[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Utils / BasicBlockUtils.cpp
blobec0482ac2cdeb467db85618d73f20805bee91a73
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfo.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <string>
49 #include <utility>
50 #include <vector>
52 using namespace llvm;
54 #define DEBUG_TYPE "basicblock-utils"
56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
57 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
58 cl::desc("Set the maximum path length when checking whether a basic block "
59 "is followed by a block that either has a terminating "
60 "deoptimizing call or is terminated with an unreachable"));
62 void llvm::detachDeadBlocks(
63 ArrayRef<BasicBlock *> BBs,
64 SmallVectorImpl<DominatorTree::UpdateType> *Updates,
65 bool KeepOneInputPHIs) {
66 for (auto *BB : BBs) {
67 // Loop through all of our successors and make sure they know that one
68 // of their predecessors is going away.
69 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
70 for (BasicBlock *Succ : successors(BB)) {
71 Succ->removePredecessor(BB, KeepOneInputPHIs);
72 if (Updates && UniqueSuccessors.insert(Succ).second)
73 Updates->push_back({DominatorTree::Delete, BB, Succ});
76 // Zap all the instructions in the block.
77 while (!BB->empty()) {
78 Instruction &I = BB->back();
79 // If this instruction is used, replace uses with an arbitrary value.
80 // Because control flow can't get here, we don't care what we replace the
81 // value with. Note that since this block is unreachable, and all values
82 // contained within it must dominate their uses, that all uses will
83 // eventually be removed (they are themselves dead).
84 if (!I.use_empty())
85 I.replaceAllUsesWith(PoisonValue::get(I.getType()));
86 BB->back().eraseFromParent();
88 new UnreachableInst(BB->getContext(), BB);
89 assert(BB->size() == 1 &&
90 isa<UnreachableInst>(BB->getTerminator()) &&
91 "The successor list of BB isn't empty before "
92 "applying corresponding DTU updates.");
96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
97 bool KeepOneInputPHIs) {
98 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
102 bool KeepOneInputPHIs) {
103 #ifndef NDEBUG
104 // Make sure that all predecessors of each dead block is also dead.
105 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
106 assert(Dead.size() == BBs.size() && "Duplicating blocks?");
107 for (auto *BB : Dead)
108 for (BasicBlock *Pred : predecessors(BB))
109 assert(Dead.count(Pred) && "All predecessors must be dead!");
110 #endif
112 SmallVector<DominatorTree::UpdateType, 4> Updates;
113 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
115 if (DTU)
116 DTU->applyUpdates(Updates);
118 for (BasicBlock *BB : BBs)
119 if (DTU)
120 DTU->deleteBB(BB);
121 else
122 BB->eraseFromParent();
125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
126 bool KeepOneInputPHIs) {
127 df_iterator_default_set<BasicBlock*> Reachable;
129 // Mark all reachable blocks.
130 for (BasicBlock *BB : depth_first_ext(&F, Reachable))
131 (void)BB/* Mark all reachable blocks */;
133 // Collect all dead blocks.
134 std::vector<BasicBlock*> DeadBlocks;
135 for (BasicBlock &BB : F)
136 if (!Reachable.count(&BB))
137 DeadBlocks.push_back(&BB);
139 // Delete the dead blocks.
140 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
142 return !DeadBlocks.empty();
145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
146 MemoryDependenceResults *MemDep) {
147 if (!isa<PHINode>(BB->begin()))
148 return false;
150 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
151 if (PN->getIncomingValue(0) != PN)
152 PN->replaceAllUsesWith(PN->getIncomingValue(0));
153 else
154 PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
156 if (MemDep)
157 MemDep->removeInstruction(PN); // Memdep updates AA itself.
159 PN->eraseFromParent();
161 return true;
164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
165 MemorySSAUpdater *MSSAU) {
166 // Recursively deleting a PHI may cause multiple PHIs to be deleted
167 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
168 SmallVector<WeakTrackingVH, 8> PHIs;
169 for (PHINode &PN : BB->phis())
170 PHIs.push_back(&PN);
172 bool Changed = false;
173 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
174 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
175 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
177 return Changed;
180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
181 LoopInfo *LI, MemorySSAUpdater *MSSAU,
182 MemoryDependenceResults *MemDep,
183 bool PredecessorWithTwoSuccessors,
184 DominatorTree *DT) {
185 if (BB->hasAddressTaken())
186 return false;
188 // Can't merge if there are multiple predecessors, or no predecessors.
189 BasicBlock *PredBB = BB->getUniquePredecessor();
190 if (!PredBB) return false;
192 // Don't break self-loops.
193 if (PredBB == BB) return false;
195 // Don't break unwinding instructions or terminators with other side-effects.
196 Instruction *PTI = PredBB->getTerminator();
197 if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects())
198 return false;
200 // Can't merge if there are multiple distinct successors.
201 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
202 return false;
204 // Currently only allow PredBB to have two predecessors, one being BB.
205 // Update BI to branch to BB's only successor instead of BB.
206 BranchInst *PredBB_BI;
207 BasicBlock *NewSucc = nullptr;
208 unsigned FallThruPath;
209 if (PredecessorWithTwoSuccessors) {
210 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
211 return false;
212 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
213 if (!BB_JmpI || !BB_JmpI->isUnconditional())
214 return false;
215 NewSucc = BB_JmpI->getSuccessor(0);
216 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
219 // Can't merge if there is PHI loop.
220 for (PHINode &PN : BB->phis())
221 if (llvm::is_contained(PN.incoming_values(), &PN))
222 return false;
224 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
225 << PredBB->getName() << "\n");
227 // Begin by getting rid of unneeded PHIs.
228 SmallVector<AssertingVH<Value>, 4> IncomingValues;
229 if (isa<PHINode>(BB->front())) {
230 for (PHINode &PN : BB->phis())
231 if (!isa<PHINode>(PN.getIncomingValue(0)) ||
232 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
233 IncomingValues.push_back(PN.getIncomingValue(0));
234 FoldSingleEntryPHINodes(BB, MemDep);
237 if (DT) {
238 assert(!DTU && "cannot use both DT and DTU for updates");
239 DomTreeNode *PredNode = DT->getNode(PredBB);
240 DomTreeNode *BBNode = DT->getNode(BB);
241 if (PredNode) {
242 assert(BBNode && "PredNode unreachable but BBNode reachable?");
243 for (DomTreeNode *C : to_vector(BBNode->children()))
244 C->setIDom(PredNode);
247 // DTU update: Collect all the edges that exit BB.
248 // These dominator edges will be redirected from Pred.
249 std::vector<DominatorTree::UpdateType> Updates;
250 if (DTU) {
251 assert(!DT && "cannot use both DT and DTU for updates");
252 // To avoid processing the same predecessor more than once.
253 SmallPtrSet<BasicBlock *, 8> SeenSuccs;
254 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
255 succ_end(PredBB));
256 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
257 // Add insert edges first. Experimentally, for the particular case of two
258 // blocks that can be merged, with a single successor and single predecessor
259 // respectively, it is beneficial to have all insert updates first. Deleting
260 // edges first may lead to unreachable blocks, followed by inserting edges
261 // making the blocks reachable again. Such DT updates lead to high compile
262 // times. We add inserts before deletes here to reduce compile time.
263 for (BasicBlock *SuccOfBB : successors(BB))
264 // This successor of BB may already be a PredBB's successor.
265 if (!SuccsOfPredBB.contains(SuccOfBB))
266 if (SeenSuccs.insert(SuccOfBB).second)
267 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
268 SeenSuccs.clear();
269 for (BasicBlock *SuccOfBB : successors(BB))
270 if (SeenSuccs.insert(SuccOfBB).second)
271 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
272 Updates.push_back({DominatorTree::Delete, PredBB, BB});
275 Instruction *STI = BB->getTerminator();
276 Instruction *Start = &*BB->begin();
277 // If there's nothing to move, mark the starting instruction as the last
278 // instruction in the block. Terminator instruction is handled separately.
279 if (Start == STI)
280 Start = PTI;
282 // Move all definitions in the successor to the predecessor...
283 PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator());
285 if (MSSAU)
286 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
288 // Make all PHI nodes that referred to BB now refer to Pred as their
289 // source...
290 BB->replaceAllUsesWith(PredBB);
292 if (PredecessorWithTwoSuccessors) {
293 // Delete the unconditional branch from BB.
294 BB->back().eraseFromParent();
296 // Update branch in the predecessor.
297 PredBB_BI->setSuccessor(FallThruPath, NewSucc);
298 } else {
299 // Delete the unconditional branch from the predecessor.
300 PredBB->back().eraseFromParent();
302 // Move terminator instruction.
303 BB->back().moveBeforePreserving(*PredBB, PredBB->end());
305 // Terminator may be a memory accessing instruction too.
306 if (MSSAU)
307 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
308 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
309 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
311 // Add unreachable to now empty BB.
312 new UnreachableInst(BB->getContext(), BB);
314 // Inherit predecessors name if it exists.
315 if (!PredBB->hasName())
316 PredBB->takeName(BB);
318 if (LI)
319 LI->removeBlock(BB);
321 if (MemDep)
322 MemDep->invalidateCachedPredecessors();
324 if (DTU)
325 DTU->applyUpdates(Updates);
327 if (DT) {
328 assert(succ_empty(BB) &&
329 "successors should have been transferred to PredBB");
330 DT->eraseNode(BB);
333 // Finally, erase the old block and update dominator info.
334 DeleteDeadBlock(BB, DTU);
336 return true;
339 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
340 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
341 LoopInfo *LI) {
342 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
344 bool BlocksHaveBeenMerged = false;
345 while (!MergeBlocks.empty()) {
346 BasicBlock *BB = *MergeBlocks.begin();
347 BasicBlock *Dest = BB->getSingleSuccessor();
348 if (Dest && (!L || L->contains(Dest))) {
349 BasicBlock *Fold = Dest->getUniquePredecessor();
350 (void)Fold;
351 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
352 assert(Fold == BB &&
353 "Expecting BB to be unique predecessor of the Dest block");
354 MergeBlocks.erase(Dest);
355 BlocksHaveBeenMerged = true;
356 } else
357 MergeBlocks.erase(BB);
358 } else
359 MergeBlocks.erase(BB);
361 return BlocksHaveBeenMerged;
364 /// Remove redundant instructions within sequences of consecutive dbg.value
365 /// instructions. This is done using a backward scan to keep the last dbg.value
366 /// describing a specific variable/fragment.
368 /// BackwardScan strategy:
369 /// ----------------------
370 /// Given a sequence of consecutive DbgValueInst like this
372 /// dbg.value ..., "x", FragmentX1 (*)
373 /// dbg.value ..., "y", FragmentY1
374 /// dbg.value ..., "x", FragmentX2
375 /// dbg.value ..., "x", FragmentX1 (**)
377 /// then the instruction marked with (*) can be removed (it is guaranteed to be
378 /// obsoleted by the instruction marked with (**) as the latter instruction is
379 /// describing the same variable using the same fragment info).
381 /// Possible improvements:
382 /// - Check fully overlapping fragments and not only identical fragments.
383 /// - Support dbg.declare. dbg.label, and possibly other meta instructions being
384 /// part of the sequence of consecutive instructions.
385 static bool DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
386 SmallVector<DPValue *, 8> ToBeRemoved;
387 SmallDenseSet<DebugVariable> VariableSet;
388 for (auto &I : reverse(*BB)) {
389 for (DPValue &DPV : reverse(I.getDbgValueRange())) {
390 // Skip declare-type records, as the debug intrinsic method only works
391 // on dbg.value intrinsics.
392 if (DPV.getType() == DPValue::LocationType::Declare) {
393 // The debug intrinsic method treats dbg.declares are "non-debug"
394 // instructions (i.e., a break in a consecutive range of debug
395 // intrinsics). Emulate that to create identical outputs. See
396 // "Possible improvements" above.
397 // FIXME: Delete the line below.
398 VariableSet.clear();
399 continue;
402 DebugVariable Key(DPV.getVariable(), DPV.getExpression(),
403 DPV.getDebugLoc()->getInlinedAt());
404 auto R = VariableSet.insert(Key);
405 // If the same variable fragment is described more than once it is enough
406 // to keep the last one (i.e. the first found since we for reverse
407 // iteration).
408 if (R.second)
409 continue;
411 if (DPV.isDbgAssign()) {
412 // Don't delete dbg.assign intrinsics that are linked to instructions.
413 if (!at::getAssignmentInsts(&DPV).empty())
414 continue;
415 // Unlinked dbg.assign intrinsics can be treated like dbg.values.
418 ToBeRemoved.push_back(&DPV);
419 continue;
421 // Sequence with consecutive dbg.value instrs ended. Clear the map to
422 // restart identifying redundant instructions if case we find another
423 // dbg.value sequence.
424 VariableSet.clear();
427 for (auto &DPV : ToBeRemoved)
428 DPV->eraseFromParent();
430 return !ToBeRemoved.empty();
433 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
434 if (BB->IsNewDbgInfoFormat)
435 return DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BB);
437 SmallVector<DbgValueInst *, 8> ToBeRemoved;
438 SmallDenseSet<DebugVariable> VariableSet;
439 for (auto &I : reverse(*BB)) {
440 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
441 DebugVariable Key(DVI->getVariable(),
442 DVI->getExpression(),
443 DVI->getDebugLoc()->getInlinedAt());
444 auto R = VariableSet.insert(Key);
445 // If the variable fragment hasn't been seen before then we don't want
446 // to remove this dbg intrinsic.
447 if (R.second)
448 continue;
450 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) {
451 // Don't delete dbg.assign intrinsics that are linked to instructions.
452 if (!at::getAssignmentInsts(DAI).empty())
453 continue;
454 // Unlinked dbg.assign intrinsics can be treated like dbg.values.
457 // If the same variable fragment is described more than once it is enough
458 // to keep the last one (i.e. the first found since we for reverse
459 // iteration).
460 ToBeRemoved.push_back(DVI);
461 continue;
463 // Sequence with consecutive dbg.value instrs ended. Clear the map to
464 // restart identifying redundant instructions if case we find another
465 // dbg.value sequence.
466 VariableSet.clear();
469 for (auto &Instr : ToBeRemoved)
470 Instr->eraseFromParent();
472 return !ToBeRemoved.empty();
475 /// Remove redundant dbg.value instructions using a forward scan. This can
476 /// remove a dbg.value instruction that is redundant due to indicating that a
477 /// variable has the same value as already being indicated by an earlier
478 /// dbg.value.
480 /// ForwardScan strategy:
481 /// ---------------------
482 /// Given two identical dbg.value instructions, separated by a block of
483 /// instructions that isn't describing the same variable, like this
485 /// dbg.value X1, "x", FragmentX1 (**)
486 /// <block of instructions, none being "dbg.value ..., "x", ...">
487 /// dbg.value X1, "x", FragmentX1 (*)
489 /// then the instruction marked with (*) can be removed. Variable "x" is already
490 /// described as being mapped to the SSA value X1.
492 /// Possible improvements:
493 /// - Keep track of non-overlapping fragments.
494 static bool DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
495 SmallVector<DPValue *, 8> ToBeRemoved;
496 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
497 VariableMap;
498 for (auto &I : *BB) {
499 for (DPValue &DPV : I.getDbgValueRange()) {
500 if (DPV.getType() == DPValue::LocationType::Declare)
501 continue;
502 DebugVariable Key(DPV.getVariable(), std::nullopt,
503 DPV.getDebugLoc()->getInlinedAt());
504 auto VMI = VariableMap.find(Key);
505 // A dbg.assign with no linked instructions can be treated like a
506 // dbg.value (i.e. can be deleted).
507 bool IsDbgValueKind =
508 (!DPV.isDbgAssign() || at::getAssignmentInsts(&DPV).empty());
510 // Update the map if we found a new value/expression describing the
511 // variable, or if the variable wasn't mapped already.
512 SmallVector<Value *, 4> Values(DPV.location_ops());
513 if (VMI == VariableMap.end() || VMI->second.first != Values ||
514 VMI->second.second != DPV.getExpression()) {
515 if (IsDbgValueKind)
516 VariableMap[Key] = {Values, DPV.getExpression()};
517 else
518 VariableMap[Key] = {Values, nullptr};
519 continue;
521 // Don't delete dbg.assign intrinsics that are linked to instructions.
522 if (!IsDbgValueKind)
523 continue;
524 // Found an identical mapping. Remember the instruction for later removal.
525 ToBeRemoved.push_back(&DPV);
529 for (auto *DPV : ToBeRemoved)
530 DPV->eraseFromParent();
532 return !ToBeRemoved.empty();
535 static bool DPValuesRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
536 assert(BB->isEntryBlock() && "expected entry block");
537 SmallVector<DPValue *, 8> ToBeRemoved;
538 DenseSet<DebugVariable> SeenDefForAggregate;
539 // Returns the DebugVariable for DVI with no fragment info.
540 auto GetAggregateVariable = [](const DPValue &DPV) {
541 return DebugVariable(DPV.getVariable(), std::nullopt,
542 DPV.getDebugLoc().getInlinedAt());
545 // Remove undef dbg.assign intrinsics that are encountered before
546 // any non-undef intrinsics from the entry block.
547 for (auto &I : *BB) {
548 for (DPValue &DPV : I.getDbgValueRange()) {
549 if (!DPV.isDbgValue() && !DPV.isDbgAssign())
550 continue;
551 bool IsDbgValueKind =
552 (DPV.isDbgValue() || at::getAssignmentInsts(&DPV).empty());
553 DebugVariable Aggregate = GetAggregateVariable(DPV);
554 if (!SeenDefForAggregate.contains(Aggregate)) {
555 bool IsKill = DPV.isKillLocation() && IsDbgValueKind;
556 if (!IsKill) {
557 SeenDefForAggregate.insert(Aggregate);
558 } else if (DPV.isDbgAssign()) {
559 ToBeRemoved.push_back(&DPV);
565 for (DPValue *DPV : ToBeRemoved)
566 DPV->eraseFromParent();
568 return !ToBeRemoved.empty();
571 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
572 if (BB->IsNewDbgInfoFormat)
573 return DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BB);
575 SmallVector<DbgValueInst *, 8> ToBeRemoved;
576 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
577 VariableMap;
578 for (auto &I : *BB) {
579 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
580 DebugVariable Key(DVI->getVariable(), std::nullopt,
581 DVI->getDebugLoc()->getInlinedAt());
582 auto VMI = VariableMap.find(Key);
583 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
584 // A dbg.assign with no linked instructions can be treated like a
585 // dbg.value (i.e. can be deleted).
586 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
588 // Update the map if we found a new value/expression describing the
589 // variable, or if the variable wasn't mapped already.
590 SmallVector<Value *, 4> Values(DVI->getValues());
591 if (VMI == VariableMap.end() || VMI->second.first != Values ||
592 VMI->second.second != DVI->getExpression()) {
593 // Use a sentinel value (nullptr) for the DIExpression when we see a
594 // linked dbg.assign so that the next debug intrinsic will never match
595 // it (i.e. always treat linked dbg.assigns as if they're unique).
596 if (IsDbgValueKind)
597 VariableMap[Key] = {Values, DVI->getExpression()};
598 else
599 VariableMap[Key] = {Values, nullptr};
600 continue;
603 // Don't delete dbg.assign intrinsics that are linked to instructions.
604 if (!IsDbgValueKind)
605 continue;
606 ToBeRemoved.push_back(DVI);
610 for (auto &Instr : ToBeRemoved)
611 Instr->eraseFromParent();
613 return !ToBeRemoved.empty();
616 /// Remove redundant undef dbg.assign intrinsic from an entry block using a
617 /// forward scan.
618 /// Strategy:
619 /// ---------------------
620 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not
621 /// linked to an intrinsic, and don't share an aggregate variable with a debug
622 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns
623 /// that come before non-undef debug intrinsics for the variable are
624 /// deleted. Given:
626 /// dbg.assign undef, "x", FragmentX1 (*)
627 /// <block of instructions, none being "dbg.value ..., "x", ...">
628 /// dbg.value %V, "x", FragmentX2
629 /// <block of instructions, none being "dbg.value ..., "x", ...">
630 /// dbg.assign undef, "x", FragmentX1
632 /// then (only) the instruction marked with (*) can be removed.
633 /// Possible improvements:
634 /// - Keep track of non-overlapping fragments.
635 static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
636 if (BB->IsNewDbgInfoFormat)
637 return DPValuesRemoveUndefDbgAssignsFromEntryBlock(BB);
639 assert(BB->isEntryBlock() && "expected entry block");
640 SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved;
641 DenseSet<DebugVariable> SeenDefForAggregate;
642 // Returns the DebugVariable for DVI with no fragment info.
643 auto GetAggregateVariable = [](DbgValueInst *DVI) {
644 return DebugVariable(DVI->getVariable(), std::nullopt,
645 DVI->getDebugLoc()->getInlinedAt());
648 // Remove undef dbg.assign intrinsics that are encountered before
649 // any non-undef intrinsics from the entry block.
650 for (auto &I : *BB) {
651 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I);
652 if (!DVI)
653 continue;
654 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
655 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
656 DebugVariable Aggregate = GetAggregateVariable(DVI);
657 if (!SeenDefForAggregate.contains(Aggregate)) {
658 bool IsKill = DVI->isKillLocation() && IsDbgValueKind;
659 if (!IsKill) {
660 SeenDefForAggregate.insert(Aggregate);
661 } else if (DAI) {
662 ToBeRemoved.push_back(DAI);
667 for (DbgAssignIntrinsic *DAI : ToBeRemoved)
668 DAI->eraseFromParent();
670 return !ToBeRemoved.empty();
673 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
674 bool MadeChanges = false;
675 // By using the "backward scan" strategy before the "forward scan" strategy we
676 // can remove both dbg.value (2) and (3) in a situation like this:
678 // (1) dbg.value V1, "x", DIExpression()
679 // ...
680 // (2) dbg.value V2, "x", DIExpression()
681 // (3) dbg.value V1, "x", DIExpression()
683 // The backward scan will remove (2), it is made obsolete by (3). After
684 // getting (2) out of the way, the foward scan will remove (3) since "x"
685 // already is described as having the value V1 at (1).
686 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
687 if (BB->isEntryBlock() &&
688 isAssignmentTrackingEnabled(*BB->getParent()->getParent()))
689 MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB);
690 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
692 if (MadeChanges)
693 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
694 << BB->getName() << "\n");
695 return MadeChanges;
698 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) {
699 Instruction &I = *BI;
700 // Replaces all of the uses of the instruction with uses of the value
701 I.replaceAllUsesWith(V);
703 // Make sure to propagate a name if there is one already.
704 if (I.hasName() && !V->hasName())
705 V->takeName(&I);
707 // Delete the unnecessary instruction now...
708 BI = BI->eraseFromParent();
711 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI,
712 Instruction *I) {
713 assert(I->getParent() == nullptr &&
714 "ReplaceInstWithInst: Instruction already inserted into basic block!");
716 // Copy debug location to newly added instruction, if it wasn't already set
717 // by the caller.
718 if (!I->getDebugLoc())
719 I->setDebugLoc(BI->getDebugLoc());
721 // Insert the new instruction into the basic block...
722 BasicBlock::iterator New = I->insertInto(BB, BI);
724 // Replace all uses of the old instruction, and delete it.
725 ReplaceInstWithValue(BI, I);
727 // Move BI back to point to the newly inserted instruction
728 BI = New;
731 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
732 // Remember visited blocks to avoid infinite loop
733 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
734 unsigned Depth = 0;
735 while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
736 VisitedBlocks.insert(BB).second) {
737 if (isa<UnreachableInst>(BB->getTerminator()) ||
738 BB->getTerminatingDeoptimizeCall())
739 return true;
740 BB = BB->getUniqueSuccessor();
742 return false;
745 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
746 BasicBlock::iterator BI(From);
747 ReplaceInstWithInst(From->getParent(), BI, To);
750 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
751 LoopInfo *LI, MemorySSAUpdater *MSSAU,
752 const Twine &BBName) {
753 unsigned SuccNum = GetSuccessorNumber(BB, Succ);
755 Instruction *LatchTerm = BB->getTerminator();
757 CriticalEdgeSplittingOptions Options =
758 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
760 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
761 // If it is a critical edge, and the succesor is an exception block, handle
762 // the split edge logic in this specific function
763 if (Succ->isEHPad())
764 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
766 // If this is a critical edge, let SplitKnownCriticalEdge do it.
767 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
770 // If the edge isn't critical, then BB has a single successor or Succ has a
771 // single pred. Split the block.
772 if (BasicBlock *SP = Succ->getSinglePredecessor()) {
773 // If the successor only has a single pred, split the top of the successor
774 // block.
775 assert(SP == BB && "CFG broken");
776 SP = nullptr;
777 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
778 /*Before=*/true);
781 // Otherwise, if BB has a single successor, split it at the bottom of the
782 // block.
783 assert(BB->getTerminator()->getNumSuccessors() == 1 &&
784 "Should have a single succ!");
785 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
788 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
789 if (auto *II = dyn_cast<InvokeInst>(TI))
790 II->setUnwindDest(Succ);
791 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
792 CS->setUnwindDest(Succ);
793 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
794 CR->setUnwindDest(Succ);
795 else
796 llvm_unreachable("unexpected terminator instruction");
799 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
800 BasicBlock *NewPred, PHINode *Until) {
801 int BBIdx = 0;
802 for (PHINode &PN : DestBB->phis()) {
803 // We manually update the LandingPadReplacement PHINode and it is the last
804 // PHI Node. So, if we find it, we are done.
805 if (Until == &PN)
806 break;
808 // Reuse the previous value of BBIdx if it lines up. In cases where we
809 // have multiple phi nodes with *lots* of predecessors, this is a speed
810 // win because we don't have to scan the PHI looking for TIBB. This
811 // happens because the BB list of PHI nodes are usually in the same
812 // order.
813 if (PN.getIncomingBlock(BBIdx) != OldPred)
814 BBIdx = PN.getBasicBlockIndex(OldPred);
816 assert(BBIdx != -1 && "Invalid PHI Index!");
817 PN.setIncomingBlock(BBIdx, NewPred);
821 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
822 LandingPadInst *OriginalPad,
823 PHINode *LandingPadReplacement,
824 const CriticalEdgeSplittingOptions &Options,
825 const Twine &BBName) {
827 auto *PadInst = Succ->getFirstNonPHI();
828 if (!LandingPadReplacement && !PadInst->isEHPad())
829 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
831 auto *LI = Options.LI;
832 SmallVector<BasicBlock *, 4> LoopPreds;
833 // Check if extra modifications will be required to preserve loop-simplify
834 // form after splitting. If it would require splitting blocks with IndirectBr
835 // terminators, bail out if preserving loop-simplify form is requested.
836 if (Options.PreserveLoopSimplify && LI) {
837 if (Loop *BBLoop = LI->getLoopFor(BB)) {
839 // The only way that we can break LoopSimplify form by splitting a
840 // critical edge is when there exists some edge from BBLoop to Succ *and*
841 // the only edge into Succ from outside of BBLoop is that of NewBB after
842 // the split. If the first isn't true, then LoopSimplify still holds,
843 // NewBB is the new exit block and it has no non-loop predecessors. If the
844 // second isn't true, then Succ was not in LoopSimplify form prior to
845 // the split as it had a non-loop predecessor. In both of these cases,
846 // the predecessor must be directly in BBLoop, not in a subloop, or again
847 // LoopSimplify doesn't hold.
848 for (BasicBlock *P : predecessors(Succ)) {
849 if (P == BB)
850 continue; // The new block is known.
851 if (LI->getLoopFor(P) != BBLoop) {
852 // Loop is not in LoopSimplify form, no need to re simplify after
853 // splitting edge.
854 LoopPreds.clear();
855 break;
857 LoopPreds.push_back(P);
859 // Loop-simplify form can be preserved, if we can split all in-loop
860 // predecessors.
861 if (any_of(LoopPreds, [](BasicBlock *Pred) {
862 return isa<IndirectBrInst>(Pred->getTerminator());
863 })) {
864 return nullptr;
869 auto *NewBB =
870 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
871 setUnwindEdgeTo(BB->getTerminator(), NewBB);
872 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
874 if (LandingPadReplacement) {
875 auto *NewLP = OriginalPad->clone();
876 auto *Terminator = BranchInst::Create(Succ, NewBB);
877 NewLP->insertBefore(Terminator);
878 LandingPadReplacement->addIncoming(NewLP, NewBB);
879 } else {
880 Value *ParentPad = nullptr;
881 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
882 ParentPad = FuncletPad->getParentPad();
883 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
884 ParentPad = CatchSwitch->getParentPad();
885 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
886 ParentPad = CleanupPad->getParentPad();
887 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
888 ParentPad = LandingPad->getParent();
889 else
890 llvm_unreachable("handling for other EHPads not implemented yet");
892 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
893 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
896 auto *DT = Options.DT;
897 auto *MSSAU = Options.MSSAU;
898 if (!DT && !LI)
899 return NewBB;
901 if (DT) {
902 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
903 SmallVector<DominatorTree::UpdateType, 3> Updates;
905 Updates.push_back({DominatorTree::Insert, BB, NewBB});
906 Updates.push_back({DominatorTree::Insert, NewBB, Succ});
907 Updates.push_back({DominatorTree::Delete, BB, Succ});
909 DTU.applyUpdates(Updates);
910 DTU.flush();
912 if (MSSAU) {
913 MSSAU->applyUpdates(Updates, *DT);
914 if (VerifyMemorySSA)
915 MSSAU->getMemorySSA()->verifyMemorySSA();
919 if (LI) {
920 if (Loop *BBLoop = LI->getLoopFor(BB)) {
921 // If one or the other blocks were not in a loop, the new block is not
922 // either, and thus LI doesn't need to be updated.
923 if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
924 if (BBLoop == SuccLoop) {
925 // Both in the same loop, the NewBB joins loop.
926 SuccLoop->addBasicBlockToLoop(NewBB, *LI);
927 } else if (BBLoop->contains(SuccLoop)) {
928 // Edge from an outer loop to an inner loop. Add to the outer loop.
929 BBLoop->addBasicBlockToLoop(NewBB, *LI);
930 } else if (SuccLoop->contains(BBLoop)) {
931 // Edge from an inner loop to an outer loop. Add to the outer loop.
932 SuccLoop->addBasicBlockToLoop(NewBB, *LI);
933 } else {
934 // Edge from two loops with no containment relation. Because these
935 // are natural loops, we know that the destination block must be the
936 // header of its loop (adding a branch into a loop elsewhere would
937 // create an irreducible loop).
938 assert(SuccLoop->getHeader() == Succ &&
939 "Should not create irreducible loops!");
940 if (Loop *P = SuccLoop->getParentLoop())
941 P->addBasicBlockToLoop(NewBB, *LI);
945 // If BB is in a loop and Succ is outside of that loop, we may need to
946 // update LoopSimplify form and LCSSA form.
947 if (!BBLoop->contains(Succ)) {
948 assert(!BBLoop->contains(NewBB) &&
949 "Split point for loop exit is contained in loop!");
951 // Update LCSSA form in the newly created exit block.
952 if (Options.PreserveLCSSA) {
953 createPHIsForSplitLoopExit(BB, NewBB, Succ);
956 if (!LoopPreds.empty()) {
957 BasicBlock *NewExitBB = SplitBlockPredecessors(
958 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
959 if (Options.PreserveLCSSA)
960 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
966 return NewBB;
969 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
970 BasicBlock *SplitBB, BasicBlock *DestBB) {
971 // SplitBB shouldn't have anything non-trivial in it yet.
972 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
973 SplitBB->isLandingPad()) &&
974 "SplitBB has non-PHI nodes!");
976 // For each PHI in the destination block.
977 for (PHINode &PN : DestBB->phis()) {
978 int Idx = PN.getBasicBlockIndex(SplitBB);
979 assert(Idx >= 0 && "Invalid Block Index");
980 Value *V = PN.getIncomingValue(Idx);
982 // If the input is a PHI which already satisfies LCSSA, don't create
983 // a new one.
984 if (const PHINode *VP = dyn_cast<PHINode>(V))
985 if (VP->getParent() == SplitBB)
986 continue;
988 // Otherwise a new PHI is needed. Create one and populate it.
989 PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split");
990 BasicBlock::iterator InsertPos =
991 SplitBB->isLandingPad() ? SplitBB->begin()
992 : SplitBB->getTerminator()->getIterator();
993 NewPN->insertBefore(InsertPos);
994 for (BasicBlock *BB : Preds)
995 NewPN->addIncoming(V, BB);
997 // Update the original PHI.
998 PN.setIncomingValue(Idx, NewPN);
1002 unsigned
1003 llvm::SplitAllCriticalEdges(Function &F,
1004 const CriticalEdgeSplittingOptions &Options) {
1005 unsigned NumBroken = 0;
1006 for (BasicBlock &BB : F) {
1007 Instruction *TI = BB.getTerminator();
1008 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
1009 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1010 if (SplitCriticalEdge(TI, i, Options))
1011 ++NumBroken;
1013 return NumBroken;
1016 static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt,
1017 DomTreeUpdater *DTU, DominatorTree *DT,
1018 LoopInfo *LI, MemorySSAUpdater *MSSAU,
1019 const Twine &BBName, bool Before) {
1020 if (Before) {
1021 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1022 return splitBlockBefore(Old, SplitPt,
1023 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
1024 BBName);
1026 BasicBlock::iterator SplitIt = SplitPt;
1027 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
1028 ++SplitIt;
1029 assert(SplitIt != SplitPt->getParent()->end());
1031 std::string Name = BBName.str();
1032 BasicBlock *New = Old->splitBasicBlock(
1033 SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
1035 // The new block lives in whichever loop the old one did. This preserves
1036 // LCSSA as well, because we force the split point to be after any PHI nodes.
1037 if (LI)
1038 if (Loop *L = LI->getLoopFor(Old))
1039 L->addBasicBlockToLoop(New, *LI);
1041 if (DTU) {
1042 SmallVector<DominatorTree::UpdateType, 8> Updates;
1043 // Old dominates New. New node dominates all other nodes dominated by Old.
1044 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
1045 Updates.push_back({DominatorTree::Insert, Old, New});
1046 Updates.reserve(Updates.size() + 2 * succ_size(New));
1047 for (BasicBlock *SuccessorOfOld : successors(New))
1048 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
1049 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
1050 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
1053 DTU->applyUpdates(Updates);
1054 } else if (DT)
1055 // Old dominates New. New node dominates all other nodes dominated by Old.
1056 if (DomTreeNode *OldNode = DT->getNode(Old)) {
1057 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1059 DomTreeNode *NewNode = DT->addNewBlock(New, Old);
1060 for (DomTreeNode *I : Children)
1061 DT->changeImmediateDominator(I, NewNode);
1064 // Move MemoryAccesses still tracked in Old, but part of New now.
1065 // Update accesses in successor blocks accordingly.
1066 if (MSSAU)
1067 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
1069 return New;
1072 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
1073 DominatorTree *DT, LoopInfo *LI,
1074 MemorySSAUpdater *MSSAU, const Twine &BBName,
1075 bool Before) {
1076 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
1077 Before);
1079 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
1080 DomTreeUpdater *DTU, LoopInfo *LI,
1081 MemorySSAUpdater *MSSAU, const Twine &BBName,
1082 bool Before) {
1083 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
1084 Before);
1087 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt,
1088 DomTreeUpdater *DTU, LoopInfo *LI,
1089 MemorySSAUpdater *MSSAU,
1090 const Twine &BBName) {
1092 BasicBlock::iterator SplitIt = SplitPt;
1093 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
1094 ++SplitIt;
1095 std::string Name = BBName.str();
1096 BasicBlock *New = Old->splitBasicBlock(
1097 SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
1098 /* Before=*/true);
1100 // The new block lives in whichever loop the old one did. This preserves
1101 // LCSSA as well, because we force the split point to be after any PHI nodes.
1102 if (LI)
1103 if (Loop *L = LI->getLoopFor(Old))
1104 L->addBasicBlockToLoop(New, *LI);
1106 if (DTU) {
1107 SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
1108 // New dominates Old. The predecessor nodes of the Old node dominate
1109 // New node.
1110 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
1111 DTUpdates.push_back({DominatorTree::Insert, New, Old});
1112 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
1113 for (BasicBlock *PredecessorOfOld : predecessors(New))
1114 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
1115 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
1116 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
1119 DTU->applyUpdates(DTUpdates);
1121 // Move MemoryAccesses still tracked in Old, but part of New now.
1122 // Update accesses in successor blocks accordingly.
1123 if (MSSAU) {
1124 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
1125 if (VerifyMemorySSA)
1126 MSSAU->getMemorySSA()->verifyMemorySSA();
1129 return New;
1132 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
1133 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
1134 ArrayRef<BasicBlock *> Preds,
1135 DomTreeUpdater *DTU, DominatorTree *DT,
1136 LoopInfo *LI, MemorySSAUpdater *MSSAU,
1137 bool PreserveLCSSA, bool &HasLoopExit) {
1138 // Update dominator tree if available.
1139 if (DTU) {
1140 // Recalculation of DomTree is needed when updating a forward DomTree and
1141 // the Entry BB is replaced.
1142 if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
1143 // The entry block was removed and there is no external interface for
1144 // the dominator tree to be notified of this change. In this corner-case
1145 // we recalculate the entire tree.
1146 DTU->recalculate(*NewBB->getParent());
1147 } else {
1148 // Split block expects NewBB to have a non-empty set of predecessors.
1149 SmallVector<DominatorTree::UpdateType, 8> Updates;
1150 SmallPtrSet<BasicBlock *, 8> UniquePreds;
1151 Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
1152 Updates.reserve(Updates.size() + 2 * Preds.size());
1153 for (auto *Pred : Preds)
1154 if (UniquePreds.insert(Pred).second) {
1155 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
1156 Updates.push_back({DominatorTree::Delete, Pred, OldBB});
1158 DTU->applyUpdates(Updates);
1160 } else if (DT) {
1161 if (OldBB == DT->getRootNode()->getBlock()) {
1162 assert(NewBB->isEntryBlock());
1163 DT->setNewRoot(NewBB);
1164 } else {
1165 // Split block expects NewBB to have a non-empty set of predecessors.
1166 DT->splitBlock(NewBB);
1170 // Update MemoryPhis after split if MemorySSA is available
1171 if (MSSAU)
1172 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
1174 // The rest of the logic is only relevant for updating the loop structures.
1175 if (!LI)
1176 return;
1178 if (DTU && DTU->hasDomTree())
1179 DT = &DTU->getDomTree();
1180 assert(DT && "DT should be available to update LoopInfo!");
1181 Loop *L = LI->getLoopFor(OldBB);
1183 // If we need to preserve loop analyses, collect some information about how
1184 // this split will affect loops.
1185 bool IsLoopEntry = !!L;
1186 bool SplitMakesNewLoopHeader = false;
1187 for (BasicBlock *Pred : Preds) {
1188 // Preds that are not reachable from entry should not be used to identify if
1189 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
1190 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
1191 // as true and make the NewBB the header of some loop. This breaks LI.
1192 if (!DT->isReachableFromEntry(Pred))
1193 continue;
1194 // If we need to preserve LCSSA, determine if any of the preds is a loop
1195 // exit.
1196 if (PreserveLCSSA)
1197 if (Loop *PL = LI->getLoopFor(Pred))
1198 if (!PL->contains(OldBB))
1199 HasLoopExit = true;
1201 // If we need to preserve LoopInfo, note whether any of the preds crosses
1202 // an interesting loop boundary.
1203 if (!L)
1204 continue;
1205 if (L->contains(Pred))
1206 IsLoopEntry = false;
1207 else
1208 SplitMakesNewLoopHeader = true;
1211 // Unless we have a loop for OldBB, nothing else to do here.
1212 if (!L)
1213 return;
1215 if (IsLoopEntry) {
1216 // Add the new block to the nearest enclosing loop (and not an adjacent
1217 // loop). To find this, examine each of the predecessors and determine which
1218 // loops enclose them, and select the most-nested loop which contains the
1219 // loop containing the block being split.
1220 Loop *InnermostPredLoop = nullptr;
1221 for (BasicBlock *Pred : Preds) {
1222 if (Loop *PredLoop = LI->getLoopFor(Pred)) {
1223 // Seek a loop which actually contains the block being split (to avoid
1224 // adjacent loops).
1225 while (PredLoop && !PredLoop->contains(OldBB))
1226 PredLoop = PredLoop->getParentLoop();
1228 // Select the most-nested of these loops which contains the block.
1229 if (PredLoop && PredLoop->contains(OldBB) &&
1230 (!InnermostPredLoop ||
1231 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
1232 InnermostPredLoop = PredLoop;
1236 if (InnermostPredLoop)
1237 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1238 } else {
1239 L->addBasicBlockToLoop(NewBB, *LI);
1240 if (SplitMakesNewLoopHeader)
1241 L->moveToHeader(NewBB);
1245 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1246 /// This also updates AliasAnalysis, if available.
1247 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1248 ArrayRef<BasicBlock *> Preds, BranchInst *BI,
1249 bool HasLoopExit) {
1250 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1251 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1252 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1253 PHINode *PN = cast<PHINode>(I++);
1255 // Check to see if all of the values coming in are the same. If so, we
1256 // don't need to create a new PHI node, unless it's needed for LCSSA.
1257 Value *InVal = nullptr;
1258 if (!HasLoopExit) {
1259 InVal = PN->getIncomingValueForBlock(Preds[0]);
1260 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1261 if (!PredSet.count(PN->getIncomingBlock(i)))
1262 continue;
1263 if (!InVal)
1264 InVal = PN->getIncomingValue(i);
1265 else if (InVal != PN->getIncomingValue(i)) {
1266 InVal = nullptr;
1267 break;
1272 if (InVal) {
1273 // If all incoming values for the new PHI would be the same, just don't
1274 // make a new PHI. Instead, just remove the incoming values from the old
1275 // PHI.
1276 PN->removeIncomingValueIf(
1277 [&](unsigned Idx) {
1278 return PredSet.contains(PN->getIncomingBlock(Idx));
1280 /* DeletePHIIfEmpty */ false);
1282 // Add an incoming value to the PHI node in the loop for the preheader
1283 // edge.
1284 PN->addIncoming(InVal, NewBB);
1285 continue;
1288 // If the values coming into the block are not the same, we need a new
1289 // PHI.
1290 // Create the new PHI node, insert it into NewBB at the end of the block
1291 PHINode *NewPHI =
1292 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
1294 // NOTE! This loop walks backwards for a reason! First off, this minimizes
1295 // the cost of removal if we end up removing a large number of values, and
1296 // second off, this ensures that the indices for the incoming values aren't
1297 // invalidated when we remove one.
1298 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1299 BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1300 if (PredSet.count(IncomingBB)) {
1301 Value *V = PN->removeIncomingValue(i, false);
1302 NewPHI->addIncoming(V, IncomingBB);
1306 PN->addIncoming(NewPHI, NewBB);
1310 static void SplitLandingPadPredecessorsImpl(
1311 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1312 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1313 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1314 MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1316 static BasicBlock *
1317 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1318 const char *Suffix, DomTreeUpdater *DTU,
1319 DominatorTree *DT, LoopInfo *LI,
1320 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1321 // Do not attempt to split that which cannot be split.
1322 if (!BB->canSplitPredecessors())
1323 return nullptr;
1325 // For the landingpads we need to act a bit differently.
1326 // Delegate this work to the SplitLandingPadPredecessors.
1327 if (BB->isLandingPad()) {
1328 SmallVector<BasicBlock*, 2> NewBBs;
1329 std::string NewName = std::string(Suffix) + ".split-lp";
1331 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1332 DTU, DT, LI, MSSAU, PreserveLCSSA);
1333 return NewBBs[0];
1336 // Create new basic block, insert right before the original block.
1337 BasicBlock *NewBB = BasicBlock::Create(
1338 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1340 // The new block unconditionally branches to the old block.
1341 BranchInst *BI = BranchInst::Create(BB, NewBB);
1343 Loop *L = nullptr;
1344 BasicBlock *OldLatch = nullptr;
1345 // Splitting the predecessors of a loop header creates a preheader block.
1346 if (LI && LI->isLoopHeader(BB)) {
1347 L = LI->getLoopFor(BB);
1348 // Using the loop start line number prevents debuggers stepping into the
1349 // loop body for this instruction.
1350 BI->setDebugLoc(L->getStartLoc());
1352 // If BB is the header of the Loop, it is possible that the loop is
1353 // modified, such that the current latch does not remain the latch of the
1354 // loop. If that is the case, the loop metadata from the current latch needs
1355 // to be applied to the new latch.
1356 OldLatch = L->getLoopLatch();
1357 } else
1358 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1360 // Move the edges from Preds to point to NewBB instead of BB.
1361 for (BasicBlock *Pred : Preds) {
1362 // This is slightly more strict than necessary; the minimum requirement
1363 // is that there be no more than one indirectbr branching to BB. And
1364 // all BlockAddress uses would need to be updated.
1365 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1366 "Cannot split an edge from an IndirectBrInst");
1367 Pred->getTerminator()->replaceSuccessorWith(BB, NewBB);
1370 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1371 // node becomes an incoming value for BB's phi node. However, if the Preds
1372 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1373 // account for the newly created predecessor.
1374 if (Preds.empty()) {
1375 // Insert dummy values as the incoming value.
1376 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1377 cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
1380 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1381 bool HasLoopExit = false;
1382 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1383 HasLoopExit);
1385 if (!Preds.empty()) {
1386 // Update the PHI nodes in BB with the values coming from NewBB.
1387 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1390 if (OldLatch) {
1391 BasicBlock *NewLatch = L->getLoopLatch();
1392 if (NewLatch != OldLatch) {
1393 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
1394 NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
1395 // It's still possible that OldLatch is the latch of another inner loop,
1396 // in which case we do not remove the metadata.
1397 Loop *IL = LI->getLoopFor(OldLatch);
1398 if (IL && IL->getLoopLatch() != OldLatch)
1399 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
1403 return NewBB;
1406 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1407 ArrayRef<BasicBlock *> Preds,
1408 const char *Suffix, DominatorTree *DT,
1409 LoopInfo *LI, MemorySSAUpdater *MSSAU,
1410 bool PreserveLCSSA) {
1411 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1412 MSSAU, PreserveLCSSA);
1414 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1415 ArrayRef<BasicBlock *> Preds,
1416 const char *Suffix,
1417 DomTreeUpdater *DTU, LoopInfo *LI,
1418 MemorySSAUpdater *MSSAU,
1419 bool PreserveLCSSA) {
1420 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1421 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1424 static void SplitLandingPadPredecessorsImpl(
1425 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1426 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1427 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1428 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1429 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1431 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1432 // it right before the original block.
1433 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1434 OrigBB->getName() + Suffix1,
1435 OrigBB->getParent(), OrigBB);
1436 NewBBs.push_back(NewBB1);
1438 // The new block unconditionally branches to the old block.
1439 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1440 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1442 // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1443 for (BasicBlock *Pred : Preds) {
1444 // This is slightly more strict than necessary; the minimum requirement
1445 // is that there be no more than one indirectbr branching to BB. And
1446 // all BlockAddress uses would need to be updated.
1447 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1448 "Cannot split an edge from an IndirectBrInst");
1449 Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1452 bool HasLoopExit = false;
1453 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1454 PreserveLCSSA, HasLoopExit);
1456 // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1457 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1459 // Move the remaining edges from OrigBB to point to NewBB2.
1460 SmallVector<BasicBlock*, 8> NewBB2Preds;
1461 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1462 i != e; ) {
1463 BasicBlock *Pred = *i++;
1464 if (Pred == NewBB1) continue;
1465 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1466 "Cannot split an edge from an IndirectBrInst");
1467 NewBB2Preds.push_back(Pred);
1468 e = pred_end(OrigBB);
1471 BasicBlock *NewBB2 = nullptr;
1472 if (!NewBB2Preds.empty()) {
1473 // Create another basic block for the rest of OrigBB's predecessors.
1474 NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1475 OrigBB->getName() + Suffix2,
1476 OrigBB->getParent(), OrigBB);
1477 NewBBs.push_back(NewBB2);
1479 // The new block unconditionally branches to the old block.
1480 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1481 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1483 // Move the remaining edges from OrigBB to point to NewBB2.
1484 for (BasicBlock *NewBB2Pred : NewBB2Preds)
1485 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1487 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1488 HasLoopExit = false;
1489 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1490 PreserveLCSSA, HasLoopExit);
1492 // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1493 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1496 LandingPadInst *LPad = OrigBB->getLandingPadInst();
1497 Instruction *Clone1 = LPad->clone();
1498 Clone1->setName(Twine("lpad") + Suffix1);
1499 Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt());
1501 if (NewBB2) {
1502 Instruction *Clone2 = LPad->clone();
1503 Clone2->setName(Twine("lpad") + Suffix2);
1504 Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt());
1506 // Create a PHI node for the two cloned landingpad instructions only
1507 // if the original landingpad instruction has some uses.
1508 if (!LPad->use_empty()) {
1509 assert(!LPad->getType()->isTokenTy() &&
1510 "Split cannot be applied if LPad is token type. Otherwise an "
1511 "invalid PHINode of token type would be created.");
1512 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1513 PN->addIncoming(Clone1, NewBB1);
1514 PN->addIncoming(Clone2, NewBB2);
1515 LPad->replaceAllUsesWith(PN);
1517 LPad->eraseFromParent();
1518 } else {
1519 // There is no second clone. Just replace the landing pad with the first
1520 // clone.
1521 LPad->replaceAllUsesWith(Clone1);
1522 LPad->eraseFromParent();
1526 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1527 ArrayRef<BasicBlock *> Preds,
1528 const char *Suffix1, const char *Suffix2,
1529 SmallVectorImpl<BasicBlock *> &NewBBs,
1530 DomTreeUpdater *DTU, LoopInfo *LI,
1531 MemorySSAUpdater *MSSAU,
1532 bool PreserveLCSSA) {
1533 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1534 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1535 PreserveLCSSA);
1538 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1539 BasicBlock *Pred,
1540 DomTreeUpdater *DTU) {
1541 Instruction *UncondBranch = Pred->getTerminator();
1542 // Clone the return and add it to the end of the predecessor.
1543 Instruction *NewRet = RI->clone();
1544 NewRet->insertInto(Pred, Pred->end());
1546 // If the return instruction returns a value, and if the value was a
1547 // PHI node in "BB", propagate the right value into the return.
1548 for (Use &Op : NewRet->operands()) {
1549 Value *V = Op;
1550 Instruction *NewBC = nullptr;
1551 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1552 // Return value might be bitcasted. Clone and insert it before the
1553 // return instruction.
1554 V = BCI->getOperand(0);
1555 NewBC = BCI->clone();
1556 NewBC->insertInto(Pred, NewRet->getIterator());
1557 Op = NewBC;
1560 Instruction *NewEV = nullptr;
1561 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1562 V = EVI->getOperand(0);
1563 NewEV = EVI->clone();
1564 if (NewBC) {
1565 NewBC->setOperand(0, NewEV);
1566 NewEV->insertInto(Pred, NewBC->getIterator());
1567 } else {
1568 NewEV->insertInto(Pred, NewRet->getIterator());
1569 Op = NewEV;
1573 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1574 if (PN->getParent() == BB) {
1575 if (NewEV) {
1576 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1577 } else if (NewBC)
1578 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1579 else
1580 Op = PN->getIncomingValueForBlock(Pred);
1585 // Update any PHI nodes in the returning block to realize that we no
1586 // longer branch to them.
1587 BB->removePredecessor(Pred);
1588 UncondBranch->eraseFromParent();
1590 if (DTU)
1591 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1593 return cast<ReturnInst>(NewRet);
1596 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1597 BasicBlock::iterator SplitBefore,
1598 bool Unreachable,
1599 MDNode *BranchWeights,
1600 DomTreeUpdater *DTU, LoopInfo *LI,
1601 BasicBlock *ThenBlock) {
1602 SplitBlockAndInsertIfThenElse(
1603 Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr,
1604 /* UnreachableThen */ Unreachable,
1605 /* UnreachableElse */ false, BranchWeights, DTU, LI);
1606 return ThenBlock->getTerminator();
1609 Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond,
1610 BasicBlock::iterator SplitBefore,
1611 bool Unreachable,
1612 MDNode *BranchWeights,
1613 DomTreeUpdater *DTU, LoopInfo *LI,
1614 BasicBlock *ElseBlock) {
1615 SplitBlockAndInsertIfThenElse(
1616 Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock,
1617 /* UnreachableThen */ false,
1618 /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI);
1619 return ElseBlock->getTerminator();
1622 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore,
1623 Instruction **ThenTerm,
1624 Instruction **ElseTerm,
1625 MDNode *BranchWeights,
1626 DomTreeUpdater *DTU, LoopInfo *LI) {
1627 BasicBlock *ThenBlock = nullptr;
1628 BasicBlock *ElseBlock = nullptr;
1629 SplitBlockAndInsertIfThenElse(
1630 Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false,
1631 /* UnreachableElse */ false, BranchWeights, DTU, LI);
1633 *ThenTerm = ThenBlock->getTerminator();
1634 *ElseTerm = ElseBlock->getTerminator();
1637 void llvm::SplitBlockAndInsertIfThenElse(
1638 Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock,
1639 BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse,
1640 MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) {
1641 assert((ThenBlock || ElseBlock) &&
1642 "At least one branch block must be created");
1643 assert((!UnreachableThen || !UnreachableElse) &&
1644 "Split block tail must be reachable");
1646 SmallVector<DominatorTree::UpdateType, 8> Updates;
1647 SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors;
1648 BasicBlock *Head = SplitBefore->getParent();
1649 if (DTU) {
1650 UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head));
1651 Updates.reserve(4 + 2 * UniqueOrigSuccessors.size());
1654 LLVMContext &C = Head->getContext();
1655 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
1656 BasicBlock *TrueBlock = Tail;
1657 BasicBlock *FalseBlock = Tail;
1658 bool ThenToTailEdge = false;
1659 bool ElseToTailEdge = false;
1661 // Encapsulate the logic around creation/insertion/etc of a new block.
1662 auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB,
1663 bool &ToTailEdge) {
1664 if (PBB == nullptr)
1665 return; // Do not create/insert a block.
1667 if (*PBB)
1668 BB = *PBB; // Caller supplied block, use it.
1669 else {
1670 // Create a new block.
1671 BB = BasicBlock::Create(C, "", Head->getParent(), Tail);
1672 if (Unreachable)
1673 (void)new UnreachableInst(C, BB);
1674 else {
1675 (void)BranchInst::Create(Tail, BB);
1676 ToTailEdge = true;
1678 BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc());
1679 // Pass the new block back to the caller.
1680 *PBB = BB;
1684 handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge);
1685 handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge);
1687 Instruction *HeadOldTerm = Head->getTerminator();
1688 BranchInst *HeadNewTerm =
1689 BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond);
1690 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1691 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1693 if (DTU) {
1694 Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock);
1695 Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock);
1696 if (ThenToTailEdge)
1697 Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail);
1698 if (ElseToTailEdge)
1699 Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail);
1700 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1701 Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor);
1702 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1703 Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor);
1704 DTU->applyUpdates(Updates);
1707 if (LI) {
1708 if (Loop *L = LI->getLoopFor(Head); L) {
1709 if (ThenToTailEdge)
1710 L->addBasicBlockToLoop(TrueBlock, *LI);
1711 if (ElseToTailEdge)
1712 L->addBasicBlockToLoop(FalseBlock, *LI);
1713 L->addBasicBlockToLoop(Tail, *LI);
1718 std::pair<Instruction*, Value*>
1719 llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) {
1720 BasicBlock *LoopPred = SplitBefore->getParent();
1721 BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore);
1722 BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore);
1724 auto *Ty = End->getType();
1725 auto &DL = SplitBefore->getModule()->getDataLayout();
1726 const unsigned Bitwidth = DL.getTypeSizeInBits(Ty);
1728 IRBuilder<> Builder(LoopBody->getTerminator());
1729 auto *IV = Builder.CreatePHI(Ty, 2, "iv");
1730 auto *IVNext =
1731 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
1732 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
1733 auto *IVCheck = Builder.CreateICmpEQ(IVNext, End,
1734 IV->getName() + ".check");
1735 Builder.CreateCondBr(IVCheck, LoopExit, LoopBody);
1736 LoopBody->getTerminator()->eraseFromParent();
1738 // Populate the IV PHI.
1739 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred);
1740 IV->addIncoming(IVNext, LoopBody);
1742 return std::make_pair(LoopBody->getFirstNonPHI(), IV);
1745 void llvm::SplitBlockAndInsertForEachLane(ElementCount EC,
1746 Type *IndexTy, Instruction *InsertBefore,
1747 std::function<void(IRBuilderBase&, Value*)> Func) {
1749 IRBuilder<> IRB(InsertBefore);
1751 if (EC.isScalable()) {
1752 Value *NumElements = IRB.CreateElementCount(IndexTy, EC);
1754 auto [BodyIP, Index] =
1755 SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore);
1757 IRB.SetInsertPoint(BodyIP);
1758 Func(IRB, Index);
1759 return;
1762 unsigned Num = EC.getFixedValue();
1763 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1764 IRB.SetInsertPoint(InsertBefore);
1765 Func(IRB, ConstantInt::get(IndexTy, Idx));
1769 void llvm::SplitBlockAndInsertForEachLane(
1770 Value *EVL, Instruction *InsertBefore,
1771 std::function<void(IRBuilderBase &, Value *)> Func) {
1773 IRBuilder<> IRB(InsertBefore);
1774 Type *Ty = EVL->getType();
1776 if (!isa<ConstantInt>(EVL)) {
1777 auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore);
1778 IRB.SetInsertPoint(BodyIP);
1779 Func(IRB, Index);
1780 return;
1783 unsigned Num = cast<ConstantInt>(EVL)->getZExtValue();
1784 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1785 IRB.SetInsertPoint(InsertBefore);
1786 Func(IRB, ConstantInt::get(Ty, Idx));
1790 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1791 BasicBlock *&IfFalse) {
1792 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1793 BasicBlock *Pred1 = nullptr;
1794 BasicBlock *Pred2 = nullptr;
1796 if (SomePHI) {
1797 if (SomePHI->getNumIncomingValues() != 2)
1798 return nullptr;
1799 Pred1 = SomePHI->getIncomingBlock(0);
1800 Pred2 = SomePHI->getIncomingBlock(1);
1801 } else {
1802 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1803 if (PI == PE) // No predecessor
1804 return nullptr;
1805 Pred1 = *PI++;
1806 if (PI == PE) // Only one predecessor
1807 return nullptr;
1808 Pred2 = *PI++;
1809 if (PI != PE) // More than two predecessors
1810 return nullptr;
1813 // We can only handle branches. Other control flow will be lowered to
1814 // branches if possible anyway.
1815 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1816 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1817 if (!Pred1Br || !Pred2Br)
1818 return nullptr;
1820 // Eliminate code duplication by ensuring that Pred1Br is conditional if
1821 // either are.
1822 if (Pred2Br->isConditional()) {
1823 // If both branches are conditional, we don't have an "if statement". In
1824 // reality, we could transform this case, but since the condition will be
1825 // required anyway, we stand no chance of eliminating it, so the xform is
1826 // probably not profitable.
1827 if (Pred1Br->isConditional())
1828 return nullptr;
1830 std::swap(Pred1, Pred2);
1831 std::swap(Pred1Br, Pred2Br);
1834 if (Pred1Br->isConditional()) {
1835 // The only thing we have to watch out for here is to make sure that Pred2
1836 // doesn't have incoming edges from other blocks. If it does, the condition
1837 // doesn't dominate BB.
1838 if (!Pred2->getSinglePredecessor())
1839 return nullptr;
1841 // If we found a conditional branch predecessor, make sure that it branches
1842 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
1843 if (Pred1Br->getSuccessor(0) == BB &&
1844 Pred1Br->getSuccessor(1) == Pred2) {
1845 IfTrue = Pred1;
1846 IfFalse = Pred2;
1847 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1848 Pred1Br->getSuccessor(1) == BB) {
1849 IfTrue = Pred2;
1850 IfFalse = Pred1;
1851 } else {
1852 // We know that one arm of the conditional goes to BB, so the other must
1853 // go somewhere unrelated, and this must not be an "if statement".
1854 return nullptr;
1857 return Pred1Br;
1860 // Ok, if we got here, both predecessors end with an unconditional branch to
1861 // BB. Don't panic! If both blocks only have a single (identical)
1862 // predecessor, and THAT is a conditional branch, then we're all ok!
1863 BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1864 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1865 return nullptr;
1867 // Otherwise, if this is a conditional branch, then we can use it!
1868 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1869 if (!BI) return nullptr;
1871 assert(BI->isConditional() && "Two successors but not conditional?");
1872 if (BI->getSuccessor(0) == Pred1) {
1873 IfTrue = Pred1;
1874 IfFalse = Pred2;
1875 } else {
1876 IfTrue = Pred2;
1877 IfFalse = Pred1;
1879 return BI;
1882 // After creating a control flow hub, the operands of PHINodes in an outgoing
1883 // block Out no longer match the predecessors of that block. Predecessors of Out
1884 // that are incoming blocks to the hub are now replaced by just one edge from
1885 // the hub. To match this new control flow, the corresponding values from each
1886 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1888 // This operation cannot be performed with SSAUpdater, because it involves one
1889 // new use: If the block Out is in the list of Incoming blocks, then the newly
1890 // created PHI in the Hub will use itself along that edge from Out to Hub.
1891 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1892 const SetVector<BasicBlock *> &Incoming,
1893 BasicBlock *FirstGuardBlock) {
1894 auto I = Out->begin();
1895 while (I != Out->end() && isa<PHINode>(I)) {
1896 auto Phi = cast<PHINode>(I);
1897 auto NewPhi =
1898 PHINode::Create(Phi->getType(), Incoming.size(),
1899 Phi->getName() + ".moved", &FirstGuardBlock->front());
1900 for (auto *In : Incoming) {
1901 Value *V = UndefValue::get(Phi->getType());
1902 if (In == Out) {
1903 V = NewPhi;
1904 } else if (Phi->getBasicBlockIndex(In) != -1) {
1905 V = Phi->removeIncomingValue(In, false);
1907 NewPhi->addIncoming(V, In);
1909 assert(NewPhi->getNumIncomingValues() == Incoming.size());
1910 if (Phi->getNumOperands() == 0) {
1911 Phi->replaceAllUsesWith(NewPhi);
1912 I = Phi->eraseFromParent();
1913 continue;
1915 Phi->addIncoming(NewPhi, GuardBlock);
1916 ++I;
1920 using BBPredicates = DenseMap<BasicBlock *, Instruction *>;
1921 using BBSetVector = SetVector<BasicBlock *>;
1923 // Redirects the terminator of the incoming block to the first guard
1924 // block in the hub. The condition of the original terminator (if it
1925 // was conditional) and its original successors are returned as a
1926 // tuple <condition, succ0, succ1>. The function additionally filters
1927 // out successors that are not in the set of outgoing blocks.
1929 // - condition is non-null iff the branch is conditional.
1930 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1931 // - Succ2 is non-null iff condition is non-null and the fallthrough
1932 // target is an outgoing block.
1933 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1934 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1935 const BBSetVector &Outgoing) {
1936 assert(isa<BranchInst>(BB->getTerminator()) &&
1937 "Only support branch terminator.");
1938 auto Branch = cast<BranchInst>(BB->getTerminator());
1939 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1941 BasicBlock *Succ0 = Branch->getSuccessor(0);
1942 BasicBlock *Succ1 = nullptr;
1943 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1945 if (Branch->isUnconditional()) {
1946 Branch->setSuccessor(0, FirstGuardBlock);
1947 assert(Succ0);
1948 } else {
1949 Succ1 = Branch->getSuccessor(1);
1950 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1951 assert(Succ0 || Succ1);
1952 if (Succ0 && !Succ1) {
1953 Branch->setSuccessor(0, FirstGuardBlock);
1954 } else if (Succ1 && !Succ0) {
1955 Branch->setSuccessor(1, FirstGuardBlock);
1956 } else {
1957 Branch->eraseFromParent();
1958 BranchInst::Create(FirstGuardBlock, BB);
1962 assert(Succ0 || Succ1);
1963 return std::make_tuple(Condition, Succ0, Succ1);
1965 // Setup the branch instructions for guard blocks.
1967 // Each guard block terminates in a conditional branch that transfers
1968 // control to the corresponding outgoing block or the next guard
1969 // block. The last guard block has two outgoing blocks as successors
1970 // since the condition for the final outgoing block is trivially
1971 // true. So we create one less block (including the first guard block)
1972 // than the number of outgoing blocks.
1973 static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1974 const BBSetVector &Outgoing,
1975 BBPredicates &GuardPredicates) {
1976 // To help keep the loop simple, temporarily append the last
1977 // outgoing block to the list of guard blocks.
1978 GuardBlocks.push_back(Outgoing.back());
1980 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1981 auto Out = Outgoing[i];
1982 assert(GuardPredicates.count(Out));
1983 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1984 GuardBlocks[i]);
1987 // Remove the last block from the guard list.
1988 GuardBlocks.pop_back();
1991 /// We are using one integer to represent the block we are branching to. Then at
1992 /// each guard block, the predicate was calcuated using a simple `icmp eq`.
1993 static void calcPredicateUsingInteger(
1994 const BBSetVector &Incoming, const BBSetVector &Outgoing,
1995 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) {
1996 auto &Context = Incoming.front()->getContext();
1997 auto FirstGuardBlock = GuardBlocks.front();
1999 auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(),
2000 "merged.bb.idx", FirstGuardBlock);
2002 for (auto In : Incoming) {
2003 Value *Condition;
2004 BasicBlock *Succ0;
2005 BasicBlock *Succ1;
2006 std::tie(Condition, Succ0, Succ1) =
2007 redirectToHub(In, FirstGuardBlock, Outgoing);
2008 Value *IncomingId = nullptr;
2009 if (Succ0 && Succ1) {
2010 // target_bb_index = Condition ? index_of_succ0 : index_of_succ1.
2011 auto Succ0Iter = find(Outgoing, Succ0);
2012 auto Succ1Iter = find(Outgoing, Succ1);
2013 Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context),
2014 std::distance(Outgoing.begin(), Succ0Iter));
2015 Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context),
2016 std::distance(Outgoing.begin(), Succ1Iter));
2017 IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx",
2018 In->getTerminator());
2019 } else {
2020 // Get the index of the non-null successor.
2021 auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1);
2022 IncomingId = ConstantInt::get(Type::getInt32Ty(Context),
2023 std::distance(Outgoing.begin(), SuccIter));
2025 Phi->addIncoming(IncomingId, In);
2028 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2029 auto Out = Outgoing[i];
2030 auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
2031 ConstantInt::get(Type::getInt32Ty(Context), i),
2032 Out->getName() + ".predicate", GuardBlocks[i]);
2033 GuardPredicates[Out] = Cmp;
2037 /// We record the predicate of each outgoing block using a phi of boolean.
2038 static void calcPredicateUsingBooleans(
2039 const BBSetVector &Incoming, const BBSetVector &Outgoing,
2040 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates,
2041 SmallVectorImpl<WeakVH> &DeletionCandidates) {
2042 auto &Context = Incoming.front()->getContext();
2043 auto BoolTrue = ConstantInt::getTrue(Context);
2044 auto BoolFalse = ConstantInt::getFalse(Context);
2045 auto FirstGuardBlock = GuardBlocks.front();
2047 // The predicate for the last outgoing is trivially true, and so we
2048 // process only the first N-1 successors.
2049 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2050 auto Out = Outgoing[i];
2051 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
2053 auto Phi =
2054 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
2055 StringRef("Guard.") + Out->getName(), FirstGuardBlock);
2056 GuardPredicates[Out] = Phi;
2059 for (auto *In : Incoming) {
2060 Value *Condition;
2061 BasicBlock *Succ0;
2062 BasicBlock *Succ1;
2063 std::tie(Condition, Succ0, Succ1) =
2064 redirectToHub(In, FirstGuardBlock, Outgoing);
2066 // Optimization: Consider an incoming block A with both successors
2067 // Succ0 and Succ1 in the set of outgoing blocks. The predicates
2068 // for Succ0 and Succ1 complement each other. If Succ0 is visited
2069 // first in the loop below, control will branch to Succ0 using the
2070 // corresponding predicate. But if that branch is not taken, then
2071 // control must reach Succ1, which means that the incoming value of
2072 // the predicate from `In` is true for Succ1.
2073 bool OneSuccessorDone = false;
2074 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2075 auto Out = Outgoing[i];
2076 PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
2077 if (Out != Succ0 && Out != Succ1) {
2078 Phi->addIncoming(BoolFalse, In);
2079 } else if (!Succ0 || !Succ1 || OneSuccessorDone) {
2080 // Optimization: When only one successor is an outgoing block,
2081 // the incoming predicate from `In` is always true.
2082 Phi->addIncoming(BoolTrue, In);
2083 } else {
2084 assert(Succ0 && Succ1);
2085 if (Out == Succ0) {
2086 Phi->addIncoming(Condition, In);
2087 } else {
2088 auto Inverted = invertCondition(Condition);
2089 DeletionCandidates.push_back(Condition);
2090 Phi->addIncoming(Inverted, In);
2092 OneSuccessorDone = true;
2098 // Capture the existing control flow as guard predicates, and redirect
2099 // control flow from \p Incoming block through the \p GuardBlocks to the
2100 // \p Outgoing blocks.
2102 // There is one guard predicate for each outgoing block OutBB. The
2103 // predicate represents whether the hub should transfer control flow
2104 // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates
2105 // them in the same order as the Outgoing set-vector, and control
2106 // branches to the first outgoing block whose predicate evaluates to true.
2107 static void
2108 convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks,
2109 SmallVectorImpl<WeakVH> &DeletionCandidates,
2110 const BBSetVector &Incoming,
2111 const BBSetVector &Outgoing, const StringRef Prefix,
2112 std::optional<unsigned> MaxControlFlowBooleans) {
2113 BBPredicates GuardPredicates;
2114 auto F = Incoming.front()->getParent();
2116 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i)
2117 GuardBlocks.push_back(
2118 BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
2120 // When we are using an integer to record which target block to jump to, we
2121 // are creating less live values, actually we are using one single integer to
2122 // store the index of the target block. When we are using booleans to store
2123 // the branching information, we need (N-1) boolean values, where N is the
2124 // number of outgoing block.
2125 if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans)
2126 calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates,
2127 DeletionCandidates);
2128 else
2129 calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates);
2131 setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates);
2134 BasicBlock *llvm::CreateControlFlowHub(
2135 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
2136 const BBSetVector &Incoming, const BBSetVector &Outgoing,
2137 const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
2138 if (Outgoing.size() < 2)
2139 return Outgoing.front();
2141 SmallVector<DominatorTree::UpdateType, 16> Updates;
2142 if (DTU) {
2143 for (auto *In : Incoming) {
2144 for (auto Succ : successors(In))
2145 if (Outgoing.count(Succ))
2146 Updates.push_back({DominatorTree::Delete, In, Succ});
2150 SmallVector<WeakVH, 8> DeletionCandidates;
2151 convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing,
2152 Prefix, MaxControlFlowBooleans);
2153 auto FirstGuardBlock = GuardBlocks.front();
2155 // Update the PHINodes in each outgoing block to match the new control flow.
2156 for (int i = 0, e = GuardBlocks.size(); i != e; ++i)
2157 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
2159 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
2161 if (DTU) {
2162 int NumGuards = GuardBlocks.size();
2163 assert((int)Outgoing.size() == NumGuards + 1);
2165 for (auto In : Incoming)
2166 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
2168 for (int i = 0; i != NumGuards - 1; ++i) {
2169 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
2170 Updates.push_back(
2171 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
2173 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2174 Outgoing[NumGuards - 1]});
2175 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2176 Outgoing[NumGuards]});
2177 DTU->applyUpdates(Updates);
2180 for (auto I : DeletionCandidates) {
2181 if (I->use_empty())
2182 if (auto Inst = dyn_cast_or_null<Instruction>(I))
2183 Inst->eraseFromParent();
2186 return FirstGuardBlock;
2189 void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) {
2190 Value *NewCond = PBI->getCondition();
2191 // If this is a "cmp" instruction, only used for branching (and nowhere
2192 // else), then we can simply invert the predicate.
2193 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2194 CmpInst *CI = cast<CmpInst>(NewCond);
2195 CI->setPredicate(CI->getInversePredicate());
2196 } else
2197 NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not");
2199 PBI->setCondition(NewCond);
2200 PBI->swapSuccessors();
2203 bool llvm::hasOnlySimpleTerminator(const Function &F) {
2204 for (auto &BB : F) {
2205 auto *Term = BB.getTerminator();
2206 if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) ||
2207 isa<BranchInst>(Term)))
2208 return false;
2210 return true;
2213 bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src,
2214 const BasicBlock &Dest) {
2215 assert(Src.getParent() == Dest.getParent());
2216 if (!Src.getParent()->isPresplitCoroutine())
2217 return false;
2218 if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator()))
2219 if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition()))
2220 return Intr->getIntrinsicID() == Intrinsic::coro_suspend &&
2221 SW->getDefaultDest() == &Dest;
2222 return false;