1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file provides utilities to convert a loop into a loop with bottom test.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AssumptionCache.h"
16 #include "llvm/Analysis/CodeMetrics.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/MemorySSA.h"
21 #include "llvm/Analysis/MemorySSAUpdater.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/ProfDataUtils.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/SSAUpdater.h"
37 #include "llvm/Transforms/Utils/ValueMapper.h"
40 #define DEBUG_TYPE "loop-rotate"
42 STATISTIC(NumNotRotatedDueToHeaderSize
,
43 "Number of loops not rotated due to the header size");
44 STATISTIC(NumInstrsHoisted
,
45 "Number of instructions hoisted into loop preheader");
46 STATISTIC(NumInstrsDuplicated
,
47 "Number of instructions cloned into loop preheader");
48 STATISTIC(NumRotated
, "Number of loops rotated");
51 MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden
,
52 cl::desc("Allow loop rotation multiple times in order to reach "
53 "a better latch exit"));
55 // Probability that a rotated loop has zero trip count / is never entered.
56 static constexpr uint32_t ZeroTripCountWeights
[] = {1, 127};
59 /// A simple loop rotation transformation.
61 const unsigned MaxHeaderSize
;
63 const TargetTransformInfo
*TTI
;
67 MemorySSAUpdater
*MSSAU
;
68 const SimplifyQuery
&SQ
;
74 LoopRotate(unsigned MaxHeaderSize
, LoopInfo
*LI
,
75 const TargetTransformInfo
*TTI
, AssumptionCache
*AC
,
76 DominatorTree
*DT
, ScalarEvolution
*SE
, MemorySSAUpdater
*MSSAU
,
77 const SimplifyQuery
&SQ
, bool RotationOnly
, bool IsUtilMode
,
79 : MaxHeaderSize(MaxHeaderSize
), LI(LI
), TTI(TTI
), AC(AC
), DT(DT
), SE(SE
),
80 MSSAU(MSSAU
), SQ(SQ
), RotationOnly(RotationOnly
),
81 IsUtilMode(IsUtilMode
), PrepareForLTO(PrepareForLTO
) {}
82 bool processLoop(Loop
*L
);
85 bool rotateLoop(Loop
*L
, bool SimplifiedLatch
);
86 bool simplifyLoopLatch(Loop
*L
);
88 } // end anonymous namespace
90 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
91 /// previously exist in the map, and the value was inserted.
92 static void InsertNewValueIntoMap(ValueToValueMapTy
&VM
, Value
*K
, Value
*V
) {
93 bool Inserted
= VM
.insert({K
, V
}).second
;
97 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
98 /// old header into the preheader. If there were uses of the values produced by
99 /// these instruction that were outside of the loop, we have to insert PHI nodes
100 /// to merge the two values. Do this now.
101 static void RewriteUsesOfClonedInstructions(BasicBlock
*OrigHeader
,
102 BasicBlock
*OrigPreheader
,
103 ValueToValueMapTy
&ValueMap
,
105 SmallVectorImpl
<PHINode
*> *InsertedPHIs
) {
106 // Remove PHI node entries that are no longer live.
107 BasicBlock::iterator I
, E
= OrigHeader
->end();
108 for (I
= OrigHeader
->begin(); PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
109 PN
->removeIncomingValue(PN
->getBasicBlockIndex(OrigPreheader
));
111 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
113 SSAUpdater
SSA(InsertedPHIs
);
114 for (I
= OrigHeader
->begin(); I
!= E
; ++I
) {
115 Value
*OrigHeaderVal
= &*I
;
117 // If there are no uses of the value (e.g. because it returns void), there
118 // is nothing to rewrite.
119 if (OrigHeaderVal
->use_empty())
122 Value
*OrigPreHeaderVal
= ValueMap
.lookup(OrigHeaderVal
);
124 // The value now exits in two versions: the initial value in the preheader
125 // and the loop "next" value in the original header.
126 SSA
.Initialize(OrigHeaderVal
->getType(), OrigHeaderVal
->getName());
127 // Force re-computation of OrigHeaderVal, as some users now need to use the
130 SE
->forgetValue(OrigHeaderVal
);
131 SSA
.AddAvailableValue(OrigHeader
, OrigHeaderVal
);
132 SSA
.AddAvailableValue(OrigPreheader
, OrigPreHeaderVal
);
134 // Visit each use of the OrigHeader instruction.
135 for (Use
&U
: llvm::make_early_inc_range(OrigHeaderVal
->uses())) {
136 // SSAUpdater can't handle a non-PHI use in the same block as an
137 // earlier def. We can easily handle those cases manually.
138 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
139 if (!isa
<PHINode
>(UserInst
)) {
140 BasicBlock
*UserBB
= UserInst
->getParent();
142 // The original users in the OrigHeader are already using the
143 // original definitions.
144 if (UserBB
== OrigHeader
)
147 // Users in the OrigPreHeader need to use the value to which the
148 // original definitions are mapped.
149 if (UserBB
== OrigPreheader
) {
150 U
= OrigPreHeaderVal
;
155 // Anything else can be handled by SSAUpdater.
159 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
161 SmallVector
<DbgValueInst
*, 1> DbgValues
;
162 SmallVector
<DPValue
*, 1> DPValues
;
163 llvm::findDbgValues(DbgValues
, OrigHeaderVal
, &DPValues
);
164 for (auto &DbgValue
: DbgValues
) {
165 // The original users in the OrigHeader are already using the original
167 BasicBlock
*UserBB
= DbgValue
->getParent();
168 if (UserBB
== OrigHeader
)
171 // Users in the OrigPreHeader need to use the value to which the
172 // original definitions are mapped and anything else can be handled by
173 // the SSAUpdater. To avoid adding PHINodes, check if the value is
174 // available in UserBB, if not substitute undef.
176 if (UserBB
== OrigPreheader
)
177 NewVal
= OrigPreHeaderVal
;
178 else if (SSA
.HasValueForBlock(UserBB
))
179 NewVal
= SSA
.GetValueInMiddleOfBlock(UserBB
);
181 NewVal
= UndefValue::get(OrigHeaderVal
->getType());
182 DbgValue
->replaceVariableLocationOp(OrigHeaderVal
, NewVal
);
185 // RemoveDIs: duplicate implementation for non-instruction debug-info
186 // storage in DPValues.
187 for (DPValue
*DPV
: DPValues
) {
188 // The original users in the OrigHeader are already using the original
190 BasicBlock
*UserBB
= DPV
->getMarker()->getParent();
191 if (UserBB
== OrigHeader
)
194 // Users in the OrigPreHeader need to use the value to which the
195 // original definitions are mapped and anything else can be handled by
196 // the SSAUpdater. To avoid adding PHINodes, check if the value is
197 // available in UserBB, if not substitute undef.
199 if (UserBB
== OrigPreheader
)
200 NewVal
= OrigPreHeaderVal
;
201 else if (SSA
.HasValueForBlock(UserBB
))
202 NewVal
= SSA
.GetValueInMiddleOfBlock(UserBB
);
204 NewVal
= UndefValue::get(OrigHeaderVal
->getType());
205 DPV
->replaceVariableLocationOp(OrigHeaderVal
, NewVal
);
210 // Assuming both header and latch are exiting, look for a phi which is only
211 // used outside the loop (via a LCSSA phi) in the exit from the header.
212 // This means that rotating the loop can remove the phi.
213 static bool profitableToRotateLoopExitingLatch(Loop
*L
) {
214 BasicBlock
*Header
= L
->getHeader();
215 BranchInst
*BI
= dyn_cast
<BranchInst
>(Header
->getTerminator());
216 assert(BI
&& BI
->isConditional() && "need header with conditional exit");
217 BasicBlock
*HeaderExit
= BI
->getSuccessor(0);
218 if (L
->contains(HeaderExit
))
219 HeaderExit
= BI
->getSuccessor(1);
221 for (auto &Phi
: Header
->phis()) {
222 // Look for uses of this phi in the loop/via exits other than the header.
223 if (llvm::any_of(Phi
.users(), [HeaderExit
](const User
*U
) {
224 return cast
<Instruction
>(U
)->getParent() != HeaderExit
;
232 // Check that latch exit is deoptimizing (which means - very unlikely to happen)
233 // and there is another exit from the loop which is non-deoptimizing.
234 // If we rotate latch to that exit our loop has a better chance of being fully
237 // It can give false positives in some rare cases.
238 static bool canRotateDeoptimizingLatchExit(Loop
*L
) {
239 BasicBlock
*Latch
= L
->getLoopLatch();
240 assert(Latch
&& "need latch");
241 BranchInst
*BI
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
242 // Need normal exiting latch.
243 if (!BI
|| !BI
->isConditional())
246 BasicBlock
*Exit
= BI
->getSuccessor(1);
247 if (L
->contains(Exit
))
248 Exit
= BI
->getSuccessor(0);
250 // Latch exit is non-deoptimizing, no need to rotate.
251 if (!Exit
->getPostdominatingDeoptimizeCall())
254 SmallVector
<BasicBlock
*, 4> Exits
;
255 L
->getUniqueExitBlocks(Exits
);
256 if (!Exits
.empty()) {
257 // There is at least one non-deoptimizing exit.
259 // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
260 // as it can conservatively return false for deoptimizing exits with
261 // complex enough control flow down to deoptimize call.
263 // That means here we can report success for a case where
264 // all exits are deoptimizing but one of them has complex enough
265 // control flow (e.g. with loops).
267 // That should be a very rare case and false positives for this function
268 // have compile-time effect only.
269 return any_of(Exits
, [](const BasicBlock
*BB
) {
270 return !BB
->getPostdominatingDeoptimizeCall();
276 static void updateBranchWeights(BranchInst
&PreHeaderBI
, BranchInst
&LoopBI
,
277 bool HasConditionalPreHeader
,
279 MDNode
*WeightMD
= getBranchWeightMDNode(PreHeaderBI
);
280 if (WeightMD
== nullptr)
283 // LoopBI should currently be a clone of PreHeaderBI with the same
284 // metadata. But we double check to make sure we don't have a degenerate case
285 // where instsimplify changed the instructions.
286 if (WeightMD
!= getBranchWeightMDNode(LoopBI
))
289 SmallVector
<uint32_t, 2> Weights
;
290 extractFromBranchWeightMD(WeightMD
, Weights
);
291 if (Weights
.size() != 2)
293 uint32_t OrigLoopExitWeight
= Weights
[0];
294 uint32_t OrigLoopBackedgeWeight
= Weights
[1];
297 std::swap(OrigLoopExitWeight
, OrigLoopBackedgeWeight
);
299 // Update branch weights. Consider the following edge-counts:
303 // Br i1 ... | Br i1 ...
305 // x| y| | becomes: | y0| |-----
307 // Exit Loop | | Loop |
314 // The following must hold:
315 // - x == x0 + x1 # counts to "exit" must stay the same.
316 // - y0 == x - x0 == x1 # how often loop was entered at all.
317 // - y1 == y - y0 # How often loop was repeated (after first iter.).
319 // We cannot generally deduce how often we had a zero-trip count loop so we
320 // have to make a guess for how to distribute x among the new x0 and x1.
322 uint32_t ExitWeight0
; // aka x0
323 uint32_t ExitWeight1
; // aka x1
324 uint32_t EnterWeight
; // aka y0
325 uint32_t LoopBackWeight
; // aka y1
326 if (OrigLoopExitWeight
> 0 && OrigLoopBackedgeWeight
> 0) {
328 if (HasConditionalPreHeader
) {
329 // Here we cannot know how many 0-trip count loops we have, so we guess:
330 if (OrigLoopBackedgeWeight
>= OrigLoopExitWeight
) {
331 // If the loop count is bigger than the exit count then we set
332 // probabilities as if 0-trip count nearly never happens.
333 ExitWeight0
= ZeroTripCountWeights
[0];
334 // Scale up counts if necessary so we can match `ZeroTripCountWeights`
335 // for the `ExitWeight0`:`ExitWeight1` (aka `x0`:`x1` ratio`) ratio.
336 while (OrigLoopExitWeight
< ZeroTripCountWeights
[1] + ExitWeight0
) {
337 // ... but don't overflow.
338 uint32_t const HighBit
= uint32_t{1} << (sizeof(uint32_t) * 8 - 1);
339 if ((OrigLoopBackedgeWeight
& HighBit
) != 0 ||
340 (OrigLoopExitWeight
& HighBit
) != 0)
342 OrigLoopBackedgeWeight
<<= 1;
343 OrigLoopExitWeight
<<= 1;
346 // If there's a higher exit-count than backedge-count then we set
347 // probabilities as if there are only 0-trip and 1-trip cases.
348 ExitWeight0
= OrigLoopExitWeight
- OrigLoopBackedgeWeight
;
351 ExitWeight1
= OrigLoopExitWeight
- ExitWeight0
;
352 EnterWeight
= ExitWeight1
;
353 LoopBackWeight
= OrigLoopBackedgeWeight
- EnterWeight
;
354 } else if (OrigLoopExitWeight
== 0) {
355 if (OrigLoopBackedgeWeight
== 0) {
356 // degenerate case... keep everything zero...
362 // Special case "LoopExitWeight == 0" weights which behaves like an
363 // endless where we don't want loop-enttry (y0) to be the same as
368 LoopBackWeight
= OrigLoopBackedgeWeight
;
371 // loop is never entered.
372 assert(OrigLoopBackedgeWeight
== 0 && "remaining case is backedge zero");
379 const uint32_t LoopBIWeights
[] = {
380 SuccsSwapped
? LoopBackWeight
: ExitWeight1
,
381 SuccsSwapped
? ExitWeight1
: LoopBackWeight
,
383 setBranchWeights(LoopBI
, LoopBIWeights
);
384 if (HasConditionalPreHeader
) {
385 const uint32_t PreHeaderBIWeights
[] = {
386 SuccsSwapped
? EnterWeight
: ExitWeight0
,
387 SuccsSwapped
? ExitWeight0
: EnterWeight
,
389 setBranchWeights(PreHeaderBI
, PreHeaderBIWeights
);
393 /// Rotate loop LP. Return true if the loop is rotated.
395 /// \param SimplifiedLatch is true if the latch was just folded into the final
396 /// loop exit. In this case we may want to rotate even though the new latch is
397 /// now an exiting branch. This rotation would have happened had the latch not
398 /// been simplified. However, if SimplifiedLatch is false, then we avoid
399 /// rotating loops in which the latch exits to avoid excessive or endless
400 /// rotation. LoopRotate should be repeatable and converge to a canonical
401 /// form. This property is satisfied because simplifying the loop latch can only
402 /// happen once across multiple invocations of the LoopRotate pass.
404 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
405 /// so to reach a suitable (non-deoptimizing) exit.
406 bool LoopRotate::rotateLoop(Loop
*L
, bool SimplifiedLatch
) {
407 // If the loop has only one block then there is not much to rotate.
408 if (L
->getBlocks().size() == 1)
411 bool Rotated
= false;
413 BasicBlock
*OrigHeader
= L
->getHeader();
414 BasicBlock
*OrigLatch
= L
->getLoopLatch();
416 BranchInst
*BI
= dyn_cast
<BranchInst
>(OrigHeader
->getTerminator());
417 if (!BI
|| BI
->isUnconditional())
420 // If the loop header is not one of the loop exiting blocks then
421 // either this loop is already rotated or it is not
422 // suitable for loop rotation transformations.
423 if (!L
->isLoopExiting(OrigHeader
))
426 // If the loop latch already contains a branch that leaves the loop then the
427 // loop is already rotated.
431 // Rotate if either the loop latch does *not* exit the loop, or if the loop
432 // latch was just simplified. Or if we think it will be profitable.
433 if (L
->isLoopExiting(OrigLatch
) && !SimplifiedLatch
&& IsUtilMode
== false &&
434 !profitableToRotateLoopExitingLatch(L
) &&
435 !canRotateDeoptimizingLatchExit(L
))
438 // Check size of original header and reject loop if it is very big or we can't
439 // duplicate blocks inside it.
441 SmallPtrSet
<const Value
*, 32> EphValues
;
442 CodeMetrics::collectEphemeralValues(L
, AC
, EphValues
);
445 Metrics
.analyzeBasicBlock(OrigHeader
, *TTI
, EphValues
, PrepareForLTO
);
446 if (Metrics
.notDuplicatable
) {
448 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
449 << " instructions: ";
453 if (Metrics
.convergent
) {
454 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
459 if (!Metrics
.NumInsts
.isValid()) {
460 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains instructions"
461 " with invalid cost: ";
465 if (Metrics
.NumInsts
> MaxHeaderSize
) {
466 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
468 << " instructions, which is more than the threshold ("
469 << MaxHeaderSize
<< " instructions): ";
471 ++NumNotRotatedDueToHeaderSize
;
475 // When preparing for LTO, avoid rotating loops with calls that could be
476 // inlined during the LTO stage.
477 if (PrepareForLTO
&& Metrics
.NumInlineCandidates
> 0)
481 // Now, this loop is suitable for rotation.
482 BasicBlock
*OrigPreheader
= L
->getLoopPreheader();
484 // If the loop could not be converted to canonical form, it must have an
485 // indirectbr in it, just give up.
486 if (!OrigPreheader
|| !L
->hasDedicatedExits())
489 // Anything ScalarEvolution may know about this loop or the PHI nodes
490 // in its header will soon be invalidated. We should also invalidate
491 // all outer loops because insertion and deletion of blocks that happens
492 // during the rotation may violate invariants related to backedge taken
495 SE
->forgetTopmostLoop(L
);
496 // We may hoist some instructions out of loop. In case if they were cached
497 // as "loop variant" or "loop computable", these caches must be dropped.
498 // We also may fold basic blocks, so cached block dispositions also need
500 SE
->forgetBlockAndLoopDispositions();
503 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L
->dump());
504 if (MSSAU
&& VerifyMemorySSA
)
505 MSSAU
->getMemorySSA()->verifyMemorySSA();
507 // Find new Loop header. NewHeader is a Header's one and only successor
508 // that is inside loop. Header's other successor is outside the
509 // loop. Otherwise loop is not suitable for rotation.
510 BasicBlock
*Exit
= BI
->getSuccessor(0);
511 BasicBlock
*NewHeader
= BI
->getSuccessor(1);
512 bool BISuccsSwapped
= L
->contains(Exit
);
514 std::swap(Exit
, NewHeader
);
515 assert(NewHeader
&& "Unable to determine new loop header");
516 assert(L
->contains(NewHeader
) && !L
->contains(Exit
) &&
517 "Unable to determine loop header and exit blocks");
519 // This code assumes that the new header has exactly one predecessor.
520 // Remove any single-entry PHI nodes in it.
521 assert(NewHeader
->getSinglePredecessor() &&
522 "New header doesn't have one pred!");
523 FoldSingleEntryPHINodes(NewHeader
);
525 // Begin by walking OrigHeader and populating ValueMap with an entry for
527 BasicBlock::iterator I
= OrigHeader
->begin(), E
= OrigHeader
->end();
528 ValueToValueMapTy ValueMap
, ValueMapMSSA
;
530 // For PHI nodes, the value available in OldPreHeader is just the
531 // incoming value from OldPreHeader.
532 for (; PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
533 InsertNewValueIntoMap(ValueMap
, PN
,
534 PN
->getIncomingValueForBlock(OrigPreheader
));
536 // For the rest of the instructions, either hoist to the OrigPreheader if
537 // possible or create a clone in the OldPreHeader if not.
538 Instruction
*LoopEntryBranch
= OrigPreheader
->getTerminator();
540 // Record all debug intrinsics preceding LoopEntryBranch to avoid
542 using DbgIntrinsicHash
=
543 std::pair
<std::pair
<hash_code
, DILocalVariable
*>, DIExpression
*>;
544 auto makeHash
= [](auto *D
) -> DbgIntrinsicHash
{
545 auto VarLocOps
= D
->location_ops();
546 return {{hash_combine_range(VarLocOps
.begin(), VarLocOps
.end()),
551 SmallDenseSet
<DbgIntrinsicHash
, 8> DbgIntrinsics
;
552 for (Instruction
&I
: llvm::drop_begin(llvm::reverse(*OrigPreheader
))) {
553 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&I
)) {
554 DbgIntrinsics
.insert(makeHash(DII
));
555 // Until RemoveDIs supports dbg.declares in DPValue format, we'll need
556 // to collect DPValues attached to any other debug intrinsics.
557 for (const DPValue
&DPV
: DII
->getDbgValueRange())
558 DbgIntrinsics
.insert(makeHash(&DPV
));
564 // Build DPValue hashes for DPValues attached to the terminator, which isn't
565 // considered in the loop above.
566 for (const DPValue
&DPV
:
567 OrigPreheader
->getTerminator()->getDbgValueRange())
568 DbgIntrinsics
.insert(makeHash(&DPV
));
570 // Remember the local noalias scope declarations in the header. After the
571 // rotation, they must be duplicated and the scope must be cloned. This
572 // avoids unwanted interaction across iterations.
573 SmallVector
<NoAliasScopeDeclInst
*, 6> NoAliasDeclInstructions
;
574 for (Instruction
&I
: *OrigHeader
)
575 if (auto *Decl
= dyn_cast
<NoAliasScopeDeclInst
>(&I
))
576 NoAliasDeclInstructions
.push_back(Decl
);
578 Module
*M
= OrigHeader
->getModule();
580 // Track the next DPValue to clone. If we have a sequence where an
581 // instruction is hoisted instead of being cloned:
583 // %foo = add i32 0, 0
585 // %bar = call i32 @foobar()
586 // where %foo is hoisted, then the DPValue "blah" will be seen twice, once
587 // attached to %foo, then when %foo his hoisted it will "fall down" onto the
591 // %bar = call i32 @foobar()
592 // causing it to appear attached to the call too.
594 // To avoid this, cloneDebugInfoFrom takes an optional "start cloning from
595 // here" position to account for this behaviour. We point it at any DPValues
596 // on the next instruction, here labelled xyzzy, before we hoist %foo.
597 // Later, we only only clone DPValues from that position (xyzzy) onwards,
598 // which avoids cloning DPValue "blah" multiple times.
599 std::optional
<DPValue::self_iterator
> NextDbgInst
= std::nullopt
;
602 Instruction
*Inst
= &*I
++;
604 // If the instruction's operands are invariant and it doesn't read or write
605 // memory, then it is safe to hoist. Doing this doesn't change the order of
606 // execution in the preheader, but does prevent the instruction from
607 // executing in each iteration of the loop. This means it is safe to hoist
608 // something that might trap, but isn't safe to hoist something that reads
609 // memory (without proving that the loop doesn't write).
610 if (L
->hasLoopInvariantOperands(Inst
) && !Inst
->mayReadFromMemory() &&
611 !Inst
->mayWriteToMemory() && !Inst
->isTerminator() &&
612 !isa
<DbgInfoIntrinsic
>(Inst
) && !isa
<AllocaInst
>(Inst
)) {
614 if (LoopEntryBranch
->getParent()->IsNewDbgInfoFormat
) {
616 LoopEntryBranch
->cloneDebugInfoFrom(Inst
, NextDbgInst
);
617 RemapDPValueRange(M
, DbgValueRange
, ValueMap
,
618 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
619 // Erase anything we've seen before.
620 for (DPValue
&DPV
: make_early_inc_range(DbgValueRange
))
621 if (DbgIntrinsics
.count(makeHash(&DPV
)))
622 DPV
.eraseFromParent();
625 NextDbgInst
= I
->getDbgValueRange().begin();
626 Inst
->moveBefore(LoopEntryBranch
);
632 // Otherwise, create a duplicate of the instruction.
633 Instruction
*C
= Inst
->clone();
634 C
->insertBefore(LoopEntryBranch
);
636 ++NumInstrsDuplicated
;
638 if (LoopEntryBranch
->getParent()->IsNewDbgInfoFormat
) {
639 auto Range
= C
->cloneDebugInfoFrom(Inst
, NextDbgInst
);
640 RemapDPValueRange(M
, Range
, ValueMap
,
641 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
642 NextDbgInst
= std::nullopt
;
643 // Erase anything we've seen before.
644 for (DPValue
&DPV
: make_early_inc_range(Range
))
645 if (DbgIntrinsics
.count(makeHash(&DPV
)))
646 DPV
.eraseFromParent();
649 // Eagerly remap the operands of the instruction.
650 RemapInstruction(C
, ValueMap
,
651 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
653 // Avoid inserting the same intrinsic twice.
654 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(C
))
655 if (DbgIntrinsics
.count(makeHash(DII
))) {
656 C
->eraseFromParent();
660 // With the operands remapped, see if the instruction constant folds or is
661 // otherwise simplifyable. This commonly occurs because the entry from PHI
662 // nodes allows icmps and other instructions to fold.
663 Value
*V
= simplifyInstruction(C
, SQ
);
664 if (V
&& LI
->replacementPreservesLCSSAForm(C
, V
)) {
665 // If so, then delete the temporary instruction and stick the folded value
667 InsertNewValueIntoMap(ValueMap
, Inst
, V
);
668 if (!C
->mayHaveSideEffects()) {
669 C
->eraseFromParent();
673 InsertNewValueIntoMap(ValueMap
, Inst
, C
);
676 // Otherwise, stick the new instruction into the new block!
677 C
->setName(Inst
->getName());
679 if (auto *II
= dyn_cast
<AssumeInst
>(C
))
680 AC
->registerAssumption(II
);
681 // MemorySSA cares whether the cloned instruction was inserted or not, and
682 // not whether it can be remapped to a simplified value.
684 InsertNewValueIntoMap(ValueMapMSSA
, Inst
, C
);
688 if (!NoAliasDeclInstructions
.empty()) {
689 // There are noalias scope declarations:
691 // Original: OrigPre { OrigHeader NewHeader ... Latch }
692 // after: (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader }
694 // with D: llvm.experimental.noalias.scope.decl,
695 // U: !noalias or !alias.scope depending on D
696 // ... { D U1 U2 } can transform into:
697 // (0) : ... { D U1 U2 } // no relevant rotation for this part
698 // (1) : ... D' { U1 U2 D } // D is part of OrigHeader
699 // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader
701 // We now want to transform:
702 // (1) -> : ... D' { D U1 U2 D'' }
703 // (2) -> : ... D' U1' { D U2 D'' U1'' }
704 // D: original llvm.experimental.noalias.scope.decl
705 // D', U1': duplicate with replaced scopes
706 // D'', U1'': different duplicate with replaced scopes
707 // This ensures a safe fallback to 'may_alias' introduced by the rotate,
708 // as U1'' and U1' scopes will not be compatible wrt to the local restrict
710 // Clone the llvm.experimental.noalias.decl again for the NewHeader.
711 BasicBlock::iterator NewHeaderInsertionPoint
=
712 NewHeader
->getFirstNonPHIIt();
713 for (NoAliasScopeDeclInst
*NAD
: NoAliasDeclInstructions
) {
714 LLVM_DEBUG(dbgs() << " Cloning llvm.experimental.noalias.scope.decl:"
716 Instruction
*NewNAD
= NAD
->clone();
717 NewNAD
->insertBefore(*NewHeader
, NewHeaderInsertionPoint
);
720 // Scopes must now be duplicated, once for OrigHeader and once for
723 auto &Context
= NewHeader
->getContext();
725 SmallVector
<MDNode
*, 8> NoAliasDeclScopes
;
726 for (NoAliasScopeDeclInst
*NAD
: NoAliasDeclInstructions
)
727 NoAliasDeclScopes
.push_back(NAD
->getScopeList());
729 LLVM_DEBUG(dbgs() << " Updating OrigHeader scopes\n");
730 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes
, {OrigHeader
}, Context
,
732 LLVM_DEBUG(OrigHeader
->dump());
734 // Keep the compile time impact low by only adapting the inserted block
735 // of instructions in the OrigPreHeader. This might result in slightly
736 // more aliasing between these instructions and those that were already
737 // present, but it will be much faster when the original PreHeader is
739 LLVM_DEBUG(dbgs() << " Updating part of OrigPreheader scopes\n");
741 cast
<Instruction
>(ValueMap
[*NoAliasDeclInstructions
.begin()]);
742 auto *LastInst
= &OrigPreheader
->back();
743 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes
, FirstDecl
, LastInst
,
745 LLVM_DEBUG(OrigPreheader
->dump());
747 LLVM_DEBUG(dbgs() << " Updated NewHeader:\n");
748 LLVM_DEBUG(NewHeader
->dump());
752 // Along with all the other instructions, we just cloned OrigHeader's
753 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
754 // successors by duplicating their incoming values for OrigHeader.
755 for (BasicBlock
*SuccBB
: successors(OrigHeader
))
756 for (BasicBlock::iterator BI
= SuccBB
->begin();
757 PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
758 PN
->addIncoming(PN
->getIncomingValueForBlock(OrigHeader
), OrigPreheader
);
760 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
761 // OrigPreHeader's old terminator (the original branch into the loop), and
762 // remove the corresponding incoming values from the PHI nodes in OrigHeader.
763 LoopEntryBranch
->eraseFromParent();
764 OrigPreheader
->flushTerminatorDbgValues();
766 // Update MemorySSA before the rewrite call below changes the 1:1
767 // instruction:cloned_instruction_or_value mapping.
769 InsertNewValueIntoMap(ValueMapMSSA
, OrigHeader
, OrigPreheader
);
770 MSSAU
->updateForClonedBlockIntoPred(OrigHeader
, OrigPreheader
,
774 SmallVector
<PHINode
*, 2> InsertedPHIs
;
775 // If there were any uses of instructions in the duplicated block outside the
776 // loop, update them, inserting PHI nodes as required
777 RewriteUsesOfClonedInstructions(OrigHeader
, OrigPreheader
, ValueMap
, SE
,
780 // Attach dbg.value intrinsics to the new phis if that phi uses a value that
781 // previously had debug metadata attached. This keeps the debug info
782 // up-to-date in the loop body.
783 if (!InsertedPHIs
.empty())
784 insertDebugValuesForPHIs(OrigHeader
, InsertedPHIs
);
786 // NewHeader is now the header of the loop.
787 L
->moveToHeader(NewHeader
);
788 assert(L
->getHeader() == NewHeader
&& "Latch block is our new header");
790 // Inform DT about changes to the CFG.
792 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
793 // the DT about the removed edge to the OrigHeader (that got removed).
794 SmallVector
<DominatorTree::UpdateType
, 3> Updates
;
795 Updates
.push_back({DominatorTree::Insert
, OrigPreheader
, Exit
});
796 Updates
.push_back({DominatorTree::Insert
, OrigPreheader
, NewHeader
});
797 Updates
.push_back({DominatorTree::Delete
, OrigPreheader
, OrigHeader
});
800 MSSAU
->applyUpdates(Updates
, *DT
, /*UpdateDT=*/true);
802 MSSAU
->getMemorySSA()->verifyMemorySSA();
804 DT
->applyUpdates(Updates
);
808 // At this point, we've finished our major CFG changes. As part of cloning
809 // the loop into the preheader we've simplified instructions and the
810 // duplicated conditional branch may now be branching on a constant. If it is
811 // branching on a constant and if that constant means that we enter the loop,
812 // then we fold away the cond branch to an uncond branch. This simplifies the
813 // loop in cases important for nested loops, and it also means we don't have
814 // to split as many edges.
815 BranchInst
*PHBI
= cast
<BranchInst
>(OrigPreheader
->getTerminator());
816 assert(PHBI
->isConditional() && "Should be clone of BI condbr!");
817 const Value
*Cond
= PHBI
->getCondition();
818 const bool HasConditionalPreHeader
=
819 !isa
<ConstantInt
>(Cond
) ||
820 PHBI
->getSuccessor(cast
<ConstantInt
>(Cond
)->isZero()) != NewHeader
;
822 updateBranchWeights(*PHBI
, *BI
, HasConditionalPreHeader
, BISuccsSwapped
);
824 if (HasConditionalPreHeader
) {
825 // The conditional branch can't be folded, handle the general case.
826 // Split edges as necessary to preserve LoopSimplify form.
828 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
829 // thus is not a preheader anymore.
830 // Split the edge to form a real preheader.
831 BasicBlock
*NewPH
= SplitCriticalEdge(
832 OrigPreheader
, NewHeader
,
833 CriticalEdgeSplittingOptions(DT
, LI
, MSSAU
).setPreserveLCSSA());
834 NewPH
->setName(NewHeader
->getName() + ".lr.ph");
836 // Preserve canonical loop form, which means that 'Exit' should have only
837 // one predecessor. Note that Exit could be an exit block for multiple
838 // nested loops, causing both of the edges to now be critical and need to
840 SmallVector
<BasicBlock
*, 4> ExitPreds(predecessors(Exit
));
841 bool SplitLatchEdge
= false;
842 for (BasicBlock
*ExitPred
: ExitPreds
) {
843 // We only need to split loop exit edges.
844 Loop
*PredLoop
= LI
->getLoopFor(ExitPred
);
845 if (!PredLoop
|| PredLoop
->contains(Exit
) ||
846 isa
<IndirectBrInst
>(ExitPred
->getTerminator()))
848 SplitLatchEdge
|= L
->getLoopLatch() == ExitPred
;
849 BasicBlock
*ExitSplit
= SplitCriticalEdge(
851 CriticalEdgeSplittingOptions(DT
, LI
, MSSAU
).setPreserveLCSSA());
852 ExitSplit
->moveBefore(Exit
);
854 assert(SplitLatchEdge
&&
855 "Despite splitting all preds, failed to split latch exit?");
856 (void)SplitLatchEdge
;
858 // We can fold the conditional branch in the preheader, this makes things
859 // simpler. The first step is to remove the extra edge to the Exit block.
860 Exit
->removePredecessor(OrigPreheader
, true /*preserve LCSSA*/);
861 BranchInst
*NewBI
= BranchInst::Create(NewHeader
, PHBI
);
862 NewBI
->setDebugLoc(PHBI
->getDebugLoc());
863 PHBI
->eraseFromParent();
865 // With our CFG finalized, update DomTree if it is available.
866 if (DT
) DT
->deleteEdge(OrigPreheader
, Exit
);
868 // Update MSSA too, if available.
870 MSSAU
->removeEdge(OrigPreheader
, Exit
);
873 assert(L
->getLoopPreheader() && "Invalid loop preheader after loop rotation");
874 assert(L
->getLoopLatch() && "Invalid loop latch after loop rotation");
876 if (MSSAU
&& VerifyMemorySSA
)
877 MSSAU
->getMemorySSA()->verifyMemorySSA();
879 // Now that the CFG and DomTree are in a consistent state again, try to merge
880 // the OrigHeader block into OrigLatch. This will succeed if they are
881 // connected by an unconditional branch. This is just a cleanup so the
882 // emitted code isn't too gross in this common case.
883 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
884 BasicBlock
*PredBB
= OrigHeader
->getUniquePredecessor();
885 bool DidMerge
= MergeBlockIntoPredecessor(OrigHeader
, &DTU
, LI
, MSSAU
);
887 RemoveRedundantDbgInstrs(PredBB
);
889 if (MSSAU
&& VerifyMemorySSA
)
890 MSSAU
->getMemorySSA()->verifyMemorySSA();
892 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L
->dump());
897 SimplifiedLatch
= false;
899 // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
900 // Deoptimizing latch exit is not a generally typical case, so we just loop over.
901 // TODO: if it becomes a performance bottleneck extend rotation algorithm
902 // to handle multiple rotations in one go.
903 } while (MultiRotate
&& canRotateDeoptimizingLatchExit(L
));
909 /// Determine whether the instructions in this range may be safely and cheaply
910 /// speculated. This is not an important enough situation to develop complex
911 /// heuristics. We handle a single arithmetic instruction along with any type
913 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin
,
914 BasicBlock::iterator End
, Loop
*L
) {
915 bool seenIncrement
= false;
916 bool MultiExitLoop
= false;
918 if (!L
->getExitingBlock())
919 MultiExitLoop
= true;
921 for (BasicBlock::iterator I
= Begin
; I
!= End
; ++I
) {
923 if (!isSafeToSpeculativelyExecute(&*I
))
926 if (isa
<DbgInfoIntrinsic
>(I
))
929 switch (I
->getOpcode()) {
932 case Instruction::GetElementPtr
:
933 // GEPs are cheap if all indices are constant.
934 if (!cast
<GEPOperator
>(I
)->hasAllConstantIndices())
936 // fall-thru to increment case
938 case Instruction::Add
:
939 case Instruction::Sub
:
940 case Instruction::And
:
941 case Instruction::Or
:
942 case Instruction::Xor
:
943 case Instruction::Shl
:
944 case Instruction::LShr
:
945 case Instruction::AShr
: {
947 !isa
<Constant
>(I
->getOperand(0))
949 : !isa
<Constant
>(I
->getOperand(1)) ? I
->getOperand(1) : nullptr;
953 // If increment operand is used outside of the loop, this speculation
954 // could cause extra live range interference.
956 for (User
*UseI
: IVOpnd
->users()) {
957 auto *UserInst
= cast
<Instruction
>(UseI
);
958 if (!L
->contains(UserInst
))
965 seenIncrement
= true;
968 case Instruction::Trunc
:
969 case Instruction::ZExt
:
970 case Instruction::SExt
:
971 // ignore type conversions
978 /// Fold the loop tail into the loop exit by speculating the loop tail
979 /// instructions. Typically, this is a single post-increment. In the case of a
980 /// simple 2-block loop, hoisting the increment can be much better than
981 /// duplicating the entire loop header. In the case of loops with early exits,
982 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
983 /// canonical form so downstream passes can handle it.
985 /// I don't believe this invalidates SCEV.
986 bool LoopRotate::simplifyLoopLatch(Loop
*L
) {
987 BasicBlock
*Latch
= L
->getLoopLatch();
988 if (!Latch
|| Latch
->hasAddressTaken())
991 BranchInst
*Jmp
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
992 if (!Jmp
|| !Jmp
->isUnconditional())
995 BasicBlock
*LastExit
= Latch
->getSinglePredecessor();
996 if (!LastExit
|| !L
->isLoopExiting(LastExit
))
999 BranchInst
*BI
= dyn_cast
<BranchInst
>(LastExit
->getTerminator());
1003 if (!shouldSpeculateInstrs(Latch
->begin(), Jmp
->getIterator(), L
))
1006 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch
->getName() << " into "
1007 << LastExit
->getName() << "\n");
1009 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
1010 MergeBlockIntoPredecessor(Latch
, &DTU
, LI
, MSSAU
, nullptr,
1011 /*PredecessorWithTwoSuccessors=*/true);
1014 // Merging blocks may remove blocks reference in the block disposition cache. Clear the cache.
1015 SE
->forgetBlockAndLoopDispositions();
1018 if (MSSAU
&& VerifyMemorySSA
)
1019 MSSAU
->getMemorySSA()->verifyMemorySSA();
1024 /// Rotate \c L, and return true if any modification was made.
1025 bool LoopRotate::processLoop(Loop
*L
) {
1026 // Save the loop metadata.
1027 MDNode
*LoopMD
= L
->getLoopID();
1029 bool SimplifiedLatch
= false;
1031 // Simplify the loop latch before attempting to rotate the header
1032 // upward. Rotation may not be needed if the loop tail can be folded into the
1035 SimplifiedLatch
= simplifyLoopLatch(L
);
1037 bool MadeChange
= rotateLoop(L
, SimplifiedLatch
);
1038 assert((!MadeChange
|| L
->isLoopExiting(L
->getLoopLatch())) &&
1039 "Loop latch should be exiting after loop-rotate.");
1041 // Restore the loop metadata.
1042 // NB! We presume LoopRotation DOESN'T ADD its own metadata.
1043 if ((MadeChange
|| SimplifiedLatch
) && LoopMD
)
1044 L
->setLoopID(LoopMD
);
1046 return MadeChange
|| SimplifiedLatch
;
1050 /// The utility to convert a loop into a loop with bottom test.
1051 bool llvm::LoopRotation(Loop
*L
, LoopInfo
*LI
, const TargetTransformInfo
*TTI
,
1052 AssumptionCache
*AC
, DominatorTree
*DT
,
1053 ScalarEvolution
*SE
, MemorySSAUpdater
*MSSAU
,
1054 const SimplifyQuery
&SQ
, bool RotationOnly
= true,
1055 unsigned Threshold
= unsigned(-1),
1056 bool IsUtilMode
= true, bool PrepareForLTO
) {
1057 LoopRotate
LR(Threshold
, LI
, TTI
, AC
, DT
, SE
, MSSAU
, SQ
, RotationOnly
,
1058 IsUtilMode
, PrepareForLTO
);
1059 return LR
.processLoop(L
);