1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary. For example, it turns
11 // the left into the right code:
13 // for (...) for (...)
18 // X3 = phi(X1, X2) X3 = phi(X1, X2)
19 // ... = X3 + 4 X4 = phi(X3)
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine. The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Transforms/Utils.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/SSAUpdater.h"
54 #define DEBUG_TYPE "lcssa"
56 STATISTIC(NumLCSSA
, "Number of live out of a loop variables");
58 #ifdef EXPENSIVE_CHECKS
59 static bool VerifyLoopLCSSA
= true;
61 static bool VerifyLoopLCSSA
= false;
63 static cl::opt
<bool, true>
64 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA
),
66 cl::desc("Verify loop lcssa form (time consuming)"));
68 /// Return true if the specified block is in the list.
69 static bool isExitBlock(BasicBlock
*BB
,
70 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
) {
71 return is_contained(ExitBlocks
, BB
);
74 /// For every instruction from the worklist, check to see if it has any uses
75 /// that are outside the current loop. If so, insert LCSSA PHI nodes and
77 bool llvm::formLCSSAForInstructions(SmallVectorImpl
<Instruction
*> &Worklist
,
78 const DominatorTree
&DT
, const LoopInfo
&LI
,
80 SmallVectorImpl
<PHINode
*> *PHIsToRemove
,
81 SmallVectorImpl
<PHINode
*> *InsertedPHIs
) {
82 SmallVector
<Use
*, 16> UsesToRewrite
;
83 SmallSetVector
<PHINode
*, 16> LocalPHIsToRemove
;
84 PredIteratorCache PredCache
;
87 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of
88 // instructions within the same loops, computing the exit blocks is
89 // expensive, and we're not mutating the loop structure.
90 SmallDenseMap
<Loop
*, SmallVector
<BasicBlock
*,1>> LoopExitBlocks
;
92 while (!Worklist
.empty()) {
93 UsesToRewrite
.clear();
95 Instruction
*I
= Worklist
.pop_back_val();
96 assert(!I
->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
97 BasicBlock
*InstBB
= I
->getParent();
98 Loop
*L
= LI
.getLoopFor(InstBB
);
99 assert(L
&& "Instruction belongs to a BB that's not part of a loop");
100 if (!LoopExitBlocks
.count(L
))
101 L
->getExitBlocks(LoopExitBlocks
[L
]);
102 assert(LoopExitBlocks
.count(L
));
103 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
= LoopExitBlocks
[L
];
105 if (ExitBlocks
.empty())
108 for (Use
&U
: make_early_inc_range(I
->uses())) {
109 Instruction
*User
= cast
<Instruction
>(U
.getUser());
110 BasicBlock
*UserBB
= User
->getParent();
112 // Skip uses in unreachable blocks.
113 if (!DT
.isReachableFromEntry(UserBB
)) {
114 U
.set(PoisonValue::get(I
->getType()));
118 // For practical purposes, we consider that the use in a PHI
119 // occurs in the respective predecessor block. For more info,
120 // see the `phi` doc in LangRef and the LCSSA doc.
121 if (auto *PN
= dyn_cast
<PHINode
>(User
))
122 UserBB
= PN
->getIncomingBlock(U
);
124 if (InstBB
!= UserBB
&& !L
->contains(UserBB
))
125 UsesToRewrite
.push_back(&U
);
128 // If there are no uses outside the loop, exit with no change.
129 if (UsesToRewrite
.empty())
132 ++NumLCSSA
; // We are applying the transformation
134 // Invoke instructions are special in that their result value is not
135 // available along their unwind edge. The code below tests to see whether
136 // DomBB dominates the value, so adjust DomBB to the normal destination
137 // block, which is effectively where the value is first usable.
138 BasicBlock
*DomBB
= InstBB
;
139 if (auto *Inv
= dyn_cast
<InvokeInst
>(I
))
140 DomBB
= Inv
->getNormalDest();
142 const DomTreeNode
*DomNode
= DT
.getNode(DomBB
);
144 SmallVector
<PHINode
*, 16> AddedPHIs
;
145 SmallVector
<PHINode
*, 8> PostProcessPHIs
;
147 SmallVector
<PHINode
*, 4> LocalInsertedPHIs
;
148 SSAUpdater
SSAUpdate(&LocalInsertedPHIs
);
149 SSAUpdate
.Initialize(I
->getType(), I
->getName());
151 // Insert the LCSSA phi's into all of the exit blocks dominated by the
152 // value, and add them to the Phi's map.
153 bool HasSCEV
= SE
&& SE
->isSCEVable(I
->getType()) &&
154 SE
->getExistingSCEV(I
) != nullptr;
155 for (BasicBlock
*ExitBB
: ExitBlocks
) {
156 if (!DT
.dominates(DomNode
, DT
.getNode(ExitBB
)))
159 // If we already inserted something for this BB, don't reprocess it.
160 if (SSAUpdate
.HasValueForBlock(ExitBB
))
162 PHINode
*PN
= PHINode::Create(I
->getType(), PredCache
.size(ExitBB
),
163 I
->getName() + ".lcssa");
164 PN
->insertBefore(ExitBB
->begin());
166 InsertedPHIs
->push_back(PN
);
167 // Get the debug location from the original instruction.
168 PN
->setDebugLoc(I
->getDebugLoc());
170 // Add inputs from inside the loop for this PHI. This is valid
171 // because `I` dominates `ExitBB` (checked above). This implies
172 // that every incoming block/edge is dominated by `I` as well,
173 // i.e. we can add uses of `I` to those incoming edges/append to the incoming
174 // blocks without violating the SSA dominance property.
175 for (BasicBlock
*Pred
: PredCache
.get(ExitBB
)) {
176 PN
->addIncoming(I
, Pred
);
178 // If the exit block has a predecessor not within the loop, arrange for
179 // the incoming value use corresponding to that predecessor to be
180 // rewritten in terms of a different LCSSA PHI.
181 if (!L
->contains(Pred
))
182 UsesToRewrite
.push_back(
183 &PN
->getOperandUse(PN
->getOperandNumForIncomingValue(
184 PN
->getNumIncomingValues() - 1)));
187 AddedPHIs
.push_back(PN
);
189 // Remember that this phi makes the value alive in this block.
190 SSAUpdate
.AddAvailableValue(ExitBB
, PN
);
192 // LoopSimplify might fail to simplify some loops (e.g. when indirect
193 // branches are involved). In such situations, it might happen that an
194 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
195 // create PHIs in such an exit block, we are also inserting PHIs into L2's
196 // header. This could break LCSSA form for L2 because these inserted PHIs
197 // can also have uses outside of L2. Remember all PHIs in such situation
198 // as to revisit than later on. FIXME: Remove this if indirectbr support
199 // into LoopSimplify gets improved.
200 if (auto *OtherLoop
= LI
.getLoopFor(ExitBB
))
201 if (!L
->contains(OtherLoop
))
202 PostProcessPHIs
.push_back(PN
);
204 // If we have a cached SCEV for the original instruction, make sure the
205 // new LCSSA phi node is also cached. This makes sures that BECounts
206 // based on it will be invalidated when the LCSSA phi node is invalidated,
207 // which some passes rely on.
212 // Rewrite all uses outside the loop in terms of the new PHIs we just
214 for (Use
*UseToRewrite
: UsesToRewrite
) {
215 Instruction
*User
= cast
<Instruction
>(UseToRewrite
->getUser());
216 BasicBlock
*UserBB
= User
->getParent();
218 // For practical purposes, we consider that the use in a PHI
219 // occurs in the respective predecessor block. For more info,
220 // see the `phi` doc in LangRef and the LCSSA doc.
221 if (auto *PN
= dyn_cast
<PHINode
>(User
))
222 UserBB
= PN
->getIncomingBlock(*UseToRewrite
);
224 // If this use is in an exit block, rewrite to use the newly inserted PHI.
225 // This is required for correctness because SSAUpdate doesn't handle uses
226 // in the same block. It assumes the PHI we inserted is at the end of the
228 if (isa
<PHINode
>(UserBB
->begin()) && isExitBlock(UserBB
, ExitBlocks
)) {
229 UseToRewrite
->set(&UserBB
->front());
233 // If we added a single PHI, it must dominate all uses and we can directly
235 if (AddedPHIs
.size() == 1) {
236 UseToRewrite
->set(AddedPHIs
[0]);
240 // Otherwise, do full PHI insertion.
241 SSAUpdate
.RewriteUse(*UseToRewrite
);
244 SmallVector
<DbgValueInst
*, 4> DbgValues
;
245 SmallVector
<DPValue
*, 4> DPValues
;
246 llvm::findDbgValues(DbgValues
, I
, &DPValues
);
248 // Update pre-existing debug value uses that reside outside the loop.
249 for (auto *DVI
: DbgValues
) {
250 BasicBlock
*UserBB
= DVI
->getParent();
251 if (InstBB
== UserBB
|| L
->contains(UserBB
))
253 // We currently only handle debug values residing in blocks that were
254 // traversed while rewriting the uses. If we inserted just a single PHI,
255 // we will handle all relevant debug values.
256 Value
*V
= AddedPHIs
.size() == 1 ? AddedPHIs
[0]
257 : SSAUpdate
.FindValueForBlock(UserBB
);
259 DVI
->replaceVariableLocationOp(I
, V
);
262 // RemoveDIs: copy-paste of block above, using non-instruction debug-info
264 for (DPValue
*DPV
: DPValues
) {
265 BasicBlock
*UserBB
= DPV
->getMarker()->getParent();
266 if (InstBB
== UserBB
|| L
->contains(UserBB
))
268 // We currently only handle debug values residing in blocks that were
269 // traversed while rewriting the uses. If we inserted just a single PHI,
270 // we will handle all relevant debug values.
271 Value
*V
= AddedPHIs
.size() == 1 ? AddedPHIs
[0]
272 : SSAUpdate
.FindValueForBlock(UserBB
);
274 DPV
->replaceVariableLocationOp(I
, V
);
277 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
278 // to post-process them to keep LCSSA form.
279 for (PHINode
*InsertedPN
: LocalInsertedPHIs
) {
280 if (auto *OtherLoop
= LI
.getLoopFor(InsertedPN
->getParent()))
281 if (!L
->contains(OtherLoop
))
282 PostProcessPHIs
.push_back(InsertedPN
);
284 InsertedPHIs
->push_back(InsertedPN
);
287 // Post process PHI instructions that were inserted into another disjoint
288 // loop and update their exits properly.
289 for (auto *PostProcessPN
: PostProcessPHIs
)
290 if (!PostProcessPN
->use_empty())
291 Worklist
.push_back(PostProcessPN
);
293 // Keep track of PHI nodes that we want to remove because they did not have
294 // any uses rewritten.
295 for (PHINode
*PN
: AddedPHIs
)
297 LocalPHIsToRemove
.insert(PN
);
302 // Remove PHI nodes that did not have any uses rewritten or add them to
303 // PHIsToRemove, so the caller can remove them after some additional cleanup.
304 // We need to redo the use_empty() check here, because even if the PHI node
305 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
306 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI
307 // nodes that only are used by each other. Such situations has only been
308 // noticed when the input IR contains unreachable code, and leaving some extra
309 // redundant PHI nodes in such situations is considered a minor problem.
311 PHIsToRemove
->append(LocalPHIsToRemove
.begin(), LocalPHIsToRemove
.end());
313 for (PHINode
*PN
: LocalPHIsToRemove
)
315 PN
->eraseFromParent();
320 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
321 static void computeBlocksDominatingExits(
322 Loop
&L
, const DominatorTree
&DT
, SmallVector
<BasicBlock
*, 8> &ExitBlocks
,
323 SmallSetVector
<BasicBlock
*, 8> &BlocksDominatingExits
) {
324 // We start from the exit blocks, as every block trivially dominates itself
326 SmallVector
<BasicBlock
*, 8> BBWorklist(ExitBlocks
);
328 while (!BBWorklist
.empty()) {
329 BasicBlock
*BB
= BBWorklist
.pop_back_val();
331 // Check if this is a loop header. If this is the case, we're done.
332 if (L
.getHeader() == BB
)
335 // Otherwise, add its immediate predecessor in the dominator tree to the
336 // worklist, unless we visited it already.
337 BasicBlock
*IDomBB
= DT
.getNode(BB
)->getIDom()->getBlock();
339 // Exit blocks can have an immediate dominator not belonging to the
340 // loop. For an exit block to be immediately dominated by another block
341 // outside the loop, it implies not all paths from that dominator, to the
342 // exit block, go through the loop.
353 // C is the exit block of the loop and it's immediately dominated by A,
354 // which doesn't belong to the loop.
355 if (!L
.contains(IDomBB
))
358 if (BlocksDominatingExits
.insert(IDomBB
))
359 BBWorklist
.push_back(IDomBB
);
363 bool llvm::formLCSSA(Loop
&L
, const DominatorTree
&DT
, const LoopInfo
*LI
,
364 ScalarEvolution
*SE
) {
365 bool Changed
= false;
367 #ifdef EXPENSIVE_CHECKS
368 // Verify all sub-loops are in LCSSA form already.
369 for (Loop
*SubLoop
: L
) {
370 (void)SubLoop
; // Silence unused variable warning.
371 assert(SubLoop
->isRecursivelyLCSSAForm(DT
, *LI
) && "Subloop not in LCSSA!");
375 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
376 L
.getExitBlocks(ExitBlocks
);
377 if (ExitBlocks
.empty())
380 SmallSetVector
<BasicBlock
*, 8> BlocksDominatingExits
;
382 // We want to avoid use-scanning leveraging dominance informations.
383 // If a block doesn't dominate any of the loop exits, the none of the values
384 // defined in the loop can be used outside.
385 // We compute the set of blocks fullfilling the conditions in advance
386 // walking the dominator tree upwards until we hit a loop header.
387 computeBlocksDominatingExits(L
, DT
, ExitBlocks
, BlocksDominatingExits
);
389 SmallVector
<Instruction
*, 8> Worklist
;
391 // Look at all the instructions in the loop, checking to see if they have uses
392 // outside the loop. If so, put them into the worklist to rewrite those uses.
393 for (BasicBlock
*BB
: BlocksDominatingExits
) {
394 // Skip blocks that are part of any sub-loops, they must be in LCSSA
396 if (LI
->getLoopFor(BB
) != &L
)
398 for (Instruction
&I
: *BB
) {
399 // Reject two common cases fast: instructions with no uses (like stores)
400 // and instructions with one use that is in the same block as this.
402 (I
.hasOneUse() && I
.user_back()->getParent() == BB
&&
403 !isa
<PHINode
>(I
.user_back())))
406 // Tokens cannot be used in PHI nodes, so we skip over them.
407 // We can run into tokens which are live out of a loop with catchswitch
408 // instructions in Windows EH if the catchswitch has one catchpad which
409 // is inside the loop and another which is not.
410 if (I
.getType()->isTokenTy())
413 Worklist
.push_back(&I
);
417 Changed
= formLCSSAForInstructions(Worklist
, DT
, *LI
, SE
);
419 assert(L
.isLCSSAForm(DT
));
424 /// Process a loop nest depth first.
425 bool llvm::formLCSSARecursively(Loop
&L
, const DominatorTree
&DT
,
426 const LoopInfo
*LI
, ScalarEvolution
*SE
) {
427 bool Changed
= false;
429 // Recurse depth-first through inner loops.
430 for (Loop
*SubLoop
: L
.getSubLoops())
431 Changed
|= formLCSSARecursively(*SubLoop
, DT
, LI
, SE
);
433 Changed
|= formLCSSA(L
, DT
, LI
, SE
);
437 /// Process all loops in the function, inner-most out.
438 static bool formLCSSAOnAllLoops(const LoopInfo
*LI
, const DominatorTree
&DT
,
439 ScalarEvolution
*SE
) {
440 bool Changed
= false;
441 for (const auto &L
: *LI
)
442 Changed
|= formLCSSARecursively(*L
, DT
, LI
, SE
);
447 struct LCSSAWrapperPass
: public FunctionPass
{
448 static char ID
; // Pass identification, replacement for typeid
449 LCSSAWrapperPass() : FunctionPass(ID
) {
450 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
453 // Cached analysis information for the current function.
458 bool runOnFunction(Function
&F
) override
;
459 void verifyAnalysis() const override
{
460 // This check is very expensive. On the loop intensive compiles it may cause
461 // up to 10x slowdown. Currently it's disabled by default. LPPassManager
462 // always does limited form of the LCSSA verification. Similar reasoning
463 // was used for the LoopInfo verifier.
464 if (VerifyLoopLCSSA
) {
467 return L
->isRecursivelyLCSSAForm(*DT
, *LI
);
469 "LCSSA form is broken!");
473 /// This transformation requires natural loop information & requires that
474 /// loop preheaders be inserted into the CFG. It maintains both of these,
475 /// as well as the CFG. It also requires dominator information.
476 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
477 AU
.setPreservesCFG();
479 AU
.addRequired
<DominatorTreeWrapperPass
>();
480 AU
.addRequired
<LoopInfoWrapperPass
>();
481 AU
.addPreservedID(LoopSimplifyID
);
482 AU
.addPreserved
<AAResultsWrapperPass
>();
483 AU
.addPreserved
<BasicAAWrapperPass
>();
484 AU
.addPreserved
<GlobalsAAWrapperPass
>();
485 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
486 AU
.addPreserved
<SCEVAAWrapperPass
>();
487 AU
.addPreserved
<BranchProbabilityInfoWrapperPass
>();
488 AU
.addPreserved
<MemorySSAWrapperPass
>();
490 // This is needed to perform LCSSA verification inside LPPassManager
491 AU
.addRequired
<LCSSAVerificationPass
>();
492 AU
.addPreserved
<LCSSAVerificationPass
>();
497 char LCSSAWrapperPass::ID
= 0;
498 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass
, "lcssa", "Loop-Closed SSA Form Pass",
500 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
501 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
502 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass
)
503 INITIALIZE_PASS_END(LCSSAWrapperPass
, "lcssa", "Loop-Closed SSA Form Pass",
506 Pass
*llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
507 char &llvm::LCSSAID
= LCSSAWrapperPass::ID
;
509 /// Transform \p F into loop-closed SSA form.
510 bool LCSSAWrapperPass::runOnFunction(Function
&F
) {
511 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
512 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
513 auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
514 SE
= SEWP
? &SEWP
->getSE() : nullptr;
516 return formLCSSAOnAllLoops(LI
, *DT
, SE
);
519 PreservedAnalyses
LCSSAPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
520 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
521 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
522 auto *SE
= AM
.getCachedResult
<ScalarEvolutionAnalysis
>(F
);
523 if (!formLCSSAOnAllLoops(&LI
, DT
, SE
))
524 return PreservedAnalyses::all();
526 PreservedAnalyses PA
;
527 PA
.preserveSet
<CFGAnalyses
>();
528 PA
.preserve
<ScalarEvolutionAnalysis
>();
529 // BPI maps terminators to probabilities, since we don't modify the CFG, no
530 // updates are needed to preserve it.
531 PA
.preserve
<BranchProbabilityAnalysis
>();
532 PA
.preserve
<MemorySSAAnalysis
>();