1 //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Function evaluator for LLVM IR.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/Evaluator.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalAlias.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
40 #define DEBUG_TYPE "evaluator"
45 isSimpleEnoughValueToCommit(Constant
*C
,
46 SmallPtrSetImpl
<Constant
*> &SimpleConstants
,
47 const DataLayout
&DL
);
49 /// Return true if the specified constant can be handled by the code generator.
50 /// We don't want to generate something like:
52 /// because the code generator doesn't have a relocation that can handle that.
54 /// This function should be called if C was not found (but just got inserted)
55 /// in SimpleConstants to avoid having to rescan the same constants all the
58 isSimpleEnoughValueToCommitHelper(Constant
*C
,
59 SmallPtrSetImpl
<Constant
*> &SimpleConstants
,
60 const DataLayout
&DL
) {
61 // Simple global addresses are supported, do not allow dllimport or
62 // thread-local globals.
63 if (auto *GV
= dyn_cast
<GlobalValue
>(C
))
64 return !GV
->hasDLLImportStorageClass() && !GV
->isThreadLocal();
66 // Simple integer, undef, constant aggregate zero, etc are all supported.
67 if (C
->getNumOperands() == 0 || isa
<BlockAddress
>(C
))
70 // Aggregate values are safe if all their elements are.
71 if (isa
<ConstantAggregate
>(C
)) {
72 for (Value
*Op
: C
->operands())
73 if (!isSimpleEnoughValueToCommit(cast
<Constant
>(Op
), SimpleConstants
, DL
))
78 // We don't know exactly what relocations are allowed in constant expressions,
79 // so we allow &global+constantoffset, which is safe and uniformly supported
81 ConstantExpr
*CE
= cast
<ConstantExpr
>(C
);
82 switch (CE
->getOpcode()) {
83 case Instruction::BitCast
:
84 // Bitcast is fine if the casted value is fine.
85 return isSimpleEnoughValueToCommit(CE
->getOperand(0), SimpleConstants
, DL
);
87 case Instruction::IntToPtr
:
88 case Instruction::PtrToInt
:
89 // int <=> ptr is fine if the int type is the same size as the
91 if (DL
.getTypeSizeInBits(CE
->getType()) !=
92 DL
.getTypeSizeInBits(CE
->getOperand(0)->getType()))
94 return isSimpleEnoughValueToCommit(CE
->getOperand(0), SimpleConstants
, DL
);
96 // GEP is fine if it is simple + constant offset.
97 case Instruction::GetElementPtr
:
98 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
99 if (!isa
<ConstantInt
>(CE
->getOperand(i
)))
101 return isSimpleEnoughValueToCommit(CE
->getOperand(0), SimpleConstants
, DL
);
103 case Instruction::Add
:
104 // We allow simple+cst.
105 if (!isa
<ConstantInt
>(CE
->getOperand(1)))
107 return isSimpleEnoughValueToCommit(CE
->getOperand(0), SimpleConstants
, DL
);
113 isSimpleEnoughValueToCommit(Constant
*C
,
114 SmallPtrSetImpl
<Constant
*> &SimpleConstants
,
115 const DataLayout
&DL
) {
116 // If we already checked this constant, we win.
117 if (!SimpleConstants
.insert(C
).second
)
119 // Check the constant.
120 return isSimpleEnoughValueToCommitHelper(C
, SimpleConstants
, DL
);
123 void Evaluator::MutableValue::clear() {
124 if (auto *Agg
= dyn_cast_if_present
<MutableAggregate
*>(Val
))
129 Constant
*Evaluator::MutableValue::read(Type
*Ty
, APInt Offset
,
130 const DataLayout
&DL
) const {
131 TypeSize TySize
= DL
.getTypeStoreSize(Ty
);
132 const MutableValue
*V
= this;
133 while (const auto *Agg
= dyn_cast_if_present
<MutableAggregate
*>(V
->Val
)) {
134 Type
*AggTy
= Agg
->Ty
;
135 std::optional
<APInt
> Index
= DL
.getGEPIndexForOffset(AggTy
, Offset
);
136 if (!Index
|| Index
->uge(Agg
->Elements
.size()) ||
137 !TypeSize::isKnownLE(TySize
, DL
.getTypeStoreSize(AggTy
)))
140 V
= &Agg
->Elements
[Index
->getZExtValue()];
143 return ConstantFoldLoadFromConst(cast
<Constant
*>(V
->Val
), Ty
, Offset
, DL
);
146 bool Evaluator::MutableValue::makeMutable() {
147 Constant
*C
= cast
<Constant
*>(Val
);
148 Type
*Ty
= C
->getType();
149 unsigned NumElements
;
150 if (auto *VT
= dyn_cast
<FixedVectorType
>(Ty
)) {
151 NumElements
= VT
->getNumElements();
152 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
))
153 NumElements
= AT
->getNumElements();
154 else if (auto *ST
= dyn_cast
<StructType
>(Ty
))
155 NumElements
= ST
->getNumElements();
159 MutableAggregate
*MA
= new MutableAggregate(Ty
);
160 MA
->Elements
.reserve(NumElements
);
161 for (unsigned I
= 0; I
< NumElements
; ++I
)
162 MA
->Elements
.push_back(C
->getAggregateElement(I
));
167 bool Evaluator::MutableValue::write(Constant
*V
, APInt Offset
,
168 const DataLayout
&DL
) {
169 Type
*Ty
= V
->getType();
170 TypeSize TySize
= DL
.getTypeStoreSize(Ty
);
171 MutableValue
*MV
= this;
172 while (Offset
!= 0 ||
173 !CastInst::isBitOrNoopPointerCastable(Ty
, MV
->getType(), DL
)) {
174 if (isa
<Constant
*>(MV
->Val
) && !MV
->makeMutable())
177 MutableAggregate
*Agg
= cast
<MutableAggregate
*>(MV
->Val
);
178 Type
*AggTy
= Agg
->Ty
;
179 std::optional
<APInt
> Index
= DL
.getGEPIndexForOffset(AggTy
, Offset
);
180 if (!Index
|| Index
->uge(Agg
->Elements
.size()) ||
181 !TypeSize::isKnownLE(TySize
, DL
.getTypeStoreSize(AggTy
)))
184 MV
= &Agg
->Elements
[Index
->getZExtValue()];
187 Type
*MVType
= MV
->getType();
189 if (Ty
->isIntegerTy() && MVType
->isPointerTy())
190 MV
->Val
= ConstantExpr::getIntToPtr(V
, MVType
);
191 else if (Ty
->isPointerTy() && MVType
->isIntegerTy())
192 MV
->Val
= ConstantExpr::getPtrToInt(V
, MVType
);
193 else if (Ty
!= MVType
)
194 MV
->Val
= ConstantExpr::getBitCast(V
, MVType
);
200 Constant
*Evaluator::MutableAggregate::toConstant() const {
201 SmallVector
<Constant
*, 32> Consts
;
202 for (const MutableValue
&MV
: Elements
)
203 Consts
.push_back(MV
.toConstant());
205 if (auto *ST
= dyn_cast
<StructType
>(Ty
))
206 return ConstantStruct::get(ST
, Consts
);
207 if (auto *AT
= dyn_cast
<ArrayType
>(Ty
))
208 return ConstantArray::get(AT
, Consts
);
209 assert(isa
<FixedVectorType
>(Ty
) && "Must be vector");
210 return ConstantVector::get(Consts
);
213 /// Return the value that would be computed by a load from P after the stores
214 /// reflected by 'memory' have been performed. If we can't decide, return null.
215 Constant
*Evaluator::ComputeLoadResult(Constant
*P
, Type
*Ty
) {
216 APInt
Offset(DL
.getIndexTypeSizeInBits(P
->getType()), 0);
217 P
= cast
<Constant
>(P
->stripAndAccumulateConstantOffsets(
218 DL
, Offset
, /* AllowNonInbounds */ true));
219 Offset
= Offset
.sextOrTrunc(DL
.getIndexTypeSizeInBits(P
->getType()));
220 if (auto *GV
= dyn_cast
<GlobalVariable
>(P
))
221 return ComputeLoadResult(GV
, Ty
, Offset
);
225 Constant
*Evaluator::ComputeLoadResult(GlobalVariable
*GV
, Type
*Ty
,
226 const APInt
&Offset
) {
227 auto It
= MutatedMemory
.find(GV
);
228 if (It
!= MutatedMemory
.end())
229 return It
->second
.read(Ty
, Offset
, DL
);
231 if (!GV
->hasDefinitiveInitializer())
233 return ConstantFoldLoadFromConst(GV
->getInitializer(), Ty
, Offset
, DL
);
236 static Function
*getFunction(Constant
*C
) {
237 if (auto *Fn
= dyn_cast
<Function
>(C
))
240 if (auto *Alias
= dyn_cast
<GlobalAlias
>(C
))
241 if (auto *Fn
= dyn_cast
<Function
>(Alias
->getAliasee()))
247 Evaluator::getCalleeWithFormalArgs(CallBase
&CB
,
248 SmallVectorImpl
<Constant
*> &Formals
) {
249 auto *V
= CB
.getCalledOperand()->stripPointerCasts();
250 if (auto *Fn
= getFunction(getVal(V
)))
251 return getFormalParams(CB
, Fn
, Formals
) ? Fn
: nullptr;
255 bool Evaluator::getFormalParams(CallBase
&CB
, Function
*F
,
256 SmallVectorImpl
<Constant
*> &Formals
) {
260 auto *FTy
= F
->getFunctionType();
261 if (FTy
->getNumParams() > CB
.arg_size()) {
262 LLVM_DEBUG(dbgs() << "Too few arguments for function.\n");
266 auto ArgI
= CB
.arg_begin();
267 for (Type
*PTy
: FTy
->params()) {
268 auto *ArgC
= ConstantFoldLoadThroughBitcast(getVal(*ArgI
), PTy
, DL
);
270 LLVM_DEBUG(dbgs() << "Can not convert function argument.\n");
273 Formals
.push_back(ArgC
);
279 /// If call expression contains bitcast then we may need to cast
280 /// evaluated return value to a type of the call expression.
281 Constant
*Evaluator::castCallResultIfNeeded(Type
*ReturnType
, Constant
*RV
) {
282 if (!RV
|| RV
->getType() == ReturnType
)
285 RV
= ConstantFoldLoadThroughBitcast(RV
, ReturnType
, DL
);
287 LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n");
291 /// Evaluate all instructions in block BB, returning true if successful, false
292 /// if we can't evaluate it. NewBB returns the next BB that control flows into,
293 /// or null upon return. StrippedPointerCastsForAliasAnalysis is set to true if
294 /// we looked through pointer casts to evaluate something.
295 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst
, BasicBlock
*&NextBB
,
296 bool &StrippedPointerCastsForAliasAnalysis
) {
297 // This is the main evaluation loop.
299 Constant
*InstResult
= nullptr;
301 LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst
<< "\n");
303 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(CurInst
)) {
304 if (SI
->isVolatile()) {
305 LLVM_DEBUG(dbgs() << "Store is volatile! Can not evaluate.\n");
306 return false; // no volatile accesses.
308 Constant
*Ptr
= getVal(SI
->getOperand(1));
309 Constant
*FoldedPtr
= ConstantFoldConstant(Ptr
, DL
, TLI
);
310 if (Ptr
!= FoldedPtr
) {
311 LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr
);
313 LLVM_DEBUG(dbgs() << "; To: " << *Ptr
<< "\n");
316 APInt
Offset(DL
.getIndexTypeSizeInBits(Ptr
->getType()), 0);
317 Ptr
= cast
<Constant
>(Ptr
->stripAndAccumulateConstantOffsets(
318 DL
, Offset
, /* AllowNonInbounds */ true));
319 Offset
= Offset
.sextOrTrunc(DL
.getIndexTypeSizeInBits(Ptr
->getType()));
320 auto *GV
= dyn_cast
<GlobalVariable
>(Ptr
);
321 if (!GV
|| !GV
->hasUniqueInitializer()) {
322 LLVM_DEBUG(dbgs() << "Store is not to global with unique initializer: "
327 // If this might be too difficult for the backend to handle (e.g. the addr
328 // of one global variable divided by another) then we can't commit it.
329 Constant
*Val
= getVal(SI
->getOperand(0));
330 if (!isSimpleEnoughValueToCommit(Val
, SimpleConstants
, DL
)) {
331 LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. "
336 auto Res
= MutatedMemory
.try_emplace(GV
, GV
->getInitializer());
337 if (!Res
.first
->second
.write(Val
, Offset
, DL
))
339 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(CurInst
)) {
340 if (LI
->isVolatile()) {
342 dbgs() << "Found a Load! Volatile load, can not evaluate.\n");
343 return false; // no volatile accesses.
346 Constant
*Ptr
= getVal(LI
->getOperand(0));
347 Constant
*FoldedPtr
= ConstantFoldConstant(Ptr
, DL
, TLI
);
348 if (Ptr
!= FoldedPtr
) {
350 LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant "
354 InstResult
= ComputeLoadResult(Ptr
, LI
->getType());
357 dbgs() << "Failed to compute load result. Can not evaluate load."
359 return false; // Could not evaluate load.
362 LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult
<< "\n");
363 } else if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(CurInst
)) {
364 if (AI
->isArrayAllocation()) {
365 LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
366 return false; // Cannot handle array allocs.
368 Type
*Ty
= AI
->getAllocatedType();
369 AllocaTmps
.push_back(std::make_unique
<GlobalVariable
>(
370 Ty
, false, GlobalValue::InternalLinkage
, UndefValue::get(Ty
),
371 AI
->getName(), /*TLMode=*/GlobalValue::NotThreadLocal
,
372 AI
->getType()->getPointerAddressSpace()));
373 InstResult
= AllocaTmps
.back().get();
374 LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult
<< "\n");
375 } else if (isa
<CallInst
>(CurInst
) || isa
<InvokeInst
>(CurInst
)) {
376 CallBase
&CB
= *cast
<CallBase
>(&*CurInst
);
378 // Debug info can safely be ignored here.
379 if (isa
<DbgInfoIntrinsic
>(CB
)) {
380 LLVM_DEBUG(dbgs() << "Ignoring debug info.\n");
385 // Cannot handle inline asm.
386 if (CB
.isInlineAsm()) {
387 LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
391 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(&CB
)) {
392 if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(II
)) {
393 if (MSI
->isVolatile()) {
394 LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset "
399 auto *LenC
= dyn_cast
<ConstantInt
>(getVal(MSI
->getLength()));
401 LLVM_DEBUG(dbgs() << "Memset with unknown length.\n");
405 Constant
*Ptr
= getVal(MSI
->getDest());
406 APInt
Offset(DL
.getIndexTypeSizeInBits(Ptr
->getType()), 0);
407 Ptr
= cast
<Constant
>(Ptr
->stripAndAccumulateConstantOffsets(
408 DL
, Offset
, /* AllowNonInbounds */ true));
409 auto *GV
= dyn_cast
<GlobalVariable
>(Ptr
);
411 LLVM_DEBUG(dbgs() << "Memset with unknown base.\n");
415 Constant
*Val
= getVal(MSI
->getValue());
416 // Avoid the byte-per-byte scan if we're memseting a zeroinitializer
418 if (!Val
->isNullValue() || MutatedMemory
.contains(GV
) ||
419 !GV
->hasDefinitiveInitializer() ||
420 !GV
->getInitializer()->isNullValue()) {
421 APInt Len
= LenC
->getValue();
422 if (Len
.ugt(64 * 1024)) {
423 LLVM_DEBUG(dbgs() << "Not evaluating large memset of size "
429 Constant
*DestVal
= ComputeLoadResult(GV
, Val
->getType(), Offset
);
430 if (DestVal
!= Val
) {
431 LLVM_DEBUG(dbgs() << "Memset is not a no-op at offset "
432 << Offset
<< " of " << *GV
<< ".\n");
440 LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n");
445 if (II
->isLifetimeStartOrEnd()) {
446 LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
451 if (II
->getIntrinsicID() == Intrinsic::invariant_start
) {
452 // We don't insert an entry into Values, as it doesn't have a
453 // meaningful return value.
454 if (!II
->use_empty()) {
456 << "Found unused invariant_start. Can't evaluate.\n");
459 ConstantInt
*Size
= cast
<ConstantInt
>(II
->getArgOperand(0));
460 Value
*PtrArg
= getVal(II
->getArgOperand(1));
461 Value
*Ptr
= PtrArg
->stripPointerCasts();
462 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Ptr
)) {
463 Type
*ElemTy
= GV
->getValueType();
464 if (!Size
->isMinusOne() &&
465 Size
->getValue().getLimitedValue() >=
466 DL
.getTypeStoreSize(ElemTy
)) {
467 Invariants
.insert(GV
);
468 LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: "
472 << "Found a global var, but can not treat it as an "
476 // Continue even if we do nothing.
479 } else if (II
->getIntrinsicID() == Intrinsic::assume
) {
480 LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n");
483 } else if (II
->getIntrinsicID() == Intrinsic::sideeffect
) {
484 LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
487 } else if (II
->getIntrinsicID() == Intrinsic::pseudoprobe
) {
488 LLVM_DEBUG(dbgs() << "Skipping pseudoprobe intrinsic.\n");
492 Value
*Stripped
= CurInst
->stripPointerCastsForAliasAnalysis();
493 // Only attempt to getVal() if we've actually managed to strip
494 // anything away, or else we'll call getVal() on the current
496 if (Stripped
!= &*CurInst
) {
497 InstResult
= getVal(Stripped
);
501 << "Stripped pointer casts for alias analysis for "
502 "intrinsic call.\n");
503 StrippedPointerCastsForAliasAnalysis
= true;
504 InstResult
= ConstantExpr::getBitCast(InstResult
, II
->getType());
506 LLVM_DEBUG(dbgs() << "Unknown intrinsic. Cannot evaluate.\n");
513 // Resolve function pointers.
514 SmallVector
<Constant
*, 8> Formals
;
515 Function
*Callee
= getCalleeWithFormalArgs(CB
, Formals
);
516 if (!Callee
|| Callee
->isInterposable()) {
517 LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n");
518 return false; // Cannot resolve.
521 if (Callee
->isDeclaration()) {
522 // If this is a function we can constant fold, do it.
523 if (Constant
*C
= ConstantFoldCall(&CB
, Callee
, Formals
, TLI
)) {
524 InstResult
= castCallResultIfNeeded(CB
.getType(), C
);
527 LLVM_DEBUG(dbgs() << "Constant folded function call. Result: "
528 << *InstResult
<< "\n");
530 LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n");
534 if (Callee
->getFunctionType()->isVarArg()) {
536 << "Can not constant fold vararg function call.\n");
540 Constant
*RetVal
= nullptr;
541 // Execute the call, if successful, use the return value.
542 ValueStack
.emplace_back();
543 if (!EvaluateFunction(Callee
, RetVal
, Formals
)) {
544 LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n");
547 ValueStack
.pop_back();
548 InstResult
= castCallResultIfNeeded(CB
.getType(), RetVal
);
549 if (RetVal
&& !InstResult
)
553 LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: "
554 << *InstResult
<< "\n\n");
557 << "Successfully evaluated function. Result: 0\n\n");
561 } else if (CurInst
->isTerminator()) {
562 LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n");
564 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(CurInst
)) {
565 if (BI
->isUnconditional()) {
566 NextBB
= BI
->getSuccessor(0);
569 dyn_cast
<ConstantInt
>(getVal(BI
->getCondition()));
570 if (!Cond
) return false; // Cannot determine.
572 NextBB
= BI
->getSuccessor(!Cond
->getZExtValue());
574 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(CurInst
)) {
576 dyn_cast
<ConstantInt
>(getVal(SI
->getCondition()));
577 if (!Val
) return false; // Cannot determine.
578 NextBB
= SI
->findCaseValue(Val
)->getCaseSuccessor();
579 } else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(CurInst
)) {
580 Value
*Val
= getVal(IBI
->getAddress())->stripPointerCasts();
581 if (BlockAddress
*BA
= dyn_cast
<BlockAddress
>(Val
))
582 NextBB
= BA
->getBasicBlock();
584 return false; // Cannot determine.
585 } else if (isa
<ReturnInst
>(CurInst
)) {
588 // invoke, unwind, resume, unreachable.
589 LLVM_DEBUG(dbgs() << "Can not handle terminator.");
590 return false; // Cannot handle this terminator.
593 // We succeeded at evaluating this block!
594 LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n");
597 SmallVector
<Constant
*> Ops
;
598 for (Value
*Op
: CurInst
->operands())
599 Ops
.push_back(getVal(Op
));
600 InstResult
= ConstantFoldInstOperands(&*CurInst
, Ops
, DL
, TLI
);
602 LLVM_DEBUG(dbgs() << "Cannot fold instruction: " << *CurInst
<< "\n");
605 LLVM_DEBUG(dbgs() << "Folded instruction " << *CurInst
<< " to "
606 << *InstResult
<< "\n");
609 if (!CurInst
->use_empty()) {
610 InstResult
= ConstantFoldConstant(InstResult
, DL
, TLI
);
611 setVal(&*CurInst
, InstResult
);
614 // If we just processed an invoke, we finished evaluating the block.
615 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(CurInst
)) {
616 NextBB
= II
->getNormalDest();
617 LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
621 // Advance program counter.
626 /// Evaluate a call to function F, returning true if successful, false if we
627 /// can't evaluate it. ActualArgs contains the formal arguments for the
629 bool Evaluator::EvaluateFunction(Function
*F
, Constant
*&RetVal
,
630 const SmallVectorImpl
<Constant
*> &ActualArgs
) {
631 assert(ActualArgs
.size() == F
->arg_size() && "wrong number of arguments");
633 // Check to see if this function is already executing (recursion). If so,
634 // bail out. TODO: we might want to accept limited recursion.
635 if (is_contained(CallStack
, F
))
638 CallStack
.push_back(F
);
640 // Initialize arguments to the incoming values specified.
641 for (const auto &[ArgNo
, Arg
] : llvm::enumerate(F
->args()))
642 setVal(&Arg
, ActualArgs
[ArgNo
]);
644 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
645 // we can only evaluate any one basic block at most once. This set keeps
646 // track of what we have executed so we can detect recursive cases etc.
647 SmallPtrSet
<BasicBlock
*, 32> ExecutedBlocks
;
649 // CurBB - The current basic block we're evaluating.
650 BasicBlock
*CurBB
= &F
->front();
652 BasicBlock::iterator CurInst
= CurBB
->begin();
655 BasicBlock
*NextBB
= nullptr; // Initialized to avoid compiler warnings.
656 LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB
<< "\n");
658 bool StrippedPointerCastsForAliasAnalysis
= false;
660 if (!EvaluateBlock(CurInst
, NextBB
, StrippedPointerCastsForAliasAnalysis
))
664 // Successfully running until there's no next block means that we found
665 // the return. Fill it the return value and pop the call stack.
666 ReturnInst
*RI
= cast
<ReturnInst
>(CurBB
->getTerminator());
667 if (RI
->getNumOperands()) {
668 // The Evaluator can look through pointer casts as long as alias
669 // analysis holds because it's just a simple interpreter and doesn't
670 // skip memory accesses due to invariant group metadata, but we can't
671 // let users of Evaluator use a value that's been gleaned looking
672 // through stripping pointer casts.
673 if (StrippedPointerCastsForAliasAnalysis
&&
674 !RI
->getReturnValue()->getType()->isVoidTy()) {
677 RetVal
= getVal(RI
->getOperand(0));
679 CallStack
.pop_back();
683 // Okay, we succeeded in evaluating this control flow. See if we have
684 // executed the new block before. If so, we have a looping function,
685 // which we cannot evaluate in reasonable time.
686 if (!ExecutedBlocks
.insert(NextBB
).second
)
687 return false; // looped!
689 // Okay, we have never been in this block before. Check to see if there
690 // are any PHI nodes. If so, evaluate them with information about where
692 PHINode
*PN
= nullptr;
693 for (CurInst
= NextBB
->begin();
694 (PN
= dyn_cast
<PHINode
>(CurInst
)); ++CurInst
)
695 setVal(PN
, getVal(PN
->getIncomingValueForBlock(CurBB
)));
697 // Advance to the next block.