInt(
1755 Derived, Type::getIntNTy(Context, IntPtrSize));
1756 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1759 auto *Dest = CallArgs[0];
1760 Value *DestBase, *DestOffset;
1761 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1763 auto *Source = CallArgs[1];
1764 Value *SourceBase, *SourceOffset;
1765 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1767 auto *LengthInBytes = CallArgs[2];
1768 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1770 CallArgs.clear();
1771 CallArgs.push_back(DestBase);
1772 CallArgs.push_back(DestOffset);
1773 CallArgs.push_back(SourceBase);
1774 CallArgs.push_back(SourceOffset);
1775 CallArgs.push_back(LengthInBytes);
1777 SmallVector<Type *, 8> DomainTy;
1778 for (Value *Arg : CallArgs)
1779 DomainTy.push_back(Arg->getType());
1780 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1781 /* isVarArg = */ false);
1783 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1784 uint64_t ElementSize = ElementSizeCI->getZExtValue();
1785 if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1786 switch (ElementSize) {
1787 case 1:
1788 return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1789 case 2:
1790 return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1791 case 4:
1792 return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1793 case 8:
1794 return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1795 case 16:
1796 return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1797 default:
1798 llvm_unreachable("unexpected element size!");
1801 assert(IID == Intrinsic::memmove_element_unordered_atomic);
1802 switch (ElementSize) {
1803 case 1:
1804 return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1805 case 2:
1806 return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1807 case 4:
1808 return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1809 case 8:
1810 return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1811 case 16:
1812 return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1813 default:
1814 llvm_unreachable("unexpected element size!");
1818 CallTarget =
1819 F->getParent()
1820 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy);
1824 // Create the statepoint given all the arguments
1825 GCStatepointInst *Token = nullptr;
1826 if (auto *CI = dyn_cast<CallInst>(Call)) {
1827 CallInst *SPCall = Builder.CreateGCStatepointCall(
1828 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1829 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1831 SPCall->setTailCallKind(CI->getTailCallKind());
1832 SPCall->setCallingConv(CI->getCallingConv());
1834 // Set up function attrs directly on statepoint and return attrs later for
1835 // gc_result intrinsic.
1836 SPCall->setAttributes(
1837 legalizeCallAttributes(CI, IsMemIntrinsic, SPCall->getAttributes()));
1839 Token = cast<GCStatepointInst>(SPCall);
1841 // Put the following gc_result and gc_relocate calls immediately after the
1842 // the old call (which we're about to delete)
1843 assert(CI->getNextNode() && "Not a terminator, must have next!");
1844 Builder.SetInsertPoint(CI->getNextNode());
1845 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1846 } else {
1847 auto *II = cast<InvokeInst>(Call);
1849 // Insert the new invoke into the old block. We'll remove the old one in a
1850 // moment at which point this will become the new terminator for the
1851 // original block.
1852 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1853 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1854 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1855 "statepoint_token");
1857 SPInvoke->setCallingConv(II->getCallingConv());
1859 // Set up function attrs directly on statepoint and return attrs later for
1860 // gc_result intrinsic.
1861 SPInvoke->setAttributes(
1862 legalizeCallAttributes(II, IsMemIntrinsic, SPInvoke->getAttributes()));
1864 Token = cast<GCStatepointInst>(SPInvoke);
1866 // Generate gc relocates in exceptional path
1867 BasicBlock *UnwindBlock = II->getUnwindDest();
1868 assert(!isa<PHINode>(UnwindBlock->begin()) &&
1869 UnwindBlock->getUniquePredecessor() &&
1870 "can't safely insert in this block!");
1872 Builder.SetInsertPoint(UnwindBlock, UnwindBlock->getFirstInsertionPt());
1873 Builder.SetCurrentDebugLocation(II->getDebugLoc());
1875 // Attach exceptional gc relocates to the landingpad.
1876 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1877 Result.UnwindToken = ExceptionalToken;
1879 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder, GC);
1881 // Generate gc relocates and returns for normal block
1882 BasicBlock *NormalDest = II->getNormalDest();
1883 assert(!isa<PHINode>(NormalDest->begin()) &&
1884 NormalDest->getUniquePredecessor() &&
1885 "can't safely insert in this block!");
1887 Builder.SetInsertPoint(NormalDest, NormalDest->getFirstInsertionPt());
1889 // gc relocates will be generated later as if it were regular call
1890 // statepoint
1892 assert(Token && "Should be set in one of the above branches!");
1894 if (IsDeoptimize) {
1895 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1896 // transform the tail-call like structure to a call to a void function
1897 // followed by unreachable to get better codegen.
1898 Replacements.push_back(
1899 DeferredReplacement::createDeoptimizeReplacement(Call));
1900 } else {
1901 Token->setName("statepoint_token");
1902 if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1903 StringRef Name = Call->hasName() ? Call->getName() : "";
1904 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1905 GCResult->setAttributes(
1906 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1907 Call->getAttributes().getRetAttrs()));
1909 // We cannot RAUW or delete CS.getInstruction() because it could be in the
1910 // live set of some other safepoint, in which case that safepoint's
1911 // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1912 // llvm::Instruction. Instead, we defer the replacement and deletion to
1913 // after the live sets have been made explicit in the IR, and we no longer
1914 // have raw pointers to worry about.
1915 Replacements.emplace_back(
1916 DeferredReplacement::createRAUW(Call, GCResult));
1917 } else {
1918 Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1922 Result.StatepointToken = Token;
1924 // Second, create a gc.relocate for every live variable
1925 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder, GC);
1928 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1929 // which make the relocations happening at this safepoint explicit.
1931 // WARNING: Does not do any fixup to adjust users of the original live
1932 // values. That's the callers responsibility.
1933 static void
1934 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1935 PartiallyConstructedSafepointRecord &Result,
1936 std::vector<DeferredReplacement> &Replacements,
1937 const PointerToBaseTy &PointerToBase, GCStrategy *GC) {
1938 const auto &LiveSet = Result.LiveSet;
1940 // Convert to vector for efficient cross referencing.
1941 SmallVector<Value *, 64> BaseVec, LiveVec;
1942 LiveVec.reserve(LiveSet.size());
1943 BaseVec.reserve(LiveSet.size());
1944 for (Value *L : LiveSet) {
1945 LiveVec.push_back(L);
1946 assert(PointerToBase.count(L));
1947 Value *Base = PointerToBase.find(L)->second;
1948 BaseVec.push_back(Base);
1950 assert(LiveVec.size() == BaseVec.size());
1952 // Do the actual rewriting and delete the old statepoint
1953 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements,
1954 PointerToBase, GC);
1957 // Helper function for the relocationViaAlloca.
1959 // It receives iterator to the statepoint gc relocates and emits a store to the
1960 // assigned location (via allocaMap) for the each one of them. It adds the
1961 // visited values into the visitedLiveValues set, which we will later use them
1962 // for validation checking.
1963 static void
1964 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1965 DenseMap<Value *, AllocaInst *> &AllocaMap,
1966 DenseSet<Value *> &VisitedLiveValues) {
1967 for (User *U : GCRelocs) {
1968 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1969 if (!Relocate)
1970 continue;
1972 Value *OriginalValue = Relocate->getDerivedPtr();
1973 assert(AllocaMap.count(OriginalValue));
1974 Value *Alloca = AllocaMap[OriginalValue];
1976 // Emit store into the related alloca.
1977 assert(Relocate->getNextNode() &&
1978 "Should always have one since it's not a terminator");
1979 new StoreInst(Relocate, Alloca, Relocate->getNextNode());
1981 #ifndef NDEBUG
1982 VisitedLiveValues.insert(OriginalValue);
1983 #endif
1987 // Helper function for the "relocationViaAlloca". Similar to the
1988 // "insertRelocationStores" but works for rematerialized values.
1989 static void insertRematerializationStores(
1990 const RematerializedValueMapTy &RematerializedValues,
1991 DenseMap<Value *, AllocaInst *> &AllocaMap,
1992 DenseSet<Value *> &VisitedLiveValues) {
1993 for (auto RematerializedValuePair: RematerializedValues) {
1994 Instruction *RematerializedValue = RematerializedValuePair.first;
1995 Value *OriginalValue = RematerializedValuePair.second;
1997 assert(AllocaMap.count(OriginalValue) &&
1998 "Can not find alloca for rematerialized value");
1999 Value *Alloca = AllocaMap[OriginalValue];
2001 new StoreInst(RematerializedValue, Alloca,
2002 RematerializedValue->getNextNode());
2004 #ifndef NDEBUG
2005 VisitedLiveValues.insert(OriginalValue);
2006 #endif
2010 /// Do all the relocation update via allocas and mem2reg
2011 static void relocationViaAlloca(
2012 Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
2013 ArrayRef<PartiallyConstructedSafepointRecord> Records) {
2014 #ifndef NDEBUG
2015 // record initial number of (static) allocas; we'll check we have the same
2016 // number when we get done.
2017 int InitialAllocaNum = 0;
2018 for (Instruction &I : F.getEntryBlock())
2019 if (isa<AllocaInst>(I))
2020 InitialAllocaNum++;
2021 #endif
2023 // TODO-PERF: change data structures, reserve
2024 DenseMap<Value *, AllocaInst *> AllocaMap;
2025 SmallVector<AllocaInst *, 200> PromotableAllocas;
2026 // Used later to chack that we have enough allocas to store all values
2027 std::size_t NumRematerializedValues = 0;
2028 PromotableAllocas.reserve(Live.size());
2030 // Emit alloca for "LiveValue" and record it in "allocaMap" and
2031 // "PromotableAllocas"
2032 const DataLayout &DL = F.getParent()->getDataLayout();
2033 auto emitAllocaFor = [&](Value *LiveValue) {
2034 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
2035 DL.getAllocaAddrSpace(), "",
2036 F.getEntryBlock().getFirstNonPHI());
2037 AllocaMap[LiveValue] = Alloca;
2038 PromotableAllocas.push_back(Alloca);
2041 // Emit alloca for each live gc pointer
2042 for (Value *V : Live)
2043 emitAllocaFor(V);
2045 // Emit allocas for rematerialized values
2046 for (const auto &Info : Records)
2047 for (auto RematerializedValuePair : Info.RematerializedValues) {
2048 Value *OriginalValue = RematerializedValuePair.second;
2049 if (AllocaMap.contains(OriginalValue))
2050 continue;
2052 emitAllocaFor(OriginalValue);
2053 ++NumRematerializedValues;
2056 // The next two loops are part of the same conceptual operation. We need to
2057 // insert a store to the alloca after the original def and at each
2058 // redefinition. We need to insert a load before each use. These are split
2059 // into distinct loops for performance reasons.
2061 // Update gc pointer after each statepoint: either store a relocated value or
2062 // null (if no relocated value was found for this gc pointer and it is not a
2063 // gc_result). This must happen before we update the statepoint with load of
2064 // alloca otherwise we lose the link between statepoint and old def.
2065 for (const auto &Info : Records) {
2066 Value *Statepoint = Info.StatepointToken;
2068 // This will be used for consistency check
2069 DenseSet<Value *> VisitedLiveValues;
2071 // Insert stores for normal statepoint gc relocates
2072 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
2074 // In case if it was invoke statepoint
2075 // we will insert stores for exceptional path gc relocates.
2076 if (isa<InvokeInst>(Statepoint)) {
2077 insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
2078 VisitedLiveValues);
2081 // Do similar thing with rematerialized values
2082 insertRematerializationStores(Info.RematerializedValues, AllocaMap,
2083 VisitedLiveValues);
2085 if (ClobberNonLive) {
2086 // As a debugging aid, pretend that an unrelocated pointer becomes null at
2087 // the gc.statepoint. This will turn some subtle GC problems into
2088 // slightly easier to debug SEGVs. Note that on large IR files with
2089 // lots of gc.statepoints this is extremely costly both memory and time
2090 // wise.
2091 SmallVector<AllocaInst *, 64> ToClobber;
2092 for (auto Pair : AllocaMap) {
2093 Value *Def = Pair.first;
2094 AllocaInst *Alloca = Pair.second;
2096 // This value was relocated
2097 if (VisitedLiveValues.count(Def)) {
2098 continue;
2100 ToClobber.push_back(Alloca);
2103 auto InsertClobbersAt = [&](Instruction *IP) {
2104 for (auto *AI : ToClobber) {
2105 auto AT = AI->getAllocatedType();
2106 Constant *CPN;
2107 if (AT->isVectorTy())
2108 CPN = ConstantAggregateZero::get(AT);
2109 else
2110 CPN = ConstantPointerNull::get(cast<PointerType>(AT));
2111 new StoreInst(CPN, AI, IP);
2115 // Insert the clobbering stores. These may get intermixed with the
2116 // gc.results and gc.relocates, but that's fine.
2117 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
2118 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
2119 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
2120 } else {
2121 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
2126 // Update use with load allocas and add store for gc_relocated.
2127 for (auto Pair : AllocaMap) {
2128 Value *Def = Pair.first;
2129 AllocaInst *Alloca = Pair.second;
2131 // We pre-record the uses of allocas so that we dont have to worry about
2132 // later update that changes the user information..
2134 SmallVector<Instruction *, 20> Uses;
2135 // PERF: trade a linear scan for repeated reallocation
2136 Uses.reserve(Def->getNumUses());
2137 for (User *U : Def->users()) {
2138 if (!isa<ConstantExpr>(U)) {
2139 // If the def has a ConstantExpr use, then the def is either a
2140 // ConstantExpr use itself or null. In either case
2141 // (recursively in the first, directly in the second), the oop
2142 // it is ultimately dependent on is null and this particular
2143 // use does not need to be fixed up.
2144 Uses.push_back(cast<Instruction>(U));
2148 llvm::sort(Uses);
2149 auto Last = std::unique(Uses.begin(), Uses.end());
2150 Uses.erase(Last, Uses.end());
2152 for (Instruction *Use : Uses) {
2153 if (isa<PHINode>(Use)) {
2154 PHINode *Phi = cast<PHINode>(Use);
2155 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
2156 if (Def == Phi->getIncomingValue(i)) {
2157 LoadInst *Load =
2158 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
2159 Phi->getIncomingBlock(i)->getTerminator());
2160 Phi->setIncomingValue(i, Load);
2163 } else {
2164 LoadInst *Load =
2165 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
2166 Use->replaceUsesOfWith(Def, Load);
2170 // Emit store for the initial gc value. Store must be inserted after load,
2171 // otherwise store will be in alloca's use list and an extra load will be
2172 // inserted before it.
2173 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2174 DL.getABITypeAlign(Def->getType()));
2175 if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2176 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2177 // InvokeInst is a terminator so the store need to be inserted into its
2178 // normal destination block.
2179 BasicBlock *NormalDest = Invoke->getNormalDest();
2180 Store->insertBefore(NormalDest->getFirstNonPHI());
2181 } else {
2182 assert(!Inst->isTerminator() &&
2183 "The only terminator that can produce a value is "
2184 "InvokeInst which is handled above.");
2185 Store->insertAfter(Inst);
2187 } else {
2188 assert(isa<Argument>(Def));
2189 Store->insertAfter(cast<Instruction>(Alloca));
2193 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2194 "we must have the same allocas with lives");
2195 (void) NumRematerializedValues;
2196 if (!PromotableAllocas.empty()) {
2197 // Apply mem2reg to promote alloca to SSA
2198 PromoteMemToReg(PromotableAllocas, DT);
2201 #ifndef NDEBUG
2202 for (auto &I : F.getEntryBlock())
2203 if (isa<AllocaInst>(I))
2204 InitialAllocaNum--;
2205 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2206 #endif
2209 /// Implement a unique function which doesn't require we sort the input
2210 /// vector. Doing so has the effect of changing the output of a couple of
2211 /// tests in ways which make them less useful in testing fused safepoints.
2212 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2213 SmallSet<T, 8> Seen;
2214 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2217 /// Insert holders so that each Value is obviously live through the entire
2218 /// lifetime of the call.
2219 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2220 SmallVectorImpl<CallInst *> &Holders) {
2221 if (Values.empty())
2222 // No values to hold live, might as well not insert the empty holder
2223 return;
2225 Module *M = Call->getModule();
2226 // Use a dummy vararg function to actually hold the values live
2227 FunctionCallee Func = M->getOrInsertFunction(
2228 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2229 if (isa<CallInst>(Call)) {
2230 // For call safepoints insert dummy calls right after safepoint
2231 Holders.push_back(
2232 CallInst::Create(Func, Values, "", &*++Call->getIterator()));
2233 return;
2235 // For invoke safepooints insert dummy calls both in normal and
2236 // exceptional destination blocks
2237 auto *II = cast<InvokeInst>(Call);
2238 Holders.push_back(CallInst::Create(
2239 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
2240 Holders.push_back(CallInst::Create(
2241 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
2244 static void findLiveReferences(
2245 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2246 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records,
2247 GCStrategy *GC) {
2248 GCPtrLivenessData OriginalLivenessData;
2249 computeLiveInValues(DT, F, OriginalLivenessData, GC);
2250 for (size_t i = 0; i < records.size(); i++) {
2251 struct PartiallyConstructedSafepointRecord &info = records[i];
2252 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info, GC);
2256 // Helper function for the "rematerializeLiveValues". It walks use chain
2257 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2258 // the base or a value it cannot process. Only "simple" values are processed
2259 // (currently it is GEP's and casts). The returned root is examined by the
2260 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array
2261 // with all visited values.
2262 static Value* findRematerializableChainToBasePointer(
2263 SmallVectorImpl<Instruction*> &ChainToBase,
2264 Value *CurrentValue) {
2265 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2266 ChainToBase.push_back(GEP);
2267 return findRematerializableChainToBasePointer(ChainToBase,
2268 GEP->getPointerOperand());
2271 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2272 if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2273 return CI;
2275 ChainToBase.push_back(CI);
2276 return findRematerializableChainToBasePointer(ChainToBase,
2277 CI->getOperand(0));
2280 // We have reached the root of the chain, which is either equal to the base or
2281 // is the first unsupported value along the use chain.
2282 return CurrentValue;
2285 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2286 // chain we are going to rematerialize.
2287 static InstructionCost
2288 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2289 TargetTransformInfo &TTI) {
2290 InstructionCost Cost = 0;
2292 for (Instruction *Instr : Chain) {
2293 if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2294 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2295 "non noop cast is found during rematerialization");
2297 Type *SrcTy = CI->getOperand(0)->getType();
2298 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2299 TTI::getCastContextHint(CI),
2300 TargetTransformInfo::TCK_SizeAndLatency, CI);
2302 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2303 // Cost of the address calculation
2304 Type *ValTy = GEP->getSourceElementType();
2305 Cost += TTI.getAddressComputationCost(ValTy);
2307 // And cost of the GEP itself
2308 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2309 // allowed for the external usage)
2310 if (!GEP->hasAllConstantIndices())
2311 Cost += 2;
2313 } else {
2314 llvm_unreachable("unsupported instruction type during rematerialization");
2318 return Cost;
2321 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2322 unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2323 if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2324 OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2325 return false;
2326 // Map of incoming values and their corresponding basic blocks of
2327 // OrigRootPhi.
2328 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2329 for (unsigned i = 0; i < PhiNum; i++)
2330 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2331 OrigRootPhi.getIncomingBlock(i);
2333 // Both current and base PHIs should have same incoming values and
2334 // the same basic blocks corresponding to the incoming values.
2335 for (unsigned i = 0; i < PhiNum; i++) {
2336 auto CIVI =
2337 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2338 if (CIVI == CurrentIncomingValues.end())
2339 return false;
2340 BasicBlock *CurrentIncomingBB = CIVI->second;
2341 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2342 return false;
2344 return true;
2347 // Find derived pointers that can be recomputed cheap enough and fill
2348 // RematerizationCandidates with such candidates.
2349 static void
2350 findRematerializationCandidates(PointerToBaseTy PointerToBase,
2351 RematCandTy &RematerizationCandidates,
2352 TargetTransformInfo &TTI) {
2353 const unsigned int ChainLengthThreshold = 10;
2355 for (auto P2B : PointerToBase) {
2356 auto *Derived = P2B.first;
2357 auto *Base = P2B.second;
2358 // Consider only derived pointers.
2359 if (Derived == Base)
2360 continue;
2362 // For each live pointer find its defining chain.
2363 SmallVector<Instruction *, 3> ChainToBase;
2364 Value *RootOfChain =
2365 findRematerializableChainToBasePointer(ChainToBase, Derived);
2367 // Nothing to do, or chain is too long
2368 if ( ChainToBase.size() == 0 ||
2369 ChainToBase.size() > ChainLengthThreshold)
2370 continue;
2372 // Handle the scenario where the RootOfChain is not equal to the
2373 // Base Value, but they are essentially the same phi values.
2374 if (RootOfChain != PointerToBase[Derived]) {
2375 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2376 PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]);
2377 if (!OrigRootPhi || !AlternateRootPhi)
2378 continue;
2379 // PHI nodes that have the same incoming values, and belonging to the same
2380 // basic blocks are essentially the same SSA value. When the original phi
2381 // has incoming values with different base pointers, the original phi is
2382 // marked as conflict, and an additional `AlternateRootPhi` with the same
2383 // incoming values get generated by the findBasePointer function. We need
2384 // to identify the newly generated AlternateRootPhi (.base version of phi)
2385 // and RootOfChain (the original phi node itself) are the same, so that we
2386 // can rematerialize the gep and casts. This is a workaround for the
2387 // deficiency in the findBasePointer algorithm.
2388 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2389 continue;
2391 // Compute cost of this chain.
2392 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2393 // TODO: We can also account for cases when we will be able to remove some
2394 // of the rematerialized values by later optimization passes. I.e if
2395 // we rematerialized several intersecting chains. Or if original values
2396 // don't have any uses besides this statepoint.
2398 // Ok, there is a candidate.
2399 RematerizlizationCandidateRecord Record;
2400 Record.ChainToBase = ChainToBase;
2401 Record.RootOfChain = RootOfChain;
2402 Record.Cost = Cost;
2403 RematerizationCandidates.insert({ Derived, Record });
2407 // Try to rematerialize derived pointers immediately before their uses
2408 // (instead of rematerializing after every statepoint it is live through).
2409 // This can be beneficial when derived pointer is live across many
2410 // statepoints, but uses are rare.
2411 static void rematerializeLiveValuesAtUses(
2412 RematCandTy &RematerizationCandidates,
2413 MutableArrayRef<PartiallyConstructedSafepointRecord> Records,
2414 PointerToBaseTy &PointerToBase) {
2415 if (!RematDerivedAtUses)
2416 return;
2418 SmallVector<Instruction *, 32> LiveValuesToBeDeleted;
2420 LLVM_DEBUG(dbgs() << "Rematerialize derived pointers at uses, "
2421 << "Num statepoints: " << Records.size() << '\n');
2423 for (auto &It : RematerizationCandidates) {
2424 Instruction *Cand = cast<Instruction>(It.first);
2425 auto &Record = It.second;
2427 if (Record.Cost >= RematerializationThreshold)
2428 continue;
2430 if (Cand->user_empty())
2431 continue;
2433 if (Cand->hasOneUse())
2434 if (auto *U = dyn_cast<Instruction>(Cand->getUniqueUndroppableUser()))
2435 if (U->getParent() == Cand->getParent())
2436 continue;
2438 // Rematerialization before PHI nodes is not implemented.
2439 if (llvm::any_of(Cand->users(),
2440 [](const auto *U) { return isa<PHINode>(U); }))
2441 continue;
2443 LLVM_DEBUG(dbgs() << "Trying cand " << *Cand << " ... ");
2445 // Count of rematerialization instructions we introduce is equal to number
2446 // of candidate uses.
2447 // Count of rematerialization instructions we eliminate is equal to number
2448 // of statepoints it is live through.
2449 // Consider transformation profitable if latter is greater than former
2450 // (in other words, we create less than eliminate).
2451 unsigned NumLiveStatepoints = llvm::count_if(
2452 Records, [Cand](const auto &R) { return R.LiveSet.contains(Cand); });
2453 unsigned NumUses = Cand->getNumUses();
2455 LLVM_DEBUG(dbgs() << "Num uses: " << NumUses << " Num live statepoints: "
2456 << NumLiveStatepoints << " ");
2458 if (NumLiveStatepoints < NumUses) {
2459 LLVM_DEBUG(dbgs() << "not profitable\n");
2460 continue;
2463 // If rematerialization is 'free', then favor rematerialization at
2464 // uses as it generally shortens live ranges.
2465 // TODO: Short (size ==1) chains only?
2466 if (NumLiveStatepoints == NumUses && Record.Cost > 0) {
2467 LLVM_DEBUG(dbgs() << "not profitable\n");
2468 continue;
2471 LLVM_DEBUG(dbgs() << "looks profitable\n");
2473 // ChainToBase may contain another remat candidate (as a sub chain) which
2474 // has been rewritten by now. Need to recollect chain to have up to date
2475 // value.
2476 // TODO: sort records in findRematerializationCandidates() in
2477 // decreasing chain size order?
2478 if (Record.ChainToBase.size() > 1) {
2479 Record.ChainToBase.clear();
2480 findRematerializableChainToBasePointer(Record.ChainToBase, Cand);
2483 // Current rematerialization algorithm is very simple: we rematerialize
2484 // immediately before EVERY use, even if there are several uses in same
2485 // block or if use is local to Cand Def. The reason is that this allows
2486 // us to avoid recomputing liveness without complicated analysis:
2487 // - If we did not eliminate all uses of original Candidate, we do not
2488 // know exaclty in what BBs it is still live.
2489 // - If we rematerialize once per BB, we need to find proper insertion
2490 // place (first use in block, but after Def) and analyze if there is
2491 // statepoint between uses in the block.
2492 while (!Cand->user_empty()) {
2493 Instruction *UserI = cast<Instruction>(*Cand->user_begin());
2494 Instruction *RematChain = rematerializeChain(
2495 Record.ChainToBase, UserI, Record.RootOfChain, PointerToBase[Cand]);
2496 UserI->replaceUsesOfWith(Cand, RematChain);
2497 PointerToBase[RematChain] = PointerToBase[Cand];
2499 LiveValuesToBeDeleted.push_back(Cand);
2502 LLVM_DEBUG(dbgs() << "Rematerialized " << LiveValuesToBeDeleted.size()
2503 << " derived pointers\n");
2504 for (auto *Cand : LiveValuesToBeDeleted) {
2505 assert(Cand->use_empty() && "Unexpected user remain");
2506 RematerizationCandidates.erase(Cand);
2507 for (auto &R : Records) {
2508 assert(!R.LiveSet.contains(Cand) ||
2509 R.LiveSet.contains(PointerToBase[Cand]));
2510 R.LiveSet.remove(Cand);
2514 // Recollect not rematerialized chains - we might have rewritten
2515 // their sub-chains.
2516 if (!LiveValuesToBeDeleted.empty()) {
2517 for (auto &P : RematerizationCandidates) {
2518 auto &R = P.second;
2519 if (R.ChainToBase.size() > 1) {
2520 R.ChainToBase.clear();
2521 findRematerializableChainToBasePointer(R.ChainToBase, P.first);
2527 // From the statepoint live set pick values that are cheaper to recompute then
2528 // to relocate. Remove this values from the live set, rematerialize them after
2529 // statepoint and record them in "Info" structure. Note that similar to
2530 // relocated values we don't do any user adjustments here.
2531 static void rematerializeLiveValues(CallBase *Call,
2532 PartiallyConstructedSafepointRecord &Info,
2533 PointerToBaseTy &PointerToBase,
2534 RematCandTy &RematerizationCandidates,
2535 TargetTransformInfo &TTI) {
2536 // Record values we are going to delete from this statepoint live set.
2537 // We can not di this in following loop due to iterator invalidation.
2538 SmallVector<Value *, 32> LiveValuesToBeDeleted;
2540 for (Value *LiveValue : Info.LiveSet) {
2541 auto It = RematerizationCandidates.find(LiveValue);
2542 if (It == RematerizationCandidates.end())
2543 continue;
2545 RematerizlizationCandidateRecord &Record = It->second;
2547 InstructionCost Cost = Record.Cost;
2548 // For invokes we need to rematerialize each chain twice - for normal and
2549 // for unwind basic blocks. Model this by multiplying cost by two.
2550 if (isa<InvokeInst>(Call))
2551 Cost *= 2;
2553 // If it's too expensive - skip it.
2554 if (Cost >= RematerializationThreshold)
2555 continue;
2557 // Remove value from the live set
2558 LiveValuesToBeDeleted.push_back(LiveValue);
2560 // Clone instructions and record them inside "Info" structure.
2562 // Different cases for calls and invokes. For invokes we need to clone
2563 // instructions both on normal and unwind path.
2564 if (isa<CallInst>(Call)) {
2565 Instruction *InsertBefore = Call->getNextNode();
2566 assert(InsertBefore);
2567 Instruction *RematerializedValue =
2568 rematerializeChain(Record.ChainToBase, InsertBefore,
2569 Record.RootOfChain, PointerToBase[LiveValue]);
2570 Info.RematerializedValues[RematerializedValue] = LiveValue;
2571 } else {
2572 auto *Invoke = cast<InvokeInst>(Call);
2574 Instruction *NormalInsertBefore =
2575 &*Invoke->getNormalDest()->getFirstInsertionPt();
2576 Instruction *UnwindInsertBefore =
2577 &*Invoke->getUnwindDest()->getFirstInsertionPt();
2579 Instruction *NormalRematerializedValue =
2580 rematerializeChain(Record.ChainToBase, NormalInsertBefore,
2581 Record.RootOfChain, PointerToBase[LiveValue]);
2582 Instruction *UnwindRematerializedValue =
2583 rematerializeChain(Record.ChainToBase, UnwindInsertBefore,
2584 Record.RootOfChain, PointerToBase[LiveValue]);
2586 Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2587 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2591 // Remove rematerialized values from the live set.
2592 for (auto *LiveValue: LiveValuesToBeDeleted) {
2593 Info.LiveSet.remove(LiveValue);
2597 static bool inlineGetBaseAndOffset(Function &F,
2598 SmallVectorImpl<CallInst *> &Intrinsics,
2599 DefiningValueMapTy &DVCache,
2600 IsKnownBaseMapTy &KnownBases) {
2601 auto &Context = F.getContext();
2602 auto &DL = F.getParent()->getDataLayout();
2603 bool Changed = false;
2605 for (auto *Callsite : Intrinsics)
2606 switch (Callsite->getIntrinsicID()) {
2607 case Intrinsic::experimental_gc_get_pointer_base: {
2608 Changed = true;
2609 Value *Base =
2610 findBasePointer(Callsite->getOperand(0), DVCache, KnownBases);
2611 assert(!DVCache.count(Callsite));
2612 Callsite->replaceAllUsesWith(Base);
2613 if (!Base->hasName())
2614 Base->takeName(Callsite);
2615 Callsite->eraseFromParent();
2616 break;
2618 case Intrinsic::experimental_gc_get_pointer_offset: {
2619 Changed = true;
2620 Value *Derived = Callsite->getOperand(0);
2621 Value *Base = findBasePointer(Derived, DVCache, KnownBases);
2622 assert(!DVCache.count(Callsite));
2623 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
2624 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
2625 IRBuilder<> Builder(Callsite);
2626 Value *BaseInt =
2627 Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize),
2628 suffixed_name_or(Base, ".int", ""));
2629 Value *DerivedInt =
2630 Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize),
2631 suffixed_name_or(Derived, ".int", ""));
2632 Value *Offset = Builder.CreateSub(DerivedInt, BaseInt);
2633 Callsite->replaceAllUsesWith(Offset);
2634 Offset->takeName(Callsite);
2635 Callsite->eraseFromParent();
2636 break;
2638 default:
2639 llvm_unreachable("Unknown intrinsic");
2642 return Changed;
2645 static bool insertParsePoints(Function &F, DominatorTree &DT,
2646 TargetTransformInfo &TTI,
2647 SmallVectorImpl<CallBase *> &ToUpdate,
2648 DefiningValueMapTy &DVCache,
2649 IsKnownBaseMapTy &KnownBases) {
2650 std::unique_ptr<GCStrategy> GC = findGCStrategy(F);
2652 #ifndef NDEBUG
2653 // Validate the input
2654 std::set<CallBase *> Uniqued;
2655 Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2656 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2658 for (CallBase *Call : ToUpdate)
2659 assert(Call->getFunction() == &F);
2660 #endif
2662 // When inserting gc.relocates for invokes, we need to be able to insert at
2663 // the top of the successor blocks. See the comment on
2664 // normalForInvokeSafepoint on exactly what is needed. Note that this step
2665 // may restructure the CFG.
2666 for (CallBase *Call : ToUpdate) {
2667 auto *II = dyn_cast<InvokeInst>(Call);
2668 if (!II)
2669 continue;
2670 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2671 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2674 // A list of dummy calls added to the IR to keep various values obviously
2675 // live in the IR. We'll remove all of these when done.
2676 SmallVector<CallInst *, 64> Holders;
2678 // Insert a dummy call with all of the deopt operands we'll need for the
2679 // actual safepoint insertion as arguments. This ensures reference operands
2680 // in the deopt argument list are considered live through the safepoint (and
2681 // thus makes sure they get relocated.)
2682 for (CallBase *Call : ToUpdate) {
2683 SmallVector<Value *, 64> DeoptValues;
2685 for (Value *Arg : GetDeoptBundleOperands(Call)) {
2686 assert(!isUnhandledGCPointerType(Arg->getType(), GC.get()) &&
2687 "support for FCA unimplemented");
2688 if (isHandledGCPointerType(Arg->getType(), GC.get()))
2689 DeoptValues.push_back(Arg);
2692 insertUseHolderAfter(Call, DeoptValues, Holders);
2695 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2697 // A) Identify all gc pointers which are statically live at the given call
2698 // site.
2699 findLiveReferences(F, DT, ToUpdate, Records, GC.get());
2701 /// Global mapping from live pointers to a base-defining-value.
2702 PointerToBaseTy PointerToBase;
2704 // B) Find the base pointers for each live pointer
2705 for (size_t i = 0; i < Records.size(); i++) {
2706 PartiallyConstructedSafepointRecord &info = Records[i];
2707 findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases);
2709 if (PrintBasePointers) {
2710 errs() << "Base Pairs (w/o Relocation):\n";
2711 for (auto &Pair : PointerToBase) {
2712 errs() << " derived ";
2713 Pair.first->printAsOperand(errs(), false);
2714 errs() << " base ";
2715 Pair.second->printAsOperand(errs(), false);
2716 errs() << "\n";
2721 // The base phi insertion logic (for any safepoint) may have inserted new
2722 // instructions which are now live at some safepoint. The simplest such
2723 // example is:
2724 // loop:
2725 // phi a <-- will be a new base_phi here
2726 // safepoint 1 <-- that needs to be live here
2727 // gep a + 1
2728 // safepoint 2
2729 // br loop
2730 // We insert some dummy calls after each safepoint to definitely hold live
2731 // the base pointers which were identified for that safepoint. We'll then
2732 // ask liveness for _every_ base inserted to see what is now live. Then we
2733 // remove the dummy calls.
2734 Holders.reserve(Holders.size() + Records.size());
2735 for (size_t i = 0; i < Records.size(); i++) {
2736 PartiallyConstructedSafepointRecord &Info = Records[i];
2738 SmallVector<Value *, 128> Bases;
2739 for (auto *Derived : Info.LiveSet) {
2740 assert(PointerToBase.count(Derived) && "Missed base for derived pointer");
2741 Bases.push_back(PointerToBase[Derived]);
2744 insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2747 // By selecting base pointers, we've effectively inserted new uses. Thus, we
2748 // need to rerun liveness. We may *also* have inserted new defs, but that's
2749 // not the key issue.
2750 recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase, GC.get());
2752 if (PrintBasePointers) {
2753 errs() << "Base Pairs: (w/Relocation)\n";
2754 for (auto Pair : PointerToBase) {
2755 errs() << " derived ";
2756 Pair.first->printAsOperand(errs(), false);
2757 errs() << " base ";
2758 Pair.second->printAsOperand(errs(), false);
2759 errs() << "\n";
2763 // It is possible that non-constant live variables have a constant base. For
2764 // example, a GEP with a variable offset from a global. In this case we can
2765 // remove it from the liveset. We already don't add constants to the liveset
2766 // because we assume they won't move at runtime and the GC doesn't need to be
2767 // informed about them. The same reasoning applies if the base is constant.
2768 // Note that the relocation placement code relies on this filtering for
2769 // correctness as it expects the base to be in the liveset, which isn't true
2770 // if the base is constant.
2771 for (auto &Info : Records) {
2772 Info.LiveSet.remove_if([&](Value *LiveV) {
2773 assert(PointerToBase.count(LiveV) && "Missed base for derived pointer");
2774 return isa<Constant>(PointerToBase[LiveV]);
2778 for (CallInst *CI : Holders)
2779 CI->eraseFromParent();
2781 Holders.clear();
2783 // Compute the cost of possible re-materialization of derived pointers.
2784 RematCandTy RematerizationCandidates;
2785 findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI);
2787 // In order to reduce live set of statepoint we might choose to rematerialize
2788 // some values instead of relocating them. This is purely an optimization and
2789 // does not influence correctness.
2790 // First try rematerialization at uses, then after statepoints.
2791 rematerializeLiveValuesAtUses(RematerizationCandidates, Records,
2792 PointerToBase);
2793 for (size_t i = 0; i < Records.size(); i++)
2794 rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase,
2795 RematerizationCandidates, TTI);
2797 // We need this to safely RAUW and delete call or invoke return values that
2798 // may themselves be live over a statepoint. For details, please see usage in
2799 // makeStatepointExplicitImpl.
2800 std::vector<DeferredReplacement> Replacements;
2802 // Now run through and replace the existing statepoints with new ones with
2803 // the live variables listed. We do not yet update uses of the values being
2804 // relocated. We have references to live variables that need to
2805 // survive to the last iteration of this loop. (By construction, the
2806 // previous statepoint can not be a live variable, thus we can and remove
2807 // the old statepoint calls as we go.)
2808 for (size_t i = 0; i < Records.size(); i++)
2809 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements,
2810 PointerToBase, GC.get());
2812 ToUpdate.clear(); // prevent accident use of invalid calls.
2814 for (auto &PR : Replacements)
2815 PR.doReplacement();
2817 Replacements.clear();
2819 for (auto &Info : Records) {
2820 // These live sets may contain state Value pointers, since we replaced calls
2821 // with operand bundles with calls wrapped in gc.statepoint, and some of
2822 // those calls may have been def'ing live gc pointers. Clear these out to
2823 // avoid accidentally using them.
2825 // TODO: We should create a separate data structure that does not contain
2826 // these live sets, and migrate to using that data structure from this point
2827 // onward.
2828 Info.LiveSet.clear();
2830 PointerToBase.clear();
2832 // Do all the fixups of the original live variables to their relocated selves
2833 SmallVector<Value *, 128> Live;
2834 for (const PartiallyConstructedSafepointRecord &Info : Records) {
2835 // We can't simply save the live set from the original insertion. One of
2836 // the live values might be the result of a call which needs a safepoint.
2837 // That Value* no longer exists and we need to use the new gc_result.
2838 // Thankfully, the live set is embedded in the statepoint (and updated), so
2839 // we just grab that.
2840 llvm::append_range(Live, Info.StatepointToken->gc_args());
2841 #ifndef NDEBUG
2842 // Do some basic validation checking on our liveness results before
2843 // performing relocation. Relocation can and will turn mistakes in liveness
2844 // results into non-sensical code which is must harder to debug.
2845 // TODO: It would be nice to test consistency as well
2846 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2847 "statepoint must be reachable or liveness is meaningless");
2848 for (Value *V : Info.StatepointToken->gc_args()) {
2849 if (!isa<Instruction>(V))
2850 // Non-instruction values trivial dominate all possible uses
2851 continue;
2852 auto *LiveInst = cast<Instruction>(V);
2853 assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2854 "unreachable values should never be live");
2855 assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2856 "basic SSA liveness expectation violated by liveness analysis");
2858 #endif
2860 unique_unsorted(Live);
2862 #ifndef NDEBUG
2863 // Validation check
2864 for (auto *Ptr : Live)
2865 assert(isHandledGCPointerType(Ptr->getType(), GC.get()) &&
2866 "must be a gc pointer type");
2867 #endif
2869 relocationViaAlloca(F, DT, Live, Records);
2870 return !Records.empty();
2873 // List of all parameter and return attributes which must be stripped when
2874 // lowering from the abstract machine model. Note that we list attributes
2875 // here which aren't valid as return attributes, that is okay.
2876 static AttributeMask getParamAndReturnAttributesToRemove() {
2877 AttributeMask R;
2878 R.addAttribute(Attribute::Dereferenceable);
2879 R.addAttribute(Attribute::DereferenceableOrNull);
2880 R.addAttribute(Attribute::ReadNone);
2881 R.addAttribute(Attribute::ReadOnly);
2882 R.addAttribute(Attribute::WriteOnly);
2883 R.addAttribute(Attribute::NoAlias);
2884 R.addAttribute(Attribute::NoFree);
2885 return R;
2888 static void stripNonValidAttributesFromPrototype(Function &F) {
2889 LLVMContext &Ctx = F.getContext();
2891 // Intrinsics are very delicate. Lowering sometimes depends the presence
2892 // of certain attributes for correctness, but we may have also inferred
2893 // additional ones in the abstract machine model which need stripped. This
2894 // assumes that the attributes defined in Intrinsic.td are conservatively
2895 // correct for both physical and abstract model.
2896 if (Intrinsic::ID id = F.getIntrinsicID()) {
2897 F.setAttributes(Intrinsic::getAttributes(Ctx, id));
2898 return;
2901 AttributeMask R = getParamAndReturnAttributesToRemove();
2902 for (Argument &A : F.args())
2903 if (isa<PointerType>(A.getType()))
2904 F.removeParamAttrs(A.getArgNo(), R);
2906 if (isa<PointerType>(F.getReturnType()))
2907 F.removeRetAttrs(R);
2909 for (auto Attr : FnAttrsToStrip)
2910 F.removeFnAttr(Attr);
2913 /// Certain metadata on instructions are invalid after running RS4GC.
2914 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2915 /// optimize functions. We drop such metadata on the instruction.
2916 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2917 if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2918 return;
2919 // These are the attributes that are still valid on loads and stores after
2920 // RS4GC.
2921 // The metadata implying dereferenceability and noalias are (conservatively)
2922 // dropped. This is because semantically, after RewriteStatepointsForGC runs,
2923 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2924 // touch the entire heap including noalias objects. Note: The reasoning is
2925 // same as stripping the dereferenceability and noalias attributes that are
2926 // analogous to the metadata counterparts.
2927 // We also drop the invariant.load metadata on the load because that metadata
2928 // implies the address operand to the load points to memory that is never
2929 // changed once it became dereferenceable. This is no longer true after RS4GC.
2930 // Similar reasoning applies to invariant.group metadata, which applies to
2931 // loads within a group.
2932 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2933 LLVMContext::MD_range,
2934 LLVMContext::MD_alias_scope,
2935 LLVMContext::MD_nontemporal,
2936 LLVMContext::MD_nonnull,
2937 LLVMContext::MD_align,
2938 LLVMContext::MD_type};
2940 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2941 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2944 static void stripNonValidDataFromBody(Function &F) {
2945 if (F.empty())
2946 return;
2948 LLVMContext &Ctx = F.getContext();
2949 MDBuilder Builder(Ctx);
2951 // Set of invariantstart instructions that we need to remove.
2952 // Use this to avoid invalidating the instruction iterator.
2953 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2955 for (Instruction &I : instructions(F)) {
2956 // invariant.start on memory location implies that the referenced memory
2957 // location is constant and unchanging. This is no longer true after
2958 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2959 // which frees the entire heap and the presence of invariant.start allows
2960 // the optimizer to sink the load of a memory location past a statepoint,
2961 // which is incorrect.
2962 if (auto *II = dyn_cast<IntrinsicInst>(&I))
2963 if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2964 InvariantStartInstructions.push_back(II);
2965 continue;
2968 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2969 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2970 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2973 stripInvalidMetadataFromInstruction(I);
2975 AttributeMask R = getParamAndReturnAttributesToRemove();
2976 if (auto *Call = dyn_cast<CallBase>(&I)) {
2977 for (int i = 0, e = Call->arg_size(); i != e; i++)
2978 if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2979 Call->removeParamAttrs(i, R);
2980 if (isa<PointerType>(Call->getType()))
2981 Call->removeRetAttrs(R);
2985 // Delete the invariant.start instructions and RAUW poison.
2986 for (auto *II : InvariantStartInstructions) {
2987 II->replaceAllUsesWith(PoisonValue::get(II->getType()));
2988 II->eraseFromParent();
2992 /// Looks up the GC strategy for a given function, returning null if the
2993 /// function doesn't have a GC tag. The strategy is stored in the cache.
2994 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F) {
2995 if (!F.hasGC())
2996 return nullptr;
2998 return getGCStrategy(F.getGC());
3001 /// Returns true if this function should be rewritten by this pass. The main
3002 /// point of this function is as an extension point for custom logic.
3003 static bool shouldRewriteStatepointsIn(Function &F) {
3004 if (!F.hasGC())
3005 return false;
3007 std::unique_ptr<GCStrategy> Strategy = findGCStrategy(F);
3009 assert(Strategy && "GC strategy is required by function, but was not found");
3011 return Strategy->useRS4GC();
3014 static void stripNonValidData(Module &M) {
3015 #ifndef NDEBUG
3016 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
3017 #endif
3019 for (Function &F : M)
3020 stripNonValidAttributesFromPrototype(F);
3022 for (Function &F : M)
3023 stripNonValidDataFromBody(F);
3026 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
3027 TargetTransformInfo &TTI,
3028 const TargetLibraryInfo &TLI) {
3029 assert(!F.isDeclaration() && !F.empty() &&
3030 "need function body to rewrite statepoints in");
3031 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
3033 auto NeedsRewrite = [&TLI](Instruction &I) {
3034 if (const auto *Call = dyn_cast<CallBase>(&I)) {
3035 if (isa<GCStatepointInst>(Call))
3036 return false;
3037 if (callsGCLeafFunction(Call, TLI))
3038 return false;
3040 // Normally it's up to the frontend to make sure that non-leaf calls also
3041 // have proper deopt state if it is required. We make an exception for
3042 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
3043 // these are non-leaf by default. They might be generated by the optimizer
3044 // which doesn't know how to produce a proper deopt state. So if we see a
3045 // non-leaf memcpy/memmove without deopt state just treat it as a leaf
3046 // copy and don't produce a statepoint.
3047 if (!AllowStatepointWithNoDeoptInfo &&
3048 !Call->getOperandBundle(LLVMContext::OB_deopt)) {
3049 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
3050 "Don't expect any other calls here!");
3051 return false;
3053 return true;
3055 return false;
3058 // Delete any unreachable statepoints so that we don't have unrewritten
3059 // statepoints surviving this pass. This makes testing easier and the
3060 // resulting IR less confusing to human readers.
3061 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
3062 bool MadeChange = removeUnreachableBlocks(F, &DTU);
3063 // Flush the Dominator Tree.
3064 DTU.getDomTree();
3066 // Gather all the statepoints which need rewritten. Be careful to only
3067 // consider those in reachable code since we need to ask dominance queries
3068 // when rewriting. We'll delete the unreachable ones in a moment.
3069 SmallVector<CallBase *, 64> ParsePointNeeded;
3070 SmallVector<CallInst *, 64> Intrinsics;
3071 for (Instruction &I : instructions(F)) {
3072 // TODO: only the ones with the flag set!
3073 if (NeedsRewrite(I)) {
3074 // NOTE removeUnreachableBlocks() is stronger than
3075 // DominatorTree::isReachableFromEntry(). In other words
3076 // removeUnreachableBlocks can remove some blocks for which
3077 // isReachableFromEntry() returns true.
3078 assert(DT.isReachableFromEntry(I.getParent()) &&
3079 "no unreachable blocks expected");
3080 ParsePointNeeded.push_back(cast<CallBase>(&I));
3082 if (auto *CI = dyn_cast<CallInst>(&I))
3083 if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base ||
3084 CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset)
3085 Intrinsics.emplace_back(CI);
3088 // Return early if no work to do.
3089 if (ParsePointNeeded.empty() && Intrinsics.empty())
3090 return MadeChange;
3092 // As a prepass, go ahead and aggressively destroy single entry phi nodes.
3093 // These are created by LCSSA. They have the effect of increasing the size
3094 // of liveness sets for no good reason. It may be harder to do this post
3095 // insertion since relocations and base phis can confuse things.
3096 for (BasicBlock &BB : F)
3097 if (BB.getUniquePredecessor())
3098 MadeChange |= FoldSingleEntryPHINodes(&BB);
3100 // Before we start introducing relocations, we want to tweak the IR a bit to
3101 // avoid unfortunate code generation effects. The main example is that we
3102 // want to try to make sure the comparison feeding a branch is after any
3103 // safepoints. Otherwise, we end up with a comparison of pre-relocation
3104 // values feeding a branch after relocation. This is semantically correct,
3105 // but results in extra register pressure since both the pre-relocation and
3106 // post-relocation copies must be available in registers. For code without
3107 // relocations this is handled elsewhere, but teaching the scheduler to
3108 // reverse the transform we're about to do would be slightly complex.
3109 // Note: This may extend the live range of the inputs to the icmp and thus
3110 // increase the liveset of any statepoint we move over. This is profitable
3111 // as long as all statepoints are in rare blocks. If we had in-register
3112 // lowering for live values this would be a much safer transform.
3113 auto getConditionInst = [](Instruction *TI) -> Instruction * {
3114 if (auto *BI = dyn_cast<BranchInst>(TI))
3115 if (BI->isConditional())
3116 return dyn_cast<Instruction>(BI->getCondition());
3117 // TODO: Extend this to handle switches
3118 return nullptr;
3120 for (BasicBlock &BB : F) {
3121 Instruction *TI = BB.getTerminator();
3122 if (auto *Cond = getConditionInst(TI))
3123 // TODO: Handle more than just ICmps here. We should be able to move
3124 // most instructions without side effects or memory access.
3125 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
3126 MadeChange = true;
3127 Cond->moveBefore(TI);
3131 // Nasty workaround - The base computation code in the main algorithm doesn't
3132 // consider the fact that a GEP can be used to convert a scalar to a vector.
3133 // The right fix for this is to integrate GEPs into the base rewriting
3134 // algorithm properly, this is just a short term workaround to prevent
3135 // crashes by canonicalizing such GEPs into fully vector GEPs.
3136 for (Instruction &I : instructions(F)) {
3137 if (!isa<GetElementPtrInst>(I))
3138 continue;
3140 unsigned VF = 0;
3141 for (unsigned i = 0; i < I.getNumOperands(); i++)
3142 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
3143 assert(VF == 0 ||
3144 VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
3145 VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
3148 // It's the vector to scalar traversal through the pointer operand which
3149 // confuses base pointer rewriting, so limit ourselves to that case.
3150 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
3151 IRBuilder<> B(&I);
3152 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
3153 I.setOperand(0, Splat);
3154 MadeChange = true;
3158 // Cache the 'defining value' relation used in the computation and
3159 // insertion of base phis and selects. This ensures that we don't insert
3160 // large numbers of duplicate base_phis. Use one cache for both
3161 // inlineGetBaseAndOffset() and insertParsePoints().
3162 DefiningValueMapTy DVCache;
3164 // Mapping between a base values and a flag indicating whether it's a known
3165 // base or not.
3166 IsKnownBaseMapTy KnownBases;
3168 if (!Intrinsics.empty())
3169 // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding
3170 // live references.
3171 MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases);
3173 if (!ParsePointNeeded.empty())
3174 MadeChange |=
3175 insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases);
3177 return MadeChange;
3180 // liveness computation via standard dataflow
3181 // -------------------------------------------------------------------
3183 // TODO: Consider using bitvectors for liveness, the set of potentially
3184 // interesting values should be small and easy to pre-compute.
3186 /// Compute the live-in set for the location rbegin starting from
3187 /// the live-out set of the basic block
3188 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
3189 BasicBlock::reverse_iterator End,
3190 SetVector<Value *> &LiveTmp, GCStrategy *GC) {
3191 for (auto &I : make_range(Begin, End)) {
3192 // KILL/Def - Remove this definition from LiveIn
3193 LiveTmp.remove(&I);
3195 // Don't consider *uses* in PHI nodes, we handle their contribution to
3196 // predecessor blocks when we seed the LiveOut sets
3197 if (isa<PHINode>(I))
3198 continue;
3200 // USE - Add to the LiveIn set for this instruction
3201 for (Value *V : I.operands()) {
3202 assert(!isUnhandledGCPointerType(V->getType(), GC) &&
3203 "support for FCA unimplemented");
3204 if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V)) {
3205 // The choice to exclude all things constant here is slightly subtle.
3206 // There are two independent reasons:
3207 // - We assume that things which are constant (from LLVM's definition)
3208 // do not move at runtime. For example, the address of a global
3209 // variable is fixed, even though it's contents may not be.
3210 // - Second, we can't disallow arbitrary inttoptr constants even
3211 // if the language frontend does. Optimization passes are free to
3212 // locally exploit facts without respect to global reachability. This
3213 // can create sections of code which are dynamically unreachable and
3214 // contain just about anything. (see constants.ll in tests)
3215 LiveTmp.insert(V);
3221 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp,
3222 GCStrategy *GC) {
3223 for (BasicBlock *Succ : successors(BB)) {
3224 for (auto &I : *Succ) {
3225 PHINode *PN = dyn_cast<PHINode>(&I);
3226 if (!PN)
3227 break;
3229 Value *V = PN->getIncomingValueForBlock(BB);
3230 assert(!isUnhandledGCPointerType(V->getType(), GC) &&
3231 "support for FCA unimplemented");
3232 if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V))
3233 LiveTmp.insert(V);
3238 static SetVector<Value *> computeKillSet(BasicBlock *BB, GCStrategy *GC) {
3239 SetVector<Value *> KillSet;
3240 for (Instruction &I : *BB)
3241 if (isHandledGCPointerType(I.getType(), GC))
3242 KillSet.insert(&I);
3243 return KillSet;
3246 #ifndef NDEBUG
3247 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic
3248 /// validation check for the liveness computation.
3249 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
3250 Instruction *TI, bool TermOkay = false) {
3251 for (Value *V : Live) {
3252 if (auto *I = dyn_cast<Instruction>(V)) {
3253 // The terminator can be a member of the LiveOut set. LLVM's definition
3254 // of instruction dominance states that V does not dominate itself. As
3255 // such, we need to special case this to allow it.
3256 if (TermOkay && TI == I)
3257 continue;
3258 assert(DT.dominates(I, TI) &&
3259 "basic SSA liveness expectation violated by liveness analysis");
3264 /// Check that all the liveness sets used during the computation of liveness
3265 /// obey basic SSA properties. This is useful for finding cases where we miss
3266 /// a def.
3267 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
3268 BasicBlock &BB) {
3269 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
3270 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
3271 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
3273 #endif
3275 static void computeLiveInValues(DominatorTree &DT, Function &F,
3276 GCPtrLivenessData &Data, GCStrategy *GC) {
3277 SmallSetVector<BasicBlock *, 32> Worklist;
3279 // Seed the liveness for each individual block
3280 for (BasicBlock &BB : F) {
3281 Data.KillSet[&BB] = computeKillSet(&BB, GC);
3282 Data.LiveSet[&BB].clear();
3283 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB], GC);
3285 #ifndef NDEBUG
3286 for (Value *Kill : Data.KillSet[&BB])
3287 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
3288 #endif
3290 Data.LiveOut[&BB] = SetVector<Value *>();
3291 computeLiveOutSeed(&BB, Data.LiveOut[&BB], GC);
3292 Data.LiveIn[&BB] = Data.LiveSet[&BB];
3293 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
3294 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
3295 if (!Data.LiveIn[&BB].empty())
3296 Worklist.insert(pred_begin(&BB), pred_end(&BB));
3299 // Propagate that liveness until stable
3300 while (!Worklist.empty()) {
3301 BasicBlock *BB = Worklist.pop_back_val();
3303 // Compute our new liveout set, then exit early if it hasn't changed despite
3304 // the contribution of our successor.
3305 SetVector<Value *> LiveOut = Data.LiveOut[BB];
3306 const auto OldLiveOutSize = LiveOut.size();
3307 for (BasicBlock *Succ : successors(BB)) {
3308 assert(Data.LiveIn.count(Succ));
3309 LiveOut.set_union(Data.LiveIn[Succ]);
3311 // assert OutLiveOut is a subset of LiveOut
3312 if (OldLiveOutSize == LiveOut.size()) {
3313 // If the sets are the same size, then we didn't actually add anything
3314 // when unioning our successors LiveIn. Thus, the LiveIn of this block
3315 // hasn't changed.
3316 continue;
3318 Data.LiveOut[BB] = LiveOut;
3320 // Apply the effects of this basic block
3321 SetVector<Value *> LiveTmp = LiveOut;
3322 LiveTmp.set_union(Data.LiveSet[BB]);
3323 LiveTmp.set_subtract(Data.KillSet[BB]);
3325 assert(Data.LiveIn.count(BB));
3326 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
3327 // assert: OldLiveIn is a subset of LiveTmp
3328 if (OldLiveIn.size() != LiveTmp.size()) {
3329 Data.LiveIn[BB] = LiveTmp;
3330 Worklist.insert(pred_begin(BB), pred_end(BB));
3332 } // while (!Worklist.empty())
3334 #ifndef NDEBUG
3335 // Verify our output against SSA properties. This helps catch any
3336 // missing kills during the above iteration.
3337 for (BasicBlock &BB : F)
3338 checkBasicSSA(DT, Data, BB);
3339 #endif
3342 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
3343 StatepointLiveSetTy &Out, GCStrategy *GC) {
3344 BasicBlock *BB = Inst->getParent();
3346 // Note: The copy is intentional and required
3347 assert(Data.LiveOut.count(BB));
3348 SetVector<Value *> LiveOut = Data.LiveOut[BB];
3350 // We want to handle the statepoint itself oddly. It's
3351 // call result is not live (normal), nor are it's arguments
3352 // (unless they're used again later). This adjustment is
3353 // specifically what we need to relocate
3354 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), LiveOut,
3355 GC);
3356 LiveOut.remove(Inst);
3357 Out.insert(LiveOut.begin(), LiveOut.end());
3360 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
3361 CallBase *Call,
3362 PartiallyConstructedSafepointRecord &Info,
3363 PointerToBaseTy &PointerToBase,
3364 GCStrategy *GC) {
3365 StatepointLiveSetTy Updated;
3366 findLiveSetAtInst(Call, RevisedLivenessData, Updated, GC);
3368 // We may have base pointers which are now live that weren't before. We need
3369 // to update the PointerToBase structure to reflect this.
3370 for (auto *V : Updated)
3371 PointerToBase.insert({ V, V });
3373 Info.LiveSet = Updated;