[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Scalar / SimpleLoopUnswitch.cpp
blob7eb0ba1c2c17937082a478af3aedfc5e4a20bf9c
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GuardUtils.h"
24 #include "llvm/Analysis/LoopAnalysisManager.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ProfDataUtils.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/GenericDomTree.h"
53 #include "llvm/Support/InstructionCost.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar/LoopPassManager.h"
56 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
57 #include "llvm/Transforms/Utils/Cloning.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/LoopUtils.h"
60 #include "llvm/Transforms/Utils/ValueMapper.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <iterator>
64 #include <numeric>
65 #include <optional>
66 #include <utility>
68 #define DEBUG_TYPE "simple-loop-unswitch"
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
73 STATISTIC(NumBranches, "Number of branches unswitched");
74 STATISTIC(NumSwitches, "Number of switches unswitched");
75 STATISTIC(NumSelects, "Number of selects turned into branches for unswitching");
76 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
77 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
78 STATISTIC(
79 NumCostMultiplierSkipped,
80 "Number of unswitch candidates that had their cost multiplier skipped");
81 STATISTIC(NumInvariantConditionsInjected,
82 "Number of invariant conditions injected and unswitched");
84 static cl::opt<bool> EnableNonTrivialUnswitch(
85 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
86 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
87 "following the configuration passed into the pass."));
89 static cl::opt<int>
90 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
91 cl::desc("The cost threshold for unswitching a loop."));
93 static cl::opt<bool> EnableUnswitchCostMultiplier(
94 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
95 cl::desc("Enable unswitch cost multiplier that prohibits exponential "
96 "explosion in nontrivial unswitch."));
97 static cl::opt<int> UnswitchSiblingsToplevelDiv(
98 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
99 cl::desc("Toplevel siblings divisor for cost multiplier."));
100 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
101 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
102 cl::desc("Number of unswitch candidates that are ignored when calculating "
103 "cost multiplier."));
104 static cl::opt<bool> UnswitchGuards(
105 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
106 cl::desc("If enabled, simple loop unswitching will also consider "
107 "llvm.experimental.guard intrinsics as unswitch candidates."));
108 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
109 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
110 cl::init(false), cl::Hidden,
111 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
112 "null checks to save time analyzing if we can keep it."));
113 static cl::opt<unsigned>
114 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
115 cl::desc("Max number of memory uses to explore during "
116 "partial unswitching analysis"),
117 cl::init(100), cl::Hidden);
118 static cl::opt<bool> FreezeLoopUnswitchCond(
119 "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden,
120 cl::desc("If enabled, the freeze instruction will be added to condition "
121 "of loop unswitch to prevent miscompilation."));
123 static cl::opt<bool> InjectInvariantConditions(
124 "simple-loop-unswitch-inject-invariant-conditions", cl::Hidden,
125 cl::desc("Whether we should inject new invariants and unswitch them to "
126 "eliminate some existing (non-invariant) conditions."),
127 cl::init(true));
129 static cl::opt<unsigned> InjectInvariantConditionHotnesThreshold(
130 "simple-loop-unswitch-inject-invariant-condition-hotness-threshold",
131 cl::Hidden, cl::desc("Only try to inject loop invariant conditions and "
132 "unswitch on them to eliminate branches that are "
133 "not-taken 1/<this option> times or less."),
134 cl::init(16));
136 namespace {
137 struct CompareDesc {
138 BranchInst *Term;
139 Value *Invariant;
140 BasicBlock *InLoopSucc;
142 CompareDesc(BranchInst *Term, Value *Invariant, BasicBlock *InLoopSucc)
143 : Term(Term), Invariant(Invariant), InLoopSucc(InLoopSucc) {}
146 struct InjectedInvariant {
147 ICmpInst::Predicate Pred;
148 Value *LHS;
149 Value *RHS;
150 BasicBlock *InLoopSucc;
152 InjectedInvariant(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
153 BasicBlock *InLoopSucc)
154 : Pred(Pred), LHS(LHS), RHS(RHS), InLoopSucc(InLoopSucc) {}
157 struct NonTrivialUnswitchCandidate {
158 Instruction *TI = nullptr;
159 TinyPtrVector<Value *> Invariants;
160 std::optional<InstructionCost> Cost;
161 std::optional<InjectedInvariant> PendingInjection;
162 NonTrivialUnswitchCandidate(
163 Instruction *TI, ArrayRef<Value *> Invariants,
164 std::optional<InstructionCost> Cost = std::nullopt,
165 std::optional<InjectedInvariant> PendingInjection = std::nullopt)
166 : TI(TI), Invariants(Invariants), Cost(Cost),
167 PendingInjection(PendingInjection) {};
169 bool hasPendingInjection() const { return PendingInjection.has_value(); }
171 } // end anonymous namespace.
173 // Helper to skip (select x, true, false), which matches both a logical AND and
174 // OR and can confuse code that tries to determine if \p Cond is either a
175 // logical AND or OR but not both.
176 static Value *skipTrivialSelect(Value *Cond) {
177 Value *CondNext;
178 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
179 Cond = CondNext;
180 return Cond;
183 /// Collect all of the loop invariant input values transitively used by the
184 /// homogeneous instruction graph from a given root.
186 /// This essentially walks from a root recursively through loop variant operands
187 /// which have perform the same logical operation (AND or OR) and finds all
188 /// inputs which are loop invariant. For some operations these can be
189 /// re-associated and unswitched out of the loop entirely.
190 static TinyPtrVector<Value *>
191 collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root,
192 const LoopInfo &LI) {
193 assert(!L.isLoopInvariant(&Root) &&
194 "Only need to walk the graph if root itself is not invariant.");
195 TinyPtrVector<Value *> Invariants;
197 bool IsRootAnd = match(&Root, m_LogicalAnd());
198 bool IsRootOr = match(&Root, m_LogicalOr());
200 // Build a worklist and recurse through operators collecting invariants.
201 SmallVector<Instruction *, 4> Worklist;
202 SmallPtrSet<Instruction *, 8> Visited;
203 Worklist.push_back(&Root);
204 Visited.insert(&Root);
205 do {
206 Instruction &I = *Worklist.pop_back_val();
207 for (Value *OpV : I.operand_values()) {
208 // Skip constants as unswitching isn't interesting for them.
209 if (isa<Constant>(OpV))
210 continue;
212 // Add it to our result if loop invariant.
213 if (L.isLoopInvariant(OpV)) {
214 Invariants.push_back(OpV);
215 continue;
218 // If not an instruction with the same opcode, nothing we can do.
219 Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV));
221 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
222 (IsRootOr && match(OpI, m_LogicalOr())))) {
223 // Visit this operand.
224 if (Visited.insert(OpI).second)
225 Worklist.push_back(OpI);
228 } while (!Worklist.empty());
230 return Invariants;
233 static void replaceLoopInvariantUses(const Loop &L, Value *Invariant,
234 Constant &Replacement) {
235 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
237 // Replace uses of LIC in the loop with the given constant.
238 // We use make_early_inc_range as set invalidates the iterator.
239 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
240 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
242 // Replace this use within the loop body.
243 if (UserI && L.contains(UserI))
244 U.set(&Replacement);
248 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
249 /// incoming values along this edge.
250 static bool areLoopExitPHIsLoopInvariant(const Loop &L,
251 const BasicBlock &ExitingBB,
252 const BasicBlock &ExitBB) {
253 for (const Instruction &I : ExitBB) {
254 auto *PN = dyn_cast<PHINode>(&I);
255 if (!PN)
256 // No more PHIs to check.
257 return true;
259 // If the incoming value for this edge isn't loop invariant the unswitch
260 // won't be trivial.
261 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
262 return false;
264 llvm_unreachable("Basic blocks should never be empty!");
267 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
268 /// end of \p BB and conditionally branch on the copied condition. We only
269 /// branch on a single value.
270 static void buildPartialUnswitchConditionalBranch(
271 BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
272 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze,
273 const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) {
274 IRBuilder<> IRB(&BB);
276 SmallVector<Value *> FrozenInvariants;
277 for (Value *Inv : Invariants) {
278 if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT))
279 Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr");
280 FrozenInvariants.push_back(Inv);
283 Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants)
284 : IRB.CreateAnd(FrozenInvariants);
285 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
286 Direction ? &NormalSucc : &UnswitchedSucc);
289 /// Copy a set of loop invariant values, and conditionally branch on them.
290 static void buildPartialInvariantUnswitchConditionalBranch(
291 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
292 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
293 MemorySSAUpdater *MSSAU) {
294 ValueToValueMapTy VMap;
295 for (auto *Val : reverse(ToDuplicate)) {
296 Instruction *Inst = cast<Instruction>(Val);
297 Instruction *NewInst = Inst->clone();
298 NewInst->insertInto(&BB, BB.end());
299 RemapInstruction(NewInst, VMap,
300 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
301 VMap[Val] = NewInst;
303 if (!MSSAU)
304 continue;
306 MemorySSA *MSSA = MSSAU->getMemorySSA();
307 if (auto *MemUse =
308 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
309 auto *DefiningAccess = MemUse->getDefiningAccess();
310 // Get the first defining access before the loop.
311 while (L.contains(DefiningAccess->getBlock())) {
312 // If the defining access is a MemoryPhi, get the incoming
313 // value for the pre-header as defining access.
314 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
315 DefiningAccess =
316 MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
317 else
318 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
320 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
321 NewInst->getParent(),
322 MemorySSA::BeforeTerminator);
326 IRBuilder<> IRB(&BB);
327 Value *Cond = VMap[ToDuplicate[0]];
328 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
329 Direction ? &NormalSucc : &UnswitchedSucc);
332 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
334 /// Requires that the loop exit and unswitched basic block are the same, and
335 /// that the exiting block was a unique predecessor of that block. Rewrites the
336 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
337 /// PHI nodes from the old preheader that now contains the unswitched
338 /// terminator.
339 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
340 BasicBlock &OldExitingBB,
341 BasicBlock &OldPH) {
342 for (PHINode &PN : UnswitchedBB.phis()) {
343 // When the loop exit is directly unswitched we just need to update the
344 // incoming basic block. We loop to handle weird cases with repeated
345 // incoming blocks, but expect to typically only have one operand here.
346 for (auto i : seq<int>(0, PN.getNumOperands())) {
347 assert(PN.getIncomingBlock(i) == &OldExitingBB &&
348 "Found incoming block different from unique predecessor!");
349 PN.setIncomingBlock(i, &OldPH);
354 /// Rewrite the PHI nodes in the loop exit basic block and the split off
355 /// unswitched block.
357 /// Because the exit block remains an exit from the loop, this rewrites the
358 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
359 /// nodes into the unswitched basic block to select between the value in the
360 /// old preheader and the loop exit.
361 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
362 BasicBlock &UnswitchedBB,
363 BasicBlock &OldExitingBB,
364 BasicBlock &OldPH,
365 bool FullUnswitch) {
366 assert(&ExitBB != &UnswitchedBB &&
367 "Must have different loop exit and unswitched blocks!");
368 BasicBlock::iterator InsertPt = UnswitchedBB.begin();
369 for (PHINode &PN : ExitBB.phis()) {
370 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
371 PN.getName() + ".split");
372 NewPN->insertBefore(InsertPt);
374 // Walk backwards over the old PHI node's inputs to minimize the cost of
375 // removing each one. We have to do this weird loop manually so that we
376 // create the same number of new incoming edges in the new PHI as we expect
377 // each case-based edge to be included in the unswitched switch in some
378 // cases.
379 // FIXME: This is really, really gross. It would be much cleaner if LLVM
380 // allowed us to create a single entry for a predecessor block without
381 // having separate entries for each "edge" even though these edges are
382 // required to produce identical results.
383 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
384 if (PN.getIncomingBlock(i) != &OldExitingBB)
385 continue;
387 Value *Incoming = PN.getIncomingValue(i);
388 if (FullUnswitch)
389 // No more edge from the old exiting block to the exit block.
390 PN.removeIncomingValue(i);
392 NewPN->addIncoming(Incoming, &OldPH);
395 // Now replace the old PHI with the new one and wire the old one in as an
396 // input to the new one.
397 PN.replaceAllUsesWith(NewPN);
398 NewPN->addIncoming(&PN, &ExitBB);
402 /// Hoist the current loop up to the innermost loop containing a remaining exit.
404 /// Because we've removed an exit from the loop, we may have changed the set of
405 /// loops reachable and need to move the current loop up the loop nest or even
406 /// to an entirely separate nest.
407 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
408 DominatorTree &DT, LoopInfo &LI,
409 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
410 // If the loop is already at the top level, we can't hoist it anywhere.
411 Loop *OldParentL = L.getParentLoop();
412 if (!OldParentL)
413 return;
415 SmallVector<BasicBlock *, 4> Exits;
416 L.getExitBlocks(Exits);
417 Loop *NewParentL = nullptr;
418 for (auto *ExitBB : Exits)
419 if (Loop *ExitL = LI.getLoopFor(ExitBB))
420 if (!NewParentL || NewParentL->contains(ExitL))
421 NewParentL = ExitL;
423 if (NewParentL == OldParentL)
424 return;
426 // The new parent loop (if different) should always contain the old one.
427 if (NewParentL)
428 assert(NewParentL->contains(OldParentL) &&
429 "Can only hoist this loop up the nest!");
431 // The preheader will need to move with the body of this loop. However,
432 // because it isn't in this loop we also need to update the primary loop map.
433 assert(OldParentL == LI.getLoopFor(&Preheader) &&
434 "Parent loop of this loop should contain this loop's preheader!");
435 LI.changeLoopFor(&Preheader, NewParentL);
437 // Remove this loop from its old parent.
438 OldParentL->removeChildLoop(&L);
440 // Add the loop either to the new parent or as a top-level loop.
441 if (NewParentL)
442 NewParentL->addChildLoop(&L);
443 else
444 LI.addTopLevelLoop(&L);
446 // Remove this loops blocks from the old parent and every other loop up the
447 // nest until reaching the new parent. Also update all of these
448 // no-longer-containing loops to reflect the nesting change.
449 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
450 OldContainingL = OldContainingL->getParentLoop()) {
451 llvm::erase_if(OldContainingL->getBlocksVector(),
452 [&](const BasicBlock *BB) {
453 return BB == &Preheader || L.contains(BB);
456 OldContainingL->getBlocksSet().erase(&Preheader);
457 for (BasicBlock *BB : L.blocks())
458 OldContainingL->getBlocksSet().erase(BB);
460 // Because we just hoisted a loop out of this one, we have essentially
461 // created new exit paths from it. That means we need to form LCSSA PHI
462 // nodes for values used in the no-longer-nested loop.
463 formLCSSA(*OldContainingL, DT, &LI, SE);
465 // We shouldn't need to form dedicated exits because the exit introduced
466 // here is the (just split by unswitching) preheader. However, after trivial
467 // unswitching it is possible to get new non-dedicated exits out of parent
468 // loop so let's conservatively form dedicated exit blocks and figure out
469 // if we can optimize later.
470 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
471 /*PreserveLCSSA*/ true);
475 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
476 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
477 // as exiting block.
478 static Loop *getTopMostExitingLoop(const BasicBlock *ExitBB,
479 const LoopInfo &LI) {
480 Loop *TopMost = LI.getLoopFor(ExitBB);
481 Loop *Current = TopMost;
482 while (Current) {
483 if (Current->isLoopExiting(ExitBB))
484 TopMost = Current;
485 Current = Current->getParentLoop();
487 return TopMost;
490 /// Unswitch a trivial branch if the condition is loop invariant.
492 /// This routine should only be called when loop code leading to the branch has
493 /// been validated as trivial (no side effects). This routine checks if the
494 /// condition is invariant and one of the successors is a loop exit. This
495 /// allows us to unswitch without duplicating the loop, making it trivial.
497 /// If this routine fails to unswitch the branch it returns false.
499 /// If the branch can be unswitched, this routine splits the preheader and
500 /// hoists the branch above that split. Preserves loop simplified form
501 /// (splitting the exit block as necessary). It simplifies the branch within
502 /// the loop to an unconditional branch but doesn't remove it entirely. Further
503 /// cleanup can be done with some simplifycfg like pass.
505 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
506 /// invalidated by this.
507 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
508 LoopInfo &LI, ScalarEvolution *SE,
509 MemorySSAUpdater *MSSAU) {
510 assert(BI.isConditional() && "Can only unswitch a conditional branch!");
511 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
513 // The loop invariant values that we want to unswitch.
514 TinyPtrVector<Value *> Invariants;
516 // When true, we're fully unswitching the branch rather than just unswitching
517 // some input conditions to the branch.
518 bool FullUnswitch = false;
520 Value *Cond = skipTrivialSelect(BI.getCondition());
521 if (L.isLoopInvariant(Cond)) {
522 Invariants.push_back(Cond);
523 FullUnswitch = true;
524 } else {
525 if (auto *CondInst = dyn_cast<Instruction>(Cond))
526 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
527 if (Invariants.empty()) {
528 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n");
529 return false;
533 // Check that one of the branch's successors exits, and which one.
534 bool ExitDirection = true;
535 int LoopExitSuccIdx = 0;
536 auto *LoopExitBB = BI.getSuccessor(0);
537 if (L.contains(LoopExitBB)) {
538 ExitDirection = false;
539 LoopExitSuccIdx = 1;
540 LoopExitBB = BI.getSuccessor(1);
541 if (L.contains(LoopExitBB)) {
542 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n");
543 return false;
546 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
547 auto *ParentBB = BI.getParent();
548 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
549 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n");
550 return false;
553 // When unswitching only part of the branch's condition, we need the exit
554 // block to be reached directly from the partially unswitched input. This can
555 // be done when the exit block is along the true edge and the branch condition
556 // is a graph of `or` operations, or the exit block is along the false edge
557 // and the condition is a graph of `and` operations.
558 if (!FullUnswitch) {
559 if (ExitDirection ? !match(Cond, m_LogicalOr())
560 : !match(Cond, m_LogicalAnd())) {
561 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for "
562 "non-full unswitch!\n");
563 return false;
567 LLVM_DEBUG({
568 dbgs() << " unswitching trivial invariant conditions for: " << BI
569 << "\n";
570 for (Value *Invariant : Invariants) {
571 dbgs() << " " << *Invariant << " == true";
572 if (Invariant != Invariants.back())
573 dbgs() << " ||";
574 dbgs() << "\n";
578 // If we have scalar evolutions, we need to invalidate them including this
579 // loop, the loop containing the exit block and the topmost parent loop
580 // exiting via LoopExitBB.
581 if (SE) {
582 if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
583 SE->forgetLoop(ExitL);
584 else
585 // Forget the entire nest as this exits the entire nest.
586 SE->forgetTopmostLoop(&L);
587 SE->forgetBlockAndLoopDispositions();
590 if (MSSAU && VerifyMemorySSA)
591 MSSAU->getMemorySSA()->verifyMemorySSA();
593 // Split the preheader, so that we know that there is a safe place to insert
594 // the conditional branch. We will change the preheader to have a conditional
595 // branch on LoopCond.
596 BasicBlock *OldPH = L.getLoopPreheader();
597 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
599 // Now that we have a place to insert the conditional branch, create a place
600 // to branch to: this is the exit block out of the loop that we are
601 // unswitching. We need to split this if there are other loop predecessors.
602 // Because the loop is in simplified form, *any* other predecessor is enough.
603 BasicBlock *UnswitchedBB;
604 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
605 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
606 "A branch's parent isn't a predecessor!");
607 UnswitchedBB = LoopExitBB;
608 } else {
609 UnswitchedBB =
610 SplitBlock(LoopExitBB, LoopExitBB->begin(), &DT, &LI, MSSAU, "", false);
613 if (MSSAU && VerifyMemorySSA)
614 MSSAU->getMemorySSA()->verifyMemorySSA();
616 // Actually move the invariant uses into the unswitched position. If possible,
617 // we do this by moving the instructions, but when doing partial unswitching
618 // we do it by building a new merge of the values in the unswitched position.
619 OldPH->getTerminator()->eraseFromParent();
620 if (FullUnswitch) {
621 // If fully unswitching, we can use the existing branch instruction.
622 // Splice it into the old PH to gate reaching the new preheader and re-point
623 // its successors.
624 BI.moveBefore(*OldPH, OldPH->end());
625 BI.setCondition(Cond);
626 if (MSSAU) {
627 // Temporarily clone the terminator, to make MSSA update cheaper by
628 // separating "insert edge" updates from "remove edge" ones.
629 BI.clone()->insertInto(ParentBB, ParentBB->end());
630 } else {
631 // Create a new unconditional branch that will continue the loop as a new
632 // terminator.
633 BranchInst::Create(ContinueBB, ParentBB);
635 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
636 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
637 } else {
638 // Only unswitching a subset of inputs to the condition, so we will need to
639 // build a new branch that merges the invariant inputs.
640 if (ExitDirection)
641 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) &&
642 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
643 "condition!");
644 else
645 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) &&
646 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
647 " condition!");
648 buildPartialUnswitchConditionalBranch(
649 *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH,
650 FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT);
653 // Update the dominator tree with the added edge.
654 DT.insertEdge(OldPH, UnswitchedBB);
656 // After the dominator tree was updated with the added edge, update MemorySSA
657 // if available.
658 if (MSSAU) {
659 SmallVector<CFGUpdate, 1> Updates;
660 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
661 MSSAU->applyInsertUpdates(Updates, DT);
664 // Finish updating dominator tree and memory ssa for full unswitch.
665 if (FullUnswitch) {
666 if (MSSAU) {
667 // Remove the cloned branch instruction.
668 ParentBB->getTerminator()->eraseFromParent();
669 // Create unconditional branch now.
670 BranchInst::Create(ContinueBB, ParentBB);
671 MSSAU->removeEdge(ParentBB, LoopExitBB);
673 DT.deleteEdge(ParentBB, LoopExitBB);
676 if (MSSAU && VerifyMemorySSA)
677 MSSAU->getMemorySSA()->verifyMemorySSA();
679 // Rewrite the relevant PHI nodes.
680 if (UnswitchedBB == LoopExitBB)
681 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
682 else
683 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
684 *ParentBB, *OldPH, FullUnswitch);
686 // The constant we can replace all of our invariants with inside the loop
687 // body. If any of the invariants have a value other than this the loop won't
688 // be entered.
689 ConstantInt *Replacement = ExitDirection
690 ? ConstantInt::getFalse(BI.getContext())
691 : ConstantInt::getTrue(BI.getContext());
693 // Since this is an i1 condition we can also trivially replace uses of it
694 // within the loop with a constant.
695 for (Value *Invariant : Invariants)
696 replaceLoopInvariantUses(L, Invariant, *Replacement);
698 // If this was full unswitching, we may have changed the nesting relationship
699 // for this loop so hoist it to its correct parent if needed.
700 if (FullUnswitch)
701 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
703 if (MSSAU && VerifyMemorySSA)
704 MSSAU->getMemorySSA()->verifyMemorySSA();
706 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
707 ++NumTrivial;
708 ++NumBranches;
709 return true;
712 /// Unswitch a trivial switch if the condition is loop invariant.
714 /// This routine should only be called when loop code leading to the switch has
715 /// been validated as trivial (no side effects). This routine checks if the
716 /// condition is invariant and that at least one of the successors is a loop
717 /// exit. This allows us to unswitch without duplicating the loop, making it
718 /// trivial.
720 /// If this routine fails to unswitch the switch it returns false.
722 /// If the switch can be unswitched, this routine splits the preheader and
723 /// copies the switch above that split. If the default case is one of the
724 /// exiting cases, it copies the non-exiting cases and points them at the new
725 /// preheader. If the default case is not exiting, it copies the exiting cases
726 /// and points the default at the preheader. It preserves loop simplified form
727 /// (splitting the exit blocks as necessary). It simplifies the switch within
728 /// the loop by removing now-dead cases. If the default case is one of those
729 /// unswitched, it replaces its destination with a new basic block containing
730 /// only unreachable. Such basic blocks, while technically loop exits, are not
731 /// considered for unswitching so this is a stable transform and the same
732 /// switch will not be revisited. If after unswitching there is only a single
733 /// in-loop successor, the switch is further simplified to an unconditional
734 /// branch. Still more cleanup can be done with some simplifycfg like pass.
736 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
737 /// invalidated by this.
738 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
739 LoopInfo &LI, ScalarEvolution *SE,
740 MemorySSAUpdater *MSSAU) {
741 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
742 Value *LoopCond = SI.getCondition();
744 // If this isn't switching on an invariant condition, we can't unswitch it.
745 if (!L.isLoopInvariant(LoopCond))
746 return false;
748 auto *ParentBB = SI.getParent();
750 // The same check must be used both for the default and the exit cases. We
751 // should never leave edges from the switch instruction to a basic block that
752 // we are unswitching, hence the condition used to determine the default case
753 // needs to also be used to populate ExitCaseIndices, which is then used to
754 // remove cases from the switch.
755 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
756 // BBToCheck is not an exit block if it is inside loop L.
757 if (L.contains(&BBToCheck))
758 return false;
759 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
760 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
761 return false;
762 // We do not unswitch a block that only has an unreachable statement, as
763 // it's possible this is a previously unswitched block. Only unswitch if
764 // either the terminator is not unreachable, or, if it is, it's not the only
765 // instruction in the block.
766 auto *TI = BBToCheck.getTerminator();
767 bool isUnreachable = isa<UnreachableInst>(TI);
768 return !isUnreachable ||
769 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
772 SmallVector<int, 4> ExitCaseIndices;
773 for (auto Case : SI.cases())
774 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
775 ExitCaseIndices.push_back(Case.getCaseIndex());
776 BasicBlock *DefaultExitBB = nullptr;
777 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
778 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
779 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
780 DefaultExitBB = SI.getDefaultDest();
781 } else if (ExitCaseIndices.empty())
782 return false;
784 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
786 if (MSSAU && VerifyMemorySSA)
787 MSSAU->getMemorySSA()->verifyMemorySSA();
789 // We may need to invalidate SCEVs for the outermost loop reached by any of
790 // the exits.
791 Loop *OuterL = &L;
793 if (DefaultExitBB) {
794 // Check the loop containing this exit.
795 Loop *ExitL = getTopMostExitingLoop(DefaultExitBB, LI);
796 if (!ExitL || ExitL->contains(OuterL))
797 OuterL = ExitL;
799 for (unsigned Index : ExitCaseIndices) {
800 auto CaseI = SI.case_begin() + Index;
801 // Compute the outer loop from this exit.
802 Loop *ExitL = getTopMostExitingLoop(CaseI->getCaseSuccessor(), LI);
803 if (!ExitL || ExitL->contains(OuterL))
804 OuterL = ExitL;
807 if (SE) {
808 if (OuterL)
809 SE->forgetLoop(OuterL);
810 else
811 SE->forgetTopmostLoop(&L);
814 if (DefaultExitBB) {
815 // Clear out the default destination temporarily to allow accurate
816 // predecessor lists to be examined below.
817 SI.setDefaultDest(nullptr);
820 // Store the exit cases into a separate data structure and remove them from
821 // the switch.
822 SmallVector<std::tuple<ConstantInt *, BasicBlock *,
823 SwitchInstProfUpdateWrapper::CaseWeightOpt>,
824 4> ExitCases;
825 ExitCases.reserve(ExitCaseIndices.size());
826 SwitchInstProfUpdateWrapper SIW(SI);
827 // We walk the case indices backwards so that we remove the last case first
828 // and don't disrupt the earlier indices.
829 for (unsigned Index : reverse(ExitCaseIndices)) {
830 auto CaseI = SI.case_begin() + Index;
831 // Save the value of this case.
832 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
833 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
834 // Delete the unswitched cases.
835 SIW.removeCase(CaseI);
838 // Check if after this all of the remaining cases point at the same
839 // successor.
840 BasicBlock *CommonSuccBB = nullptr;
841 if (SI.getNumCases() > 0 &&
842 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
843 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
845 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
846 if (!DefaultExitBB) {
847 // If we're not unswitching the default, we need it to match any cases to
848 // have a common successor or if we have no cases it is the common
849 // successor.
850 if (SI.getNumCases() == 0)
851 CommonSuccBB = SI.getDefaultDest();
852 else if (SI.getDefaultDest() != CommonSuccBB)
853 CommonSuccBB = nullptr;
856 // Split the preheader, so that we know that there is a safe place to insert
857 // the switch.
858 BasicBlock *OldPH = L.getLoopPreheader();
859 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
860 OldPH->getTerminator()->eraseFromParent();
862 // Now add the unswitched switch.
863 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
864 SwitchInstProfUpdateWrapper NewSIW(*NewSI);
866 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
867 // First, we split any exit blocks with remaining in-loop predecessors. Then
868 // we update the PHIs in one of two ways depending on if there was a split.
869 // We walk in reverse so that we split in the same order as the cases
870 // appeared. This is purely for convenience of reading the resulting IR, but
871 // it doesn't cost anything really.
872 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
873 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
874 // Handle the default exit if necessary.
875 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
876 // ranges aren't quite powerful enough yet.
877 if (DefaultExitBB) {
878 if (pred_empty(DefaultExitBB)) {
879 UnswitchedExitBBs.insert(DefaultExitBB);
880 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
881 } else {
882 auto *SplitBB =
883 SplitBlock(DefaultExitBB, DefaultExitBB->begin(), &DT, &LI, MSSAU);
884 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
885 *ParentBB, *OldPH,
886 /*FullUnswitch*/ true);
887 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
890 // Note that we must use a reference in the for loop so that we update the
891 // container.
892 for (auto &ExitCase : reverse(ExitCases)) {
893 // Grab a reference to the exit block in the pair so that we can update it.
894 BasicBlock *ExitBB = std::get<1>(ExitCase);
896 // If this case is the last edge into the exit block, we can simply reuse it
897 // as it will no longer be a loop exit. No mapping necessary.
898 if (pred_empty(ExitBB)) {
899 // Only rewrite once.
900 if (UnswitchedExitBBs.insert(ExitBB).second)
901 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
902 continue;
905 // Otherwise we need to split the exit block so that we retain an exit
906 // block from the loop and a target for the unswitched condition.
907 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
908 if (!SplitExitBB) {
909 // If this is the first time we see this, do the split and remember it.
910 SplitExitBB = SplitBlock(ExitBB, ExitBB->begin(), &DT, &LI, MSSAU);
911 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
912 *ParentBB, *OldPH,
913 /*FullUnswitch*/ true);
915 // Update the case pair to point to the split block.
916 std::get<1>(ExitCase) = SplitExitBB;
919 // Now add the unswitched cases. We do this in reverse order as we built them
920 // in reverse order.
921 for (auto &ExitCase : reverse(ExitCases)) {
922 ConstantInt *CaseVal = std::get<0>(ExitCase);
923 BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
925 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
928 // If the default was unswitched, re-point it and add explicit cases for
929 // entering the loop.
930 if (DefaultExitBB) {
931 NewSIW->setDefaultDest(DefaultExitBB);
932 NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
934 // We removed all the exit cases, so we just copy the cases to the
935 // unswitched switch.
936 for (const auto &Case : SI.cases())
937 NewSIW.addCase(Case.getCaseValue(), NewPH,
938 SIW.getSuccessorWeight(Case.getSuccessorIndex()));
939 } else if (DefaultCaseWeight) {
940 // We have to set branch weight of the default case.
941 uint64_t SW = *DefaultCaseWeight;
942 for (const auto &Case : SI.cases()) {
943 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
944 assert(W &&
945 "case weight must be defined as default case weight is defined");
946 SW += *W;
948 NewSIW.setSuccessorWeight(0, SW);
951 // If we ended up with a common successor for every path through the switch
952 // after unswitching, rewrite it to an unconditional branch to make it easy
953 // to recognize. Otherwise we potentially have to recognize the default case
954 // pointing at unreachable and other complexity.
955 if (CommonSuccBB) {
956 BasicBlock *BB = SI.getParent();
957 // We may have had multiple edges to this common successor block, so remove
958 // them as predecessors. We skip the first one, either the default or the
959 // actual first case.
960 bool SkippedFirst = DefaultExitBB == nullptr;
961 for (auto Case : SI.cases()) {
962 assert(Case.getCaseSuccessor() == CommonSuccBB &&
963 "Non-common successor!");
964 (void)Case;
965 if (!SkippedFirst) {
966 SkippedFirst = true;
967 continue;
969 CommonSuccBB->removePredecessor(BB,
970 /*KeepOneInputPHIs*/ true);
972 // Now nuke the switch and replace it with a direct branch.
973 SIW.eraseFromParent();
974 BranchInst::Create(CommonSuccBB, BB);
975 } else if (DefaultExitBB) {
976 assert(SI.getNumCases() > 0 &&
977 "If we had no cases we'd have a common successor!");
978 // Move the last case to the default successor. This is valid as if the
979 // default got unswitched it cannot be reached. This has the advantage of
980 // being simple and keeping the number of edges from this switch to
981 // successors the same, and avoiding any PHI update complexity.
982 auto LastCaseI = std::prev(SI.case_end());
984 SI.setDefaultDest(LastCaseI->getCaseSuccessor());
985 SIW.setSuccessorWeight(
986 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
987 SIW.removeCase(LastCaseI);
990 // Walk the unswitched exit blocks and the unswitched split blocks and update
991 // the dominator tree based on the CFG edits. While we are walking unordered
992 // containers here, the API for applyUpdates takes an unordered list of
993 // updates and requires them to not contain duplicates.
994 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
995 for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
996 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
997 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
999 for (auto SplitUnswitchedPair : SplitExitBBMap) {
1000 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
1001 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
1004 if (MSSAU) {
1005 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
1006 if (VerifyMemorySSA)
1007 MSSAU->getMemorySSA()->verifyMemorySSA();
1008 } else {
1009 DT.applyUpdates(DTUpdates);
1012 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1014 // We may have changed the nesting relationship for this loop so hoist it to
1015 // its correct parent if needed.
1016 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
1018 if (MSSAU && VerifyMemorySSA)
1019 MSSAU->getMemorySSA()->verifyMemorySSA();
1021 ++NumTrivial;
1022 ++NumSwitches;
1023 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
1024 return true;
1027 /// This routine scans the loop to find a branch or switch which occurs before
1028 /// any side effects occur. These can potentially be unswitched without
1029 /// duplicating the loop. If a branch or switch is successfully unswitched the
1030 /// scanning continues to see if subsequent branches or switches have become
1031 /// trivial. Once all trivial candidates have been unswitched, this routine
1032 /// returns.
1034 /// The return value indicates whether anything was unswitched (and therefore
1035 /// changed).
1037 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
1038 /// invalidated by this.
1039 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
1040 LoopInfo &LI, ScalarEvolution *SE,
1041 MemorySSAUpdater *MSSAU) {
1042 bool Changed = false;
1044 // If loop header has only one reachable successor we should keep looking for
1045 // trivial condition candidates in the successor as well. An alternative is
1046 // to constant fold conditions and merge successors into loop header (then we
1047 // only need to check header's terminator). The reason for not doing this in
1048 // LoopUnswitch pass is that it could potentially break LoopPassManager's
1049 // invariants. Folding dead branches could either eliminate the current loop
1050 // or make other loops unreachable. LCSSA form might also not be preserved
1051 // after deleting branches. The following code keeps traversing loop header's
1052 // successors until it finds the trivial condition candidate (condition that
1053 // is not a constant). Since unswitching generates branches with constant
1054 // conditions, this scenario could be very common in practice.
1055 BasicBlock *CurrentBB = L.getHeader();
1056 SmallPtrSet<BasicBlock *, 8> Visited;
1057 Visited.insert(CurrentBB);
1058 do {
1059 // Check if there are any side-effecting instructions (e.g. stores, calls,
1060 // volatile loads) in the part of the loop that the code *would* execute
1061 // without unswitching.
1062 if (MSSAU) // Possible early exit with MSSA
1063 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
1064 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
1065 return Changed;
1066 if (llvm::any_of(*CurrentBB,
1067 [](Instruction &I) { return I.mayHaveSideEffects(); }))
1068 return Changed;
1070 Instruction *CurrentTerm = CurrentBB->getTerminator();
1072 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1073 // Don't bother trying to unswitch past a switch with a constant
1074 // condition. This should be removed prior to running this pass by
1075 // simplifycfg.
1076 if (isa<Constant>(SI->getCondition()))
1077 return Changed;
1079 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
1080 // Couldn't unswitch this one so we're done.
1081 return Changed;
1083 // Mark that we managed to unswitch something.
1084 Changed = true;
1086 // If unswitching turned the terminator into an unconditional branch then
1087 // we can continue. The unswitching logic specifically works to fold any
1088 // cases it can into an unconditional branch to make it easier to
1089 // recognize here.
1090 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1091 if (!BI || BI->isConditional())
1092 return Changed;
1094 CurrentBB = BI->getSuccessor(0);
1095 continue;
1098 auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1099 if (!BI)
1100 // We do not understand other terminator instructions.
1101 return Changed;
1103 // Don't bother trying to unswitch past an unconditional branch or a branch
1104 // with a constant value. These should be removed by simplifycfg prior to
1105 // running this pass.
1106 if (!BI->isConditional() ||
1107 isa<Constant>(skipTrivialSelect(BI->getCondition())))
1108 return Changed;
1110 // Found a trivial condition candidate: non-foldable conditional branch. If
1111 // we fail to unswitch this, we can't do anything else that is trivial.
1112 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1113 return Changed;
1115 // Mark that we managed to unswitch something.
1116 Changed = true;
1118 // If we only unswitched some of the conditions feeding the branch, we won't
1119 // have collapsed it to a single successor.
1120 BI = cast<BranchInst>(CurrentBB->getTerminator());
1121 if (BI->isConditional())
1122 return Changed;
1124 // Follow the newly unconditional branch into its successor.
1125 CurrentBB = BI->getSuccessor(0);
1127 // When continuing, if we exit the loop or reach a previous visited block,
1128 // then we can not reach any trivial condition candidates (unfoldable
1129 // branch instructions or switch instructions) and no unswitch can happen.
1130 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1132 return Changed;
1135 /// Build the cloned blocks for an unswitched copy of the given loop.
1137 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1138 /// after the split block (`SplitBB`) that will be used to select between the
1139 /// cloned and original loop.
1141 /// This routine handles cloning all of the necessary loop blocks and exit
1142 /// blocks including rewriting their instructions and the relevant PHI nodes.
1143 /// Any loop blocks or exit blocks which are dominated by a different successor
1144 /// than the one for this clone of the loop blocks can be trivially skipped. We
1145 /// use the `DominatingSucc` map to determine whether a block satisfies that
1146 /// property with a simple map lookup.
1148 /// It also correctly creates the unconditional branch in the cloned
1149 /// unswitched parent block to only point at the unswitched successor.
1151 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1152 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1153 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1154 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1155 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1156 /// instead the caller must recompute an accurate DT. It *does* correctly
1157 /// update the `AssumptionCache` provided in `AC`.
1158 static BasicBlock *buildClonedLoopBlocks(
1159 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1160 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1161 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1162 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1163 ValueToValueMapTy &VMap,
1164 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1165 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU,
1166 ScalarEvolution *SE) {
1167 SmallVector<BasicBlock *, 4> NewBlocks;
1168 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1170 // We will need to clone a bunch of blocks, wrap up the clone operation in
1171 // a helper.
1172 auto CloneBlock = [&](BasicBlock *OldBB) {
1173 // Clone the basic block and insert it before the new preheader.
1174 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1175 NewBB->moveBefore(LoopPH);
1177 // Record this block and the mapping.
1178 NewBlocks.push_back(NewBB);
1179 VMap[OldBB] = NewBB;
1181 return NewBB;
1184 // We skip cloning blocks when they have a dominating succ that is not the
1185 // succ we are cloning for.
1186 auto SkipBlock = [&](BasicBlock *BB) {
1187 auto It = DominatingSucc.find(BB);
1188 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1191 // First, clone the preheader.
1192 auto *ClonedPH = CloneBlock(LoopPH);
1194 // Then clone all the loop blocks, skipping the ones that aren't necessary.
1195 for (auto *LoopBB : L.blocks())
1196 if (!SkipBlock(LoopBB))
1197 CloneBlock(LoopBB);
1199 // Split all the loop exit edges so that when we clone the exit blocks, if
1200 // any of the exit blocks are *also* a preheader for some other loop, we
1201 // don't create multiple predecessors entering the loop header.
1202 for (auto *ExitBB : ExitBlocks) {
1203 if (SkipBlock(ExitBB))
1204 continue;
1206 // When we are going to clone an exit, we don't need to clone all the
1207 // instructions in the exit block and we want to ensure we have an easy
1208 // place to merge the CFG, so split the exit first. This is always safe to
1209 // do because there cannot be any non-loop predecessors of a loop exit in
1210 // loop simplified form.
1211 auto *MergeBB = SplitBlock(ExitBB, ExitBB->begin(), &DT, &LI, MSSAU);
1213 // Rearrange the names to make it easier to write test cases by having the
1214 // exit block carry the suffix rather than the merge block carrying the
1215 // suffix.
1216 MergeBB->takeName(ExitBB);
1217 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1219 // Now clone the original exit block.
1220 auto *ClonedExitBB = CloneBlock(ExitBB);
1221 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1222 "Exit block should have been split to have one successor!");
1223 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1224 "Cloned exit block has the wrong successor!");
1226 // Remap any cloned instructions and create a merge phi node for them.
1227 for (auto ZippedInsts : llvm::zip_first(
1228 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1229 llvm::make_range(ClonedExitBB->begin(),
1230 std::prev(ClonedExitBB->end())))) {
1231 Instruction &I = std::get<0>(ZippedInsts);
1232 Instruction &ClonedI = std::get<1>(ZippedInsts);
1234 // The only instructions in the exit block should be PHI nodes and
1235 // potentially a landing pad.
1236 assert(
1237 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1238 "Bad instruction in exit block!");
1239 // We should have a value map between the instruction and its clone.
1240 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1242 // Forget SCEVs based on exit phis in case SCEV looked through the phi.
1243 if (SE && isa<PHINode>(I))
1244 SE->forgetValue(&I);
1246 auto *MergePN =
1247 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi");
1248 MergePN->insertBefore(MergeBB->getFirstInsertionPt());
1249 I.replaceAllUsesWith(MergePN);
1250 MergePN->addIncoming(&I, ExitBB);
1251 MergePN->addIncoming(&ClonedI, ClonedExitBB);
1255 // Rewrite the instructions in the cloned blocks to refer to the instructions
1256 // in the cloned blocks. We have to do this as a second pass so that we have
1257 // everything available. Also, we have inserted new instructions which may
1258 // include assume intrinsics, so we update the assumption cache while
1259 // processing this.
1260 Module *M = ClonedPH->getParent()->getParent();
1261 for (auto *ClonedBB : NewBlocks)
1262 for (Instruction &I : *ClonedBB) {
1263 RemapDPValueRange(M, I.getDbgValueRange(), VMap,
1264 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1265 RemapInstruction(&I, VMap,
1266 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1267 if (auto *II = dyn_cast<AssumeInst>(&I))
1268 AC.registerAssumption(II);
1271 // Update any PHI nodes in the cloned successors of the skipped blocks to not
1272 // have spurious incoming values.
1273 for (auto *LoopBB : L.blocks())
1274 if (SkipBlock(LoopBB))
1275 for (auto *SuccBB : successors(LoopBB))
1276 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1277 for (PHINode &PN : ClonedSuccBB->phis())
1278 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1280 // Remove the cloned parent as a predecessor of any successor we ended up
1281 // cloning other than the unswitched one.
1282 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1283 for (auto *SuccBB : successors(ParentBB)) {
1284 if (SuccBB == UnswitchedSuccBB)
1285 continue;
1287 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1288 if (!ClonedSuccBB)
1289 continue;
1291 ClonedSuccBB->removePredecessor(ClonedParentBB,
1292 /*KeepOneInputPHIs*/ true);
1295 // Replace the cloned branch with an unconditional branch to the cloned
1296 // unswitched successor.
1297 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1298 Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1299 // Trivial Simplification. If Terminator is a conditional branch and
1300 // condition becomes dead - erase it.
1301 Value *ClonedConditionToErase = nullptr;
1302 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1303 ClonedConditionToErase = BI->getCondition();
1304 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1305 ClonedConditionToErase = SI->getCondition();
1307 ClonedTerminator->eraseFromParent();
1308 BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1310 if (ClonedConditionToErase)
1311 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1312 MSSAU);
1314 // If there are duplicate entries in the PHI nodes because of multiple edges
1315 // to the unswitched successor, we need to nuke all but one as we replaced it
1316 // with a direct branch.
1317 for (PHINode &PN : ClonedSuccBB->phis()) {
1318 bool Found = false;
1319 // Loop over the incoming operands backwards so we can easily delete as we
1320 // go without invalidating the index.
1321 for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1322 if (PN.getIncomingBlock(i) != ClonedParentBB)
1323 continue;
1324 if (!Found) {
1325 Found = true;
1326 continue;
1328 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1332 // Record the domtree updates for the new blocks.
1333 SmallPtrSet<BasicBlock *, 4> SuccSet;
1334 for (auto *ClonedBB : NewBlocks) {
1335 for (auto *SuccBB : successors(ClonedBB))
1336 if (SuccSet.insert(SuccBB).second)
1337 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1338 SuccSet.clear();
1341 return ClonedPH;
1344 /// Recursively clone the specified loop and all of its children.
1346 /// The target parent loop for the clone should be provided, or can be null if
1347 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1348 /// with the provided value map. The entire original loop must be present in
1349 /// the value map. The cloned loop is returned.
1350 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1351 const ValueToValueMapTy &VMap, LoopInfo &LI) {
1352 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1353 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1354 ClonedL.reserveBlocks(OrigL.getNumBlocks());
1355 for (auto *BB : OrigL.blocks()) {
1356 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1357 ClonedL.addBlockEntry(ClonedBB);
1358 if (LI.getLoopFor(BB) == &OrigL)
1359 LI.changeLoopFor(ClonedBB, &ClonedL);
1363 // We specially handle the first loop because it may get cloned into
1364 // a different parent and because we most commonly are cloning leaf loops.
1365 Loop *ClonedRootL = LI.AllocateLoop();
1366 if (RootParentL)
1367 RootParentL->addChildLoop(ClonedRootL);
1368 else
1369 LI.addTopLevelLoop(ClonedRootL);
1370 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1372 if (OrigRootL.isInnermost())
1373 return ClonedRootL;
1375 // If we have a nest, we can quickly clone the entire loop nest using an
1376 // iterative approach because it is a tree. We keep the cloned parent in the
1377 // data structure to avoid repeatedly querying through a map to find it.
1378 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1379 // Build up the loops to clone in reverse order as we'll clone them from the
1380 // back.
1381 for (Loop *ChildL : llvm::reverse(OrigRootL))
1382 LoopsToClone.push_back({ClonedRootL, ChildL});
1383 do {
1384 Loop *ClonedParentL, *L;
1385 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1386 Loop *ClonedL = LI.AllocateLoop();
1387 ClonedParentL->addChildLoop(ClonedL);
1388 AddClonedBlocksToLoop(*L, *ClonedL);
1389 for (Loop *ChildL : llvm::reverse(*L))
1390 LoopsToClone.push_back({ClonedL, ChildL});
1391 } while (!LoopsToClone.empty());
1393 return ClonedRootL;
1396 /// Build the cloned loops of an original loop from unswitching.
1398 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1399 /// operation. We need to re-verify that there even is a loop (as the backedge
1400 /// may not have been cloned), and even if there are remaining backedges the
1401 /// backedge set may be different. However, we know that each child loop is
1402 /// undisturbed, we only need to find where to place each child loop within
1403 /// either any parent loop or within a cloned version of the original loop.
1405 /// Because child loops may end up cloned outside of any cloned version of the
1406 /// original loop, multiple cloned sibling loops may be created. All of them
1407 /// are returned so that the newly introduced loop nest roots can be
1408 /// identified.
1409 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1410 const ValueToValueMapTy &VMap, LoopInfo &LI,
1411 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1412 Loop *ClonedL = nullptr;
1414 auto *OrigPH = OrigL.getLoopPreheader();
1415 auto *OrigHeader = OrigL.getHeader();
1417 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1418 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1420 // We need to know the loops of the cloned exit blocks to even compute the
1421 // accurate parent loop. If we only clone exits to some parent of the
1422 // original parent, we want to clone into that outer loop. We also keep track
1423 // of the loops that our cloned exit blocks participate in.
1424 Loop *ParentL = nullptr;
1425 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1426 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1427 ClonedExitsInLoops.reserve(ExitBlocks.size());
1428 for (auto *ExitBB : ExitBlocks)
1429 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1430 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1431 ExitLoopMap[ClonedExitBB] = ExitL;
1432 ClonedExitsInLoops.push_back(ClonedExitBB);
1433 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1434 ParentL = ExitL;
1436 assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1437 ParentL->contains(OrigL.getParentLoop())) &&
1438 "The computed parent loop should always contain (or be) the parent of "
1439 "the original loop.");
1441 // We build the set of blocks dominated by the cloned header from the set of
1442 // cloned blocks out of the original loop. While not all of these will
1443 // necessarily be in the cloned loop, it is enough to establish that they
1444 // aren't in unreachable cycles, etc.
1445 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1446 for (auto *BB : OrigL.blocks())
1447 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1448 ClonedLoopBlocks.insert(ClonedBB);
1450 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1451 // skipped cloning some region of this loop which can in turn skip some of
1452 // the backedges so we have to rebuild the blocks in the loop based on the
1453 // backedges that remain after cloning.
1454 SmallVector<BasicBlock *, 16> Worklist;
1455 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1456 for (auto *Pred : predecessors(ClonedHeader)) {
1457 // The only possible non-loop header predecessor is the preheader because
1458 // we know we cloned the loop in simplified form.
1459 if (Pred == ClonedPH)
1460 continue;
1462 // Because the loop was in simplified form, the only non-loop predecessor
1463 // should be the preheader.
1464 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1465 "header other than the preheader "
1466 "that is not part of the loop!");
1468 // Insert this block into the loop set and on the first visit (and if it
1469 // isn't the header we're currently walking) put it into the worklist to
1470 // recurse through.
1471 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1472 Worklist.push_back(Pred);
1475 // If we had any backedges then there *is* a cloned loop. Put the header into
1476 // the loop set and then walk the worklist backwards to find all the blocks
1477 // that remain within the loop after cloning.
1478 if (!BlocksInClonedLoop.empty()) {
1479 BlocksInClonedLoop.insert(ClonedHeader);
1481 while (!Worklist.empty()) {
1482 BasicBlock *BB = Worklist.pop_back_val();
1483 assert(BlocksInClonedLoop.count(BB) &&
1484 "Didn't put block into the loop set!");
1486 // Insert any predecessors that are in the possible set into the cloned
1487 // set, and if the insert is successful, add them to the worklist. Note
1488 // that we filter on the blocks that are definitely reachable via the
1489 // backedge to the loop header so we may prune out dead code within the
1490 // cloned loop.
1491 for (auto *Pred : predecessors(BB))
1492 if (ClonedLoopBlocks.count(Pred) &&
1493 BlocksInClonedLoop.insert(Pred).second)
1494 Worklist.push_back(Pred);
1497 ClonedL = LI.AllocateLoop();
1498 if (ParentL) {
1499 ParentL->addBasicBlockToLoop(ClonedPH, LI);
1500 ParentL->addChildLoop(ClonedL);
1501 } else {
1502 LI.addTopLevelLoop(ClonedL);
1504 NonChildClonedLoops.push_back(ClonedL);
1506 ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1507 // We don't want to just add the cloned loop blocks based on how we
1508 // discovered them. The original order of blocks was carefully built in
1509 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1510 // that logic, we just re-walk the original blocks (and those of the child
1511 // loops) and filter them as we add them into the cloned loop.
1512 for (auto *BB : OrigL.blocks()) {
1513 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1514 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1515 continue;
1517 // Directly add the blocks that are only in this loop.
1518 if (LI.getLoopFor(BB) == &OrigL) {
1519 ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1520 continue;
1523 // We want to manually add it to this loop and parents.
1524 // Registering it with LoopInfo will happen when we clone the top
1525 // loop for this block.
1526 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1527 PL->addBlockEntry(ClonedBB);
1530 // Now add each child loop whose header remains within the cloned loop. All
1531 // of the blocks within the loop must satisfy the same constraints as the
1532 // header so once we pass the header checks we can just clone the entire
1533 // child loop nest.
1534 for (Loop *ChildL : OrigL) {
1535 auto *ClonedChildHeader =
1536 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1537 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1538 continue;
1540 #ifndef NDEBUG
1541 // We should never have a cloned child loop header but fail to have
1542 // all of the blocks for that child loop.
1543 for (auto *ChildLoopBB : ChildL->blocks())
1544 assert(BlocksInClonedLoop.count(
1545 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1546 "Child cloned loop has a header within the cloned outer "
1547 "loop but not all of its blocks!");
1548 #endif
1550 cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1554 // Now that we've handled all the components of the original loop that were
1555 // cloned into a new loop, we still need to handle anything from the original
1556 // loop that wasn't in a cloned loop.
1558 // Figure out what blocks are left to place within any loop nest containing
1559 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1560 // them.
1561 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1562 if (BlocksInClonedLoop.empty())
1563 UnloopedBlockSet.insert(ClonedPH);
1564 for (auto *ClonedBB : ClonedLoopBlocks)
1565 if (!BlocksInClonedLoop.count(ClonedBB))
1566 UnloopedBlockSet.insert(ClonedBB);
1568 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1569 // backwards across these to process them inside out. The order shouldn't
1570 // matter as we're just trying to build up the map from inside-out; we use
1571 // the map in a more stably ordered way below.
1572 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1573 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1574 return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1575 ExitLoopMap.lookup(RHS)->getLoopDepth();
1578 // Populate the existing ExitLoopMap with everything reachable from each
1579 // exit, starting from the inner most exit.
1580 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1581 assert(Worklist.empty() && "Didn't clear worklist!");
1583 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1584 Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1586 // Walk the CFG back until we hit the cloned PH adding everything reachable
1587 // and in the unlooped set to this exit block's loop.
1588 Worklist.push_back(ExitBB);
1589 do {
1590 BasicBlock *BB = Worklist.pop_back_val();
1591 // We can stop recursing at the cloned preheader (if we get there).
1592 if (BB == ClonedPH)
1593 continue;
1595 for (BasicBlock *PredBB : predecessors(BB)) {
1596 // If this pred has already been moved to our set or is part of some
1597 // (inner) loop, no update needed.
1598 if (!UnloopedBlockSet.erase(PredBB)) {
1599 assert(
1600 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1601 "Predecessor not mapped to a loop!");
1602 continue;
1605 // We just insert into the loop set here. We'll add these blocks to the
1606 // exit loop after we build up the set in an order that doesn't rely on
1607 // predecessor order (which in turn relies on use list order).
1608 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1609 (void)Inserted;
1610 assert(Inserted && "Should only visit an unlooped block once!");
1612 // And recurse through to its predecessors.
1613 Worklist.push_back(PredBB);
1615 } while (!Worklist.empty());
1618 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1619 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1620 // in their original order adding them to the correct loop.
1622 // We need a stable insertion order. We use the order of the original loop
1623 // order and map into the correct parent loop.
1624 for (auto *BB : llvm::concat<BasicBlock *const>(
1625 ArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1626 if (Loop *OuterL = ExitLoopMap.lookup(BB))
1627 OuterL->addBasicBlockToLoop(BB, LI);
1629 #ifndef NDEBUG
1630 for (auto &BBAndL : ExitLoopMap) {
1631 auto *BB = BBAndL.first;
1632 auto *OuterL = BBAndL.second;
1633 assert(LI.getLoopFor(BB) == OuterL &&
1634 "Failed to put all blocks into outer loops!");
1636 #endif
1638 // Now that all the blocks are placed into the correct containing loop in the
1639 // absence of child loops, find all the potentially cloned child loops and
1640 // clone them into whatever outer loop we placed their header into.
1641 for (Loop *ChildL : OrigL) {
1642 auto *ClonedChildHeader =
1643 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1644 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1645 continue;
1647 #ifndef NDEBUG
1648 for (auto *ChildLoopBB : ChildL->blocks())
1649 assert(VMap.count(ChildLoopBB) &&
1650 "Cloned a child loop header but not all of that loops blocks!");
1651 #endif
1653 NonChildClonedLoops.push_back(cloneLoopNest(
1654 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1658 static void
1659 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1660 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1661 DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1662 // Find all the dead clones, and remove them from their successors.
1663 SmallVector<BasicBlock *, 16> DeadBlocks;
1664 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1665 for (const auto &VMap : VMaps)
1666 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1667 if (!DT.isReachableFromEntry(ClonedBB)) {
1668 for (BasicBlock *SuccBB : successors(ClonedBB))
1669 SuccBB->removePredecessor(ClonedBB);
1670 DeadBlocks.push_back(ClonedBB);
1673 // Remove all MemorySSA in the dead blocks
1674 if (MSSAU) {
1675 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1676 DeadBlocks.end());
1677 MSSAU->removeBlocks(DeadBlockSet);
1680 // Drop any remaining references to break cycles.
1681 for (BasicBlock *BB : DeadBlocks)
1682 BB->dropAllReferences();
1683 // Erase them from the IR.
1684 for (BasicBlock *BB : DeadBlocks)
1685 BB->eraseFromParent();
1688 static void deleteDeadBlocksFromLoop(Loop &L,
1689 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1690 DominatorTree &DT, LoopInfo &LI,
1691 MemorySSAUpdater *MSSAU,
1692 ScalarEvolution *SE,
1693 LPMUpdater &LoopUpdater) {
1694 // Find all the dead blocks tied to this loop, and remove them from their
1695 // successors.
1696 SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1698 // Start with loop/exit blocks and get a transitive closure of reachable dead
1699 // blocks.
1700 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1701 ExitBlocks.end());
1702 DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1703 while (!DeathCandidates.empty()) {
1704 auto *BB = DeathCandidates.pop_back_val();
1705 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1706 for (BasicBlock *SuccBB : successors(BB)) {
1707 SuccBB->removePredecessor(BB);
1708 DeathCandidates.push_back(SuccBB);
1710 DeadBlockSet.insert(BB);
1714 // Remove all MemorySSA in the dead blocks
1715 if (MSSAU)
1716 MSSAU->removeBlocks(DeadBlockSet);
1718 // Filter out the dead blocks from the exit blocks list so that it can be
1719 // used in the caller.
1720 llvm::erase_if(ExitBlocks,
1721 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1723 // Walk from this loop up through its parents removing all of the dead blocks.
1724 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1725 for (auto *BB : DeadBlockSet)
1726 ParentL->getBlocksSet().erase(BB);
1727 llvm::erase_if(ParentL->getBlocksVector(),
1728 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1731 // Now delete the dead child loops. This raw delete will clear them
1732 // recursively.
1733 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1734 if (!DeadBlockSet.count(ChildL->getHeader()))
1735 return false;
1737 assert(llvm::all_of(ChildL->blocks(),
1738 [&](BasicBlock *ChildBB) {
1739 return DeadBlockSet.count(ChildBB);
1740 }) &&
1741 "If the child loop header is dead all blocks in the child loop must "
1742 "be dead as well!");
1743 LoopUpdater.markLoopAsDeleted(*ChildL, ChildL->getName());
1744 if (SE)
1745 SE->forgetBlockAndLoopDispositions();
1746 LI.destroy(ChildL);
1747 return true;
1750 // Remove the loop mappings for the dead blocks and drop all the references
1751 // from these blocks to others to handle cyclic references as we start
1752 // deleting the blocks themselves.
1753 for (auto *BB : DeadBlockSet) {
1754 // Check that the dominator tree has already been updated.
1755 assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1756 LI.changeLoopFor(BB, nullptr);
1757 // Drop all uses of the instructions to make sure we won't have dangling
1758 // uses in other blocks.
1759 for (auto &I : *BB)
1760 if (!I.use_empty())
1761 I.replaceAllUsesWith(PoisonValue::get(I.getType()));
1762 BB->dropAllReferences();
1765 // Actually delete the blocks now that they've been fully unhooked from the
1766 // IR.
1767 for (auto *BB : DeadBlockSet)
1768 BB->eraseFromParent();
1771 /// Recompute the set of blocks in a loop after unswitching.
1773 /// This walks from the original headers predecessors to rebuild the loop. We
1774 /// take advantage of the fact that new blocks can't have been added, and so we
1775 /// filter by the original loop's blocks. This also handles potentially
1776 /// unreachable code that we don't want to explore but might be found examining
1777 /// the predecessors of the header.
1779 /// If the original loop is no longer a loop, this will return an empty set. If
1780 /// it remains a loop, all the blocks within it will be added to the set
1781 /// (including those blocks in inner loops).
1782 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1783 LoopInfo &LI) {
1784 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1786 auto *PH = L.getLoopPreheader();
1787 auto *Header = L.getHeader();
1789 // A worklist to use while walking backwards from the header.
1790 SmallVector<BasicBlock *, 16> Worklist;
1792 // First walk the predecessors of the header to find the backedges. This will
1793 // form the basis of our walk.
1794 for (auto *Pred : predecessors(Header)) {
1795 // Skip the preheader.
1796 if (Pred == PH)
1797 continue;
1799 // Because the loop was in simplified form, the only non-loop predecessor
1800 // is the preheader.
1801 assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1802 "than the preheader that is not part of the "
1803 "loop!");
1805 // Insert this block into the loop set and on the first visit and, if it
1806 // isn't the header we're currently walking, put it into the worklist to
1807 // recurse through.
1808 if (LoopBlockSet.insert(Pred).second && Pred != Header)
1809 Worklist.push_back(Pred);
1812 // If no backedges were found, we're done.
1813 if (LoopBlockSet.empty())
1814 return LoopBlockSet;
1816 // We found backedges, recurse through them to identify the loop blocks.
1817 while (!Worklist.empty()) {
1818 BasicBlock *BB = Worklist.pop_back_val();
1819 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1821 // No need to walk past the header.
1822 if (BB == Header)
1823 continue;
1825 // Because we know the inner loop structure remains valid we can use the
1826 // loop structure to jump immediately across the entire nested loop.
1827 // Further, because it is in loop simplified form, we can directly jump
1828 // to its preheader afterward.
1829 if (Loop *InnerL = LI.getLoopFor(BB))
1830 if (InnerL != &L) {
1831 assert(L.contains(InnerL) &&
1832 "Should not reach a loop *outside* this loop!");
1833 // The preheader is the only possible predecessor of the loop so
1834 // insert it into the set and check whether it was already handled.
1835 auto *InnerPH = InnerL->getLoopPreheader();
1836 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1837 "but not contain the inner loop "
1838 "preheader!");
1839 if (!LoopBlockSet.insert(InnerPH).second)
1840 // The only way to reach the preheader is through the loop body
1841 // itself so if it has been visited the loop is already handled.
1842 continue;
1844 // Insert all of the blocks (other than those already present) into
1845 // the loop set. We expect at least the block that led us to find the
1846 // inner loop to be in the block set, but we may also have other loop
1847 // blocks if they were already enqueued as predecessors of some other
1848 // outer loop block.
1849 for (auto *InnerBB : InnerL->blocks()) {
1850 if (InnerBB == BB) {
1851 assert(LoopBlockSet.count(InnerBB) &&
1852 "Block should already be in the set!");
1853 continue;
1856 LoopBlockSet.insert(InnerBB);
1859 // Add the preheader to the worklist so we will continue past the
1860 // loop body.
1861 Worklist.push_back(InnerPH);
1862 continue;
1865 // Insert any predecessors that were in the original loop into the new
1866 // set, and if the insert is successful, add them to the worklist.
1867 for (auto *Pred : predecessors(BB))
1868 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1869 Worklist.push_back(Pred);
1872 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1874 // We've found all the blocks participating in the loop, return our completed
1875 // set.
1876 return LoopBlockSet;
1879 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1881 /// The removal may have removed some child loops entirely but cannot have
1882 /// disturbed any remaining child loops. However, they may need to be hoisted
1883 /// to the parent loop (or to be top-level loops). The original loop may be
1884 /// completely removed.
1886 /// The sibling loops resulting from this update are returned. If the original
1887 /// loop remains a valid loop, it will be the first entry in this list with all
1888 /// of the newly sibling loops following it.
1890 /// Returns true if the loop remains a loop after unswitching, and false if it
1891 /// is no longer a loop after unswitching (and should not continue to be
1892 /// referenced).
1893 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1894 LoopInfo &LI,
1895 SmallVectorImpl<Loop *> &HoistedLoops,
1896 ScalarEvolution *SE) {
1897 auto *PH = L.getLoopPreheader();
1899 // Compute the actual parent loop from the exit blocks. Because we may have
1900 // pruned some exits the loop may be different from the original parent.
1901 Loop *ParentL = nullptr;
1902 SmallVector<Loop *, 4> ExitLoops;
1903 SmallVector<BasicBlock *, 4> ExitsInLoops;
1904 ExitsInLoops.reserve(ExitBlocks.size());
1905 for (auto *ExitBB : ExitBlocks)
1906 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1907 ExitLoops.push_back(ExitL);
1908 ExitsInLoops.push_back(ExitBB);
1909 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1910 ParentL = ExitL;
1913 // Recompute the blocks participating in this loop. This may be empty if it
1914 // is no longer a loop.
1915 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1917 // If we still have a loop, we need to re-set the loop's parent as the exit
1918 // block set changing may have moved it within the loop nest. Note that this
1919 // can only happen when this loop has a parent as it can only hoist the loop
1920 // *up* the nest.
1921 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1922 // Remove this loop's (original) blocks from all of the intervening loops.
1923 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1924 IL = IL->getParentLoop()) {
1925 IL->getBlocksSet().erase(PH);
1926 for (auto *BB : L.blocks())
1927 IL->getBlocksSet().erase(BB);
1928 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1929 return BB == PH || L.contains(BB);
1933 LI.changeLoopFor(PH, ParentL);
1934 L.getParentLoop()->removeChildLoop(&L);
1935 if (ParentL)
1936 ParentL->addChildLoop(&L);
1937 else
1938 LI.addTopLevelLoop(&L);
1941 // Now we update all the blocks which are no longer within the loop.
1942 auto &Blocks = L.getBlocksVector();
1943 auto BlocksSplitI =
1944 LoopBlockSet.empty()
1945 ? Blocks.begin()
1946 : std::stable_partition(
1947 Blocks.begin(), Blocks.end(),
1948 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1950 // Before we erase the list of unlooped blocks, build a set of them.
1951 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1952 if (LoopBlockSet.empty())
1953 UnloopedBlocks.insert(PH);
1955 // Now erase these blocks from the loop.
1956 for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1957 L.getBlocksSet().erase(BB);
1958 Blocks.erase(BlocksSplitI, Blocks.end());
1960 // Sort the exits in ascending loop depth, we'll work backwards across these
1961 // to process them inside out.
1962 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1963 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1966 // We'll build up a set for each exit loop.
1967 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1968 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1970 auto RemoveUnloopedBlocksFromLoop =
1971 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1972 for (auto *BB : UnloopedBlocks)
1973 L.getBlocksSet().erase(BB);
1974 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1975 return UnloopedBlocks.count(BB);
1979 SmallVector<BasicBlock *, 16> Worklist;
1980 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1981 assert(Worklist.empty() && "Didn't clear worklist!");
1982 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1984 // Grab the next exit block, in decreasing loop depth order.
1985 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1986 Loop &ExitL = *LI.getLoopFor(ExitBB);
1987 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1989 // Erase all of the unlooped blocks from the loops between the previous
1990 // exit loop and this exit loop. This works because the ExitInLoops list is
1991 // sorted in increasing order of loop depth and thus we visit loops in
1992 // decreasing order of loop depth.
1993 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1994 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1996 // Walk the CFG back until we hit the cloned PH adding everything reachable
1997 // and in the unlooped set to this exit block's loop.
1998 Worklist.push_back(ExitBB);
1999 do {
2000 BasicBlock *BB = Worklist.pop_back_val();
2001 // We can stop recursing at the cloned preheader (if we get there).
2002 if (BB == PH)
2003 continue;
2005 for (BasicBlock *PredBB : predecessors(BB)) {
2006 // If this pred has already been moved to our set or is part of some
2007 // (inner) loop, no update needed.
2008 if (!UnloopedBlocks.erase(PredBB)) {
2009 assert((NewExitLoopBlocks.count(PredBB) ||
2010 ExitL.contains(LI.getLoopFor(PredBB))) &&
2011 "Predecessor not in a nested loop (or already visited)!");
2012 continue;
2015 // We just insert into the loop set here. We'll add these blocks to the
2016 // exit loop after we build up the set in a deterministic order rather
2017 // than the predecessor-influenced visit order.
2018 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
2019 (void)Inserted;
2020 assert(Inserted && "Should only visit an unlooped block once!");
2022 // And recurse through to its predecessors.
2023 Worklist.push_back(PredBB);
2025 } while (!Worklist.empty());
2027 // If blocks in this exit loop were directly part of the original loop (as
2028 // opposed to a child loop) update the map to point to this exit loop. This
2029 // just updates a map and so the fact that the order is unstable is fine.
2030 for (auto *BB : NewExitLoopBlocks)
2031 if (Loop *BBL = LI.getLoopFor(BB))
2032 if (BBL == &L || !L.contains(BBL))
2033 LI.changeLoopFor(BB, &ExitL);
2035 // We will remove the remaining unlooped blocks from this loop in the next
2036 // iteration or below.
2037 NewExitLoopBlocks.clear();
2040 // Any remaining unlooped blocks are no longer part of any loop unless they
2041 // are part of some child loop.
2042 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
2043 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
2044 for (auto *BB : UnloopedBlocks)
2045 if (Loop *BBL = LI.getLoopFor(BB))
2046 if (BBL == &L || !L.contains(BBL))
2047 LI.changeLoopFor(BB, nullptr);
2049 // Sink all the child loops whose headers are no longer in the loop set to
2050 // the parent (or to be top level loops). We reach into the loop and directly
2051 // update its subloop vector to make this batch update efficient.
2052 auto &SubLoops = L.getSubLoopsVector();
2053 auto SubLoopsSplitI =
2054 LoopBlockSet.empty()
2055 ? SubLoops.begin()
2056 : std::stable_partition(
2057 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
2058 return LoopBlockSet.count(SubL->getHeader());
2060 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
2061 HoistedLoops.push_back(HoistedL);
2062 HoistedL->setParentLoop(nullptr);
2064 // To compute the new parent of this hoisted loop we look at where we
2065 // placed the preheader above. We can't lookup the header itself because we
2066 // retained the mapping from the header to the hoisted loop. But the
2067 // preheader and header should have the exact same new parent computed
2068 // based on the set of exit blocks from the original loop as the preheader
2069 // is a predecessor of the header and so reached in the reverse walk. And
2070 // because the loops were all in simplified form the preheader of the
2071 // hoisted loop can't be part of some *other* loop.
2072 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
2073 NewParentL->addChildLoop(HoistedL);
2074 else
2075 LI.addTopLevelLoop(HoistedL);
2077 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
2079 // Actually delete the loop if nothing remained within it.
2080 if (Blocks.empty()) {
2081 assert(SubLoops.empty() &&
2082 "Failed to remove all subloops from the original loop!");
2083 if (Loop *ParentL = L.getParentLoop())
2084 ParentL->removeChildLoop(llvm::find(*ParentL, &L));
2085 else
2086 LI.removeLoop(llvm::find(LI, &L));
2087 // markLoopAsDeleted for L should be triggered by the caller (it is
2088 // typically done within postUnswitch).
2089 if (SE)
2090 SE->forgetBlockAndLoopDispositions();
2091 LI.destroy(&L);
2092 return false;
2095 return true;
2098 /// Helper to visit a dominator subtree, invoking a callable on each node.
2100 /// Returning false at any point will stop walking past that node of the tree.
2101 template <typename CallableT>
2102 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2103 SmallVector<DomTreeNode *, 4> DomWorklist;
2104 DomWorklist.push_back(DT[BB]);
2105 #ifndef NDEBUG
2106 SmallPtrSet<DomTreeNode *, 4> Visited;
2107 Visited.insert(DT[BB]);
2108 #endif
2109 do {
2110 DomTreeNode *N = DomWorklist.pop_back_val();
2112 // Visit this node.
2113 if (!Callable(N->getBlock()))
2114 continue;
2116 // Accumulate the child nodes.
2117 for (DomTreeNode *ChildN : *N) {
2118 assert(Visited.insert(ChildN).second &&
2119 "Cannot visit a node twice when walking a tree!");
2120 DomWorklist.push_back(ChildN);
2122 } while (!DomWorklist.empty());
2125 void postUnswitch(Loop &L, LPMUpdater &U, StringRef LoopName,
2126 bool CurrentLoopValid, bool PartiallyInvariant,
2127 bool InjectedCondition, ArrayRef<Loop *> NewLoops) {
2128 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2129 if (!NewLoops.empty())
2130 U.addSiblingLoops(NewLoops);
2132 // If the current loop remains valid, we should revisit it to catch any
2133 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2134 if (CurrentLoopValid) {
2135 if (PartiallyInvariant) {
2136 // Mark the new loop as partially unswitched, to avoid unswitching on
2137 // the same condition again.
2138 auto &Context = L.getHeader()->getContext();
2139 MDNode *DisableUnswitchMD = MDNode::get(
2140 Context,
2141 MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
2142 MDNode *NewLoopID = makePostTransformationMetadata(
2143 Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
2144 {DisableUnswitchMD});
2145 L.setLoopID(NewLoopID);
2146 } else if (InjectedCondition) {
2147 // Do the same for injection of invariant conditions.
2148 auto &Context = L.getHeader()->getContext();
2149 MDNode *DisableUnswitchMD = MDNode::get(
2150 Context,
2151 MDString::get(Context, "llvm.loop.unswitch.injection.disable"));
2152 MDNode *NewLoopID = makePostTransformationMetadata(
2153 Context, L.getLoopID(), {"llvm.loop.unswitch.injection"},
2154 {DisableUnswitchMD});
2155 L.setLoopID(NewLoopID);
2156 } else
2157 U.revisitCurrentLoop();
2158 } else
2159 U.markLoopAsDeleted(L, LoopName);
2162 static void unswitchNontrivialInvariants(
2163 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2164 IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI,
2165 AssumptionCache &AC, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2166 LPMUpdater &LoopUpdater, bool InsertFreeze, bool InjectedCondition) {
2167 auto *ParentBB = TI.getParent();
2168 BranchInst *BI = dyn_cast<BranchInst>(&TI);
2169 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2171 // Save the current loop name in a variable so that we can report it even
2172 // after it has been deleted.
2173 std::string LoopName(L.getName());
2175 // We can only unswitch switches, conditional branches with an invariant
2176 // condition, or combining invariant conditions with an instruction or
2177 // partially invariant instructions.
2178 assert((SI || (BI && BI->isConditional())) &&
2179 "Can only unswitch switches and conditional branch!");
2180 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2181 bool FullUnswitch =
2182 SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] &&
2183 !PartiallyInvariant);
2184 if (FullUnswitch)
2185 assert(Invariants.size() == 1 &&
2186 "Cannot have other invariants with full unswitching!");
2187 else
2188 assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) &&
2189 "Partial unswitching requires an instruction as the condition!");
2191 if (MSSAU && VerifyMemorySSA)
2192 MSSAU->getMemorySSA()->verifyMemorySSA();
2194 // Constant and BBs tracking the cloned and continuing successor. When we are
2195 // unswitching the entire condition, this can just be trivially chosen to
2196 // unswitch towards `true`. However, when we are unswitching a set of
2197 // invariants combined with `and` or `or` or partially invariant instructions,
2198 // the combining operation determines the best direction to unswitch: we want
2199 // to unswitch the direction that will collapse the branch.
2200 bool Direction = true;
2201 int ClonedSucc = 0;
2202 if (!FullUnswitch) {
2203 Value *Cond = skipTrivialSelect(BI->getCondition());
2204 (void)Cond;
2205 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2206 PartiallyInvariant) &&
2207 "Only `or`, `and`, an `select`, partially invariant instructions "
2208 "can combine invariants being unswitched.");
2209 if (!match(Cond, m_LogicalOr())) {
2210 if (match(Cond, m_LogicalAnd()) ||
2211 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2212 Direction = false;
2213 ClonedSucc = 1;
2218 BasicBlock *RetainedSuccBB =
2219 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2220 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2221 if (BI)
2222 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2223 else
2224 for (auto Case : SI->cases())
2225 if (Case.getCaseSuccessor() != RetainedSuccBB)
2226 UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2228 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2229 "Should not unswitch the same successor we are retaining!");
2231 // The branch should be in this exact loop. Any inner loop's invariant branch
2232 // should be handled by unswitching that inner loop. The caller of this
2233 // routine should filter out any candidates that remain (but were skipped for
2234 // whatever reason).
2235 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2237 // Compute the parent loop now before we start hacking on things.
2238 Loop *ParentL = L.getParentLoop();
2239 // Get blocks in RPO order for MSSA update, before changing the CFG.
2240 LoopBlocksRPO LBRPO(&L);
2241 if (MSSAU)
2242 LBRPO.perform(&LI);
2244 // Compute the outer-most loop containing one of our exit blocks. This is the
2245 // furthest up our loopnest which can be mutated, which we will use below to
2246 // update things.
2247 Loop *OuterExitL = &L;
2248 SmallVector<BasicBlock *, 4> ExitBlocks;
2249 L.getUniqueExitBlocks(ExitBlocks);
2250 for (auto *ExitBB : ExitBlocks) {
2251 // ExitBB can be an exit block for several levels in the loop nest. Make
2252 // sure we find the top most.
2253 Loop *NewOuterExitL = getTopMostExitingLoop(ExitBB, LI);
2254 if (!NewOuterExitL) {
2255 // We exited the entire nest with this block, so we're done.
2256 OuterExitL = nullptr;
2257 break;
2259 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2260 OuterExitL = NewOuterExitL;
2263 // At this point, we're definitely going to unswitch something so invalidate
2264 // any cached information in ScalarEvolution for the outer most loop
2265 // containing an exit block and all nested loops.
2266 if (SE) {
2267 if (OuterExitL)
2268 SE->forgetLoop(OuterExitL);
2269 else
2270 SE->forgetTopmostLoop(&L);
2271 SE->forgetBlockAndLoopDispositions();
2274 // If the edge from this terminator to a successor dominates that successor,
2275 // store a map from each block in its dominator subtree to it. This lets us
2276 // tell when cloning for a particular successor if a block is dominated by
2277 // some *other* successor with a single data structure. We use this to
2278 // significantly reduce cloning.
2279 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2280 for (auto *SuccBB : llvm::concat<BasicBlock *const>(ArrayRef(RetainedSuccBB),
2281 UnswitchedSuccBBs))
2282 if (SuccBB->getUniquePredecessor() ||
2283 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2284 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2286 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2287 DominatingSucc[BB] = SuccBB;
2288 return true;
2291 // Split the preheader, so that we know that there is a safe place to insert
2292 // the conditional branch. We will change the preheader to have a conditional
2293 // branch on LoopCond. The original preheader will become the split point
2294 // between the unswitched versions, and we will have a new preheader for the
2295 // original loop.
2296 BasicBlock *SplitBB = L.getLoopPreheader();
2297 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2299 // Keep track of the dominator tree updates needed.
2300 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2302 // Clone the loop for each unswitched successor.
2303 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2304 VMaps.reserve(UnswitchedSuccBBs.size());
2305 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2306 for (auto *SuccBB : UnswitchedSuccBBs) {
2307 VMaps.emplace_back(new ValueToValueMapTy());
2308 ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2309 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2310 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE);
2313 // Drop metadata if we may break its semantics by moving this instr into the
2314 // split block.
2315 if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2316 if (DropNonTrivialImplicitNullChecks)
2317 // Do not spend time trying to understand if we can keep it, just drop it
2318 // to save compile time.
2319 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2320 else {
2321 // It is only legal to preserve make.implicit metadata if we are
2322 // guaranteed no reach implicit null check after following this branch.
2323 ICFLoopSafetyInfo SafetyInfo;
2324 SafetyInfo.computeLoopSafetyInfo(&L);
2325 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2326 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2330 // The stitching of the branched code back together depends on whether we're
2331 // doing full unswitching or not with the exception that we always want to
2332 // nuke the initial terminator placed in the split block.
2333 SplitBB->getTerminator()->eraseFromParent();
2334 if (FullUnswitch) {
2335 // Splice the terminator from the original loop and rewrite its
2336 // successors.
2337 TI.moveBefore(*SplitBB, SplitBB->end());
2339 // Keep a clone of the terminator for MSSA updates.
2340 Instruction *NewTI = TI.clone();
2341 NewTI->insertInto(ParentBB, ParentBB->end());
2343 // First wire up the moved terminator to the preheaders.
2344 if (BI) {
2345 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2346 BI->setSuccessor(ClonedSucc, ClonedPH);
2347 BI->setSuccessor(1 - ClonedSucc, LoopPH);
2348 Value *Cond = skipTrivialSelect(BI->getCondition());
2349 if (InsertFreeze)
2350 Cond = new FreezeInst(
2351 Cond, Cond->getName() + ".fr", BI);
2352 BI->setCondition(Cond);
2353 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2354 } else {
2355 assert(SI && "Must either be a branch or switch!");
2357 // Walk the cases and directly update their successors.
2358 assert(SI->getDefaultDest() == RetainedSuccBB &&
2359 "Not retaining default successor!");
2360 SI->setDefaultDest(LoopPH);
2361 for (const auto &Case : SI->cases())
2362 if (Case.getCaseSuccessor() == RetainedSuccBB)
2363 Case.setSuccessor(LoopPH);
2364 else
2365 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2367 if (InsertFreeze)
2368 SI->setCondition(new FreezeInst(
2369 SI->getCondition(), SI->getCondition()->getName() + ".fr", SI));
2371 // We need to use the set to populate domtree updates as even when there
2372 // are multiple cases pointing at the same successor we only want to
2373 // remove and insert one edge in the domtree.
2374 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2375 DTUpdates.push_back(
2376 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2379 if (MSSAU) {
2380 DT.applyUpdates(DTUpdates);
2381 DTUpdates.clear();
2383 // Remove all but one edge to the retained block and all unswitched
2384 // blocks. This is to avoid having duplicate entries in the cloned Phis,
2385 // when we know we only keep a single edge for each case.
2386 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2387 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2388 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2390 for (auto &VMap : VMaps)
2391 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2392 /*IgnoreIncomingWithNoClones=*/true);
2393 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2395 // Remove all edges to unswitched blocks.
2396 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2397 MSSAU->removeEdge(ParentBB, SuccBB);
2400 // Now unhook the successor relationship as we'll be replacing
2401 // the terminator with a direct branch. This is much simpler for branches
2402 // than switches so we handle those first.
2403 if (BI) {
2404 // Remove the parent as a predecessor of the unswitched successor.
2405 assert(UnswitchedSuccBBs.size() == 1 &&
2406 "Only one possible unswitched block for a branch!");
2407 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2408 UnswitchedSuccBB->removePredecessor(ParentBB,
2409 /*KeepOneInputPHIs*/ true);
2410 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2411 } else {
2412 // Note that we actually want to remove the parent block as a predecessor
2413 // of *every* case successor. The case successor is either unswitched,
2414 // completely eliminating an edge from the parent to that successor, or it
2415 // is a duplicate edge to the retained successor as the retained successor
2416 // is always the default successor and as we'll replace this with a direct
2417 // branch we no longer need the duplicate entries in the PHI nodes.
2418 SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2419 assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2420 "Not retaining default successor!");
2421 for (const auto &Case : NewSI->cases())
2422 Case.getCaseSuccessor()->removePredecessor(
2423 ParentBB,
2424 /*KeepOneInputPHIs*/ true);
2426 // We need to use the set to populate domtree updates as even when there
2427 // are multiple cases pointing at the same successor we only want to
2428 // remove and insert one edge in the domtree.
2429 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2430 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2433 // After MSSAU update, remove the cloned terminator instruction NewTI.
2434 ParentBB->getTerminator()->eraseFromParent();
2436 // Create a new unconditional branch to the continuing block (as opposed to
2437 // the one cloned).
2438 BranchInst::Create(RetainedSuccBB, ParentBB);
2439 } else {
2440 assert(BI && "Only branches have partial unswitching.");
2441 assert(UnswitchedSuccBBs.size() == 1 &&
2442 "Only one possible unswitched block for a branch!");
2443 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2444 // When doing a partial unswitch, we have to do a bit more work to build up
2445 // the branch in the split block.
2446 if (PartiallyInvariant)
2447 buildPartialInvariantUnswitchConditionalBranch(
2448 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2449 else {
2450 buildPartialUnswitchConditionalBranch(
2451 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH,
2452 FreezeLoopUnswitchCond, BI, &AC, DT);
2454 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2456 if (MSSAU) {
2457 DT.applyUpdates(DTUpdates);
2458 DTUpdates.clear();
2460 // Perform MSSA cloning updates.
2461 for (auto &VMap : VMaps)
2462 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2463 /*IgnoreIncomingWithNoClones=*/true);
2464 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2468 // Apply the updates accumulated above to get an up-to-date dominator tree.
2469 DT.applyUpdates(DTUpdates);
2471 // Now that we have an accurate dominator tree, first delete the dead cloned
2472 // blocks so that we can accurately build any cloned loops. It is important to
2473 // not delete the blocks from the original loop yet because we still want to
2474 // reference the original loop to understand the cloned loop's structure.
2475 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2477 // Build the cloned loop structure itself. This may be substantially
2478 // different from the original structure due to the simplified CFG. This also
2479 // handles inserting all the cloned blocks into the correct loops.
2480 SmallVector<Loop *, 4> NonChildClonedLoops;
2481 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2482 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2484 // Now that our cloned loops have been built, we can update the original loop.
2485 // First we delete the dead blocks from it and then we rebuild the loop
2486 // structure taking these deletions into account.
2487 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE, LoopUpdater);
2489 if (MSSAU && VerifyMemorySSA)
2490 MSSAU->getMemorySSA()->verifyMemorySSA();
2492 SmallVector<Loop *, 4> HoistedLoops;
2493 bool IsStillLoop =
2494 rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE);
2496 if (MSSAU && VerifyMemorySSA)
2497 MSSAU->getMemorySSA()->verifyMemorySSA();
2499 // This transformation has a high risk of corrupting the dominator tree, and
2500 // the below steps to rebuild loop structures will result in hard to debug
2501 // errors in that case so verify that the dominator tree is sane first.
2502 // FIXME: Remove this when the bugs stop showing up and rely on existing
2503 // verification steps.
2504 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2506 if (BI && !PartiallyInvariant) {
2507 // If we unswitched a branch which collapses the condition to a known
2508 // constant we want to replace all the uses of the invariants within both
2509 // the original and cloned blocks. We do this here so that we can use the
2510 // now updated dominator tree to identify which side the users are on.
2511 assert(UnswitchedSuccBBs.size() == 1 &&
2512 "Only one possible unswitched block for a branch!");
2513 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2515 // When considering multiple partially-unswitched invariants
2516 // we cant just go replace them with constants in both branches.
2518 // For 'AND' we infer that true branch ("continue") means true
2519 // for each invariant operand.
2520 // For 'OR' we can infer that false branch ("continue") means false
2521 // for each invariant operand.
2522 // So it happens that for multiple-partial case we dont replace
2523 // in the unswitched branch.
2524 bool ReplaceUnswitched =
2525 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2527 ConstantInt *UnswitchedReplacement =
2528 Direction ? ConstantInt::getTrue(BI->getContext())
2529 : ConstantInt::getFalse(BI->getContext());
2530 ConstantInt *ContinueReplacement =
2531 Direction ? ConstantInt::getFalse(BI->getContext())
2532 : ConstantInt::getTrue(BI->getContext());
2533 for (Value *Invariant : Invariants) {
2534 assert(!isa<Constant>(Invariant) &&
2535 "Should not be replacing constant values!");
2536 // Use make_early_inc_range here as set invalidates the iterator.
2537 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2538 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2539 if (!UserI)
2540 continue;
2542 // Replace it with the 'continue' side if in the main loop body, and the
2543 // unswitched if in the cloned blocks.
2544 if (DT.dominates(LoopPH, UserI->getParent()))
2545 U.set(ContinueReplacement);
2546 else if (ReplaceUnswitched &&
2547 DT.dominates(ClonedPH, UserI->getParent()))
2548 U.set(UnswitchedReplacement);
2553 // We can change which blocks are exit blocks of all the cloned sibling
2554 // loops, the current loop, and any parent loops which shared exit blocks
2555 // with the current loop. As a consequence, we need to re-form LCSSA for
2556 // them. But we shouldn't need to re-form LCSSA for any child loops.
2557 // FIXME: This could be made more efficient by tracking which exit blocks are
2558 // new, and focusing on them, but that isn't likely to be necessary.
2560 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2561 // loop nest and update every loop that could have had its exits changed. We
2562 // also need to cover any intervening loops. We add all of these loops to
2563 // a list and sort them by loop depth to achieve this without updating
2564 // unnecessary loops.
2565 auto UpdateLoop = [&](Loop &UpdateL) {
2566 #ifndef NDEBUG
2567 UpdateL.verifyLoop();
2568 for (Loop *ChildL : UpdateL) {
2569 ChildL->verifyLoop();
2570 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2571 "Perturbed a child loop's LCSSA form!");
2573 #endif
2574 // First build LCSSA for this loop so that we can preserve it when
2575 // forming dedicated exits. We don't want to perturb some other loop's
2576 // LCSSA while doing that CFG edit.
2577 formLCSSA(UpdateL, DT, &LI, SE);
2579 // For loops reached by this loop's original exit blocks we may
2580 // introduced new, non-dedicated exits. At least try to re-form dedicated
2581 // exits for these loops. This may fail if they couldn't have dedicated
2582 // exits to start with.
2583 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2586 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2587 // and we can do it in any order as they don't nest relative to each other.
2589 // Also check if any of the loops we have updated have become top-level loops
2590 // as that will necessitate widening the outer loop scope.
2591 for (Loop *UpdatedL :
2592 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2593 UpdateLoop(*UpdatedL);
2594 if (UpdatedL->isOutermost())
2595 OuterExitL = nullptr;
2597 if (IsStillLoop) {
2598 UpdateLoop(L);
2599 if (L.isOutermost())
2600 OuterExitL = nullptr;
2603 // If the original loop had exit blocks, walk up through the outer most loop
2604 // of those exit blocks to update LCSSA and form updated dedicated exits.
2605 if (OuterExitL != &L)
2606 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2607 OuterL = OuterL->getParentLoop())
2608 UpdateLoop(*OuterL);
2610 #ifndef NDEBUG
2611 // Verify the entire loop structure to catch any incorrect updates before we
2612 // progress in the pass pipeline.
2613 LI.verify(DT);
2614 #endif
2616 // Now that we've unswitched something, make callbacks to report the changes.
2617 // For that we need to merge together the updated loops and the cloned loops
2618 // and check whether the original loop survived.
2619 SmallVector<Loop *, 4> SibLoops;
2620 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2621 if (UpdatedL->getParentLoop() == ParentL)
2622 SibLoops.push_back(UpdatedL);
2623 postUnswitch(L, LoopUpdater, LoopName, IsStillLoop, PartiallyInvariant,
2624 InjectedCondition, SibLoops);
2626 if (MSSAU && VerifyMemorySSA)
2627 MSSAU->getMemorySSA()->verifyMemorySSA();
2629 if (BI)
2630 ++NumBranches;
2631 else
2632 ++NumSwitches;
2635 /// Recursively compute the cost of a dominator subtree based on the per-block
2636 /// cost map provided.
2638 /// The recursive computation is memozied into the provided DT-indexed cost map
2639 /// to allow querying it for most nodes in the domtree without it becoming
2640 /// quadratic.
2641 static InstructionCost computeDomSubtreeCost(
2642 DomTreeNode &N,
2643 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2644 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2645 // Don't accumulate cost (or recurse through) blocks not in our block cost
2646 // map and thus not part of the duplication cost being considered.
2647 auto BBCostIt = BBCostMap.find(N.getBlock());
2648 if (BBCostIt == BBCostMap.end())
2649 return 0;
2651 // Lookup this node to see if we already computed its cost.
2652 auto DTCostIt = DTCostMap.find(&N);
2653 if (DTCostIt != DTCostMap.end())
2654 return DTCostIt->second;
2656 // If not, we have to compute it. We can't use insert above and update
2657 // because computing the cost may insert more things into the map.
2658 InstructionCost Cost = std::accumulate(
2659 N.begin(), N.end(), BBCostIt->second,
2660 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2661 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2663 bool Inserted = DTCostMap.insert({&N, Cost}).second;
2664 (void)Inserted;
2665 assert(Inserted && "Should not insert a node while visiting children!");
2666 return Cost;
2669 /// Turns a select instruction into implicit control flow branch,
2670 /// making the following replacement:
2672 /// head:
2673 /// --code before select--
2674 /// select %cond, %trueval, %falseval
2675 /// --code after select--
2677 /// into
2679 /// head:
2680 /// --code before select--
2681 /// br i1 %cond, label %then, label %tail
2683 /// then:
2684 /// br %tail
2686 /// tail:
2687 /// phi [ %trueval, %then ], [ %falseval, %head]
2688 /// unreachable
2690 /// It also makes all relevant DT and LI updates, so that all structures are in
2691 /// valid state after this transform.
2692 static BranchInst *turnSelectIntoBranch(SelectInst *SI, DominatorTree &DT,
2693 LoopInfo &LI, MemorySSAUpdater *MSSAU,
2694 AssumptionCache *AC) {
2695 LLVM_DEBUG(dbgs() << "Turning " << *SI << " into a branch.\n");
2696 BasicBlock *HeadBB = SI->getParent();
2698 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2699 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false,
2700 SI->getMetadata(LLVMContext::MD_prof), &DTU, &LI);
2701 auto *CondBr = cast<BranchInst>(HeadBB->getTerminator());
2702 BasicBlock *ThenBB = CondBr->getSuccessor(0),
2703 *TailBB = CondBr->getSuccessor(1);
2704 if (MSSAU)
2705 MSSAU->moveAllAfterSpliceBlocks(HeadBB, TailBB, SI);
2707 PHINode *Phi = PHINode::Create(SI->getType(), 2, "unswitched.select", SI);
2708 Phi->addIncoming(SI->getTrueValue(), ThenBB);
2709 Phi->addIncoming(SI->getFalseValue(), HeadBB);
2710 SI->replaceAllUsesWith(Phi);
2711 SI->eraseFromParent();
2713 if (MSSAU && VerifyMemorySSA)
2714 MSSAU->getMemorySSA()->verifyMemorySSA();
2716 ++NumSelects;
2717 return CondBr;
2720 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2721 /// making the following replacement:
2723 /// --code before guard--
2724 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2725 /// --code after guard--
2727 /// into
2729 /// --code before guard--
2730 /// br i1 %cond, label %guarded, label %deopt
2732 /// guarded:
2733 /// --code after guard--
2735 /// deopt:
2736 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2737 /// unreachable
2739 /// It also makes all relevant DT and LI updates, so that all structures are in
2740 /// valid state after this transform.
2741 static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2742 DominatorTree &DT, LoopInfo &LI,
2743 MemorySSAUpdater *MSSAU) {
2744 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2745 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2746 BasicBlock *CheckBB = GI->getParent();
2748 if (MSSAU && VerifyMemorySSA)
2749 MSSAU->getMemorySSA()->verifyMemorySSA();
2751 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2752 Instruction *DeoptBlockTerm =
2753 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true,
2754 GI->getMetadata(LLVMContext::MD_prof), &DTU, &LI);
2755 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2756 // SplitBlockAndInsertIfThen inserts control flow that branches to
2757 // DeoptBlockTerm if the condition is true. We want the opposite.
2758 CheckBI->swapSuccessors();
2760 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2761 GuardedBlock->setName("guarded");
2762 CheckBI->getSuccessor(1)->setName("deopt");
2763 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2765 if (MSSAU)
2766 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2768 GI->moveBefore(DeoptBlockTerm);
2769 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2771 if (MSSAU) {
2772 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2773 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2774 if (VerifyMemorySSA)
2775 MSSAU->getMemorySSA()->verifyMemorySSA();
2778 if (VerifyLoopInfo)
2779 LI.verify(DT);
2780 ++NumGuards;
2781 return CheckBI;
2784 /// Cost multiplier is a way to limit potentially exponential behavior
2785 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2786 /// candidates available. Also accounting for the number of "sibling" loops with
2787 /// the idea to account for previous unswitches that already happened on this
2788 /// cluster of loops. There was an attempt to keep this formula simple,
2789 /// just enough to limit the worst case behavior. Even if it is not that simple
2790 /// now it is still not an attempt to provide a detailed heuristic size
2791 /// prediction.
2793 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2794 /// unswitch candidates, making adequate predictions instead of wild guesses.
2795 /// That requires knowing not just the number of "remaining" candidates but
2796 /// also costs of unswitching for each of these candidates.
2797 static int CalculateUnswitchCostMultiplier(
2798 const Instruction &TI, const Loop &L, const LoopInfo &LI,
2799 const DominatorTree &DT,
2800 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) {
2802 // Guards and other exiting conditions do not contribute to exponential
2803 // explosion as soon as they dominate the latch (otherwise there might be
2804 // another path to the latch remaining that does not allow to eliminate the
2805 // loop copy on unswitch).
2806 const BasicBlock *Latch = L.getLoopLatch();
2807 const BasicBlock *CondBlock = TI.getParent();
2808 if (DT.dominates(CondBlock, Latch) &&
2809 (isGuard(&TI) ||
2810 (TI.isTerminator() &&
2811 llvm::count_if(successors(&TI), [&L](const BasicBlock *SuccBB) {
2812 return L.contains(SuccBB);
2813 }) <= 1))) {
2814 NumCostMultiplierSkipped++;
2815 return 1;
2818 auto *ParentL = L.getParentLoop();
2819 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2820 : std::distance(LI.begin(), LI.end()));
2821 // Count amount of clones that all the candidates might cause during
2822 // unswitching. Branch/guard/select counts as 1, switch counts as log2 of its
2823 // cases.
2824 int UnswitchedClones = 0;
2825 for (const auto &Candidate : UnswitchCandidates) {
2826 const Instruction *CI = Candidate.TI;
2827 const BasicBlock *CondBlock = CI->getParent();
2828 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2829 if (isa<SelectInst>(CI)) {
2830 UnswitchedClones++;
2831 continue;
2833 if (isGuard(CI)) {
2834 if (!SkipExitingSuccessors)
2835 UnswitchedClones++;
2836 continue;
2838 int NonExitingSuccessors =
2839 llvm::count_if(successors(CondBlock),
2840 [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) {
2841 return !SkipExitingSuccessors || L.contains(SuccBB);
2843 UnswitchedClones += Log2_32(NonExitingSuccessors);
2846 // Ignore up to the "unscaled candidates" number of unswitch candidates
2847 // when calculating the power-of-two scaling of the cost. The main idea
2848 // with this control is to allow a small number of unswitches to happen
2849 // and rely more on siblings multiplier (see below) when the number
2850 // of candidates is small.
2851 unsigned ClonesPower =
2852 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2854 // Allowing top-level loops to spread a bit more than nested ones.
2855 int SiblingsMultiplier =
2856 std::max((ParentL ? SiblingsCount
2857 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2859 // Compute the cost multiplier in a way that won't overflow by saturating
2860 // at an upper bound.
2861 int CostMultiplier;
2862 if (ClonesPower > Log2_32(UnswitchThreshold) ||
2863 SiblingsMultiplier > UnswitchThreshold)
2864 CostMultiplier = UnswitchThreshold;
2865 else
2866 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2867 (int)UnswitchThreshold);
2869 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier
2870 << " (siblings " << SiblingsMultiplier << " * clones "
2871 << (1 << ClonesPower) << ")"
2872 << " for unswitch candidate: " << TI << "\n");
2873 return CostMultiplier;
2876 static bool collectUnswitchCandidates(
2877 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates,
2878 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch,
2879 const Loop &L, const LoopInfo &LI, AAResults &AA,
2880 const MemorySSAUpdater *MSSAU) {
2881 assert(UnswitchCandidates.empty() && "Should be!");
2883 auto AddUnswitchCandidatesForInst = [&](Instruction *I, Value *Cond) {
2884 Cond = skipTrivialSelect(Cond);
2885 if (isa<Constant>(Cond))
2886 return;
2887 if (L.isLoopInvariant(Cond)) {
2888 UnswitchCandidates.push_back({I, {Cond}});
2889 return;
2891 if (match(Cond, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2892 TinyPtrVector<Value *> Invariants =
2893 collectHomogenousInstGraphLoopInvariants(
2894 L, *static_cast<Instruction *>(Cond), LI);
2895 if (!Invariants.empty())
2896 UnswitchCandidates.push_back({I, std::move(Invariants)});
2900 // Whether or not we should also collect guards in the loop.
2901 bool CollectGuards = false;
2902 if (UnswitchGuards) {
2903 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2904 Intrinsic::getName(Intrinsic::experimental_guard));
2905 if (GuardDecl && !GuardDecl->use_empty())
2906 CollectGuards = true;
2909 for (auto *BB : L.blocks()) {
2910 if (LI.getLoopFor(BB) != &L)
2911 continue;
2913 for (auto &I : *BB) {
2914 if (auto *SI = dyn_cast<SelectInst>(&I)) {
2915 auto *Cond = SI->getCondition();
2916 // Do not unswitch vector selects and logical and/or selects
2917 if (Cond->getType()->isIntegerTy(1) && !SI->getType()->isIntegerTy(1))
2918 AddUnswitchCandidatesForInst(SI, Cond);
2919 } else if (CollectGuards && isGuard(&I)) {
2920 auto *Cond =
2921 skipTrivialSelect(cast<IntrinsicInst>(&I)->getArgOperand(0));
2922 // TODO: Support AND, OR conditions and partial unswitching.
2923 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2924 UnswitchCandidates.push_back({&I, {Cond}});
2928 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2929 // We can only consider fully loop-invariant switch conditions as we need
2930 // to completely eliminate the switch after unswitching.
2931 if (!isa<Constant>(SI->getCondition()) &&
2932 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2933 UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2934 continue;
2937 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2938 if (!BI || !BI->isConditional() ||
2939 BI->getSuccessor(0) == BI->getSuccessor(1))
2940 continue;
2942 AddUnswitchCandidatesForInst(BI, BI->getCondition());
2945 if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2946 !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2947 return TerminatorAndInvariants.TI == L.getHeader()->getTerminator();
2948 })) {
2949 MemorySSA *MSSA = MSSAU->getMemorySSA();
2950 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2951 LLVM_DEBUG(
2952 dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2953 << *Info->InstToDuplicate[0] << "\n");
2954 PartialIVInfo = *Info;
2955 PartialIVCondBranch = L.getHeader()->getTerminator();
2956 TinyPtrVector<Value *> ValsToDuplicate;
2957 llvm::append_range(ValsToDuplicate, Info->InstToDuplicate);
2958 UnswitchCandidates.push_back(
2959 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2962 return !UnswitchCandidates.empty();
2965 /// Tries to canonicalize condition described by:
2967 /// br (LHS pred RHS), label IfTrue, label IfFalse
2969 /// into its equivalent where `Pred` is something that we support for injected
2970 /// invariants (so far it is limited to ult), LHS in canonicalized form is
2971 /// non-invariant and RHS is an invariant.
2972 static void canonicalizeForInvariantConditionInjection(
2973 ICmpInst::Predicate &Pred, Value *&LHS, Value *&RHS, BasicBlock *&IfTrue,
2974 BasicBlock *&IfFalse, const Loop &L) {
2975 if (!L.contains(IfTrue)) {
2976 Pred = ICmpInst::getInversePredicate(Pred);
2977 std::swap(IfTrue, IfFalse);
2980 // Move loop-invariant argument to RHS position.
2981 if (L.isLoopInvariant(LHS)) {
2982 Pred = ICmpInst::getSwappedPredicate(Pred);
2983 std::swap(LHS, RHS);
2986 if (Pred == ICmpInst::ICMP_SGE && match(RHS, m_Zero())) {
2987 // Turn "x >=s 0" into "x <u UMIN_INT"
2988 Pred = ICmpInst::ICMP_ULT;
2989 RHS = ConstantInt::get(
2990 RHS->getContext(),
2991 APInt::getSignedMinValue(RHS->getType()->getIntegerBitWidth()));
2995 /// Returns true, if predicate described by ( \p Pred, \p LHS, \p RHS )
2996 /// succeeding into blocks ( \p IfTrue, \p IfFalse) can be optimized by
2997 /// injecting a loop-invariant condition.
2998 static bool shouldTryInjectInvariantCondition(
2999 const ICmpInst::Predicate Pred, const Value *LHS, const Value *RHS,
3000 const BasicBlock *IfTrue, const BasicBlock *IfFalse, const Loop &L) {
3001 if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS))
3002 return false;
3003 // TODO: Support other predicates.
3004 if (Pred != ICmpInst::ICMP_ULT)
3005 return false;
3006 // TODO: Support non-loop-exiting branches?
3007 if (!L.contains(IfTrue) || L.contains(IfFalse))
3008 return false;
3009 // FIXME: For some reason this causes problems with MSSA updates, need to
3010 // investigate why. So far, just don't unswitch latch.
3011 if (L.getHeader() == IfTrue)
3012 return false;
3013 return true;
3016 /// Returns true, if metadata on \p BI allows us to optimize branching into \p
3017 /// TakenSucc via injection of invariant conditions. The branch should be not
3018 /// enough and not previously unswitched, the information about this comes from
3019 /// the metadata.
3020 bool shouldTryInjectBasingOnMetadata(const BranchInst *BI,
3021 const BasicBlock *TakenSucc) {
3022 SmallVector<uint32_t> Weights;
3023 if (!extractBranchWeights(*BI, Weights))
3024 return false;
3025 unsigned T = InjectInvariantConditionHotnesThreshold;
3026 BranchProbability LikelyTaken(T - 1, T);
3028 assert(Weights.size() == 2 && "Unexpected profile data!");
3029 size_t Idx = BI->getSuccessor(0) == TakenSucc ? 0 : 1;
3030 auto Num = Weights[Idx];
3031 auto Denom = Weights[0] + Weights[1];
3032 // Degenerate or overflowed metadata.
3033 if (Denom == 0 || Num > Denom)
3034 return false;
3035 BranchProbability ActualTaken(Num, Denom);
3036 if (LikelyTaken > ActualTaken)
3037 return false;
3038 return true;
3041 /// Materialize pending invariant condition of the given candidate into IR. The
3042 /// injected loop-invariant condition implies the original loop-variant branch
3043 /// condition, so the materialization turns
3045 /// loop_block:
3046 /// ...
3047 /// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
3049 /// into
3051 /// preheader:
3052 /// %invariant_cond = LHS pred RHS
3053 /// ...
3054 /// loop_block:
3055 /// br i1 %invariant_cond, label InLoopSucc, label OriginalCheck
3056 /// OriginalCheck:
3057 /// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
3058 /// ...
3059 static NonTrivialUnswitchCandidate
3060 injectPendingInvariantConditions(NonTrivialUnswitchCandidate Candidate, Loop &L,
3061 DominatorTree &DT, LoopInfo &LI,
3062 AssumptionCache &AC, MemorySSAUpdater *MSSAU) {
3063 assert(Candidate.hasPendingInjection() && "Nothing to inject!");
3064 BasicBlock *Preheader = L.getLoopPreheader();
3065 assert(Preheader && "Loop is not in simplified form?");
3066 assert(LI.getLoopFor(Candidate.TI->getParent()) == &L &&
3067 "Unswitching branch of inner loop!");
3069 auto Pred = Candidate.PendingInjection->Pred;
3070 auto *LHS = Candidate.PendingInjection->LHS;
3071 auto *RHS = Candidate.PendingInjection->RHS;
3072 auto *InLoopSucc = Candidate.PendingInjection->InLoopSucc;
3073 auto *TI = cast<BranchInst>(Candidate.TI);
3074 auto *BB = Candidate.TI->getParent();
3075 auto *OutOfLoopSucc = InLoopSucc == TI->getSuccessor(0) ? TI->getSuccessor(1)
3076 : TI->getSuccessor(0);
3077 // FIXME: Remove this once limitation on successors is lifted.
3078 assert(L.contains(InLoopSucc) && "Not supported yet!");
3079 assert(!L.contains(OutOfLoopSucc) && "Not supported yet!");
3080 auto &Ctx = BB->getContext();
3082 IRBuilder<> Builder(Preheader->getTerminator());
3083 assert(ICmpInst::isUnsigned(Pred) && "Not supported yet!");
3084 if (LHS->getType() != RHS->getType()) {
3085 if (LHS->getType()->getIntegerBitWidth() <
3086 RHS->getType()->getIntegerBitWidth())
3087 LHS = Builder.CreateZExt(LHS, RHS->getType(), LHS->getName() + ".wide");
3088 else
3089 RHS = Builder.CreateZExt(RHS, LHS->getType(), RHS->getName() + ".wide");
3091 // Do not use builder here: CreateICmp may simplify this into a constant and
3092 // unswitching will break. Better optimize it away later.
3093 auto *InjectedCond =
3094 ICmpInst::Create(Instruction::ICmp, Pred, LHS, RHS, "injected.cond",
3095 Preheader->getTerminator());
3097 BasicBlock *CheckBlock = BasicBlock::Create(Ctx, BB->getName() + ".check",
3098 BB->getParent(), InLoopSucc);
3099 Builder.SetInsertPoint(TI);
3100 auto *InvariantBr =
3101 Builder.CreateCondBr(InjectedCond, InLoopSucc, CheckBlock);
3103 Builder.SetInsertPoint(CheckBlock);
3104 Builder.CreateCondBr(TI->getCondition(), TI->getSuccessor(0),
3105 TI->getSuccessor(1));
3106 TI->eraseFromParent();
3108 // Fixup phis.
3109 for (auto &I : *InLoopSucc) {
3110 auto *PN = dyn_cast<PHINode>(&I);
3111 if (!PN)
3112 break;
3113 auto *Inc = PN->getIncomingValueForBlock(BB);
3114 PN->addIncoming(Inc, CheckBlock);
3116 OutOfLoopSucc->replacePhiUsesWith(BB, CheckBlock);
3118 SmallVector<DominatorTree::UpdateType, 4> DTUpdates = {
3119 { DominatorTree::Insert, BB, CheckBlock },
3120 { DominatorTree::Insert, CheckBlock, InLoopSucc },
3121 { DominatorTree::Insert, CheckBlock, OutOfLoopSucc },
3122 { DominatorTree::Delete, BB, OutOfLoopSucc }
3125 DT.applyUpdates(DTUpdates);
3126 if (MSSAU)
3127 MSSAU->applyUpdates(DTUpdates, DT);
3128 L.addBasicBlockToLoop(CheckBlock, LI);
3130 #ifndef NDEBUG
3131 DT.verify();
3132 LI.verify(DT);
3133 if (MSSAU && VerifyMemorySSA)
3134 MSSAU->getMemorySSA()->verifyMemorySSA();
3135 #endif
3137 // TODO: In fact, cost of unswitching a new invariant candidate is *slightly*
3138 // higher because we have just inserted a new block. Need to think how to
3139 // adjust the cost of injected candidates when it was first computed.
3140 LLVM_DEBUG(dbgs() << "Injected a new loop-invariant branch " << *InvariantBr
3141 << " and considering it for unswitching.");
3142 ++NumInvariantConditionsInjected;
3143 return NonTrivialUnswitchCandidate(InvariantBr, { InjectedCond },
3144 Candidate.Cost);
3147 /// Given chain of loop branch conditions looking like:
3148 /// br (Variant < Invariant1)
3149 /// br (Variant < Invariant2)
3150 /// br (Variant < Invariant3)
3151 /// ...
3152 /// collect set of invariant conditions on which we want to unswitch, which
3153 /// look like:
3154 /// Invariant1 <= Invariant2
3155 /// Invariant2 <= Invariant3
3156 /// ...
3157 /// Though they might not immediately exist in the IR, we can still inject them.
3158 static bool insertCandidatesWithPendingInjections(
3159 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, Loop &L,
3160 ICmpInst::Predicate Pred, ArrayRef<CompareDesc> Compares,
3161 const DominatorTree &DT) {
3163 assert(ICmpInst::isRelational(Pred));
3164 assert(ICmpInst::isStrictPredicate(Pred));
3165 if (Compares.size() < 2)
3166 return false;
3167 ICmpInst::Predicate NonStrictPred = ICmpInst::getNonStrictPredicate(Pred);
3168 for (auto Prev = Compares.begin(), Next = Compares.begin() + 1;
3169 Next != Compares.end(); ++Prev, ++Next) {
3170 Value *LHS = Next->Invariant;
3171 Value *RHS = Prev->Invariant;
3172 BasicBlock *InLoopSucc = Prev->InLoopSucc;
3173 InjectedInvariant ToInject(NonStrictPred, LHS, RHS, InLoopSucc);
3174 NonTrivialUnswitchCandidate Candidate(Prev->Term, { LHS, RHS },
3175 std::nullopt, std::move(ToInject));
3176 UnswitchCandidates.push_back(std::move(Candidate));
3178 return true;
3181 /// Collect unswitch candidates by invariant conditions that are not immediately
3182 /// present in the loop. However, they can be injected into the code if we
3183 /// decide it's profitable.
3184 /// An example of such conditions is following:
3186 /// for (...) {
3187 /// x = load ...
3188 /// if (! x <u C1) break;
3189 /// if (! x <u C2) break;
3190 /// <do something>
3191 /// }
3193 /// We can unswitch by condition "C1 <=u C2". If that is true, then "x <u C1 <=
3194 /// C2" automatically implies "x <u C2", so we can get rid of one of
3195 /// loop-variant checks in unswitched loop version.
3196 static bool collectUnswitchCandidatesWithInjections(
3197 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates,
3198 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, Loop &L,
3199 const DominatorTree &DT, const LoopInfo &LI, AAResults &AA,
3200 const MemorySSAUpdater *MSSAU) {
3201 if (!InjectInvariantConditions)
3202 return false;
3204 if (!DT.isReachableFromEntry(L.getHeader()))
3205 return false;
3206 auto *Latch = L.getLoopLatch();
3207 // Need to have a single latch and a preheader.
3208 if (!Latch)
3209 return false;
3210 assert(L.getLoopPreheader() && "Must have a preheader!");
3212 DenseMap<Value *, SmallVector<CompareDesc, 4> > CandidatesULT;
3213 // Traverse the conditions that dominate latch (and therefore dominate each
3214 // other).
3215 for (auto *DTN = DT.getNode(Latch); L.contains(DTN->getBlock());
3216 DTN = DTN->getIDom()) {
3217 ICmpInst::Predicate Pred;
3218 Value *LHS = nullptr, *RHS = nullptr;
3219 BasicBlock *IfTrue = nullptr, *IfFalse = nullptr;
3220 auto *BB = DTN->getBlock();
3221 // Ignore inner loops.
3222 if (LI.getLoopFor(BB) != &L)
3223 continue;
3224 auto *Term = BB->getTerminator();
3225 if (!match(Term, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
3226 m_BasicBlock(IfTrue), m_BasicBlock(IfFalse))))
3227 continue;
3228 if (!LHS->getType()->isIntegerTy())
3229 continue;
3230 canonicalizeForInvariantConditionInjection(Pred, LHS, RHS, IfTrue, IfFalse,
3232 if (!shouldTryInjectInvariantCondition(Pred, LHS, RHS, IfTrue, IfFalse, L))
3233 continue;
3234 if (!shouldTryInjectBasingOnMetadata(cast<BranchInst>(Term), IfTrue))
3235 continue;
3236 // Strip ZEXT for unsigned predicate.
3237 // TODO: once signed predicates are supported, also strip SEXT.
3238 CompareDesc Desc(cast<BranchInst>(Term), RHS, IfTrue);
3239 while (auto *Zext = dyn_cast<ZExtInst>(LHS))
3240 LHS = Zext->getOperand(0);
3241 CandidatesULT[LHS].push_back(Desc);
3244 bool Found = false;
3245 for (auto &It : CandidatesULT)
3246 Found |= insertCandidatesWithPendingInjections(
3247 UnswitchCandidates, L, ICmpInst::ICMP_ULT, It.second, DT);
3248 return Found;
3251 static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) {
3252 if (!L.isSafeToClone())
3253 return false;
3254 for (auto *BB : L.blocks())
3255 for (auto &I : *BB) {
3256 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
3257 return false;
3258 if (auto *CB = dyn_cast<CallBase>(&I)) {
3259 assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone().");
3260 if (CB->isConvergent())
3261 return false;
3265 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
3266 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
3267 // irreducible control flow into reducible control flow and introduce new
3268 // loops "out of thin air". If we ever discover important use cases for doing
3269 // this, we can add support to loop unswitch, but it is a lot of complexity
3270 // for what seems little or no real world benefit.
3271 LoopBlocksRPO RPOT(&L);
3272 RPOT.perform(&LI);
3273 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
3274 return false;
3276 SmallVector<BasicBlock *, 4> ExitBlocks;
3277 L.getUniqueExitBlocks(ExitBlocks);
3278 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
3279 // instruction as we don't know how to split those exit blocks.
3280 // FIXME: We should teach SplitBlock to handle this and remove this
3281 // restriction.
3282 for (auto *ExitBB : ExitBlocks) {
3283 auto *I = ExitBB->getFirstNonPHI();
3284 if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
3285 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
3286 "in exit block\n");
3287 return false;
3291 return true;
3294 static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate(
3295 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L,
3296 const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC,
3297 const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) {
3298 // Given that unswitching these terminators will require duplicating parts of
3299 // the loop, so we need to be able to model that cost. Compute the ephemeral
3300 // values and set up a data structure to hold per-BB costs. We cache each
3301 // block's cost so that we don't recompute this when considering different
3302 // subsets of the loop for duplication during unswitching.
3303 SmallPtrSet<const Value *, 4> EphValues;
3304 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
3305 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
3307 // Compute the cost of each block, as well as the total loop cost. Also, bail
3308 // out if we see instructions which are incompatible with loop unswitching
3309 // (convergent, noduplicate, or cross-basic-block tokens).
3310 // FIXME: We might be able to safely handle some of these in non-duplicated
3311 // regions.
3312 TargetTransformInfo::TargetCostKind CostKind =
3313 L.getHeader()->getParent()->hasMinSize()
3314 ? TargetTransformInfo::TCK_CodeSize
3315 : TargetTransformInfo::TCK_SizeAndLatency;
3316 InstructionCost LoopCost = 0;
3317 for (auto *BB : L.blocks()) {
3318 InstructionCost Cost = 0;
3319 for (auto &I : *BB) {
3320 if (EphValues.count(&I))
3321 continue;
3322 Cost += TTI.getInstructionCost(&I, CostKind);
3324 assert(Cost >= 0 && "Must not have negative costs!");
3325 LoopCost += Cost;
3326 assert(LoopCost >= 0 && "Must not have negative loop costs!");
3327 BBCostMap[BB] = Cost;
3329 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
3331 // Now we find the best candidate by searching for the one with the following
3332 // properties in order:
3334 // 1) An unswitching cost below the threshold
3335 // 2) The smallest number of duplicated unswitch candidates (to avoid
3336 // creating redundant subsequent unswitching)
3337 // 3) The smallest cost after unswitching.
3339 // We prioritize reducing fanout of unswitch candidates provided the cost
3340 // remains below the threshold because this has a multiplicative effect.
3342 // This requires memoizing each dominator subtree to avoid redundant work.
3344 // FIXME: Need to actually do the number of candidates part above.
3345 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
3346 // Given a terminator which might be unswitched, computes the non-duplicated
3347 // cost for that terminator.
3348 auto ComputeUnswitchedCost = [&](Instruction &TI,
3349 bool FullUnswitch) -> InstructionCost {
3350 // Unswitching selects unswitches the entire loop.
3351 if (isa<SelectInst>(TI))
3352 return LoopCost;
3354 BasicBlock &BB = *TI.getParent();
3355 SmallPtrSet<BasicBlock *, 4> Visited;
3357 InstructionCost Cost = 0;
3358 for (BasicBlock *SuccBB : successors(&BB)) {
3359 // Don't count successors more than once.
3360 if (!Visited.insert(SuccBB).second)
3361 continue;
3363 // If this is a partial unswitch candidate, then it must be a conditional
3364 // branch with a condition of either `or`, `and`, their corresponding
3365 // select forms or partially invariant instructions. In that case, one of
3366 // the successors is necessarily duplicated, so don't even try to remove
3367 // its cost.
3368 if (!FullUnswitch) {
3369 auto &BI = cast<BranchInst>(TI);
3370 Value *Cond = skipTrivialSelect(BI.getCondition());
3371 if (match(Cond, m_LogicalAnd())) {
3372 if (SuccBB == BI.getSuccessor(1))
3373 continue;
3374 } else if (match(Cond, m_LogicalOr())) {
3375 if (SuccBB == BI.getSuccessor(0))
3376 continue;
3377 } else if ((PartialIVInfo.KnownValue->isOneValue() &&
3378 SuccBB == BI.getSuccessor(0)) ||
3379 (!PartialIVInfo.KnownValue->isOneValue() &&
3380 SuccBB == BI.getSuccessor(1)))
3381 continue;
3384 // This successor's domtree will not need to be duplicated after
3385 // unswitching if the edge to the successor dominates it (and thus the
3386 // entire tree). This essentially means there is no other path into this
3387 // subtree and so it will end up live in only one clone of the loop.
3388 if (SuccBB->getUniquePredecessor() ||
3389 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
3390 return PredBB == &BB || DT.dominates(SuccBB, PredBB);
3391 })) {
3392 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
3393 assert(Cost <= LoopCost &&
3394 "Non-duplicated cost should never exceed total loop cost!");
3398 // Now scale the cost by the number of unique successors minus one. We
3399 // subtract one because there is already at least one copy of the entire
3400 // loop. This is computing the new cost of unswitching a condition.
3401 // Note that guards always have 2 unique successors that are implicit and
3402 // will be materialized if we decide to unswitch it.
3403 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
3404 assert(SuccessorsCount > 1 &&
3405 "Cannot unswitch a condition without multiple distinct successors!");
3406 return (LoopCost - Cost) * (SuccessorsCount - 1);
3409 std::optional<NonTrivialUnswitchCandidate> Best;
3410 for (auto &Candidate : UnswitchCandidates) {
3411 Instruction &TI = *Candidate.TI;
3412 ArrayRef<Value *> Invariants = Candidate.Invariants;
3413 BranchInst *BI = dyn_cast<BranchInst>(&TI);
3414 bool FullUnswitch =
3415 !BI || Candidate.hasPendingInjection() ||
3416 (Invariants.size() == 1 &&
3417 Invariants[0] == skipTrivialSelect(BI->getCondition()));
3418 InstructionCost CandidateCost = ComputeUnswitchedCost(TI, FullUnswitch);
3419 // Calculate cost multiplier which is a tool to limit potentially
3420 // exponential behavior of loop-unswitch.
3421 if (EnableUnswitchCostMultiplier) {
3422 int CostMultiplier =
3423 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
3424 assert(
3425 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
3426 "cost multiplier needs to be in the range of 1..UnswitchThreshold");
3427 CandidateCost *= CostMultiplier;
3428 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
3429 << " (multiplier: " << CostMultiplier << ")"
3430 << " for unswitch candidate: " << TI << "\n");
3431 } else {
3432 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
3433 << " for unswitch candidate: " << TI << "\n");
3436 if (!Best || CandidateCost < Best->Cost) {
3437 Best = Candidate;
3438 Best->Cost = CandidateCost;
3441 assert(Best && "Must be!");
3442 return *Best;
3445 // Insert a freeze on an unswitched branch if all is true:
3446 // 1. freeze-loop-unswitch-cond option is true
3447 // 2. The branch may not execute in the loop pre-transformation. If a branch may
3448 // not execute and could cause UB, it would always cause UB if it is hoisted outside
3449 // of the loop. Insert a freeze to prevent this case.
3450 // 3. The branch condition may be poison or undef
3451 static bool shouldInsertFreeze(Loop &L, Instruction &TI, DominatorTree &DT,
3452 AssumptionCache &AC) {
3453 assert(isa<BranchInst>(TI) || isa<SwitchInst>(TI));
3454 if (!FreezeLoopUnswitchCond)
3455 return false;
3457 ICFLoopSafetyInfo SafetyInfo;
3458 SafetyInfo.computeLoopSafetyInfo(&L);
3459 if (SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
3460 return false;
3462 Value *Cond;
3463 if (BranchInst *BI = dyn_cast<BranchInst>(&TI))
3464 Cond = skipTrivialSelect(BI->getCondition());
3465 else
3466 Cond = skipTrivialSelect(cast<SwitchInst>(&TI)->getCondition());
3467 return !isGuaranteedNotToBeUndefOrPoison(
3468 Cond, &AC, L.getLoopPreheader()->getTerminator(), &DT);
3471 static bool unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
3472 AssumptionCache &AC, AAResults &AA,
3473 TargetTransformInfo &TTI, ScalarEvolution *SE,
3474 MemorySSAUpdater *MSSAU,
3475 LPMUpdater &LoopUpdater) {
3476 // Collect all invariant conditions within this loop (as opposed to an inner
3477 // loop which would be handled when visiting that inner loop).
3478 SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates;
3479 IVConditionInfo PartialIVInfo;
3480 Instruction *PartialIVCondBranch = nullptr;
3481 collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo,
3482 PartialIVCondBranch, L, LI, AA, MSSAU);
3483 if (!findOptionMDForLoop(&L, "llvm.loop.unswitch.injection.disable"))
3484 collectUnswitchCandidatesWithInjections(UnswitchCandidates, PartialIVInfo,
3485 PartialIVCondBranch, L, DT, LI, AA,
3486 MSSAU);
3487 // If we didn't find any candidates, we're done.
3488 if (UnswitchCandidates.empty())
3489 return false;
3491 LLVM_DEBUG(
3492 dbgs() << "Considering " << UnswitchCandidates.size()
3493 << " non-trivial loop invariant conditions for unswitching.\n");
3495 NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate(
3496 UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo);
3498 assert(Best.TI && "Failed to find loop unswitch candidate");
3499 assert(Best.Cost && "Failed to compute cost");
3501 if (*Best.Cost >= UnswitchThreshold) {
3502 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost
3503 << "\n");
3504 return false;
3507 bool InjectedCondition = false;
3508 if (Best.hasPendingInjection()) {
3509 Best = injectPendingInvariantConditions(Best, L, DT, LI, AC, MSSAU);
3510 InjectedCondition = true;
3512 assert(!Best.hasPendingInjection() &&
3513 "All injections should have been done by now!");
3515 if (Best.TI != PartialIVCondBranch)
3516 PartialIVInfo.InstToDuplicate.clear();
3518 bool InsertFreeze;
3519 if (auto *SI = dyn_cast<SelectInst>(Best.TI)) {
3520 // If the best candidate is a select, turn it into a branch. Select
3521 // instructions with a poison conditional do not propagate poison, but
3522 // branching on poison causes UB. Insert a freeze on the select
3523 // conditional to prevent UB after turning the select into a branch.
3524 InsertFreeze = !isGuaranteedNotToBeUndefOrPoison(
3525 SI->getCondition(), &AC, L.getLoopPreheader()->getTerminator(), &DT);
3526 Best.TI = turnSelectIntoBranch(SI, DT, LI, MSSAU, &AC);
3527 } else {
3528 // If the best candidate is a guard, turn it into a branch.
3529 if (isGuard(Best.TI))
3530 Best.TI =
3531 turnGuardIntoBranch(cast<IntrinsicInst>(Best.TI), L, DT, LI, MSSAU);
3532 InsertFreeze = shouldInsertFreeze(L, *Best.TI, DT, AC);
3535 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " << Best.Cost
3536 << ") terminator: " << *Best.TI << "\n");
3537 unswitchNontrivialInvariants(L, *Best.TI, Best.Invariants, PartialIVInfo, DT,
3538 LI, AC, SE, MSSAU, LoopUpdater, InsertFreeze,
3539 InjectedCondition);
3540 return true;
3543 /// Unswitch control flow predicated on loop invariant conditions.
3545 /// This first hoists all branches or switches which are trivial (IE, do not
3546 /// require duplicating any part of the loop) out of the loop body. It then
3547 /// looks at other loop invariant control flows and tries to unswitch those as
3548 /// well by cloning the loop if the result is small enough.
3550 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3551 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
3552 /// valid (i.e. its use is enabled).
3554 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3555 /// true, we will attempt to do non-trivial unswitching as well as trivial
3556 /// unswitching.
3558 /// The `postUnswitch` function will be run after unswitching is complete
3559 /// with information on whether or not the provided loop remains a loop and
3560 /// a list of new sibling loops created.
3562 /// If `SE` is non-null, we will update that analysis based on the unswitching
3563 /// done.
3564 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
3565 AssumptionCache &AC, AAResults &AA,
3566 TargetTransformInfo &TTI, bool Trivial,
3567 bool NonTrivial, ScalarEvolution *SE,
3568 MemorySSAUpdater *MSSAU, ProfileSummaryInfo *PSI,
3569 BlockFrequencyInfo *BFI, LPMUpdater &LoopUpdater) {
3570 assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3571 "Loops must be in LCSSA form before unswitching.");
3573 // Must be in loop simplified form: we need a preheader and dedicated exits.
3574 if (!L.isLoopSimplifyForm())
3575 return false;
3577 // Try trivial unswitch first before loop over other basic blocks in the loop.
3578 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3579 // If we unswitched successfully we will want to clean up the loop before
3580 // processing it further so just mark it as unswitched and return.
3581 postUnswitch(L, LoopUpdater, L.getName(),
3582 /*CurrentLoopValid*/ true, /*PartiallyInvariant*/ false,
3583 /*InjectedCondition*/ false, {});
3584 return true;
3587 const Function *F = L.getHeader()->getParent();
3589 // Check whether we should continue with non-trivial conditions.
3590 // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3591 // unswitching for testing and debugging.
3592 // NonTrivial: Parameter that enables non-trivial unswitching for this
3593 // invocation of the transform. But this should be allowed only
3594 // for targets without branch divergence.
3596 // FIXME: If divergence analysis becomes available to a loop
3597 // transform, we should allow unswitching for non-trivial uniform
3598 // branches even on targets that have divergence.
3599 // https://bugs.llvm.org/show_bug.cgi?id=48819
3600 bool ContinueWithNonTrivial =
3601 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence(F));
3602 if (!ContinueWithNonTrivial)
3603 return false;
3605 // Skip non-trivial unswitching for optsize functions.
3606 if (F->hasOptSize())
3607 return false;
3609 // Returns true if Loop L's loop nest is cold, i.e. if the headers of L,
3610 // of the loops L is nested in, and of the loops nested in L are all cold.
3611 auto IsLoopNestCold = [&](const Loop *L) {
3612 // Check L and all of its parent loops.
3613 auto *Parent = L;
3614 while (Parent) {
3615 if (!PSI->isColdBlock(Parent->getHeader(), BFI))
3616 return false;
3617 Parent = Parent->getParentLoop();
3619 // Next check all loops nested within L.
3620 SmallVector<const Loop *, 4> Worklist;
3621 Worklist.insert(Worklist.end(), L->getSubLoops().begin(),
3622 L->getSubLoops().end());
3623 while (!Worklist.empty()) {
3624 auto *CurLoop = Worklist.pop_back_val();
3625 if (!PSI->isColdBlock(CurLoop->getHeader(), BFI))
3626 return false;
3627 Worklist.insert(Worklist.end(), CurLoop->getSubLoops().begin(),
3628 CurLoop->getSubLoops().end());
3630 return true;
3633 // Skip cold loops in cold loop nests, as unswitching them brings little
3634 // benefit but increases the code size
3635 if (PSI && PSI->hasProfileSummary() && BFI && IsLoopNestCold(&L)) {
3636 LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n");
3637 return false;
3640 // Perform legality checks.
3641 if (!isSafeForNoNTrivialUnswitching(L, LI))
3642 return false;
3644 // For non-trivial unswitching, because it often creates new loops, we rely on
3645 // the pass manager to iterate on the loops rather than trying to immediately
3646 // reach a fixed point. There is no substantial advantage to iterating
3647 // internally, and if any of the new loops are simplified enough to contain
3648 // trivial unswitching we want to prefer those.
3650 // Try to unswitch the best invariant condition. We prefer this full unswitch to
3651 // a partial unswitch when possible below the threshold.
3652 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, SE, MSSAU, LoopUpdater))
3653 return true;
3655 // No other opportunities to unswitch.
3656 return false;
3659 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3660 LoopStandardAnalysisResults &AR,
3661 LPMUpdater &U) {
3662 Function &F = *L.getHeader()->getParent();
3663 (void)F;
3664 ProfileSummaryInfo *PSI = nullptr;
3665 if (auto OuterProxy =
3666 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR)
3667 .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F))
3668 PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3669 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3670 << "\n");
3672 std::optional<MemorySSAUpdater> MSSAU;
3673 if (AR.MSSA) {
3674 MSSAU = MemorySSAUpdater(AR.MSSA);
3675 if (VerifyMemorySSA)
3676 AR.MSSA->verifyMemorySSA();
3678 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3679 &AR.SE, MSSAU ? &*MSSAU : nullptr, PSI, AR.BFI, U))
3680 return PreservedAnalyses::all();
3682 if (AR.MSSA && VerifyMemorySSA)
3683 AR.MSSA->verifyMemorySSA();
3685 // Historically this pass has had issues with the dominator tree so verify it
3686 // in asserts builds.
3687 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3689 auto PA = getLoopPassPreservedAnalyses();
3690 if (AR.MSSA)
3691 PA.preserve<MemorySSAAnalysis>();
3692 return PA;
3695 void SimpleLoopUnswitchPass::printPipeline(
3696 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3697 static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
3698 OS, MapClassName2PassName);
3700 OS << '<';
3701 OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3702 OS << (Trivial ? "" : "no-") << "trivial";
3703 OS << '>';