1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GuardUtils.h"
24 #include "llvm/Analysis/LoopAnalysisManager.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ProfDataUtils.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/GenericDomTree.h"
53 #include "llvm/Support/InstructionCost.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar/LoopPassManager.h"
56 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
57 #include "llvm/Transforms/Utils/Cloning.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/LoopUtils.h"
60 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #define DEBUG_TYPE "simple-loop-unswitch"
71 using namespace llvm::PatternMatch
;
73 STATISTIC(NumBranches
, "Number of branches unswitched");
74 STATISTIC(NumSwitches
, "Number of switches unswitched");
75 STATISTIC(NumSelects
, "Number of selects turned into branches for unswitching");
76 STATISTIC(NumGuards
, "Number of guards turned into branches for unswitching");
77 STATISTIC(NumTrivial
, "Number of unswitches that are trivial");
79 NumCostMultiplierSkipped
,
80 "Number of unswitch candidates that had their cost multiplier skipped");
81 STATISTIC(NumInvariantConditionsInjected
,
82 "Number of invariant conditions injected and unswitched");
84 static cl::opt
<bool> EnableNonTrivialUnswitch(
85 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden
,
86 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
87 "following the configuration passed into the pass."));
90 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden
,
91 cl::desc("The cost threshold for unswitching a loop."));
93 static cl::opt
<bool> EnableUnswitchCostMultiplier(
94 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden
,
95 cl::desc("Enable unswitch cost multiplier that prohibits exponential "
96 "explosion in nontrivial unswitch."));
97 static cl::opt
<int> UnswitchSiblingsToplevelDiv(
98 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden
,
99 cl::desc("Toplevel siblings divisor for cost multiplier."));
100 static cl::opt
<int> UnswitchNumInitialUnscaledCandidates(
101 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden
,
102 cl::desc("Number of unswitch candidates that are ignored when calculating "
103 "cost multiplier."));
104 static cl::opt
<bool> UnswitchGuards(
105 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden
,
106 cl::desc("If enabled, simple loop unswitching will also consider "
107 "llvm.experimental.guard intrinsics as unswitch candidates."));
108 static cl::opt
<bool> DropNonTrivialImplicitNullChecks(
109 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
110 cl::init(false), cl::Hidden
,
111 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
112 "null checks to save time analyzing if we can keep it."));
113 static cl::opt
<unsigned>
114 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
115 cl::desc("Max number of memory uses to explore during "
116 "partial unswitching analysis"),
117 cl::init(100), cl::Hidden
);
118 static cl::opt
<bool> FreezeLoopUnswitchCond(
119 "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden
,
120 cl::desc("If enabled, the freeze instruction will be added to condition "
121 "of loop unswitch to prevent miscompilation."));
123 static cl::opt
<bool> InjectInvariantConditions(
124 "simple-loop-unswitch-inject-invariant-conditions", cl::Hidden
,
125 cl::desc("Whether we should inject new invariants and unswitch them to "
126 "eliminate some existing (non-invariant) conditions."),
129 static cl::opt
<unsigned> InjectInvariantConditionHotnesThreshold(
130 "simple-loop-unswitch-inject-invariant-condition-hotness-threshold",
131 cl::Hidden
, cl::desc("Only try to inject loop invariant conditions and "
132 "unswitch on them to eliminate branches that are "
133 "not-taken 1/<this option> times or less."),
140 BasicBlock
*InLoopSucc
;
142 CompareDesc(BranchInst
*Term
, Value
*Invariant
, BasicBlock
*InLoopSucc
)
143 : Term(Term
), Invariant(Invariant
), InLoopSucc(InLoopSucc
) {}
146 struct InjectedInvariant
{
147 ICmpInst::Predicate Pred
;
150 BasicBlock
*InLoopSucc
;
152 InjectedInvariant(ICmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
,
153 BasicBlock
*InLoopSucc
)
154 : Pred(Pred
), LHS(LHS
), RHS(RHS
), InLoopSucc(InLoopSucc
) {}
157 struct NonTrivialUnswitchCandidate
{
158 Instruction
*TI
= nullptr;
159 TinyPtrVector
<Value
*> Invariants
;
160 std::optional
<InstructionCost
> Cost
;
161 std::optional
<InjectedInvariant
> PendingInjection
;
162 NonTrivialUnswitchCandidate(
163 Instruction
*TI
, ArrayRef
<Value
*> Invariants
,
164 std::optional
<InstructionCost
> Cost
= std::nullopt
,
165 std::optional
<InjectedInvariant
> PendingInjection
= std::nullopt
)
166 : TI(TI
), Invariants(Invariants
), Cost(Cost
),
167 PendingInjection(PendingInjection
) {};
169 bool hasPendingInjection() const { return PendingInjection
.has_value(); }
171 } // end anonymous namespace.
173 // Helper to skip (select x, true, false), which matches both a logical AND and
174 // OR and can confuse code that tries to determine if \p Cond is either a
175 // logical AND or OR but not both.
176 static Value
*skipTrivialSelect(Value
*Cond
) {
178 while (match(Cond
, m_Select(m_Value(CondNext
), m_One(), m_Zero())))
183 /// Collect all of the loop invariant input values transitively used by the
184 /// homogeneous instruction graph from a given root.
186 /// This essentially walks from a root recursively through loop variant operands
187 /// which have perform the same logical operation (AND or OR) and finds all
188 /// inputs which are loop invariant. For some operations these can be
189 /// re-associated and unswitched out of the loop entirely.
190 static TinyPtrVector
<Value
*>
191 collectHomogenousInstGraphLoopInvariants(const Loop
&L
, Instruction
&Root
,
192 const LoopInfo
&LI
) {
193 assert(!L
.isLoopInvariant(&Root
) &&
194 "Only need to walk the graph if root itself is not invariant.");
195 TinyPtrVector
<Value
*> Invariants
;
197 bool IsRootAnd
= match(&Root
, m_LogicalAnd());
198 bool IsRootOr
= match(&Root
, m_LogicalOr());
200 // Build a worklist and recurse through operators collecting invariants.
201 SmallVector
<Instruction
*, 4> Worklist
;
202 SmallPtrSet
<Instruction
*, 8> Visited
;
203 Worklist
.push_back(&Root
);
204 Visited
.insert(&Root
);
206 Instruction
&I
= *Worklist
.pop_back_val();
207 for (Value
*OpV
: I
.operand_values()) {
208 // Skip constants as unswitching isn't interesting for them.
209 if (isa
<Constant
>(OpV
))
212 // Add it to our result if loop invariant.
213 if (L
.isLoopInvariant(OpV
)) {
214 Invariants
.push_back(OpV
);
218 // If not an instruction with the same opcode, nothing we can do.
219 Instruction
*OpI
= dyn_cast
<Instruction
>(skipTrivialSelect(OpV
));
221 if (OpI
&& ((IsRootAnd
&& match(OpI
, m_LogicalAnd())) ||
222 (IsRootOr
&& match(OpI
, m_LogicalOr())))) {
223 // Visit this operand.
224 if (Visited
.insert(OpI
).second
)
225 Worklist
.push_back(OpI
);
228 } while (!Worklist
.empty());
233 static void replaceLoopInvariantUses(const Loop
&L
, Value
*Invariant
,
234 Constant
&Replacement
) {
235 assert(!isa
<Constant
>(Invariant
) && "Why are we unswitching on a constant?");
237 // Replace uses of LIC in the loop with the given constant.
238 // We use make_early_inc_range as set invalidates the iterator.
239 for (Use
&U
: llvm::make_early_inc_range(Invariant
->uses())) {
240 Instruction
*UserI
= dyn_cast
<Instruction
>(U
.getUser());
242 // Replace this use within the loop body.
243 if (UserI
&& L
.contains(UserI
))
248 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
249 /// incoming values along this edge.
250 static bool areLoopExitPHIsLoopInvariant(const Loop
&L
,
251 const BasicBlock
&ExitingBB
,
252 const BasicBlock
&ExitBB
) {
253 for (const Instruction
&I
: ExitBB
) {
254 auto *PN
= dyn_cast
<PHINode
>(&I
);
256 // No more PHIs to check.
259 // If the incoming value for this edge isn't loop invariant the unswitch
261 if (!L
.isLoopInvariant(PN
->getIncomingValueForBlock(&ExitingBB
)))
264 llvm_unreachable("Basic blocks should never be empty!");
267 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
268 /// end of \p BB and conditionally branch on the copied condition. We only
269 /// branch on a single value.
270 static void buildPartialUnswitchConditionalBranch(
271 BasicBlock
&BB
, ArrayRef
<Value
*> Invariants
, bool Direction
,
272 BasicBlock
&UnswitchedSucc
, BasicBlock
&NormalSucc
, bool InsertFreeze
,
273 const Instruction
*I
, AssumptionCache
*AC
, const DominatorTree
&DT
) {
274 IRBuilder
<> IRB(&BB
);
276 SmallVector
<Value
*> FrozenInvariants
;
277 for (Value
*Inv
: Invariants
) {
278 if (InsertFreeze
&& !isGuaranteedNotToBeUndefOrPoison(Inv
, AC
, I
, &DT
))
279 Inv
= IRB
.CreateFreeze(Inv
, Inv
->getName() + ".fr");
280 FrozenInvariants
.push_back(Inv
);
283 Value
*Cond
= Direction
? IRB
.CreateOr(FrozenInvariants
)
284 : IRB
.CreateAnd(FrozenInvariants
);
285 IRB
.CreateCondBr(Cond
, Direction
? &UnswitchedSucc
: &NormalSucc
,
286 Direction
? &NormalSucc
: &UnswitchedSucc
);
289 /// Copy a set of loop invariant values, and conditionally branch on them.
290 static void buildPartialInvariantUnswitchConditionalBranch(
291 BasicBlock
&BB
, ArrayRef
<Value
*> ToDuplicate
, bool Direction
,
292 BasicBlock
&UnswitchedSucc
, BasicBlock
&NormalSucc
, Loop
&L
,
293 MemorySSAUpdater
*MSSAU
) {
294 ValueToValueMapTy VMap
;
295 for (auto *Val
: reverse(ToDuplicate
)) {
296 Instruction
*Inst
= cast
<Instruction
>(Val
);
297 Instruction
*NewInst
= Inst
->clone();
298 NewInst
->insertInto(&BB
, BB
.end());
299 RemapInstruction(NewInst
, VMap
,
300 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
306 MemorySSA
*MSSA
= MSSAU
->getMemorySSA();
308 dyn_cast_or_null
<MemoryUse
>(MSSA
->getMemoryAccess(Inst
))) {
309 auto *DefiningAccess
= MemUse
->getDefiningAccess();
310 // Get the first defining access before the loop.
311 while (L
.contains(DefiningAccess
->getBlock())) {
312 // If the defining access is a MemoryPhi, get the incoming
313 // value for the pre-header as defining access.
314 if (auto *MemPhi
= dyn_cast
<MemoryPhi
>(DefiningAccess
))
316 MemPhi
->getIncomingValueForBlock(L
.getLoopPreheader());
318 DefiningAccess
= cast
<MemoryDef
>(DefiningAccess
)->getDefiningAccess();
320 MSSAU
->createMemoryAccessInBB(NewInst
, DefiningAccess
,
321 NewInst
->getParent(),
322 MemorySSA::BeforeTerminator
);
326 IRBuilder
<> IRB(&BB
);
327 Value
*Cond
= VMap
[ToDuplicate
[0]];
328 IRB
.CreateCondBr(Cond
, Direction
? &UnswitchedSucc
: &NormalSucc
,
329 Direction
? &NormalSucc
: &UnswitchedSucc
);
332 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
334 /// Requires that the loop exit and unswitched basic block are the same, and
335 /// that the exiting block was a unique predecessor of that block. Rewrites the
336 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
337 /// PHI nodes from the old preheader that now contains the unswitched
339 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock
&UnswitchedBB
,
340 BasicBlock
&OldExitingBB
,
342 for (PHINode
&PN
: UnswitchedBB
.phis()) {
343 // When the loop exit is directly unswitched we just need to update the
344 // incoming basic block. We loop to handle weird cases with repeated
345 // incoming blocks, but expect to typically only have one operand here.
346 for (auto i
: seq
<int>(0, PN
.getNumOperands())) {
347 assert(PN
.getIncomingBlock(i
) == &OldExitingBB
&&
348 "Found incoming block different from unique predecessor!");
349 PN
.setIncomingBlock(i
, &OldPH
);
354 /// Rewrite the PHI nodes in the loop exit basic block and the split off
355 /// unswitched block.
357 /// Because the exit block remains an exit from the loop, this rewrites the
358 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
359 /// nodes into the unswitched basic block to select between the value in the
360 /// old preheader and the loop exit.
361 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock
&ExitBB
,
362 BasicBlock
&UnswitchedBB
,
363 BasicBlock
&OldExitingBB
,
366 assert(&ExitBB
!= &UnswitchedBB
&&
367 "Must have different loop exit and unswitched blocks!");
368 BasicBlock::iterator InsertPt
= UnswitchedBB
.begin();
369 for (PHINode
&PN
: ExitBB
.phis()) {
370 auto *NewPN
= PHINode::Create(PN
.getType(), /*NumReservedValues*/ 2,
371 PN
.getName() + ".split");
372 NewPN
->insertBefore(InsertPt
);
374 // Walk backwards over the old PHI node's inputs to minimize the cost of
375 // removing each one. We have to do this weird loop manually so that we
376 // create the same number of new incoming edges in the new PHI as we expect
377 // each case-based edge to be included in the unswitched switch in some
379 // FIXME: This is really, really gross. It would be much cleaner if LLVM
380 // allowed us to create a single entry for a predecessor block without
381 // having separate entries for each "edge" even though these edges are
382 // required to produce identical results.
383 for (int i
= PN
.getNumIncomingValues() - 1; i
>= 0; --i
) {
384 if (PN
.getIncomingBlock(i
) != &OldExitingBB
)
387 Value
*Incoming
= PN
.getIncomingValue(i
);
389 // No more edge from the old exiting block to the exit block.
390 PN
.removeIncomingValue(i
);
392 NewPN
->addIncoming(Incoming
, &OldPH
);
395 // Now replace the old PHI with the new one and wire the old one in as an
396 // input to the new one.
397 PN
.replaceAllUsesWith(NewPN
);
398 NewPN
->addIncoming(&PN
, &ExitBB
);
402 /// Hoist the current loop up to the innermost loop containing a remaining exit.
404 /// Because we've removed an exit from the loop, we may have changed the set of
405 /// loops reachable and need to move the current loop up the loop nest or even
406 /// to an entirely separate nest.
407 static void hoistLoopToNewParent(Loop
&L
, BasicBlock
&Preheader
,
408 DominatorTree
&DT
, LoopInfo
&LI
,
409 MemorySSAUpdater
*MSSAU
, ScalarEvolution
*SE
) {
410 // If the loop is already at the top level, we can't hoist it anywhere.
411 Loop
*OldParentL
= L
.getParentLoop();
415 SmallVector
<BasicBlock
*, 4> Exits
;
416 L
.getExitBlocks(Exits
);
417 Loop
*NewParentL
= nullptr;
418 for (auto *ExitBB
: Exits
)
419 if (Loop
*ExitL
= LI
.getLoopFor(ExitBB
))
420 if (!NewParentL
|| NewParentL
->contains(ExitL
))
423 if (NewParentL
== OldParentL
)
426 // The new parent loop (if different) should always contain the old one.
428 assert(NewParentL
->contains(OldParentL
) &&
429 "Can only hoist this loop up the nest!");
431 // The preheader will need to move with the body of this loop. However,
432 // because it isn't in this loop we also need to update the primary loop map.
433 assert(OldParentL
== LI
.getLoopFor(&Preheader
) &&
434 "Parent loop of this loop should contain this loop's preheader!");
435 LI
.changeLoopFor(&Preheader
, NewParentL
);
437 // Remove this loop from its old parent.
438 OldParentL
->removeChildLoop(&L
);
440 // Add the loop either to the new parent or as a top-level loop.
442 NewParentL
->addChildLoop(&L
);
444 LI
.addTopLevelLoop(&L
);
446 // Remove this loops blocks from the old parent and every other loop up the
447 // nest until reaching the new parent. Also update all of these
448 // no-longer-containing loops to reflect the nesting change.
449 for (Loop
*OldContainingL
= OldParentL
; OldContainingL
!= NewParentL
;
450 OldContainingL
= OldContainingL
->getParentLoop()) {
451 llvm::erase_if(OldContainingL
->getBlocksVector(),
452 [&](const BasicBlock
*BB
) {
453 return BB
== &Preheader
|| L
.contains(BB
);
456 OldContainingL
->getBlocksSet().erase(&Preheader
);
457 for (BasicBlock
*BB
: L
.blocks())
458 OldContainingL
->getBlocksSet().erase(BB
);
460 // Because we just hoisted a loop out of this one, we have essentially
461 // created new exit paths from it. That means we need to form LCSSA PHI
462 // nodes for values used in the no-longer-nested loop.
463 formLCSSA(*OldContainingL
, DT
, &LI
, SE
);
465 // We shouldn't need to form dedicated exits because the exit introduced
466 // here is the (just split by unswitching) preheader. However, after trivial
467 // unswitching it is possible to get new non-dedicated exits out of parent
468 // loop so let's conservatively form dedicated exit blocks and figure out
469 // if we can optimize later.
470 formDedicatedExitBlocks(OldContainingL
, &DT
, &LI
, MSSAU
,
471 /*PreserveLCSSA*/ true);
475 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
476 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
478 static Loop
*getTopMostExitingLoop(const BasicBlock
*ExitBB
,
479 const LoopInfo
&LI
) {
480 Loop
*TopMost
= LI
.getLoopFor(ExitBB
);
481 Loop
*Current
= TopMost
;
483 if (Current
->isLoopExiting(ExitBB
))
485 Current
= Current
->getParentLoop();
490 /// Unswitch a trivial branch if the condition is loop invariant.
492 /// This routine should only be called when loop code leading to the branch has
493 /// been validated as trivial (no side effects). This routine checks if the
494 /// condition is invariant and one of the successors is a loop exit. This
495 /// allows us to unswitch without duplicating the loop, making it trivial.
497 /// If this routine fails to unswitch the branch it returns false.
499 /// If the branch can be unswitched, this routine splits the preheader and
500 /// hoists the branch above that split. Preserves loop simplified form
501 /// (splitting the exit block as necessary). It simplifies the branch within
502 /// the loop to an unconditional branch but doesn't remove it entirely. Further
503 /// cleanup can be done with some simplifycfg like pass.
505 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
506 /// invalidated by this.
507 static bool unswitchTrivialBranch(Loop
&L
, BranchInst
&BI
, DominatorTree
&DT
,
508 LoopInfo
&LI
, ScalarEvolution
*SE
,
509 MemorySSAUpdater
*MSSAU
) {
510 assert(BI
.isConditional() && "Can only unswitch a conditional branch!");
511 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI
<< "\n");
513 // The loop invariant values that we want to unswitch.
514 TinyPtrVector
<Value
*> Invariants
;
516 // When true, we're fully unswitching the branch rather than just unswitching
517 // some input conditions to the branch.
518 bool FullUnswitch
= false;
520 Value
*Cond
= skipTrivialSelect(BI
.getCondition());
521 if (L
.isLoopInvariant(Cond
)) {
522 Invariants
.push_back(Cond
);
525 if (auto *CondInst
= dyn_cast
<Instruction
>(Cond
))
526 Invariants
= collectHomogenousInstGraphLoopInvariants(L
, *CondInst
, LI
);
527 if (Invariants
.empty()) {
528 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n");
533 // Check that one of the branch's successors exits, and which one.
534 bool ExitDirection
= true;
535 int LoopExitSuccIdx
= 0;
536 auto *LoopExitBB
= BI
.getSuccessor(0);
537 if (L
.contains(LoopExitBB
)) {
538 ExitDirection
= false;
540 LoopExitBB
= BI
.getSuccessor(1);
541 if (L
.contains(LoopExitBB
)) {
542 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n");
546 auto *ContinueBB
= BI
.getSuccessor(1 - LoopExitSuccIdx
);
547 auto *ParentBB
= BI
.getParent();
548 if (!areLoopExitPHIsLoopInvariant(L
, *ParentBB
, *LoopExitBB
)) {
549 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n");
553 // When unswitching only part of the branch's condition, we need the exit
554 // block to be reached directly from the partially unswitched input. This can
555 // be done when the exit block is along the true edge and the branch condition
556 // is a graph of `or` operations, or the exit block is along the false edge
557 // and the condition is a graph of `and` operations.
559 if (ExitDirection
? !match(Cond
, m_LogicalOr())
560 : !match(Cond
, m_LogicalAnd())) {
561 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for "
562 "non-full unswitch!\n");
568 dbgs() << " unswitching trivial invariant conditions for: " << BI
570 for (Value
*Invariant
: Invariants
) {
571 dbgs() << " " << *Invariant
<< " == true";
572 if (Invariant
!= Invariants
.back())
578 // If we have scalar evolutions, we need to invalidate them including this
579 // loop, the loop containing the exit block and the topmost parent loop
580 // exiting via LoopExitBB.
582 if (const Loop
*ExitL
= getTopMostExitingLoop(LoopExitBB
, LI
))
583 SE
->forgetLoop(ExitL
);
585 // Forget the entire nest as this exits the entire nest.
586 SE
->forgetTopmostLoop(&L
);
587 SE
->forgetBlockAndLoopDispositions();
590 if (MSSAU
&& VerifyMemorySSA
)
591 MSSAU
->getMemorySSA()->verifyMemorySSA();
593 // Split the preheader, so that we know that there is a safe place to insert
594 // the conditional branch. We will change the preheader to have a conditional
595 // branch on LoopCond.
596 BasicBlock
*OldPH
= L
.getLoopPreheader();
597 BasicBlock
*NewPH
= SplitEdge(OldPH
, L
.getHeader(), &DT
, &LI
, MSSAU
);
599 // Now that we have a place to insert the conditional branch, create a place
600 // to branch to: this is the exit block out of the loop that we are
601 // unswitching. We need to split this if there are other loop predecessors.
602 // Because the loop is in simplified form, *any* other predecessor is enough.
603 BasicBlock
*UnswitchedBB
;
604 if (FullUnswitch
&& LoopExitBB
->getUniquePredecessor()) {
605 assert(LoopExitBB
->getUniquePredecessor() == BI
.getParent() &&
606 "A branch's parent isn't a predecessor!");
607 UnswitchedBB
= LoopExitBB
;
610 SplitBlock(LoopExitBB
, LoopExitBB
->begin(), &DT
, &LI
, MSSAU
, "", false);
613 if (MSSAU
&& VerifyMemorySSA
)
614 MSSAU
->getMemorySSA()->verifyMemorySSA();
616 // Actually move the invariant uses into the unswitched position. If possible,
617 // we do this by moving the instructions, but when doing partial unswitching
618 // we do it by building a new merge of the values in the unswitched position.
619 OldPH
->getTerminator()->eraseFromParent();
621 // If fully unswitching, we can use the existing branch instruction.
622 // Splice it into the old PH to gate reaching the new preheader and re-point
624 BI
.moveBefore(*OldPH
, OldPH
->end());
625 BI
.setCondition(Cond
);
627 // Temporarily clone the terminator, to make MSSA update cheaper by
628 // separating "insert edge" updates from "remove edge" ones.
629 BI
.clone()->insertInto(ParentBB
, ParentBB
->end());
631 // Create a new unconditional branch that will continue the loop as a new
633 BranchInst::Create(ContinueBB
, ParentBB
);
635 BI
.setSuccessor(LoopExitSuccIdx
, UnswitchedBB
);
636 BI
.setSuccessor(1 - LoopExitSuccIdx
, NewPH
);
638 // Only unswitching a subset of inputs to the condition, so we will need to
639 // build a new branch that merges the invariant inputs.
641 assert(match(skipTrivialSelect(BI
.getCondition()), m_LogicalOr()) &&
642 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
645 assert(match(skipTrivialSelect(BI
.getCondition()), m_LogicalAnd()) &&
646 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
648 buildPartialUnswitchConditionalBranch(
649 *OldPH
, Invariants
, ExitDirection
, *UnswitchedBB
, *NewPH
,
650 FreezeLoopUnswitchCond
, OldPH
->getTerminator(), nullptr, DT
);
653 // Update the dominator tree with the added edge.
654 DT
.insertEdge(OldPH
, UnswitchedBB
);
656 // After the dominator tree was updated with the added edge, update MemorySSA
659 SmallVector
<CFGUpdate
, 1> Updates
;
660 Updates
.push_back({cfg::UpdateKind::Insert
, OldPH
, UnswitchedBB
});
661 MSSAU
->applyInsertUpdates(Updates
, DT
);
664 // Finish updating dominator tree and memory ssa for full unswitch.
667 // Remove the cloned branch instruction.
668 ParentBB
->getTerminator()->eraseFromParent();
669 // Create unconditional branch now.
670 BranchInst::Create(ContinueBB
, ParentBB
);
671 MSSAU
->removeEdge(ParentBB
, LoopExitBB
);
673 DT
.deleteEdge(ParentBB
, LoopExitBB
);
676 if (MSSAU
&& VerifyMemorySSA
)
677 MSSAU
->getMemorySSA()->verifyMemorySSA();
679 // Rewrite the relevant PHI nodes.
680 if (UnswitchedBB
== LoopExitBB
)
681 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB
, *ParentBB
, *OldPH
);
683 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB
, *UnswitchedBB
,
684 *ParentBB
, *OldPH
, FullUnswitch
);
686 // The constant we can replace all of our invariants with inside the loop
687 // body. If any of the invariants have a value other than this the loop won't
689 ConstantInt
*Replacement
= ExitDirection
690 ? ConstantInt::getFalse(BI
.getContext())
691 : ConstantInt::getTrue(BI
.getContext());
693 // Since this is an i1 condition we can also trivially replace uses of it
694 // within the loop with a constant.
695 for (Value
*Invariant
: Invariants
)
696 replaceLoopInvariantUses(L
, Invariant
, *Replacement
);
698 // If this was full unswitching, we may have changed the nesting relationship
699 // for this loop so hoist it to its correct parent if needed.
701 hoistLoopToNewParent(L
, *NewPH
, DT
, LI
, MSSAU
, SE
);
703 if (MSSAU
&& VerifyMemorySSA
)
704 MSSAU
->getMemorySSA()->verifyMemorySSA();
706 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
712 /// Unswitch a trivial switch if the condition is loop invariant.
714 /// This routine should only be called when loop code leading to the switch has
715 /// been validated as trivial (no side effects). This routine checks if the
716 /// condition is invariant and that at least one of the successors is a loop
717 /// exit. This allows us to unswitch without duplicating the loop, making it
720 /// If this routine fails to unswitch the switch it returns false.
722 /// If the switch can be unswitched, this routine splits the preheader and
723 /// copies the switch above that split. If the default case is one of the
724 /// exiting cases, it copies the non-exiting cases and points them at the new
725 /// preheader. If the default case is not exiting, it copies the exiting cases
726 /// and points the default at the preheader. It preserves loop simplified form
727 /// (splitting the exit blocks as necessary). It simplifies the switch within
728 /// the loop by removing now-dead cases. If the default case is one of those
729 /// unswitched, it replaces its destination with a new basic block containing
730 /// only unreachable. Such basic blocks, while technically loop exits, are not
731 /// considered for unswitching so this is a stable transform and the same
732 /// switch will not be revisited. If after unswitching there is only a single
733 /// in-loop successor, the switch is further simplified to an unconditional
734 /// branch. Still more cleanup can be done with some simplifycfg like pass.
736 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
737 /// invalidated by this.
738 static bool unswitchTrivialSwitch(Loop
&L
, SwitchInst
&SI
, DominatorTree
&DT
,
739 LoopInfo
&LI
, ScalarEvolution
*SE
,
740 MemorySSAUpdater
*MSSAU
) {
741 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI
<< "\n");
742 Value
*LoopCond
= SI
.getCondition();
744 // If this isn't switching on an invariant condition, we can't unswitch it.
745 if (!L
.isLoopInvariant(LoopCond
))
748 auto *ParentBB
= SI
.getParent();
750 // The same check must be used both for the default and the exit cases. We
751 // should never leave edges from the switch instruction to a basic block that
752 // we are unswitching, hence the condition used to determine the default case
753 // needs to also be used to populate ExitCaseIndices, which is then used to
754 // remove cases from the switch.
755 auto IsTriviallyUnswitchableExitBlock
= [&](BasicBlock
&BBToCheck
) {
756 // BBToCheck is not an exit block if it is inside loop L.
757 if (L
.contains(&BBToCheck
))
759 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
760 if (!areLoopExitPHIsLoopInvariant(L
, *ParentBB
, BBToCheck
))
762 // We do not unswitch a block that only has an unreachable statement, as
763 // it's possible this is a previously unswitched block. Only unswitch if
764 // either the terminator is not unreachable, or, if it is, it's not the only
765 // instruction in the block.
766 auto *TI
= BBToCheck
.getTerminator();
767 bool isUnreachable
= isa
<UnreachableInst
>(TI
);
768 return !isUnreachable
||
769 (isUnreachable
&& (BBToCheck
.getFirstNonPHIOrDbg() != TI
));
772 SmallVector
<int, 4> ExitCaseIndices
;
773 for (auto Case
: SI
.cases())
774 if (IsTriviallyUnswitchableExitBlock(*Case
.getCaseSuccessor()))
775 ExitCaseIndices
.push_back(Case
.getCaseIndex());
776 BasicBlock
*DefaultExitBB
= nullptr;
777 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight
=
778 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI
, 0);
779 if (IsTriviallyUnswitchableExitBlock(*SI
.getDefaultDest())) {
780 DefaultExitBB
= SI
.getDefaultDest();
781 } else if (ExitCaseIndices
.empty())
784 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
786 if (MSSAU
&& VerifyMemorySSA
)
787 MSSAU
->getMemorySSA()->verifyMemorySSA();
789 // We may need to invalidate SCEVs for the outermost loop reached by any of
794 // Check the loop containing this exit.
795 Loop
*ExitL
= getTopMostExitingLoop(DefaultExitBB
, LI
);
796 if (!ExitL
|| ExitL
->contains(OuterL
))
799 for (unsigned Index
: ExitCaseIndices
) {
800 auto CaseI
= SI
.case_begin() + Index
;
801 // Compute the outer loop from this exit.
802 Loop
*ExitL
= getTopMostExitingLoop(CaseI
->getCaseSuccessor(), LI
);
803 if (!ExitL
|| ExitL
->contains(OuterL
))
809 SE
->forgetLoop(OuterL
);
811 SE
->forgetTopmostLoop(&L
);
815 // Clear out the default destination temporarily to allow accurate
816 // predecessor lists to be examined below.
817 SI
.setDefaultDest(nullptr);
820 // Store the exit cases into a separate data structure and remove them from
822 SmallVector
<std::tuple
<ConstantInt
*, BasicBlock
*,
823 SwitchInstProfUpdateWrapper::CaseWeightOpt
>,
825 ExitCases
.reserve(ExitCaseIndices
.size());
826 SwitchInstProfUpdateWrapper
SIW(SI
);
827 // We walk the case indices backwards so that we remove the last case first
828 // and don't disrupt the earlier indices.
829 for (unsigned Index
: reverse(ExitCaseIndices
)) {
830 auto CaseI
= SI
.case_begin() + Index
;
831 // Save the value of this case.
832 auto W
= SIW
.getSuccessorWeight(CaseI
->getSuccessorIndex());
833 ExitCases
.emplace_back(CaseI
->getCaseValue(), CaseI
->getCaseSuccessor(), W
);
834 // Delete the unswitched cases.
835 SIW
.removeCase(CaseI
);
838 // Check if after this all of the remaining cases point at the same
840 BasicBlock
*CommonSuccBB
= nullptr;
841 if (SI
.getNumCases() > 0 &&
842 all_of(drop_begin(SI
.cases()), [&SI
](const SwitchInst::CaseHandle
&Case
) {
843 return Case
.getCaseSuccessor() == SI
.case_begin()->getCaseSuccessor();
845 CommonSuccBB
= SI
.case_begin()->getCaseSuccessor();
846 if (!DefaultExitBB
) {
847 // If we're not unswitching the default, we need it to match any cases to
848 // have a common successor or if we have no cases it is the common
850 if (SI
.getNumCases() == 0)
851 CommonSuccBB
= SI
.getDefaultDest();
852 else if (SI
.getDefaultDest() != CommonSuccBB
)
853 CommonSuccBB
= nullptr;
856 // Split the preheader, so that we know that there is a safe place to insert
858 BasicBlock
*OldPH
= L
.getLoopPreheader();
859 BasicBlock
*NewPH
= SplitEdge(OldPH
, L
.getHeader(), &DT
, &LI
, MSSAU
);
860 OldPH
->getTerminator()->eraseFromParent();
862 // Now add the unswitched switch.
863 auto *NewSI
= SwitchInst::Create(LoopCond
, NewPH
, ExitCases
.size(), OldPH
);
864 SwitchInstProfUpdateWrapper
NewSIW(*NewSI
);
866 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
867 // First, we split any exit blocks with remaining in-loop predecessors. Then
868 // we update the PHIs in one of two ways depending on if there was a split.
869 // We walk in reverse so that we split in the same order as the cases
870 // appeared. This is purely for convenience of reading the resulting IR, but
871 // it doesn't cost anything really.
872 SmallPtrSet
<BasicBlock
*, 2> UnswitchedExitBBs
;
873 SmallDenseMap
<BasicBlock
*, BasicBlock
*, 2> SplitExitBBMap
;
874 // Handle the default exit if necessary.
875 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
876 // ranges aren't quite powerful enough yet.
878 if (pred_empty(DefaultExitBB
)) {
879 UnswitchedExitBBs
.insert(DefaultExitBB
);
880 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB
, *ParentBB
, *OldPH
);
883 SplitBlock(DefaultExitBB
, DefaultExitBB
->begin(), &DT
, &LI
, MSSAU
);
884 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB
, *SplitBB
,
886 /*FullUnswitch*/ true);
887 DefaultExitBB
= SplitExitBBMap
[DefaultExitBB
] = SplitBB
;
890 // Note that we must use a reference in the for loop so that we update the
892 for (auto &ExitCase
: reverse(ExitCases
)) {
893 // Grab a reference to the exit block in the pair so that we can update it.
894 BasicBlock
*ExitBB
= std::get
<1>(ExitCase
);
896 // If this case is the last edge into the exit block, we can simply reuse it
897 // as it will no longer be a loop exit. No mapping necessary.
898 if (pred_empty(ExitBB
)) {
899 // Only rewrite once.
900 if (UnswitchedExitBBs
.insert(ExitBB
).second
)
901 rewritePHINodesForUnswitchedExitBlock(*ExitBB
, *ParentBB
, *OldPH
);
905 // Otherwise we need to split the exit block so that we retain an exit
906 // block from the loop and a target for the unswitched condition.
907 BasicBlock
*&SplitExitBB
= SplitExitBBMap
[ExitBB
];
909 // If this is the first time we see this, do the split and remember it.
910 SplitExitBB
= SplitBlock(ExitBB
, ExitBB
->begin(), &DT
, &LI
, MSSAU
);
911 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB
, *SplitExitBB
,
913 /*FullUnswitch*/ true);
915 // Update the case pair to point to the split block.
916 std::get
<1>(ExitCase
) = SplitExitBB
;
919 // Now add the unswitched cases. We do this in reverse order as we built them
921 for (auto &ExitCase
: reverse(ExitCases
)) {
922 ConstantInt
*CaseVal
= std::get
<0>(ExitCase
);
923 BasicBlock
*UnswitchedBB
= std::get
<1>(ExitCase
);
925 NewSIW
.addCase(CaseVal
, UnswitchedBB
, std::get
<2>(ExitCase
));
928 // If the default was unswitched, re-point it and add explicit cases for
929 // entering the loop.
931 NewSIW
->setDefaultDest(DefaultExitBB
);
932 NewSIW
.setSuccessorWeight(0, DefaultCaseWeight
);
934 // We removed all the exit cases, so we just copy the cases to the
935 // unswitched switch.
936 for (const auto &Case
: SI
.cases())
937 NewSIW
.addCase(Case
.getCaseValue(), NewPH
,
938 SIW
.getSuccessorWeight(Case
.getSuccessorIndex()));
939 } else if (DefaultCaseWeight
) {
940 // We have to set branch weight of the default case.
941 uint64_t SW
= *DefaultCaseWeight
;
942 for (const auto &Case
: SI
.cases()) {
943 auto W
= SIW
.getSuccessorWeight(Case
.getSuccessorIndex());
945 "case weight must be defined as default case weight is defined");
948 NewSIW
.setSuccessorWeight(0, SW
);
951 // If we ended up with a common successor for every path through the switch
952 // after unswitching, rewrite it to an unconditional branch to make it easy
953 // to recognize. Otherwise we potentially have to recognize the default case
954 // pointing at unreachable and other complexity.
956 BasicBlock
*BB
= SI
.getParent();
957 // We may have had multiple edges to this common successor block, so remove
958 // them as predecessors. We skip the first one, either the default or the
959 // actual first case.
960 bool SkippedFirst
= DefaultExitBB
== nullptr;
961 for (auto Case
: SI
.cases()) {
962 assert(Case
.getCaseSuccessor() == CommonSuccBB
&&
963 "Non-common successor!");
969 CommonSuccBB
->removePredecessor(BB
,
970 /*KeepOneInputPHIs*/ true);
972 // Now nuke the switch and replace it with a direct branch.
973 SIW
.eraseFromParent();
974 BranchInst::Create(CommonSuccBB
, BB
);
975 } else if (DefaultExitBB
) {
976 assert(SI
.getNumCases() > 0 &&
977 "If we had no cases we'd have a common successor!");
978 // Move the last case to the default successor. This is valid as if the
979 // default got unswitched it cannot be reached. This has the advantage of
980 // being simple and keeping the number of edges from this switch to
981 // successors the same, and avoiding any PHI update complexity.
982 auto LastCaseI
= std::prev(SI
.case_end());
984 SI
.setDefaultDest(LastCaseI
->getCaseSuccessor());
985 SIW
.setSuccessorWeight(
986 0, SIW
.getSuccessorWeight(LastCaseI
->getSuccessorIndex()));
987 SIW
.removeCase(LastCaseI
);
990 // Walk the unswitched exit blocks and the unswitched split blocks and update
991 // the dominator tree based on the CFG edits. While we are walking unordered
992 // containers here, the API for applyUpdates takes an unordered list of
993 // updates and requires them to not contain duplicates.
994 SmallVector
<DominatorTree::UpdateType
, 4> DTUpdates
;
995 for (auto *UnswitchedExitBB
: UnswitchedExitBBs
) {
996 DTUpdates
.push_back({DT
.Delete
, ParentBB
, UnswitchedExitBB
});
997 DTUpdates
.push_back({DT
.Insert
, OldPH
, UnswitchedExitBB
});
999 for (auto SplitUnswitchedPair
: SplitExitBBMap
) {
1000 DTUpdates
.push_back({DT
.Delete
, ParentBB
, SplitUnswitchedPair
.first
});
1001 DTUpdates
.push_back({DT
.Insert
, OldPH
, SplitUnswitchedPair
.second
});
1005 MSSAU
->applyUpdates(DTUpdates
, DT
, /*UpdateDT=*/true);
1006 if (VerifyMemorySSA
)
1007 MSSAU
->getMemorySSA()->verifyMemorySSA();
1009 DT
.applyUpdates(DTUpdates
);
1012 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
1014 // We may have changed the nesting relationship for this loop so hoist it to
1015 // its correct parent if needed.
1016 hoistLoopToNewParent(L
, *NewPH
, DT
, LI
, MSSAU
, SE
);
1018 if (MSSAU
&& VerifyMemorySSA
)
1019 MSSAU
->getMemorySSA()->verifyMemorySSA();
1023 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
1027 /// This routine scans the loop to find a branch or switch which occurs before
1028 /// any side effects occur. These can potentially be unswitched without
1029 /// duplicating the loop. If a branch or switch is successfully unswitched the
1030 /// scanning continues to see if subsequent branches or switches have become
1031 /// trivial. Once all trivial candidates have been unswitched, this routine
1034 /// The return value indicates whether anything was unswitched (and therefore
1037 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
1038 /// invalidated by this.
1039 static bool unswitchAllTrivialConditions(Loop
&L
, DominatorTree
&DT
,
1040 LoopInfo
&LI
, ScalarEvolution
*SE
,
1041 MemorySSAUpdater
*MSSAU
) {
1042 bool Changed
= false;
1044 // If loop header has only one reachable successor we should keep looking for
1045 // trivial condition candidates in the successor as well. An alternative is
1046 // to constant fold conditions and merge successors into loop header (then we
1047 // only need to check header's terminator). The reason for not doing this in
1048 // LoopUnswitch pass is that it could potentially break LoopPassManager's
1049 // invariants. Folding dead branches could either eliminate the current loop
1050 // or make other loops unreachable. LCSSA form might also not be preserved
1051 // after deleting branches. The following code keeps traversing loop header's
1052 // successors until it finds the trivial condition candidate (condition that
1053 // is not a constant). Since unswitching generates branches with constant
1054 // conditions, this scenario could be very common in practice.
1055 BasicBlock
*CurrentBB
= L
.getHeader();
1056 SmallPtrSet
<BasicBlock
*, 8> Visited
;
1057 Visited
.insert(CurrentBB
);
1059 // Check if there are any side-effecting instructions (e.g. stores, calls,
1060 // volatile loads) in the part of the loop that the code *would* execute
1061 // without unswitching.
1062 if (MSSAU
) // Possible early exit with MSSA
1063 if (auto *Defs
= MSSAU
->getMemorySSA()->getBlockDefs(CurrentBB
))
1064 if (!isa
<MemoryPhi
>(*Defs
->begin()) || (++Defs
->begin() != Defs
->end()))
1066 if (llvm::any_of(*CurrentBB
,
1067 [](Instruction
&I
) { return I
.mayHaveSideEffects(); }))
1070 Instruction
*CurrentTerm
= CurrentBB
->getTerminator();
1072 if (auto *SI
= dyn_cast
<SwitchInst
>(CurrentTerm
)) {
1073 // Don't bother trying to unswitch past a switch with a constant
1074 // condition. This should be removed prior to running this pass by
1076 if (isa
<Constant
>(SI
->getCondition()))
1079 if (!unswitchTrivialSwitch(L
, *SI
, DT
, LI
, SE
, MSSAU
))
1080 // Couldn't unswitch this one so we're done.
1083 // Mark that we managed to unswitch something.
1086 // If unswitching turned the terminator into an unconditional branch then
1087 // we can continue. The unswitching logic specifically works to fold any
1088 // cases it can into an unconditional branch to make it easier to
1090 auto *BI
= dyn_cast
<BranchInst
>(CurrentBB
->getTerminator());
1091 if (!BI
|| BI
->isConditional())
1094 CurrentBB
= BI
->getSuccessor(0);
1098 auto *BI
= dyn_cast
<BranchInst
>(CurrentTerm
);
1100 // We do not understand other terminator instructions.
1103 // Don't bother trying to unswitch past an unconditional branch or a branch
1104 // with a constant value. These should be removed by simplifycfg prior to
1105 // running this pass.
1106 if (!BI
->isConditional() ||
1107 isa
<Constant
>(skipTrivialSelect(BI
->getCondition())))
1110 // Found a trivial condition candidate: non-foldable conditional branch. If
1111 // we fail to unswitch this, we can't do anything else that is trivial.
1112 if (!unswitchTrivialBranch(L
, *BI
, DT
, LI
, SE
, MSSAU
))
1115 // Mark that we managed to unswitch something.
1118 // If we only unswitched some of the conditions feeding the branch, we won't
1119 // have collapsed it to a single successor.
1120 BI
= cast
<BranchInst
>(CurrentBB
->getTerminator());
1121 if (BI
->isConditional())
1124 // Follow the newly unconditional branch into its successor.
1125 CurrentBB
= BI
->getSuccessor(0);
1127 // When continuing, if we exit the loop or reach a previous visited block,
1128 // then we can not reach any trivial condition candidates (unfoldable
1129 // branch instructions or switch instructions) and no unswitch can happen.
1130 } while (L
.contains(CurrentBB
) && Visited
.insert(CurrentBB
).second
);
1135 /// Build the cloned blocks for an unswitched copy of the given loop.
1137 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1138 /// after the split block (`SplitBB`) that will be used to select between the
1139 /// cloned and original loop.
1141 /// This routine handles cloning all of the necessary loop blocks and exit
1142 /// blocks including rewriting their instructions and the relevant PHI nodes.
1143 /// Any loop blocks or exit blocks which are dominated by a different successor
1144 /// than the one for this clone of the loop blocks can be trivially skipped. We
1145 /// use the `DominatingSucc` map to determine whether a block satisfies that
1146 /// property with a simple map lookup.
1148 /// It also correctly creates the unconditional branch in the cloned
1149 /// unswitched parent block to only point at the unswitched successor.
1151 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1152 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1153 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1154 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1155 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1156 /// instead the caller must recompute an accurate DT. It *does* correctly
1157 /// update the `AssumptionCache` provided in `AC`.
1158 static BasicBlock
*buildClonedLoopBlocks(
1159 Loop
&L
, BasicBlock
*LoopPH
, BasicBlock
*SplitBB
,
1160 ArrayRef
<BasicBlock
*> ExitBlocks
, BasicBlock
*ParentBB
,
1161 BasicBlock
*UnswitchedSuccBB
, BasicBlock
*ContinueSuccBB
,
1162 const SmallDenseMap
<BasicBlock
*, BasicBlock
*, 16> &DominatingSucc
,
1163 ValueToValueMapTy
&VMap
,
1164 SmallVectorImpl
<DominatorTree::UpdateType
> &DTUpdates
, AssumptionCache
&AC
,
1165 DominatorTree
&DT
, LoopInfo
&LI
, MemorySSAUpdater
*MSSAU
,
1166 ScalarEvolution
*SE
) {
1167 SmallVector
<BasicBlock
*, 4> NewBlocks
;
1168 NewBlocks
.reserve(L
.getNumBlocks() + ExitBlocks
.size());
1170 // We will need to clone a bunch of blocks, wrap up the clone operation in
1172 auto CloneBlock
= [&](BasicBlock
*OldBB
) {
1173 // Clone the basic block and insert it before the new preheader.
1174 BasicBlock
*NewBB
= CloneBasicBlock(OldBB
, VMap
, ".us", OldBB
->getParent());
1175 NewBB
->moveBefore(LoopPH
);
1177 // Record this block and the mapping.
1178 NewBlocks
.push_back(NewBB
);
1179 VMap
[OldBB
] = NewBB
;
1184 // We skip cloning blocks when they have a dominating succ that is not the
1185 // succ we are cloning for.
1186 auto SkipBlock
= [&](BasicBlock
*BB
) {
1187 auto It
= DominatingSucc
.find(BB
);
1188 return It
!= DominatingSucc
.end() && It
->second
!= UnswitchedSuccBB
;
1191 // First, clone the preheader.
1192 auto *ClonedPH
= CloneBlock(LoopPH
);
1194 // Then clone all the loop blocks, skipping the ones that aren't necessary.
1195 for (auto *LoopBB
: L
.blocks())
1196 if (!SkipBlock(LoopBB
))
1199 // Split all the loop exit edges so that when we clone the exit blocks, if
1200 // any of the exit blocks are *also* a preheader for some other loop, we
1201 // don't create multiple predecessors entering the loop header.
1202 for (auto *ExitBB
: ExitBlocks
) {
1203 if (SkipBlock(ExitBB
))
1206 // When we are going to clone an exit, we don't need to clone all the
1207 // instructions in the exit block and we want to ensure we have an easy
1208 // place to merge the CFG, so split the exit first. This is always safe to
1209 // do because there cannot be any non-loop predecessors of a loop exit in
1210 // loop simplified form.
1211 auto *MergeBB
= SplitBlock(ExitBB
, ExitBB
->begin(), &DT
, &LI
, MSSAU
);
1213 // Rearrange the names to make it easier to write test cases by having the
1214 // exit block carry the suffix rather than the merge block carrying the
1216 MergeBB
->takeName(ExitBB
);
1217 ExitBB
->setName(Twine(MergeBB
->getName()) + ".split");
1219 // Now clone the original exit block.
1220 auto *ClonedExitBB
= CloneBlock(ExitBB
);
1221 assert(ClonedExitBB
->getTerminator()->getNumSuccessors() == 1 &&
1222 "Exit block should have been split to have one successor!");
1223 assert(ClonedExitBB
->getTerminator()->getSuccessor(0) == MergeBB
&&
1224 "Cloned exit block has the wrong successor!");
1226 // Remap any cloned instructions and create a merge phi node for them.
1227 for (auto ZippedInsts
: llvm::zip_first(
1228 llvm::make_range(ExitBB
->begin(), std::prev(ExitBB
->end())),
1229 llvm::make_range(ClonedExitBB
->begin(),
1230 std::prev(ClonedExitBB
->end())))) {
1231 Instruction
&I
= std::get
<0>(ZippedInsts
);
1232 Instruction
&ClonedI
= std::get
<1>(ZippedInsts
);
1234 // The only instructions in the exit block should be PHI nodes and
1235 // potentially a landing pad.
1237 (isa
<PHINode
>(I
) || isa
<LandingPadInst
>(I
) || isa
<CatchPadInst
>(I
)) &&
1238 "Bad instruction in exit block!");
1239 // We should have a value map between the instruction and its clone.
1240 assert(VMap
.lookup(&I
) == &ClonedI
&& "Mismatch in the value map!");
1242 // Forget SCEVs based on exit phis in case SCEV looked through the phi.
1243 if (SE
&& isa
<PHINode
>(I
))
1244 SE
->forgetValue(&I
);
1247 PHINode::Create(I
.getType(), /*NumReservedValues*/ 2, ".us-phi");
1248 MergePN
->insertBefore(MergeBB
->getFirstInsertionPt());
1249 I
.replaceAllUsesWith(MergePN
);
1250 MergePN
->addIncoming(&I
, ExitBB
);
1251 MergePN
->addIncoming(&ClonedI
, ClonedExitBB
);
1255 // Rewrite the instructions in the cloned blocks to refer to the instructions
1256 // in the cloned blocks. We have to do this as a second pass so that we have
1257 // everything available. Also, we have inserted new instructions which may
1258 // include assume intrinsics, so we update the assumption cache while
1260 Module
*M
= ClonedPH
->getParent()->getParent();
1261 for (auto *ClonedBB
: NewBlocks
)
1262 for (Instruction
&I
: *ClonedBB
) {
1263 RemapDPValueRange(M
, I
.getDbgValueRange(), VMap
,
1264 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
1265 RemapInstruction(&I
, VMap
,
1266 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
1267 if (auto *II
= dyn_cast
<AssumeInst
>(&I
))
1268 AC
.registerAssumption(II
);
1271 // Update any PHI nodes in the cloned successors of the skipped blocks to not
1272 // have spurious incoming values.
1273 for (auto *LoopBB
: L
.blocks())
1274 if (SkipBlock(LoopBB
))
1275 for (auto *SuccBB
: successors(LoopBB
))
1276 if (auto *ClonedSuccBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(SuccBB
)))
1277 for (PHINode
&PN
: ClonedSuccBB
->phis())
1278 PN
.removeIncomingValue(LoopBB
, /*DeletePHIIfEmpty*/ false);
1280 // Remove the cloned parent as a predecessor of any successor we ended up
1281 // cloning other than the unswitched one.
1282 auto *ClonedParentBB
= cast
<BasicBlock
>(VMap
.lookup(ParentBB
));
1283 for (auto *SuccBB
: successors(ParentBB
)) {
1284 if (SuccBB
== UnswitchedSuccBB
)
1287 auto *ClonedSuccBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(SuccBB
));
1291 ClonedSuccBB
->removePredecessor(ClonedParentBB
,
1292 /*KeepOneInputPHIs*/ true);
1295 // Replace the cloned branch with an unconditional branch to the cloned
1296 // unswitched successor.
1297 auto *ClonedSuccBB
= cast
<BasicBlock
>(VMap
.lookup(UnswitchedSuccBB
));
1298 Instruction
*ClonedTerminator
= ClonedParentBB
->getTerminator();
1299 // Trivial Simplification. If Terminator is a conditional branch and
1300 // condition becomes dead - erase it.
1301 Value
*ClonedConditionToErase
= nullptr;
1302 if (auto *BI
= dyn_cast
<BranchInst
>(ClonedTerminator
))
1303 ClonedConditionToErase
= BI
->getCondition();
1304 else if (auto *SI
= dyn_cast
<SwitchInst
>(ClonedTerminator
))
1305 ClonedConditionToErase
= SI
->getCondition();
1307 ClonedTerminator
->eraseFromParent();
1308 BranchInst::Create(ClonedSuccBB
, ClonedParentBB
);
1310 if (ClonedConditionToErase
)
1311 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase
, nullptr,
1314 // If there are duplicate entries in the PHI nodes because of multiple edges
1315 // to the unswitched successor, we need to nuke all but one as we replaced it
1316 // with a direct branch.
1317 for (PHINode
&PN
: ClonedSuccBB
->phis()) {
1319 // Loop over the incoming operands backwards so we can easily delete as we
1320 // go without invalidating the index.
1321 for (int i
= PN
.getNumOperands() - 1; i
>= 0; --i
) {
1322 if (PN
.getIncomingBlock(i
) != ClonedParentBB
)
1328 PN
.removeIncomingValue(i
, /*DeletePHIIfEmpty*/ false);
1332 // Record the domtree updates for the new blocks.
1333 SmallPtrSet
<BasicBlock
*, 4> SuccSet
;
1334 for (auto *ClonedBB
: NewBlocks
) {
1335 for (auto *SuccBB
: successors(ClonedBB
))
1336 if (SuccSet
.insert(SuccBB
).second
)
1337 DTUpdates
.push_back({DominatorTree::Insert
, ClonedBB
, SuccBB
});
1344 /// Recursively clone the specified loop and all of its children.
1346 /// The target parent loop for the clone should be provided, or can be null if
1347 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1348 /// with the provided value map. The entire original loop must be present in
1349 /// the value map. The cloned loop is returned.
1350 static Loop
*cloneLoopNest(Loop
&OrigRootL
, Loop
*RootParentL
,
1351 const ValueToValueMapTy
&VMap
, LoopInfo
&LI
) {
1352 auto AddClonedBlocksToLoop
= [&](Loop
&OrigL
, Loop
&ClonedL
) {
1353 assert(ClonedL
.getBlocks().empty() && "Must start with an empty loop!");
1354 ClonedL
.reserveBlocks(OrigL
.getNumBlocks());
1355 for (auto *BB
: OrigL
.blocks()) {
1356 auto *ClonedBB
= cast
<BasicBlock
>(VMap
.lookup(BB
));
1357 ClonedL
.addBlockEntry(ClonedBB
);
1358 if (LI
.getLoopFor(BB
) == &OrigL
)
1359 LI
.changeLoopFor(ClonedBB
, &ClonedL
);
1363 // We specially handle the first loop because it may get cloned into
1364 // a different parent and because we most commonly are cloning leaf loops.
1365 Loop
*ClonedRootL
= LI
.AllocateLoop();
1367 RootParentL
->addChildLoop(ClonedRootL
);
1369 LI
.addTopLevelLoop(ClonedRootL
);
1370 AddClonedBlocksToLoop(OrigRootL
, *ClonedRootL
);
1372 if (OrigRootL
.isInnermost())
1375 // If we have a nest, we can quickly clone the entire loop nest using an
1376 // iterative approach because it is a tree. We keep the cloned parent in the
1377 // data structure to avoid repeatedly querying through a map to find it.
1378 SmallVector
<std::pair
<Loop
*, Loop
*>, 16> LoopsToClone
;
1379 // Build up the loops to clone in reverse order as we'll clone them from the
1381 for (Loop
*ChildL
: llvm::reverse(OrigRootL
))
1382 LoopsToClone
.push_back({ClonedRootL
, ChildL
});
1384 Loop
*ClonedParentL
, *L
;
1385 std::tie(ClonedParentL
, L
) = LoopsToClone
.pop_back_val();
1386 Loop
*ClonedL
= LI
.AllocateLoop();
1387 ClonedParentL
->addChildLoop(ClonedL
);
1388 AddClonedBlocksToLoop(*L
, *ClonedL
);
1389 for (Loop
*ChildL
: llvm::reverse(*L
))
1390 LoopsToClone
.push_back({ClonedL
, ChildL
});
1391 } while (!LoopsToClone
.empty());
1396 /// Build the cloned loops of an original loop from unswitching.
1398 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1399 /// operation. We need to re-verify that there even is a loop (as the backedge
1400 /// may not have been cloned), and even if there are remaining backedges the
1401 /// backedge set may be different. However, we know that each child loop is
1402 /// undisturbed, we only need to find where to place each child loop within
1403 /// either any parent loop or within a cloned version of the original loop.
1405 /// Because child loops may end up cloned outside of any cloned version of the
1406 /// original loop, multiple cloned sibling loops may be created. All of them
1407 /// are returned so that the newly introduced loop nest roots can be
1409 static void buildClonedLoops(Loop
&OrigL
, ArrayRef
<BasicBlock
*> ExitBlocks
,
1410 const ValueToValueMapTy
&VMap
, LoopInfo
&LI
,
1411 SmallVectorImpl
<Loop
*> &NonChildClonedLoops
) {
1412 Loop
*ClonedL
= nullptr;
1414 auto *OrigPH
= OrigL
.getLoopPreheader();
1415 auto *OrigHeader
= OrigL
.getHeader();
1417 auto *ClonedPH
= cast
<BasicBlock
>(VMap
.lookup(OrigPH
));
1418 auto *ClonedHeader
= cast
<BasicBlock
>(VMap
.lookup(OrigHeader
));
1420 // We need to know the loops of the cloned exit blocks to even compute the
1421 // accurate parent loop. If we only clone exits to some parent of the
1422 // original parent, we want to clone into that outer loop. We also keep track
1423 // of the loops that our cloned exit blocks participate in.
1424 Loop
*ParentL
= nullptr;
1425 SmallVector
<BasicBlock
*, 4> ClonedExitsInLoops
;
1426 SmallDenseMap
<BasicBlock
*, Loop
*, 16> ExitLoopMap
;
1427 ClonedExitsInLoops
.reserve(ExitBlocks
.size());
1428 for (auto *ExitBB
: ExitBlocks
)
1429 if (auto *ClonedExitBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(ExitBB
)))
1430 if (Loop
*ExitL
= LI
.getLoopFor(ExitBB
)) {
1431 ExitLoopMap
[ClonedExitBB
] = ExitL
;
1432 ClonedExitsInLoops
.push_back(ClonedExitBB
);
1433 if (!ParentL
|| (ParentL
!= ExitL
&& ParentL
->contains(ExitL
)))
1436 assert((!ParentL
|| ParentL
== OrigL
.getParentLoop() ||
1437 ParentL
->contains(OrigL
.getParentLoop())) &&
1438 "The computed parent loop should always contain (or be) the parent of "
1439 "the original loop.");
1441 // We build the set of blocks dominated by the cloned header from the set of
1442 // cloned blocks out of the original loop. While not all of these will
1443 // necessarily be in the cloned loop, it is enough to establish that they
1444 // aren't in unreachable cycles, etc.
1445 SmallSetVector
<BasicBlock
*, 16> ClonedLoopBlocks
;
1446 for (auto *BB
: OrigL
.blocks())
1447 if (auto *ClonedBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(BB
)))
1448 ClonedLoopBlocks
.insert(ClonedBB
);
1450 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1451 // skipped cloning some region of this loop which can in turn skip some of
1452 // the backedges so we have to rebuild the blocks in the loop based on the
1453 // backedges that remain after cloning.
1454 SmallVector
<BasicBlock
*, 16> Worklist
;
1455 SmallPtrSet
<BasicBlock
*, 16> BlocksInClonedLoop
;
1456 for (auto *Pred
: predecessors(ClonedHeader
)) {
1457 // The only possible non-loop header predecessor is the preheader because
1458 // we know we cloned the loop in simplified form.
1459 if (Pred
== ClonedPH
)
1462 // Because the loop was in simplified form, the only non-loop predecessor
1463 // should be the preheader.
1464 assert(ClonedLoopBlocks
.count(Pred
) && "Found a predecessor of the loop "
1465 "header other than the preheader "
1466 "that is not part of the loop!");
1468 // Insert this block into the loop set and on the first visit (and if it
1469 // isn't the header we're currently walking) put it into the worklist to
1471 if (BlocksInClonedLoop
.insert(Pred
).second
&& Pred
!= ClonedHeader
)
1472 Worklist
.push_back(Pred
);
1475 // If we had any backedges then there *is* a cloned loop. Put the header into
1476 // the loop set and then walk the worklist backwards to find all the blocks
1477 // that remain within the loop after cloning.
1478 if (!BlocksInClonedLoop
.empty()) {
1479 BlocksInClonedLoop
.insert(ClonedHeader
);
1481 while (!Worklist
.empty()) {
1482 BasicBlock
*BB
= Worklist
.pop_back_val();
1483 assert(BlocksInClonedLoop
.count(BB
) &&
1484 "Didn't put block into the loop set!");
1486 // Insert any predecessors that are in the possible set into the cloned
1487 // set, and if the insert is successful, add them to the worklist. Note
1488 // that we filter on the blocks that are definitely reachable via the
1489 // backedge to the loop header so we may prune out dead code within the
1491 for (auto *Pred
: predecessors(BB
))
1492 if (ClonedLoopBlocks
.count(Pred
) &&
1493 BlocksInClonedLoop
.insert(Pred
).second
)
1494 Worklist
.push_back(Pred
);
1497 ClonedL
= LI
.AllocateLoop();
1499 ParentL
->addBasicBlockToLoop(ClonedPH
, LI
);
1500 ParentL
->addChildLoop(ClonedL
);
1502 LI
.addTopLevelLoop(ClonedL
);
1504 NonChildClonedLoops
.push_back(ClonedL
);
1506 ClonedL
->reserveBlocks(BlocksInClonedLoop
.size());
1507 // We don't want to just add the cloned loop blocks based on how we
1508 // discovered them. The original order of blocks was carefully built in
1509 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1510 // that logic, we just re-walk the original blocks (and those of the child
1511 // loops) and filter them as we add them into the cloned loop.
1512 for (auto *BB
: OrigL
.blocks()) {
1513 auto *ClonedBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(BB
));
1514 if (!ClonedBB
|| !BlocksInClonedLoop
.count(ClonedBB
))
1517 // Directly add the blocks that are only in this loop.
1518 if (LI
.getLoopFor(BB
) == &OrigL
) {
1519 ClonedL
->addBasicBlockToLoop(ClonedBB
, LI
);
1523 // We want to manually add it to this loop and parents.
1524 // Registering it with LoopInfo will happen when we clone the top
1525 // loop for this block.
1526 for (Loop
*PL
= ClonedL
; PL
; PL
= PL
->getParentLoop())
1527 PL
->addBlockEntry(ClonedBB
);
1530 // Now add each child loop whose header remains within the cloned loop. All
1531 // of the blocks within the loop must satisfy the same constraints as the
1532 // header so once we pass the header checks we can just clone the entire
1534 for (Loop
*ChildL
: OrigL
) {
1535 auto *ClonedChildHeader
=
1536 cast_or_null
<BasicBlock
>(VMap
.lookup(ChildL
->getHeader()));
1537 if (!ClonedChildHeader
|| !BlocksInClonedLoop
.count(ClonedChildHeader
))
1541 // We should never have a cloned child loop header but fail to have
1542 // all of the blocks for that child loop.
1543 for (auto *ChildLoopBB
: ChildL
->blocks())
1544 assert(BlocksInClonedLoop
.count(
1545 cast
<BasicBlock
>(VMap
.lookup(ChildLoopBB
))) &&
1546 "Child cloned loop has a header within the cloned outer "
1547 "loop but not all of its blocks!");
1550 cloneLoopNest(*ChildL
, ClonedL
, VMap
, LI
);
1554 // Now that we've handled all the components of the original loop that were
1555 // cloned into a new loop, we still need to handle anything from the original
1556 // loop that wasn't in a cloned loop.
1558 // Figure out what blocks are left to place within any loop nest containing
1559 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1561 SmallPtrSet
<BasicBlock
*, 16> UnloopedBlockSet
;
1562 if (BlocksInClonedLoop
.empty())
1563 UnloopedBlockSet
.insert(ClonedPH
);
1564 for (auto *ClonedBB
: ClonedLoopBlocks
)
1565 if (!BlocksInClonedLoop
.count(ClonedBB
))
1566 UnloopedBlockSet
.insert(ClonedBB
);
1568 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1569 // backwards across these to process them inside out. The order shouldn't
1570 // matter as we're just trying to build up the map from inside-out; we use
1571 // the map in a more stably ordered way below.
1572 auto OrderedClonedExitsInLoops
= ClonedExitsInLoops
;
1573 llvm::sort(OrderedClonedExitsInLoops
, [&](BasicBlock
*LHS
, BasicBlock
*RHS
) {
1574 return ExitLoopMap
.lookup(LHS
)->getLoopDepth() <
1575 ExitLoopMap
.lookup(RHS
)->getLoopDepth();
1578 // Populate the existing ExitLoopMap with everything reachable from each
1579 // exit, starting from the inner most exit.
1580 while (!UnloopedBlockSet
.empty() && !OrderedClonedExitsInLoops
.empty()) {
1581 assert(Worklist
.empty() && "Didn't clear worklist!");
1583 BasicBlock
*ExitBB
= OrderedClonedExitsInLoops
.pop_back_val();
1584 Loop
*ExitL
= ExitLoopMap
.lookup(ExitBB
);
1586 // Walk the CFG back until we hit the cloned PH adding everything reachable
1587 // and in the unlooped set to this exit block's loop.
1588 Worklist
.push_back(ExitBB
);
1590 BasicBlock
*BB
= Worklist
.pop_back_val();
1591 // We can stop recursing at the cloned preheader (if we get there).
1595 for (BasicBlock
*PredBB
: predecessors(BB
)) {
1596 // If this pred has already been moved to our set or is part of some
1597 // (inner) loop, no update needed.
1598 if (!UnloopedBlockSet
.erase(PredBB
)) {
1600 (BlocksInClonedLoop
.count(PredBB
) || ExitLoopMap
.count(PredBB
)) &&
1601 "Predecessor not mapped to a loop!");
1605 // We just insert into the loop set here. We'll add these blocks to the
1606 // exit loop after we build up the set in an order that doesn't rely on
1607 // predecessor order (which in turn relies on use list order).
1608 bool Inserted
= ExitLoopMap
.insert({PredBB
, ExitL
}).second
;
1610 assert(Inserted
&& "Should only visit an unlooped block once!");
1612 // And recurse through to its predecessors.
1613 Worklist
.push_back(PredBB
);
1615 } while (!Worklist
.empty());
1618 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1619 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1620 // in their original order adding them to the correct loop.
1622 // We need a stable insertion order. We use the order of the original loop
1623 // order and map into the correct parent loop.
1624 for (auto *BB
: llvm::concat
<BasicBlock
*const>(
1625 ArrayRef(ClonedPH
), ClonedLoopBlocks
, ClonedExitsInLoops
))
1626 if (Loop
*OuterL
= ExitLoopMap
.lookup(BB
))
1627 OuterL
->addBasicBlockToLoop(BB
, LI
);
1630 for (auto &BBAndL
: ExitLoopMap
) {
1631 auto *BB
= BBAndL
.first
;
1632 auto *OuterL
= BBAndL
.second
;
1633 assert(LI
.getLoopFor(BB
) == OuterL
&&
1634 "Failed to put all blocks into outer loops!");
1638 // Now that all the blocks are placed into the correct containing loop in the
1639 // absence of child loops, find all the potentially cloned child loops and
1640 // clone them into whatever outer loop we placed their header into.
1641 for (Loop
*ChildL
: OrigL
) {
1642 auto *ClonedChildHeader
=
1643 cast_or_null
<BasicBlock
>(VMap
.lookup(ChildL
->getHeader()));
1644 if (!ClonedChildHeader
|| BlocksInClonedLoop
.count(ClonedChildHeader
))
1648 for (auto *ChildLoopBB
: ChildL
->blocks())
1649 assert(VMap
.count(ChildLoopBB
) &&
1650 "Cloned a child loop header but not all of that loops blocks!");
1653 NonChildClonedLoops
.push_back(cloneLoopNest(
1654 *ChildL
, ExitLoopMap
.lookup(ClonedChildHeader
), VMap
, LI
));
1659 deleteDeadClonedBlocks(Loop
&L
, ArrayRef
<BasicBlock
*> ExitBlocks
,
1660 ArrayRef
<std::unique_ptr
<ValueToValueMapTy
>> VMaps
,
1661 DominatorTree
&DT
, MemorySSAUpdater
*MSSAU
) {
1662 // Find all the dead clones, and remove them from their successors.
1663 SmallVector
<BasicBlock
*, 16> DeadBlocks
;
1664 for (BasicBlock
*BB
: llvm::concat
<BasicBlock
*const>(L
.blocks(), ExitBlocks
))
1665 for (const auto &VMap
: VMaps
)
1666 if (BasicBlock
*ClonedBB
= cast_or_null
<BasicBlock
>(VMap
->lookup(BB
)))
1667 if (!DT
.isReachableFromEntry(ClonedBB
)) {
1668 for (BasicBlock
*SuccBB
: successors(ClonedBB
))
1669 SuccBB
->removePredecessor(ClonedBB
);
1670 DeadBlocks
.push_back(ClonedBB
);
1673 // Remove all MemorySSA in the dead blocks
1675 SmallSetVector
<BasicBlock
*, 8> DeadBlockSet(DeadBlocks
.begin(),
1677 MSSAU
->removeBlocks(DeadBlockSet
);
1680 // Drop any remaining references to break cycles.
1681 for (BasicBlock
*BB
: DeadBlocks
)
1682 BB
->dropAllReferences();
1683 // Erase them from the IR.
1684 for (BasicBlock
*BB
: DeadBlocks
)
1685 BB
->eraseFromParent();
1688 static void deleteDeadBlocksFromLoop(Loop
&L
,
1689 SmallVectorImpl
<BasicBlock
*> &ExitBlocks
,
1690 DominatorTree
&DT
, LoopInfo
&LI
,
1691 MemorySSAUpdater
*MSSAU
,
1692 ScalarEvolution
*SE
,
1693 LPMUpdater
&LoopUpdater
) {
1694 // Find all the dead blocks tied to this loop, and remove them from their
1696 SmallSetVector
<BasicBlock
*, 8> DeadBlockSet
;
1698 // Start with loop/exit blocks and get a transitive closure of reachable dead
1700 SmallVector
<BasicBlock
*, 16> DeathCandidates(ExitBlocks
.begin(),
1702 DeathCandidates
.append(L
.blocks().begin(), L
.blocks().end());
1703 while (!DeathCandidates
.empty()) {
1704 auto *BB
= DeathCandidates
.pop_back_val();
1705 if (!DeadBlockSet
.count(BB
) && !DT
.isReachableFromEntry(BB
)) {
1706 for (BasicBlock
*SuccBB
: successors(BB
)) {
1707 SuccBB
->removePredecessor(BB
);
1708 DeathCandidates
.push_back(SuccBB
);
1710 DeadBlockSet
.insert(BB
);
1714 // Remove all MemorySSA in the dead blocks
1716 MSSAU
->removeBlocks(DeadBlockSet
);
1718 // Filter out the dead blocks from the exit blocks list so that it can be
1719 // used in the caller.
1720 llvm::erase_if(ExitBlocks
,
1721 [&](BasicBlock
*BB
) { return DeadBlockSet
.count(BB
); });
1723 // Walk from this loop up through its parents removing all of the dead blocks.
1724 for (Loop
*ParentL
= &L
; ParentL
; ParentL
= ParentL
->getParentLoop()) {
1725 for (auto *BB
: DeadBlockSet
)
1726 ParentL
->getBlocksSet().erase(BB
);
1727 llvm::erase_if(ParentL
->getBlocksVector(),
1728 [&](BasicBlock
*BB
) { return DeadBlockSet
.count(BB
); });
1731 // Now delete the dead child loops. This raw delete will clear them
1733 llvm::erase_if(L
.getSubLoopsVector(), [&](Loop
*ChildL
) {
1734 if (!DeadBlockSet
.count(ChildL
->getHeader()))
1737 assert(llvm::all_of(ChildL
->blocks(),
1738 [&](BasicBlock
*ChildBB
) {
1739 return DeadBlockSet
.count(ChildBB
);
1741 "If the child loop header is dead all blocks in the child loop must "
1742 "be dead as well!");
1743 LoopUpdater
.markLoopAsDeleted(*ChildL
, ChildL
->getName());
1745 SE
->forgetBlockAndLoopDispositions();
1750 // Remove the loop mappings for the dead blocks and drop all the references
1751 // from these blocks to others to handle cyclic references as we start
1752 // deleting the blocks themselves.
1753 for (auto *BB
: DeadBlockSet
) {
1754 // Check that the dominator tree has already been updated.
1755 assert(!DT
.getNode(BB
) && "Should already have cleared domtree!");
1756 LI
.changeLoopFor(BB
, nullptr);
1757 // Drop all uses of the instructions to make sure we won't have dangling
1758 // uses in other blocks.
1761 I
.replaceAllUsesWith(PoisonValue::get(I
.getType()));
1762 BB
->dropAllReferences();
1765 // Actually delete the blocks now that they've been fully unhooked from the
1767 for (auto *BB
: DeadBlockSet
)
1768 BB
->eraseFromParent();
1771 /// Recompute the set of blocks in a loop after unswitching.
1773 /// This walks from the original headers predecessors to rebuild the loop. We
1774 /// take advantage of the fact that new blocks can't have been added, and so we
1775 /// filter by the original loop's blocks. This also handles potentially
1776 /// unreachable code that we don't want to explore but might be found examining
1777 /// the predecessors of the header.
1779 /// If the original loop is no longer a loop, this will return an empty set. If
1780 /// it remains a loop, all the blocks within it will be added to the set
1781 /// (including those blocks in inner loops).
1782 static SmallPtrSet
<const BasicBlock
*, 16> recomputeLoopBlockSet(Loop
&L
,
1784 SmallPtrSet
<const BasicBlock
*, 16> LoopBlockSet
;
1786 auto *PH
= L
.getLoopPreheader();
1787 auto *Header
= L
.getHeader();
1789 // A worklist to use while walking backwards from the header.
1790 SmallVector
<BasicBlock
*, 16> Worklist
;
1792 // First walk the predecessors of the header to find the backedges. This will
1793 // form the basis of our walk.
1794 for (auto *Pred
: predecessors(Header
)) {
1795 // Skip the preheader.
1799 // Because the loop was in simplified form, the only non-loop predecessor
1800 // is the preheader.
1801 assert(L
.contains(Pred
) && "Found a predecessor of the loop header other "
1802 "than the preheader that is not part of the "
1805 // Insert this block into the loop set and on the first visit and, if it
1806 // isn't the header we're currently walking, put it into the worklist to
1808 if (LoopBlockSet
.insert(Pred
).second
&& Pred
!= Header
)
1809 Worklist
.push_back(Pred
);
1812 // If no backedges were found, we're done.
1813 if (LoopBlockSet
.empty())
1814 return LoopBlockSet
;
1816 // We found backedges, recurse through them to identify the loop blocks.
1817 while (!Worklist
.empty()) {
1818 BasicBlock
*BB
= Worklist
.pop_back_val();
1819 assert(LoopBlockSet
.count(BB
) && "Didn't put block into the loop set!");
1821 // No need to walk past the header.
1825 // Because we know the inner loop structure remains valid we can use the
1826 // loop structure to jump immediately across the entire nested loop.
1827 // Further, because it is in loop simplified form, we can directly jump
1828 // to its preheader afterward.
1829 if (Loop
*InnerL
= LI
.getLoopFor(BB
))
1831 assert(L
.contains(InnerL
) &&
1832 "Should not reach a loop *outside* this loop!");
1833 // The preheader is the only possible predecessor of the loop so
1834 // insert it into the set and check whether it was already handled.
1835 auto *InnerPH
= InnerL
->getLoopPreheader();
1836 assert(L
.contains(InnerPH
) && "Cannot contain an inner loop block "
1837 "but not contain the inner loop "
1839 if (!LoopBlockSet
.insert(InnerPH
).second
)
1840 // The only way to reach the preheader is through the loop body
1841 // itself so if it has been visited the loop is already handled.
1844 // Insert all of the blocks (other than those already present) into
1845 // the loop set. We expect at least the block that led us to find the
1846 // inner loop to be in the block set, but we may also have other loop
1847 // blocks if they were already enqueued as predecessors of some other
1848 // outer loop block.
1849 for (auto *InnerBB
: InnerL
->blocks()) {
1850 if (InnerBB
== BB
) {
1851 assert(LoopBlockSet
.count(InnerBB
) &&
1852 "Block should already be in the set!");
1856 LoopBlockSet
.insert(InnerBB
);
1859 // Add the preheader to the worklist so we will continue past the
1861 Worklist
.push_back(InnerPH
);
1865 // Insert any predecessors that were in the original loop into the new
1866 // set, and if the insert is successful, add them to the worklist.
1867 for (auto *Pred
: predecessors(BB
))
1868 if (L
.contains(Pred
) && LoopBlockSet
.insert(Pred
).second
)
1869 Worklist
.push_back(Pred
);
1872 assert(LoopBlockSet
.count(Header
) && "Cannot fail to add the header!");
1874 // We've found all the blocks participating in the loop, return our completed
1876 return LoopBlockSet
;
1879 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1881 /// The removal may have removed some child loops entirely but cannot have
1882 /// disturbed any remaining child loops. However, they may need to be hoisted
1883 /// to the parent loop (or to be top-level loops). The original loop may be
1884 /// completely removed.
1886 /// The sibling loops resulting from this update are returned. If the original
1887 /// loop remains a valid loop, it will be the first entry in this list with all
1888 /// of the newly sibling loops following it.
1890 /// Returns true if the loop remains a loop after unswitching, and false if it
1891 /// is no longer a loop after unswitching (and should not continue to be
1893 static bool rebuildLoopAfterUnswitch(Loop
&L
, ArrayRef
<BasicBlock
*> ExitBlocks
,
1895 SmallVectorImpl
<Loop
*> &HoistedLoops
,
1896 ScalarEvolution
*SE
) {
1897 auto *PH
= L
.getLoopPreheader();
1899 // Compute the actual parent loop from the exit blocks. Because we may have
1900 // pruned some exits the loop may be different from the original parent.
1901 Loop
*ParentL
= nullptr;
1902 SmallVector
<Loop
*, 4> ExitLoops
;
1903 SmallVector
<BasicBlock
*, 4> ExitsInLoops
;
1904 ExitsInLoops
.reserve(ExitBlocks
.size());
1905 for (auto *ExitBB
: ExitBlocks
)
1906 if (Loop
*ExitL
= LI
.getLoopFor(ExitBB
)) {
1907 ExitLoops
.push_back(ExitL
);
1908 ExitsInLoops
.push_back(ExitBB
);
1909 if (!ParentL
|| (ParentL
!= ExitL
&& ParentL
->contains(ExitL
)))
1913 // Recompute the blocks participating in this loop. This may be empty if it
1914 // is no longer a loop.
1915 auto LoopBlockSet
= recomputeLoopBlockSet(L
, LI
);
1917 // If we still have a loop, we need to re-set the loop's parent as the exit
1918 // block set changing may have moved it within the loop nest. Note that this
1919 // can only happen when this loop has a parent as it can only hoist the loop
1921 if (!LoopBlockSet
.empty() && L
.getParentLoop() != ParentL
) {
1922 // Remove this loop's (original) blocks from all of the intervening loops.
1923 for (Loop
*IL
= L
.getParentLoop(); IL
!= ParentL
;
1924 IL
= IL
->getParentLoop()) {
1925 IL
->getBlocksSet().erase(PH
);
1926 for (auto *BB
: L
.blocks())
1927 IL
->getBlocksSet().erase(BB
);
1928 llvm::erase_if(IL
->getBlocksVector(), [&](BasicBlock
*BB
) {
1929 return BB
== PH
|| L
.contains(BB
);
1933 LI
.changeLoopFor(PH
, ParentL
);
1934 L
.getParentLoop()->removeChildLoop(&L
);
1936 ParentL
->addChildLoop(&L
);
1938 LI
.addTopLevelLoop(&L
);
1941 // Now we update all the blocks which are no longer within the loop.
1942 auto &Blocks
= L
.getBlocksVector();
1944 LoopBlockSet
.empty()
1946 : std::stable_partition(
1947 Blocks
.begin(), Blocks
.end(),
1948 [&](BasicBlock
*BB
) { return LoopBlockSet
.count(BB
); });
1950 // Before we erase the list of unlooped blocks, build a set of them.
1951 SmallPtrSet
<BasicBlock
*, 16> UnloopedBlocks(BlocksSplitI
, Blocks
.end());
1952 if (LoopBlockSet
.empty())
1953 UnloopedBlocks
.insert(PH
);
1955 // Now erase these blocks from the loop.
1956 for (auto *BB
: make_range(BlocksSplitI
, Blocks
.end()))
1957 L
.getBlocksSet().erase(BB
);
1958 Blocks
.erase(BlocksSplitI
, Blocks
.end());
1960 // Sort the exits in ascending loop depth, we'll work backwards across these
1961 // to process them inside out.
1962 llvm::stable_sort(ExitsInLoops
, [&](BasicBlock
*LHS
, BasicBlock
*RHS
) {
1963 return LI
.getLoopDepth(LHS
) < LI
.getLoopDepth(RHS
);
1966 // We'll build up a set for each exit loop.
1967 SmallPtrSet
<BasicBlock
*, 16> NewExitLoopBlocks
;
1968 Loop
*PrevExitL
= L
.getParentLoop(); // The deepest possible exit loop.
1970 auto RemoveUnloopedBlocksFromLoop
=
1971 [](Loop
&L
, SmallPtrSetImpl
<BasicBlock
*> &UnloopedBlocks
) {
1972 for (auto *BB
: UnloopedBlocks
)
1973 L
.getBlocksSet().erase(BB
);
1974 llvm::erase_if(L
.getBlocksVector(), [&](BasicBlock
*BB
) {
1975 return UnloopedBlocks
.count(BB
);
1979 SmallVector
<BasicBlock
*, 16> Worklist
;
1980 while (!UnloopedBlocks
.empty() && !ExitsInLoops
.empty()) {
1981 assert(Worklist
.empty() && "Didn't clear worklist!");
1982 assert(NewExitLoopBlocks
.empty() && "Didn't clear loop set!");
1984 // Grab the next exit block, in decreasing loop depth order.
1985 BasicBlock
*ExitBB
= ExitsInLoops
.pop_back_val();
1986 Loop
&ExitL
= *LI
.getLoopFor(ExitBB
);
1987 assert(ExitL
.contains(&L
) && "Exit loop must contain the inner loop!");
1989 // Erase all of the unlooped blocks from the loops between the previous
1990 // exit loop and this exit loop. This works because the ExitInLoops list is
1991 // sorted in increasing order of loop depth and thus we visit loops in
1992 // decreasing order of loop depth.
1993 for (; PrevExitL
!= &ExitL
; PrevExitL
= PrevExitL
->getParentLoop())
1994 RemoveUnloopedBlocksFromLoop(*PrevExitL
, UnloopedBlocks
);
1996 // Walk the CFG back until we hit the cloned PH adding everything reachable
1997 // and in the unlooped set to this exit block's loop.
1998 Worklist
.push_back(ExitBB
);
2000 BasicBlock
*BB
= Worklist
.pop_back_val();
2001 // We can stop recursing at the cloned preheader (if we get there).
2005 for (BasicBlock
*PredBB
: predecessors(BB
)) {
2006 // If this pred has already been moved to our set or is part of some
2007 // (inner) loop, no update needed.
2008 if (!UnloopedBlocks
.erase(PredBB
)) {
2009 assert((NewExitLoopBlocks
.count(PredBB
) ||
2010 ExitL
.contains(LI
.getLoopFor(PredBB
))) &&
2011 "Predecessor not in a nested loop (or already visited)!");
2015 // We just insert into the loop set here. We'll add these blocks to the
2016 // exit loop after we build up the set in a deterministic order rather
2017 // than the predecessor-influenced visit order.
2018 bool Inserted
= NewExitLoopBlocks
.insert(PredBB
).second
;
2020 assert(Inserted
&& "Should only visit an unlooped block once!");
2022 // And recurse through to its predecessors.
2023 Worklist
.push_back(PredBB
);
2025 } while (!Worklist
.empty());
2027 // If blocks in this exit loop were directly part of the original loop (as
2028 // opposed to a child loop) update the map to point to this exit loop. This
2029 // just updates a map and so the fact that the order is unstable is fine.
2030 for (auto *BB
: NewExitLoopBlocks
)
2031 if (Loop
*BBL
= LI
.getLoopFor(BB
))
2032 if (BBL
== &L
|| !L
.contains(BBL
))
2033 LI
.changeLoopFor(BB
, &ExitL
);
2035 // We will remove the remaining unlooped blocks from this loop in the next
2036 // iteration or below.
2037 NewExitLoopBlocks
.clear();
2040 // Any remaining unlooped blocks are no longer part of any loop unless they
2041 // are part of some child loop.
2042 for (; PrevExitL
; PrevExitL
= PrevExitL
->getParentLoop())
2043 RemoveUnloopedBlocksFromLoop(*PrevExitL
, UnloopedBlocks
);
2044 for (auto *BB
: UnloopedBlocks
)
2045 if (Loop
*BBL
= LI
.getLoopFor(BB
))
2046 if (BBL
== &L
|| !L
.contains(BBL
))
2047 LI
.changeLoopFor(BB
, nullptr);
2049 // Sink all the child loops whose headers are no longer in the loop set to
2050 // the parent (or to be top level loops). We reach into the loop and directly
2051 // update its subloop vector to make this batch update efficient.
2052 auto &SubLoops
= L
.getSubLoopsVector();
2053 auto SubLoopsSplitI
=
2054 LoopBlockSet
.empty()
2056 : std::stable_partition(
2057 SubLoops
.begin(), SubLoops
.end(), [&](Loop
*SubL
) {
2058 return LoopBlockSet
.count(SubL
->getHeader());
2060 for (auto *HoistedL
: make_range(SubLoopsSplitI
, SubLoops
.end())) {
2061 HoistedLoops
.push_back(HoistedL
);
2062 HoistedL
->setParentLoop(nullptr);
2064 // To compute the new parent of this hoisted loop we look at where we
2065 // placed the preheader above. We can't lookup the header itself because we
2066 // retained the mapping from the header to the hoisted loop. But the
2067 // preheader and header should have the exact same new parent computed
2068 // based on the set of exit blocks from the original loop as the preheader
2069 // is a predecessor of the header and so reached in the reverse walk. And
2070 // because the loops were all in simplified form the preheader of the
2071 // hoisted loop can't be part of some *other* loop.
2072 if (auto *NewParentL
= LI
.getLoopFor(HoistedL
->getLoopPreheader()))
2073 NewParentL
->addChildLoop(HoistedL
);
2075 LI
.addTopLevelLoop(HoistedL
);
2077 SubLoops
.erase(SubLoopsSplitI
, SubLoops
.end());
2079 // Actually delete the loop if nothing remained within it.
2080 if (Blocks
.empty()) {
2081 assert(SubLoops
.empty() &&
2082 "Failed to remove all subloops from the original loop!");
2083 if (Loop
*ParentL
= L
.getParentLoop())
2084 ParentL
->removeChildLoop(llvm::find(*ParentL
, &L
));
2086 LI
.removeLoop(llvm::find(LI
, &L
));
2087 // markLoopAsDeleted for L should be triggered by the caller (it is
2088 // typically done within postUnswitch).
2090 SE
->forgetBlockAndLoopDispositions();
2098 /// Helper to visit a dominator subtree, invoking a callable on each node.
2100 /// Returning false at any point will stop walking past that node of the tree.
2101 template <typename CallableT
>
2102 void visitDomSubTree(DominatorTree
&DT
, BasicBlock
*BB
, CallableT Callable
) {
2103 SmallVector
<DomTreeNode
*, 4> DomWorklist
;
2104 DomWorklist
.push_back(DT
[BB
]);
2106 SmallPtrSet
<DomTreeNode
*, 4> Visited
;
2107 Visited
.insert(DT
[BB
]);
2110 DomTreeNode
*N
= DomWorklist
.pop_back_val();
2113 if (!Callable(N
->getBlock()))
2116 // Accumulate the child nodes.
2117 for (DomTreeNode
*ChildN
: *N
) {
2118 assert(Visited
.insert(ChildN
).second
&&
2119 "Cannot visit a node twice when walking a tree!");
2120 DomWorklist
.push_back(ChildN
);
2122 } while (!DomWorklist
.empty());
2125 void postUnswitch(Loop
&L
, LPMUpdater
&U
, StringRef LoopName
,
2126 bool CurrentLoopValid
, bool PartiallyInvariant
,
2127 bool InjectedCondition
, ArrayRef
<Loop
*> NewLoops
) {
2128 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2129 if (!NewLoops
.empty())
2130 U
.addSiblingLoops(NewLoops
);
2132 // If the current loop remains valid, we should revisit it to catch any
2133 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2134 if (CurrentLoopValid
) {
2135 if (PartiallyInvariant
) {
2136 // Mark the new loop as partially unswitched, to avoid unswitching on
2137 // the same condition again.
2138 auto &Context
= L
.getHeader()->getContext();
2139 MDNode
*DisableUnswitchMD
= MDNode::get(
2141 MDString::get(Context
, "llvm.loop.unswitch.partial.disable"));
2142 MDNode
*NewLoopID
= makePostTransformationMetadata(
2143 Context
, L
.getLoopID(), {"llvm.loop.unswitch.partial"},
2144 {DisableUnswitchMD
});
2145 L
.setLoopID(NewLoopID
);
2146 } else if (InjectedCondition
) {
2147 // Do the same for injection of invariant conditions.
2148 auto &Context
= L
.getHeader()->getContext();
2149 MDNode
*DisableUnswitchMD
= MDNode::get(
2151 MDString::get(Context
, "llvm.loop.unswitch.injection.disable"));
2152 MDNode
*NewLoopID
= makePostTransformationMetadata(
2153 Context
, L
.getLoopID(), {"llvm.loop.unswitch.injection"},
2154 {DisableUnswitchMD
});
2155 L
.setLoopID(NewLoopID
);
2157 U
.revisitCurrentLoop();
2159 U
.markLoopAsDeleted(L
, LoopName
);
2162 static void unswitchNontrivialInvariants(
2163 Loop
&L
, Instruction
&TI
, ArrayRef
<Value
*> Invariants
,
2164 IVConditionInfo
&PartialIVInfo
, DominatorTree
&DT
, LoopInfo
&LI
,
2165 AssumptionCache
&AC
, ScalarEvolution
*SE
, MemorySSAUpdater
*MSSAU
,
2166 LPMUpdater
&LoopUpdater
, bool InsertFreeze
, bool InjectedCondition
) {
2167 auto *ParentBB
= TI
.getParent();
2168 BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
);
2169 SwitchInst
*SI
= BI
? nullptr : cast
<SwitchInst
>(&TI
);
2171 // Save the current loop name in a variable so that we can report it even
2172 // after it has been deleted.
2173 std::string
LoopName(L
.getName());
2175 // We can only unswitch switches, conditional branches with an invariant
2176 // condition, or combining invariant conditions with an instruction or
2177 // partially invariant instructions.
2178 assert((SI
|| (BI
&& BI
->isConditional())) &&
2179 "Can only unswitch switches and conditional branch!");
2180 bool PartiallyInvariant
= !PartialIVInfo
.InstToDuplicate
.empty();
2182 SI
|| (skipTrivialSelect(BI
->getCondition()) == Invariants
[0] &&
2183 !PartiallyInvariant
);
2185 assert(Invariants
.size() == 1 &&
2186 "Cannot have other invariants with full unswitching!");
2188 assert(isa
<Instruction
>(skipTrivialSelect(BI
->getCondition())) &&
2189 "Partial unswitching requires an instruction as the condition!");
2191 if (MSSAU
&& VerifyMemorySSA
)
2192 MSSAU
->getMemorySSA()->verifyMemorySSA();
2194 // Constant and BBs tracking the cloned and continuing successor. When we are
2195 // unswitching the entire condition, this can just be trivially chosen to
2196 // unswitch towards `true`. However, when we are unswitching a set of
2197 // invariants combined with `and` or `or` or partially invariant instructions,
2198 // the combining operation determines the best direction to unswitch: we want
2199 // to unswitch the direction that will collapse the branch.
2200 bool Direction
= true;
2202 if (!FullUnswitch
) {
2203 Value
*Cond
= skipTrivialSelect(BI
->getCondition());
2205 assert(((match(Cond
, m_LogicalAnd()) ^ match(Cond
, m_LogicalOr())) ||
2206 PartiallyInvariant
) &&
2207 "Only `or`, `and`, an `select`, partially invariant instructions "
2208 "can combine invariants being unswitched.");
2209 if (!match(Cond
, m_LogicalOr())) {
2210 if (match(Cond
, m_LogicalAnd()) ||
2211 (PartiallyInvariant
&& !PartialIVInfo
.KnownValue
->isOneValue())) {
2218 BasicBlock
*RetainedSuccBB
=
2219 BI
? BI
->getSuccessor(1 - ClonedSucc
) : SI
->getDefaultDest();
2220 SmallSetVector
<BasicBlock
*, 4> UnswitchedSuccBBs
;
2222 UnswitchedSuccBBs
.insert(BI
->getSuccessor(ClonedSucc
));
2224 for (auto Case
: SI
->cases())
2225 if (Case
.getCaseSuccessor() != RetainedSuccBB
)
2226 UnswitchedSuccBBs
.insert(Case
.getCaseSuccessor());
2228 assert(!UnswitchedSuccBBs
.count(RetainedSuccBB
) &&
2229 "Should not unswitch the same successor we are retaining!");
2231 // The branch should be in this exact loop. Any inner loop's invariant branch
2232 // should be handled by unswitching that inner loop. The caller of this
2233 // routine should filter out any candidates that remain (but were skipped for
2234 // whatever reason).
2235 assert(LI
.getLoopFor(ParentBB
) == &L
&& "Branch in an inner loop!");
2237 // Compute the parent loop now before we start hacking on things.
2238 Loop
*ParentL
= L
.getParentLoop();
2239 // Get blocks in RPO order for MSSA update, before changing the CFG.
2240 LoopBlocksRPO
LBRPO(&L
);
2244 // Compute the outer-most loop containing one of our exit blocks. This is the
2245 // furthest up our loopnest which can be mutated, which we will use below to
2247 Loop
*OuterExitL
= &L
;
2248 SmallVector
<BasicBlock
*, 4> ExitBlocks
;
2249 L
.getUniqueExitBlocks(ExitBlocks
);
2250 for (auto *ExitBB
: ExitBlocks
) {
2251 // ExitBB can be an exit block for several levels in the loop nest. Make
2252 // sure we find the top most.
2253 Loop
*NewOuterExitL
= getTopMostExitingLoop(ExitBB
, LI
);
2254 if (!NewOuterExitL
) {
2255 // We exited the entire nest with this block, so we're done.
2256 OuterExitL
= nullptr;
2259 if (NewOuterExitL
!= OuterExitL
&& NewOuterExitL
->contains(OuterExitL
))
2260 OuterExitL
= NewOuterExitL
;
2263 // At this point, we're definitely going to unswitch something so invalidate
2264 // any cached information in ScalarEvolution for the outer most loop
2265 // containing an exit block and all nested loops.
2268 SE
->forgetLoop(OuterExitL
);
2270 SE
->forgetTopmostLoop(&L
);
2271 SE
->forgetBlockAndLoopDispositions();
2274 // If the edge from this terminator to a successor dominates that successor,
2275 // store a map from each block in its dominator subtree to it. This lets us
2276 // tell when cloning for a particular successor if a block is dominated by
2277 // some *other* successor with a single data structure. We use this to
2278 // significantly reduce cloning.
2279 SmallDenseMap
<BasicBlock
*, BasicBlock
*, 16> DominatingSucc
;
2280 for (auto *SuccBB
: llvm::concat
<BasicBlock
*const>(ArrayRef(RetainedSuccBB
),
2282 if (SuccBB
->getUniquePredecessor() ||
2283 llvm::all_of(predecessors(SuccBB
), [&](BasicBlock
*PredBB
) {
2284 return PredBB
== ParentBB
|| DT
.dominates(SuccBB
, PredBB
);
2286 visitDomSubTree(DT
, SuccBB
, [&](BasicBlock
*BB
) {
2287 DominatingSucc
[BB
] = SuccBB
;
2291 // Split the preheader, so that we know that there is a safe place to insert
2292 // the conditional branch. We will change the preheader to have a conditional
2293 // branch on LoopCond. The original preheader will become the split point
2294 // between the unswitched versions, and we will have a new preheader for the
2296 BasicBlock
*SplitBB
= L
.getLoopPreheader();
2297 BasicBlock
*LoopPH
= SplitEdge(SplitBB
, L
.getHeader(), &DT
, &LI
, MSSAU
);
2299 // Keep track of the dominator tree updates needed.
2300 SmallVector
<DominatorTree::UpdateType
, 4> DTUpdates
;
2302 // Clone the loop for each unswitched successor.
2303 SmallVector
<std::unique_ptr
<ValueToValueMapTy
>, 4> VMaps
;
2304 VMaps
.reserve(UnswitchedSuccBBs
.size());
2305 SmallDenseMap
<BasicBlock
*, BasicBlock
*, 4> ClonedPHs
;
2306 for (auto *SuccBB
: UnswitchedSuccBBs
) {
2307 VMaps
.emplace_back(new ValueToValueMapTy());
2308 ClonedPHs
[SuccBB
] = buildClonedLoopBlocks(
2309 L
, LoopPH
, SplitBB
, ExitBlocks
, ParentBB
, SuccBB
, RetainedSuccBB
,
2310 DominatingSucc
, *VMaps
.back(), DTUpdates
, AC
, DT
, LI
, MSSAU
, SE
);
2313 // Drop metadata if we may break its semantics by moving this instr into the
2315 if (TI
.getMetadata(LLVMContext::MD_make_implicit
)) {
2316 if (DropNonTrivialImplicitNullChecks
)
2317 // Do not spend time trying to understand if we can keep it, just drop it
2318 // to save compile time.
2319 TI
.setMetadata(LLVMContext::MD_make_implicit
, nullptr);
2321 // It is only legal to preserve make.implicit metadata if we are
2322 // guaranteed no reach implicit null check after following this branch.
2323 ICFLoopSafetyInfo SafetyInfo
;
2324 SafetyInfo
.computeLoopSafetyInfo(&L
);
2325 if (!SafetyInfo
.isGuaranteedToExecute(TI
, &DT
, &L
))
2326 TI
.setMetadata(LLVMContext::MD_make_implicit
, nullptr);
2330 // The stitching of the branched code back together depends on whether we're
2331 // doing full unswitching or not with the exception that we always want to
2332 // nuke the initial terminator placed in the split block.
2333 SplitBB
->getTerminator()->eraseFromParent();
2335 // Splice the terminator from the original loop and rewrite its
2337 TI
.moveBefore(*SplitBB
, SplitBB
->end());
2339 // Keep a clone of the terminator for MSSA updates.
2340 Instruction
*NewTI
= TI
.clone();
2341 NewTI
->insertInto(ParentBB
, ParentBB
->end());
2343 // First wire up the moved terminator to the preheaders.
2345 BasicBlock
*ClonedPH
= ClonedPHs
.begin()->second
;
2346 BI
->setSuccessor(ClonedSucc
, ClonedPH
);
2347 BI
->setSuccessor(1 - ClonedSucc
, LoopPH
);
2348 Value
*Cond
= skipTrivialSelect(BI
->getCondition());
2350 Cond
= new FreezeInst(
2351 Cond
, Cond
->getName() + ".fr", BI
);
2352 BI
->setCondition(Cond
);
2353 DTUpdates
.push_back({DominatorTree::Insert
, SplitBB
, ClonedPH
});
2355 assert(SI
&& "Must either be a branch or switch!");
2357 // Walk the cases and directly update their successors.
2358 assert(SI
->getDefaultDest() == RetainedSuccBB
&&
2359 "Not retaining default successor!");
2360 SI
->setDefaultDest(LoopPH
);
2361 for (const auto &Case
: SI
->cases())
2362 if (Case
.getCaseSuccessor() == RetainedSuccBB
)
2363 Case
.setSuccessor(LoopPH
);
2365 Case
.setSuccessor(ClonedPHs
.find(Case
.getCaseSuccessor())->second
);
2368 SI
->setCondition(new FreezeInst(
2369 SI
->getCondition(), SI
->getCondition()->getName() + ".fr", SI
));
2371 // We need to use the set to populate domtree updates as even when there
2372 // are multiple cases pointing at the same successor we only want to
2373 // remove and insert one edge in the domtree.
2374 for (BasicBlock
*SuccBB
: UnswitchedSuccBBs
)
2375 DTUpdates
.push_back(
2376 {DominatorTree::Insert
, SplitBB
, ClonedPHs
.find(SuccBB
)->second
});
2380 DT
.applyUpdates(DTUpdates
);
2383 // Remove all but one edge to the retained block and all unswitched
2384 // blocks. This is to avoid having duplicate entries in the cloned Phis,
2385 // when we know we only keep a single edge for each case.
2386 MSSAU
->removeDuplicatePhiEdgesBetween(ParentBB
, RetainedSuccBB
);
2387 for (BasicBlock
*SuccBB
: UnswitchedSuccBBs
)
2388 MSSAU
->removeDuplicatePhiEdgesBetween(ParentBB
, SuccBB
);
2390 for (auto &VMap
: VMaps
)
2391 MSSAU
->updateForClonedLoop(LBRPO
, ExitBlocks
, *VMap
,
2392 /*IgnoreIncomingWithNoClones=*/true);
2393 MSSAU
->updateExitBlocksForClonedLoop(ExitBlocks
, VMaps
, DT
);
2395 // Remove all edges to unswitched blocks.
2396 for (BasicBlock
*SuccBB
: UnswitchedSuccBBs
)
2397 MSSAU
->removeEdge(ParentBB
, SuccBB
);
2400 // Now unhook the successor relationship as we'll be replacing
2401 // the terminator with a direct branch. This is much simpler for branches
2402 // than switches so we handle those first.
2404 // Remove the parent as a predecessor of the unswitched successor.
2405 assert(UnswitchedSuccBBs
.size() == 1 &&
2406 "Only one possible unswitched block for a branch!");
2407 BasicBlock
*UnswitchedSuccBB
= *UnswitchedSuccBBs
.begin();
2408 UnswitchedSuccBB
->removePredecessor(ParentBB
,
2409 /*KeepOneInputPHIs*/ true);
2410 DTUpdates
.push_back({DominatorTree::Delete
, ParentBB
, UnswitchedSuccBB
});
2412 // Note that we actually want to remove the parent block as a predecessor
2413 // of *every* case successor. The case successor is either unswitched,
2414 // completely eliminating an edge from the parent to that successor, or it
2415 // is a duplicate edge to the retained successor as the retained successor
2416 // is always the default successor and as we'll replace this with a direct
2417 // branch we no longer need the duplicate entries in the PHI nodes.
2418 SwitchInst
*NewSI
= cast
<SwitchInst
>(NewTI
);
2419 assert(NewSI
->getDefaultDest() == RetainedSuccBB
&&
2420 "Not retaining default successor!");
2421 for (const auto &Case
: NewSI
->cases())
2422 Case
.getCaseSuccessor()->removePredecessor(
2424 /*KeepOneInputPHIs*/ true);
2426 // We need to use the set to populate domtree updates as even when there
2427 // are multiple cases pointing at the same successor we only want to
2428 // remove and insert one edge in the domtree.
2429 for (BasicBlock
*SuccBB
: UnswitchedSuccBBs
)
2430 DTUpdates
.push_back({DominatorTree::Delete
, ParentBB
, SuccBB
});
2433 // After MSSAU update, remove the cloned terminator instruction NewTI.
2434 ParentBB
->getTerminator()->eraseFromParent();
2436 // Create a new unconditional branch to the continuing block (as opposed to
2438 BranchInst::Create(RetainedSuccBB
, ParentBB
);
2440 assert(BI
&& "Only branches have partial unswitching.");
2441 assert(UnswitchedSuccBBs
.size() == 1 &&
2442 "Only one possible unswitched block for a branch!");
2443 BasicBlock
*ClonedPH
= ClonedPHs
.begin()->second
;
2444 // When doing a partial unswitch, we have to do a bit more work to build up
2445 // the branch in the split block.
2446 if (PartiallyInvariant
)
2447 buildPartialInvariantUnswitchConditionalBranch(
2448 *SplitBB
, Invariants
, Direction
, *ClonedPH
, *LoopPH
, L
, MSSAU
);
2450 buildPartialUnswitchConditionalBranch(
2451 *SplitBB
, Invariants
, Direction
, *ClonedPH
, *LoopPH
,
2452 FreezeLoopUnswitchCond
, BI
, &AC
, DT
);
2454 DTUpdates
.push_back({DominatorTree::Insert
, SplitBB
, ClonedPH
});
2457 DT
.applyUpdates(DTUpdates
);
2460 // Perform MSSA cloning updates.
2461 for (auto &VMap
: VMaps
)
2462 MSSAU
->updateForClonedLoop(LBRPO
, ExitBlocks
, *VMap
,
2463 /*IgnoreIncomingWithNoClones=*/true);
2464 MSSAU
->updateExitBlocksForClonedLoop(ExitBlocks
, VMaps
, DT
);
2468 // Apply the updates accumulated above to get an up-to-date dominator tree.
2469 DT
.applyUpdates(DTUpdates
);
2471 // Now that we have an accurate dominator tree, first delete the dead cloned
2472 // blocks so that we can accurately build any cloned loops. It is important to
2473 // not delete the blocks from the original loop yet because we still want to
2474 // reference the original loop to understand the cloned loop's structure.
2475 deleteDeadClonedBlocks(L
, ExitBlocks
, VMaps
, DT
, MSSAU
);
2477 // Build the cloned loop structure itself. This may be substantially
2478 // different from the original structure due to the simplified CFG. This also
2479 // handles inserting all the cloned blocks into the correct loops.
2480 SmallVector
<Loop
*, 4> NonChildClonedLoops
;
2481 for (std::unique_ptr
<ValueToValueMapTy
> &VMap
: VMaps
)
2482 buildClonedLoops(L
, ExitBlocks
, *VMap
, LI
, NonChildClonedLoops
);
2484 // Now that our cloned loops have been built, we can update the original loop.
2485 // First we delete the dead blocks from it and then we rebuild the loop
2486 // structure taking these deletions into account.
2487 deleteDeadBlocksFromLoop(L
, ExitBlocks
, DT
, LI
, MSSAU
, SE
, LoopUpdater
);
2489 if (MSSAU
&& VerifyMemorySSA
)
2490 MSSAU
->getMemorySSA()->verifyMemorySSA();
2492 SmallVector
<Loop
*, 4> HoistedLoops
;
2494 rebuildLoopAfterUnswitch(L
, ExitBlocks
, LI
, HoistedLoops
, SE
);
2496 if (MSSAU
&& VerifyMemorySSA
)
2497 MSSAU
->getMemorySSA()->verifyMemorySSA();
2499 // This transformation has a high risk of corrupting the dominator tree, and
2500 // the below steps to rebuild loop structures will result in hard to debug
2501 // errors in that case so verify that the dominator tree is sane first.
2502 // FIXME: Remove this when the bugs stop showing up and rely on existing
2503 // verification steps.
2504 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
2506 if (BI
&& !PartiallyInvariant
) {
2507 // If we unswitched a branch which collapses the condition to a known
2508 // constant we want to replace all the uses of the invariants within both
2509 // the original and cloned blocks. We do this here so that we can use the
2510 // now updated dominator tree to identify which side the users are on.
2511 assert(UnswitchedSuccBBs
.size() == 1 &&
2512 "Only one possible unswitched block for a branch!");
2513 BasicBlock
*ClonedPH
= ClonedPHs
.begin()->second
;
2515 // When considering multiple partially-unswitched invariants
2516 // we cant just go replace them with constants in both branches.
2518 // For 'AND' we infer that true branch ("continue") means true
2519 // for each invariant operand.
2520 // For 'OR' we can infer that false branch ("continue") means false
2521 // for each invariant operand.
2522 // So it happens that for multiple-partial case we dont replace
2523 // in the unswitched branch.
2524 bool ReplaceUnswitched
=
2525 FullUnswitch
|| (Invariants
.size() == 1) || PartiallyInvariant
;
2527 ConstantInt
*UnswitchedReplacement
=
2528 Direction
? ConstantInt::getTrue(BI
->getContext())
2529 : ConstantInt::getFalse(BI
->getContext());
2530 ConstantInt
*ContinueReplacement
=
2531 Direction
? ConstantInt::getFalse(BI
->getContext())
2532 : ConstantInt::getTrue(BI
->getContext());
2533 for (Value
*Invariant
: Invariants
) {
2534 assert(!isa
<Constant
>(Invariant
) &&
2535 "Should not be replacing constant values!");
2536 // Use make_early_inc_range here as set invalidates the iterator.
2537 for (Use
&U
: llvm::make_early_inc_range(Invariant
->uses())) {
2538 Instruction
*UserI
= dyn_cast
<Instruction
>(U
.getUser());
2542 // Replace it with the 'continue' side if in the main loop body, and the
2543 // unswitched if in the cloned blocks.
2544 if (DT
.dominates(LoopPH
, UserI
->getParent()))
2545 U
.set(ContinueReplacement
);
2546 else if (ReplaceUnswitched
&&
2547 DT
.dominates(ClonedPH
, UserI
->getParent()))
2548 U
.set(UnswitchedReplacement
);
2553 // We can change which blocks are exit blocks of all the cloned sibling
2554 // loops, the current loop, and any parent loops which shared exit blocks
2555 // with the current loop. As a consequence, we need to re-form LCSSA for
2556 // them. But we shouldn't need to re-form LCSSA for any child loops.
2557 // FIXME: This could be made more efficient by tracking which exit blocks are
2558 // new, and focusing on them, but that isn't likely to be necessary.
2560 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2561 // loop nest and update every loop that could have had its exits changed. We
2562 // also need to cover any intervening loops. We add all of these loops to
2563 // a list and sort them by loop depth to achieve this without updating
2564 // unnecessary loops.
2565 auto UpdateLoop
= [&](Loop
&UpdateL
) {
2567 UpdateL
.verifyLoop();
2568 for (Loop
*ChildL
: UpdateL
) {
2569 ChildL
->verifyLoop();
2570 assert(ChildL
->isRecursivelyLCSSAForm(DT
, LI
) &&
2571 "Perturbed a child loop's LCSSA form!");
2574 // First build LCSSA for this loop so that we can preserve it when
2575 // forming dedicated exits. We don't want to perturb some other loop's
2576 // LCSSA while doing that CFG edit.
2577 formLCSSA(UpdateL
, DT
, &LI
, SE
);
2579 // For loops reached by this loop's original exit blocks we may
2580 // introduced new, non-dedicated exits. At least try to re-form dedicated
2581 // exits for these loops. This may fail if they couldn't have dedicated
2582 // exits to start with.
2583 formDedicatedExitBlocks(&UpdateL
, &DT
, &LI
, MSSAU
, /*PreserveLCSSA*/ true);
2586 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2587 // and we can do it in any order as they don't nest relative to each other.
2589 // Also check if any of the loops we have updated have become top-level loops
2590 // as that will necessitate widening the outer loop scope.
2591 for (Loop
*UpdatedL
:
2592 llvm::concat
<Loop
*>(NonChildClonedLoops
, HoistedLoops
)) {
2593 UpdateLoop(*UpdatedL
);
2594 if (UpdatedL
->isOutermost())
2595 OuterExitL
= nullptr;
2599 if (L
.isOutermost())
2600 OuterExitL
= nullptr;
2603 // If the original loop had exit blocks, walk up through the outer most loop
2604 // of those exit blocks to update LCSSA and form updated dedicated exits.
2605 if (OuterExitL
!= &L
)
2606 for (Loop
*OuterL
= ParentL
; OuterL
!= OuterExitL
;
2607 OuterL
= OuterL
->getParentLoop())
2608 UpdateLoop(*OuterL
);
2611 // Verify the entire loop structure to catch any incorrect updates before we
2612 // progress in the pass pipeline.
2616 // Now that we've unswitched something, make callbacks to report the changes.
2617 // For that we need to merge together the updated loops and the cloned loops
2618 // and check whether the original loop survived.
2619 SmallVector
<Loop
*, 4> SibLoops
;
2620 for (Loop
*UpdatedL
: llvm::concat
<Loop
*>(NonChildClonedLoops
, HoistedLoops
))
2621 if (UpdatedL
->getParentLoop() == ParentL
)
2622 SibLoops
.push_back(UpdatedL
);
2623 postUnswitch(L
, LoopUpdater
, LoopName
, IsStillLoop
, PartiallyInvariant
,
2624 InjectedCondition
, SibLoops
);
2626 if (MSSAU
&& VerifyMemorySSA
)
2627 MSSAU
->getMemorySSA()->verifyMemorySSA();
2635 /// Recursively compute the cost of a dominator subtree based on the per-block
2636 /// cost map provided.
2638 /// The recursive computation is memozied into the provided DT-indexed cost map
2639 /// to allow querying it for most nodes in the domtree without it becoming
2641 static InstructionCost
computeDomSubtreeCost(
2643 const SmallDenseMap
<BasicBlock
*, InstructionCost
, 4> &BBCostMap
,
2644 SmallDenseMap
<DomTreeNode
*, InstructionCost
, 4> &DTCostMap
) {
2645 // Don't accumulate cost (or recurse through) blocks not in our block cost
2646 // map and thus not part of the duplication cost being considered.
2647 auto BBCostIt
= BBCostMap
.find(N
.getBlock());
2648 if (BBCostIt
== BBCostMap
.end())
2651 // Lookup this node to see if we already computed its cost.
2652 auto DTCostIt
= DTCostMap
.find(&N
);
2653 if (DTCostIt
!= DTCostMap
.end())
2654 return DTCostIt
->second
;
2656 // If not, we have to compute it. We can't use insert above and update
2657 // because computing the cost may insert more things into the map.
2658 InstructionCost Cost
= std::accumulate(
2659 N
.begin(), N
.end(), BBCostIt
->second
,
2660 [&](InstructionCost Sum
, DomTreeNode
*ChildN
) -> InstructionCost
{
2661 return Sum
+ computeDomSubtreeCost(*ChildN
, BBCostMap
, DTCostMap
);
2663 bool Inserted
= DTCostMap
.insert({&N
, Cost
}).second
;
2665 assert(Inserted
&& "Should not insert a node while visiting children!");
2669 /// Turns a select instruction into implicit control flow branch,
2670 /// making the following replacement:
2673 /// --code before select--
2674 /// select %cond, %trueval, %falseval
2675 /// --code after select--
2680 /// --code before select--
2681 /// br i1 %cond, label %then, label %tail
2687 /// phi [ %trueval, %then ], [ %falseval, %head]
2690 /// It also makes all relevant DT and LI updates, so that all structures are in
2691 /// valid state after this transform.
2692 static BranchInst
*turnSelectIntoBranch(SelectInst
*SI
, DominatorTree
&DT
,
2693 LoopInfo
&LI
, MemorySSAUpdater
*MSSAU
,
2694 AssumptionCache
*AC
) {
2695 LLVM_DEBUG(dbgs() << "Turning " << *SI
<< " into a branch.\n");
2696 BasicBlock
*HeadBB
= SI
->getParent();
2698 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
2699 SplitBlockAndInsertIfThen(SI
->getCondition(), SI
, false,
2700 SI
->getMetadata(LLVMContext::MD_prof
), &DTU
, &LI
);
2701 auto *CondBr
= cast
<BranchInst
>(HeadBB
->getTerminator());
2702 BasicBlock
*ThenBB
= CondBr
->getSuccessor(0),
2703 *TailBB
= CondBr
->getSuccessor(1);
2705 MSSAU
->moveAllAfterSpliceBlocks(HeadBB
, TailBB
, SI
);
2707 PHINode
*Phi
= PHINode::Create(SI
->getType(), 2, "unswitched.select", SI
);
2708 Phi
->addIncoming(SI
->getTrueValue(), ThenBB
);
2709 Phi
->addIncoming(SI
->getFalseValue(), HeadBB
);
2710 SI
->replaceAllUsesWith(Phi
);
2711 SI
->eraseFromParent();
2713 if (MSSAU
&& VerifyMemorySSA
)
2714 MSSAU
->getMemorySSA()->verifyMemorySSA();
2720 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2721 /// making the following replacement:
2723 /// --code before guard--
2724 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2725 /// --code after guard--
2729 /// --code before guard--
2730 /// br i1 %cond, label %guarded, label %deopt
2733 /// --code after guard--
2736 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2739 /// It also makes all relevant DT and LI updates, so that all structures are in
2740 /// valid state after this transform.
2741 static BranchInst
*turnGuardIntoBranch(IntrinsicInst
*GI
, Loop
&L
,
2742 DominatorTree
&DT
, LoopInfo
&LI
,
2743 MemorySSAUpdater
*MSSAU
) {
2744 SmallVector
<DominatorTree::UpdateType
, 4> DTUpdates
;
2745 LLVM_DEBUG(dbgs() << "Turning " << *GI
<< " into a branch.\n");
2746 BasicBlock
*CheckBB
= GI
->getParent();
2748 if (MSSAU
&& VerifyMemorySSA
)
2749 MSSAU
->getMemorySSA()->verifyMemorySSA();
2751 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
2752 Instruction
*DeoptBlockTerm
=
2753 SplitBlockAndInsertIfThen(GI
->getArgOperand(0), GI
, true,
2754 GI
->getMetadata(LLVMContext::MD_prof
), &DTU
, &LI
);
2755 BranchInst
*CheckBI
= cast
<BranchInst
>(CheckBB
->getTerminator());
2756 // SplitBlockAndInsertIfThen inserts control flow that branches to
2757 // DeoptBlockTerm if the condition is true. We want the opposite.
2758 CheckBI
->swapSuccessors();
2760 BasicBlock
*GuardedBlock
= CheckBI
->getSuccessor(0);
2761 GuardedBlock
->setName("guarded");
2762 CheckBI
->getSuccessor(1)->setName("deopt");
2763 BasicBlock
*DeoptBlock
= CheckBI
->getSuccessor(1);
2766 MSSAU
->moveAllAfterSpliceBlocks(CheckBB
, GuardedBlock
, GI
);
2768 GI
->moveBefore(DeoptBlockTerm
);
2769 GI
->setArgOperand(0, ConstantInt::getFalse(GI
->getContext()));
2772 MemoryDef
*MD
= cast
<MemoryDef
>(MSSAU
->getMemorySSA()->getMemoryAccess(GI
));
2773 MSSAU
->moveToPlace(MD
, DeoptBlock
, MemorySSA::BeforeTerminator
);
2774 if (VerifyMemorySSA
)
2775 MSSAU
->getMemorySSA()->verifyMemorySSA();
2784 /// Cost multiplier is a way to limit potentially exponential behavior
2785 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2786 /// candidates available. Also accounting for the number of "sibling" loops with
2787 /// the idea to account for previous unswitches that already happened on this
2788 /// cluster of loops. There was an attempt to keep this formula simple,
2789 /// just enough to limit the worst case behavior. Even if it is not that simple
2790 /// now it is still not an attempt to provide a detailed heuristic size
2793 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2794 /// unswitch candidates, making adequate predictions instead of wild guesses.
2795 /// That requires knowing not just the number of "remaining" candidates but
2796 /// also costs of unswitching for each of these candidates.
2797 static int CalculateUnswitchCostMultiplier(
2798 const Instruction
&TI
, const Loop
&L
, const LoopInfo
&LI
,
2799 const DominatorTree
&DT
,
2800 ArrayRef
<NonTrivialUnswitchCandidate
> UnswitchCandidates
) {
2802 // Guards and other exiting conditions do not contribute to exponential
2803 // explosion as soon as they dominate the latch (otherwise there might be
2804 // another path to the latch remaining that does not allow to eliminate the
2805 // loop copy on unswitch).
2806 const BasicBlock
*Latch
= L
.getLoopLatch();
2807 const BasicBlock
*CondBlock
= TI
.getParent();
2808 if (DT
.dominates(CondBlock
, Latch
) &&
2810 (TI
.isTerminator() &&
2811 llvm::count_if(successors(&TI
), [&L
](const BasicBlock
*SuccBB
) {
2812 return L
.contains(SuccBB
);
2814 NumCostMultiplierSkipped
++;
2818 auto *ParentL
= L
.getParentLoop();
2819 int SiblingsCount
= (ParentL
? ParentL
->getSubLoopsVector().size()
2820 : std::distance(LI
.begin(), LI
.end()));
2821 // Count amount of clones that all the candidates might cause during
2822 // unswitching. Branch/guard/select counts as 1, switch counts as log2 of its
2824 int UnswitchedClones
= 0;
2825 for (const auto &Candidate
: UnswitchCandidates
) {
2826 const Instruction
*CI
= Candidate
.TI
;
2827 const BasicBlock
*CondBlock
= CI
->getParent();
2828 bool SkipExitingSuccessors
= DT
.dominates(CondBlock
, Latch
);
2829 if (isa
<SelectInst
>(CI
)) {
2834 if (!SkipExitingSuccessors
)
2838 int NonExitingSuccessors
=
2839 llvm::count_if(successors(CondBlock
),
2840 [SkipExitingSuccessors
, &L
](const BasicBlock
*SuccBB
) {
2841 return !SkipExitingSuccessors
|| L
.contains(SuccBB
);
2843 UnswitchedClones
+= Log2_32(NonExitingSuccessors
);
2846 // Ignore up to the "unscaled candidates" number of unswitch candidates
2847 // when calculating the power-of-two scaling of the cost. The main idea
2848 // with this control is to allow a small number of unswitches to happen
2849 // and rely more on siblings multiplier (see below) when the number
2850 // of candidates is small.
2851 unsigned ClonesPower
=
2852 std::max(UnswitchedClones
- (int)UnswitchNumInitialUnscaledCandidates
, 0);
2854 // Allowing top-level loops to spread a bit more than nested ones.
2855 int SiblingsMultiplier
=
2856 std::max((ParentL
? SiblingsCount
2857 : SiblingsCount
/ (int)UnswitchSiblingsToplevelDiv
),
2859 // Compute the cost multiplier in a way that won't overflow by saturating
2860 // at an upper bound.
2862 if (ClonesPower
> Log2_32(UnswitchThreshold
) ||
2863 SiblingsMultiplier
> UnswitchThreshold
)
2864 CostMultiplier
= UnswitchThreshold
;
2866 CostMultiplier
= std::min(SiblingsMultiplier
* (1 << ClonesPower
),
2867 (int)UnswitchThreshold
);
2869 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier
2870 << " (siblings " << SiblingsMultiplier
<< " * clones "
2871 << (1 << ClonesPower
) << ")"
2872 << " for unswitch candidate: " << TI
<< "\n");
2873 return CostMultiplier
;
2876 static bool collectUnswitchCandidates(
2877 SmallVectorImpl
<NonTrivialUnswitchCandidate
> &UnswitchCandidates
,
2878 IVConditionInfo
&PartialIVInfo
, Instruction
*&PartialIVCondBranch
,
2879 const Loop
&L
, const LoopInfo
&LI
, AAResults
&AA
,
2880 const MemorySSAUpdater
*MSSAU
) {
2881 assert(UnswitchCandidates
.empty() && "Should be!");
2883 auto AddUnswitchCandidatesForInst
= [&](Instruction
*I
, Value
*Cond
) {
2884 Cond
= skipTrivialSelect(Cond
);
2885 if (isa
<Constant
>(Cond
))
2887 if (L
.isLoopInvariant(Cond
)) {
2888 UnswitchCandidates
.push_back({I
, {Cond
}});
2891 if (match(Cond
, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2892 TinyPtrVector
<Value
*> Invariants
=
2893 collectHomogenousInstGraphLoopInvariants(
2894 L
, *static_cast<Instruction
*>(Cond
), LI
);
2895 if (!Invariants
.empty())
2896 UnswitchCandidates
.push_back({I
, std::move(Invariants
)});
2900 // Whether or not we should also collect guards in the loop.
2901 bool CollectGuards
= false;
2902 if (UnswitchGuards
) {
2903 auto *GuardDecl
= L
.getHeader()->getParent()->getParent()->getFunction(
2904 Intrinsic::getName(Intrinsic::experimental_guard
));
2905 if (GuardDecl
&& !GuardDecl
->use_empty())
2906 CollectGuards
= true;
2909 for (auto *BB
: L
.blocks()) {
2910 if (LI
.getLoopFor(BB
) != &L
)
2913 for (auto &I
: *BB
) {
2914 if (auto *SI
= dyn_cast
<SelectInst
>(&I
)) {
2915 auto *Cond
= SI
->getCondition();
2916 // Do not unswitch vector selects and logical and/or selects
2917 if (Cond
->getType()->isIntegerTy(1) && !SI
->getType()->isIntegerTy(1))
2918 AddUnswitchCandidatesForInst(SI
, Cond
);
2919 } else if (CollectGuards
&& isGuard(&I
)) {
2921 skipTrivialSelect(cast
<IntrinsicInst
>(&I
)->getArgOperand(0));
2922 // TODO: Support AND, OR conditions and partial unswitching.
2923 if (!isa
<Constant
>(Cond
) && L
.isLoopInvariant(Cond
))
2924 UnswitchCandidates
.push_back({&I
, {Cond
}});
2928 if (auto *SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
2929 // We can only consider fully loop-invariant switch conditions as we need
2930 // to completely eliminate the switch after unswitching.
2931 if (!isa
<Constant
>(SI
->getCondition()) &&
2932 L
.isLoopInvariant(SI
->getCondition()) && !BB
->getUniqueSuccessor())
2933 UnswitchCandidates
.push_back({SI
, {SI
->getCondition()}});
2937 auto *BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
2938 if (!BI
|| !BI
->isConditional() ||
2939 BI
->getSuccessor(0) == BI
->getSuccessor(1))
2942 AddUnswitchCandidatesForInst(BI
, BI
->getCondition());
2945 if (MSSAU
&& !findOptionMDForLoop(&L
, "llvm.loop.unswitch.partial.disable") &&
2946 !any_of(UnswitchCandidates
, [&L
](auto &TerminatorAndInvariants
) {
2947 return TerminatorAndInvariants
.TI
== L
.getHeader()->getTerminator();
2949 MemorySSA
*MSSA
= MSSAU
->getMemorySSA();
2950 if (auto Info
= hasPartialIVCondition(L
, MSSAThreshold
, *MSSA
, AA
)) {
2952 dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2953 << *Info
->InstToDuplicate
[0] << "\n");
2954 PartialIVInfo
= *Info
;
2955 PartialIVCondBranch
= L
.getHeader()->getTerminator();
2956 TinyPtrVector
<Value
*> ValsToDuplicate
;
2957 llvm::append_range(ValsToDuplicate
, Info
->InstToDuplicate
);
2958 UnswitchCandidates
.push_back(
2959 {L
.getHeader()->getTerminator(), std::move(ValsToDuplicate
)});
2962 return !UnswitchCandidates
.empty();
2965 /// Tries to canonicalize condition described by:
2967 /// br (LHS pred RHS), label IfTrue, label IfFalse
2969 /// into its equivalent where `Pred` is something that we support for injected
2970 /// invariants (so far it is limited to ult), LHS in canonicalized form is
2971 /// non-invariant and RHS is an invariant.
2972 static void canonicalizeForInvariantConditionInjection(
2973 ICmpInst::Predicate
&Pred
, Value
*&LHS
, Value
*&RHS
, BasicBlock
*&IfTrue
,
2974 BasicBlock
*&IfFalse
, const Loop
&L
) {
2975 if (!L
.contains(IfTrue
)) {
2976 Pred
= ICmpInst::getInversePredicate(Pred
);
2977 std::swap(IfTrue
, IfFalse
);
2980 // Move loop-invariant argument to RHS position.
2981 if (L
.isLoopInvariant(LHS
)) {
2982 Pred
= ICmpInst::getSwappedPredicate(Pred
);
2983 std::swap(LHS
, RHS
);
2986 if (Pred
== ICmpInst::ICMP_SGE
&& match(RHS
, m_Zero())) {
2987 // Turn "x >=s 0" into "x <u UMIN_INT"
2988 Pred
= ICmpInst::ICMP_ULT
;
2989 RHS
= ConstantInt::get(
2991 APInt::getSignedMinValue(RHS
->getType()->getIntegerBitWidth()));
2995 /// Returns true, if predicate described by ( \p Pred, \p LHS, \p RHS )
2996 /// succeeding into blocks ( \p IfTrue, \p IfFalse) can be optimized by
2997 /// injecting a loop-invariant condition.
2998 static bool shouldTryInjectInvariantCondition(
2999 const ICmpInst::Predicate Pred
, const Value
*LHS
, const Value
*RHS
,
3000 const BasicBlock
*IfTrue
, const BasicBlock
*IfFalse
, const Loop
&L
) {
3001 if (L
.isLoopInvariant(LHS
) || !L
.isLoopInvariant(RHS
))
3003 // TODO: Support other predicates.
3004 if (Pred
!= ICmpInst::ICMP_ULT
)
3006 // TODO: Support non-loop-exiting branches?
3007 if (!L
.contains(IfTrue
) || L
.contains(IfFalse
))
3009 // FIXME: For some reason this causes problems with MSSA updates, need to
3010 // investigate why. So far, just don't unswitch latch.
3011 if (L
.getHeader() == IfTrue
)
3016 /// Returns true, if metadata on \p BI allows us to optimize branching into \p
3017 /// TakenSucc via injection of invariant conditions. The branch should be not
3018 /// enough and not previously unswitched, the information about this comes from
3020 bool shouldTryInjectBasingOnMetadata(const BranchInst
*BI
,
3021 const BasicBlock
*TakenSucc
) {
3022 SmallVector
<uint32_t> Weights
;
3023 if (!extractBranchWeights(*BI
, Weights
))
3025 unsigned T
= InjectInvariantConditionHotnesThreshold
;
3026 BranchProbability
LikelyTaken(T
- 1, T
);
3028 assert(Weights
.size() == 2 && "Unexpected profile data!");
3029 size_t Idx
= BI
->getSuccessor(0) == TakenSucc
? 0 : 1;
3030 auto Num
= Weights
[Idx
];
3031 auto Denom
= Weights
[0] + Weights
[1];
3032 // Degenerate or overflowed metadata.
3033 if (Denom
== 0 || Num
> Denom
)
3035 BranchProbability
ActualTaken(Num
, Denom
);
3036 if (LikelyTaken
> ActualTaken
)
3041 /// Materialize pending invariant condition of the given candidate into IR. The
3042 /// injected loop-invariant condition implies the original loop-variant branch
3043 /// condition, so the materialization turns
3047 /// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
3052 /// %invariant_cond = LHS pred RHS
3055 /// br i1 %invariant_cond, label InLoopSucc, label OriginalCheck
3057 /// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
3059 static NonTrivialUnswitchCandidate
3060 injectPendingInvariantConditions(NonTrivialUnswitchCandidate Candidate
, Loop
&L
,
3061 DominatorTree
&DT
, LoopInfo
&LI
,
3062 AssumptionCache
&AC
, MemorySSAUpdater
*MSSAU
) {
3063 assert(Candidate
.hasPendingInjection() && "Nothing to inject!");
3064 BasicBlock
*Preheader
= L
.getLoopPreheader();
3065 assert(Preheader
&& "Loop is not in simplified form?");
3066 assert(LI
.getLoopFor(Candidate
.TI
->getParent()) == &L
&&
3067 "Unswitching branch of inner loop!");
3069 auto Pred
= Candidate
.PendingInjection
->Pred
;
3070 auto *LHS
= Candidate
.PendingInjection
->LHS
;
3071 auto *RHS
= Candidate
.PendingInjection
->RHS
;
3072 auto *InLoopSucc
= Candidate
.PendingInjection
->InLoopSucc
;
3073 auto *TI
= cast
<BranchInst
>(Candidate
.TI
);
3074 auto *BB
= Candidate
.TI
->getParent();
3075 auto *OutOfLoopSucc
= InLoopSucc
== TI
->getSuccessor(0) ? TI
->getSuccessor(1)
3076 : TI
->getSuccessor(0);
3077 // FIXME: Remove this once limitation on successors is lifted.
3078 assert(L
.contains(InLoopSucc
) && "Not supported yet!");
3079 assert(!L
.contains(OutOfLoopSucc
) && "Not supported yet!");
3080 auto &Ctx
= BB
->getContext();
3082 IRBuilder
<> Builder(Preheader
->getTerminator());
3083 assert(ICmpInst::isUnsigned(Pred
) && "Not supported yet!");
3084 if (LHS
->getType() != RHS
->getType()) {
3085 if (LHS
->getType()->getIntegerBitWidth() <
3086 RHS
->getType()->getIntegerBitWidth())
3087 LHS
= Builder
.CreateZExt(LHS
, RHS
->getType(), LHS
->getName() + ".wide");
3089 RHS
= Builder
.CreateZExt(RHS
, LHS
->getType(), RHS
->getName() + ".wide");
3091 // Do not use builder here: CreateICmp may simplify this into a constant and
3092 // unswitching will break. Better optimize it away later.
3093 auto *InjectedCond
=
3094 ICmpInst::Create(Instruction::ICmp
, Pred
, LHS
, RHS
, "injected.cond",
3095 Preheader
->getTerminator());
3097 BasicBlock
*CheckBlock
= BasicBlock::Create(Ctx
, BB
->getName() + ".check",
3098 BB
->getParent(), InLoopSucc
);
3099 Builder
.SetInsertPoint(TI
);
3101 Builder
.CreateCondBr(InjectedCond
, InLoopSucc
, CheckBlock
);
3103 Builder
.SetInsertPoint(CheckBlock
);
3104 Builder
.CreateCondBr(TI
->getCondition(), TI
->getSuccessor(0),
3105 TI
->getSuccessor(1));
3106 TI
->eraseFromParent();
3109 for (auto &I
: *InLoopSucc
) {
3110 auto *PN
= dyn_cast
<PHINode
>(&I
);
3113 auto *Inc
= PN
->getIncomingValueForBlock(BB
);
3114 PN
->addIncoming(Inc
, CheckBlock
);
3116 OutOfLoopSucc
->replacePhiUsesWith(BB
, CheckBlock
);
3118 SmallVector
<DominatorTree::UpdateType
, 4> DTUpdates
= {
3119 { DominatorTree::Insert
, BB
, CheckBlock
},
3120 { DominatorTree::Insert
, CheckBlock
, InLoopSucc
},
3121 { DominatorTree::Insert
, CheckBlock
, OutOfLoopSucc
},
3122 { DominatorTree::Delete
, BB
, OutOfLoopSucc
}
3125 DT
.applyUpdates(DTUpdates
);
3127 MSSAU
->applyUpdates(DTUpdates
, DT
);
3128 L
.addBasicBlockToLoop(CheckBlock
, LI
);
3133 if (MSSAU
&& VerifyMemorySSA
)
3134 MSSAU
->getMemorySSA()->verifyMemorySSA();
3137 // TODO: In fact, cost of unswitching a new invariant candidate is *slightly*
3138 // higher because we have just inserted a new block. Need to think how to
3139 // adjust the cost of injected candidates when it was first computed.
3140 LLVM_DEBUG(dbgs() << "Injected a new loop-invariant branch " << *InvariantBr
3141 << " and considering it for unswitching.");
3142 ++NumInvariantConditionsInjected
;
3143 return NonTrivialUnswitchCandidate(InvariantBr
, { InjectedCond
},
3147 /// Given chain of loop branch conditions looking like:
3148 /// br (Variant < Invariant1)
3149 /// br (Variant < Invariant2)
3150 /// br (Variant < Invariant3)
3152 /// collect set of invariant conditions on which we want to unswitch, which
3154 /// Invariant1 <= Invariant2
3155 /// Invariant2 <= Invariant3
3157 /// Though they might not immediately exist in the IR, we can still inject them.
3158 static bool insertCandidatesWithPendingInjections(
3159 SmallVectorImpl
<NonTrivialUnswitchCandidate
> &UnswitchCandidates
, Loop
&L
,
3160 ICmpInst::Predicate Pred
, ArrayRef
<CompareDesc
> Compares
,
3161 const DominatorTree
&DT
) {
3163 assert(ICmpInst::isRelational(Pred
));
3164 assert(ICmpInst::isStrictPredicate(Pred
));
3165 if (Compares
.size() < 2)
3167 ICmpInst::Predicate NonStrictPred
= ICmpInst::getNonStrictPredicate(Pred
);
3168 for (auto Prev
= Compares
.begin(), Next
= Compares
.begin() + 1;
3169 Next
!= Compares
.end(); ++Prev
, ++Next
) {
3170 Value
*LHS
= Next
->Invariant
;
3171 Value
*RHS
= Prev
->Invariant
;
3172 BasicBlock
*InLoopSucc
= Prev
->InLoopSucc
;
3173 InjectedInvariant
ToInject(NonStrictPred
, LHS
, RHS
, InLoopSucc
);
3174 NonTrivialUnswitchCandidate
Candidate(Prev
->Term
, { LHS
, RHS
},
3175 std::nullopt
, std::move(ToInject
));
3176 UnswitchCandidates
.push_back(std::move(Candidate
));
3181 /// Collect unswitch candidates by invariant conditions that are not immediately
3182 /// present in the loop. However, they can be injected into the code if we
3183 /// decide it's profitable.
3184 /// An example of such conditions is following:
3188 /// if (! x <u C1) break;
3189 /// if (! x <u C2) break;
3193 /// We can unswitch by condition "C1 <=u C2". If that is true, then "x <u C1 <=
3194 /// C2" automatically implies "x <u C2", so we can get rid of one of
3195 /// loop-variant checks in unswitched loop version.
3196 static bool collectUnswitchCandidatesWithInjections(
3197 SmallVectorImpl
<NonTrivialUnswitchCandidate
> &UnswitchCandidates
,
3198 IVConditionInfo
&PartialIVInfo
, Instruction
*&PartialIVCondBranch
, Loop
&L
,
3199 const DominatorTree
&DT
, const LoopInfo
&LI
, AAResults
&AA
,
3200 const MemorySSAUpdater
*MSSAU
) {
3201 if (!InjectInvariantConditions
)
3204 if (!DT
.isReachableFromEntry(L
.getHeader()))
3206 auto *Latch
= L
.getLoopLatch();
3207 // Need to have a single latch and a preheader.
3210 assert(L
.getLoopPreheader() && "Must have a preheader!");
3212 DenseMap
<Value
*, SmallVector
<CompareDesc
, 4> > CandidatesULT
;
3213 // Traverse the conditions that dominate latch (and therefore dominate each
3215 for (auto *DTN
= DT
.getNode(Latch
); L
.contains(DTN
->getBlock());
3216 DTN
= DTN
->getIDom()) {
3217 ICmpInst::Predicate Pred
;
3218 Value
*LHS
= nullptr, *RHS
= nullptr;
3219 BasicBlock
*IfTrue
= nullptr, *IfFalse
= nullptr;
3220 auto *BB
= DTN
->getBlock();
3221 // Ignore inner loops.
3222 if (LI
.getLoopFor(BB
) != &L
)
3224 auto *Term
= BB
->getTerminator();
3225 if (!match(Term
, m_Br(m_ICmp(Pred
, m_Value(LHS
), m_Value(RHS
)),
3226 m_BasicBlock(IfTrue
), m_BasicBlock(IfFalse
))))
3228 if (!LHS
->getType()->isIntegerTy())
3230 canonicalizeForInvariantConditionInjection(Pred
, LHS
, RHS
, IfTrue
, IfFalse
,
3232 if (!shouldTryInjectInvariantCondition(Pred
, LHS
, RHS
, IfTrue
, IfFalse
, L
))
3234 if (!shouldTryInjectBasingOnMetadata(cast
<BranchInst
>(Term
), IfTrue
))
3236 // Strip ZEXT for unsigned predicate.
3237 // TODO: once signed predicates are supported, also strip SEXT.
3238 CompareDesc
Desc(cast
<BranchInst
>(Term
), RHS
, IfTrue
);
3239 while (auto *Zext
= dyn_cast
<ZExtInst
>(LHS
))
3240 LHS
= Zext
->getOperand(0);
3241 CandidatesULT
[LHS
].push_back(Desc
);
3245 for (auto &It
: CandidatesULT
)
3246 Found
|= insertCandidatesWithPendingInjections(
3247 UnswitchCandidates
, L
, ICmpInst::ICMP_ULT
, It
.second
, DT
);
3251 static bool isSafeForNoNTrivialUnswitching(Loop
&L
, LoopInfo
&LI
) {
3252 if (!L
.isSafeToClone())
3254 for (auto *BB
: L
.blocks())
3255 for (auto &I
: *BB
) {
3256 if (I
.getType()->isTokenTy() && I
.isUsedOutsideOfBlock(BB
))
3258 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
3259 assert(!CB
->cannotDuplicate() && "Checked by L.isSafeToClone().");
3260 if (CB
->isConvergent())
3265 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
3266 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
3267 // irreducible control flow into reducible control flow and introduce new
3268 // loops "out of thin air". If we ever discover important use cases for doing
3269 // this, we can add support to loop unswitch, but it is a lot of complexity
3270 // for what seems little or no real world benefit.
3271 LoopBlocksRPO
RPOT(&L
);
3273 if (containsIrreducibleCFG
<const BasicBlock
*>(RPOT
, LI
))
3276 SmallVector
<BasicBlock
*, 4> ExitBlocks
;
3277 L
.getUniqueExitBlocks(ExitBlocks
);
3278 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
3279 // instruction as we don't know how to split those exit blocks.
3280 // FIXME: We should teach SplitBlock to handle this and remove this
3282 for (auto *ExitBB
: ExitBlocks
) {
3283 auto *I
= ExitBB
->getFirstNonPHI();
3284 if (isa
<CleanupPadInst
>(I
) || isa
<CatchSwitchInst
>(I
)) {
3285 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
3294 static NonTrivialUnswitchCandidate
findBestNonTrivialUnswitchCandidate(
3295 ArrayRef
<NonTrivialUnswitchCandidate
> UnswitchCandidates
, const Loop
&L
,
3296 const DominatorTree
&DT
, const LoopInfo
&LI
, AssumptionCache
&AC
,
3297 const TargetTransformInfo
&TTI
, const IVConditionInfo
&PartialIVInfo
) {
3298 // Given that unswitching these terminators will require duplicating parts of
3299 // the loop, so we need to be able to model that cost. Compute the ephemeral
3300 // values and set up a data structure to hold per-BB costs. We cache each
3301 // block's cost so that we don't recompute this when considering different
3302 // subsets of the loop for duplication during unswitching.
3303 SmallPtrSet
<const Value
*, 4> EphValues
;
3304 CodeMetrics::collectEphemeralValues(&L
, &AC
, EphValues
);
3305 SmallDenseMap
<BasicBlock
*, InstructionCost
, 4> BBCostMap
;
3307 // Compute the cost of each block, as well as the total loop cost. Also, bail
3308 // out if we see instructions which are incompatible with loop unswitching
3309 // (convergent, noduplicate, or cross-basic-block tokens).
3310 // FIXME: We might be able to safely handle some of these in non-duplicated
3312 TargetTransformInfo::TargetCostKind CostKind
=
3313 L
.getHeader()->getParent()->hasMinSize()
3314 ? TargetTransformInfo::TCK_CodeSize
3315 : TargetTransformInfo::TCK_SizeAndLatency
;
3316 InstructionCost LoopCost
= 0;
3317 for (auto *BB
: L
.blocks()) {
3318 InstructionCost Cost
= 0;
3319 for (auto &I
: *BB
) {
3320 if (EphValues
.count(&I
))
3322 Cost
+= TTI
.getInstructionCost(&I
, CostKind
);
3324 assert(Cost
>= 0 && "Must not have negative costs!");
3326 assert(LoopCost
>= 0 && "Must not have negative loop costs!");
3327 BBCostMap
[BB
] = Cost
;
3329 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost
<< "\n");
3331 // Now we find the best candidate by searching for the one with the following
3332 // properties in order:
3334 // 1) An unswitching cost below the threshold
3335 // 2) The smallest number of duplicated unswitch candidates (to avoid
3336 // creating redundant subsequent unswitching)
3337 // 3) The smallest cost after unswitching.
3339 // We prioritize reducing fanout of unswitch candidates provided the cost
3340 // remains below the threshold because this has a multiplicative effect.
3342 // This requires memoizing each dominator subtree to avoid redundant work.
3344 // FIXME: Need to actually do the number of candidates part above.
3345 SmallDenseMap
<DomTreeNode
*, InstructionCost
, 4> DTCostMap
;
3346 // Given a terminator which might be unswitched, computes the non-duplicated
3347 // cost for that terminator.
3348 auto ComputeUnswitchedCost
= [&](Instruction
&TI
,
3349 bool FullUnswitch
) -> InstructionCost
{
3350 // Unswitching selects unswitches the entire loop.
3351 if (isa
<SelectInst
>(TI
))
3354 BasicBlock
&BB
= *TI
.getParent();
3355 SmallPtrSet
<BasicBlock
*, 4> Visited
;
3357 InstructionCost Cost
= 0;
3358 for (BasicBlock
*SuccBB
: successors(&BB
)) {
3359 // Don't count successors more than once.
3360 if (!Visited
.insert(SuccBB
).second
)
3363 // If this is a partial unswitch candidate, then it must be a conditional
3364 // branch with a condition of either `or`, `and`, their corresponding
3365 // select forms or partially invariant instructions. In that case, one of
3366 // the successors is necessarily duplicated, so don't even try to remove
3368 if (!FullUnswitch
) {
3369 auto &BI
= cast
<BranchInst
>(TI
);
3370 Value
*Cond
= skipTrivialSelect(BI
.getCondition());
3371 if (match(Cond
, m_LogicalAnd())) {
3372 if (SuccBB
== BI
.getSuccessor(1))
3374 } else if (match(Cond
, m_LogicalOr())) {
3375 if (SuccBB
== BI
.getSuccessor(0))
3377 } else if ((PartialIVInfo
.KnownValue
->isOneValue() &&
3378 SuccBB
== BI
.getSuccessor(0)) ||
3379 (!PartialIVInfo
.KnownValue
->isOneValue() &&
3380 SuccBB
== BI
.getSuccessor(1)))
3384 // This successor's domtree will not need to be duplicated after
3385 // unswitching if the edge to the successor dominates it (and thus the
3386 // entire tree). This essentially means there is no other path into this
3387 // subtree and so it will end up live in only one clone of the loop.
3388 if (SuccBB
->getUniquePredecessor() ||
3389 llvm::all_of(predecessors(SuccBB
), [&](BasicBlock
*PredBB
) {
3390 return PredBB
== &BB
|| DT
.dominates(SuccBB
, PredBB
);
3392 Cost
+= computeDomSubtreeCost(*DT
[SuccBB
], BBCostMap
, DTCostMap
);
3393 assert(Cost
<= LoopCost
&&
3394 "Non-duplicated cost should never exceed total loop cost!");
3398 // Now scale the cost by the number of unique successors minus one. We
3399 // subtract one because there is already at least one copy of the entire
3400 // loop. This is computing the new cost of unswitching a condition.
3401 // Note that guards always have 2 unique successors that are implicit and
3402 // will be materialized if we decide to unswitch it.
3403 int SuccessorsCount
= isGuard(&TI
) ? 2 : Visited
.size();
3404 assert(SuccessorsCount
> 1 &&
3405 "Cannot unswitch a condition without multiple distinct successors!");
3406 return (LoopCost
- Cost
) * (SuccessorsCount
- 1);
3409 std::optional
<NonTrivialUnswitchCandidate
> Best
;
3410 for (auto &Candidate
: UnswitchCandidates
) {
3411 Instruction
&TI
= *Candidate
.TI
;
3412 ArrayRef
<Value
*> Invariants
= Candidate
.Invariants
;
3413 BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
);
3415 !BI
|| Candidate
.hasPendingInjection() ||
3416 (Invariants
.size() == 1 &&
3417 Invariants
[0] == skipTrivialSelect(BI
->getCondition()));
3418 InstructionCost CandidateCost
= ComputeUnswitchedCost(TI
, FullUnswitch
);
3419 // Calculate cost multiplier which is a tool to limit potentially
3420 // exponential behavior of loop-unswitch.
3421 if (EnableUnswitchCostMultiplier
) {
3422 int CostMultiplier
=
3423 CalculateUnswitchCostMultiplier(TI
, L
, LI
, DT
, UnswitchCandidates
);
3425 (CostMultiplier
> 0 && CostMultiplier
<= UnswitchThreshold
) &&
3426 "cost multiplier needs to be in the range of 1..UnswitchThreshold");
3427 CandidateCost
*= CostMultiplier
;
3428 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
3429 << " (multiplier: " << CostMultiplier
<< ")"
3430 << " for unswitch candidate: " << TI
<< "\n");
3432 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
3433 << " for unswitch candidate: " << TI
<< "\n");
3436 if (!Best
|| CandidateCost
< Best
->Cost
) {
3438 Best
->Cost
= CandidateCost
;
3441 assert(Best
&& "Must be!");
3445 // Insert a freeze on an unswitched branch if all is true:
3446 // 1. freeze-loop-unswitch-cond option is true
3447 // 2. The branch may not execute in the loop pre-transformation. If a branch may
3448 // not execute and could cause UB, it would always cause UB if it is hoisted outside
3449 // of the loop. Insert a freeze to prevent this case.
3450 // 3. The branch condition may be poison or undef
3451 static bool shouldInsertFreeze(Loop
&L
, Instruction
&TI
, DominatorTree
&DT
,
3452 AssumptionCache
&AC
) {
3453 assert(isa
<BranchInst
>(TI
) || isa
<SwitchInst
>(TI
));
3454 if (!FreezeLoopUnswitchCond
)
3457 ICFLoopSafetyInfo SafetyInfo
;
3458 SafetyInfo
.computeLoopSafetyInfo(&L
);
3459 if (SafetyInfo
.isGuaranteedToExecute(TI
, &DT
, &L
))
3463 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
))
3464 Cond
= skipTrivialSelect(BI
->getCondition());
3466 Cond
= skipTrivialSelect(cast
<SwitchInst
>(&TI
)->getCondition());
3467 return !isGuaranteedNotToBeUndefOrPoison(
3468 Cond
, &AC
, L
.getLoopPreheader()->getTerminator(), &DT
);
3471 static bool unswitchBestCondition(Loop
&L
, DominatorTree
&DT
, LoopInfo
&LI
,
3472 AssumptionCache
&AC
, AAResults
&AA
,
3473 TargetTransformInfo
&TTI
, ScalarEvolution
*SE
,
3474 MemorySSAUpdater
*MSSAU
,
3475 LPMUpdater
&LoopUpdater
) {
3476 // Collect all invariant conditions within this loop (as opposed to an inner
3477 // loop which would be handled when visiting that inner loop).
3478 SmallVector
<NonTrivialUnswitchCandidate
, 4> UnswitchCandidates
;
3479 IVConditionInfo PartialIVInfo
;
3480 Instruction
*PartialIVCondBranch
= nullptr;
3481 collectUnswitchCandidates(UnswitchCandidates
, PartialIVInfo
,
3482 PartialIVCondBranch
, L
, LI
, AA
, MSSAU
);
3483 if (!findOptionMDForLoop(&L
, "llvm.loop.unswitch.injection.disable"))
3484 collectUnswitchCandidatesWithInjections(UnswitchCandidates
, PartialIVInfo
,
3485 PartialIVCondBranch
, L
, DT
, LI
, AA
,
3487 // If we didn't find any candidates, we're done.
3488 if (UnswitchCandidates
.empty())
3492 dbgs() << "Considering " << UnswitchCandidates
.size()
3493 << " non-trivial loop invariant conditions for unswitching.\n");
3495 NonTrivialUnswitchCandidate Best
= findBestNonTrivialUnswitchCandidate(
3496 UnswitchCandidates
, L
, DT
, LI
, AC
, TTI
, PartialIVInfo
);
3498 assert(Best
.TI
&& "Failed to find loop unswitch candidate");
3499 assert(Best
.Cost
&& "Failed to compute cost");
3501 if (*Best
.Cost
>= UnswitchThreshold
) {
3502 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best
.Cost
3507 bool InjectedCondition
= false;
3508 if (Best
.hasPendingInjection()) {
3509 Best
= injectPendingInvariantConditions(Best
, L
, DT
, LI
, AC
, MSSAU
);
3510 InjectedCondition
= true;
3512 assert(!Best
.hasPendingInjection() &&
3513 "All injections should have been done by now!");
3515 if (Best
.TI
!= PartialIVCondBranch
)
3516 PartialIVInfo
.InstToDuplicate
.clear();
3519 if (auto *SI
= dyn_cast
<SelectInst
>(Best
.TI
)) {
3520 // If the best candidate is a select, turn it into a branch. Select
3521 // instructions with a poison conditional do not propagate poison, but
3522 // branching on poison causes UB. Insert a freeze on the select
3523 // conditional to prevent UB after turning the select into a branch.
3524 InsertFreeze
= !isGuaranteedNotToBeUndefOrPoison(
3525 SI
->getCondition(), &AC
, L
.getLoopPreheader()->getTerminator(), &DT
);
3526 Best
.TI
= turnSelectIntoBranch(SI
, DT
, LI
, MSSAU
, &AC
);
3528 // If the best candidate is a guard, turn it into a branch.
3529 if (isGuard(Best
.TI
))
3531 turnGuardIntoBranch(cast
<IntrinsicInst
>(Best
.TI
), L
, DT
, LI
, MSSAU
);
3532 InsertFreeze
= shouldInsertFreeze(L
, *Best
.TI
, DT
, AC
);
3535 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " << Best
.Cost
3536 << ") terminator: " << *Best
.TI
<< "\n");
3537 unswitchNontrivialInvariants(L
, *Best
.TI
, Best
.Invariants
, PartialIVInfo
, DT
,
3538 LI
, AC
, SE
, MSSAU
, LoopUpdater
, InsertFreeze
,
3543 /// Unswitch control flow predicated on loop invariant conditions.
3545 /// This first hoists all branches or switches which are trivial (IE, do not
3546 /// require duplicating any part of the loop) out of the loop body. It then
3547 /// looks at other loop invariant control flows and tries to unswitch those as
3548 /// well by cloning the loop if the result is small enough.
3550 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3551 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
3552 /// valid (i.e. its use is enabled).
3554 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3555 /// true, we will attempt to do non-trivial unswitching as well as trivial
3558 /// The `postUnswitch` function will be run after unswitching is complete
3559 /// with information on whether or not the provided loop remains a loop and
3560 /// a list of new sibling loops created.
3562 /// If `SE` is non-null, we will update that analysis based on the unswitching
3564 static bool unswitchLoop(Loop
&L
, DominatorTree
&DT
, LoopInfo
&LI
,
3565 AssumptionCache
&AC
, AAResults
&AA
,
3566 TargetTransformInfo
&TTI
, bool Trivial
,
3567 bool NonTrivial
, ScalarEvolution
*SE
,
3568 MemorySSAUpdater
*MSSAU
, ProfileSummaryInfo
*PSI
,
3569 BlockFrequencyInfo
*BFI
, LPMUpdater
&LoopUpdater
) {
3570 assert(L
.isRecursivelyLCSSAForm(DT
, LI
) &&
3571 "Loops must be in LCSSA form before unswitching.");
3573 // Must be in loop simplified form: we need a preheader and dedicated exits.
3574 if (!L
.isLoopSimplifyForm())
3577 // Try trivial unswitch first before loop over other basic blocks in the loop.
3578 if (Trivial
&& unswitchAllTrivialConditions(L
, DT
, LI
, SE
, MSSAU
)) {
3579 // If we unswitched successfully we will want to clean up the loop before
3580 // processing it further so just mark it as unswitched and return.
3581 postUnswitch(L
, LoopUpdater
, L
.getName(),
3582 /*CurrentLoopValid*/ true, /*PartiallyInvariant*/ false,
3583 /*InjectedCondition*/ false, {});
3587 const Function
*F
= L
.getHeader()->getParent();
3589 // Check whether we should continue with non-trivial conditions.
3590 // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3591 // unswitching for testing and debugging.
3592 // NonTrivial: Parameter that enables non-trivial unswitching for this
3593 // invocation of the transform. But this should be allowed only
3594 // for targets without branch divergence.
3596 // FIXME: If divergence analysis becomes available to a loop
3597 // transform, we should allow unswitching for non-trivial uniform
3598 // branches even on targets that have divergence.
3599 // https://bugs.llvm.org/show_bug.cgi?id=48819
3600 bool ContinueWithNonTrivial
=
3601 EnableNonTrivialUnswitch
|| (NonTrivial
&& !TTI
.hasBranchDivergence(F
));
3602 if (!ContinueWithNonTrivial
)
3605 // Skip non-trivial unswitching for optsize functions.
3606 if (F
->hasOptSize())
3609 // Returns true if Loop L's loop nest is cold, i.e. if the headers of L,
3610 // of the loops L is nested in, and of the loops nested in L are all cold.
3611 auto IsLoopNestCold
= [&](const Loop
*L
) {
3612 // Check L and all of its parent loops.
3615 if (!PSI
->isColdBlock(Parent
->getHeader(), BFI
))
3617 Parent
= Parent
->getParentLoop();
3619 // Next check all loops nested within L.
3620 SmallVector
<const Loop
*, 4> Worklist
;
3621 Worklist
.insert(Worklist
.end(), L
->getSubLoops().begin(),
3622 L
->getSubLoops().end());
3623 while (!Worklist
.empty()) {
3624 auto *CurLoop
= Worklist
.pop_back_val();
3625 if (!PSI
->isColdBlock(CurLoop
->getHeader(), BFI
))
3627 Worklist
.insert(Worklist
.end(), CurLoop
->getSubLoops().begin(),
3628 CurLoop
->getSubLoops().end());
3633 // Skip cold loops in cold loop nests, as unswitching them brings little
3634 // benefit but increases the code size
3635 if (PSI
&& PSI
->hasProfileSummary() && BFI
&& IsLoopNestCold(&L
)) {
3636 LLVM_DEBUG(dbgs() << " Skip cold loop: " << L
<< "\n");
3640 // Perform legality checks.
3641 if (!isSafeForNoNTrivialUnswitching(L
, LI
))
3644 // For non-trivial unswitching, because it often creates new loops, we rely on
3645 // the pass manager to iterate on the loops rather than trying to immediately
3646 // reach a fixed point. There is no substantial advantage to iterating
3647 // internally, and if any of the new loops are simplified enough to contain
3648 // trivial unswitching we want to prefer those.
3650 // Try to unswitch the best invariant condition. We prefer this full unswitch to
3651 // a partial unswitch when possible below the threshold.
3652 if (unswitchBestCondition(L
, DT
, LI
, AC
, AA
, TTI
, SE
, MSSAU
, LoopUpdater
))
3655 // No other opportunities to unswitch.
3659 PreservedAnalyses
SimpleLoopUnswitchPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
3660 LoopStandardAnalysisResults
&AR
,
3662 Function
&F
= *L
.getHeader()->getParent();
3664 ProfileSummaryInfo
*PSI
= nullptr;
3665 if (auto OuterProxy
=
3666 AM
.getResult
<FunctionAnalysisManagerLoopProxy
>(L
, AR
)
3667 .getCachedResult
<ModuleAnalysisManagerFunctionProxy
>(F
))
3668 PSI
= OuterProxy
->getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
3669 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F
.getName() << ": " << L
3672 std::optional
<MemorySSAUpdater
> MSSAU
;
3674 MSSAU
= MemorySSAUpdater(AR
.MSSA
);
3675 if (VerifyMemorySSA
)
3676 AR
.MSSA
->verifyMemorySSA();
3678 if (!unswitchLoop(L
, AR
.DT
, AR
.LI
, AR
.AC
, AR
.AA
, AR
.TTI
, Trivial
, NonTrivial
,
3679 &AR
.SE
, MSSAU
? &*MSSAU
: nullptr, PSI
, AR
.BFI
, U
))
3680 return PreservedAnalyses::all();
3682 if (AR
.MSSA
&& VerifyMemorySSA
)
3683 AR
.MSSA
->verifyMemorySSA();
3685 // Historically this pass has had issues with the dominator tree so verify it
3686 // in asserts builds.
3687 assert(AR
.DT
.verify(DominatorTree::VerificationLevel::Fast
));
3689 auto PA
= getLoopPassPreservedAnalyses();
3691 PA
.preserve
<MemorySSAAnalysis
>();
3695 void SimpleLoopUnswitchPass::printPipeline(
3696 raw_ostream
&OS
, function_ref
<StringRef(StringRef
)> MapClassName2PassName
) {
3697 static_cast<PassInfoMixin
<SimpleLoopUnswitchPass
> *>(this)->printPipeline(
3698 OS
, MapClassName2PassName
);
3701 OS
<< (NonTrivial
? "" : "no-") << "nontrivial;";
3702 OS
<< (Trivial
? "" : "no-") << "trivial";