[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Utils / SimplifyCFG.cpp
blob13eae549b2ce41be8dbf12b4e085c7c200053a48
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/Sequence.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/MemorySSA.h"
32 #include "llvm/Analysis/MemorySSAUpdater.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/MDBuilder.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/NoFolder.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/PatternMatch.h"
59 #include "llvm/IR/ProfDataUtils.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/ValueHandle.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/KnownBits.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ValueMapper.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <climits>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <optional>
84 #include <set>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
89 using namespace llvm;
90 using namespace PatternMatch;
92 #define DEBUG_TYPE "simplifycfg"
94 cl::opt<bool> llvm::RequireAndPreserveDomTree(
95 "simplifycfg-require-and-preserve-domtree", cl::Hidden,
97 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
98 "into preserving DomTree,"));
100 // Chosen as 2 so as to be cheap, but still to have enough power to fold
101 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
102 // To catch this, we need to fold a compare and a select, hence '2' being the
103 // minimum reasonable default.
104 static cl::opt<unsigned> PHINodeFoldingThreshold(
105 "phi-node-folding-threshold", cl::Hidden, cl::init(2),
106 cl::desc(
107 "Control the amount of phi node folding to perform (default = 2)"));
109 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
110 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
111 cl::desc("Control the maximal total instruction cost that we are willing "
112 "to speculatively execute to fold a 2-entry PHI node into a "
113 "select (default = 4)"));
115 static cl::opt<bool>
116 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
117 cl::desc("Hoist common instructions up to the parent block"));
119 static cl::opt<unsigned>
120 HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden,
121 cl::init(20),
122 cl::desc("Allow reordering across at most this many "
123 "instructions when hoisting"));
125 static cl::opt<bool>
126 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
127 cl::desc("Sink common instructions down to the end block"));
129 static cl::opt<bool> HoistCondStores(
130 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
131 cl::desc("Hoist conditional stores if an unconditional store precedes"));
133 static cl::opt<bool> MergeCondStores(
134 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
135 cl::desc("Hoist conditional stores even if an unconditional store does not "
136 "precede - hoist multiple conditional stores into a single "
137 "predicated store"));
139 static cl::opt<bool> MergeCondStoresAggressively(
140 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
141 cl::desc("When merging conditional stores, do so even if the resultant "
142 "basic blocks are unlikely to be if-converted as a result"));
144 static cl::opt<bool> SpeculateOneExpensiveInst(
145 "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
146 cl::desc("Allow exactly one expensive instruction to be speculatively "
147 "executed"));
149 static cl::opt<unsigned> MaxSpeculationDepth(
150 "max-speculation-depth", cl::Hidden, cl::init(10),
151 cl::desc("Limit maximum recursion depth when calculating costs of "
152 "speculatively executed instructions"));
154 static cl::opt<int>
155 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
156 cl::init(10),
157 cl::desc("Max size of a block which is still considered "
158 "small enough to thread through"));
160 // Two is chosen to allow one negation and a logical combine.
161 static cl::opt<unsigned>
162 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
163 cl::init(2),
164 cl::desc("Maximum cost of combining conditions when "
165 "folding branches"));
167 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
168 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
169 cl::init(2),
170 cl::desc("Multiplier to apply to threshold when determining whether or not "
171 "to fold branch to common destination when vector operations are "
172 "present"));
174 static cl::opt<bool> EnableMergeCompatibleInvokes(
175 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
176 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
178 static cl::opt<unsigned> MaxSwitchCasesPerResult(
179 "max-switch-cases-per-result", cl::Hidden, cl::init(16),
180 cl::desc("Limit cases to analyze when converting a switch to select"));
182 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
183 STATISTIC(NumLinearMaps,
184 "Number of switch instructions turned into linear mapping");
185 STATISTIC(NumLookupTables,
186 "Number of switch instructions turned into lookup tables");
187 STATISTIC(
188 NumLookupTablesHoles,
189 "Number of switch instructions turned into lookup tables (holes checked)");
190 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
191 STATISTIC(NumFoldValueComparisonIntoPredecessors,
192 "Number of value comparisons folded into predecessor basic blocks");
193 STATISTIC(NumFoldBranchToCommonDest,
194 "Number of branches folded into predecessor basic block");
195 STATISTIC(
196 NumHoistCommonCode,
197 "Number of common instruction 'blocks' hoisted up to the begin block");
198 STATISTIC(NumHoistCommonInstrs,
199 "Number of common instructions hoisted up to the begin block");
200 STATISTIC(NumSinkCommonCode,
201 "Number of common instruction 'blocks' sunk down to the end block");
202 STATISTIC(NumSinkCommonInstrs,
203 "Number of common instructions sunk down to the end block");
204 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
205 STATISTIC(NumInvokes,
206 "Number of invokes with empty resume blocks simplified into calls");
207 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
208 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
210 namespace {
212 // The first field contains the value that the switch produces when a certain
213 // case group is selected, and the second field is a vector containing the
214 // cases composing the case group.
215 using SwitchCaseResultVectorTy =
216 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
218 // The first field contains the phi node that generates a result of the switch
219 // and the second field contains the value generated for a certain case in the
220 // switch for that PHI.
221 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
223 /// ValueEqualityComparisonCase - Represents a case of a switch.
224 struct ValueEqualityComparisonCase {
225 ConstantInt *Value;
226 BasicBlock *Dest;
228 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
229 : Value(Value), Dest(Dest) {}
231 bool operator<(ValueEqualityComparisonCase RHS) const {
232 // Comparing pointers is ok as we only rely on the order for uniquing.
233 return Value < RHS.Value;
236 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
239 class SimplifyCFGOpt {
240 const TargetTransformInfo &TTI;
241 DomTreeUpdater *DTU;
242 const DataLayout &DL;
243 ArrayRef<WeakVH> LoopHeaders;
244 const SimplifyCFGOptions &Options;
245 bool Resimplify;
247 Value *isValueEqualityComparison(Instruction *TI);
248 BasicBlock *GetValueEqualityComparisonCases(
249 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
250 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
251 BasicBlock *Pred,
252 IRBuilder<> &Builder);
253 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
254 Instruction *PTI,
255 IRBuilder<> &Builder);
256 bool FoldValueComparisonIntoPredecessors(Instruction *TI,
257 IRBuilder<> &Builder);
259 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
260 bool simplifySingleResume(ResumeInst *RI);
261 bool simplifyCommonResume(ResumeInst *RI);
262 bool simplifyCleanupReturn(CleanupReturnInst *RI);
263 bool simplifyUnreachable(UnreachableInst *UI);
264 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
265 bool simplifyIndirectBr(IndirectBrInst *IBI);
266 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
267 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
268 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
270 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
271 IRBuilder<> &Builder);
273 bool hoistCommonCodeFromSuccessors(BasicBlock *BB, bool EqTermsOnly);
274 bool hoistSuccIdenticalTerminatorToSwitchOrIf(
275 Instruction *TI, Instruction *I1,
276 SmallVectorImpl<Instruction *> &OtherSuccTIs);
277 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB);
278 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
279 BasicBlock *TrueBB, BasicBlock *FalseBB,
280 uint32_t TrueWeight, uint32_t FalseWeight);
281 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
282 const DataLayout &DL);
283 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
284 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
285 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
287 public:
288 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
289 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
290 const SimplifyCFGOptions &Opts)
291 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
292 assert((!DTU || !DTU->hasPostDomTree()) &&
293 "SimplifyCFG is not yet capable of maintaining validity of a "
294 "PostDomTree, so don't ask for it.");
297 bool simplifyOnce(BasicBlock *BB);
298 bool run(BasicBlock *BB);
300 // Helper to set Resimplify and return change indication.
301 bool requestResimplify() {
302 Resimplify = true;
303 return true;
307 } // end anonymous namespace
309 /// Return true if all the PHI nodes in the basic block \p BB
310 /// receive compatible (identical) incoming values when coming from
311 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
313 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
314 /// is provided, and *both* of the values are present in the set,
315 /// then they are considered equal.
316 static bool IncomingValuesAreCompatible(
317 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
318 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
319 assert(IncomingBlocks.size() == 2 &&
320 "Only for a pair of incoming blocks at the time!");
322 // FIXME: it is okay if one of the incoming values is an `undef` value,
323 // iff the other incoming value is guaranteed to be a non-poison value.
324 // FIXME: it is okay if one of the incoming values is a `poison` value.
325 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
326 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
327 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
328 if (IV0 == IV1)
329 return true;
330 if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
331 EquivalenceSet->contains(IV1))
332 return true;
333 return false;
337 /// Return true if it is safe to merge these two
338 /// terminator instructions together.
339 static bool
340 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
341 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
342 if (SI1 == SI2)
343 return false; // Can't merge with self!
345 // It is not safe to merge these two switch instructions if they have a common
346 // successor, and if that successor has a PHI node, and if *that* PHI node has
347 // conflicting incoming values from the two switch blocks.
348 BasicBlock *SI1BB = SI1->getParent();
349 BasicBlock *SI2BB = SI2->getParent();
351 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
352 bool Fail = false;
353 for (BasicBlock *Succ : successors(SI2BB)) {
354 if (!SI1Succs.count(Succ))
355 continue;
356 if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
357 continue;
358 Fail = true;
359 if (FailBlocks)
360 FailBlocks->insert(Succ);
361 else
362 break;
365 return !Fail;
368 /// Update PHI nodes in Succ to indicate that there will now be entries in it
369 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
370 /// will be the same as those coming in from ExistPred, an existing predecessor
371 /// of Succ.
372 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
373 BasicBlock *ExistPred,
374 MemorySSAUpdater *MSSAU = nullptr) {
375 for (PHINode &PN : Succ->phis())
376 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
377 if (MSSAU)
378 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
379 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
382 /// Compute an abstract "cost" of speculating the given instruction,
383 /// which is assumed to be safe to speculate. TCC_Free means cheap,
384 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
385 /// expensive.
386 static InstructionCost computeSpeculationCost(const User *I,
387 const TargetTransformInfo &TTI) {
388 assert((!isa<Instruction>(I) ||
389 isSafeToSpeculativelyExecute(cast<Instruction>(I))) &&
390 "Instruction is not safe to speculatively execute!");
391 return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency);
394 /// If we have a merge point of an "if condition" as accepted above,
395 /// return true if the specified value dominates the block. We
396 /// don't handle the true generality of domination here, just a special case
397 /// which works well enough for us.
399 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
400 /// see if V (which must be an instruction) and its recursive operands
401 /// that do not dominate BB have a combined cost lower than Budget and
402 /// are non-trapping. If both are true, the instruction is inserted into the
403 /// set and true is returned.
405 /// The cost for most non-trapping instructions is defined as 1 except for
406 /// Select whose cost is 2.
408 /// After this function returns, Cost is increased by the cost of
409 /// V plus its non-dominating operands. If that cost is greater than
410 /// Budget, false is returned and Cost is undefined.
411 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
412 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
413 InstructionCost &Cost,
414 InstructionCost Budget,
415 const TargetTransformInfo &TTI,
416 unsigned Depth = 0) {
417 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
418 // so limit the recursion depth.
419 // TODO: While this recursion limit does prevent pathological behavior, it
420 // would be better to track visited instructions to avoid cycles.
421 if (Depth == MaxSpeculationDepth)
422 return false;
424 Instruction *I = dyn_cast<Instruction>(V);
425 if (!I) {
426 // Non-instructions dominate all instructions and can be executed
427 // unconditionally.
428 return true;
430 BasicBlock *PBB = I->getParent();
432 // We don't want to allow weird loops that might have the "if condition" in
433 // the bottom of this block.
434 if (PBB == BB)
435 return false;
437 // If this instruction is defined in a block that contains an unconditional
438 // branch to BB, then it must be in the 'conditional' part of the "if
439 // statement". If not, it definitely dominates the region.
440 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
441 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
442 return true;
444 // If we have seen this instruction before, don't count it again.
445 if (AggressiveInsts.count(I))
446 return true;
448 // Okay, it looks like the instruction IS in the "condition". Check to
449 // see if it's a cheap instruction to unconditionally compute, and if it
450 // only uses stuff defined outside of the condition. If so, hoist it out.
451 if (!isSafeToSpeculativelyExecute(I))
452 return false;
454 Cost += computeSpeculationCost(I, TTI);
456 // Allow exactly one instruction to be speculated regardless of its cost
457 // (as long as it is safe to do so).
458 // This is intended to flatten the CFG even if the instruction is a division
459 // or other expensive operation. The speculation of an expensive instruction
460 // is expected to be undone in CodeGenPrepare if the speculation has not
461 // enabled further IR optimizations.
462 if (Cost > Budget &&
463 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
464 !Cost.isValid()))
465 return false;
467 // Okay, we can only really hoist these out if their operands do
468 // not take us over the cost threshold.
469 for (Use &Op : I->operands())
470 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
471 Depth + 1))
472 return false;
473 // Okay, it's safe to do this! Remember this instruction.
474 AggressiveInsts.insert(I);
475 return true;
478 /// Extract ConstantInt from value, looking through IntToPtr
479 /// and PointerNullValue. Return NULL if value is not a constant int.
480 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
481 // Normal constant int.
482 ConstantInt *CI = dyn_cast<ConstantInt>(V);
483 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() ||
484 DL.isNonIntegralPointerType(V->getType()))
485 return CI;
487 // This is some kind of pointer constant. Turn it into a pointer-sized
488 // ConstantInt if possible.
489 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
491 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
492 if (isa<ConstantPointerNull>(V))
493 return ConstantInt::get(PtrTy, 0);
495 // IntToPtr const int.
496 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
497 if (CE->getOpcode() == Instruction::IntToPtr)
498 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
499 // The constant is very likely to have the right type already.
500 if (CI->getType() == PtrTy)
501 return CI;
502 else
503 return cast<ConstantInt>(
504 ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL));
506 return nullptr;
509 namespace {
511 /// Given a chain of or (||) or and (&&) comparison of a value against a
512 /// constant, this will try to recover the information required for a switch
513 /// structure.
514 /// It will depth-first traverse the chain of comparison, seeking for patterns
515 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
516 /// representing the different cases for the switch.
517 /// Note that if the chain is composed of '||' it will build the set of elements
518 /// that matches the comparisons (i.e. any of this value validate the chain)
519 /// while for a chain of '&&' it will build the set elements that make the test
520 /// fail.
521 struct ConstantComparesGatherer {
522 const DataLayout &DL;
524 /// Value found for the switch comparison
525 Value *CompValue = nullptr;
527 /// Extra clause to be checked before the switch
528 Value *Extra = nullptr;
530 /// Set of integers to match in switch
531 SmallVector<ConstantInt *, 8> Vals;
533 /// Number of comparisons matched in the and/or chain
534 unsigned UsedICmps = 0;
536 /// Construct and compute the result for the comparison instruction Cond
537 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
538 gather(Cond);
541 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
542 ConstantComparesGatherer &
543 operator=(const ConstantComparesGatherer &) = delete;
545 private:
546 /// Try to set the current value used for the comparison, it succeeds only if
547 /// it wasn't set before or if the new value is the same as the old one
548 bool setValueOnce(Value *NewVal) {
549 if (CompValue && CompValue != NewVal)
550 return false;
551 CompValue = NewVal;
552 return (CompValue != nullptr);
555 /// Try to match Instruction "I" as a comparison against a constant and
556 /// populates the array Vals with the set of values that match (or do not
557 /// match depending on isEQ).
558 /// Return false on failure. On success, the Value the comparison matched
559 /// against is placed in CompValue.
560 /// If CompValue is already set, the function is expected to fail if a match
561 /// is found but the value compared to is different.
562 bool matchInstruction(Instruction *I, bool isEQ) {
563 // If this is an icmp against a constant, handle this as one of the cases.
564 ICmpInst *ICI;
565 ConstantInt *C;
566 if (!((ICI = dyn_cast<ICmpInst>(I)) &&
567 (C = GetConstantInt(I->getOperand(1), DL)))) {
568 return false;
571 Value *RHSVal;
572 const APInt *RHSC;
574 // Pattern match a special case
575 // (x & ~2^z) == y --> x == y || x == y|2^z
576 // This undoes a transformation done by instcombine to fuse 2 compares.
577 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
578 // It's a little bit hard to see why the following transformations are
579 // correct. Here is a CVC3 program to verify them for 64-bit values:
582 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
583 x : BITVECTOR(64);
584 y : BITVECTOR(64);
585 z : BITVECTOR(64);
586 mask : BITVECTOR(64) = BVSHL(ONE, z);
587 QUERY( (y & ~mask = y) =>
588 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
590 QUERY( (y | mask = y) =>
591 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
595 // Please note that each pattern must be a dual implication (<--> or
596 // iff). One directional implication can create spurious matches. If the
597 // implication is only one-way, an unsatisfiable condition on the left
598 // side can imply a satisfiable condition on the right side. Dual
599 // implication ensures that satisfiable conditions are transformed to
600 // other satisfiable conditions and unsatisfiable conditions are
601 // transformed to other unsatisfiable conditions.
603 // Here is a concrete example of a unsatisfiable condition on the left
604 // implying a satisfiable condition on the right:
606 // mask = (1 << z)
607 // (x & ~mask) == y --> (x == y || x == (y | mask))
609 // Substituting y = 3, z = 0 yields:
610 // (x & -2) == 3 --> (x == 3 || x == 2)
612 // Pattern match a special case:
614 QUERY( (y & ~mask = y) =>
615 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
618 if (match(ICI->getOperand(0),
619 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
620 APInt Mask = ~*RHSC;
621 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
622 // If we already have a value for the switch, it has to match!
623 if (!setValueOnce(RHSVal))
624 return false;
626 Vals.push_back(C);
627 Vals.push_back(
628 ConstantInt::get(C->getContext(),
629 C->getValue() | Mask));
630 UsedICmps++;
631 return true;
635 // Pattern match a special case:
637 QUERY( (y | mask = y) =>
638 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
641 if (match(ICI->getOperand(0),
642 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
643 APInt Mask = *RHSC;
644 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
645 // If we already have a value for the switch, it has to match!
646 if (!setValueOnce(RHSVal))
647 return false;
649 Vals.push_back(C);
650 Vals.push_back(ConstantInt::get(C->getContext(),
651 C->getValue() & ~Mask));
652 UsedICmps++;
653 return true;
657 // If we already have a value for the switch, it has to match!
658 if (!setValueOnce(ICI->getOperand(0)))
659 return false;
661 UsedICmps++;
662 Vals.push_back(C);
663 return ICI->getOperand(0);
666 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
667 ConstantRange Span =
668 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
670 // Shift the range if the compare is fed by an add. This is the range
671 // compare idiom as emitted by instcombine.
672 Value *CandidateVal = I->getOperand(0);
673 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
674 Span = Span.subtract(*RHSC);
675 CandidateVal = RHSVal;
678 // If this is an and/!= check, then we are looking to build the set of
679 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
680 // x != 0 && x != 1.
681 if (!isEQ)
682 Span = Span.inverse();
684 // If there are a ton of values, we don't want to make a ginormous switch.
685 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
686 return false;
689 // If we already have a value for the switch, it has to match!
690 if (!setValueOnce(CandidateVal))
691 return false;
693 // Add all values from the range to the set
694 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
695 Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
697 UsedICmps++;
698 return true;
701 /// Given a potentially 'or'd or 'and'd together collection of icmp
702 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
703 /// the value being compared, and stick the list constants into the Vals
704 /// vector.
705 /// One "Extra" case is allowed to differ from the other.
706 void gather(Value *V) {
707 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
709 // Keep a stack (SmallVector for efficiency) for depth-first traversal
710 SmallVector<Value *, 8> DFT;
711 SmallPtrSet<Value *, 8> Visited;
713 // Initialize
714 Visited.insert(V);
715 DFT.push_back(V);
717 while (!DFT.empty()) {
718 V = DFT.pop_back_val();
720 if (Instruction *I = dyn_cast<Instruction>(V)) {
721 // If it is a || (or && depending on isEQ), process the operands.
722 Value *Op0, *Op1;
723 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
724 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
725 if (Visited.insert(Op1).second)
726 DFT.push_back(Op1);
727 if (Visited.insert(Op0).second)
728 DFT.push_back(Op0);
730 continue;
733 // Try to match the current instruction
734 if (matchInstruction(I, isEQ))
735 // Match succeed, continue the loop
736 continue;
739 // One element of the sequence of || (or &&) could not be match as a
740 // comparison against the same value as the others.
741 // We allow only one "Extra" case to be checked before the switch
742 if (!Extra) {
743 Extra = V;
744 continue;
746 // Failed to parse a proper sequence, abort now
747 CompValue = nullptr;
748 break;
753 } // end anonymous namespace
755 static void EraseTerminatorAndDCECond(Instruction *TI,
756 MemorySSAUpdater *MSSAU = nullptr) {
757 Instruction *Cond = nullptr;
758 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
759 Cond = dyn_cast<Instruction>(SI->getCondition());
760 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
761 if (BI->isConditional())
762 Cond = dyn_cast<Instruction>(BI->getCondition());
763 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
764 Cond = dyn_cast<Instruction>(IBI->getAddress());
767 TI->eraseFromParent();
768 if (Cond)
769 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
772 /// Return true if the specified terminator checks
773 /// to see if a value is equal to constant integer value.
774 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
775 Value *CV = nullptr;
776 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
777 // Do not permit merging of large switch instructions into their
778 // predecessors unless there is only one predecessor.
779 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
780 CV = SI->getCondition();
781 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
782 if (BI->isConditional() && BI->getCondition()->hasOneUse())
783 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
784 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
785 CV = ICI->getOperand(0);
788 // Unwrap any lossless ptrtoint cast.
789 if (CV) {
790 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
791 Value *Ptr = PTII->getPointerOperand();
792 if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
793 CV = Ptr;
796 return CV;
799 /// Given a value comparison instruction,
800 /// decode all of the 'cases' that it represents and return the 'default' block.
801 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
802 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
803 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
804 Cases.reserve(SI->getNumCases());
805 for (auto Case : SI->cases())
806 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
807 Case.getCaseSuccessor()));
808 return SI->getDefaultDest();
811 BranchInst *BI = cast<BranchInst>(TI);
812 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
813 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
814 Cases.push_back(ValueEqualityComparisonCase(
815 GetConstantInt(ICI->getOperand(1), DL), Succ));
816 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
819 /// Given a vector of bb/value pairs, remove any entries
820 /// in the list that match the specified block.
821 static void
822 EliminateBlockCases(BasicBlock *BB,
823 std::vector<ValueEqualityComparisonCase> &Cases) {
824 llvm::erase(Cases, BB);
827 /// Return true if there are any keys in C1 that exist in C2 as well.
828 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
829 std::vector<ValueEqualityComparisonCase> &C2) {
830 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
832 // Make V1 be smaller than V2.
833 if (V1->size() > V2->size())
834 std::swap(V1, V2);
836 if (V1->empty())
837 return false;
838 if (V1->size() == 1) {
839 // Just scan V2.
840 ConstantInt *TheVal = (*V1)[0].Value;
841 for (const ValueEqualityComparisonCase &VECC : *V2)
842 if (TheVal == VECC.Value)
843 return true;
846 // Otherwise, just sort both lists and compare element by element.
847 array_pod_sort(V1->begin(), V1->end());
848 array_pod_sort(V2->begin(), V2->end());
849 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
850 while (i1 != e1 && i2 != e2) {
851 if ((*V1)[i1].Value == (*V2)[i2].Value)
852 return true;
853 if ((*V1)[i1].Value < (*V2)[i2].Value)
854 ++i1;
855 else
856 ++i2;
858 return false;
861 // Set branch weights on SwitchInst. This sets the metadata if there is at
862 // least one non-zero weight.
863 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
864 // Check that there is at least one non-zero weight. Otherwise, pass
865 // nullptr to setMetadata which will erase the existing metadata.
866 MDNode *N = nullptr;
867 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
868 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
869 SI->setMetadata(LLVMContext::MD_prof, N);
872 // Similar to the above, but for branch and select instructions that take
873 // exactly 2 weights.
874 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
875 uint32_t FalseWeight) {
876 assert(isa<BranchInst>(I) || isa<SelectInst>(I));
877 // Check that there is at least one non-zero weight. Otherwise, pass
878 // nullptr to setMetadata which will erase the existing metadata.
879 MDNode *N = nullptr;
880 if (TrueWeight || FalseWeight)
881 N = MDBuilder(I->getParent()->getContext())
882 .createBranchWeights(TrueWeight, FalseWeight);
883 I->setMetadata(LLVMContext::MD_prof, N);
886 /// If TI is known to be a terminator instruction and its block is known to
887 /// only have a single predecessor block, check to see if that predecessor is
888 /// also a value comparison with the same value, and if that comparison
889 /// determines the outcome of this comparison. If so, simplify TI. This does a
890 /// very limited form of jump threading.
891 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
892 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
893 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
894 if (!PredVal)
895 return false; // Not a value comparison in predecessor.
897 Value *ThisVal = isValueEqualityComparison(TI);
898 assert(ThisVal && "This isn't a value comparison!!");
899 if (ThisVal != PredVal)
900 return false; // Different predicates.
902 // TODO: Preserve branch weight metadata, similarly to how
903 // FoldValueComparisonIntoPredecessors preserves it.
905 // Find out information about when control will move from Pred to TI's block.
906 std::vector<ValueEqualityComparisonCase> PredCases;
907 BasicBlock *PredDef =
908 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
909 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
911 // Find information about how control leaves this block.
912 std::vector<ValueEqualityComparisonCase> ThisCases;
913 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
914 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
916 // If TI's block is the default block from Pred's comparison, potentially
917 // simplify TI based on this knowledge.
918 if (PredDef == TI->getParent()) {
919 // If we are here, we know that the value is none of those cases listed in
920 // PredCases. If there are any cases in ThisCases that are in PredCases, we
921 // can simplify TI.
922 if (!ValuesOverlap(PredCases, ThisCases))
923 return false;
925 if (isa<BranchInst>(TI)) {
926 // Okay, one of the successors of this condbr is dead. Convert it to a
927 // uncond br.
928 assert(ThisCases.size() == 1 && "Branch can only have one case!");
929 // Insert the new branch.
930 Instruction *NI = Builder.CreateBr(ThisDef);
931 (void)NI;
933 // Remove PHI node entries for the dead edge.
934 ThisCases[0].Dest->removePredecessor(PredDef);
936 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
937 << "Through successor TI: " << *TI << "Leaving: " << *NI
938 << "\n");
940 EraseTerminatorAndDCECond(TI);
942 if (DTU)
943 DTU->applyUpdates(
944 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
946 return true;
949 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
950 // Okay, TI has cases that are statically dead, prune them away.
951 SmallPtrSet<Constant *, 16> DeadCases;
952 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
953 DeadCases.insert(PredCases[i].Value);
955 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
956 << "Through successor TI: " << *TI);
958 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
959 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
960 --i;
961 auto *Successor = i->getCaseSuccessor();
962 if (DTU)
963 ++NumPerSuccessorCases[Successor];
964 if (DeadCases.count(i->getCaseValue())) {
965 Successor->removePredecessor(PredDef);
966 SI.removeCase(i);
967 if (DTU)
968 --NumPerSuccessorCases[Successor];
972 if (DTU) {
973 std::vector<DominatorTree::UpdateType> Updates;
974 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
975 if (I.second == 0)
976 Updates.push_back({DominatorTree::Delete, PredDef, I.first});
977 DTU->applyUpdates(Updates);
980 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
981 return true;
984 // Otherwise, TI's block must correspond to some matched value. Find out
985 // which value (or set of values) this is.
986 ConstantInt *TIV = nullptr;
987 BasicBlock *TIBB = TI->getParent();
988 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
989 if (PredCases[i].Dest == TIBB) {
990 if (TIV)
991 return false; // Cannot handle multiple values coming to this block.
992 TIV = PredCases[i].Value;
994 assert(TIV && "No edge from pred to succ?");
996 // Okay, we found the one constant that our value can be if we get into TI's
997 // BB. Find out which successor will unconditionally be branched to.
998 BasicBlock *TheRealDest = nullptr;
999 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
1000 if (ThisCases[i].Value == TIV) {
1001 TheRealDest = ThisCases[i].Dest;
1002 break;
1005 // If not handled by any explicit cases, it is handled by the default case.
1006 if (!TheRealDest)
1007 TheRealDest = ThisDef;
1009 SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1011 // Remove PHI node entries for dead edges.
1012 BasicBlock *CheckEdge = TheRealDest;
1013 for (BasicBlock *Succ : successors(TIBB))
1014 if (Succ != CheckEdge) {
1015 if (Succ != TheRealDest)
1016 RemovedSuccs.insert(Succ);
1017 Succ->removePredecessor(TIBB);
1018 } else
1019 CheckEdge = nullptr;
1021 // Insert the new branch.
1022 Instruction *NI = Builder.CreateBr(TheRealDest);
1023 (void)NI;
1025 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1026 << "Through successor TI: " << *TI << "Leaving: " << *NI
1027 << "\n");
1029 EraseTerminatorAndDCECond(TI);
1030 if (DTU) {
1031 SmallVector<DominatorTree::UpdateType, 2> Updates;
1032 Updates.reserve(RemovedSuccs.size());
1033 for (auto *RemovedSucc : RemovedSuccs)
1034 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1035 DTU->applyUpdates(Updates);
1037 return true;
1040 namespace {
1042 /// This class implements a stable ordering of constant
1043 /// integers that does not depend on their address. This is important for
1044 /// applications that sort ConstantInt's to ensure uniqueness.
1045 struct ConstantIntOrdering {
1046 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1047 return LHS->getValue().ult(RHS->getValue());
1051 } // end anonymous namespace
1053 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1054 ConstantInt *const *P2) {
1055 const ConstantInt *LHS = *P1;
1056 const ConstantInt *RHS = *P2;
1057 if (LHS == RHS)
1058 return 0;
1059 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1062 /// Get Weights of a given terminator, the default weight is at the front
1063 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1064 /// metadata.
1065 static void GetBranchWeights(Instruction *TI,
1066 SmallVectorImpl<uint64_t> &Weights) {
1067 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1068 assert(MD);
1069 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1070 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1071 Weights.push_back(CI->getValue().getZExtValue());
1074 // If TI is a conditional eq, the default case is the false case,
1075 // and the corresponding branch-weight data is at index 2. We swap the
1076 // default weight to be the first entry.
1077 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1078 assert(Weights.size() == 2);
1079 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1080 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1081 std::swap(Weights.front(), Weights.back());
1085 /// Keep halving the weights until all can fit in uint32_t.
1086 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1087 uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1088 if (Max > UINT_MAX) {
1089 unsigned Offset = 32 - llvm::countl_zero(Max);
1090 for (uint64_t &I : Weights)
1091 I >>= Offset;
1095 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1096 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1097 Instruction *PTI = PredBlock->getTerminator();
1099 // If we have bonus instructions, clone them into the predecessor block.
1100 // Note that there may be multiple predecessor blocks, so we cannot move
1101 // bonus instructions to a predecessor block.
1102 for (Instruction &BonusInst : *BB) {
1103 if (BonusInst.isTerminator())
1104 continue;
1106 Instruction *NewBonusInst = BonusInst.clone();
1108 if (!isa<DbgInfoIntrinsic>(BonusInst) &&
1109 PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1110 // Unless the instruction has the same !dbg location as the original
1111 // branch, drop it. When we fold the bonus instructions we want to make
1112 // sure we reset their debug locations in order to avoid stepping on
1113 // dead code caused by folding dead branches.
1114 NewBonusInst->setDebugLoc(DebugLoc());
1117 RemapInstruction(NewBonusInst, VMap,
1118 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1120 // If we speculated an instruction, we need to drop any metadata that may
1121 // result in undefined behavior, as the metadata might have been valid
1122 // only given the branch precondition.
1123 // Similarly strip attributes on call parameters that may cause UB in
1124 // location the call is moved to.
1125 NewBonusInst->dropUBImplyingAttrsAndMetadata();
1127 NewBonusInst->insertInto(PredBlock, PTI->getIterator());
1128 auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst);
1129 RemapDPValueRange(NewBonusInst->getModule(), Range, VMap,
1130 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1132 if (isa<DbgInfoIntrinsic>(BonusInst))
1133 continue;
1135 NewBonusInst->takeName(&BonusInst);
1136 BonusInst.setName(NewBonusInst->getName() + ".old");
1137 VMap[&BonusInst] = NewBonusInst;
1139 // Update (liveout) uses of bonus instructions,
1140 // now that the bonus instruction has been cloned into predecessor.
1141 // Note that we expect to be in a block-closed SSA form for this to work!
1142 for (Use &U : make_early_inc_range(BonusInst.uses())) {
1143 auto *UI = cast<Instruction>(U.getUser());
1144 auto *PN = dyn_cast<PHINode>(UI);
1145 if (!PN) {
1146 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1147 "If the user is not a PHI node, then it should be in the same "
1148 "block as, and come after, the original bonus instruction.");
1149 continue; // Keep using the original bonus instruction.
1151 // Is this the block-closed SSA form PHI node?
1152 if (PN->getIncomingBlock(U) == BB)
1153 continue; // Great, keep using the original bonus instruction.
1154 // The only other alternative is an "use" when coming from
1155 // the predecessor block - here we should refer to the cloned bonus instr.
1156 assert(PN->getIncomingBlock(U) == PredBlock &&
1157 "Not in block-closed SSA form?");
1158 U.set(NewBonusInst);
1163 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1164 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1165 BasicBlock *BB = TI->getParent();
1166 BasicBlock *Pred = PTI->getParent();
1168 SmallVector<DominatorTree::UpdateType, 32> Updates;
1170 // Figure out which 'cases' to copy from SI to PSI.
1171 std::vector<ValueEqualityComparisonCase> BBCases;
1172 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1174 std::vector<ValueEqualityComparisonCase> PredCases;
1175 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1177 // Based on whether the default edge from PTI goes to BB or not, fill in
1178 // PredCases and PredDefault with the new switch cases we would like to
1179 // build.
1180 SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1182 // Update the branch weight metadata along the way
1183 SmallVector<uint64_t, 8> Weights;
1184 bool PredHasWeights = hasBranchWeightMD(*PTI);
1185 bool SuccHasWeights = hasBranchWeightMD(*TI);
1187 if (PredHasWeights) {
1188 GetBranchWeights(PTI, Weights);
1189 // branch-weight metadata is inconsistent here.
1190 if (Weights.size() != 1 + PredCases.size())
1191 PredHasWeights = SuccHasWeights = false;
1192 } else if (SuccHasWeights)
1193 // If there are no predecessor weights but there are successor weights,
1194 // populate Weights with 1, which will later be scaled to the sum of
1195 // successor's weights
1196 Weights.assign(1 + PredCases.size(), 1);
1198 SmallVector<uint64_t, 8> SuccWeights;
1199 if (SuccHasWeights) {
1200 GetBranchWeights(TI, SuccWeights);
1201 // branch-weight metadata is inconsistent here.
1202 if (SuccWeights.size() != 1 + BBCases.size())
1203 PredHasWeights = SuccHasWeights = false;
1204 } else if (PredHasWeights)
1205 SuccWeights.assign(1 + BBCases.size(), 1);
1207 if (PredDefault == BB) {
1208 // If this is the default destination from PTI, only the edges in TI
1209 // that don't occur in PTI, or that branch to BB will be activated.
1210 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1211 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1212 if (PredCases[i].Dest != BB)
1213 PTIHandled.insert(PredCases[i].Value);
1214 else {
1215 // The default destination is BB, we don't need explicit targets.
1216 std::swap(PredCases[i], PredCases.back());
1218 if (PredHasWeights || SuccHasWeights) {
1219 // Increase weight for the default case.
1220 Weights[0] += Weights[i + 1];
1221 std::swap(Weights[i + 1], Weights.back());
1222 Weights.pop_back();
1225 PredCases.pop_back();
1226 --i;
1227 --e;
1230 // Reconstruct the new switch statement we will be building.
1231 if (PredDefault != BBDefault) {
1232 PredDefault->removePredecessor(Pred);
1233 if (DTU && PredDefault != BB)
1234 Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1235 PredDefault = BBDefault;
1236 ++NewSuccessors[BBDefault];
1239 unsigned CasesFromPred = Weights.size();
1240 uint64_t ValidTotalSuccWeight = 0;
1241 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1242 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1243 PredCases.push_back(BBCases[i]);
1244 ++NewSuccessors[BBCases[i].Dest];
1245 if (SuccHasWeights || PredHasWeights) {
1246 // The default weight is at index 0, so weight for the ith case
1247 // should be at index i+1. Scale the cases from successor by
1248 // PredDefaultWeight (Weights[0]).
1249 Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1250 ValidTotalSuccWeight += SuccWeights[i + 1];
1254 if (SuccHasWeights || PredHasWeights) {
1255 ValidTotalSuccWeight += SuccWeights[0];
1256 // Scale the cases from predecessor by ValidTotalSuccWeight.
1257 for (unsigned i = 1; i < CasesFromPred; ++i)
1258 Weights[i] *= ValidTotalSuccWeight;
1259 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1260 Weights[0] *= SuccWeights[0];
1262 } else {
1263 // If this is not the default destination from PSI, only the edges
1264 // in SI that occur in PSI with a destination of BB will be
1265 // activated.
1266 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1267 std::map<ConstantInt *, uint64_t> WeightsForHandled;
1268 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1269 if (PredCases[i].Dest == BB) {
1270 PTIHandled.insert(PredCases[i].Value);
1272 if (PredHasWeights || SuccHasWeights) {
1273 WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1274 std::swap(Weights[i + 1], Weights.back());
1275 Weights.pop_back();
1278 std::swap(PredCases[i], PredCases.back());
1279 PredCases.pop_back();
1280 --i;
1281 --e;
1284 // Okay, now we know which constants were sent to BB from the
1285 // predecessor. Figure out where they will all go now.
1286 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1287 if (PTIHandled.count(BBCases[i].Value)) {
1288 // If this is one we are capable of getting...
1289 if (PredHasWeights || SuccHasWeights)
1290 Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1291 PredCases.push_back(BBCases[i]);
1292 ++NewSuccessors[BBCases[i].Dest];
1293 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1296 // If there are any constants vectored to BB that TI doesn't handle,
1297 // they must go to the default destination of TI.
1298 for (ConstantInt *I : PTIHandled) {
1299 if (PredHasWeights || SuccHasWeights)
1300 Weights.push_back(WeightsForHandled[I]);
1301 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1302 ++NewSuccessors[BBDefault];
1306 // Okay, at this point, we know which new successor Pred will get. Make
1307 // sure we update the number of entries in the PHI nodes for these
1308 // successors.
1309 SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1310 if (DTU) {
1311 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1312 Updates.reserve(Updates.size() + NewSuccessors.size());
1314 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1315 NewSuccessors) {
1316 for (auto I : seq(NewSuccessor.second)) {
1317 (void)I;
1318 AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1320 if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1321 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1324 Builder.SetInsertPoint(PTI);
1325 // Convert pointer to int before we switch.
1326 if (CV->getType()->isPointerTy()) {
1327 CV =
1328 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1331 // Now that the successors are updated, create the new Switch instruction.
1332 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1333 NewSI->setDebugLoc(PTI->getDebugLoc());
1334 for (ValueEqualityComparisonCase &V : PredCases)
1335 NewSI->addCase(V.Value, V.Dest);
1337 if (PredHasWeights || SuccHasWeights) {
1338 // Halve the weights if any of them cannot fit in an uint32_t
1339 FitWeights(Weights);
1341 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1343 setBranchWeights(NewSI, MDWeights);
1346 EraseTerminatorAndDCECond(PTI);
1348 // Okay, last check. If BB is still a successor of PSI, then we must
1349 // have an infinite loop case. If so, add an infinitely looping block
1350 // to handle the case to preserve the behavior of the code.
1351 BasicBlock *InfLoopBlock = nullptr;
1352 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1353 if (NewSI->getSuccessor(i) == BB) {
1354 if (!InfLoopBlock) {
1355 // Insert it at the end of the function, because it's either code,
1356 // or it won't matter if it's hot. :)
1357 InfLoopBlock =
1358 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1359 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1360 if (DTU)
1361 Updates.push_back(
1362 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1364 NewSI->setSuccessor(i, InfLoopBlock);
1367 if (DTU) {
1368 if (InfLoopBlock)
1369 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1371 Updates.push_back({DominatorTree::Delete, Pred, BB});
1373 DTU->applyUpdates(Updates);
1376 ++NumFoldValueComparisonIntoPredecessors;
1377 return true;
1380 /// The specified terminator is a value equality comparison instruction
1381 /// (either a switch or a branch on "X == c").
1382 /// See if any of the predecessors of the terminator block are value comparisons
1383 /// on the same value. If so, and if safe to do so, fold them together.
1384 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1385 IRBuilder<> &Builder) {
1386 BasicBlock *BB = TI->getParent();
1387 Value *CV = isValueEqualityComparison(TI); // CondVal
1388 assert(CV && "Not a comparison?");
1390 bool Changed = false;
1392 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1393 while (!Preds.empty()) {
1394 BasicBlock *Pred = Preds.pop_back_val();
1395 Instruction *PTI = Pred->getTerminator();
1397 // Don't try to fold into itself.
1398 if (Pred == BB)
1399 continue;
1401 // See if the predecessor is a comparison with the same value.
1402 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1403 if (PCV != CV)
1404 continue;
1406 SmallSetVector<BasicBlock *, 4> FailBlocks;
1407 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1408 for (auto *Succ : FailBlocks) {
1409 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1410 return false;
1414 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1415 Changed = true;
1417 return Changed;
1420 // If we would need to insert a select that uses the value of this invoke
1421 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would
1422 // need to do this), we can't hoist the invoke, as there is nowhere to put the
1423 // select in this case.
1424 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1425 Instruction *I1, Instruction *I2) {
1426 for (BasicBlock *Succ : successors(BB1)) {
1427 for (const PHINode &PN : Succ->phis()) {
1428 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1429 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1430 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1431 return false;
1435 return true;
1438 // Get interesting characteristics of instructions that
1439 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of
1440 // instructions can be reordered across.
1441 enum SkipFlags {
1442 SkipReadMem = 1,
1443 SkipSideEffect = 2,
1444 SkipImplicitControlFlow = 4
1447 static unsigned skippedInstrFlags(Instruction *I) {
1448 unsigned Flags = 0;
1449 if (I->mayReadFromMemory())
1450 Flags |= SkipReadMem;
1451 // We can't arbitrarily move around allocas, e.g. moving allocas (especially
1452 // inalloca) across stacksave/stackrestore boundaries.
1453 if (I->mayHaveSideEffects() || isa<AllocaInst>(I))
1454 Flags |= SkipSideEffect;
1455 if (!isGuaranteedToTransferExecutionToSuccessor(I))
1456 Flags |= SkipImplicitControlFlow;
1457 return Flags;
1460 // Returns true if it is safe to reorder an instruction across preceding
1461 // instructions in a basic block.
1462 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) {
1463 // Don't reorder a store over a load.
1464 if ((Flags & SkipReadMem) && I->mayWriteToMemory())
1465 return false;
1467 // If we have seen an instruction with side effects, it's unsafe to reorder an
1468 // instruction which reads memory or itself has side effects.
1469 if ((Flags & SkipSideEffect) &&
1470 (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I)))
1471 return false;
1473 // Reordering across an instruction which does not necessarily transfer
1474 // control to the next instruction is speculation.
1475 if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I))
1476 return false;
1478 // Hoisting of llvm.deoptimize is only legal together with the next return
1479 // instruction, which this pass is not always able to do.
1480 if (auto *CB = dyn_cast<CallBase>(I))
1481 if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize)
1482 return false;
1484 // It's also unsafe/illegal to hoist an instruction above its instruction
1485 // operands
1486 BasicBlock *BB = I->getParent();
1487 for (Value *Op : I->operands()) {
1488 if (auto *J = dyn_cast<Instruction>(Op))
1489 if (J->getParent() == BB)
1490 return false;
1493 return true;
1496 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1498 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical
1499 /// instructions \p I1 and \p I2 can and should be hoisted.
1500 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2,
1501 const TargetTransformInfo &TTI) {
1502 // If we're going to hoist a call, make sure that the two instructions
1503 // we're commoning/hoisting are both marked with musttail, or neither of
1504 // them is marked as such. Otherwise, we might end up in a situation where
1505 // we hoist from a block where the terminator is a `ret` to a block where
1506 // the terminator is a `br`, and `musttail` calls expect to be followed by
1507 // a return.
1508 auto *C1 = dyn_cast<CallInst>(I1);
1509 auto *C2 = dyn_cast<CallInst>(I2);
1510 if (C1 && C2)
1511 if (C1->isMustTailCall() != C2->isMustTailCall())
1512 return false;
1514 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1515 return false;
1517 // If any of the two call sites has nomerge or convergent attribute, stop
1518 // hoisting.
1519 if (const auto *CB1 = dyn_cast<CallBase>(I1))
1520 if (CB1->cannotMerge() || CB1->isConvergent())
1521 return false;
1522 if (const auto *CB2 = dyn_cast<CallBase>(I2))
1523 if (CB2->cannotMerge() || CB2->isConvergent())
1524 return false;
1526 return true;
1529 /// Hoist any common code in the successor blocks up into the block. This
1530 /// function guarantees that BB dominates all successors. If EqTermsOnly is
1531 /// given, only perform hoisting in case both blocks only contain a terminator.
1532 /// In that case, only the original BI will be replaced and selects for PHIs are
1533 /// added.
1534 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(BasicBlock *BB,
1535 bool EqTermsOnly) {
1536 // This does very trivial matching, with limited scanning, to find identical
1537 // instructions in the two blocks. In particular, we don't want to get into
1538 // O(N1*N2*...) situations here where Ni are the sizes of these successors. As
1539 // such, we currently just scan for obviously identical instructions in an
1540 // identical order, possibly separated by the same number of non-identical
1541 // instructions.
1542 unsigned int SuccSize = succ_size(BB);
1543 if (SuccSize < 2)
1544 return false;
1546 // If either of the blocks has it's address taken, then we can't do this fold,
1547 // because the code we'd hoist would no longer run when we jump into the block
1548 // by it's address.
1549 for (auto *Succ : successors(BB))
1550 if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor())
1551 return false;
1553 auto *TI = BB->getTerminator();
1555 // The second of pair is a SkipFlags bitmask.
1556 using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>;
1557 SmallVector<SuccIterPair, 8> SuccIterPairs;
1558 for (auto *Succ : successors(BB)) {
1559 BasicBlock::iterator SuccItr = Succ->begin();
1560 if (isa<PHINode>(*SuccItr))
1561 return false;
1562 SuccIterPairs.push_back(SuccIterPair(SuccItr, 0));
1565 // Check if only hoisting terminators is allowed. This does not add new
1566 // instructions to the hoist location.
1567 if (EqTermsOnly) {
1568 // Skip any debug intrinsics, as they are free to hoist.
1569 for (auto &SuccIter : make_first_range(SuccIterPairs)) {
1570 auto *INonDbg = &*skipDebugIntrinsics(SuccIter);
1571 if (!INonDbg->isTerminator())
1572 return false;
1574 // Now we know that we only need to hoist debug intrinsics and the
1575 // terminator. Let the loop below handle those 2 cases.
1578 // Count how many instructions were not hoisted so far. There's a limit on how
1579 // many instructions we skip, serving as a compilation time control as well as
1580 // preventing excessive increase of life ranges.
1581 unsigned NumSkipped = 0;
1582 // If we find an unreachable instruction at the beginning of a basic block, we
1583 // can still hoist instructions from the rest of the basic blocks.
1584 if (SuccIterPairs.size() > 2) {
1585 erase_if(SuccIterPairs,
1586 [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); });
1587 if (SuccIterPairs.size() < 2)
1588 return false;
1591 bool Changed = false;
1593 for (;;) {
1594 auto *SuccIterPairBegin = SuccIterPairs.begin();
1595 auto &BB1ItrPair = *SuccIterPairBegin++;
1596 auto OtherSuccIterPairRange =
1597 iterator_range(SuccIterPairBegin, SuccIterPairs.end());
1598 auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange);
1600 Instruction *I1 = &*BB1ItrPair.first;
1601 auto *BB1 = I1->getParent();
1603 // Skip debug info if it is not identical.
1604 bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) {
1605 Instruction *I2 = &*Iter;
1606 return I1->isIdenticalToWhenDefined(I2);
1608 if (!AllDbgInstsAreIdentical) {
1609 while (isa<DbgInfoIntrinsic>(I1))
1610 I1 = &*++BB1ItrPair.first;
1611 for (auto &SuccIter : OtherSuccIterRange) {
1612 Instruction *I2 = &*SuccIter;
1613 while (isa<DbgInfoIntrinsic>(I2))
1614 I2 = &*++SuccIter;
1618 bool AllInstsAreIdentical = true;
1619 bool HasTerminator = I1->isTerminator();
1620 for (auto &SuccIter : OtherSuccIterRange) {
1621 Instruction *I2 = &*SuccIter;
1622 HasTerminator |= I2->isTerminator();
1623 if (AllInstsAreIdentical && !I1->isIdenticalToWhenDefined(I2))
1624 AllInstsAreIdentical = false;
1627 // If we are hoisting the terminator instruction, don't move one (making a
1628 // broken BB), instead clone it, and remove BI.
1629 if (HasTerminator) {
1630 // Even if BB, which contains only one unreachable instruction, is ignored
1631 // at the beginning of the loop, we can hoist the terminator instruction.
1632 // If any instructions remain in the block, we cannot hoist terminators.
1633 if (NumSkipped || !AllInstsAreIdentical)
1634 return Changed;
1635 SmallVector<Instruction *, 8> Insts;
1636 for (auto &SuccIter : OtherSuccIterRange)
1637 Insts.push_back(&*SuccIter);
1638 return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, Insts) || Changed;
1641 if (AllInstsAreIdentical) {
1642 unsigned SkipFlagsBB1 = BB1ItrPair.second;
1643 AllInstsAreIdentical =
1644 isSafeToHoistInstr(I1, SkipFlagsBB1) &&
1645 all_of(OtherSuccIterPairRange, [=](const auto &Pair) {
1646 Instruction *I2 = &*Pair.first;
1647 unsigned SkipFlagsBB2 = Pair.second;
1648 // Even if the instructions are identical, it may not
1649 // be safe to hoist them if we have skipped over
1650 // instructions with side effects or their operands
1651 // weren't hoisted.
1652 return isSafeToHoistInstr(I2, SkipFlagsBB2) &&
1653 shouldHoistCommonInstructions(I1, I2, TTI);
1657 if (AllInstsAreIdentical) {
1658 BB1ItrPair.first++;
1659 if (isa<DbgInfoIntrinsic>(I1)) {
1660 // The debug location is an integral part of a debug info intrinsic
1661 // and can't be separated from it or replaced. Instead of attempting
1662 // to merge locations, simply hoist both copies of the intrinsic.
1663 I1->moveBeforePreserving(TI);
1664 for (auto &SuccIter : OtherSuccIterRange) {
1665 auto *I2 = &*SuccIter++;
1666 assert(isa<DbgInfoIntrinsic>(I2));
1667 I2->moveBeforePreserving(TI);
1669 } else {
1670 // For a normal instruction, we just move one to right before the
1671 // branch, then replace all uses of the other with the first. Finally,
1672 // we remove the now redundant second instruction.
1673 I1->moveBeforePreserving(TI);
1674 BB->splice(TI->getIterator(), BB1, I1->getIterator());
1675 for (auto &SuccIter : OtherSuccIterRange) {
1676 Instruction *I2 = &*SuccIter++;
1677 assert(I2 != I1);
1678 if (!I2->use_empty())
1679 I2->replaceAllUsesWith(I1);
1680 I1->andIRFlags(I2);
1681 combineMetadataForCSE(I1, I2, true);
1682 // I1 and I2 are being combined into a single instruction. Its debug
1683 // location is the merged locations of the original instructions.
1684 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1685 I2->eraseFromParent();
1688 if (!Changed)
1689 NumHoistCommonCode += SuccIterPairs.size();
1690 Changed = true;
1691 NumHoistCommonInstrs += SuccIterPairs.size();
1692 } else {
1693 if (NumSkipped >= HoistCommonSkipLimit)
1694 return Changed;
1695 // We are about to skip over a pair of non-identical instructions. Record
1696 // if any have characteristics that would prevent reordering instructions
1697 // across them.
1698 for (auto &SuccIterPair : SuccIterPairs) {
1699 Instruction *I = &*SuccIterPair.first++;
1700 SuccIterPair.second |= skippedInstrFlags(I);
1702 ++NumSkipped;
1707 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf(
1708 Instruction *TI, Instruction *I1,
1709 SmallVectorImpl<Instruction *> &OtherSuccTIs) {
1711 auto *BI = dyn_cast<BranchInst>(TI);
1713 bool Changed = false;
1714 BasicBlock *TIParent = TI->getParent();
1715 BasicBlock *BB1 = I1->getParent();
1717 // Use only for an if statement.
1718 auto *I2 = *OtherSuccTIs.begin();
1719 auto *BB2 = I2->getParent();
1720 if (BI) {
1721 assert(OtherSuccTIs.size() == 1);
1722 assert(BI->getSuccessor(0) == I1->getParent());
1723 assert(BI->getSuccessor(1) == I2->getParent());
1726 // In the case of an if statement, we try to hoist an invoke.
1727 // FIXME: Can we define a safety predicate for CallBr?
1728 // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll
1729 // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit?
1730 if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1731 return false;
1733 // TODO: callbr hoisting currently disabled pending further study.
1734 if (isa<CallBrInst>(I1))
1735 return false;
1737 for (BasicBlock *Succ : successors(BB1)) {
1738 for (PHINode &PN : Succ->phis()) {
1739 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1740 for (Instruction *OtherSuccTI : OtherSuccTIs) {
1741 Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent());
1742 if (BB1V == BB2V)
1743 continue;
1745 // In the case of an if statement, check for
1746 // passingValueIsAlwaysUndefined here because we would rather eliminate
1747 // undefined control flow then converting it to a select.
1748 if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) ||
1749 passingValueIsAlwaysUndefined(BB2V, &PN))
1750 return false;
1755 // Okay, it is safe to hoist the terminator.
1756 Instruction *NT = I1->clone();
1757 NT->insertInto(TIParent, TI->getIterator());
1758 if (!NT->getType()->isVoidTy()) {
1759 I1->replaceAllUsesWith(NT);
1760 for (Instruction *OtherSuccTI : OtherSuccTIs)
1761 OtherSuccTI->replaceAllUsesWith(NT);
1762 NT->takeName(I1);
1764 Changed = true;
1765 NumHoistCommonInstrs += OtherSuccTIs.size() + 1;
1767 // Ensure terminator gets a debug location, even an unknown one, in case
1768 // it involves inlinable calls.
1769 SmallVector<DILocation *, 4> Locs;
1770 Locs.push_back(I1->getDebugLoc());
1771 for (auto *OtherSuccTI : OtherSuccTIs)
1772 Locs.push_back(OtherSuccTI->getDebugLoc());
1773 // Also clone DPValues from the existing terminator, and all others (to
1774 // duplicate existing hoisting behaviour).
1775 NT->cloneDebugInfoFrom(I1);
1776 for (Instruction *OtherSuccTI : OtherSuccTIs)
1777 NT->cloneDebugInfoFrom(OtherSuccTI);
1778 NT->setDebugLoc(DILocation::getMergedLocations(Locs));
1780 // PHIs created below will adopt NT's merged DebugLoc.
1781 IRBuilder<NoFolder> Builder(NT);
1783 // In the case of an if statement, hoisting one of the terminators from our
1784 // successor is a great thing. Unfortunately, the successors of the if/else
1785 // blocks may have PHI nodes in them. If they do, all PHI entries for BB1/BB2
1786 // must agree for all PHI nodes, so we insert select instruction to compute
1787 // the final result.
1788 if (BI) {
1789 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1790 for (BasicBlock *Succ : successors(BB1)) {
1791 for (PHINode &PN : Succ->phis()) {
1792 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1793 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1794 if (BB1V == BB2V)
1795 continue;
1797 // These values do not agree. Insert a select instruction before NT
1798 // that determines the right value.
1799 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1800 if (!SI) {
1801 // Propagate fast-math-flags from phi node to its replacement select.
1802 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1803 if (isa<FPMathOperator>(PN))
1804 Builder.setFastMathFlags(PN.getFastMathFlags());
1806 SI = cast<SelectInst>(Builder.CreateSelect(
1807 BI->getCondition(), BB1V, BB2V,
1808 BB1V->getName() + "." + BB2V->getName(), BI));
1811 // Make the PHI node use the select for all incoming values for BB1/BB2
1812 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1813 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1814 PN.setIncomingValue(i, SI);
1819 SmallVector<DominatorTree::UpdateType, 4> Updates;
1821 // Update any PHI nodes in our new successors.
1822 for (BasicBlock *Succ : successors(BB1)) {
1823 AddPredecessorToBlock(Succ, TIParent, BB1);
1824 if (DTU)
1825 Updates.push_back({DominatorTree::Insert, TIParent, Succ});
1828 if (DTU)
1829 for (BasicBlock *Succ : successors(TI))
1830 Updates.push_back({DominatorTree::Delete, TIParent, Succ});
1832 EraseTerminatorAndDCECond(TI);
1833 if (DTU)
1834 DTU->applyUpdates(Updates);
1835 return Changed;
1838 // Check lifetime markers.
1839 static bool isLifeTimeMarker(const Instruction *I) {
1840 if (auto II = dyn_cast<IntrinsicInst>(I)) {
1841 switch (II->getIntrinsicID()) {
1842 default:
1843 break;
1844 case Intrinsic::lifetime_start:
1845 case Intrinsic::lifetime_end:
1846 return true;
1849 return false;
1852 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1853 // into variables.
1854 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1855 int OpIdx) {
1856 return !isa<IntrinsicInst>(I);
1859 // All instructions in Insts belong to different blocks that all unconditionally
1860 // branch to a common successor. Analyze each instruction and return true if it
1861 // would be possible to sink them into their successor, creating one common
1862 // instruction instead. For every value that would be required to be provided by
1863 // PHI node (because an operand varies in each input block), add to PHIOperands.
1864 static bool canSinkInstructions(
1865 ArrayRef<Instruction *> Insts,
1866 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1867 // Prune out obviously bad instructions to move. Each instruction must have
1868 // exactly zero or one use, and we check later that use is by a single, common
1869 // PHI instruction in the successor.
1870 bool HasUse = !Insts.front()->user_empty();
1871 for (auto *I : Insts) {
1872 // These instructions may change or break semantics if moved.
1873 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1874 I->getType()->isTokenTy())
1875 return false;
1877 // Do not try to sink an instruction in an infinite loop - it can cause
1878 // this algorithm to infinite loop.
1879 if (I->getParent()->getSingleSuccessor() == I->getParent())
1880 return false;
1882 // Conservatively return false if I is an inline-asm instruction. Sinking
1883 // and merging inline-asm instructions can potentially create arguments
1884 // that cannot satisfy the inline-asm constraints.
1885 // If the instruction has nomerge or convergent attribute, return false.
1886 if (const auto *C = dyn_cast<CallBase>(I))
1887 if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
1888 return false;
1890 // Each instruction must have zero or one use.
1891 if (HasUse && !I->hasOneUse())
1892 return false;
1893 if (!HasUse && !I->user_empty())
1894 return false;
1897 const Instruction *I0 = Insts.front();
1898 for (auto *I : Insts) {
1899 if (!I->isSameOperationAs(I0))
1900 return false;
1902 // swifterror pointers can only be used by a load or store; sinking a load
1903 // or store would require introducing a select for the pointer operand,
1904 // which isn't allowed for swifterror pointers.
1905 if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError())
1906 return false;
1907 if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError())
1908 return false;
1911 // All instructions in Insts are known to be the same opcode. If they have a
1912 // use, check that the only user is a PHI or in the same block as the
1913 // instruction, because if a user is in the same block as an instruction we're
1914 // contemplating sinking, it must already be determined to be sinkable.
1915 if (HasUse) {
1916 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1917 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1918 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1919 auto *U = cast<Instruction>(*I->user_begin());
1920 return (PNUse &&
1921 PNUse->getParent() == Succ &&
1922 PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1923 U->getParent() == I->getParent();
1925 return false;
1928 // Because SROA can't handle speculating stores of selects, try not to sink
1929 // loads, stores or lifetime markers of allocas when we'd have to create a
1930 // PHI for the address operand. Also, because it is likely that loads or
1931 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1932 // them.
1933 // This can cause code churn which can have unintended consequences down
1934 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1935 // FIXME: This is a workaround for a deficiency in SROA - see
1936 // https://llvm.org/bugs/show_bug.cgi?id=30188
1937 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1938 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1940 return false;
1941 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1942 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1944 return false;
1945 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1946 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1948 return false;
1950 // For calls to be sinkable, they must all be indirect, or have same callee.
1951 // I.e. if we have two direct calls to different callees, we don't want to
1952 // turn that into an indirect call. Likewise, if we have an indirect call,
1953 // and a direct call, we don't actually want to have a single indirect call.
1954 if (isa<CallBase>(I0)) {
1955 auto IsIndirectCall = [](const Instruction *I) {
1956 return cast<CallBase>(I)->isIndirectCall();
1958 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1959 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1960 if (HaveIndirectCalls) {
1961 if (!AllCallsAreIndirect)
1962 return false;
1963 } else {
1964 // All callees must be identical.
1965 Value *Callee = nullptr;
1966 for (const Instruction *I : Insts) {
1967 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1968 if (!Callee)
1969 Callee = CurrCallee;
1970 else if (Callee != CurrCallee)
1971 return false;
1976 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1977 Value *Op = I0->getOperand(OI);
1978 if (Op->getType()->isTokenTy())
1979 // Don't touch any operand of token type.
1980 return false;
1982 auto SameAsI0 = [&I0, OI](const Instruction *I) {
1983 assert(I->getNumOperands() == I0->getNumOperands());
1984 return I->getOperand(OI) == I0->getOperand(OI);
1986 if (!all_of(Insts, SameAsI0)) {
1987 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1988 !canReplaceOperandWithVariable(I0, OI))
1989 // We can't create a PHI from this GEP.
1990 return false;
1991 for (auto *I : Insts)
1992 PHIOperands[I].push_back(I->getOperand(OI));
1995 return true;
1998 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1999 // instruction of every block in Blocks to their common successor, commoning
2000 // into one instruction.
2001 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
2002 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
2004 // canSinkInstructions returning true guarantees that every block has at
2005 // least one non-terminator instruction.
2006 SmallVector<Instruction*,4> Insts;
2007 for (auto *BB : Blocks) {
2008 Instruction *I = BB->getTerminator();
2009 do {
2010 I = I->getPrevNode();
2011 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
2012 if (!isa<DbgInfoIntrinsic>(I))
2013 Insts.push_back(I);
2016 // The only checking we need to do now is that all users of all instructions
2017 // are the same PHI node. canSinkInstructions should have checked this but
2018 // it is slightly over-aggressive - it gets confused by commutative
2019 // instructions so double-check it here.
2020 Instruction *I0 = Insts.front();
2021 if (!I0->user_empty()) {
2022 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
2023 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
2024 auto *U = cast<Instruction>(*I->user_begin());
2025 return U == PNUse;
2027 return false;
2030 // We don't need to do any more checking here; canSinkInstructions should
2031 // have done it all for us.
2032 SmallVector<Value*, 4> NewOperands;
2033 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
2034 // This check is different to that in canSinkInstructions. There, we
2035 // cared about the global view once simplifycfg (and instcombine) have
2036 // completed - it takes into account PHIs that become trivially
2037 // simplifiable. However here we need a more local view; if an operand
2038 // differs we create a PHI and rely on instcombine to clean up the very
2039 // small mess we may make.
2040 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
2041 return I->getOperand(O) != I0->getOperand(O);
2043 if (!NeedPHI) {
2044 NewOperands.push_back(I0->getOperand(O));
2045 continue;
2048 // Create a new PHI in the successor block and populate it.
2049 auto *Op = I0->getOperand(O);
2050 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
2051 auto *PN =
2052 PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink");
2053 PN->insertBefore(BBEnd->begin());
2054 for (auto *I : Insts)
2055 PN->addIncoming(I->getOperand(O), I->getParent());
2056 NewOperands.push_back(PN);
2059 // Arbitrarily use I0 as the new "common" instruction; remap its operands
2060 // and move it to the start of the successor block.
2061 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
2062 I0->getOperandUse(O).set(NewOperands[O]);
2064 I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt());
2066 // Update metadata and IR flags, and merge debug locations.
2067 for (auto *I : Insts)
2068 if (I != I0) {
2069 // The debug location for the "common" instruction is the merged locations
2070 // of all the commoned instructions. We start with the original location
2071 // of the "common" instruction and iteratively merge each location in the
2072 // loop below.
2073 // This is an N-way merge, which will be inefficient if I0 is a CallInst.
2074 // However, as N-way merge for CallInst is rare, so we use simplified API
2075 // instead of using complex API for N-way merge.
2076 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
2077 combineMetadataForCSE(I0, I, true);
2078 I0->andIRFlags(I);
2081 if (!I0->user_empty()) {
2082 // canSinkLastInstruction checked that all instructions were used by
2083 // one and only one PHI node. Find that now, RAUW it to our common
2084 // instruction and nuke it.
2085 auto *PN = cast<PHINode>(*I0->user_begin());
2086 PN->replaceAllUsesWith(I0);
2087 PN->eraseFromParent();
2090 // Finally nuke all instructions apart from the common instruction.
2091 for (auto *I : Insts) {
2092 if (I == I0)
2093 continue;
2094 // The remaining uses are debug users, replace those with the common inst.
2095 // In most (all?) cases this just introduces a use-before-def.
2096 assert(I->user_empty() && "Inst unexpectedly still has non-dbg users");
2097 I->replaceAllUsesWith(I0);
2098 I->eraseFromParent();
2101 return true;
2104 namespace {
2106 // LockstepReverseIterator - Iterates through instructions
2107 // in a set of blocks in reverse order from the first non-terminator.
2108 // For example (assume all blocks have size n):
2109 // LockstepReverseIterator I([B1, B2, B3]);
2110 // *I-- = [B1[n], B2[n], B3[n]];
2111 // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
2112 // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
2113 // ...
2114 class LockstepReverseIterator {
2115 ArrayRef<BasicBlock*> Blocks;
2116 SmallVector<Instruction*,4> Insts;
2117 bool Fail;
2119 public:
2120 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
2121 reset();
2124 void reset() {
2125 Fail = false;
2126 Insts.clear();
2127 for (auto *BB : Blocks) {
2128 Instruction *Inst = BB->getTerminator();
2129 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2130 Inst = Inst->getPrevNode();
2131 if (!Inst) {
2132 // Block wasn't big enough.
2133 Fail = true;
2134 return;
2136 Insts.push_back(Inst);
2140 bool isValid() const {
2141 return !Fail;
2144 void operator--() {
2145 if (Fail)
2146 return;
2147 for (auto *&Inst : Insts) {
2148 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2149 Inst = Inst->getPrevNode();
2150 // Already at beginning of block.
2151 if (!Inst) {
2152 Fail = true;
2153 return;
2158 void operator++() {
2159 if (Fail)
2160 return;
2161 for (auto *&Inst : Insts) {
2162 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2163 Inst = Inst->getNextNode();
2164 // Already at end of block.
2165 if (!Inst) {
2166 Fail = true;
2167 return;
2172 ArrayRef<Instruction*> operator * () const {
2173 return Insts;
2177 } // end anonymous namespace
2179 /// Check whether BB's predecessors end with unconditional branches. If it is
2180 /// true, sink any common code from the predecessors to BB.
2181 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
2182 DomTreeUpdater *DTU) {
2183 // We support two situations:
2184 // (1) all incoming arcs are unconditional
2185 // (2) there are non-unconditional incoming arcs
2187 // (2) is very common in switch defaults and
2188 // else-if patterns;
2190 // if (a) f(1);
2191 // else if (b) f(2);
2193 // produces:
2195 // [if]
2196 // / \
2197 // [f(1)] [if]
2198 // | | \
2199 // | | |
2200 // | [f(2)]|
2201 // \ | /
2202 // [ end ]
2204 // [end] has two unconditional predecessor arcs and one conditional. The
2205 // conditional refers to the implicit empty 'else' arc. This conditional
2206 // arc can also be caused by an empty default block in a switch.
2208 // In this case, we attempt to sink code from all *unconditional* arcs.
2209 // If we can sink instructions from these arcs (determined during the scan
2210 // phase below) we insert a common successor for all unconditional arcs and
2211 // connect that to [end], to enable sinking:
2213 // [if]
2214 // / \
2215 // [x(1)] [if]
2216 // | | \
2217 // | | \
2218 // | [x(2)] |
2219 // \ / |
2220 // [sink.split] |
2221 // \ /
2222 // [ end ]
2224 SmallVector<BasicBlock*,4> UnconditionalPreds;
2225 bool HaveNonUnconditionalPredecessors = false;
2226 for (auto *PredBB : predecessors(BB)) {
2227 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2228 if (PredBr && PredBr->isUnconditional())
2229 UnconditionalPreds.push_back(PredBB);
2230 else
2231 HaveNonUnconditionalPredecessors = true;
2233 if (UnconditionalPreds.size() < 2)
2234 return false;
2236 // We take a two-step approach to tail sinking. First we scan from the end of
2237 // each block upwards in lockstep. If the n'th instruction from the end of each
2238 // block can be sunk, those instructions are added to ValuesToSink and we
2239 // carry on. If we can sink an instruction but need to PHI-merge some operands
2240 // (because they're not identical in each instruction) we add these to
2241 // PHIOperands.
2242 int ScanIdx = 0;
2243 SmallPtrSet<Value*,4> InstructionsToSink;
2244 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2245 LockstepReverseIterator LRI(UnconditionalPreds);
2246 while (LRI.isValid() &&
2247 canSinkInstructions(*LRI, PHIOperands)) {
2248 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2249 << "\n");
2250 InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2251 ++ScanIdx;
2252 --LRI;
2255 // If no instructions can be sunk, early-return.
2256 if (ScanIdx == 0)
2257 return false;
2259 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2261 if (!followedByDeoptOrUnreachable) {
2262 // Okay, we *could* sink last ScanIdx instructions. But how many can we
2263 // actually sink before encountering instruction that is unprofitable to
2264 // sink?
2265 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2266 unsigned NumPHIdValues = 0;
2267 for (auto *I : *LRI)
2268 for (auto *V : PHIOperands[I]) {
2269 if (!InstructionsToSink.contains(V))
2270 ++NumPHIdValues;
2271 // FIXME: this check is overly optimistic. We may end up not sinking
2272 // said instruction, due to the very same profitability check.
2273 // See @creating_too_many_phis in sink-common-code.ll.
2275 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2276 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2277 if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2278 NumPHIInsts++;
2280 return NumPHIInsts <= 1;
2283 // We've determined that we are going to sink last ScanIdx instructions,
2284 // and recorded them in InstructionsToSink. Now, some instructions may be
2285 // unprofitable to sink. But that determination depends on the instructions
2286 // that we are going to sink.
2288 // First, forward scan: find the first instruction unprofitable to sink,
2289 // recording all the ones that are profitable to sink.
2290 // FIXME: would it be better, after we detect that not all are profitable.
2291 // to either record the profitable ones, or erase the unprofitable ones?
2292 // Maybe we need to choose (at runtime) the one that will touch least
2293 // instrs?
2294 LRI.reset();
2295 int Idx = 0;
2296 SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2297 while (Idx < ScanIdx) {
2298 if (!ProfitableToSinkInstruction(LRI)) {
2299 // Too many PHIs would be created.
2300 LLVM_DEBUG(
2301 dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2302 break;
2304 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2305 --LRI;
2306 ++Idx;
2309 // If no instructions can be sunk, early-return.
2310 if (Idx == 0)
2311 return false;
2313 // Did we determine that (only) some instructions are unprofitable to sink?
2314 if (Idx < ScanIdx) {
2315 // Okay, some instructions are unprofitable.
2316 ScanIdx = Idx;
2317 InstructionsToSink = InstructionsProfitableToSink;
2319 // But, that may make other instructions unprofitable, too.
2320 // So, do a backward scan, do any earlier instructions become
2321 // unprofitable?
2322 assert(
2323 !ProfitableToSinkInstruction(LRI) &&
2324 "We already know that the last instruction is unprofitable to sink");
2325 ++LRI;
2326 --Idx;
2327 while (Idx >= 0) {
2328 // If we detect that an instruction becomes unprofitable to sink,
2329 // all earlier instructions won't be sunk either,
2330 // so preemptively keep InstructionsProfitableToSink in sync.
2331 // FIXME: is this the most performant approach?
2332 for (auto *I : *LRI)
2333 InstructionsProfitableToSink.erase(I);
2334 if (!ProfitableToSinkInstruction(LRI)) {
2335 // Everything starting with this instruction won't be sunk.
2336 ScanIdx = Idx;
2337 InstructionsToSink = InstructionsProfitableToSink;
2339 ++LRI;
2340 --Idx;
2344 // If no instructions can be sunk, early-return.
2345 if (ScanIdx == 0)
2346 return false;
2349 bool Changed = false;
2351 if (HaveNonUnconditionalPredecessors) {
2352 if (!followedByDeoptOrUnreachable) {
2353 // It is always legal to sink common instructions from unconditional
2354 // predecessors. However, if not all predecessors are unconditional,
2355 // this transformation might be pessimizing. So as a rule of thumb,
2356 // don't do it unless we'd sink at least one non-speculatable instruction.
2357 // See https://bugs.llvm.org/show_bug.cgi?id=30244
2358 LRI.reset();
2359 int Idx = 0;
2360 bool Profitable = false;
2361 while (Idx < ScanIdx) {
2362 if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2363 Profitable = true;
2364 break;
2366 --LRI;
2367 ++Idx;
2369 if (!Profitable)
2370 return false;
2373 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2374 // We have a conditional edge and we're going to sink some instructions.
2375 // Insert a new block postdominating all blocks we're going to sink from.
2376 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2377 // Edges couldn't be split.
2378 return false;
2379 Changed = true;
2382 // Now that we've analyzed all potential sinking candidates, perform the
2383 // actual sink. We iteratively sink the last non-terminator of the source
2384 // blocks into their common successor unless doing so would require too
2385 // many PHI instructions to be generated (currently only one PHI is allowed
2386 // per sunk instruction).
2388 // We can use InstructionsToSink to discount values needing PHI-merging that will
2389 // actually be sunk in a later iteration. This allows us to be more
2390 // aggressive in what we sink. This does allow a false positive where we
2391 // sink presuming a later value will also be sunk, but stop half way through
2392 // and never actually sink it which means we produce more PHIs than intended.
2393 // This is unlikely in practice though.
2394 int SinkIdx = 0;
2395 for (; SinkIdx != ScanIdx; ++SinkIdx) {
2396 LLVM_DEBUG(dbgs() << "SINK: Sink: "
2397 << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2398 << "\n");
2400 // Because we've sunk every instruction in turn, the current instruction to
2401 // sink is always at index 0.
2402 LRI.reset();
2404 if (!sinkLastInstruction(UnconditionalPreds)) {
2405 LLVM_DEBUG(
2406 dbgs()
2407 << "SINK: stopping here, failed to actually sink instruction!\n");
2408 break;
2411 NumSinkCommonInstrs++;
2412 Changed = true;
2414 if (SinkIdx != 0)
2415 ++NumSinkCommonCode;
2416 return Changed;
2419 namespace {
2421 struct CompatibleSets {
2422 using SetTy = SmallVector<InvokeInst *, 2>;
2424 SmallVector<SetTy, 1> Sets;
2426 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2428 SetTy &getCompatibleSet(InvokeInst *II);
2430 void insert(InvokeInst *II);
2433 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2434 // Perform a linear scan over all the existing sets, see if the new `invoke`
2435 // is compatible with any particular set. Since we know that all the `invokes`
2436 // within a set are compatible, only check the first `invoke` in each set.
2437 // WARNING: at worst, this has quadratic complexity.
2438 for (CompatibleSets::SetTy &Set : Sets) {
2439 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2440 return Set;
2443 // Otherwise, we either had no sets yet, or this invoke forms a new set.
2444 return Sets.emplace_back();
2447 void CompatibleSets::insert(InvokeInst *II) {
2448 getCompatibleSet(II).emplace_back(II);
2451 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2452 assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2454 // Can we theoretically merge these `invoke`s?
2455 auto IsIllegalToMerge = [](InvokeInst *II) {
2456 return II->cannotMerge() || II->isInlineAsm();
2458 if (any_of(Invokes, IsIllegalToMerge))
2459 return false;
2461 // Either both `invoke`s must be direct,
2462 // or both `invoke`s must be indirect.
2463 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2464 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2465 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2466 if (HaveIndirectCalls) {
2467 if (!AllCallsAreIndirect)
2468 return false;
2469 } else {
2470 // All callees must be identical.
2471 Value *Callee = nullptr;
2472 for (InvokeInst *II : Invokes) {
2473 Value *CurrCallee = II->getCalledOperand();
2474 assert(CurrCallee && "There is always a called operand.");
2475 if (!Callee)
2476 Callee = CurrCallee;
2477 else if (Callee != CurrCallee)
2478 return false;
2482 // Either both `invoke`s must not have a normal destination,
2483 // or both `invoke`s must have a normal destination,
2484 auto HasNormalDest = [](InvokeInst *II) {
2485 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2487 if (any_of(Invokes, HasNormalDest)) {
2488 // Do not merge `invoke` that does not have a normal destination with one
2489 // that does have a normal destination, even though doing so would be legal.
2490 if (!all_of(Invokes, HasNormalDest))
2491 return false;
2493 // All normal destinations must be identical.
2494 BasicBlock *NormalBB = nullptr;
2495 for (InvokeInst *II : Invokes) {
2496 BasicBlock *CurrNormalBB = II->getNormalDest();
2497 assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2498 if (!NormalBB)
2499 NormalBB = CurrNormalBB;
2500 else if (NormalBB != CurrNormalBB)
2501 return false;
2504 // In the normal destination, the incoming values for these two `invoke`s
2505 // must be compatible.
2506 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2507 if (!IncomingValuesAreCompatible(
2508 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2509 &EquivalenceSet))
2510 return false;
2513 #ifndef NDEBUG
2514 // All unwind destinations must be identical.
2515 // We know that because we have started from said unwind destination.
2516 BasicBlock *UnwindBB = nullptr;
2517 for (InvokeInst *II : Invokes) {
2518 BasicBlock *CurrUnwindBB = II->getUnwindDest();
2519 assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2520 if (!UnwindBB)
2521 UnwindBB = CurrUnwindBB;
2522 else
2523 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2525 #endif
2527 // In the unwind destination, the incoming values for these two `invoke`s
2528 // must be compatible.
2529 if (!IncomingValuesAreCompatible(
2530 Invokes.front()->getUnwindDest(),
2531 {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2532 return false;
2534 // Ignoring arguments, these `invoke`s must be identical,
2535 // including operand bundles.
2536 const InvokeInst *II0 = Invokes.front();
2537 for (auto *II : Invokes.drop_front())
2538 if (!II->isSameOperationAs(II0))
2539 return false;
2541 // Can we theoretically form the data operands for the merged `invoke`?
2542 auto IsIllegalToMergeArguments = [](auto Ops) {
2543 Use &U0 = std::get<0>(Ops);
2544 Use &U1 = std::get<1>(Ops);
2545 if (U0 == U1)
2546 return false;
2547 return U0->getType()->isTokenTy() ||
2548 !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()),
2549 U0.getOperandNo());
2551 assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2552 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2553 IsIllegalToMergeArguments))
2554 return false;
2556 return true;
2559 } // namespace
2561 // Merge all invokes in the provided set, all of which are compatible
2562 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2563 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2564 DomTreeUpdater *DTU) {
2565 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2567 SmallVector<DominatorTree::UpdateType, 8> Updates;
2568 if (DTU)
2569 Updates.reserve(2 + 3 * Invokes.size());
2571 bool HasNormalDest =
2572 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2574 // Clone one of the invokes into a new basic block.
2575 // Since they are all compatible, it doesn't matter which invoke is cloned.
2576 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2577 InvokeInst *II0 = Invokes.front();
2578 BasicBlock *II0BB = II0->getParent();
2579 BasicBlock *InsertBeforeBlock =
2580 II0->getParent()->getIterator()->getNextNode();
2581 Function *Func = II0BB->getParent();
2582 LLVMContext &Ctx = II0->getContext();
2584 BasicBlock *MergedInvokeBB = BasicBlock::Create(
2585 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2587 auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2588 // NOTE: all invokes have the same attributes, so no handling needed.
2589 MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end());
2591 if (!HasNormalDest) {
2592 // This set does not have a normal destination,
2593 // so just form a new block with unreachable terminator.
2594 BasicBlock *MergedNormalDest = BasicBlock::Create(
2595 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2596 new UnreachableInst(Ctx, MergedNormalDest);
2597 MergedInvoke->setNormalDest(MergedNormalDest);
2600 // The unwind destination, however, remainds identical for all invokes here.
2602 return MergedInvoke;
2603 }();
2605 if (DTU) {
2606 // Predecessor blocks that contained these invokes will now branch to
2607 // the new block that contains the merged invoke, ...
2608 for (InvokeInst *II : Invokes)
2609 Updates.push_back(
2610 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2612 // ... which has the new `unreachable` block as normal destination,
2613 // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2614 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2615 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2616 SuccBBOfMergedInvoke});
2618 // Since predecessor blocks now unconditionally branch to a new block,
2619 // they no longer branch to their original successors.
2620 for (InvokeInst *II : Invokes)
2621 for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2622 Updates.push_back(
2623 {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2626 bool IsIndirectCall = Invokes[0]->isIndirectCall();
2628 // Form the merged operands for the merged invoke.
2629 for (Use &U : MergedInvoke->operands()) {
2630 // Only PHI together the indirect callees and data operands.
2631 if (MergedInvoke->isCallee(&U)) {
2632 if (!IsIndirectCall)
2633 continue;
2634 } else if (!MergedInvoke->isDataOperand(&U))
2635 continue;
2637 // Don't create trivial PHI's with all-identical incoming values.
2638 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2639 return II->getOperand(U.getOperandNo()) != U.get();
2641 if (!NeedPHI)
2642 continue;
2644 // Form a PHI out of all the data ops under this index.
2645 PHINode *PN = PHINode::Create(
2646 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke);
2647 for (InvokeInst *II : Invokes)
2648 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2650 U.set(PN);
2653 // We've ensured that each PHI node has compatible (identical) incoming values
2654 // when coming from each of the `invoke`s in the current merge set,
2655 // so update the PHI nodes accordingly.
2656 for (BasicBlock *Succ : successors(MergedInvoke))
2657 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2658 /*ExistPred=*/Invokes.front()->getParent());
2660 // And finally, replace the original `invoke`s with an unconditional branch
2661 // to the block with the merged `invoke`. Also, give that merged `invoke`
2662 // the merged debugloc of all the original `invoke`s.
2663 DILocation *MergedDebugLoc = nullptr;
2664 for (InvokeInst *II : Invokes) {
2665 // Compute the debug location common to all the original `invoke`s.
2666 if (!MergedDebugLoc)
2667 MergedDebugLoc = II->getDebugLoc();
2668 else
2669 MergedDebugLoc =
2670 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2672 // And replace the old `invoke` with an unconditionally branch
2673 // to the block with the merged `invoke`.
2674 for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2675 OrigSuccBB->removePredecessor(II->getParent());
2676 BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2677 II->replaceAllUsesWith(MergedInvoke);
2678 II->eraseFromParent();
2679 ++NumInvokesMerged;
2681 MergedInvoke->setDebugLoc(MergedDebugLoc);
2682 ++NumInvokeSetsFormed;
2684 if (DTU)
2685 DTU->applyUpdates(Updates);
2688 /// If this block is a `landingpad` exception handling block, categorize all
2689 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2690 /// being "mergeable" together, and then merge invokes in each set together.
2692 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2693 /// [...] [...]
2694 /// | |
2695 /// [invoke0] [invoke1]
2696 /// / \ / \
2697 /// [cont0] [landingpad] [cont1]
2698 /// to:
2699 /// [...] [...]
2700 /// \ /
2701 /// [invoke]
2702 /// / \
2703 /// [cont] [landingpad]
2705 /// But of course we can only do that if the invokes share the `landingpad`,
2706 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2707 /// and the invoked functions are "compatible".
2708 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2709 if (!EnableMergeCompatibleInvokes)
2710 return false;
2712 bool Changed = false;
2714 // FIXME: generalize to all exception handling blocks?
2715 if (!BB->isLandingPad())
2716 return Changed;
2718 CompatibleSets Grouper;
2720 // Record all the predecessors of this `landingpad`. As per verifier,
2721 // the only allowed predecessor is the unwind edge of an `invoke`.
2722 // We want to group "compatible" `invokes` into the same set to be merged.
2723 for (BasicBlock *PredBB : predecessors(BB))
2724 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2726 // And now, merge `invoke`s that were grouped togeter.
2727 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2728 if (Invokes.size() < 2)
2729 continue;
2730 Changed = true;
2731 MergeCompatibleInvokesImpl(Invokes, DTU);
2734 return Changed;
2737 namespace {
2738 /// Track ephemeral values, which should be ignored for cost-modelling
2739 /// purposes. Requires walking instructions in reverse order.
2740 class EphemeralValueTracker {
2741 SmallPtrSet<const Instruction *, 32> EphValues;
2743 bool isEphemeral(const Instruction *I) {
2744 if (isa<AssumeInst>(I))
2745 return true;
2746 return !I->mayHaveSideEffects() && !I->isTerminator() &&
2747 all_of(I->users(), [&](const User *U) {
2748 return EphValues.count(cast<Instruction>(U));
2752 public:
2753 bool track(const Instruction *I) {
2754 if (isEphemeral(I)) {
2755 EphValues.insert(I);
2756 return true;
2758 return false;
2761 bool contains(const Instruction *I) const { return EphValues.contains(I); }
2763 } // namespace
2765 /// Determine if we can hoist sink a sole store instruction out of a
2766 /// conditional block.
2768 /// We are looking for code like the following:
2769 /// BrBB:
2770 /// store i32 %add, i32* %arrayidx2
2771 /// ... // No other stores or function calls (we could be calling a memory
2772 /// ... // function).
2773 /// %cmp = icmp ult %x, %y
2774 /// br i1 %cmp, label %EndBB, label %ThenBB
2775 /// ThenBB:
2776 /// store i32 %add5, i32* %arrayidx2
2777 /// br label EndBB
2778 /// EndBB:
2779 /// ...
2780 /// We are going to transform this into:
2781 /// BrBB:
2782 /// store i32 %add, i32* %arrayidx2
2783 /// ... //
2784 /// %cmp = icmp ult %x, %y
2785 /// %add.add5 = select i1 %cmp, i32 %add, %add5
2786 /// store i32 %add.add5, i32* %arrayidx2
2787 /// ...
2789 /// \return The pointer to the value of the previous store if the store can be
2790 /// hoisted into the predecessor block. 0 otherwise.
2791 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2792 BasicBlock *StoreBB, BasicBlock *EndBB) {
2793 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2794 if (!StoreToHoist)
2795 return nullptr;
2797 // Volatile or atomic.
2798 if (!StoreToHoist->isSimple())
2799 return nullptr;
2801 Value *StorePtr = StoreToHoist->getPointerOperand();
2802 Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2804 // Look for a store to the same pointer in BrBB.
2805 unsigned MaxNumInstToLookAt = 9;
2806 // Skip pseudo probe intrinsic calls which are not really killing any memory
2807 // accesses.
2808 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2809 if (!MaxNumInstToLookAt)
2810 break;
2811 --MaxNumInstToLookAt;
2813 // Could be calling an instruction that affects memory like free().
2814 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2815 return nullptr;
2817 if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2818 // Found the previous store to same location and type. Make sure it is
2819 // simple, to avoid introducing a spurious non-atomic write after an
2820 // atomic write.
2821 if (SI->getPointerOperand() == StorePtr &&
2822 SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2823 // Found the previous store, return its value operand.
2824 return SI->getValueOperand();
2825 return nullptr; // Unknown store.
2828 if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2829 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2830 LI->isSimple()) {
2831 // Local objects (created by an `alloca` instruction) are always
2832 // writable, so once we are past a read from a location it is valid to
2833 // also write to that same location.
2834 // If the address of the local object never escapes the function, that
2835 // means it's never concurrently read or written, hence moving the store
2836 // from under the condition will not introduce a data race.
2837 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2838 if (AI && !PointerMayBeCaptured(AI, false, true))
2839 // Found a previous load, return it.
2840 return LI;
2842 // The load didn't work out, but we may still find a store.
2846 return nullptr;
2849 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2850 /// converted to selects.
2851 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2852 BasicBlock *EndBB,
2853 unsigned &SpeculatedInstructions,
2854 InstructionCost &Cost,
2855 const TargetTransformInfo &TTI) {
2856 TargetTransformInfo::TargetCostKind CostKind =
2857 BB->getParent()->hasMinSize()
2858 ? TargetTransformInfo::TCK_CodeSize
2859 : TargetTransformInfo::TCK_SizeAndLatency;
2861 bool HaveRewritablePHIs = false;
2862 for (PHINode &PN : EndBB->phis()) {
2863 Value *OrigV = PN.getIncomingValueForBlock(BB);
2864 Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2866 // FIXME: Try to remove some of the duplication with
2867 // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial.
2868 if (ThenV == OrigV)
2869 continue;
2871 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2872 CmpInst::BAD_ICMP_PREDICATE, CostKind);
2874 // Don't convert to selects if we could remove undefined behavior instead.
2875 if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2876 passingValueIsAlwaysUndefined(ThenV, &PN))
2877 return false;
2879 HaveRewritablePHIs = true;
2880 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2881 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2882 if (!OrigCE && !ThenCE)
2883 continue; // Known cheap (FIXME: Maybe not true for aggregates).
2885 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2886 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2887 InstructionCost MaxCost =
2888 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2889 if (OrigCost + ThenCost > MaxCost)
2890 return false;
2892 // Account for the cost of an unfolded ConstantExpr which could end up
2893 // getting expanded into Instructions.
2894 // FIXME: This doesn't account for how many operations are combined in the
2895 // constant expression.
2896 ++SpeculatedInstructions;
2897 if (SpeculatedInstructions > 1)
2898 return false;
2901 return HaveRewritablePHIs;
2904 /// Speculate a conditional basic block flattening the CFG.
2906 /// Note that this is a very risky transform currently. Speculating
2907 /// instructions like this is most often not desirable. Instead, there is an MI
2908 /// pass which can do it with full awareness of the resource constraints.
2909 /// However, some cases are "obvious" and we should do directly. An example of
2910 /// this is speculating a single, reasonably cheap instruction.
2912 /// There is only one distinct advantage to flattening the CFG at the IR level:
2913 /// it makes very common but simplistic optimizations such as are common in
2914 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2915 /// modeling their effects with easier to reason about SSA value graphs.
2918 /// An illustration of this transform is turning this IR:
2919 /// \code
2920 /// BB:
2921 /// %cmp = icmp ult %x, %y
2922 /// br i1 %cmp, label %EndBB, label %ThenBB
2923 /// ThenBB:
2924 /// %sub = sub %x, %y
2925 /// br label BB2
2926 /// EndBB:
2927 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2928 /// ...
2929 /// \endcode
2931 /// Into this IR:
2932 /// \code
2933 /// BB:
2934 /// %cmp = icmp ult %x, %y
2935 /// %sub = sub %x, %y
2936 /// %cond = select i1 %cmp, 0, %sub
2937 /// ...
2938 /// \endcode
2940 /// \returns true if the conditional block is removed.
2941 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI,
2942 BasicBlock *ThenBB) {
2943 if (!Options.SpeculateBlocks)
2944 return false;
2946 // Be conservative for now. FP select instruction can often be expensive.
2947 Value *BrCond = BI->getCondition();
2948 if (isa<FCmpInst>(BrCond))
2949 return false;
2951 BasicBlock *BB = BI->getParent();
2952 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2953 InstructionCost Budget =
2954 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2956 // If ThenBB is actually on the false edge of the conditional branch, remember
2957 // to swap the select operands later.
2958 bool Invert = false;
2959 if (ThenBB != BI->getSuccessor(0)) {
2960 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2961 Invert = true;
2963 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2965 // If the branch is non-unpredictable, and is predicted to *not* branch to
2966 // the `then` block, then avoid speculating it.
2967 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2968 uint64_t TWeight, FWeight;
2969 if (extractBranchWeights(*BI, TWeight, FWeight) &&
2970 (TWeight + FWeight) != 0) {
2971 uint64_t EndWeight = Invert ? TWeight : FWeight;
2972 BranchProbability BIEndProb =
2973 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2974 BranchProbability Likely = TTI.getPredictableBranchThreshold();
2975 if (BIEndProb >= Likely)
2976 return false;
2980 // Keep a count of how many times instructions are used within ThenBB when
2981 // they are candidates for sinking into ThenBB. Specifically:
2982 // - They are defined in BB, and
2983 // - They have no side effects, and
2984 // - All of their uses are in ThenBB.
2985 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2987 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2989 unsigned SpeculatedInstructions = 0;
2990 Value *SpeculatedStoreValue = nullptr;
2991 StoreInst *SpeculatedStore = nullptr;
2992 EphemeralValueTracker EphTracker;
2993 for (Instruction &I : reverse(drop_end(*ThenBB))) {
2994 // Skip debug info.
2995 if (isa<DbgInfoIntrinsic>(I)) {
2996 SpeculatedDbgIntrinsics.push_back(&I);
2997 continue;
3000 // Skip pseudo probes. The consequence is we lose track of the branch
3001 // probability for ThenBB, which is fine since the optimization here takes
3002 // place regardless of the branch probability.
3003 if (isa<PseudoProbeInst>(I)) {
3004 // The probe should be deleted so that it will not be over-counted when
3005 // the samples collected on the non-conditional path are counted towards
3006 // the conditional path. We leave it for the counts inference algorithm to
3007 // figure out a proper count for an unknown probe.
3008 SpeculatedDbgIntrinsics.push_back(&I);
3009 continue;
3012 // Ignore ephemeral values, they will be dropped by the transform.
3013 if (EphTracker.track(&I))
3014 continue;
3016 // Only speculatively execute a single instruction (not counting the
3017 // terminator) for now.
3018 ++SpeculatedInstructions;
3019 if (SpeculatedInstructions > 1)
3020 return false;
3022 // Don't hoist the instruction if it's unsafe or expensive.
3023 if (!isSafeToSpeculativelyExecute(&I) &&
3024 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
3025 &I, BB, ThenBB, EndBB))))
3026 return false;
3027 if (!SpeculatedStoreValue &&
3028 computeSpeculationCost(&I, TTI) >
3029 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
3030 return false;
3032 // Store the store speculation candidate.
3033 if (SpeculatedStoreValue)
3034 SpeculatedStore = cast<StoreInst>(&I);
3036 // Do not hoist the instruction if any of its operands are defined but not
3037 // used in BB. The transformation will prevent the operand from
3038 // being sunk into the use block.
3039 for (Use &Op : I.operands()) {
3040 Instruction *OpI = dyn_cast<Instruction>(Op);
3041 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
3042 continue; // Not a candidate for sinking.
3044 ++SinkCandidateUseCounts[OpI];
3048 // Consider any sink candidates which are only used in ThenBB as costs for
3049 // speculation. Note, while we iterate over a DenseMap here, we are summing
3050 // and so iteration order isn't significant.
3051 for (const auto &[Inst, Count] : SinkCandidateUseCounts)
3052 if (Inst->hasNUses(Count)) {
3053 ++SpeculatedInstructions;
3054 if (SpeculatedInstructions > 1)
3055 return false;
3058 // Check that we can insert the selects and that it's not too expensive to do
3059 // so.
3060 bool Convert = SpeculatedStore != nullptr;
3061 InstructionCost Cost = 0;
3062 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
3063 SpeculatedInstructions,
3064 Cost, TTI);
3065 if (!Convert || Cost > Budget)
3066 return false;
3068 // If we get here, we can hoist the instruction and if-convert.
3069 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
3071 // Insert a select of the value of the speculated store.
3072 if (SpeculatedStoreValue) {
3073 IRBuilder<NoFolder> Builder(BI);
3074 Value *OrigV = SpeculatedStore->getValueOperand();
3075 Value *TrueV = SpeculatedStore->getValueOperand();
3076 Value *FalseV = SpeculatedStoreValue;
3077 if (Invert)
3078 std::swap(TrueV, FalseV);
3079 Value *S = Builder.CreateSelect(
3080 BrCond, TrueV, FalseV, "spec.store.select", BI);
3081 SpeculatedStore->setOperand(0, S);
3082 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
3083 SpeculatedStore->getDebugLoc());
3084 // The value stored is still conditional, but the store itself is now
3085 // unconditonally executed, so we must be sure that any linked dbg.assign
3086 // intrinsics are tracking the new stored value (the result of the
3087 // select). If we don't, and the store were to be removed by another pass
3088 // (e.g. DSE), then we'd eventually end up emitting a location describing
3089 // the conditional value, unconditionally.
3091 // === Before this transformation ===
3092 // pred:
3093 // store %one, %x.dest, !DIAssignID !1
3094 // dbg.assign %one, "x", ..., !1, ...
3095 // br %cond if.then
3097 // if.then:
3098 // store %two, %x.dest, !DIAssignID !2
3099 // dbg.assign %two, "x", ..., !2, ...
3101 // === After this transformation ===
3102 // pred:
3103 // store %one, %x.dest, !DIAssignID !1
3104 // dbg.assign %one, "x", ..., !1
3105 /// ...
3106 // %merge = select %cond, %two, %one
3107 // store %merge, %x.dest, !DIAssignID !2
3108 // dbg.assign %merge, "x", ..., !2
3109 auto replaceVariable = [OrigV, S](auto *DbgAssign) {
3110 if (llvm::is_contained(DbgAssign->location_ops(), OrigV))
3111 DbgAssign->replaceVariableLocationOp(OrigV, S);
3113 for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable);
3114 for_each(at::getDPVAssignmentMarkers(SpeculatedStore), replaceVariable);
3117 // Metadata can be dependent on the condition we are hoisting above.
3118 // Strip all UB-implying metadata on the instruction. Drop the debug loc
3119 // to avoid making it appear as if the condition is a constant, which would
3120 // be misleading while debugging.
3121 // Similarly strip attributes that maybe dependent on condition we are
3122 // hoisting above.
3123 for (auto &I : make_early_inc_range(*ThenBB)) {
3124 if (!SpeculatedStoreValue || &I != SpeculatedStore) {
3125 // Don't update the DILocation of dbg.assign intrinsics.
3126 if (!isa<DbgAssignIntrinsic>(&I))
3127 I.setDebugLoc(DebugLoc());
3129 I.dropUBImplyingAttrsAndMetadata();
3131 // Drop ephemeral values.
3132 if (EphTracker.contains(&I)) {
3133 I.replaceAllUsesWith(PoisonValue::get(I.getType()));
3134 I.eraseFromParent();
3138 // Hoist the instructions.
3139 // In "RemoveDIs" non-instr debug-info mode, drop DPValues attached to these
3140 // instructions, in the same way that dbg.value intrinsics are dropped at the
3141 // end of this block.
3142 for (auto &It : make_range(ThenBB->begin(), ThenBB->end()))
3143 for (DPValue &DPV : make_early_inc_range(It.getDbgValueRange()))
3144 if (!DPV.isDbgAssign())
3145 It.dropOneDbgValue(&DPV);
3146 BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(),
3147 std::prev(ThenBB->end()));
3149 // Insert selects and rewrite the PHI operands.
3150 IRBuilder<NoFolder> Builder(BI);
3151 for (PHINode &PN : EndBB->phis()) {
3152 unsigned OrigI = PN.getBasicBlockIndex(BB);
3153 unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
3154 Value *OrigV = PN.getIncomingValue(OrigI);
3155 Value *ThenV = PN.getIncomingValue(ThenI);
3157 // Skip PHIs which are trivial.
3158 if (OrigV == ThenV)
3159 continue;
3161 // Create a select whose true value is the speculatively executed value and
3162 // false value is the pre-existing value. Swap them if the branch
3163 // destinations were inverted.
3164 Value *TrueV = ThenV, *FalseV = OrigV;
3165 if (Invert)
3166 std::swap(TrueV, FalseV);
3167 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
3168 PN.setIncomingValue(OrigI, V);
3169 PN.setIncomingValue(ThenI, V);
3172 // Remove speculated dbg intrinsics.
3173 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
3174 // dbg value for the different flows and inserting it after the select.
3175 for (Instruction *I : SpeculatedDbgIntrinsics) {
3176 // We still want to know that an assignment took place so don't remove
3177 // dbg.assign intrinsics.
3178 if (!isa<DbgAssignIntrinsic>(I))
3179 I->eraseFromParent();
3182 ++NumSpeculations;
3183 return true;
3186 /// Return true if we can thread a branch across this block.
3187 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
3188 int Size = 0;
3189 EphemeralValueTracker EphTracker;
3191 // Walk the loop in reverse so that we can identify ephemeral values properly
3192 // (values only feeding assumes).
3193 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
3194 // Can't fold blocks that contain noduplicate or convergent calls.
3195 if (CallInst *CI = dyn_cast<CallInst>(&I))
3196 if (CI->cannotDuplicate() || CI->isConvergent())
3197 return false;
3199 // Ignore ephemeral values which are deleted during codegen.
3200 // We will delete Phis while threading, so Phis should not be accounted in
3201 // block's size.
3202 if (!EphTracker.track(&I) && !isa<PHINode>(I)) {
3203 if (Size++ > MaxSmallBlockSize)
3204 return false; // Don't clone large BB's.
3207 // We can only support instructions that do not define values that are
3208 // live outside of the current basic block.
3209 for (User *U : I.users()) {
3210 Instruction *UI = cast<Instruction>(U);
3211 if (UI->getParent() != BB || isa<PHINode>(UI))
3212 return false;
3215 // Looks ok, continue checking.
3218 return true;
3221 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
3222 BasicBlock *To) {
3223 // Don't look past the block defining the value, we might get the value from
3224 // a previous loop iteration.
3225 auto *I = dyn_cast<Instruction>(V);
3226 if (I && I->getParent() == To)
3227 return nullptr;
3229 // We know the value if the From block branches on it.
3230 auto *BI = dyn_cast<BranchInst>(From->getTerminator());
3231 if (BI && BI->isConditional() && BI->getCondition() == V &&
3232 BI->getSuccessor(0) != BI->getSuccessor(1))
3233 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
3234 : ConstantInt::getFalse(BI->getContext());
3236 return nullptr;
3239 /// If we have a conditional branch on something for which we know the constant
3240 /// value in predecessors (e.g. a phi node in the current block), thread edges
3241 /// from the predecessor to their ultimate destination.
3242 static std::optional<bool>
3243 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3244 const DataLayout &DL,
3245 AssumptionCache *AC) {
3246 SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
3247 BasicBlock *BB = BI->getParent();
3248 Value *Cond = BI->getCondition();
3249 PHINode *PN = dyn_cast<PHINode>(Cond);
3250 if (PN && PN->getParent() == BB) {
3251 // Degenerate case of a single entry PHI.
3252 if (PN->getNumIncomingValues() == 1) {
3253 FoldSingleEntryPHINodes(PN->getParent());
3254 return true;
3257 for (Use &U : PN->incoming_values())
3258 if (auto *CB = dyn_cast<ConstantInt>(U))
3259 KnownValues[CB].insert(PN->getIncomingBlock(U));
3260 } else {
3261 for (BasicBlock *Pred : predecessors(BB)) {
3262 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3263 KnownValues[CB].insert(Pred);
3267 if (KnownValues.empty())
3268 return false;
3270 // Now we know that this block has multiple preds and two succs.
3271 // Check that the block is small enough and values defined in the block are
3272 // not used outside of it.
3273 if (!BlockIsSimpleEnoughToThreadThrough(BB))
3274 return false;
3276 for (const auto &Pair : KnownValues) {
3277 // Okay, we now know that all edges from PredBB should be revectored to
3278 // branch to RealDest.
3279 ConstantInt *CB = Pair.first;
3280 ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3281 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3283 if (RealDest == BB)
3284 continue; // Skip self loops.
3286 // Skip if the predecessor's terminator is an indirect branch.
3287 if (any_of(PredBBs, [](BasicBlock *PredBB) {
3288 return isa<IndirectBrInst>(PredBB->getTerminator());
3290 continue;
3292 LLVM_DEBUG({
3293 dbgs() << "Condition " << *Cond << " in " << BB->getName()
3294 << " has value " << *Pair.first << " in predecessors:\n";
3295 for (const BasicBlock *PredBB : Pair.second)
3296 dbgs() << " " << PredBB->getName() << "\n";
3297 dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3300 // Split the predecessors we are threading into a new edge block. We'll
3301 // clone the instructions into this block, and then redirect it to RealDest.
3302 BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3304 // TODO: These just exist to reduce test diff, we can drop them if we like.
3305 EdgeBB->setName(RealDest->getName() + ".critedge");
3306 EdgeBB->moveBefore(RealDest);
3308 // Update PHI nodes.
3309 AddPredecessorToBlock(RealDest, EdgeBB, BB);
3311 // BB may have instructions that are being threaded over. Clone these
3312 // instructions into EdgeBB. We know that there will be no uses of the
3313 // cloned instructions outside of EdgeBB.
3314 BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3315 DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3316 TranslateMap[Cond] = CB;
3318 // RemoveDIs: track instructions that we optimise away while folding, so
3319 // that we can copy DPValues from them later.
3320 BasicBlock::iterator SrcDbgCursor = BB->begin();
3321 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3322 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3323 TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3324 continue;
3326 // Clone the instruction.
3327 Instruction *N = BBI->clone();
3328 // Insert the new instruction into its new home.
3329 N->insertInto(EdgeBB, InsertPt);
3331 if (BBI->hasName())
3332 N->setName(BBI->getName() + ".c");
3334 // Update operands due to translation.
3335 for (Use &Op : N->operands()) {
3336 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3337 if (PI != TranslateMap.end())
3338 Op = PI->second;
3341 // Check for trivial simplification.
3342 if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3343 if (!BBI->use_empty())
3344 TranslateMap[&*BBI] = V;
3345 if (!N->mayHaveSideEffects()) {
3346 N->eraseFromParent(); // Instruction folded away, don't need actual
3347 // inst
3348 N = nullptr;
3350 } else {
3351 if (!BBI->use_empty())
3352 TranslateMap[&*BBI] = N;
3354 if (N) {
3355 // Copy all debug-info attached to instructions from the last we
3356 // successfully clone, up to this instruction (they might have been
3357 // folded away).
3358 for (; SrcDbgCursor != BBI; ++SrcDbgCursor)
3359 N->cloneDebugInfoFrom(&*SrcDbgCursor);
3360 SrcDbgCursor = std::next(BBI);
3361 // Clone debug-info on this instruction too.
3362 N->cloneDebugInfoFrom(&*BBI);
3364 // Register the new instruction with the assumption cache if necessary.
3365 if (auto *Assume = dyn_cast<AssumeInst>(N))
3366 if (AC)
3367 AC->registerAssumption(Assume);
3371 for (; &*SrcDbgCursor != BI; ++SrcDbgCursor)
3372 InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor);
3373 InsertPt->cloneDebugInfoFrom(BI);
3375 BB->removePredecessor(EdgeBB);
3376 BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3377 EdgeBI->setSuccessor(0, RealDest);
3378 EdgeBI->setDebugLoc(BI->getDebugLoc());
3380 if (DTU) {
3381 SmallVector<DominatorTree::UpdateType, 2> Updates;
3382 Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3383 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3384 DTU->applyUpdates(Updates);
3387 // For simplicity, we created a separate basic block for the edge. Merge
3388 // it back into the predecessor if possible. This not only avoids
3389 // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3390 // bypass the check for trivial cycles above.
3391 MergeBlockIntoPredecessor(EdgeBB, DTU);
3393 // Signal repeat, simplifying any other constants.
3394 return std::nullopt;
3397 return false;
3400 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3401 DomTreeUpdater *DTU,
3402 const DataLayout &DL,
3403 AssumptionCache *AC) {
3404 std::optional<bool> Result;
3405 bool EverChanged = false;
3406 do {
3407 // Note that None means "we changed things, but recurse further."
3408 Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3409 EverChanged |= Result == std::nullopt || *Result;
3410 } while (Result == std::nullopt);
3411 return EverChanged;
3414 /// Given a BB that starts with the specified two-entry PHI node,
3415 /// see if we can eliminate it.
3416 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3417 DomTreeUpdater *DTU, const DataLayout &DL) {
3418 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
3419 // statement", which has a very simple dominance structure. Basically, we
3420 // are trying to find the condition that is being branched on, which
3421 // subsequently causes this merge to happen. We really want control
3422 // dependence information for this check, but simplifycfg can't keep it up
3423 // to date, and this catches most of the cases we care about anyway.
3424 BasicBlock *BB = PN->getParent();
3426 BasicBlock *IfTrue, *IfFalse;
3427 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3428 if (!DomBI)
3429 return false;
3430 Value *IfCond = DomBI->getCondition();
3431 // Don't bother if the branch will be constant folded trivially.
3432 if (isa<ConstantInt>(IfCond))
3433 return false;
3435 BasicBlock *DomBlock = DomBI->getParent();
3436 SmallVector<BasicBlock *, 2> IfBlocks;
3437 llvm::copy_if(
3438 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3439 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3441 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3442 "Will have either one or two blocks to speculate.");
3444 // If the branch is non-unpredictable, see if we either predictably jump to
3445 // the merge bb (if we have only a single 'then' block), or if we predictably
3446 // jump to one specific 'then' block (if we have two of them).
3447 // It isn't beneficial to speculatively execute the code
3448 // from the block that we know is predictably not entered.
3449 if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
3450 uint64_t TWeight, FWeight;
3451 if (extractBranchWeights(*DomBI, TWeight, FWeight) &&
3452 (TWeight + FWeight) != 0) {
3453 BranchProbability BITrueProb =
3454 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3455 BranchProbability Likely = TTI.getPredictableBranchThreshold();
3456 BranchProbability BIFalseProb = BITrueProb.getCompl();
3457 if (IfBlocks.size() == 1) {
3458 BranchProbability BIBBProb =
3459 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3460 if (BIBBProb >= Likely)
3461 return false;
3462 } else {
3463 if (BITrueProb >= Likely || BIFalseProb >= Likely)
3464 return false;
3469 // Don't try to fold an unreachable block. For example, the phi node itself
3470 // can't be the candidate if-condition for a select that we want to form.
3471 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3472 if (IfCondPhiInst->getParent() == BB)
3473 return false;
3475 // Okay, we found that we can merge this two-entry phi node into a select.
3476 // Doing so would require us to fold *all* two entry phi nodes in this block.
3477 // At some point this becomes non-profitable (particularly if the target
3478 // doesn't support cmov's). Only do this transformation if there are two or
3479 // fewer PHI nodes in this block.
3480 unsigned NumPhis = 0;
3481 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3482 if (NumPhis > 2)
3483 return false;
3485 // Loop over the PHI's seeing if we can promote them all to select
3486 // instructions. While we are at it, keep track of the instructions
3487 // that need to be moved to the dominating block.
3488 SmallPtrSet<Instruction *, 4> AggressiveInsts;
3489 InstructionCost Cost = 0;
3490 InstructionCost Budget =
3491 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3493 bool Changed = false;
3494 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3495 PHINode *PN = cast<PHINode>(II++);
3496 if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3497 PN->replaceAllUsesWith(V);
3498 PN->eraseFromParent();
3499 Changed = true;
3500 continue;
3503 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
3504 Cost, Budget, TTI) ||
3505 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
3506 Cost, Budget, TTI))
3507 return Changed;
3510 // If we folded the first phi, PN dangles at this point. Refresh it. If
3511 // we ran out of PHIs then we simplified them all.
3512 PN = dyn_cast<PHINode>(BB->begin());
3513 if (!PN)
3514 return true;
3516 // Return true if at least one of these is a 'not', and another is either
3517 // a 'not' too, or a constant.
3518 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3519 if (!match(V0, m_Not(m_Value())))
3520 std::swap(V0, V1);
3521 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3522 return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3525 // Don't fold i1 branches on PHIs which contain binary operators or
3526 // (possibly inverted) select form of or/ands, unless one of
3527 // the incoming values is an 'not' and another one is freely invertible.
3528 // These can often be turned into switches and other things.
3529 auto IsBinOpOrAnd = [](Value *V) {
3530 return match(
3531 V, m_CombineOr(
3532 m_BinOp(),
3533 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3534 m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3536 if (PN->getType()->isIntegerTy(1) &&
3537 (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3538 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3539 !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3540 PN->getIncomingValue(1)))
3541 return Changed;
3543 // If all PHI nodes are promotable, check to make sure that all instructions
3544 // in the predecessor blocks can be promoted as well. If not, we won't be able
3545 // to get rid of the control flow, so it's not worth promoting to select
3546 // instructions.
3547 for (BasicBlock *IfBlock : IfBlocks)
3548 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3549 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3550 // This is not an aggressive instruction that we can promote.
3551 // Because of this, we won't be able to get rid of the control flow, so
3552 // the xform is not worth it.
3553 return Changed;
3556 // If either of the blocks has it's address taken, we can't do this fold.
3557 if (any_of(IfBlocks,
3558 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3559 return Changed;
3561 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
3562 << " T: " << IfTrue->getName()
3563 << " F: " << IfFalse->getName() << "\n");
3565 // If we can still promote the PHI nodes after this gauntlet of tests,
3566 // do all of the PHI's now.
3568 // Move all 'aggressive' instructions, which are defined in the
3569 // conditional parts of the if's up to the dominating block.
3570 for (BasicBlock *IfBlock : IfBlocks)
3571 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3573 IRBuilder<NoFolder> Builder(DomBI);
3574 // Propagate fast-math-flags from phi nodes to replacement selects.
3575 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3576 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3577 if (isa<FPMathOperator>(PN))
3578 Builder.setFastMathFlags(PN->getFastMathFlags());
3580 // Change the PHI node into a select instruction.
3581 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3582 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3584 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3585 PN->replaceAllUsesWith(Sel);
3586 Sel->takeName(PN);
3587 PN->eraseFromParent();
3590 // At this point, all IfBlocks are empty, so our if statement
3591 // has been flattened. Change DomBlock to jump directly to our new block to
3592 // avoid other simplifycfg's kicking in on the diamond.
3593 Builder.CreateBr(BB);
3595 SmallVector<DominatorTree::UpdateType, 3> Updates;
3596 if (DTU) {
3597 Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3598 for (auto *Successor : successors(DomBlock))
3599 Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3602 DomBI->eraseFromParent();
3603 if (DTU)
3604 DTU->applyUpdates(Updates);
3606 return true;
3609 static Value *createLogicalOp(IRBuilderBase &Builder,
3610 Instruction::BinaryOps Opc, Value *LHS,
3611 Value *RHS, const Twine &Name = "") {
3612 // Try to relax logical op to binary op.
3613 if (impliesPoison(RHS, LHS))
3614 return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3615 if (Opc == Instruction::And)
3616 return Builder.CreateLogicalAnd(LHS, RHS, Name);
3617 if (Opc == Instruction::Or)
3618 return Builder.CreateLogicalOr(LHS, RHS, Name);
3619 llvm_unreachable("Invalid logical opcode");
3622 /// Return true if either PBI or BI has branch weight available, and store
3623 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3624 /// not have branch weight, use 1:1 as its weight.
3625 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3626 uint64_t &PredTrueWeight,
3627 uint64_t &PredFalseWeight,
3628 uint64_t &SuccTrueWeight,
3629 uint64_t &SuccFalseWeight) {
3630 bool PredHasWeights =
3631 extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight);
3632 bool SuccHasWeights =
3633 extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight);
3634 if (PredHasWeights || SuccHasWeights) {
3635 if (!PredHasWeights)
3636 PredTrueWeight = PredFalseWeight = 1;
3637 if (!SuccHasWeights)
3638 SuccTrueWeight = SuccFalseWeight = 1;
3639 return true;
3640 } else {
3641 return false;
3645 /// Determine if the two branches share a common destination and deduce a glue
3646 /// that joins the branches' conditions to arrive at the common destination if
3647 /// that would be profitable.
3648 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>>
3649 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3650 const TargetTransformInfo *TTI) {
3651 assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3652 "Both blocks must end with a conditional branches.");
3653 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3654 "PredBB must be a predecessor of BB.");
3656 // We have the potential to fold the conditions together, but if the
3657 // predecessor branch is predictable, we may not want to merge them.
3658 uint64_t PTWeight, PFWeight;
3659 BranchProbability PBITrueProb, Likely;
3660 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3661 extractBranchWeights(*PBI, PTWeight, PFWeight) &&
3662 (PTWeight + PFWeight) != 0) {
3663 PBITrueProb =
3664 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3665 Likely = TTI->getPredictableBranchThreshold();
3668 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3669 // Speculate the 2nd condition unless the 1st is probably true.
3670 if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3671 return {{BI->getSuccessor(0), Instruction::Or, false}};
3672 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3673 // Speculate the 2nd condition unless the 1st is probably false.
3674 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3675 return {{BI->getSuccessor(1), Instruction::And, false}};
3676 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3677 // Speculate the 2nd condition unless the 1st is probably true.
3678 if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3679 return {{BI->getSuccessor(1), Instruction::And, true}};
3680 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3681 // Speculate the 2nd condition unless the 1st is probably false.
3682 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3683 return {{BI->getSuccessor(0), Instruction::Or, true}};
3685 return std::nullopt;
3688 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3689 DomTreeUpdater *DTU,
3690 MemorySSAUpdater *MSSAU,
3691 const TargetTransformInfo *TTI) {
3692 BasicBlock *BB = BI->getParent();
3693 BasicBlock *PredBlock = PBI->getParent();
3695 // Determine if the two branches share a common destination.
3696 BasicBlock *CommonSucc;
3697 Instruction::BinaryOps Opc;
3698 bool InvertPredCond;
3699 std::tie(CommonSucc, Opc, InvertPredCond) =
3700 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3702 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3704 IRBuilder<> Builder(PBI);
3705 // The builder is used to create instructions to eliminate the branch in BB.
3706 // If BB's terminator has !annotation metadata, add it to the new
3707 // instructions.
3708 Builder.CollectMetadataToCopy(BB->getTerminator(),
3709 {LLVMContext::MD_annotation});
3711 // If we need to invert the condition in the pred block to match, do so now.
3712 if (InvertPredCond) {
3713 InvertBranch(PBI, Builder);
3716 BasicBlock *UniqueSucc =
3717 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3719 // Before cloning instructions, notify the successor basic block that it
3720 // is about to have a new predecessor. This will update PHI nodes,
3721 // which will allow us to update live-out uses of bonus instructions.
3722 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3724 // Try to update branch weights.
3725 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3726 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3727 SuccTrueWeight, SuccFalseWeight)) {
3728 SmallVector<uint64_t, 8> NewWeights;
3730 if (PBI->getSuccessor(0) == BB) {
3731 // PBI: br i1 %x, BB, FalseDest
3732 // BI: br i1 %y, UniqueSucc, FalseDest
3733 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3734 NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3735 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3736 // TrueWeight for PBI * FalseWeight for BI.
3737 // We assume that total weights of a BranchInst can fit into 32 bits.
3738 // Therefore, we will not have overflow using 64-bit arithmetic.
3739 NewWeights.push_back(PredFalseWeight *
3740 (SuccFalseWeight + SuccTrueWeight) +
3741 PredTrueWeight * SuccFalseWeight);
3742 } else {
3743 // PBI: br i1 %x, TrueDest, BB
3744 // BI: br i1 %y, TrueDest, UniqueSucc
3745 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3746 // FalseWeight for PBI * TrueWeight for BI.
3747 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3748 PredFalseWeight * SuccTrueWeight);
3749 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3750 NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3753 // Halve the weights if any of them cannot fit in an uint32_t
3754 FitWeights(NewWeights);
3756 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3757 setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3759 // TODO: If BB is reachable from all paths through PredBlock, then we
3760 // could replace PBI's branch probabilities with BI's.
3761 } else
3762 PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3764 // Now, update the CFG.
3765 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3767 if (DTU)
3768 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3769 {DominatorTree::Delete, PredBlock, BB}});
3771 // If BI was a loop latch, it may have had associated loop metadata.
3772 // We need to copy it to the new latch, that is, PBI.
3773 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3774 PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3776 ValueToValueMapTy VMap; // maps original values to cloned values
3777 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3779 Module *M = BB->getModule();
3781 if (PredBlock->IsNewDbgInfoFormat) {
3782 PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator());
3783 for (DPValue &DPV : PredBlock->getTerminator()->getDbgValueRange()) {
3784 RemapDPValue(M, &DPV, VMap,
3785 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3789 // Now that the Cond was cloned into the predecessor basic block,
3790 // or/and the two conditions together.
3791 Value *BICond = VMap[BI->getCondition()];
3792 PBI->setCondition(
3793 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3795 ++NumFoldBranchToCommonDest;
3796 return true;
3799 /// Return if an instruction's type or any of its operands' types are a vector
3800 /// type.
3801 static bool isVectorOp(Instruction &I) {
3802 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3803 return U->getType()->isVectorTy();
3807 /// If this basic block is simple enough, and if a predecessor branches to us
3808 /// and one of our successors, fold the block into the predecessor and use
3809 /// logical operations to pick the right destination.
3810 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3811 MemorySSAUpdater *MSSAU,
3812 const TargetTransformInfo *TTI,
3813 unsigned BonusInstThreshold) {
3814 // If this block ends with an unconditional branch,
3815 // let SpeculativelyExecuteBB() deal with it.
3816 if (!BI->isConditional())
3817 return false;
3819 BasicBlock *BB = BI->getParent();
3820 TargetTransformInfo::TargetCostKind CostKind =
3821 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3822 : TargetTransformInfo::TCK_SizeAndLatency;
3824 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3826 if (!Cond ||
3827 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
3828 !isa<SelectInst>(Cond)) ||
3829 Cond->getParent() != BB || !Cond->hasOneUse())
3830 return false;
3832 // Finally, don't infinitely unroll conditional loops.
3833 if (is_contained(successors(BB), BB))
3834 return false;
3836 // With which predecessors will we want to deal with?
3837 SmallVector<BasicBlock *, 8> Preds;
3838 for (BasicBlock *PredBlock : predecessors(BB)) {
3839 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3841 // Check that we have two conditional branches. If there is a PHI node in
3842 // the common successor, verify that the same value flows in from both
3843 // blocks.
3844 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3845 continue;
3847 // Determine if the two branches share a common destination.
3848 BasicBlock *CommonSucc;
3849 Instruction::BinaryOps Opc;
3850 bool InvertPredCond;
3851 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3852 std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe;
3853 else
3854 continue;
3856 // Check the cost of inserting the necessary logic before performing the
3857 // transformation.
3858 if (TTI) {
3859 Type *Ty = BI->getCondition()->getType();
3860 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3861 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3862 !isa<CmpInst>(PBI->getCondition())))
3863 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3865 if (Cost > BranchFoldThreshold)
3866 continue;
3869 // Ok, we do want to deal with this predecessor. Record it.
3870 Preds.emplace_back(PredBlock);
3873 // If there aren't any predecessors into which we can fold,
3874 // don't bother checking the cost.
3875 if (Preds.empty())
3876 return false;
3878 // Only allow this transformation if computing the condition doesn't involve
3879 // too many instructions and these involved instructions can be executed
3880 // unconditionally. We denote all involved instructions except the condition
3881 // as "bonus instructions", and only allow this transformation when the
3882 // number of the bonus instructions we'll need to create when cloning into
3883 // each predecessor does not exceed a certain threshold.
3884 unsigned NumBonusInsts = 0;
3885 bool SawVectorOp = false;
3886 const unsigned PredCount = Preds.size();
3887 for (Instruction &I : *BB) {
3888 // Don't check the branch condition comparison itself.
3889 if (&I == Cond)
3890 continue;
3891 // Ignore dbg intrinsics, and the terminator.
3892 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3893 continue;
3894 // I must be safe to execute unconditionally.
3895 if (!isSafeToSpeculativelyExecute(&I))
3896 return false;
3897 SawVectorOp |= isVectorOp(I);
3899 // Account for the cost of duplicating this instruction into each
3900 // predecessor. Ignore free instructions.
3901 if (!TTI || TTI->getInstructionCost(&I, CostKind) !=
3902 TargetTransformInfo::TCC_Free) {
3903 NumBonusInsts += PredCount;
3905 // Early exits once we reach the limit.
3906 if (NumBonusInsts >
3907 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3908 return false;
3911 auto IsBCSSAUse = [BB, &I](Use &U) {
3912 auto *UI = cast<Instruction>(U.getUser());
3913 if (auto *PN = dyn_cast<PHINode>(UI))
3914 return PN->getIncomingBlock(U) == BB;
3915 return UI->getParent() == BB && I.comesBefore(UI);
3918 // Does this instruction require rewriting of uses?
3919 if (!all_of(I.uses(), IsBCSSAUse))
3920 return false;
3922 if (NumBonusInsts >
3923 BonusInstThreshold *
3924 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3925 return false;
3927 // Ok, we have the budget. Perform the transformation.
3928 for (BasicBlock *PredBlock : Preds) {
3929 auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3930 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3932 return false;
3935 // If there is only one store in BB1 and BB2, return it, otherwise return
3936 // nullptr.
3937 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3938 StoreInst *S = nullptr;
3939 for (auto *BB : {BB1, BB2}) {
3940 if (!BB)
3941 continue;
3942 for (auto &I : *BB)
3943 if (auto *SI = dyn_cast<StoreInst>(&I)) {
3944 if (S)
3945 // Multiple stores seen.
3946 return nullptr;
3947 else
3948 S = SI;
3951 return S;
3954 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3955 Value *AlternativeV = nullptr) {
3956 // PHI is going to be a PHI node that allows the value V that is defined in
3957 // BB to be referenced in BB's only successor.
3959 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3960 // doesn't matter to us what the other operand is (it'll never get used). We
3961 // could just create a new PHI with an undef incoming value, but that could
3962 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3963 // other PHI. So here we directly look for some PHI in BB's successor with V
3964 // as an incoming operand. If we find one, we use it, else we create a new
3965 // one.
3967 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3968 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3969 // where OtherBB is the single other predecessor of BB's only successor.
3970 PHINode *PHI = nullptr;
3971 BasicBlock *Succ = BB->getSingleSuccessor();
3973 for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3974 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3975 PHI = cast<PHINode>(I);
3976 if (!AlternativeV)
3977 break;
3979 assert(Succ->hasNPredecessors(2));
3980 auto PredI = pred_begin(Succ);
3981 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3982 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3983 break;
3984 PHI = nullptr;
3986 if (PHI)
3987 return PHI;
3989 // If V is not an instruction defined in BB, just return it.
3990 if (!AlternativeV &&
3991 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3992 return V;
3994 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge");
3995 PHI->insertBefore(Succ->begin());
3996 PHI->addIncoming(V, BB);
3997 for (BasicBlock *PredBB : predecessors(Succ))
3998 if (PredBB != BB)
3999 PHI->addIncoming(
4000 AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB);
4001 return PHI;
4004 static bool mergeConditionalStoreToAddress(
4005 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
4006 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
4007 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
4008 // For every pointer, there must be exactly two stores, one coming from
4009 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
4010 // store (to any address) in PTB,PFB or QTB,QFB.
4011 // FIXME: We could relax this restriction with a bit more work and performance
4012 // testing.
4013 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
4014 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
4015 if (!PStore || !QStore)
4016 return false;
4018 // Now check the stores are compatible.
4019 if (!QStore->isUnordered() || !PStore->isUnordered() ||
4020 PStore->getValueOperand()->getType() !=
4021 QStore->getValueOperand()->getType())
4022 return false;
4024 // Check that sinking the store won't cause program behavior changes. Sinking
4025 // the store out of the Q blocks won't change any behavior as we're sinking
4026 // from a block to its unconditional successor. But we're moving a store from
4027 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
4028 // So we need to check that there are no aliasing loads or stores in
4029 // QBI, QTB and QFB. We also need to check there are no conflicting memory
4030 // operations between PStore and the end of its parent block.
4032 // The ideal way to do this is to query AliasAnalysis, but we don't
4033 // preserve AA currently so that is dangerous. Be super safe and just
4034 // check there are no other memory operations at all.
4035 for (auto &I : *QFB->getSinglePredecessor())
4036 if (I.mayReadOrWriteMemory())
4037 return false;
4038 for (auto &I : *QFB)
4039 if (&I != QStore && I.mayReadOrWriteMemory())
4040 return false;
4041 if (QTB)
4042 for (auto &I : *QTB)
4043 if (&I != QStore && I.mayReadOrWriteMemory())
4044 return false;
4045 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
4046 I != E; ++I)
4047 if (&*I != PStore && I->mayReadOrWriteMemory())
4048 return false;
4050 // If we're not in aggressive mode, we only optimize if we have some
4051 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
4052 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
4053 if (!BB)
4054 return true;
4055 // Heuristic: if the block can be if-converted/phi-folded and the
4056 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
4057 // thread this store.
4058 InstructionCost Cost = 0;
4059 InstructionCost Budget =
4060 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
4061 for (auto &I : BB->instructionsWithoutDebug(false)) {
4062 // Consider terminator instruction to be free.
4063 if (I.isTerminator())
4064 continue;
4065 // If this is one the stores that we want to speculate out of this BB,
4066 // then don't count it's cost, consider it to be free.
4067 if (auto *S = dyn_cast<StoreInst>(&I))
4068 if (llvm::find(FreeStores, S))
4069 continue;
4070 // Else, we have a white-list of instructions that we are ak speculating.
4071 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
4072 return false; // Not in white-list - not worthwhile folding.
4073 // And finally, if this is a non-free instruction that we are okay
4074 // speculating, ensure that we consider the speculation budget.
4075 Cost +=
4076 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
4077 if (Cost > Budget)
4078 return false; // Eagerly refuse to fold as soon as we're out of budget.
4080 assert(Cost <= Budget &&
4081 "When we run out of budget we will eagerly return from within the "
4082 "per-instruction loop.");
4083 return true;
4086 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
4087 if (!MergeCondStoresAggressively &&
4088 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
4089 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
4090 return false;
4092 // If PostBB has more than two predecessors, we need to split it so we can
4093 // sink the store.
4094 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
4095 // We know that QFB's only successor is PostBB. And QFB has a single
4096 // predecessor. If QTB exists, then its only successor is also PostBB.
4097 // If QTB does not exist, then QFB's only predecessor has a conditional
4098 // branch to QFB and PostBB.
4099 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
4100 BasicBlock *NewBB =
4101 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
4102 if (!NewBB)
4103 return false;
4104 PostBB = NewBB;
4107 // OK, we're going to sink the stores to PostBB. The store has to be
4108 // conditional though, so first create the predicate.
4109 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
4110 ->getCondition();
4111 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
4112 ->getCondition();
4114 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
4115 PStore->getParent());
4116 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
4117 QStore->getParent(), PPHI);
4119 BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt();
4120 IRBuilder<> QB(PostBB, PostBBFirst);
4121 QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc());
4123 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
4124 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
4126 if (InvertPCond)
4127 PPred = QB.CreateNot(PPred);
4128 if (InvertQCond)
4129 QPred = QB.CreateNot(QPred);
4130 Value *CombinedPred = QB.CreateOr(PPred, QPred);
4132 BasicBlock::iterator InsertPt = QB.GetInsertPoint();
4133 auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt,
4134 /*Unreachable=*/false,
4135 /*BranchWeights=*/nullptr, DTU);
4137 QB.SetInsertPoint(T);
4138 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
4139 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
4140 // Choose the minimum alignment. If we could prove both stores execute, we
4141 // could use biggest one. In this case, though, we only know that one of the
4142 // stores executes. And we don't know it's safe to take the alignment from a
4143 // store that doesn't execute.
4144 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
4146 QStore->eraseFromParent();
4147 PStore->eraseFromParent();
4149 return true;
4152 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
4153 DomTreeUpdater *DTU, const DataLayout &DL,
4154 const TargetTransformInfo &TTI) {
4155 // The intention here is to find diamonds or triangles (see below) where each
4156 // conditional block contains a store to the same address. Both of these
4157 // stores are conditional, so they can't be unconditionally sunk. But it may
4158 // be profitable to speculatively sink the stores into one merged store at the
4159 // end, and predicate the merged store on the union of the two conditions of
4160 // PBI and QBI.
4162 // This can reduce the number of stores executed if both of the conditions are
4163 // true, and can allow the blocks to become small enough to be if-converted.
4164 // This optimization will also chain, so that ladders of test-and-set
4165 // sequences can be if-converted away.
4167 // We only deal with simple diamonds or triangles:
4169 // PBI or PBI or a combination of the two
4170 // / \ | \
4171 // PTB PFB | PFB
4172 // \ / | /
4173 // QBI QBI
4174 // / \ | \
4175 // QTB QFB | QFB
4176 // \ / | /
4177 // PostBB PostBB
4179 // We model triangles as a type of diamond with a nullptr "true" block.
4180 // Triangles are canonicalized so that the fallthrough edge is represented by
4181 // a true condition, as in the diagram above.
4182 BasicBlock *PTB = PBI->getSuccessor(0);
4183 BasicBlock *PFB = PBI->getSuccessor(1);
4184 BasicBlock *QTB = QBI->getSuccessor(0);
4185 BasicBlock *QFB = QBI->getSuccessor(1);
4186 BasicBlock *PostBB = QFB->getSingleSuccessor();
4188 // Make sure we have a good guess for PostBB. If QTB's only successor is
4189 // QFB, then QFB is a better PostBB.
4190 if (QTB->getSingleSuccessor() == QFB)
4191 PostBB = QFB;
4193 // If we couldn't find a good PostBB, stop.
4194 if (!PostBB)
4195 return false;
4197 bool InvertPCond = false, InvertQCond = false;
4198 // Canonicalize fallthroughs to the true branches.
4199 if (PFB == QBI->getParent()) {
4200 std::swap(PFB, PTB);
4201 InvertPCond = true;
4203 if (QFB == PostBB) {
4204 std::swap(QFB, QTB);
4205 InvertQCond = true;
4208 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
4209 // and QFB may not. Model fallthroughs as a nullptr block.
4210 if (PTB == QBI->getParent())
4211 PTB = nullptr;
4212 if (QTB == PostBB)
4213 QTB = nullptr;
4215 // Legality bailouts. We must have at least the non-fallthrough blocks and
4216 // the post-dominating block, and the non-fallthroughs must only have one
4217 // predecessor.
4218 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
4219 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
4221 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
4222 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
4223 return false;
4224 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
4225 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
4226 return false;
4227 if (!QBI->getParent()->hasNUses(2))
4228 return false;
4230 // OK, this is a sequence of two diamonds or triangles.
4231 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
4232 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
4233 for (auto *BB : {PTB, PFB}) {
4234 if (!BB)
4235 continue;
4236 for (auto &I : *BB)
4237 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4238 PStoreAddresses.insert(SI->getPointerOperand());
4240 for (auto *BB : {QTB, QFB}) {
4241 if (!BB)
4242 continue;
4243 for (auto &I : *BB)
4244 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4245 QStoreAddresses.insert(SI->getPointerOperand());
4248 set_intersect(PStoreAddresses, QStoreAddresses);
4249 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4250 // clear what it contains.
4251 auto &CommonAddresses = PStoreAddresses;
4253 bool Changed = false;
4254 for (auto *Address : CommonAddresses)
4255 Changed |=
4256 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4257 InvertPCond, InvertQCond, DTU, DL, TTI);
4258 return Changed;
4261 /// If the previous block ended with a widenable branch, determine if reusing
4262 /// the target block is profitable and legal. This will have the effect of
4263 /// "widening" PBI, but doesn't require us to reason about hosting safety.
4264 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4265 DomTreeUpdater *DTU) {
4266 // TODO: This can be generalized in two important ways:
4267 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4268 // values from the PBI edge.
4269 // 2) We can sink side effecting instructions into BI's fallthrough
4270 // successor provided they doesn't contribute to computation of
4271 // BI's condition.
4272 BasicBlock *IfTrueBB = PBI->getSuccessor(0);
4273 BasicBlock *IfFalseBB = PBI->getSuccessor(1);
4274 if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() ||
4275 !BI->getParent()->getSinglePredecessor())
4276 return false;
4277 if (!IfFalseBB->phis().empty())
4278 return false; // TODO
4279 // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which
4280 // may undo the transform done here.
4281 // TODO: There might be a more fine-grained solution to this.
4282 if (!llvm::succ_empty(IfFalseBB))
4283 return false;
4284 // Use lambda to lazily compute expensive condition after cheap ones.
4285 auto NoSideEffects = [](BasicBlock &BB) {
4286 return llvm::none_of(BB, [](const Instruction &I) {
4287 return I.mayWriteToMemory() || I.mayHaveSideEffects();
4290 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4291 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4292 NoSideEffects(*BI->getParent())) {
4293 auto *OldSuccessor = BI->getSuccessor(1);
4294 OldSuccessor->removePredecessor(BI->getParent());
4295 BI->setSuccessor(1, IfFalseBB);
4296 if (DTU)
4297 DTU->applyUpdates(
4298 {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4299 {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4300 return true;
4302 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4303 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4304 NoSideEffects(*BI->getParent())) {
4305 auto *OldSuccessor = BI->getSuccessor(0);
4306 OldSuccessor->removePredecessor(BI->getParent());
4307 BI->setSuccessor(0, IfFalseBB);
4308 if (DTU)
4309 DTU->applyUpdates(
4310 {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4311 {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4312 return true;
4314 return false;
4317 /// If we have a conditional branch as a predecessor of another block,
4318 /// this function tries to simplify it. We know
4319 /// that PBI and BI are both conditional branches, and BI is in one of the
4320 /// successor blocks of PBI - PBI branches to BI.
4321 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4322 DomTreeUpdater *DTU,
4323 const DataLayout &DL,
4324 const TargetTransformInfo &TTI) {
4325 assert(PBI->isConditional() && BI->isConditional());
4326 BasicBlock *BB = BI->getParent();
4328 // If this block ends with a branch instruction, and if there is a
4329 // predecessor that ends on a branch of the same condition, make
4330 // this conditional branch redundant.
4331 if (PBI->getCondition() == BI->getCondition() &&
4332 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4333 // Okay, the outcome of this conditional branch is statically
4334 // knowable. If this block had a single pred, handle specially, otherwise
4335 // FoldCondBranchOnValueKnownInPredecessor() will handle it.
4336 if (BB->getSinglePredecessor()) {
4337 // Turn this into a branch on constant.
4338 bool CondIsTrue = PBI->getSuccessor(0) == BB;
4339 BI->setCondition(
4340 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4341 return true; // Nuke the branch on constant.
4345 // If the previous block ended with a widenable branch, determine if reusing
4346 // the target block is profitable and legal. This will have the effect of
4347 // "widening" PBI, but doesn't require us to reason about hosting safety.
4348 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4349 return true;
4351 // If both branches are conditional and both contain stores to the same
4352 // address, remove the stores from the conditionals and create a conditional
4353 // merged store at the end.
4354 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4355 return true;
4357 // If this is a conditional branch in an empty block, and if any
4358 // predecessors are a conditional branch to one of our destinations,
4359 // fold the conditions into logical ops and one cond br.
4361 // Ignore dbg intrinsics.
4362 if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4363 return false;
4365 int PBIOp, BIOp;
4366 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4367 PBIOp = 0;
4368 BIOp = 0;
4369 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4370 PBIOp = 0;
4371 BIOp = 1;
4372 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4373 PBIOp = 1;
4374 BIOp = 0;
4375 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4376 PBIOp = 1;
4377 BIOp = 1;
4378 } else {
4379 return false;
4382 // Check to make sure that the other destination of this branch
4383 // isn't BB itself. If so, this is an infinite loop that will
4384 // keep getting unwound.
4385 if (PBI->getSuccessor(PBIOp) == BB)
4386 return false;
4388 // If predecessor's branch probability to BB is too low don't merge branches.
4389 SmallVector<uint32_t, 2> PredWeights;
4390 if (!PBI->getMetadata(LLVMContext::MD_unpredictable) &&
4391 extractBranchWeights(*PBI, PredWeights) &&
4392 (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) {
4394 BranchProbability CommonDestProb = BranchProbability::getBranchProbability(
4395 PredWeights[PBIOp],
4396 static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]);
4398 BranchProbability Likely = TTI.getPredictableBranchThreshold();
4399 if (CommonDestProb >= Likely)
4400 return false;
4403 // Do not perform this transformation if it would require
4404 // insertion of a large number of select instructions. For targets
4405 // without predication/cmovs, this is a big pessimization.
4407 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4408 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4409 unsigned NumPhis = 0;
4410 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4411 ++II, ++NumPhis) {
4412 if (NumPhis > 2) // Disable this xform.
4413 return false;
4416 // Finally, if everything is ok, fold the branches to logical ops.
4417 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4419 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4420 << "AND: " << *BI->getParent());
4422 SmallVector<DominatorTree::UpdateType, 5> Updates;
4424 // If OtherDest *is* BB, then BB is a basic block with a single conditional
4425 // branch in it, where one edge (OtherDest) goes back to itself but the other
4426 // exits. We don't *know* that the program avoids the infinite loop
4427 // (even though that seems likely). If we do this xform naively, we'll end up
4428 // recursively unpeeling the loop. Since we know that (after the xform is
4429 // done) that the block *is* infinite if reached, we just make it an obviously
4430 // infinite loop with no cond branch.
4431 if (OtherDest == BB) {
4432 // Insert it at the end of the function, because it's either code,
4433 // or it won't matter if it's hot. :)
4434 BasicBlock *InfLoopBlock =
4435 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4436 BranchInst::Create(InfLoopBlock, InfLoopBlock);
4437 if (DTU)
4438 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4439 OtherDest = InfLoopBlock;
4442 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4444 // BI may have other predecessors. Because of this, we leave
4445 // it alone, but modify PBI.
4447 // Make sure we get to CommonDest on True&True directions.
4448 Value *PBICond = PBI->getCondition();
4449 IRBuilder<NoFolder> Builder(PBI);
4450 if (PBIOp)
4451 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4453 Value *BICond = BI->getCondition();
4454 if (BIOp)
4455 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4457 // Merge the conditions.
4458 Value *Cond =
4459 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4461 // Modify PBI to branch on the new condition to the new dests.
4462 PBI->setCondition(Cond);
4463 PBI->setSuccessor(0, CommonDest);
4464 PBI->setSuccessor(1, OtherDest);
4466 if (DTU) {
4467 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4468 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4470 DTU->applyUpdates(Updates);
4473 // Update branch weight for PBI.
4474 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4475 uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4476 bool HasWeights =
4477 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4478 SuccTrueWeight, SuccFalseWeight);
4479 if (HasWeights) {
4480 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4481 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4482 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4483 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4484 // The weight to CommonDest should be PredCommon * SuccTotal +
4485 // PredOther * SuccCommon.
4486 // The weight to OtherDest should be PredOther * SuccOther.
4487 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4488 PredOther * SuccCommon,
4489 PredOther * SuccOther};
4490 // Halve the weights if any of them cannot fit in an uint32_t
4491 FitWeights(NewWeights);
4493 setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
4496 // OtherDest may have phi nodes. If so, add an entry from PBI's
4497 // block that are identical to the entries for BI's block.
4498 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4500 // We know that the CommonDest already had an edge from PBI to
4501 // it. If it has PHIs though, the PHIs may have different
4502 // entries for BB and PBI's BB. If so, insert a select to make
4503 // them agree.
4504 for (PHINode &PN : CommonDest->phis()) {
4505 Value *BIV = PN.getIncomingValueForBlock(BB);
4506 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4507 Value *PBIV = PN.getIncomingValue(PBBIdx);
4508 if (BIV != PBIV) {
4509 // Insert a select in PBI to pick the right value.
4510 SelectInst *NV = cast<SelectInst>(
4511 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4512 PN.setIncomingValue(PBBIdx, NV);
4513 // Although the select has the same condition as PBI, the original branch
4514 // weights for PBI do not apply to the new select because the select's
4515 // 'logical' edges are incoming edges of the phi that is eliminated, not
4516 // the outgoing edges of PBI.
4517 if (HasWeights) {
4518 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4519 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4520 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4521 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4522 // The weight to PredCommonDest should be PredCommon * SuccTotal.
4523 // The weight to PredOtherDest should be PredOther * SuccCommon.
4524 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4525 PredOther * SuccCommon};
4527 FitWeights(NewWeights);
4529 setBranchWeights(NV, NewWeights[0], NewWeights[1]);
4534 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4535 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4537 // This basic block is probably dead. We know it has at least
4538 // one fewer predecessor.
4539 return true;
4542 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4543 // true or to FalseBB if Cond is false.
4544 // Takes care of updating the successors and removing the old terminator.
4545 // Also makes sure not to introduce new successors by assuming that edges to
4546 // non-successor TrueBBs and FalseBBs aren't reachable.
4547 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
4548 Value *Cond, BasicBlock *TrueBB,
4549 BasicBlock *FalseBB,
4550 uint32_t TrueWeight,
4551 uint32_t FalseWeight) {
4552 auto *BB = OldTerm->getParent();
4553 // Remove any superfluous successor edges from the CFG.
4554 // First, figure out which successors to preserve.
4555 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4556 // successor.
4557 BasicBlock *KeepEdge1 = TrueBB;
4558 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4560 SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4562 // Then remove the rest.
4563 for (BasicBlock *Succ : successors(OldTerm)) {
4564 // Make sure only to keep exactly one copy of each edge.
4565 if (Succ == KeepEdge1)
4566 KeepEdge1 = nullptr;
4567 else if (Succ == KeepEdge2)
4568 KeepEdge2 = nullptr;
4569 else {
4570 Succ->removePredecessor(BB,
4571 /*KeepOneInputPHIs=*/true);
4573 if (Succ != TrueBB && Succ != FalseBB)
4574 RemovedSuccessors.insert(Succ);
4578 IRBuilder<> Builder(OldTerm);
4579 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4581 // Insert an appropriate new terminator.
4582 if (!KeepEdge1 && !KeepEdge2) {
4583 if (TrueBB == FalseBB) {
4584 // We were only looking for one successor, and it was present.
4585 // Create an unconditional branch to it.
4586 Builder.CreateBr(TrueBB);
4587 } else {
4588 // We found both of the successors we were looking for.
4589 // Create a conditional branch sharing the condition of the select.
4590 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4591 if (TrueWeight != FalseWeight)
4592 setBranchWeights(NewBI, TrueWeight, FalseWeight);
4594 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4595 // Neither of the selected blocks were successors, so this
4596 // terminator must be unreachable.
4597 new UnreachableInst(OldTerm->getContext(), OldTerm);
4598 } else {
4599 // One of the selected values was a successor, but the other wasn't.
4600 // Insert an unconditional branch to the one that was found;
4601 // the edge to the one that wasn't must be unreachable.
4602 if (!KeepEdge1) {
4603 // Only TrueBB was found.
4604 Builder.CreateBr(TrueBB);
4605 } else {
4606 // Only FalseBB was found.
4607 Builder.CreateBr(FalseBB);
4611 EraseTerminatorAndDCECond(OldTerm);
4613 if (DTU) {
4614 SmallVector<DominatorTree::UpdateType, 2> Updates;
4615 Updates.reserve(RemovedSuccessors.size());
4616 for (auto *RemovedSuccessor : RemovedSuccessors)
4617 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4618 DTU->applyUpdates(Updates);
4621 return true;
4624 // Replaces
4625 // (switch (select cond, X, Y)) on constant X, Y
4626 // with a branch - conditional if X and Y lead to distinct BBs,
4627 // unconditional otherwise.
4628 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4629 SelectInst *Select) {
4630 // Check for constant integer values in the select.
4631 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4632 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4633 if (!TrueVal || !FalseVal)
4634 return false;
4636 // Find the relevant condition and destinations.
4637 Value *Condition = Select->getCondition();
4638 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4639 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4641 // Get weight for TrueBB and FalseBB.
4642 uint32_t TrueWeight = 0, FalseWeight = 0;
4643 SmallVector<uint64_t, 8> Weights;
4644 bool HasWeights = hasBranchWeightMD(*SI);
4645 if (HasWeights) {
4646 GetBranchWeights(SI, Weights);
4647 if (Weights.size() == 1 + SI->getNumCases()) {
4648 TrueWeight =
4649 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4650 FalseWeight =
4651 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4655 // Perform the actual simplification.
4656 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4657 FalseWeight);
4660 // Replaces
4661 // (indirectbr (select cond, blockaddress(@fn, BlockA),
4662 // blockaddress(@fn, BlockB)))
4663 // with
4664 // (br cond, BlockA, BlockB).
4665 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4666 SelectInst *SI) {
4667 // Check that both operands of the select are block addresses.
4668 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4669 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4670 if (!TBA || !FBA)
4671 return false;
4673 // Extract the actual blocks.
4674 BasicBlock *TrueBB = TBA->getBasicBlock();
4675 BasicBlock *FalseBB = FBA->getBasicBlock();
4677 // Perform the actual simplification.
4678 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4682 /// This is called when we find an icmp instruction
4683 /// (a seteq/setne with a constant) as the only instruction in a
4684 /// block that ends with an uncond branch. We are looking for a very specific
4685 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
4686 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4687 /// default value goes to an uncond block with a seteq in it, we get something
4688 /// like:
4690 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
4691 /// DEFAULT:
4692 /// %tmp = icmp eq i8 %A, 92
4693 /// br label %end
4694 /// end:
4695 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4697 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4698 /// the PHI, merging the third icmp into the switch.
4699 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4700 ICmpInst *ICI, IRBuilder<> &Builder) {
4701 BasicBlock *BB = ICI->getParent();
4703 // If the block has any PHIs in it or the icmp has multiple uses, it is too
4704 // complex.
4705 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4706 return false;
4708 Value *V = ICI->getOperand(0);
4709 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4711 // The pattern we're looking for is where our only predecessor is a switch on
4712 // 'V' and this block is the default case for the switch. In this case we can
4713 // fold the compared value into the switch to simplify things.
4714 BasicBlock *Pred = BB->getSinglePredecessor();
4715 if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4716 return false;
4718 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4719 if (SI->getCondition() != V)
4720 return false;
4722 // If BB is reachable on a non-default case, then we simply know the value of
4723 // V in this block. Substitute it and constant fold the icmp instruction
4724 // away.
4725 if (SI->getDefaultDest() != BB) {
4726 ConstantInt *VVal = SI->findCaseDest(BB);
4727 assert(VVal && "Should have a unique destination value");
4728 ICI->setOperand(0, VVal);
4730 if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
4731 ICI->replaceAllUsesWith(V);
4732 ICI->eraseFromParent();
4734 // BB is now empty, so it is likely to simplify away.
4735 return requestResimplify();
4738 // Ok, the block is reachable from the default dest. If the constant we're
4739 // comparing exists in one of the other edges, then we can constant fold ICI
4740 // and zap it.
4741 if (SI->findCaseValue(Cst) != SI->case_default()) {
4742 Value *V;
4743 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4744 V = ConstantInt::getFalse(BB->getContext());
4745 else
4746 V = ConstantInt::getTrue(BB->getContext());
4748 ICI->replaceAllUsesWith(V);
4749 ICI->eraseFromParent();
4750 // BB is now empty, so it is likely to simplify away.
4751 return requestResimplify();
4754 // The use of the icmp has to be in the 'end' block, by the only PHI node in
4755 // the block.
4756 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4757 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4758 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4759 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4760 return false;
4762 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4763 // true in the PHI.
4764 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4765 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4767 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4768 std::swap(DefaultCst, NewCst);
4770 // Replace ICI (which is used by the PHI for the default value) with true or
4771 // false depending on if it is EQ or NE.
4772 ICI->replaceAllUsesWith(DefaultCst);
4773 ICI->eraseFromParent();
4775 SmallVector<DominatorTree::UpdateType, 2> Updates;
4777 // Okay, the switch goes to this block on a default value. Add an edge from
4778 // the switch to the merge point on the compared value.
4779 BasicBlock *NewBB =
4780 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4782 SwitchInstProfUpdateWrapper SIW(*SI);
4783 auto W0 = SIW.getSuccessorWeight(0);
4784 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4785 if (W0) {
4786 NewW = ((uint64_t(*W0) + 1) >> 1);
4787 SIW.setSuccessorWeight(0, *NewW);
4789 SIW.addCase(Cst, NewBB, NewW);
4790 if (DTU)
4791 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4794 // NewBB branches to the phi block, add the uncond branch and the phi entry.
4795 Builder.SetInsertPoint(NewBB);
4796 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4797 Builder.CreateBr(SuccBlock);
4798 PHIUse->addIncoming(NewCst, NewBB);
4799 if (DTU) {
4800 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4801 DTU->applyUpdates(Updates);
4803 return true;
4806 /// The specified branch is a conditional branch.
4807 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4808 /// fold it into a switch instruction if so.
4809 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4810 IRBuilder<> &Builder,
4811 const DataLayout &DL) {
4812 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4813 if (!Cond)
4814 return false;
4816 // Change br (X == 0 | X == 1), T, F into a switch instruction.
4817 // If this is a bunch of seteq's or'd together, or if it's a bunch of
4818 // 'setne's and'ed together, collect them.
4820 // Try to gather values from a chain of and/or to be turned into a switch
4821 ConstantComparesGatherer ConstantCompare(Cond, DL);
4822 // Unpack the result
4823 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4824 Value *CompVal = ConstantCompare.CompValue;
4825 unsigned UsedICmps = ConstantCompare.UsedICmps;
4826 Value *ExtraCase = ConstantCompare.Extra;
4828 // If we didn't have a multiply compared value, fail.
4829 if (!CompVal)
4830 return false;
4832 // Avoid turning single icmps into a switch.
4833 if (UsedICmps <= 1)
4834 return false;
4836 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4838 // There might be duplicate constants in the list, which the switch
4839 // instruction can't handle, remove them now.
4840 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4841 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4843 // If Extra was used, we require at least two switch values to do the
4844 // transformation. A switch with one value is just a conditional branch.
4845 if (ExtraCase && Values.size() < 2)
4846 return false;
4848 // TODO: Preserve branch weight metadata, similarly to how
4849 // FoldValueComparisonIntoPredecessors preserves it.
4851 // Figure out which block is which destination.
4852 BasicBlock *DefaultBB = BI->getSuccessor(1);
4853 BasicBlock *EdgeBB = BI->getSuccessor(0);
4854 if (!TrueWhenEqual)
4855 std::swap(DefaultBB, EdgeBB);
4857 BasicBlock *BB = BI->getParent();
4859 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4860 << " cases into SWITCH. BB is:\n"
4861 << *BB);
4863 SmallVector<DominatorTree::UpdateType, 2> Updates;
4865 // If there are any extra values that couldn't be folded into the switch
4866 // then we evaluate them with an explicit branch first. Split the block
4867 // right before the condbr to handle it.
4868 if (ExtraCase) {
4869 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4870 /*MSSAU=*/nullptr, "switch.early.test");
4872 // Remove the uncond branch added to the old block.
4873 Instruction *OldTI = BB->getTerminator();
4874 Builder.SetInsertPoint(OldTI);
4876 // There can be an unintended UB if extra values are Poison. Before the
4877 // transformation, extra values may not be evaluated according to the
4878 // condition, and it will not raise UB. But after transformation, we are
4879 // evaluating extra values before checking the condition, and it will raise
4880 // UB. It can be solved by adding freeze instruction to extra values.
4881 AssumptionCache *AC = Options.AC;
4883 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4884 ExtraCase = Builder.CreateFreeze(ExtraCase);
4886 if (TrueWhenEqual)
4887 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4888 else
4889 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4891 OldTI->eraseFromParent();
4893 if (DTU)
4894 Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4896 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4897 // for the edge we just added.
4898 AddPredecessorToBlock(EdgeBB, BB, NewBB);
4900 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
4901 << "\nEXTRABB = " << *BB);
4902 BB = NewBB;
4905 Builder.SetInsertPoint(BI);
4906 // Convert pointer to int before we switch.
4907 if (CompVal->getType()->isPointerTy()) {
4908 CompVal = Builder.CreatePtrToInt(
4909 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4912 // Create the new switch instruction now.
4913 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4915 // Add all of the 'cases' to the switch instruction.
4916 for (unsigned i = 0, e = Values.size(); i != e; ++i)
4917 New->addCase(Values[i], EdgeBB);
4919 // We added edges from PI to the EdgeBB. As such, if there were any
4920 // PHI nodes in EdgeBB, they need entries to be added corresponding to
4921 // the number of edges added.
4922 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4923 PHINode *PN = cast<PHINode>(BBI);
4924 Value *InVal = PN->getIncomingValueForBlock(BB);
4925 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4926 PN->addIncoming(InVal, BB);
4929 // Erase the old branch instruction.
4930 EraseTerminatorAndDCECond(BI);
4931 if (DTU)
4932 DTU->applyUpdates(Updates);
4934 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
4935 return true;
4938 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4939 if (isa<PHINode>(RI->getValue()))
4940 return simplifyCommonResume(RI);
4941 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4942 RI->getValue() == RI->getParent()->getFirstNonPHI())
4943 // The resume must unwind the exception that caused control to branch here.
4944 return simplifySingleResume(RI);
4946 return false;
4949 // Check if cleanup block is empty
4950 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4951 for (Instruction &I : R) {
4952 auto *II = dyn_cast<IntrinsicInst>(&I);
4953 if (!II)
4954 return false;
4956 Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4957 switch (IntrinsicID) {
4958 case Intrinsic::dbg_declare:
4959 case Intrinsic::dbg_value:
4960 case Intrinsic::dbg_label:
4961 case Intrinsic::lifetime_end:
4962 break;
4963 default:
4964 return false;
4967 return true;
4970 // Simplify resume that is shared by several landing pads (phi of landing pad).
4971 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4972 BasicBlock *BB = RI->getParent();
4974 // Check that there are no other instructions except for debug and lifetime
4975 // intrinsics between the phi's and resume instruction.
4976 if (!isCleanupBlockEmpty(
4977 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4978 return false;
4980 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4981 auto *PhiLPInst = cast<PHINode>(RI->getValue());
4983 // Check incoming blocks to see if any of them are trivial.
4984 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4985 Idx++) {
4986 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4987 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4989 // If the block has other successors, we can not delete it because
4990 // it has other dependents.
4991 if (IncomingBB->getUniqueSuccessor() != BB)
4992 continue;
4994 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4995 // Not the landing pad that caused the control to branch here.
4996 if (IncomingValue != LandingPad)
4997 continue;
4999 if (isCleanupBlockEmpty(
5000 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
5001 TrivialUnwindBlocks.insert(IncomingBB);
5004 // If no trivial unwind blocks, don't do any simplifications.
5005 if (TrivialUnwindBlocks.empty())
5006 return false;
5008 // Turn all invokes that unwind here into calls.
5009 for (auto *TrivialBB : TrivialUnwindBlocks) {
5010 // Blocks that will be simplified should be removed from the phi node.
5011 // Note there could be multiple edges to the resume block, and we need
5012 // to remove them all.
5013 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
5014 BB->removePredecessor(TrivialBB, true);
5016 for (BasicBlock *Pred :
5017 llvm::make_early_inc_range(predecessors(TrivialBB))) {
5018 removeUnwindEdge(Pred, DTU);
5019 ++NumInvokes;
5022 // In each SimplifyCFG run, only the current processed block can be erased.
5023 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
5024 // of erasing TrivialBB, we only remove the branch to the common resume
5025 // block so that we can later erase the resume block since it has no
5026 // predecessors.
5027 TrivialBB->getTerminator()->eraseFromParent();
5028 new UnreachableInst(RI->getContext(), TrivialBB);
5029 if (DTU)
5030 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
5033 // Delete the resume block if all its predecessors have been removed.
5034 if (pred_empty(BB))
5035 DeleteDeadBlock(BB, DTU);
5037 return !TrivialUnwindBlocks.empty();
5040 // Simplify resume that is only used by a single (non-phi) landing pad.
5041 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
5042 BasicBlock *BB = RI->getParent();
5043 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
5044 assert(RI->getValue() == LPInst &&
5045 "Resume must unwind the exception that caused control to here");
5047 // Check that there are no other instructions except for debug intrinsics.
5048 if (!isCleanupBlockEmpty(
5049 make_range<Instruction *>(LPInst->getNextNode(), RI)))
5050 return false;
5052 // Turn all invokes that unwind here into calls and delete the basic block.
5053 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
5054 removeUnwindEdge(Pred, DTU);
5055 ++NumInvokes;
5058 // The landingpad is now unreachable. Zap it.
5059 DeleteDeadBlock(BB, DTU);
5060 return true;
5063 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
5064 // If this is a trivial cleanup pad that executes no instructions, it can be
5065 // eliminated. If the cleanup pad continues to the caller, any predecessor
5066 // that is an EH pad will be updated to continue to the caller and any
5067 // predecessor that terminates with an invoke instruction will have its invoke
5068 // instruction converted to a call instruction. If the cleanup pad being
5069 // simplified does not continue to the caller, each predecessor will be
5070 // updated to continue to the unwind destination of the cleanup pad being
5071 // simplified.
5072 BasicBlock *BB = RI->getParent();
5073 CleanupPadInst *CPInst = RI->getCleanupPad();
5074 if (CPInst->getParent() != BB)
5075 // This isn't an empty cleanup.
5076 return false;
5078 // We cannot kill the pad if it has multiple uses. This typically arises
5079 // from unreachable basic blocks.
5080 if (!CPInst->hasOneUse())
5081 return false;
5083 // Check that there are no other instructions except for benign intrinsics.
5084 if (!isCleanupBlockEmpty(
5085 make_range<Instruction *>(CPInst->getNextNode(), RI)))
5086 return false;
5088 // If the cleanup return we are simplifying unwinds to the caller, this will
5089 // set UnwindDest to nullptr.
5090 BasicBlock *UnwindDest = RI->getUnwindDest();
5091 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
5093 // We're about to remove BB from the control flow. Before we do, sink any
5094 // PHINodes into the unwind destination. Doing this before changing the
5095 // control flow avoids some potentially slow checks, since we can currently
5096 // be certain that UnwindDest and BB have no common predecessors (since they
5097 // are both EH pads).
5098 if (UnwindDest) {
5099 // First, go through the PHI nodes in UnwindDest and update any nodes that
5100 // reference the block we are removing
5101 for (PHINode &DestPN : UnwindDest->phis()) {
5102 int Idx = DestPN.getBasicBlockIndex(BB);
5103 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
5104 assert(Idx != -1);
5105 // This PHI node has an incoming value that corresponds to a control
5106 // path through the cleanup pad we are removing. If the incoming
5107 // value is in the cleanup pad, it must be a PHINode (because we
5108 // verified above that the block is otherwise empty). Otherwise, the
5109 // value is either a constant or a value that dominates the cleanup
5110 // pad being removed.
5112 // Because BB and UnwindDest are both EH pads, all of their
5113 // predecessors must unwind to these blocks, and since no instruction
5114 // can have multiple unwind destinations, there will be no overlap in
5115 // incoming blocks between SrcPN and DestPN.
5116 Value *SrcVal = DestPN.getIncomingValue(Idx);
5117 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
5119 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
5120 for (auto *Pred : predecessors(BB)) {
5121 Value *Incoming =
5122 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
5123 DestPN.addIncoming(Incoming, Pred);
5127 // Sink any remaining PHI nodes directly into UnwindDest.
5128 Instruction *InsertPt = DestEHPad;
5129 for (PHINode &PN : make_early_inc_range(BB->phis())) {
5130 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
5131 // If the PHI node has no uses or all of its uses are in this basic
5132 // block (meaning they are debug or lifetime intrinsics), just leave
5133 // it. It will be erased when we erase BB below.
5134 continue;
5136 // Otherwise, sink this PHI node into UnwindDest.
5137 // Any predecessors to UnwindDest which are not already represented
5138 // must be back edges which inherit the value from the path through
5139 // BB. In this case, the PHI value must reference itself.
5140 for (auto *pred : predecessors(UnwindDest))
5141 if (pred != BB)
5142 PN.addIncoming(&PN, pred);
5143 PN.moveBefore(InsertPt);
5144 // Also, add a dummy incoming value for the original BB itself,
5145 // so that the PHI is well-formed until we drop said predecessor.
5146 PN.addIncoming(PoisonValue::get(PN.getType()), BB);
5150 std::vector<DominatorTree::UpdateType> Updates;
5152 // We use make_early_inc_range here because we will remove all predecessors.
5153 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
5154 if (UnwindDest == nullptr) {
5155 if (DTU) {
5156 DTU->applyUpdates(Updates);
5157 Updates.clear();
5159 removeUnwindEdge(PredBB, DTU);
5160 ++NumInvokes;
5161 } else {
5162 BB->removePredecessor(PredBB);
5163 Instruction *TI = PredBB->getTerminator();
5164 TI->replaceUsesOfWith(BB, UnwindDest);
5165 if (DTU) {
5166 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
5167 Updates.push_back({DominatorTree::Delete, PredBB, BB});
5172 if (DTU)
5173 DTU->applyUpdates(Updates);
5175 DeleteDeadBlock(BB, DTU);
5177 return true;
5180 // Try to merge two cleanuppads together.
5181 static bool mergeCleanupPad(CleanupReturnInst *RI) {
5182 // Skip any cleanuprets which unwind to caller, there is nothing to merge
5183 // with.
5184 BasicBlock *UnwindDest = RI->getUnwindDest();
5185 if (!UnwindDest)
5186 return false;
5188 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
5189 // be safe to merge without code duplication.
5190 if (UnwindDest->getSinglePredecessor() != RI->getParent())
5191 return false;
5193 // Verify that our cleanuppad's unwind destination is another cleanuppad.
5194 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
5195 if (!SuccessorCleanupPad)
5196 return false;
5198 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
5199 // Replace any uses of the successor cleanupad with the predecessor pad
5200 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
5201 // funclet bundle operands.
5202 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
5203 // Remove the old cleanuppad.
5204 SuccessorCleanupPad->eraseFromParent();
5205 // Now, we simply replace the cleanupret with a branch to the unwind
5206 // destination.
5207 BranchInst::Create(UnwindDest, RI->getParent());
5208 RI->eraseFromParent();
5210 return true;
5213 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
5214 // It is possible to transiantly have an undef cleanuppad operand because we
5215 // have deleted some, but not all, dead blocks.
5216 // Eventually, this block will be deleted.
5217 if (isa<UndefValue>(RI->getOperand(0)))
5218 return false;
5220 if (mergeCleanupPad(RI))
5221 return true;
5223 if (removeEmptyCleanup(RI, DTU))
5224 return true;
5226 return false;
5229 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
5230 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
5231 BasicBlock *BB = UI->getParent();
5233 bool Changed = false;
5235 // Ensure that any debug-info records that used to occur after the Unreachable
5236 // are moved to in front of it -- otherwise they'll "dangle" at the end of
5237 // the block.
5238 BB->flushTerminatorDbgValues();
5240 // Debug-info records on the unreachable inst itself should be deleted, as
5241 // below we delete everything past the final executable instruction.
5242 UI->dropDbgValues();
5244 // If there are any instructions immediately before the unreachable that can
5245 // be removed, do so.
5246 while (UI->getIterator() != BB->begin()) {
5247 BasicBlock::iterator BBI = UI->getIterator();
5248 --BBI;
5250 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
5251 break; // Can not drop any more instructions. We're done here.
5252 // Otherwise, this instruction can be freely erased,
5253 // even if it is not side-effect free.
5255 // Note that deleting EH's here is in fact okay, although it involves a bit
5256 // of subtle reasoning. If this inst is an EH, all the predecessors of this
5257 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
5258 // and we can therefore guarantee this block will be erased.
5260 // If we're deleting this, we're deleting any subsequent dbg.values, so
5261 // delete DPValue records of variable information.
5262 BBI->dropDbgValues();
5264 // Delete this instruction (any uses are guaranteed to be dead)
5265 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
5266 BBI->eraseFromParent();
5267 Changed = true;
5270 // If the unreachable instruction is the first in the block, take a gander
5271 // at all of the predecessors of this instruction, and simplify them.
5272 if (&BB->front() != UI)
5273 return Changed;
5275 std::vector<DominatorTree::UpdateType> Updates;
5277 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5278 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
5279 auto *Predecessor = Preds[i];
5280 Instruction *TI = Predecessor->getTerminator();
5281 IRBuilder<> Builder(TI);
5282 if (auto *BI = dyn_cast<BranchInst>(TI)) {
5283 // We could either have a proper unconditional branch,
5284 // or a degenerate conditional branch with matching destinations.
5285 if (all_of(BI->successors(),
5286 [BB](auto *Successor) { return Successor == BB; })) {
5287 new UnreachableInst(TI->getContext(), TI);
5288 TI->eraseFromParent();
5289 Changed = true;
5290 } else {
5291 assert(BI->isConditional() && "Can't get here with an uncond branch.");
5292 Value* Cond = BI->getCondition();
5293 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5294 "The destinations are guaranteed to be different here.");
5295 CallInst *Assumption;
5296 if (BI->getSuccessor(0) == BB) {
5297 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
5298 Builder.CreateBr(BI->getSuccessor(1));
5299 } else {
5300 assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5301 Assumption = Builder.CreateAssumption(Cond);
5302 Builder.CreateBr(BI->getSuccessor(0));
5304 if (Options.AC)
5305 Options.AC->registerAssumption(cast<AssumeInst>(Assumption));
5307 EraseTerminatorAndDCECond(BI);
5308 Changed = true;
5310 if (DTU)
5311 Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5312 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5313 SwitchInstProfUpdateWrapper SU(*SI);
5314 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5315 if (i->getCaseSuccessor() != BB) {
5316 ++i;
5317 continue;
5319 BB->removePredecessor(SU->getParent());
5320 i = SU.removeCase(i);
5321 e = SU->case_end();
5322 Changed = true;
5324 // Note that the default destination can't be removed!
5325 if (DTU && SI->getDefaultDest() != BB)
5326 Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5327 } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5328 if (II->getUnwindDest() == BB) {
5329 if (DTU) {
5330 DTU->applyUpdates(Updates);
5331 Updates.clear();
5333 auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU));
5334 if (!CI->doesNotThrow())
5335 CI->setDoesNotThrow();
5336 Changed = true;
5338 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5339 if (CSI->getUnwindDest() == BB) {
5340 if (DTU) {
5341 DTU->applyUpdates(Updates);
5342 Updates.clear();
5344 removeUnwindEdge(TI->getParent(), DTU);
5345 Changed = true;
5346 continue;
5349 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5350 E = CSI->handler_end();
5351 I != E; ++I) {
5352 if (*I == BB) {
5353 CSI->removeHandler(I);
5354 --I;
5355 --E;
5356 Changed = true;
5359 if (DTU)
5360 Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5361 if (CSI->getNumHandlers() == 0) {
5362 if (CSI->hasUnwindDest()) {
5363 // Redirect all predecessors of the block containing CatchSwitchInst
5364 // to instead branch to the CatchSwitchInst's unwind destination.
5365 if (DTU) {
5366 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5367 Updates.push_back({DominatorTree::Insert,
5368 PredecessorOfPredecessor,
5369 CSI->getUnwindDest()});
5370 Updates.push_back({DominatorTree::Delete,
5371 PredecessorOfPredecessor, Predecessor});
5374 Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5375 } else {
5376 // Rewrite all preds to unwind to caller (or from invoke to call).
5377 if (DTU) {
5378 DTU->applyUpdates(Updates);
5379 Updates.clear();
5381 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5382 for (BasicBlock *EHPred : EHPreds)
5383 removeUnwindEdge(EHPred, DTU);
5385 // The catchswitch is no longer reachable.
5386 new UnreachableInst(CSI->getContext(), CSI);
5387 CSI->eraseFromParent();
5388 Changed = true;
5390 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5391 (void)CRI;
5392 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5393 "Expected to always have an unwind to BB.");
5394 if (DTU)
5395 Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5396 new UnreachableInst(TI->getContext(), TI);
5397 TI->eraseFromParent();
5398 Changed = true;
5402 if (DTU)
5403 DTU->applyUpdates(Updates);
5405 // If this block is now dead, remove it.
5406 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5407 DeleteDeadBlock(BB, DTU);
5408 return true;
5411 return Changed;
5414 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5415 assert(Cases.size() >= 1);
5417 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
5418 for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5419 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5420 return false;
5422 return true;
5425 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5426 DomTreeUpdater *DTU) {
5427 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5428 auto *BB = Switch->getParent();
5429 auto *OrigDefaultBlock = Switch->getDefaultDest();
5430 OrigDefaultBlock->removePredecessor(BB);
5431 BasicBlock *NewDefaultBlock = BasicBlock::Create(
5432 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5433 OrigDefaultBlock);
5434 new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5435 Switch->setDefaultDest(&*NewDefaultBlock);
5436 if (DTU) {
5437 SmallVector<DominatorTree::UpdateType, 2> Updates;
5438 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5439 if (!is_contained(successors(BB), OrigDefaultBlock))
5440 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5441 DTU->applyUpdates(Updates);
5445 /// Turn a switch into an integer range comparison and branch.
5446 /// Switches with more than 2 destinations are ignored.
5447 /// Switches with 1 destination are also ignored.
5448 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
5449 IRBuilder<> &Builder) {
5450 assert(SI->getNumCases() > 1 && "Degenerate switch?");
5452 bool HasDefault =
5453 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5455 auto *BB = SI->getParent();
5457 // Partition the cases into two sets with different destinations.
5458 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5459 BasicBlock *DestB = nullptr;
5460 SmallVector<ConstantInt *, 16> CasesA;
5461 SmallVector<ConstantInt *, 16> CasesB;
5463 for (auto Case : SI->cases()) {
5464 BasicBlock *Dest = Case.getCaseSuccessor();
5465 if (!DestA)
5466 DestA = Dest;
5467 if (Dest == DestA) {
5468 CasesA.push_back(Case.getCaseValue());
5469 continue;
5471 if (!DestB)
5472 DestB = Dest;
5473 if (Dest == DestB) {
5474 CasesB.push_back(Case.getCaseValue());
5475 continue;
5477 return false; // More than two destinations.
5479 if (!DestB)
5480 return false; // All destinations are the same and the default is unreachable
5482 assert(DestA && DestB &&
5483 "Single-destination switch should have been folded.");
5484 assert(DestA != DestB);
5485 assert(DestB != SI->getDefaultDest());
5486 assert(!CasesB.empty() && "There must be non-default cases.");
5487 assert(!CasesA.empty() || HasDefault);
5489 // Figure out if one of the sets of cases form a contiguous range.
5490 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5491 BasicBlock *ContiguousDest = nullptr;
5492 BasicBlock *OtherDest = nullptr;
5493 if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
5494 ContiguousCases = &CasesA;
5495 ContiguousDest = DestA;
5496 OtherDest = DestB;
5497 } else if (CasesAreContiguous(CasesB)) {
5498 ContiguousCases = &CasesB;
5499 ContiguousDest = DestB;
5500 OtherDest = DestA;
5501 } else
5502 return false;
5504 // Start building the compare and branch.
5506 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5507 Constant *NumCases =
5508 ConstantInt::get(Offset->getType(), ContiguousCases->size());
5510 Value *Sub = SI->getCondition();
5511 if (!Offset->isNullValue())
5512 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5514 Value *Cmp;
5515 // If NumCases overflowed, then all possible values jump to the successor.
5516 if (NumCases->isNullValue() && !ContiguousCases->empty())
5517 Cmp = ConstantInt::getTrue(SI->getContext());
5518 else
5519 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5520 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5522 // Update weight for the newly-created conditional branch.
5523 if (hasBranchWeightMD(*SI)) {
5524 SmallVector<uint64_t, 8> Weights;
5525 GetBranchWeights(SI, Weights);
5526 if (Weights.size() == 1 + SI->getNumCases()) {
5527 uint64_t TrueWeight = 0;
5528 uint64_t FalseWeight = 0;
5529 for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5530 if (SI->getSuccessor(I) == ContiguousDest)
5531 TrueWeight += Weights[I];
5532 else
5533 FalseWeight += Weights[I];
5535 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5536 TrueWeight /= 2;
5537 FalseWeight /= 2;
5539 setBranchWeights(NewBI, TrueWeight, FalseWeight);
5543 // Prune obsolete incoming values off the successors' PHI nodes.
5544 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5545 unsigned PreviousEdges = ContiguousCases->size();
5546 if (ContiguousDest == SI->getDefaultDest())
5547 ++PreviousEdges;
5548 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5549 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5551 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5552 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5553 if (OtherDest == SI->getDefaultDest())
5554 ++PreviousEdges;
5555 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5556 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5559 // Clean up the default block - it may have phis or other instructions before
5560 // the unreachable terminator.
5561 if (!HasDefault)
5562 createUnreachableSwitchDefault(SI, DTU);
5564 auto *UnreachableDefault = SI->getDefaultDest();
5566 // Drop the switch.
5567 SI->eraseFromParent();
5569 if (!HasDefault && DTU)
5570 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5572 return true;
5575 /// Compute masked bits for the condition of a switch
5576 /// and use it to remove dead cases.
5577 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5578 AssumptionCache *AC,
5579 const DataLayout &DL) {
5580 Value *Cond = SI->getCondition();
5581 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5583 // We can also eliminate cases by determining that their values are outside of
5584 // the limited range of the condition based on how many significant (non-sign)
5585 // bits are in the condition value.
5586 unsigned MaxSignificantBitsInCond =
5587 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5589 // Gather dead cases.
5590 SmallVector<ConstantInt *, 8> DeadCases;
5591 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5592 SmallVector<BasicBlock *, 8> UniqueSuccessors;
5593 for (const auto &Case : SI->cases()) {
5594 auto *Successor = Case.getCaseSuccessor();
5595 if (DTU) {
5596 if (!NumPerSuccessorCases.count(Successor))
5597 UniqueSuccessors.push_back(Successor);
5598 ++NumPerSuccessorCases[Successor];
5600 const APInt &CaseVal = Case.getCaseValue()->getValue();
5601 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5602 (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) {
5603 DeadCases.push_back(Case.getCaseValue());
5604 if (DTU)
5605 --NumPerSuccessorCases[Successor];
5606 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5607 << " is dead.\n");
5611 // If we can prove that the cases must cover all possible values, the
5612 // default destination becomes dead and we can remove it. If we know some
5613 // of the bits in the value, we can use that to more precisely compute the
5614 // number of possible unique case values.
5615 bool HasDefault =
5616 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5617 const unsigned NumUnknownBits =
5618 Known.getBitWidth() - (Known.Zero | Known.One).popcount();
5619 assert(NumUnknownBits <= Known.getBitWidth());
5620 if (HasDefault && DeadCases.empty() &&
5621 NumUnknownBits < 64 /* avoid overflow */ &&
5622 SI->getNumCases() == (1ULL << NumUnknownBits)) {
5623 createUnreachableSwitchDefault(SI, DTU);
5624 return true;
5627 if (DeadCases.empty())
5628 return false;
5630 SwitchInstProfUpdateWrapper SIW(*SI);
5631 for (ConstantInt *DeadCase : DeadCases) {
5632 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5633 assert(CaseI != SI->case_default() &&
5634 "Case was not found. Probably mistake in DeadCases forming.");
5635 // Prune unused values from PHI nodes.
5636 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5637 SIW.removeCase(CaseI);
5640 if (DTU) {
5641 std::vector<DominatorTree::UpdateType> Updates;
5642 for (auto *Successor : UniqueSuccessors)
5643 if (NumPerSuccessorCases[Successor] == 0)
5644 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5645 DTU->applyUpdates(Updates);
5648 return true;
5651 /// If BB would be eligible for simplification by
5652 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5653 /// by an unconditional branch), look at the phi node for BB in the successor
5654 /// block and see if the incoming value is equal to CaseValue. If so, return
5655 /// the phi node, and set PhiIndex to BB's index in the phi node.
5656 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5657 BasicBlock *BB, int *PhiIndex) {
5658 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5659 return nullptr; // BB must be empty to be a candidate for simplification.
5660 if (!BB->getSinglePredecessor())
5661 return nullptr; // BB must be dominated by the switch.
5663 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5664 if (!Branch || !Branch->isUnconditional())
5665 return nullptr; // Terminator must be unconditional branch.
5667 BasicBlock *Succ = Branch->getSuccessor(0);
5669 for (PHINode &PHI : Succ->phis()) {
5670 int Idx = PHI.getBasicBlockIndex(BB);
5671 assert(Idx >= 0 && "PHI has no entry for predecessor?");
5673 Value *InValue = PHI.getIncomingValue(Idx);
5674 if (InValue != CaseValue)
5675 continue;
5677 *PhiIndex = Idx;
5678 return &PHI;
5681 return nullptr;
5684 /// Try to forward the condition of a switch instruction to a phi node
5685 /// dominated by the switch, if that would mean that some of the destination
5686 /// blocks of the switch can be folded away. Return true if a change is made.
5687 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5688 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5690 ForwardingNodesMap ForwardingNodes;
5691 BasicBlock *SwitchBlock = SI->getParent();
5692 bool Changed = false;
5693 for (const auto &Case : SI->cases()) {
5694 ConstantInt *CaseValue = Case.getCaseValue();
5695 BasicBlock *CaseDest = Case.getCaseSuccessor();
5697 // Replace phi operands in successor blocks that are using the constant case
5698 // value rather than the switch condition variable:
5699 // switchbb:
5700 // switch i32 %x, label %default [
5701 // i32 17, label %succ
5702 // ...
5703 // succ:
5704 // %r = phi i32 ... [ 17, %switchbb ] ...
5705 // -->
5706 // %r = phi i32 ... [ %x, %switchbb ] ...
5708 for (PHINode &Phi : CaseDest->phis()) {
5709 // This only works if there is exactly 1 incoming edge from the switch to
5710 // a phi. If there is >1, that means multiple cases of the switch map to 1
5711 // value in the phi, and that phi value is not the switch condition. Thus,
5712 // this transform would not make sense (the phi would be invalid because
5713 // a phi can't have different incoming values from the same block).
5714 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5715 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5716 count(Phi.blocks(), SwitchBlock) == 1) {
5717 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5718 Changed = true;
5722 // Collect phi nodes that are indirectly using this switch's case constants.
5723 int PhiIdx;
5724 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5725 ForwardingNodes[Phi].push_back(PhiIdx);
5728 for (auto &ForwardingNode : ForwardingNodes) {
5729 PHINode *Phi = ForwardingNode.first;
5730 SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5731 if (Indexes.size() < 2)
5732 continue;
5734 for (int Index : Indexes)
5735 Phi->setIncomingValue(Index, SI->getCondition());
5736 Changed = true;
5739 return Changed;
5742 /// Return true if the backend will be able to handle
5743 /// initializing an array of constants like C.
5744 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5745 if (C->isThreadDependent())
5746 return false;
5747 if (C->isDLLImportDependent())
5748 return false;
5750 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5751 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5752 !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5753 return false;
5755 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5756 // Pointer casts and in-bounds GEPs will not prohibit the backend from
5757 // materializing the array of constants.
5758 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5759 if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5760 return false;
5763 if (!TTI.shouldBuildLookupTablesForConstant(C))
5764 return false;
5766 return true;
5769 /// If V is a Constant, return it. Otherwise, try to look up
5770 /// its constant value in ConstantPool, returning 0 if it's not there.
5771 static Constant *
5772 LookupConstant(Value *V,
5773 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5774 if (Constant *C = dyn_cast<Constant>(V))
5775 return C;
5776 return ConstantPool.lookup(V);
5779 /// Try to fold instruction I into a constant. This works for
5780 /// simple instructions such as binary operations where both operands are
5781 /// constant or can be replaced by constants from the ConstantPool. Returns the
5782 /// resulting constant on success, 0 otherwise.
5783 static Constant *
5784 ConstantFold(Instruction *I, const DataLayout &DL,
5785 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5786 if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5787 Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5788 if (!A)
5789 return nullptr;
5790 if (A->isAllOnesValue())
5791 return LookupConstant(Select->getTrueValue(), ConstantPool);
5792 if (A->isNullValue())
5793 return LookupConstant(Select->getFalseValue(), ConstantPool);
5794 return nullptr;
5797 SmallVector<Constant *, 4> COps;
5798 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5799 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5800 COps.push_back(A);
5801 else
5802 return nullptr;
5805 return ConstantFoldInstOperands(I, COps, DL);
5808 /// Try to determine the resulting constant values in phi nodes
5809 /// at the common destination basic block, *CommonDest, for one of the case
5810 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5811 /// case), of a switch instruction SI.
5812 static bool
5813 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5814 BasicBlock **CommonDest,
5815 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5816 const DataLayout &DL, const TargetTransformInfo &TTI) {
5817 // The block from which we enter the common destination.
5818 BasicBlock *Pred = SI->getParent();
5820 // If CaseDest is empty except for some side-effect free instructions through
5821 // which we can constant-propagate the CaseVal, continue to its successor.
5822 SmallDenseMap<Value *, Constant *> ConstantPool;
5823 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5824 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5825 if (I.isTerminator()) {
5826 // If the terminator is a simple branch, continue to the next block.
5827 if (I.getNumSuccessors() != 1 || I.isSpecialTerminator())
5828 return false;
5829 Pred = CaseDest;
5830 CaseDest = I.getSuccessor(0);
5831 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5832 // Instruction is side-effect free and constant.
5834 // If the instruction has uses outside this block or a phi node slot for
5835 // the block, it is not safe to bypass the instruction since it would then
5836 // no longer dominate all its uses.
5837 for (auto &Use : I.uses()) {
5838 User *User = Use.getUser();
5839 if (Instruction *I = dyn_cast<Instruction>(User))
5840 if (I->getParent() == CaseDest)
5841 continue;
5842 if (PHINode *Phi = dyn_cast<PHINode>(User))
5843 if (Phi->getIncomingBlock(Use) == CaseDest)
5844 continue;
5845 return false;
5848 ConstantPool.insert(std::make_pair(&I, C));
5849 } else {
5850 break;
5854 // If we did not have a CommonDest before, use the current one.
5855 if (!*CommonDest)
5856 *CommonDest = CaseDest;
5857 // If the destination isn't the common one, abort.
5858 if (CaseDest != *CommonDest)
5859 return false;
5861 // Get the values for this case from phi nodes in the destination block.
5862 for (PHINode &PHI : (*CommonDest)->phis()) {
5863 int Idx = PHI.getBasicBlockIndex(Pred);
5864 if (Idx == -1)
5865 continue;
5867 Constant *ConstVal =
5868 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5869 if (!ConstVal)
5870 return false;
5872 // Be conservative about which kinds of constants we support.
5873 if (!ValidLookupTableConstant(ConstVal, TTI))
5874 return false;
5876 Res.push_back(std::make_pair(&PHI, ConstVal));
5879 return Res.size() > 0;
5882 // Helper function used to add CaseVal to the list of cases that generate
5883 // Result. Returns the updated number of cases that generate this result.
5884 static size_t mapCaseToResult(ConstantInt *CaseVal,
5885 SwitchCaseResultVectorTy &UniqueResults,
5886 Constant *Result) {
5887 for (auto &I : UniqueResults) {
5888 if (I.first == Result) {
5889 I.second.push_back(CaseVal);
5890 return I.second.size();
5893 UniqueResults.push_back(
5894 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5895 return 1;
5898 // Helper function that initializes a map containing
5899 // results for the PHI node of the common destination block for a switch
5900 // instruction. Returns false if multiple PHI nodes have been found or if
5901 // there is not a common destination block for the switch.
5902 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
5903 BasicBlock *&CommonDest,
5904 SwitchCaseResultVectorTy &UniqueResults,
5905 Constant *&DefaultResult,
5906 const DataLayout &DL,
5907 const TargetTransformInfo &TTI,
5908 uintptr_t MaxUniqueResults) {
5909 for (const auto &I : SI->cases()) {
5910 ConstantInt *CaseVal = I.getCaseValue();
5912 // Resulting value at phi nodes for this case value.
5913 SwitchCaseResultsTy Results;
5914 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5915 DL, TTI))
5916 return false;
5918 // Only one value per case is permitted.
5919 if (Results.size() > 1)
5920 return false;
5922 // Add the case->result mapping to UniqueResults.
5923 const size_t NumCasesForResult =
5924 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5926 // Early out if there are too many cases for this result.
5927 if (NumCasesForResult > MaxSwitchCasesPerResult)
5928 return false;
5930 // Early out if there are too many unique results.
5931 if (UniqueResults.size() > MaxUniqueResults)
5932 return false;
5934 // Check the PHI consistency.
5935 if (!PHI)
5936 PHI = Results[0].first;
5937 else if (PHI != Results[0].first)
5938 return false;
5940 // Find the default result value.
5941 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5942 BasicBlock *DefaultDest = SI->getDefaultDest();
5943 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5944 DL, TTI);
5945 // If the default value is not found abort unless the default destination
5946 // is unreachable.
5947 DefaultResult =
5948 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5949 if ((!DefaultResult &&
5950 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5951 return false;
5953 return true;
5956 // Helper function that checks if it is possible to transform a switch with only
5957 // two cases (or two cases + default) that produces a result into a select.
5958 // TODO: Handle switches with more than 2 cases that map to the same result.
5959 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
5960 Constant *DefaultResult, Value *Condition,
5961 IRBuilder<> &Builder) {
5962 // If we are selecting between only two cases transform into a simple
5963 // select or a two-way select if default is possible.
5964 // Example:
5965 // switch (a) { %0 = icmp eq i32 %a, 10
5966 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4
5967 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20
5968 // default: return 4; %3 = select i1 %2, i32 2, i32 %1
5969 // }
5970 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5971 ResultVector[1].second.size() == 1) {
5972 ConstantInt *FirstCase = ResultVector[0].second[0];
5973 ConstantInt *SecondCase = ResultVector[1].second[0];
5974 Value *SelectValue = ResultVector[1].first;
5975 if (DefaultResult) {
5976 Value *ValueCompare =
5977 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5978 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5979 DefaultResult, "switch.select");
5981 Value *ValueCompare =
5982 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5983 return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5984 SelectValue, "switch.select");
5987 // Handle the degenerate case where two cases have the same result value.
5988 if (ResultVector.size() == 1 && DefaultResult) {
5989 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
5990 unsigned CaseCount = CaseValues.size();
5991 // n bits group cases map to the same result:
5992 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default
5993 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default
5994 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
5995 if (isPowerOf2_32(CaseCount)) {
5996 ConstantInt *MinCaseVal = CaseValues[0];
5997 // Find mininal value.
5998 for (auto *Case : CaseValues)
5999 if (Case->getValue().slt(MinCaseVal->getValue()))
6000 MinCaseVal = Case;
6002 // Mark the bits case number touched.
6003 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
6004 for (auto *Case : CaseValues)
6005 BitMask |= (Case->getValue() - MinCaseVal->getValue());
6007 // Check if cases with the same result can cover all number
6008 // in touched bits.
6009 if (BitMask.popcount() == Log2_32(CaseCount)) {
6010 if (!MinCaseVal->isNullValue())
6011 Condition = Builder.CreateSub(Condition, MinCaseVal);
6012 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
6013 Value *Cmp = Builder.CreateICmpEQ(
6014 And, Constant::getNullValue(And->getType()), "switch.selectcmp");
6015 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6019 // Handle the degenerate case where two cases have the same value.
6020 if (CaseValues.size() == 2) {
6021 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
6022 "switch.selectcmp.case1");
6023 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
6024 "switch.selectcmp.case2");
6025 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
6026 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6030 return nullptr;
6033 // Helper function to cleanup a switch instruction that has been converted into
6034 // a select, fixing up PHI nodes and basic blocks.
6035 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
6036 Value *SelectValue,
6037 IRBuilder<> &Builder,
6038 DomTreeUpdater *DTU) {
6039 std::vector<DominatorTree::UpdateType> Updates;
6041 BasicBlock *SelectBB = SI->getParent();
6042 BasicBlock *DestBB = PHI->getParent();
6044 if (DTU && !is_contained(predecessors(DestBB), SelectBB))
6045 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
6046 Builder.CreateBr(DestBB);
6048 // Remove the switch.
6050 PHI->removeIncomingValueIf(
6051 [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; });
6052 PHI->addIncoming(SelectValue, SelectBB);
6054 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
6055 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6056 BasicBlock *Succ = SI->getSuccessor(i);
6058 if (Succ == DestBB)
6059 continue;
6060 Succ->removePredecessor(SelectBB);
6061 if (DTU && RemovedSuccessors.insert(Succ).second)
6062 Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
6064 SI->eraseFromParent();
6065 if (DTU)
6066 DTU->applyUpdates(Updates);
6069 /// If a switch is only used to initialize one or more phi nodes in a common
6070 /// successor block with only two different constant values, try to replace the
6071 /// switch with a select. Returns true if the fold was made.
6072 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
6073 DomTreeUpdater *DTU, const DataLayout &DL,
6074 const TargetTransformInfo &TTI) {
6075 Value *const Cond = SI->getCondition();
6076 PHINode *PHI = nullptr;
6077 BasicBlock *CommonDest = nullptr;
6078 Constant *DefaultResult;
6079 SwitchCaseResultVectorTy UniqueResults;
6080 // Collect all the cases that will deliver the same value from the switch.
6081 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
6082 DL, TTI, /*MaxUniqueResults*/ 2))
6083 return false;
6085 assert(PHI != nullptr && "PHI for value select not found");
6086 Builder.SetInsertPoint(SI);
6087 Value *SelectValue =
6088 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
6089 if (!SelectValue)
6090 return false;
6092 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
6093 return true;
6096 namespace {
6098 /// This class represents a lookup table that can be used to replace a switch.
6099 class SwitchLookupTable {
6100 public:
6101 /// Create a lookup table to use as a switch replacement with the contents
6102 /// of Values, using DefaultValue to fill any holes in the table.
6103 SwitchLookupTable(
6104 Module &M, uint64_t TableSize, ConstantInt *Offset,
6105 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6106 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
6108 /// Build instructions with Builder to retrieve the value at
6109 /// the position given by Index in the lookup table.
6110 Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
6112 /// Return true if a table with TableSize elements of
6113 /// type ElementType would fit in a target-legal register.
6114 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
6115 Type *ElementType);
6117 private:
6118 // Depending on the contents of the table, it can be represented in
6119 // different ways.
6120 enum {
6121 // For tables where each element contains the same value, we just have to
6122 // store that single value and return it for each lookup.
6123 SingleValueKind,
6125 // For tables where there is a linear relationship between table index
6126 // and values. We calculate the result with a simple multiplication
6127 // and addition instead of a table lookup.
6128 LinearMapKind,
6130 // For small tables with integer elements, we can pack them into a bitmap
6131 // that fits into a target-legal register. Values are retrieved by
6132 // shift and mask operations.
6133 BitMapKind,
6135 // The table is stored as an array of values. Values are retrieved by load
6136 // instructions from the table.
6137 ArrayKind
6138 } Kind;
6140 // For SingleValueKind, this is the single value.
6141 Constant *SingleValue = nullptr;
6143 // For BitMapKind, this is the bitmap.
6144 ConstantInt *BitMap = nullptr;
6145 IntegerType *BitMapElementTy = nullptr;
6147 // For LinearMapKind, these are the constants used to derive the value.
6148 ConstantInt *LinearOffset = nullptr;
6149 ConstantInt *LinearMultiplier = nullptr;
6150 bool LinearMapValWrapped = false;
6152 // For ArrayKind, this is the array.
6153 GlobalVariable *Array = nullptr;
6156 } // end anonymous namespace
6158 SwitchLookupTable::SwitchLookupTable(
6159 Module &M, uint64_t TableSize, ConstantInt *Offset,
6160 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6161 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
6162 assert(Values.size() && "Can't build lookup table without values!");
6163 assert(TableSize >= Values.size() && "Can't fit values in table!");
6165 // If all values in the table are equal, this is that value.
6166 SingleValue = Values.begin()->second;
6168 Type *ValueType = Values.begin()->second->getType();
6170 // Build up the table contents.
6171 SmallVector<Constant *, 64> TableContents(TableSize);
6172 for (size_t I = 0, E = Values.size(); I != E; ++I) {
6173 ConstantInt *CaseVal = Values[I].first;
6174 Constant *CaseRes = Values[I].second;
6175 assert(CaseRes->getType() == ValueType);
6177 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
6178 TableContents[Idx] = CaseRes;
6180 if (CaseRes != SingleValue)
6181 SingleValue = nullptr;
6184 // Fill in any holes in the table with the default result.
6185 if (Values.size() < TableSize) {
6186 assert(DefaultValue &&
6187 "Need a default value to fill the lookup table holes.");
6188 assert(DefaultValue->getType() == ValueType);
6189 for (uint64_t I = 0; I < TableSize; ++I) {
6190 if (!TableContents[I])
6191 TableContents[I] = DefaultValue;
6194 if (DefaultValue != SingleValue)
6195 SingleValue = nullptr;
6198 // If each element in the table contains the same value, we only need to store
6199 // that single value.
6200 if (SingleValue) {
6201 Kind = SingleValueKind;
6202 return;
6205 // Check if we can derive the value with a linear transformation from the
6206 // table index.
6207 if (isa<IntegerType>(ValueType)) {
6208 bool LinearMappingPossible = true;
6209 APInt PrevVal;
6210 APInt DistToPrev;
6211 // When linear map is monotonic and signed overflow doesn't happen on
6212 // maximum index, we can attach nsw on Add and Mul.
6213 bool NonMonotonic = false;
6214 assert(TableSize >= 2 && "Should be a SingleValue table.");
6215 // Check if there is the same distance between two consecutive values.
6216 for (uint64_t I = 0; I < TableSize; ++I) {
6217 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
6218 if (!ConstVal) {
6219 // This is an undef. We could deal with it, but undefs in lookup tables
6220 // are very seldom. It's probably not worth the additional complexity.
6221 LinearMappingPossible = false;
6222 break;
6224 const APInt &Val = ConstVal->getValue();
6225 if (I != 0) {
6226 APInt Dist = Val - PrevVal;
6227 if (I == 1) {
6228 DistToPrev = Dist;
6229 } else if (Dist != DistToPrev) {
6230 LinearMappingPossible = false;
6231 break;
6233 NonMonotonic |=
6234 Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal);
6236 PrevVal = Val;
6238 if (LinearMappingPossible) {
6239 LinearOffset = cast<ConstantInt>(TableContents[0]);
6240 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
6241 bool MayWrap = false;
6242 APInt M = LinearMultiplier->getValue();
6243 (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap);
6244 LinearMapValWrapped = NonMonotonic || MayWrap;
6245 Kind = LinearMapKind;
6246 ++NumLinearMaps;
6247 return;
6251 // If the type is integer and the table fits in a register, build a bitmap.
6252 if (WouldFitInRegister(DL, TableSize, ValueType)) {
6253 IntegerType *IT = cast<IntegerType>(ValueType);
6254 APInt TableInt(TableSize * IT->getBitWidth(), 0);
6255 for (uint64_t I = TableSize; I > 0; --I) {
6256 TableInt <<= IT->getBitWidth();
6257 // Insert values into the bitmap. Undef values are set to zero.
6258 if (!isa<UndefValue>(TableContents[I - 1])) {
6259 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
6260 TableInt |= Val->getValue().zext(TableInt.getBitWidth());
6263 BitMap = ConstantInt::get(M.getContext(), TableInt);
6264 BitMapElementTy = IT;
6265 Kind = BitMapKind;
6266 ++NumBitMaps;
6267 return;
6270 // Store the table in an array.
6271 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
6272 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
6274 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
6275 GlobalVariable::PrivateLinkage, Initializer,
6276 "switch.table." + FuncName);
6277 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
6278 // Set the alignment to that of an array items. We will be only loading one
6279 // value out of it.
6280 Array->setAlignment(DL.getPrefTypeAlign(ValueType));
6281 Kind = ArrayKind;
6284 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
6285 switch (Kind) {
6286 case SingleValueKind:
6287 return SingleValue;
6288 case LinearMapKind: {
6289 // Derive the result value from the input value.
6290 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
6291 false, "switch.idx.cast");
6292 if (!LinearMultiplier->isOne())
6293 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult",
6294 /*HasNUW = */ false,
6295 /*HasNSW = */ !LinearMapValWrapped);
6297 if (!LinearOffset->isZero())
6298 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset",
6299 /*HasNUW = */ false,
6300 /*HasNSW = */ !LinearMapValWrapped);
6301 return Result;
6303 case BitMapKind: {
6304 // Type of the bitmap (e.g. i59).
6305 IntegerType *MapTy = BitMap->getIntegerType();
6307 // Cast Index to the same type as the bitmap.
6308 // Note: The Index is <= the number of elements in the table, so
6309 // truncating it to the width of the bitmask is safe.
6310 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
6312 // Multiply the shift amount by the element width. NUW/NSW can always be
6313 // set, because WouldFitInRegister guarantees Index * ShiftAmt is in
6314 // BitMap's bit width.
6315 ShiftAmt = Builder.CreateMul(
6316 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
6317 "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true);
6319 // Shift down.
6320 Value *DownShifted =
6321 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
6322 // Mask off.
6323 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6325 case ArrayKind: {
6326 // Make sure the table index will not overflow when treated as signed.
6327 IntegerType *IT = cast<IntegerType>(Index->getType());
6328 uint64_t TableSize =
6329 Array->getInitializer()->getType()->getArrayNumElements();
6330 if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6331 Index = Builder.CreateZExt(
6332 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6333 "switch.tableidx.zext");
6335 Value *GEPIndices[] = {Builder.getInt32(0), Index};
6336 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6337 GEPIndices, "switch.gep");
6338 return Builder.CreateLoad(
6339 cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6340 "switch.load");
6343 llvm_unreachable("Unknown lookup table kind!");
6346 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
6347 uint64_t TableSize,
6348 Type *ElementType) {
6349 auto *IT = dyn_cast<IntegerType>(ElementType);
6350 if (!IT)
6351 return false;
6352 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6353 // are <= 15, we could try to narrow the type.
6355 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6356 if (TableSize >= UINT_MAX / IT->getBitWidth())
6357 return false;
6358 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6361 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6362 const DataLayout &DL) {
6363 // Allow any legal type.
6364 if (TTI.isTypeLegal(Ty))
6365 return true;
6367 auto *IT = dyn_cast<IntegerType>(Ty);
6368 if (!IT)
6369 return false;
6371 // Also allow power of 2 integer types that have at least 8 bits and fit in
6372 // a register. These types are common in frontend languages and targets
6373 // usually support loads of these types.
6374 // TODO: We could relax this to any integer that fits in a register and rely
6375 // on ABI alignment and padding in the table to allow the load to be widened.
6376 // Or we could widen the constants and truncate the load.
6377 unsigned BitWidth = IT->getBitWidth();
6378 return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6379 DL.fitsInLegalInteger(IT->getBitWidth());
6382 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6383 // 40% is the default density for building a jump table in optsize/minsize
6384 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6385 // function was based on.
6386 const uint64_t MinDensity = 40;
6388 if (CaseRange >= UINT64_MAX / 100)
6389 return false; // Avoid multiplication overflows below.
6391 return NumCases * 100 >= CaseRange * MinDensity;
6394 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6395 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6396 uint64_t Range = Diff + 1;
6397 if (Range < Diff)
6398 return false; // Overflow.
6400 return isSwitchDense(Values.size(), Range);
6403 /// Determine whether a lookup table should be built for this switch, based on
6404 /// the number of cases, size of the table, and the types of the results.
6405 // TODO: We could support larger than legal types by limiting based on the
6406 // number of loads required and/or table size. If the constants are small we
6407 // could use smaller table entries and extend after the load.
6408 static bool
6409 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6410 const TargetTransformInfo &TTI, const DataLayout &DL,
6411 const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6412 if (SI->getNumCases() > TableSize)
6413 return false; // TableSize overflowed.
6415 bool AllTablesFitInRegister = true;
6416 bool HasIllegalType = false;
6417 for (const auto &I : ResultTypes) {
6418 Type *Ty = I.second;
6420 // Saturate this flag to true.
6421 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6423 // Saturate this flag to false.
6424 AllTablesFitInRegister =
6425 AllTablesFitInRegister &&
6426 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
6428 // If both flags saturate, we're done. NOTE: This *only* works with
6429 // saturating flags, and all flags have to saturate first due to the
6430 // non-deterministic behavior of iterating over a dense map.
6431 if (HasIllegalType && !AllTablesFitInRegister)
6432 break;
6435 // If each table would fit in a register, we should build it anyway.
6436 if (AllTablesFitInRegister)
6437 return true;
6439 // Don't build a table that doesn't fit in-register if it has illegal types.
6440 if (HasIllegalType)
6441 return false;
6443 return isSwitchDense(SI->getNumCases(), TableSize);
6446 static bool ShouldUseSwitchConditionAsTableIndex(
6447 ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6448 bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6449 const DataLayout &DL, const TargetTransformInfo &TTI) {
6450 if (MinCaseVal.isNullValue())
6451 return true;
6452 if (MinCaseVal.isNegative() ||
6453 MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6454 !HasDefaultResults)
6455 return false;
6456 return all_of(ResultTypes, [&](const auto &KV) {
6457 return SwitchLookupTable::WouldFitInRegister(
6458 DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6459 KV.second /* ResultType */);
6463 /// Try to reuse the switch table index compare. Following pattern:
6464 /// \code
6465 /// if (idx < tablesize)
6466 /// r = table[idx]; // table does not contain default_value
6467 /// else
6468 /// r = default_value;
6469 /// if (r != default_value)
6470 /// ...
6471 /// \endcode
6472 /// Is optimized to:
6473 /// \code
6474 /// cond = idx < tablesize;
6475 /// if (cond)
6476 /// r = table[idx];
6477 /// else
6478 /// r = default_value;
6479 /// if (cond)
6480 /// ...
6481 /// \endcode
6482 /// Jump threading will then eliminate the second if(cond).
6483 static void reuseTableCompare(
6484 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6485 Constant *DefaultValue,
6486 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6487 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6488 if (!CmpInst)
6489 return;
6491 // We require that the compare is in the same block as the phi so that jump
6492 // threading can do its work afterwards.
6493 if (CmpInst->getParent() != PhiBlock)
6494 return;
6496 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6497 if (!CmpOp1)
6498 return;
6500 Value *RangeCmp = RangeCheckBranch->getCondition();
6501 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6502 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6504 // Check if the compare with the default value is constant true or false.
6505 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6506 DefaultValue, CmpOp1, true);
6507 if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6508 return;
6510 // Check if the compare with the case values is distinct from the default
6511 // compare result.
6512 for (auto ValuePair : Values) {
6513 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6514 ValuePair.second, CmpOp1, true);
6515 if (!CaseConst || CaseConst == DefaultConst ||
6516 (CaseConst != TrueConst && CaseConst != FalseConst))
6517 return;
6520 // Check if the branch instruction dominates the phi node. It's a simple
6521 // dominance check, but sufficient for our needs.
6522 // Although this check is invariant in the calling loops, it's better to do it
6523 // at this late stage. Practically we do it at most once for a switch.
6524 BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6525 for (BasicBlock *Pred : predecessors(PhiBlock)) {
6526 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6527 return;
6530 if (DefaultConst == FalseConst) {
6531 // The compare yields the same result. We can replace it.
6532 CmpInst->replaceAllUsesWith(RangeCmp);
6533 ++NumTableCmpReuses;
6534 } else {
6535 // The compare yields the same result, just inverted. We can replace it.
6536 Value *InvertedTableCmp = BinaryOperator::CreateXor(
6537 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6538 RangeCheckBranch);
6539 CmpInst->replaceAllUsesWith(InvertedTableCmp);
6540 ++NumTableCmpReuses;
6544 /// If the switch is only used to initialize one or more phi nodes in a common
6545 /// successor block with different constant values, replace the switch with
6546 /// lookup tables.
6547 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6548 DomTreeUpdater *DTU, const DataLayout &DL,
6549 const TargetTransformInfo &TTI) {
6550 assert(SI->getNumCases() > 1 && "Degenerate switch?");
6552 BasicBlock *BB = SI->getParent();
6553 Function *Fn = BB->getParent();
6554 // Only build lookup table when we have a target that supports it or the
6555 // attribute is not set.
6556 if (!TTI.shouldBuildLookupTables() ||
6557 (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6558 return false;
6560 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6561 // split off a dense part and build a lookup table for that.
6563 // FIXME: This creates arrays of GEPs to constant strings, which means each
6564 // GEP needs a runtime relocation in PIC code. We should just build one big
6565 // string and lookup indices into that.
6567 // Ignore switches with less than three cases. Lookup tables will not make
6568 // them faster, so we don't analyze them.
6569 if (SI->getNumCases() < 3)
6570 return false;
6572 // Figure out the corresponding result for each case value and phi node in the
6573 // common destination, as well as the min and max case values.
6574 assert(!SI->cases().empty());
6575 SwitchInst::CaseIt CI = SI->case_begin();
6576 ConstantInt *MinCaseVal = CI->getCaseValue();
6577 ConstantInt *MaxCaseVal = CI->getCaseValue();
6579 BasicBlock *CommonDest = nullptr;
6581 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6582 SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6584 SmallDenseMap<PHINode *, Constant *> DefaultResults;
6585 SmallDenseMap<PHINode *, Type *> ResultTypes;
6586 SmallVector<PHINode *, 4> PHIs;
6588 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6589 ConstantInt *CaseVal = CI->getCaseValue();
6590 if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6591 MinCaseVal = CaseVal;
6592 if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6593 MaxCaseVal = CaseVal;
6595 // Resulting value at phi nodes for this case value.
6596 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6597 ResultsTy Results;
6598 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6599 Results, DL, TTI))
6600 return false;
6602 // Append the result from this case to the list for each phi.
6603 for (const auto &I : Results) {
6604 PHINode *PHI = I.first;
6605 Constant *Value = I.second;
6606 if (!ResultLists.count(PHI))
6607 PHIs.push_back(PHI);
6608 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6612 // Keep track of the result types.
6613 for (PHINode *PHI : PHIs) {
6614 ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6617 uint64_t NumResults = ResultLists[PHIs[0]].size();
6619 // If the table has holes, we need a constant result for the default case
6620 // or a bitmask that fits in a register.
6621 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6622 bool HasDefaultResults =
6623 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6624 DefaultResultsList, DL, TTI);
6626 for (const auto &I : DefaultResultsList) {
6627 PHINode *PHI = I.first;
6628 Constant *Result = I.second;
6629 DefaultResults[PHI] = Result;
6632 bool UseSwitchConditionAsTableIndex = ShouldUseSwitchConditionAsTableIndex(
6633 *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6634 uint64_t TableSize;
6635 if (UseSwitchConditionAsTableIndex)
6636 TableSize = MaxCaseVal->getLimitedValue() + 1;
6637 else
6638 TableSize =
6639 (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
6641 bool TableHasHoles = (NumResults < TableSize);
6642 bool NeedMask = (TableHasHoles && !HasDefaultResults);
6643 if (NeedMask) {
6644 // As an extra penalty for the validity test we require more cases.
6645 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6646 return false;
6647 if (!DL.fitsInLegalInteger(TableSize))
6648 return false;
6651 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6652 return false;
6654 std::vector<DominatorTree::UpdateType> Updates;
6656 // Compute the maximum table size representable by the integer type we are
6657 // switching upon.
6658 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6659 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6660 assert(MaxTableSize >= TableSize &&
6661 "It is impossible for a switch to have more entries than the max "
6662 "representable value of its input integer type's size.");
6664 // If the default destination is unreachable, or if the lookup table covers
6665 // all values of the conditional variable, branch directly to the lookup table
6666 // BB. Otherwise, check that the condition is within the case range.
6667 bool DefaultIsReachable =
6668 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6670 // Create the BB that does the lookups.
6671 Module &Mod = *CommonDest->getParent()->getParent();
6672 BasicBlock *LookupBB = BasicBlock::Create(
6673 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6675 // Compute the table index value.
6676 Builder.SetInsertPoint(SI);
6677 Value *TableIndex;
6678 ConstantInt *TableIndexOffset;
6679 if (UseSwitchConditionAsTableIndex) {
6680 TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0);
6681 TableIndex = SI->getCondition();
6682 } else {
6683 TableIndexOffset = MinCaseVal;
6684 // If the default is unreachable, all case values are s>= MinCaseVal. Then
6685 // we can try to attach nsw.
6686 bool MayWrap = true;
6687 if (!DefaultIsReachable) {
6688 APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap);
6689 (void)Res;
6692 TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset,
6693 "switch.tableidx", /*HasNUW =*/false,
6694 /*HasNSW =*/!MayWrap);
6697 BranchInst *RangeCheckBranch = nullptr;
6699 // Grow the table to cover all possible index values to avoid the range check.
6700 // It will use the default result to fill in the table hole later, so make
6701 // sure it exist.
6702 if (UseSwitchConditionAsTableIndex && HasDefaultResults) {
6703 ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false);
6704 // Grow the table shouldn't have any size impact by checking
6705 // WouldFitInRegister.
6706 // TODO: Consider growing the table also when it doesn't fit in a register
6707 // if no optsize is specified.
6708 const uint64_t UpperBound = CR.getUpper().getLimitedValue();
6709 if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) {
6710 return SwitchLookupTable::WouldFitInRegister(
6711 DL, UpperBound, KV.second /* ResultType */);
6712 })) {
6713 // The default branch is unreachable after we enlarge the lookup table.
6714 // Adjust DefaultIsReachable to reuse code path.
6715 TableSize = UpperBound;
6716 DefaultIsReachable = false;
6720 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6721 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6722 Builder.CreateBr(LookupBB);
6723 if (DTU)
6724 Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6725 // Note: We call removeProdecessor later since we need to be able to get the
6726 // PHI value for the default case in case we're using a bit mask.
6727 } else {
6728 Value *Cmp = Builder.CreateICmpULT(
6729 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6730 RangeCheckBranch =
6731 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6732 if (DTU)
6733 Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6736 // Populate the BB that does the lookups.
6737 Builder.SetInsertPoint(LookupBB);
6739 if (NeedMask) {
6740 // Before doing the lookup, we do the hole check. The LookupBB is therefore
6741 // re-purposed to do the hole check, and we create a new LookupBB.
6742 BasicBlock *MaskBB = LookupBB;
6743 MaskBB->setName("switch.hole_check");
6744 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6745 CommonDest->getParent(), CommonDest);
6747 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6748 // unnecessary illegal types.
6749 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6750 APInt MaskInt(TableSizePowOf2, 0);
6751 APInt One(TableSizePowOf2, 1);
6752 // Build bitmask; fill in a 1 bit for every case.
6753 const ResultListTy &ResultList = ResultLists[PHIs[0]];
6754 for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6755 uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
6756 .getLimitedValue();
6757 MaskInt |= One << Idx;
6759 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6761 // Get the TableIndex'th bit of the bitmask.
6762 // If this bit is 0 (meaning hole) jump to the default destination,
6763 // else continue with table lookup.
6764 IntegerType *MapTy = TableMask->getIntegerType();
6765 Value *MaskIndex =
6766 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6767 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6768 Value *LoBit = Builder.CreateTrunc(
6769 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6770 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6771 if (DTU) {
6772 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6773 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6775 Builder.SetInsertPoint(LookupBB);
6776 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6779 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6780 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6781 // do not delete PHINodes here.
6782 SI->getDefaultDest()->removePredecessor(BB,
6783 /*KeepOneInputPHIs=*/true);
6784 if (DTU)
6785 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6788 for (PHINode *PHI : PHIs) {
6789 const ResultListTy &ResultList = ResultLists[PHI];
6791 // If using a bitmask, use any value to fill the lookup table holes.
6792 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6793 StringRef FuncName = Fn->getName();
6794 SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
6795 DL, FuncName);
6797 Value *Result = Table.BuildLookup(TableIndex, Builder);
6799 // Do a small peephole optimization: re-use the switch table compare if
6800 // possible.
6801 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6802 BasicBlock *PhiBlock = PHI->getParent();
6803 // Search for compare instructions which use the phi.
6804 for (auto *User : PHI->users()) {
6805 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6809 PHI->addIncoming(Result, LookupBB);
6812 Builder.CreateBr(CommonDest);
6813 if (DTU)
6814 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6816 // Remove the switch.
6817 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6818 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6819 BasicBlock *Succ = SI->getSuccessor(i);
6821 if (Succ == SI->getDefaultDest())
6822 continue;
6823 Succ->removePredecessor(BB);
6824 if (DTU && RemovedSuccessors.insert(Succ).second)
6825 Updates.push_back({DominatorTree::Delete, BB, Succ});
6827 SI->eraseFromParent();
6829 if (DTU)
6830 DTU->applyUpdates(Updates);
6832 ++NumLookupTables;
6833 if (NeedMask)
6834 ++NumLookupTablesHoles;
6835 return true;
6838 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6839 /// of cases.
6841 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6842 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6844 /// This converts a sparse switch into a dense switch which allows better
6845 /// lowering and could also allow transforming into a lookup table.
6846 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6847 const DataLayout &DL,
6848 const TargetTransformInfo &TTI) {
6849 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6850 if (CondTy->getIntegerBitWidth() > 64 ||
6851 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6852 return false;
6853 // Only bother with this optimization if there are more than 3 switch cases;
6854 // SDAG will only bother creating jump tables for 4 or more cases.
6855 if (SI->getNumCases() < 4)
6856 return false;
6858 // This transform is agnostic to the signedness of the input or case values. We
6859 // can treat the case values as signed or unsigned. We can optimize more common
6860 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6861 // as signed.
6862 SmallVector<int64_t,4> Values;
6863 for (const auto &C : SI->cases())
6864 Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6865 llvm::sort(Values);
6867 // If the switch is already dense, there's nothing useful to do here.
6868 if (isSwitchDense(Values))
6869 return false;
6871 // First, transform the values such that they start at zero and ascend.
6872 int64_t Base = Values[0];
6873 for (auto &V : Values)
6874 V -= (uint64_t)(Base);
6876 // Now we have signed numbers that have been shifted so that, given enough
6877 // precision, there are no negative values. Since the rest of the transform
6878 // is bitwise only, we switch now to an unsigned representation.
6880 // This transform can be done speculatively because it is so cheap - it
6881 // results in a single rotate operation being inserted.
6883 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6884 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6885 // less than 64.
6886 unsigned Shift = 64;
6887 for (auto &V : Values)
6888 Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V));
6889 assert(Shift < 64);
6890 if (Shift > 0)
6891 for (auto &V : Values)
6892 V = (int64_t)((uint64_t)V >> Shift);
6894 if (!isSwitchDense(Values))
6895 // Transform didn't create a dense switch.
6896 return false;
6898 // The obvious transform is to shift the switch condition right and emit a
6899 // check that the condition actually cleanly divided by GCD, i.e.
6900 // C & (1 << Shift - 1) == 0
6901 // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6903 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6904 // shift and puts the shifted-off bits in the uppermost bits. If any of these
6905 // are nonzero then the switch condition will be very large and will hit the
6906 // default case.
6908 auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6909 Builder.SetInsertPoint(SI);
6910 Value *Sub =
6911 Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6912 Value *Rot = Builder.CreateIntrinsic(
6913 Ty, Intrinsic::fshl,
6914 {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)});
6915 SI->replaceUsesOfWith(SI->getCondition(), Rot);
6917 for (auto Case : SI->cases()) {
6918 auto *Orig = Case.getCaseValue();
6919 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6920 Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift))));
6922 return true;
6925 /// Tries to transform switch of powers of two to reduce switch range.
6926 /// For example, switch like:
6927 /// switch (C) { case 1: case 2: case 64: case 128: }
6928 /// will be transformed to:
6929 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: }
6931 /// This transformation allows better lowering and could allow transforming into
6932 /// a lookup table.
6933 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder,
6934 const DataLayout &DL,
6935 const TargetTransformInfo &TTI) {
6936 Value *Condition = SI->getCondition();
6937 LLVMContext &Context = SI->getContext();
6938 auto *CondTy = cast<IntegerType>(Condition->getType());
6940 if (CondTy->getIntegerBitWidth() > 64 ||
6941 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6942 return false;
6944 const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost(
6945 IntrinsicCostAttributes(Intrinsic::cttz, CondTy,
6946 {Condition, ConstantInt::getTrue(Context)}),
6947 TTI::TCK_SizeAndLatency);
6949 if (CttzIntrinsicCost > TTI::TCC_Basic)
6950 // Inserting intrinsic is too expensive.
6951 return false;
6953 // Only bother with this optimization if there are more than 3 switch cases.
6954 // SDAG will only bother creating jump tables for 4 or more cases.
6955 if (SI->getNumCases() < 4)
6956 return false;
6958 // We perform this optimization only for switches with
6959 // unreachable default case.
6960 // This assumtion will save us from checking if `Condition` is a power of two.
6961 if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()))
6962 return false;
6964 // Check that switch cases are powers of two.
6965 SmallVector<uint64_t, 4> Values;
6966 for (const auto &Case : SI->cases()) {
6967 uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue();
6968 if (llvm::has_single_bit(CaseValue))
6969 Values.push_back(CaseValue);
6970 else
6971 return false;
6974 // isSwichDense requires case values to be sorted.
6975 llvm::sort(Values);
6976 if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) -
6977 llvm::countr_zero(Values.front()) + 1))
6978 // Transform is unable to generate dense switch.
6979 return false;
6981 Builder.SetInsertPoint(SI);
6983 // Replace each case with its trailing zeros number.
6984 for (auto &Case : SI->cases()) {
6985 auto *OrigValue = Case.getCaseValue();
6986 Case.setValue(ConstantInt::get(OrigValue->getIntegerType(),
6987 OrigValue->getValue().countr_zero()));
6990 // Replace condition with its trailing zeros number.
6991 auto *ConditionTrailingZeros = Builder.CreateIntrinsic(
6992 Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)});
6994 SI->setCondition(ConditionTrailingZeros);
6996 return true;
6999 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
7000 BasicBlock *BB = SI->getParent();
7002 if (isValueEqualityComparison(SI)) {
7003 // If we only have one predecessor, and if it is a branch on this value,
7004 // see if that predecessor totally determines the outcome of this switch.
7005 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7006 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
7007 return requestResimplify();
7009 Value *Cond = SI->getCondition();
7010 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
7011 if (SimplifySwitchOnSelect(SI, Select))
7012 return requestResimplify();
7014 // If the block only contains the switch, see if we can fold the block
7015 // away into any preds.
7016 if (SI == &*BB->instructionsWithoutDebug(false).begin())
7017 if (FoldValueComparisonIntoPredecessors(SI, Builder))
7018 return requestResimplify();
7021 // Try to transform the switch into an icmp and a branch.
7022 // The conversion from switch to comparison may lose information on
7023 // impossible switch values, so disable it early in the pipeline.
7024 if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
7025 return requestResimplify();
7027 // Remove unreachable cases.
7028 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
7029 return requestResimplify();
7031 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
7032 return requestResimplify();
7034 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
7035 return requestResimplify();
7037 // The conversion from switch to lookup tables results in difficult-to-analyze
7038 // code and makes pruning branches much harder. This is a problem if the
7039 // switch expression itself can still be restricted as a result of inlining or
7040 // CVP. Therefore, only apply this transformation during late stages of the
7041 // optimisation pipeline.
7042 if (Options.ConvertSwitchToLookupTable &&
7043 SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
7044 return requestResimplify();
7046 if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI))
7047 return requestResimplify();
7049 if (ReduceSwitchRange(SI, Builder, DL, TTI))
7050 return requestResimplify();
7052 if (HoistCommon &&
7053 hoistCommonCodeFromSuccessors(SI->getParent(), !Options.HoistCommonInsts))
7054 return requestResimplify();
7056 return false;
7059 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
7060 BasicBlock *BB = IBI->getParent();
7061 bool Changed = false;
7063 // Eliminate redundant destinations.
7064 SmallPtrSet<Value *, 8> Succs;
7065 SmallSetVector<BasicBlock *, 8> RemovedSuccs;
7066 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
7067 BasicBlock *Dest = IBI->getDestination(i);
7068 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
7069 if (!Dest->hasAddressTaken())
7070 RemovedSuccs.insert(Dest);
7071 Dest->removePredecessor(BB);
7072 IBI->removeDestination(i);
7073 --i;
7074 --e;
7075 Changed = true;
7079 if (DTU) {
7080 std::vector<DominatorTree::UpdateType> Updates;
7081 Updates.reserve(RemovedSuccs.size());
7082 for (auto *RemovedSucc : RemovedSuccs)
7083 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
7084 DTU->applyUpdates(Updates);
7087 if (IBI->getNumDestinations() == 0) {
7088 // If the indirectbr has no successors, change it to unreachable.
7089 new UnreachableInst(IBI->getContext(), IBI);
7090 EraseTerminatorAndDCECond(IBI);
7091 return true;
7094 if (IBI->getNumDestinations() == 1) {
7095 // If the indirectbr has one successor, change it to a direct branch.
7096 BranchInst::Create(IBI->getDestination(0), IBI);
7097 EraseTerminatorAndDCECond(IBI);
7098 return true;
7101 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
7102 if (SimplifyIndirectBrOnSelect(IBI, SI))
7103 return requestResimplify();
7105 return Changed;
7108 /// Given an block with only a single landing pad and a unconditional branch
7109 /// try to find another basic block which this one can be merged with. This
7110 /// handles cases where we have multiple invokes with unique landing pads, but
7111 /// a shared handler.
7113 /// We specifically choose to not worry about merging non-empty blocks
7114 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
7115 /// practice, the optimizer produces empty landing pad blocks quite frequently
7116 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
7117 /// sinking in this file)
7119 /// This is primarily a code size optimization. We need to avoid performing
7120 /// any transform which might inhibit optimization (such as our ability to
7121 /// specialize a particular handler via tail commoning). We do this by not
7122 /// merging any blocks which require us to introduce a phi. Since the same
7123 /// values are flowing through both blocks, we don't lose any ability to
7124 /// specialize. If anything, we make such specialization more likely.
7126 /// TODO - This transformation could remove entries from a phi in the target
7127 /// block when the inputs in the phi are the same for the two blocks being
7128 /// merged. In some cases, this could result in removal of the PHI entirely.
7129 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
7130 BasicBlock *BB, DomTreeUpdater *DTU) {
7131 auto Succ = BB->getUniqueSuccessor();
7132 assert(Succ);
7133 // If there's a phi in the successor block, we'd likely have to introduce
7134 // a phi into the merged landing pad block.
7135 if (isa<PHINode>(*Succ->begin()))
7136 return false;
7138 for (BasicBlock *OtherPred : predecessors(Succ)) {
7139 if (BB == OtherPred)
7140 continue;
7141 BasicBlock::iterator I = OtherPred->begin();
7142 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
7143 if (!LPad2 || !LPad2->isIdenticalTo(LPad))
7144 continue;
7145 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7147 BranchInst *BI2 = dyn_cast<BranchInst>(I);
7148 if (!BI2 || !BI2->isIdenticalTo(BI))
7149 continue;
7151 std::vector<DominatorTree::UpdateType> Updates;
7153 // We've found an identical block. Update our predecessors to take that
7154 // path instead and make ourselves dead.
7155 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
7156 for (BasicBlock *Pred : UniquePreds) {
7157 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
7158 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
7159 "unexpected successor");
7160 II->setUnwindDest(OtherPred);
7161 if (DTU) {
7162 Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
7163 Updates.push_back({DominatorTree::Delete, Pred, BB});
7167 // The debug info in OtherPred doesn't cover the merged control flow that
7168 // used to go through BB. We need to delete it or update it.
7169 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
7170 if (isa<DbgInfoIntrinsic>(Inst))
7171 Inst.eraseFromParent();
7173 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
7174 for (BasicBlock *Succ : UniqueSuccs) {
7175 Succ->removePredecessor(BB);
7176 if (DTU)
7177 Updates.push_back({DominatorTree::Delete, BB, Succ});
7180 IRBuilder<> Builder(BI);
7181 Builder.CreateUnreachable();
7182 BI->eraseFromParent();
7183 if (DTU)
7184 DTU->applyUpdates(Updates);
7185 return true;
7187 return false;
7190 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
7191 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
7192 : simplifyCondBranch(Branch, Builder);
7195 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
7196 IRBuilder<> &Builder) {
7197 BasicBlock *BB = BI->getParent();
7198 BasicBlock *Succ = BI->getSuccessor(0);
7200 // If the Terminator is the only non-phi instruction, simplify the block.
7201 // If LoopHeader is provided, check if the block or its successor is a loop
7202 // header. (This is for early invocations before loop simplify and
7203 // vectorization to keep canonical loop forms for nested loops. These blocks
7204 // can be eliminated when the pass is invoked later in the back-end.)
7205 // Note that if BB has only one predecessor then we do not introduce new
7206 // backedge, so we can eliminate BB.
7207 bool NeedCanonicalLoop =
7208 Options.NeedCanonicalLoop &&
7209 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
7210 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
7211 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
7212 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
7213 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
7214 return true;
7216 // If the only instruction in the block is a seteq/setne comparison against a
7217 // constant, try to simplify the block.
7218 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
7219 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
7220 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7222 if (I->isTerminator() &&
7223 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
7224 return true;
7227 // See if we can merge an empty landing pad block with another which is
7228 // equivalent.
7229 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
7230 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7232 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
7233 return true;
7236 // If this basic block is ONLY a compare and a branch, and if a predecessor
7237 // branches to us and our successor, fold the comparison into the
7238 // predecessor and use logical operations to update the incoming value
7239 // for PHI nodes in common successor.
7240 if (Options.SpeculateBlocks &&
7241 FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7242 Options.BonusInstThreshold))
7243 return requestResimplify();
7244 return false;
7247 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
7248 BasicBlock *PredPred = nullptr;
7249 for (auto *P : predecessors(BB)) {
7250 BasicBlock *PPred = P->getSinglePredecessor();
7251 if (!PPred || (PredPred && PredPred != PPred))
7252 return nullptr;
7253 PredPred = PPred;
7255 return PredPred;
7258 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
7259 assert(
7260 !isa<ConstantInt>(BI->getCondition()) &&
7261 BI->getSuccessor(0) != BI->getSuccessor(1) &&
7262 "Tautological conditional branch should have been eliminated already.");
7264 BasicBlock *BB = BI->getParent();
7265 if (!Options.SimplifyCondBranch ||
7266 BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing))
7267 return false;
7269 // Conditional branch
7270 if (isValueEqualityComparison(BI)) {
7271 // If we only have one predecessor, and if it is a branch on this value,
7272 // see if that predecessor totally determines the outcome of this
7273 // switch.
7274 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7275 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
7276 return requestResimplify();
7278 // This block must be empty, except for the setcond inst, if it exists.
7279 // Ignore dbg and pseudo intrinsics.
7280 auto I = BB->instructionsWithoutDebug(true).begin();
7281 if (&*I == BI) {
7282 if (FoldValueComparisonIntoPredecessors(BI, Builder))
7283 return requestResimplify();
7284 } else if (&*I == cast<Instruction>(BI->getCondition())) {
7285 ++I;
7286 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
7287 return requestResimplify();
7291 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
7292 if (SimplifyBranchOnICmpChain(BI, Builder, DL))
7293 return true;
7295 // If this basic block has dominating predecessor blocks and the dominating
7296 // blocks' conditions imply BI's condition, we know the direction of BI.
7297 std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
7298 if (Imp) {
7299 // Turn this into a branch on constant.
7300 auto *OldCond = BI->getCondition();
7301 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
7302 : ConstantInt::getFalse(BB->getContext());
7303 BI->setCondition(TorF);
7304 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
7305 return requestResimplify();
7308 // If this basic block is ONLY a compare and a branch, and if a predecessor
7309 // branches to us and one of our successors, fold the comparison into the
7310 // predecessor and use logical operations to pick the right destination.
7311 if (Options.SpeculateBlocks &&
7312 FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7313 Options.BonusInstThreshold))
7314 return requestResimplify();
7316 // We have a conditional branch to two blocks that are only reachable
7317 // from BI. We know that the condbr dominates the two blocks, so see if
7318 // there is any identical code in the "then" and "else" blocks. If so, we
7319 // can hoist it up to the branching block.
7320 if (BI->getSuccessor(0)->getSinglePredecessor()) {
7321 if (BI->getSuccessor(1)->getSinglePredecessor()) {
7322 if (HoistCommon && hoistCommonCodeFromSuccessors(
7323 BI->getParent(), !Options.HoistCommonInsts))
7324 return requestResimplify();
7325 } else {
7326 // If Successor #1 has multiple preds, we may be able to conditionally
7327 // execute Successor #0 if it branches to Successor #1.
7328 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
7329 if (Succ0TI->getNumSuccessors() == 1 &&
7330 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
7331 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
7332 return requestResimplify();
7334 } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
7335 // If Successor #0 has multiple preds, we may be able to conditionally
7336 // execute Successor #1 if it branches to Successor #0.
7337 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
7338 if (Succ1TI->getNumSuccessors() == 1 &&
7339 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
7340 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
7341 return requestResimplify();
7344 // If this is a branch on something for which we know the constant value in
7345 // predecessors (e.g. a phi node in the current block), thread control
7346 // through this block.
7347 if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
7348 return requestResimplify();
7350 // Scan predecessor blocks for conditional branches.
7351 for (BasicBlock *Pred : predecessors(BB))
7352 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
7353 if (PBI != BI && PBI->isConditional())
7354 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
7355 return requestResimplify();
7357 // Look for diamond patterns.
7358 if (MergeCondStores)
7359 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
7360 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
7361 if (PBI != BI && PBI->isConditional())
7362 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
7363 return requestResimplify();
7365 return false;
7368 /// Check if passing a value to an instruction will cause undefined behavior.
7369 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
7370 Constant *C = dyn_cast<Constant>(V);
7371 if (!C)
7372 return false;
7374 if (I->use_empty())
7375 return false;
7377 if (C->isNullValue() || isa<UndefValue>(C)) {
7378 // Only look at the first use, avoid hurting compile time with long uselists
7379 auto *Use = cast<Instruction>(*I->user_begin());
7380 // Bail out if Use is not in the same BB as I or Use == I or Use comes
7381 // before I in the block. The latter two can be the case if Use is a PHI
7382 // node.
7383 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
7384 return false;
7386 // Now make sure that there are no instructions in between that can alter
7387 // control flow (eg. calls)
7388 auto InstrRange =
7389 make_range(std::next(I->getIterator()), Use->getIterator());
7390 if (any_of(InstrRange, [](Instruction &I) {
7391 return !isGuaranteedToTransferExecutionToSuccessor(&I);
7393 return false;
7395 // Look through GEPs. A load from a GEP derived from NULL is still undefined
7396 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
7397 if (GEP->getPointerOperand() == I) {
7398 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
7399 PtrValueMayBeModified = true;
7400 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
7403 // Look through bitcasts.
7404 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
7405 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
7407 // Load from null is undefined.
7408 if (LoadInst *LI = dyn_cast<LoadInst>(Use))
7409 if (!LI->isVolatile())
7410 return !NullPointerIsDefined(LI->getFunction(),
7411 LI->getPointerAddressSpace());
7413 // Store to null is undefined.
7414 if (StoreInst *SI = dyn_cast<StoreInst>(Use))
7415 if (!SI->isVolatile())
7416 return (!NullPointerIsDefined(SI->getFunction(),
7417 SI->getPointerAddressSpace())) &&
7418 SI->getPointerOperand() == I;
7420 if (auto *CB = dyn_cast<CallBase>(Use)) {
7421 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
7422 return false;
7423 // A call to null is undefined.
7424 if (CB->getCalledOperand() == I)
7425 return true;
7427 if (C->isNullValue()) {
7428 for (const llvm::Use &Arg : CB->args())
7429 if (Arg == I) {
7430 unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7431 if (CB->isPassingUndefUB(ArgIdx) &&
7432 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
7433 // Passing null to a nonnnull+noundef argument is undefined.
7434 return !PtrValueMayBeModified;
7437 } else if (isa<UndefValue>(C)) {
7438 // Passing undef to a noundef argument is undefined.
7439 for (const llvm::Use &Arg : CB->args())
7440 if (Arg == I) {
7441 unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7442 if (CB->isPassingUndefUB(ArgIdx)) {
7443 // Passing undef to a noundef argument is undefined.
7444 return true;
7450 return false;
7453 /// If BB has an incoming value that will always trigger undefined behavior
7454 /// (eg. null pointer dereference), remove the branch leading here.
7455 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
7456 DomTreeUpdater *DTU,
7457 AssumptionCache *AC) {
7458 for (PHINode &PHI : BB->phis())
7459 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
7460 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
7461 BasicBlock *Predecessor = PHI.getIncomingBlock(i);
7462 Instruction *T = Predecessor->getTerminator();
7463 IRBuilder<> Builder(T);
7464 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
7465 BB->removePredecessor(Predecessor);
7466 // Turn unconditional branches into unreachables and remove the dead
7467 // destination from conditional branches.
7468 if (BI->isUnconditional())
7469 Builder.CreateUnreachable();
7470 else {
7471 // Preserve guarding condition in assume, because it might not be
7472 // inferrable from any dominating condition.
7473 Value *Cond = BI->getCondition();
7474 CallInst *Assumption;
7475 if (BI->getSuccessor(0) == BB)
7476 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
7477 else
7478 Assumption = Builder.CreateAssumption(Cond);
7479 if (AC)
7480 AC->registerAssumption(cast<AssumeInst>(Assumption));
7481 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
7482 : BI->getSuccessor(0));
7484 BI->eraseFromParent();
7485 if (DTU)
7486 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
7487 return true;
7488 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
7489 // Redirect all branches leading to UB into
7490 // a newly created unreachable block.
7491 BasicBlock *Unreachable = BasicBlock::Create(
7492 Predecessor->getContext(), "unreachable", BB->getParent(), BB);
7493 Builder.SetInsertPoint(Unreachable);
7494 // The new block contains only one instruction: Unreachable
7495 Builder.CreateUnreachable();
7496 for (const auto &Case : SI->cases())
7497 if (Case.getCaseSuccessor() == BB) {
7498 BB->removePredecessor(Predecessor);
7499 Case.setSuccessor(Unreachable);
7501 if (SI->getDefaultDest() == BB) {
7502 BB->removePredecessor(Predecessor);
7503 SI->setDefaultDest(Unreachable);
7506 if (DTU)
7507 DTU->applyUpdates(
7508 { { DominatorTree::Insert, Predecessor, Unreachable },
7509 { DominatorTree::Delete, Predecessor, BB } });
7510 return true;
7514 return false;
7517 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
7518 bool Changed = false;
7520 assert(BB && BB->getParent() && "Block not embedded in function!");
7521 assert(BB->getTerminator() && "Degenerate basic block encountered!");
7523 // Remove basic blocks that have no predecessors (except the entry block)...
7524 // or that just have themself as a predecessor. These are unreachable.
7525 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
7526 BB->getSinglePredecessor() == BB) {
7527 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
7528 DeleteDeadBlock(BB, DTU);
7529 return true;
7532 // Check to see if we can constant propagate this terminator instruction
7533 // away...
7534 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
7535 /*TLI=*/nullptr, DTU);
7537 // Check for and eliminate duplicate PHI nodes in this block.
7538 Changed |= EliminateDuplicatePHINodes(BB);
7540 // Check for and remove branches that will always cause undefined behavior.
7541 if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC))
7542 return requestResimplify();
7544 // Merge basic blocks into their predecessor if there is only one distinct
7545 // pred, and if there is only one distinct successor of the predecessor, and
7546 // if there are no PHI nodes.
7547 if (MergeBlockIntoPredecessor(BB, DTU))
7548 return true;
7550 if (SinkCommon && Options.SinkCommonInsts)
7551 if (SinkCommonCodeFromPredecessors(BB, DTU) ||
7552 MergeCompatibleInvokes(BB, DTU)) {
7553 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7554 // so we may now how duplicate PHI's.
7555 // Let's rerun EliminateDuplicatePHINodes() first,
7556 // before FoldTwoEntryPHINode() potentially converts them into select's,
7557 // after which we'd need a whole EarlyCSE pass run to cleanup them.
7558 return true;
7561 IRBuilder<> Builder(BB);
7563 if (Options.SpeculateBlocks &&
7564 !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) {
7565 // If there is a trivial two-entry PHI node in this basic block, and we can
7566 // eliminate it, do so now.
7567 if (auto *PN = dyn_cast<PHINode>(BB->begin()))
7568 if (PN->getNumIncomingValues() == 2)
7569 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
7570 return true;
7573 Instruction *Terminator = BB->getTerminator();
7574 Builder.SetInsertPoint(Terminator);
7575 switch (Terminator->getOpcode()) {
7576 case Instruction::Br:
7577 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
7578 break;
7579 case Instruction::Resume:
7580 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
7581 break;
7582 case Instruction::CleanupRet:
7583 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
7584 break;
7585 case Instruction::Switch:
7586 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
7587 break;
7588 case Instruction::Unreachable:
7589 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
7590 break;
7591 case Instruction::IndirectBr:
7592 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
7593 break;
7596 return Changed;
7599 bool SimplifyCFGOpt::run(BasicBlock *BB) {
7600 bool Changed = false;
7602 // Repeated simplify BB as long as resimplification is requested.
7603 do {
7604 Resimplify = false;
7606 // Perform one round of simplifcation. Resimplify flag will be set if
7607 // another iteration is requested.
7608 Changed |= simplifyOnce(BB);
7609 } while (Resimplify);
7611 return Changed;
7614 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
7615 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
7616 ArrayRef<WeakVH> LoopHeaders) {
7617 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
7618 Options)
7619 .run(BB);