1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SSAUpdater class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/SSAUpdater.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/TinyPtrVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DebugLoc.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Use.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
38 #define DEBUG_TYPE "ssaupdater"
40 using AvailableValsTy
= DenseMap
<BasicBlock
*, Value
*>;
42 static AvailableValsTy
&getAvailableVals(void *AV
) {
43 return *static_cast<AvailableValsTy
*>(AV
);
46 SSAUpdater::SSAUpdater(SmallVectorImpl
<PHINode
*> *NewPHI
)
47 : InsertedPHIs(NewPHI
) {}
49 SSAUpdater::~SSAUpdater() {
50 delete static_cast<AvailableValsTy
*>(AV
);
53 void SSAUpdater::Initialize(Type
*Ty
, StringRef Name
) {
55 AV
= new AvailableValsTy();
57 getAvailableVals(AV
).clear();
59 ProtoName
= std::string(Name
);
62 bool SSAUpdater::HasValueForBlock(BasicBlock
*BB
) const {
63 return getAvailableVals(AV
).count(BB
);
66 Value
*SSAUpdater::FindValueForBlock(BasicBlock
*BB
) const {
67 return getAvailableVals(AV
).lookup(BB
);
70 void SSAUpdater::AddAvailableValue(BasicBlock
*BB
, Value
*V
) {
71 assert(ProtoType
&& "Need to initialize SSAUpdater");
72 assert(ProtoType
== V
->getType() &&
73 "All rewritten values must have the same type");
74 getAvailableVals(AV
)[BB
] = V
;
77 static bool IsEquivalentPHI(PHINode
*PHI
,
78 SmallDenseMap
<BasicBlock
*, Value
*, 8> &ValueMapping
) {
79 unsigned PHINumValues
= PHI
->getNumIncomingValues();
80 if (PHINumValues
!= ValueMapping
.size())
83 // Scan the phi to see if it matches.
84 for (unsigned i
= 0, e
= PHINumValues
; i
!= e
; ++i
)
85 if (ValueMapping
[PHI
->getIncomingBlock(i
)] !=
86 PHI
->getIncomingValue(i
)) {
93 Value
*SSAUpdater::GetValueAtEndOfBlock(BasicBlock
*BB
) {
94 Value
*Res
= GetValueAtEndOfBlockInternal(BB
);
98 Value
*SSAUpdater::GetValueInMiddleOfBlock(BasicBlock
*BB
) {
99 // If there is no definition of the renamed variable in this block, just use
100 // GetValueAtEndOfBlock to do our work.
101 if (!HasValueForBlock(BB
))
102 return GetValueAtEndOfBlock(BB
);
104 // Otherwise, we have the hard case. Get the live-in values for each
106 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> PredValues
;
107 Value
*SingularValue
= nullptr;
109 // We can get our predecessor info by walking the pred_iterator list, but it
110 // is relatively slow. If we already have PHI nodes in this block, walk one
111 // of them to get the predecessor list instead.
112 if (PHINode
*SomePhi
= dyn_cast
<PHINode
>(BB
->begin())) {
113 for (unsigned i
= 0, e
= SomePhi
->getNumIncomingValues(); i
!= e
; ++i
) {
114 BasicBlock
*PredBB
= SomePhi
->getIncomingBlock(i
);
115 Value
*PredVal
= GetValueAtEndOfBlock(PredBB
);
116 PredValues
.push_back(std::make_pair(PredBB
, PredVal
));
118 // Compute SingularValue.
120 SingularValue
= PredVal
;
121 else if (PredVal
!= SingularValue
)
122 SingularValue
= nullptr;
125 bool isFirstPred
= true;
126 for (BasicBlock
*PredBB
: predecessors(BB
)) {
127 Value
*PredVal
= GetValueAtEndOfBlock(PredBB
);
128 PredValues
.push_back(std::make_pair(PredBB
, PredVal
));
130 // Compute SingularValue.
132 SingularValue
= PredVal
;
134 } else if (PredVal
!= SingularValue
)
135 SingularValue
= nullptr;
139 // If there are no predecessors, just return undef.
140 if (PredValues
.empty())
141 return UndefValue::get(ProtoType
);
143 // Otherwise, if all the merged values are the same, just use it.
145 return SingularValue
;
147 // Otherwise, we do need a PHI: check to see if we already have one available
148 // in this block that produces the right value.
149 if (isa
<PHINode
>(BB
->begin())) {
150 SmallDenseMap
<BasicBlock
*, Value
*, 8> ValueMapping(PredValues
.begin(),
152 for (PHINode
&SomePHI
: BB
->phis()) {
153 if (IsEquivalentPHI(&SomePHI
, ValueMapping
))
158 // Ok, we have no way out, insert a new one now.
159 PHINode
*InsertedPHI
=
160 PHINode::Create(ProtoType
, PredValues
.size(), ProtoName
);
161 InsertedPHI
->insertBefore(BB
->begin());
163 // Fill in all the predecessors of the PHI.
164 for (const auto &PredValue
: PredValues
)
165 InsertedPHI
->addIncoming(PredValue
.second
, PredValue
.first
);
167 // See if the PHI node can be merged to a single value. This can happen in
168 // loop cases when we get a PHI of itself and one other value.
170 simplifyInstruction(InsertedPHI
, BB
->getModule()->getDataLayout())) {
171 InsertedPHI
->eraseFromParent();
175 // Set the DebugLoc of the inserted PHI, if available.
177 if (const Instruction
*I
= BB
->getFirstNonPHI())
178 DL
= I
->getDebugLoc();
179 InsertedPHI
->setDebugLoc(DL
);
181 // If the client wants to know about all new instructions, tell it.
182 if (InsertedPHIs
) InsertedPHIs
->push_back(InsertedPHI
);
184 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI
<< "\n");
188 void SSAUpdater::RewriteUse(Use
&U
) {
189 Instruction
*User
= cast
<Instruction
>(U
.getUser());
192 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
))
193 V
= GetValueAtEndOfBlock(UserPN
->getIncomingBlock(U
));
195 V
= GetValueInMiddleOfBlock(User
->getParent());
200 void SSAUpdater::UpdateDebugValues(Instruction
*I
) {
201 SmallVector
<DbgValueInst
*, 4> DbgValues
;
202 SmallVector
<DPValue
*, 4> DPValues
;
203 llvm::findDbgValues(DbgValues
, I
, &DPValues
);
204 for (auto &DbgValue
: DbgValues
) {
205 if (DbgValue
->getParent() == I
->getParent())
207 UpdateDebugValue(I
, DbgValue
);
209 for (auto &DPV
: DPValues
) {
210 if (DPV
->getParent() == I
->getParent())
212 UpdateDebugValue(I
, DPV
);
216 void SSAUpdater::UpdateDebugValues(Instruction
*I
,
217 SmallVectorImpl
<DbgValueInst
*> &DbgValues
) {
218 for (auto &DbgValue
: DbgValues
) {
219 UpdateDebugValue(I
, DbgValue
);
223 void SSAUpdater::UpdateDebugValues(Instruction
*I
,
224 SmallVectorImpl
<DPValue
*> &DPValues
) {
225 for (auto &DPV
: DPValues
) {
226 UpdateDebugValue(I
, DPV
);
230 void SSAUpdater::UpdateDebugValue(Instruction
*I
, DbgValueInst
*DbgValue
) {
231 BasicBlock
*UserBB
= DbgValue
->getParent();
232 if (HasValueForBlock(UserBB
)) {
233 Value
*NewVal
= GetValueAtEndOfBlock(UserBB
);
234 DbgValue
->replaceVariableLocationOp(I
, NewVal
);
236 DbgValue
->setKillLocation();
239 void SSAUpdater::UpdateDebugValue(Instruction
*I
, DPValue
*DPV
) {
240 BasicBlock
*UserBB
= DPV
->getParent();
241 if (HasValueForBlock(UserBB
)) {
242 Value
*NewVal
= GetValueAtEndOfBlock(UserBB
);
243 DPV
->replaceVariableLocationOp(I
, NewVal
);
245 DPV
->setKillLocation();
248 void SSAUpdater::RewriteUseAfterInsertions(Use
&U
) {
249 Instruction
*User
= cast
<Instruction
>(U
.getUser());
252 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
))
253 V
= GetValueAtEndOfBlock(UserPN
->getIncomingBlock(U
));
255 V
= GetValueAtEndOfBlock(User
->getParent());
263 class SSAUpdaterTraits
<SSAUpdater
> {
265 using BlkT
= BasicBlock
;
266 using ValT
= Value
*;
267 using PhiT
= PHINode
;
268 using BlkSucc_iterator
= succ_iterator
;
270 static BlkSucc_iterator
BlkSucc_begin(BlkT
*BB
) { return succ_begin(BB
); }
271 static BlkSucc_iterator
BlkSucc_end(BlkT
*BB
) { return succ_end(BB
); }
279 explicit PHI_iterator(PHINode
*P
) // begin iterator
281 PHI_iterator(PHINode
*P
, bool) // end iterator
282 : PHI(P
), idx(PHI
->getNumIncomingValues()) {}
284 PHI_iterator
&operator++() { ++idx
; return *this; }
285 bool operator==(const PHI_iterator
& x
) const { return idx
== x
.idx
; }
286 bool operator!=(const PHI_iterator
& x
) const { return !operator==(x
); }
288 Value
*getIncomingValue() { return PHI
->getIncomingValue(idx
); }
289 BasicBlock
*getIncomingBlock() { return PHI
->getIncomingBlock(idx
); }
292 static PHI_iterator
PHI_begin(PhiT
*PHI
) { return PHI_iterator(PHI
); }
293 static PHI_iterator
PHI_end(PhiT
*PHI
) {
294 return PHI_iterator(PHI
, true);
297 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
298 /// vector, set Info->NumPreds, and allocate space in Info->Preds.
299 static void FindPredecessorBlocks(BasicBlock
*BB
,
300 SmallVectorImpl
<BasicBlock
*> *Preds
) {
301 // We can get our predecessor info by walking the pred_iterator list,
302 // but it is relatively slow. If we already have PHI nodes in this
303 // block, walk one of them to get the predecessor list instead.
304 if (PHINode
*SomePhi
= dyn_cast
<PHINode
>(BB
->begin()))
305 append_range(*Preds
, SomePhi
->blocks());
307 append_range(*Preds
, predecessors(BB
));
310 /// GetUndefVal - Get an undefined value of the same type as the value
312 static Value
*GetUndefVal(BasicBlock
*BB
, SSAUpdater
*Updater
) {
313 return UndefValue::get(Updater
->ProtoType
);
316 /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
317 /// Reserve space for the operands but do not fill them in yet.
318 static Value
*CreateEmptyPHI(BasicBlock
*BB
, unsigned NumPreds
,
319 SSAUpdater
*Updater
) {
321 PHINode::Create(Updater
->ProtoType
, NumPreds
, Updater
->ProtoName
);
322 PHI
->insertBefore(BB
->begin());
326 /// AddPHIOperand - Add the specified value as an operand of the PHI for
327 /// the specified predecessor block.
328 static void AddPHIOperand(PHINode
*PHI
, Value
*Val
, BasicBlock
*Pred
) {
329 PHI
->addIncoming(Val
, Pred
);
332 /// ValueIsPHI - Check if a value is a PHI.
333 static PHINode
*ValueIsPHI(Value
*Val
, SSAUpdater
*Updater
) {
334 return dyn_cast
<PHINode
>(Val
);
337 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
338 /// operands, i.e., it was just added.
339 static PHINode
*ValueIsNewPHI(Value
*Val
, SSAUpdater
*Updater
) {
340 PHINode
*PHI
= ValueIsPHI(Val
, Updater
);
341 if (PHI
&& PHI
->getNumIncomingValues() == 0)
346 /// GetPHIValue - For the specified PHI instruction, return the value
348 static Value
*GetPHIValue(PHINode
*PHI
) {
353 } // end namespace llvm
355 /// Check to see if AvailableVals has an entry for the specified BB and if so,
356 /// return it. If not, construct SSA form by first calculating the required
357 /// placement of PHIs and then inserting new PHIs where needed.
358 Value
*SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock
*BB
) {
359 AvailableValsTy
&AvailableVals
= getAvailableVals(AV
);
360 if (Value
*V
= AvailableVals
[BB
])
363 SSAUpdaterImpl
<SSAUpdater
> Impl(this, &AvailableVals
, InsertedPHIs
);
364 return Impl
.GetValue(BB
);
367 //===----------------------------------------------------------------------===//
368 // LoadAndStorePromoter Implementation
369 //===----------------------------------------------------------------------===//
371 LoadAndStorePromoter::
372 LoadAndStorePromoter(ArrayRef
<const Instruction
*> Insts
,
373 SSAUpdater
&S
, StringRef BaseName
) : SSA(S
) {
374 if (Insts
.empty()) return;
376 const Value
*SomeVal
;
377 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(Insts
[0]))
380 SomeVal
= cast
<StoreInst
>(Insts
[0])->getOperand(0);
382 if (BaseName
.empty())
383 BaseName
= SomeVal
->getName();
384 SSA
.Initialize(SomeVal
->getType(), BaseName
);
387 void LoadAndStorePromoter::run(const SmallVectorImpl
<Instruction
*> &Insts
) {
388 // First step: bucket up uses of the alloca by the block they occur in.
389 // This is important because we have to handle multiple defs/uses in a block
390 // ourselves: SSAUpdater is purely for cross-block references.
391 DenseMap
<BasicBlock
*, TinyPtrVector
<Instruction
*>> UsesByBlock
;
393 for (Instruction
*User
: Insts
)
394 UsesByBlock
[User
->getParent()].push_back(User
);
396 // Okay, now we can iterate over all the blocks in the function with uses,
397 // processing them. Keep track of which loads are loading a live-in value.
398 // Walk the uses in the use-list order to be determinstic.
399 SmallVector
<LoadInst
*, 32> LiveInLoads
;
400 DenseMap
<Value
*, Value
*> ReplacedLoads
;
402 for (Instruction
*User
: Insts
) {
403 BasicBlock
*BB
= User
->getParent();
404 TinyPtrVector
<Instruction
*> &BlockUses
= UsesByBlock
[BB
];
406 // If this block has already been processed, ignore this repeat use.
407 if (BlockUses
.empty()) continue;
409 // Okay, this is the first use in the block. If this block just has a
410 // single user in it, we can rewrite it trivially.
411 if (BlockUses
.size() == 1) {
412 // If it is a store, it is a trivial def of the value in the block.
413 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
415 SSA
.AddAvailableValue(BB
, SI
->getOperand(0));
417 // Otherwise it is a load, queue it to rewrite as a live-in load.
418 LiveInLoads
.push_back(cast
<LoadInst
>(User
));
423 // Otherwise, check to see if this block is all loads.
424 bool HasStore
= false;
425 for (Instruction
*I
: BlockUses
) {
426 if (isa
<StoreInst
>(I
)) {
432 // If so, we can queue them all as live in loads. We don't have an
433 // efficient way to tell which on is first in the block and don't want to
434 // scan large blocks, so just add all loads as live ins.
436 for (Instruction
*I
: BlockUses
)
437 LiveInLoads
.push_back(cast
<LoadInst
>(I
));
442 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
443 // Since SSAUpdater is purely for cross-block values, we need to determine
444 // the order of these instructions in the block. If the first use in the
445 // block is a load, then it uses the live in value. The last store defines
446 // the live out value. We handle this by doing a linear scan of the block.
447 Value
*StoredValue
= nullptr;
448 for (Instruction
&I
: *BB
) {
449 if (LoadInst
*L
= dyn_cast
<LoadInst
>(&I
)) {
450 // If this is a load from an unrelated pointer, ignore it.
451 if (!isInstInList(L
, Insts
)) continue;
453 // If we haven't seen a store yet, this is a live in use, otherwise
454 // use the stored value.
456 replaceLoadWithValue(L
, StoredValue
);
457 L
->replaceAllUsesWith(StoredValue
);
458 ReplacedLoads
[L
] = StoredValue
;
460 LiveInLoads
.push_back(L
);
465 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
)) {
466 // If this is a store to an unrelated pointer, ignore it.
467 if (!isInstInList(SI
, Insts
)) continue;
470 // Remember that this is the active value in the block.
471 StoredValue
= SI
->getOperand(0);
475 // The last stored value that happened is the live-out for the block.
476 assert(StoredValue
&& "Already checked that there is a store in block");
477 SSA
.AddAvailableValue(BB
, StoredValue
);
481 // Okay, now we rewrite all loads that use live-in values in the loop,
482 // inserting PHI nodes as necessary.
483 for (LoadInst
*ALoad
: LiveInLoads
) {
484 Value
*NewVal
= SSA
.GetValueInMiddleOfBlock(ALoad
->getParent());
485 replaceLoadWithValue(ALoad
, NewVal
);
487 // Avoid assertions in unreachable code.
488 if (NewVal
== ALoad
) NewVal
= PoisonValue::get(NewVal
->getType());
489 ALoad
->replaceAllUsesWith(NewVal
);
490 ReplacedLoads
[ALoad
] = NewVal
;
493 // Allow the client to do stuff before we start nuking things.
494 doExtraRewritesBeforeFinalDeletion();
496 // Now that everything is rewritten, delete the old instructions from the
497 // function. They should all be dead now.
498 for (Instruction
*User
: Insts
) {
499 if (!shouldDelete(User
))
502 // If this is a load that still has uses, then the load must have been added
503 // as a live value in the SSAUpdate data structure for a block (e.g. because
504 // the loaded value was stored later). In this case, we need to recursively
505 // propagate the updates until we get to the real value.
506 if (!User
->use_empty()) {
507 Value
*NewVal
= ReplacedLoads
[User
];
508 assert(NewVal
&& "not a replaced load?");
510 // Propagate down to the ultimate replacee. The intermediately loads
511 // could theoretically already have been deleted, so we don't want to
512 // dereference the Value*'s.
513 DenseMap
<Value
*, Value
*>::iterator RLI
= ReplacedLoads
.find(NewVal
);
514 while (RLI
!= ReplacedLoads
.end()) {
515 NewVal
= RLI
->second
;
516 RLI
= ReplacedLoads
.find(NewVal
);
519 replaceLoadWithValue(cast
<LoadInst
>(User
), NewVal
);
520 User
->replaceAllUsesWith(NewVal
);
523 instructionDeleted(User
);
524 User
->eraseFromParent();
529 LoadAndStorePromoter::isInstInList(Instruction
*I
,
530 const SmallVectorImpl
<Instruction
*> &Insts
)
532 return is_contained(Insts
, I
);