[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Vectorize / VPlan.h
blob0c6214868d847f9584f7e912b69389fa4ef886de
1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file contains the declarations of the Vectorization Plan base classes:
11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
12 /// VPBlockBase, together implementing a Hierarchical CFG;
13 /// 2. Pure virtual VPRecipeBase serving as the base class for recipes contained
14 /// within VPBasicBlocks;
15 /// 3. Pure virtual VPSingleDefRecipe serving as a base class for recipes that
16 /// also inherit from VPValue.
17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
18 /// instruction;
19 /// 5. The VPlan class holding a candidate for vectorization;
20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format;
21 /// These are documented in docs/VectorizationPlan.rst.
23 //===----------------------------------------------------------------------===//
25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
28 #include "VPlanAnalysis.h"
29 #include "VPlanValue.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/MapVector.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/ADT/ilist.h"
37 #include "llvm/ADT/ilist_node.h"
38 #include "llvm/Analysis/IVDescriptors.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/VectorUtils.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/FMF.h"
43 #include "llvm/IR/Operator.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstddef>
47 #include <string>
49 namespace llvm {
51 class BasicBlock;
52 class DominatorTree;
53 class InnerLoopVectorizer;
54 class IRBuilderBase;
55 class LoopInfo;
56 class raw_ostream;
57 class RecurrenceDescriptor;
58 class SCEV;
59 class Type;
60 class VPBasicBlock;
61 class VPRegionBlock;
62 class VPlan;
63 class VPReplicateRecipe;
64 class VPlanSlp;
65 class Value;
66 class LoopVersioning;
68 namespace Intrinsic {
69 typedef unsigned ID;
72 /// Returns a calculation for the total number of elements for a given \p VF.
73 /// For fixed width vectors this value is a constant, whereas for scalable
74 /// vectors it is an expression determined at runtime.
75 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF);
77 /// Return a value for Step multiplied by VF.
78 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
79 int64_t Step);
81 const SCEV *createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE,
82 Loop *CurLoop = nullptr);
84 /// A range of powers-of-2 vectorization factors with fixed start and
85 /// adjustable end. The range includes start and excludes end, e.g.,:
86 /// [1, 16) = {1, 2, 4, 8}
87 struct VFRange {
88 // A power of 2.
89 const ElementCount Start;
91 // A power of 2. If End <= Start range is empty.
92 ElementCount End;
94 bool isEmpty() const {
95 return End.getKnownMinValue() <= Start.getKnownMinValue();
98 VFRange(const ElementCount &Start, const ElementCount &End)
99 : Start(Start), End(End) {
100 assert(Start.isScalable() == End.isScalable() &&
101 "Both Start and End should have the same scalable flag");
102 assert(isPowerOf2_32(Start.getKnownMinValue()) &&
103 "Expected Start to be a power of 2");
104 assert(isPowerOf2_32(End.getKnownMinValue()) &&
105 "Expected End to be a power of 2");
108 /// Iterator to iterate over vectorization factors in a VFRange.
109 class iterator
110 : public iterator_facade_base<iterator, std::forward_iterator_tag,
111 ElementCount> {
112 ElementCount VF;
114 public:
115 iterator(ElementCount VF) : VF(VF) {}
117 bool operator==(const iterator &Other) const { return VF == Other.VF; }
119 ElementCount operator*() const { return VF; }
121 iterator &operator++() {
122 VF *= 2;
123 return *this;
127 iterator begin() { return iterator(Start); }
128 iterator end() {
129 assert(isPowerOf2_32(End.getKnownMinValue()));
130 return iterator(End);
134 using VPlanPtr = std::unique_ptr<VPlan>;
136 /// In what follows, the term "input IR" refers to code that is fed into the
137 /// vectorizer whereas the term "output IR" refers to code that is generated by
138 /// the vectorizer.
140 /// VPLane provides a way to access lanes in both fixed width and scalable
141 /// vectors, where for the latter the lane index sometimes needs calculating
142 /// as a runtime expression.
143 class VPLane {
144 public:
145 /// Kind describes how to interpret Lane.
146 enum class Kind : uint8_t {
147 /// For First, Lane is the index into the first N elements of a
148 /// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>.
149 First,
150 /// For ScalableLast, Lane is the offset from the start of the last
151 /// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For
152 /// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of
153 /// 1 corresponds to `((vscale - 1) * N) + 1`, etc.
154 ScalableLast
157 private:
158 /// in [0..VF)
159 unsigned Lane;
161 /// Indicates how the Lane should be interpreted, as described above.
162 Kind LaneKind;
164 public:
165 VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {}
167 static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); }
169 static VPLane getLastLaneForVF(const ElementCount &VF) {
170 unsigned LaneOffset = VF.getKnownMinValue() - 1;
171 Kind LaneKind;
172 if (VF.isScalable())
173 // In this case 'LaneOffset' refers to the offset from the start of the
174 // last subvector with VF.getKnownMinValue() elements.
175 LaneKind = VPLane::Kind::ScalableLast;
176 else
177 LaneKind = VPLane::Kind::First;
178 return VPLane(LaneOffset, LaneKind);
181 /// Returns a compile-time known value for the lane index and asserts if the
182 /// lane can only be calculated at runtime.
183 unsigned getKnownLane() const {
184 assert(LaneKind == Kind::First);
185 return Lane;
188 /// Returns an expression describing the lane index that can be used at
189 /// runtime.
190 Value *getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const;
192 /// Returns the Kind of lane offset.
193 Kind getKind() const { return LaneKind; }
195 /// Returns true if this is the first lane of the whole vector.
196 bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; }
198 /// Maps the lane to a cache index based on \p VF.
199 unsigned mapToCacheIndex(const ElementCount &VF) const {
200 switch (LaneKind) {
201 case VPLane::Kind::ScalableLast:
202 assert(VF.isScalable() && Lane < VF.getKnownMinValue());
203 return VF.getKnownMinValue() + Lane;
204 default:
205 assert(Lane < VF.getKnownMinValue());
206 return Lane;
210 /// Returns the maxmimum number of lanes that we are able to consider
211 /// caching for \p VF.
212 static unsigned getNumCachedLanes(const ElementCount &VF) {
213 return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1);
217 /// VPIteration represents a single point in the iteration space of the output
218 /// (vectorized and/or unrolled) IR loop.
219 struct VPIteration {
220 /// in [0..UF)
221 unsigned Part;
223 VPLane Lane;
225 VPIteration(unsigned Part, unsigned Lane,
226 VPLane::Kind Kind = VPLane::Kind::First)
227 : Part(Part), Lane(Lane, Kind) {}
229 VPIteration(unsigned Part, const VPLane &Lane) : Part(Part), Lane(Lane) {}
231 bool isFirstIteration() const { return Part == 0 && Lane.isFirstLane(); }
234 /// VPTransformState holds information passed down when "executing" a VPlan,
235 /// needed for generating the output IR.
236 struct VPTransformState {
237 VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
238 DominatorTree *DT, IRBuilderBase &Builder,
239 InnerLoopVectorizer *ILV, VPlan *Plan, LLVMContext &Ctx)
240 : VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ILV(ILV), Plan(Plan),
241 LVer(nullptr), TypeAnalysis(Ctx) {}
243 /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
244 ElementCount VF;
245 unsigned UF;
247 /// Hold the indices to generate specific scalar instructions. Null indicates
248 /// that all instances are to be generated, using either scalar or vector
249 /// instructions.
250 std::optional<VPIteration> Instance;
252 struct DataState {
253 /// A type for vectorized values in the new loop. Each value from the
254 /// original loop, when vectorized, is represented by UF vector values in
255 /// the new unrolled loop, where UF is the unroll factor.
256 typedef SmallVector<Value *, 2> PerPartValuesTy;
258 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
260 using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>;
261 DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars;
262 } Data;
264 /// Get the generated Value for a given VPValue and a given Part. Note that
265 /// as some Defs are still created by ILV and managed in its ValueMap, this
266 /// method will delegate the call to ILV in such cases in order to provide
267 /// callers a consistent API.
268 /// \see set.
269 Value *get(VPValue *Def, unsigned Part);
271 /// Get the generated Value for a given VPValue and given Part and Lane.
272 Value *get(VPValue *Def, const VPIteration &Instance);
274 bool hasVectorValue(VPValue *Def, unsigned Part) {
275 auto I = Data.PerPartOutput.find(Def);
276 return I != Data.PerPartOutput.end() && Part < I->second.size() &&
277 I->second[Part];
280 bool hasScalarValue(VPValue *Def, VPIteration Instance) {
281 auto I = Data.PerPartScalars.find(Def);
282 if (I == Data.PerPartScalars.end())
283 return false;
284 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
285 return Instance.Part < I->second.size() &&
286 CacheIdx < I->second[Instance.Part].size() &&
287 I->second[Instance.Part][CacheIdx];
290 /// Set the generated Value for a given VPValue and a given Part.
291 void set(VPValue *Def, Value *V, unsigned Part) {
292 if (!Data.PerPartOutput.count(Def)) {
293 DataState::PerPartValuesTy Entry(UF);
294 Data.PerPartOutput[Def] = Entry;
296 Data.PerPartOutput[Def][Part] = V;
298 /// Reset an existing vector value for \p Def and a given \p Part.
299 void reset(VPValue *Def, Value *V, unsigned Part) {
300 auto Iter = Data.PerPartOutput.find(Def);
301 assert(Iter != Data.PerPartOutput.end() &&
302 "need to overwrite existing value");
303 Iter->second[Part] = V;
306 /// Set the generated scalar \p V for \p Def and the given \p Instance.
307 void set(VPValue *Def, Value *V, const VPIteration &Instance) {
308 auto Iter = Data.PerPartScalars.insert({Def, {}});
309 auto &PerPartVec = Iter.first->second;
310 while (PerPartVec.size() <= Instance.Part)
311 PerPartVec.emplace_back();
312 auto &Scalars = PerPartVec[Instance.Part];
313 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
314 while (Scalars.size() <= CacheIdx)
315 Scalars.push_back(nullptr);
316 assert(!Scalars[CacheIdx] && "should overwrite existing value");
317 Scalars[CacheIdx] = V;
320 /// Reset an existing scalar value for \p Def and a given \p Instance.
321 void reset(VPValue *Def, Value *V, const VPIteration &Instance) {
322 auto Iter = Data.PerPartScalars.find(Def);
323 assert(Iter != Data.PerPartScalars.end() &&
324 "need to overwrite existing value");
325 assert(Instance.Part < Iter->second.size() &&
326 "need to overwrite existing value");
327 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
328 assert(CacheIdx < Iter->second[Instance.Part].size() &&
329 "need to overwrite existing value");
330 Iter->second[Instance.Part][CacheIdx] = V;
333 /// Add additional metadata to \p To that was not present on \p Orig.
335 /// Currently this is used to add the noalias annotations based on the
336 /// inserted memchecks. Use this for instructions that are *cloned* into the
337 /// vector loop.
338 void addNewMetadata(Instruction *To, const Instruction *Orig);
340 /// Add metadata from one instruction to another.
342 /// This includes both the original MDs from \p From and additional ones (\see
343 /// addNewMetadata). Use this for *newly created* instructions in the vector
344 /// loop.
345 void addMetadata(Instruction *To, Instruction *From);
347 /// Similar to the previous function but it adds the metadata to a
348 /// vector of instructions.
349 void addMetadata(ArrayRef<Value *> To, Instruction *From);
351 /// Set the debug location in the builder using the debug location \p DL.
352 void setDebugLocFrom(DebugLoc DL);
354 /// Construct the vector value of a scalarized value \p V one lane at a time.
355 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance);
357 /// Hold state information used when constructing the CFG of the output IR,
358 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
359 struct CFGState {
360 /// The previous VPBasicBlock visited. Initially set to null.
361 VPBasicBlock *PrevVPBB = nullptr;
363 /// The previous IR BasicBlock created or used. Initially set to the new
364 /// header BasicBlock.
365 BasicBlock *PrevBB = nullptr;
367 /// The last IR BasicBlock in the output IR. Set to the exit block of the
368 /// vector loop.
369 BasicBlock *ExitBB = nullptr;
371 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
372 /// of replication, maps the BasicBlock of the last replica created.
373 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
375 CFGState() = default;
377 /// Returns the BasicBlock* mapped to the pre-header of the loop region
378 /// containing \p R.
379 BasicBlock *getPreheaderBBFor(VPRecipeBase *R);
380 } CFG;
382 /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
383 LoopInfo *LI;
385 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
386 DominatorTree *DT;
388 /// Hold a reference to the IRBuilder used to generate output IR code.
389 IRBuilderBase &Builder;
391 VPValue2ValueTy VPValue2Value;
393 /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF).
394 Value *CanonicalIV = nullptr;
396 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
397 InnerLoopVectorizer *ILV;
399 /// Pointer to the VPlan code is generated for.
400 VPlan *Plan;
402 /// The loop object for the current parent region, or nullptr.
403 Loop *CurrentVectorLoop = nullptr;
405 /// LoopVersioning. It's only set up (non-null) if memchecks were
406 /// used.
408 /// This is currently only used to add no-alias metadata based on the
409 /// memchecks. The actually versioning is performed manually.
410 LoopVersioning *LVer = nullptr;
412 /// Map SCEVs to their expanded values. Populated when executing
413 /// VPExpandSCEVRecipes.
414 DenseMap<const SCEV *, Value *> ExpandedSCEVs;
416 /// VPlan-based type analysis.
417 VPTypeAnalysis TypeAnalysis;
420 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
421 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
422 class VPBlockBase {
423 friend class VPBlockUtils;
425 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
427 /// An optional name for the block.
428 std::string Name;
430 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
431 /// it is a topmost VPBlockBase.
432 VPRegionBlock *Parent = nullptr;
434 /// List of predecessor blocks.
435 SmallVector<VPBlockBase *, 1> Predecessors;
437 /// List of successor blocks.
438 SmallVector<VPBlockBase *, 1> Successors;
440 /// VPlan containing the block. Can only be set on the entry block of the
441 /// plan.
442 VPlan *Plan = nullptr;
444 /// Add \p Successor as the last successor to this block.
445 void appendSuccessor(VPBlockBase *Successor) {
446 assert(Successor && "Cannot add nullptr successor!");
447 Successors.push_back(Successor);
450 /// Add \p Predecessor as the last predecessor to this block.
451 void appendPredecessor(VPBlockBase *Predecessor) {
452 assert(Predecessor && "Cannot add nullptr predecessor!");
453 Predecessors.push_back(Predecessor);
456 /// Remove \p Predecessor from the predecessors of this block.
457 void removePredecessor(VPBlockBase *Predecessor) {
458 auto Pos = find(Predecessors, Predecessor);
459 assert(Pos && "Predecessor does not exist");
460 Predecessors.erase(Pos);
463 /// Remove \p Successor from the successors of this block.
464 void removeSuccessor(VPBlockBase *Successor) {
465 auto Pos = find(Successors, Successor);
466 assert(Pos && "Successor does not exist");
467 Successors.erase(Pos);
470 protected:
471 VPBlockBase(const unsigned char SC, const std::string &N)
472 : SubclassID(SC), Name(N) {}
474 public:
475 /// An enumeration for keeping track of the concrete subclass of VPBlockBase
476 /// that are actually instantiated. Values of this enumeration are kept in the
477 /// SubclassID field of the VPBlockBase objects. They are used for concrete
478 /// type identification.
479 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
481 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
483 virtual ~VPBlockBase() = default;
485 const std::string &getName() const { return Name; }
487 void setName(const Twine &newName) { Name = newName.str(); }
489 /// \return an ID for the concrete type of this object.
490 /// This is used to implement the classof checks. This should not be used
491 /// for any other purpose, as the values may change as LLVM evolves.
492 unsigned getVPBlockID() const { return SubclassID; }
494 VPRegionBlock *getParent() { return Parent; }
495 const VPRegionBlock *getParent() const { return Parent; }
497 /// \return A pointer to the plan containing the current block.
498 VPlan *getPlan();
499 const VPlan *getPlan() const;
501 /// Sets the pointer of the plan containing the block. The block must be the
502 /// entry block into the VPlan.
503 void setPlan(VPlan *ParentPlan);
505 void setParent(VPRegionBlock *P) { Parent = P; }
507 /// \return the VPBasicBlock that is the entry of this VPBlockBase,
508 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
509 /// VPBlockBase is a VPBasicBlock, it is returned.
510 const VPBasicBlock *getEntryBasicBlock() const;
511 VPBasicBlock *getEntryBasicBlock();
513 /// \return the VPBasicBlock that is the exiting this VPBlockBase,
514 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
515 /// VPBlockBase is a VPBasicBlock, it is returned.
516 const VPBasicBlock *getExitingBasicBlock() const;
517 VPBasicBlock *getExitingBasicBlock();
519 const VPBlocksTy &getSuccessors() const { return Successors; }
520 VPBlocksTy &getSuccessors() { return Successors; }
522 iterator_range<VPBlockBase **> successors() { return Successors; }
524 const VPBlocksTy &getPredecessors() const { return Predecessors; }
525 VPBlocksTy &getPredecessors() { return Predecessors; }
527 /// \return the successor of this VPBlockBase if it has a single successor.
528 /// Otherwise return a null pointer.
529 VPBlockBase *getSingleSuccessor() const {
530 return (Successors.size() == 1 ? *Successors.begin() : nullptr);
533 /// \return the predecessor of this VPBlockBase if it has a single
534 /// predecessor. Otherwise return a null pointer.
535 VPBlockBase *getSinglePredecessor() const {
536 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
539 size_t getNumSuccessors() const { return Successors.size(); }
540 size_t getNumPredecessors() const { return Predecessors.size(); }
542 /// An Enclosing Block of a block B is any block containing B, including B
543 /// itself. \return the closest enclosing block starting from "this", which
544 /// has successors. \return the root enclosing block if all enclosing blocks
545 /// have no successors.
546 VPBlockBase *getEnclosingBlockWithSuccessors();
548 /// \return the closest enclosing block starting from "this", which has
549 /// predecessors. \return the root enclosing block if all enclosing blocks
550 /// have no predecessors.
551 VPBlockBase *getEnclosingBlockWithPredecessors();
553 /// \return the successors either attached directly to this VPBlockBase or, if
554 /// this VPBlockBase is the exit block of a VPRegionBlock and has no
555 /// successors of its own, search recursively for the first enclosing
556 /// VPRegionBlock that has successors and return them. If no such
557 /// VPRegionBlock exists, return the (empty) successors of the topmost
558 /// VPBlockBase reached.
559 const VPBlocksTy &getHierarchicalSuccessors() {
560 return getEnclosingBlockWithSuccessors()->getSuccessors();
563 /// \return the hierarchical successor of this VPBlockBase if it has a single
564 /// hierarchical successor. Otherwise return a null pointer.
565 VPBlockBase *getSingleHierarchicalSuccessor() {
566 return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
569 /// \return the predecessors either attached directly to this VPBlockBase or,
570 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
571 /// predecessors of its own, search recursively for the first enclosing
572 /// VPRegionBlock that has predecessors and return them. If no such
573 /// VPRegionBlock exists, return the (empty) predecessors of the topmost
574 /// VPBlockBase reached.
575 const VPBlocksTy &getHierarchicalPredecessors() {
576 return getEnclosingBlockWithPredecessors()->getPredecessors();
579 /// \return the hierarchical predecessor of this VPBlockBase if it has a
580 /// single hierarchical predecessor. Otherwise return a null pointer.
581 VPBlockBase *getSingleHierarchicalPredecessor() {
582 return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
585 /// Set a given VPBlockBase \p Successor as the single successor of this
586 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
587 /// This VPBlockBase must have no successors.
588 void setOneSuccessor(VPBlockBase *Successor) {
589 assert(Successors.empty() && "Setting one successor when others exist.");
590 assert(Successor->getParent() == getParent() &&
591 "connected blocks must have the same parent");
592 appendSuccessor(Successor);
595 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
596 /// successors of this VPBlockBase. This VPBlockBase is not added as
597 /// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no
598 /// successors.
599 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) {
600 assert(Successors.empty() && "Setting two successors when others exist.");
601 appendSuccessor(IfTrue);
602 appendSuccessor(IfFalse);
605 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
606 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
607 /// as successor of any VPBasicBlock in \p NewPreds.
608 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
609 assert(Predecessors.empty() && "Block predecessors already set.");
610 for (auto *Pred : NewPreds)
611 appendPredecessor(Pred);
614 /// Remove all the predecessor of this block.
615 void clearPredecessors() { Predecessors.clear(); }
617 /// Remove all the successors of this block.
618 void clearSuccessors() { Successors.clear(); }
620 /// The method which generates the output IR that correspond to this
621 /// VPBlockBase, thereby "executing" the VPlan.
622 virtual void execute(VPTransformState *State) = 0;
624 /// Delete all blocks reachable from a given VPBlockBase, inclusive.
625 static void deleteCFG(VPBlockBase *Entry);
627 /// Return true if it is legal to hoist instructions into this block.
628 bool isLegalToHoistInto() {
629 // There are currently no constraints that prevent an instruction to be
630 // hoisted into a VPBlockBase.
631 return true;
634 /// Replace all operands of VPUsers in the block with \p NewValue and also
635 /// replaces all uses of VPValues defined in the block with NewValue.
636 virtual void dropAllReferences(VPValue *NewValue) = 0;
638 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
639 void printAsOperand(raw_ostream &OS, bool PrintType) const {
640 OS << getName();
643 /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines
644 /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using
645 /// consequtive numbers.
647 /// Note that the numbering is applied to the whole VPlan, so printing
648 /// individual blocks is consistent with the whole VPlan printing.
649 virtual void print(raw_ostream &O, const Twine &Indent,
650 VPSlotTracker &SlotTracker) const = 0;
652 /// Print plain-text dump of this VPlan to \p O.
653 void print(raw_ostream &O) const {
654 VPSlotTracker SlotTracker(getPlan());
655 print(O, "", SlotTracker);
658 /// Print the successors of this block to \p O, prefixing all lines with \p
659 /// Indent.
660 void printSuccessors(raw_ostream &O, const Twine &Indent) const;
662 /// Dump this VPBlockBase to dbgs().
663 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
664 #endif
667 /// A value that is used outside the VPlan. The operand of the user needs to be
668 /// added to the associated LCSSA phi node.
669 class VPLiveOut : public VPUser {
670 PHINode *Phi;
672 public:
673 VPLiveOut(PHINode *Phi, VPValue *Op)
674 : VPUser({Op}, VPUser::VPUserID::LiveOut), Phi(Phi) {}
676 static inline bool classof(const VPUser *U) {
677 return U->getVPUserID() == VPUser::VPUserID::LiveOut;
680 /// Fixup the wrapped LCSSA phi node in the unique exit block. This simply
681 /// means we need to add the appropriate incoming value from the middle
682 /// block as exiting edges from the scalar epilogue loop (if present) are
683 /// already in place, and we exit the vector loop exclusively to the middle
684 /// block.
685 void fixPhi(VPlan &Plan, VPTransformState &State);
687 /// Returns true if the VPLiveOut uses scalars of operand \p Op.
688 bool usesScalars(const VPValue *Op) const override {
689 assert(is_contained(operands(), Op) &&
690 "Op must be an operand of the recipe");
691 return true;
694 PHINode *getPhi() const { return Phi; }
696 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
697 /// Print the VPLiveOut to \p O.
698 void print(raw_ostream &O, VPSlotTracker &SlotTracker) const;
699 #endif
702 /// VPRecipeBase is a base class modeling a sequence of one or more output IR
703 /// instructions. VPRecipeBase owns the VPValues it defines through VPDef
704 /// and is responsible for deleting its defined values. Single-value
705 /// recipes must inherit from VPSingleDef instead of inheriting from both
706 /// VPRecipeBase and VPValue separately.
707 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>,
708 public VPDef,
709 public VPUser {
710 friend VPBasicBlock;
711 friend class VPBlockUtils;
713 /// Each VPRecipe belongs to a single VPBasicBlock.
714 VPBasicBlock *Parent = nullptr;
716 /// The debug location for the recipe.
717 DebugLoc DL;
719 public:
720 VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands,
721 DebugLoc DL = {})
722 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe), DL(DL) {}
724 template <typename IterT>
725 VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands,
726 DebugLoc DL = {})
727 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe), DL(DL) {}
728 virtual ~VPRecipeBase() = default;
730 /// \return the VPBasicBlock which this VPRecipe belongs to.
731 VPBasicBlock *getParent() { return Parent; }
732 const VPBasicBlock *getParent() const { return Parent; }
734 /// The method which generates the output IR instructions that correspond to
735 /// this VPRecipe, thereby "executing" the VPlan.
736 virtual void execute(VPTransformState &State) = 0;
738 /// Insert an unlinked recipe into a basic block immediately before
739 /// the specified recipe.
740 void insertBefore(VPRecipeBase *InsertPos);
741 /// Insert an unlinked recipe into \p BB immediately before the insertion
742 /// point \p IP;
743 void insertBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator IP);
745 /// Insert an unlinked Recipe into a basic block immediately after
746 /// the specified Recipe.
747 void insertAfter(VPRecipeBase *InsertPos);
749 /// Unlink this recipe from its current VPBasicBlock and insert it into
750 /// the VPBasicBlock that MovePos lives in, right after MovePos.
751 void moveAfter(VPRecipeBase *MovePos);
753 /// Unlink this recipe and insert into BB before I.
755 /// \pre I is a valid iterator into BB.
756 void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I);
758 /// This method unlinks 'this' from the containing basic block, but does not
759 /// delete it.
760 void removeFromParent();
762 /// This method unlinks 'this' from the containing basic block and deletes it.
764 /// \returns an iterator pointing to the element after the erased one
765 iplist<VPRecipeBase>::iterator eraseFromParent();
767 /// Method to support type inquiry through isa, cast, and dyn_cast.
768 static inline bool classof(const VPDef *D) {
769 // All VPDefs are also VPRecipeBases.
770 return true;
773 static inline bool classof(const VPUser *U) {
774 return U->getVPUserID() == VPUser::VPUserID::Recipe;
777 /// Returns true if the recipe may have side-effects.
778 bool mayHaveSideEffects() const;
780 /// Returns true for PHI-like recipes.
781 bool isPhi() const {
782 return getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC;
785 /// Returns true if the recipe may read from memory.
786 bool mayReadFromMemory() const;
788 /// Returns true if the recipe may write to memory.
789 bool mayWriteToMemory() const;
791 /// Returns true if the recipe may read from or write to memory.
792 bool mayReadOrWriteMemory() const {
793 return mayReadFromMemory() || mayWriteToMemory();
796 /// Returns the debug location of the recipe.
797 DebugLoc getDebugLoc() const { return DL; }
800 // Helper macro to define common classof implementations for recipes.
801 #define VP_CLASSOF_IMPL(VPDefID) \
802 static inline bool classof(const VPDef *D) { \
803 return D->getVPDefID() == VPDefID; \
805 static inline bool classof(const VPValue *V) { \
806 auto *R = V->getDefiningRecipe(); \
807 return R && R->getVPDefID() == VPDefID; \
809 static inline bool classof(const VPUser *U) { \
810 auto *R = dyn_cast<VPRecipeBase>(U); \
811 return R && R->getVPDefID() == VPDefID; \
813 static inline bool classof(const VPRecipeBase *R) { \
814 return R->getVPDefID() == VPDefID; \
816 static inline bool classof(const VPSingleDefRecipe *R) { \
817 return R->getVPDefID() == VPDefID; \
820 /// VPSingleDef is a base class for recipes for modeling a sequence of one or
821 /// more output IR that define a single result VPValue.
822 /// Note that VPRecipeBase must be inherited from before VPValue.
823 class VPSingleDefRecipe : public VPRecipeBase, public VPValue {
824 public:
825 template <typename IterT>
826 VPSingleDefRecipe(const unsigned char SC, IterT Operands, DebugLoc DL = {})
827 : VPRecipeBase(SC, Operands, DL), VPValue(this) {}
829 VPSingleDefRecipe(const unsigned char SC, ArrayRef<VPValue *> Operands,
830 DebugLoc DL = {})
831 : VPRecipeBase(SC, Operands, DL), VPValue(this) {}
833 template <typename IterT>
834 VPSingleDefRecipe(const unsigned char SC, IterT Operands, Value *UV,
835 DebugLoc DL = {})
836 : VPRecipeBase(SC, Operands, DL), VPValue(this, UV) {}
838 static inline bool classof(const VPRecipeBase *R) {
839 switch (R->getVPDefID()) {
840 case VPRecipeBase::VPDerivedIVSC:
841 case VPRecipeBase::VPExpandSCEVSC:
842 case VPRecipeBase::VPInstructionSC:
843 case VPRecipeBase::VPReductionSC:
844 case VPRecipeBase::VPReplicateSC:
845 case VPRecipeBase::VPScalarIVStepsSC:
846 case VPRecipeBase::VPVectorPointerSC:
847 case VPRecipeBase::VPWidenCallSC:
848 case VPRecipeBase::VPWidenCanonicalIVSC:
849 case VPRecipeBase::VPWidenCastSC:
850 case VPRecipeBase::VPWidenGEPSC:
851 case VPRecipeBase::VPWidenSC:
852 case VPRecipeBase::VPWidenSelectSC:
853 case VPRecipeBase::VPBlendSC:
854 case VPRecipeBase::VPPredInstPHISC:
855 case VPRecipeBase::VPCanonicalIVPHISC:
856 case VPRecipeBase::VPActiveLaneMaskPHISC:
857 case VPRecipeBase::VPFirstOrderRecurrencePHISC:
858 case VPRecipeBase::VPWidenPHISC:
859 case VPRecipeBase::VPWidenIntOrFpInductionSC:
860 case VPRecipeBase::VPWidenPointerInductionSC:
861 case VPRecipeBase::VPReductionPHISC:
862 return true;
863 case VPRecipeBase::VPInterleaveSC:
864 case VPRecipeBase::VPBranchOnMaskSC:
865 case VPRecipeBase::VPWidenMemoryInstructionSC:
866 // TODO: Widened stores don't define a value, but widened loads do. Split
867 // the recipes to be able to make widened loads VPSingleDefRecipes.
868 return false;
870 llvm_unreachable("Unhandled VPDefID");
873 static inline bool classof(const VPUser *U) {
874 auto *R = dyn_cast<VPRecipeBase>(U);
875 return R && classof(R);
878 /// Returns the underlying instruction.
879 Instruction *getUnderlyingInstr() {
880 return cast<Instruction>(getUnderlyingValue());
882 const Instruction *getUnderlyingInstr() const {
883 return cast<Instruction>(getUnderlyingValue());
887 /// Class to record LLVM IR flag for a recipe along with it.
888 class VPRecipeWithIRFlags : public VPSingleDefRecipe {
889 enum class OperationType : unsigned char {
890 Cmp,
891 OverflowingBinOp,
892 DisjointOp,
893 PossiblyExactOp,
894 GEPOp,
895 FPMathOp,
896 NonNegOp,
897 Other
900 public:
901 struct WrapFlagsTy {
902 char HasNUW : 1;
903 char HasNSW : 1;
905 WrapFlagsTy(bool HasNUW, bool HasNSW) : HasNUW(HasNUW), HasNSW(HasNSW) {}
908 protected:
909 struct GEPFlagsTy {
910 char IsInBounds : 1;
911 GEPFlagsTy(bool IsInBounds) : IsInBounds(IsInBounds) {}
914 private:
915 struct DisjointFlagsTy {
916 char IsDisjoint : 1;
918 struct ExactFlagsTy {
919 char IsExact : 1;
921 struct NonNegFlagsTy {
922 char NonNeg : 1;
924 struct FastMathFlagsTy {
925 char AllowReassoc : 1;
926 char NoNaNs : 1;
927 char NoInfs : 1;
928 char NoSignedZeros : 1;
929 char AllowReciprocal : 1;
930 char AllowContract : 1;
931 char ApproxFunc : 1;
933 FastMathFlagsTy(const FastMathFlags &FMF);
936 OperationType OpType;
938 union {
939 CmpInst::Predicate CmpPredicate;
940 WrapFlagsTy WrapFlags;
941 DisjointFlagsTy DisjointFlags;
942 ExactFlagsTy ExactFlags;
943 GEPFlagsTy GEPFlags;
944 NonNegFlagsTy NonNegFlags;
945 FastMathFlagsTy FMFs;
946 unsigned AllFlags;
949 public:
950 template <typename IterT>
951 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, DebugLoc DL = {})
952 : VPSingleDefRecipe(SC, Operands, DL) {
953 OpType = OperationType::Other;
954 AllFlags = 0;
957 template <typename IterT>
958 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, Instruction &I)
959 : VPSingleDefRecipe(SC, Operands, &I, I.getDebugLoc()) {
960 if (auto *Op = dyn_cast<CmpInst>(&I)) {
961 OpType = OperationType::Cmp;
962 CmpPredicate = Op->getPredicate();
963 } else if (auto *Op = dyn_cast<PossiblyDisjointInst>(&I)) {
964 OpType = OperationType::DisjointOp;
965 DisjointFlags.IsDisjoint = Op->isDisjoint();
966 } else if (auto *Op = dyn_cast<OverflowingBinaryOperator>(&I)) {
967 OpType = OperationType::OverflowingBinOp;
968 WrapFlags = {Op->hasNoUnsignedWrap(), Op->hasNoSignedWrap()};
969 } else if (auto *Op = dyn_cast<PossiblyExactOperator>(&I)) {
970 OpType = OperationType::PossiblyExactOp;
971 ExactFlags.IsExact = Op->isExact();
972 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
973 OpType = OperationType::GEPOp;
974 GEPFlags.IsInBounds = GEP->isInBounds();
975 } else if (auto *PNNI = dyn_cast<PossiblyNonNegInst>(&I)) {
976 OpType = OperationType::NonNegOp;
977 NonNegFlags.NonNeg = PNNI->hasNonNeg();
978 } else if (auto *Op = dyn_cast<FPMathOperator>(&I)) {
979 OpType = OperationType::FPMathOp;
980 FMFs = Op->getFastMathFlags();
981 } else {
982 OpType = OperationType::Other;
983 AllFlags = 0;
987 template <typename IterT>
988 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
989 CmpInst::Predicate Pred, DebugLoc DL = {})
990 : VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::Cmp),
991 CmpPredicate(Pred) {}
993 template <typename IterT>
994 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
995 WrapFlagsTy WrapFlags, DebugLoc DL = {})
996 : VPSingleDefRecipe(SC, Operands, DL),
997 OpType(OperationType::OverflowingBinOp), WrapFlags(WrapFlags) {}
999 template <typename IterT>
1000 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
1001 FastMathFlags FMFs, DebugLoc DL = {})
1002 : VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::FPMathOp),
1003 FMFs(FMFs) {}
1005 protected:
1006 template <typename IterT>
1007 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
1008 GEPFlagsTy GEPFlags, DebugLoc DL = {})
1009 : VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::GEPOp),
1010 GEPFlags(GEPFlags) {}
1012 public:
1013 static inline bool classof(const VPRecipeBase *R) {
1014 return R->getVPDefID() == VPRecipeBase::VPInstructionSC ||
1015 R->getVPDefID() == VPRecipeBase::VPWidenSC ||
1016 R->getVPDefID() == VPRecipeBase::VPWidenGEPSC ||
1017 R->getVPDefID() == VPRecipeBase::VPWidenCastSC ||
1018 R->getVPDefID() == VPRecipeBase::VPReplicateSC ||
1019 R->getVPDefID() == VPRecipeBase::VPVectorPointerSC;
1022 /// Drop all poison-generating flags.
1023 void dropPoisonGeneratingFlags() {
1024 // NOTE: This needs to be kept in-sync with
1025 // Instruction::dropPoisonGeneratingFlags.
1026 switch (OpType) {
1027 case OperationType::OverflowingBinOp:
1028 WrapFlags.HasNUW = false;
1029 WrapFlags.HasNSW = false;
1030 break;
1031 case OperationType::DisjointOp:
1032 DisjointFlags.IsDisjoint = false;
1033 break;
1034 case OperationType::PossiblyExactOp:
1035 ExactFlags.IsExact = false;
1036 break;
1037 case OperationType::GEPOp:
1038 GEPFlags.IsInBounds = false;
1039 break;
1040 case OperationType::FPMathOp:
1041 FMFs.NoNaNs = false;
1042 FMFs.NoInfs = false;
1043 break;
1044 case OperationType::NonNegOp:
1045 NonNegFlags.NonNeg = false;
1046 break;
1047 case OperationType::Cmp:
1048 case OperationType::Other:
1049 break;
1053 /// Set the IR flags for \p I.
1054 void setFlags(Instruction *I) const {
1055 switch (OpType) {
1056 case OperationType::OverflowingBinOp:
1057 I->setHasNoUnsignedWrap(WrapFlags.HasNUW);
1058 I->setHasNoSignedWrap(WrapFlags.HasNSW);
1059 break;
1060 case OperationType::DisjointOp:
1061 cast<PossiblyDisjointInst>(I)->setIsDisjoint(DisjointFlags.IsDisjoint);
1062 break;
1063 case OperationType::PossiblyExactOp:
1064 I->setIsExact(ExactFlags.IsExact);
1065 break;
1066 case OperationType::GEPOp:
1067 cast<GetElementPtrInst>(I)->setIsInBounds(GEPFlags.IsInBounds);
1068 break;
1069 case OperationType::FPMathOp:
1070 I->setHasAllowReassoc(FMFs.AllowReassoc);
1071 I->setHasNoNaNs(FMFs.NoNaNs);
1072 I->setHasNoInfs(FMFs.NoInfs);
1073 I->setHasNoSignedZeros(FMFs.NoSignedZeros);
1074 I->setHasAllowReciprocal(FMFs.AllowReciprocal);
1075 I->setHasAllowContract(FMFs.AllowContract);
1076 I->setHasApproxFunc(FMFs.ApproxFunc);
1077 break;
1078 case OperationType::NonNegOp:
1079 I->setNonNeg(NonNegFlags.NonNeg);
1080 break;
1081 case OperationType::Cmp:
1082 case OperationType::Other:
1083 break;
1087 CmpInst::Predicate getPredicate() const {
1088 assert(OpType == OperationType::Cmp &&
1089 "recipe doesn't have a compare predicate");
1090 return CmpPredicate;
1093 bool isInBounds() const {
1094 assert(OpType == OperationType::GEPOp &&
1095 "recipe doesn't have inbounds flag");
1096 return GEPFlags.IsInBounds;
1099 /// Returns true if the recipe has fast-math flags.
1100 bool hasFastMathFlags() const { return OpType == OperationType::FPMathOp; }
1102 FastMathFlags getFastMathFlags() const;
1104 bool hasNoUnsignedWrap() const {
1105 assert(OpType == OperationType::OverflowingBinOp &&
1106 "recipe doesn't have a NUW flag");
1107 return WrapFlags.HasNUW;
1110 bool hasNoSignedWrap() const {
1111 assert(OpType == OperationType::OverflowingBinOp &&
1112 "recipe doesn't have a NSW flag");
1113 return WrapFlags.HasNSW;
1116 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1117 void printFlags(raw_ostream &O) const;
1118 #endif
1121 /// This is a concrete Recipe that models a single VPlan-level instruction.
1122 /// While as any Recipe it may generate a sequence of IR instructions when
1123 /// executed, these instructions would always form a single-def expression as
1124 /// the VPInstruction is also a single def-use vertex.
1125 class VPInstruction : public VPRecipeWithIRFlags {
1126 friend class VPlanSlp;
1128 public:
1129 /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
1130 enum {
1131 FirstOrderRecurrenceSplice =
1132 Instruction::OtherOpsEnd + 1, // Combines the incoming and previous
1133 // values of a first-order recurrence.
1134 Not,
1135 SLPLoad,
1136 SLPStore,
1137 ActiveLaneMask,
1138 CalculateTripCountMinusVF,
1139 // Increment the canonical IV separately for each unrolled part.
1140 CanonicalIVIncrementForPart,
1141 BranchOnCount,
1142 BranchOnCond,
1143 ComputeReductionResult,
1146 private:
1147 typedef unsigned char OpcodeTy;
1148 OpcodeTy Opcode;
1150 /// An optional name that can be used for the generated IR instruction.
1151 const std::string Name;
1153 /// Utility method serving execute(): generates a single instance of the
1154 /// modeled instruction. \returns the generated value for \p Part.
1155 /// In some cases an existing value is returned rather than a generated
1156 /// one.
1157 Value *generateInstruction(VPTransformState &State, unsigned Part);
1159 #if !defined(NDEBUG)
1160 /// Return true if the VPInstruction is a floating point math operation, i.e.
1161 /// has fast-math flags.
1162 bool isFPMathOp() const;
1163 #endif
1165 protected:
1166 void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
1168 public:
1169 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL,
1170 const Twine &Name = "")
1171 : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, DL),
1172 Opcode(Opcode), Name(Name.str()) {}
1174 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
1175 DebugLoc DL = {}, const Twine &Name = "")
1176 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name) {}
1178 VPInstruction(unsigned Opcode, CmpInst::Predicate Pred, VPValue *A,
1179 VPValue *B, DebugLoc DL = {}, const Twine &Name = "");
1181 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
1182 WrapFlagsTy WrapFlags, DebugLoc DL = {}, const Twine &Name = "")
1183 : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, WrapFlags, DL),
1184 Opcode(Opcode), Name(Name.str()) {}
1186 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
1187 FastMathFlags FMFs, DebugLoc DL = {}, const Twine &Name = "");
1189 VP_CLASSOF_IMPL(VPDef::VPInstructionSC)
1191 unsigned getOpcode() const { return Opcode; }
1193 /// Generate the instruction.
1194 /// TODO: We currently execute only per-part unless a specific instance is
1195 /// provided.
1196 void execute(VPTransformState &State) override;
1198 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1199 /// Print the VPInstruction to \p O.
1200 void print(raw_ostream &O, const Twine &Indent,
1201 VPSlotTracker &SlotTracker) const override;
1203 /// Print the VPInstruction to dbgs() (for debugging).
1204 LLVM_DUMP_METHOD void dump() const;
1205 #endif
1207 /// Return true if this instruction may modify memory.
1208 bool mayWriteToMemory() const {
1209 // TODO: we can use attributes of the called function to rule out memory
1210 // modifications.
1211 return Opcode == Instruction::Store || Opcode == Instruction::Call ||
1212 Opcode == Instruction::Invoke || Opcode == SLPStore;
1215 bool hasResult() const {
1216 // CallInst may or may not have a result, depending on the called function.
1217 // Conservatively return calls have results for now.
1218 switch (getOpcode()) {
1219 case Instruction::Ret:
1220 case Instruction::Br:
1221 case Instruction::Store:
1222 case Instruction::Switch:
1223 case Instruction::IndirectBr:
1224 case Instruction::Resume:
1225 case Instruction::CatchRet:
1226 case Instruction::Unreachable:
1227 case Instruction::Fence:
1228 case Instruction::AtomicRMW:
1229 case VPInstruction::BranchOnCond:
1230 case VPInstruction::BranchOnCount:
1231 return false;
1232 default:
1233 return true;
1237 /// Returns true if the recipe only uses the first lane of operand \p Op.
1238 bool onlyFirstLaneUsed(const VPValue *Op) const override {
1239 assert(is_contained(operands(), Op) &&
1240 "Op must be an operand of the recipe");
1241 if (getOperand(0) != Op)
1242 return false;
1243 switch (getOpcode()) {
1244 default:
1245 return false;
1246 case VPInstruction::ActiveLaneMask:
1247 case VPInstruction::CalculateTripCountMinusVF:
1248 case VPInstruction::CanonicalIVIncrementForPart:
1249 case VPInstruction::BranchOnCount:
1250 return true;
1252 llvm_unreachable("switch should return");
1255 /// Returns true if the recipe only uses the first part of operand \p Op.
1256 bool onlyFirstPartUsed(const VPValue *Op) const override {
1257 assert(is_contained(operands(), Op) &&
1258 "Op must be an operand of the recipe");
1259 if (getOperand(0) != Op)
1260 return false;
1261 switch (getOpcode()) {
1262 default:
1263 return false;
1264 case VPInstruction::BranchOnCount:
1265 return true;
1267 llvm_unreachable("switch should return");
1271 /// VPWidenRecipe is a recipe for producing a copy of vector type its
1272 /// ingredient. This recipe covers most of the traditional vectorization cases
1273 /// where each ingredient transforms into a vectorized version of itself.
1274 class VPWidenRecipe : public VPRecipeWithIRFlags {
1275 unsigned Opcode;
1277 public:
1278 template <typename IterT>
1279 VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands)
1280 : VPRecipeWithIRFlags(VPDef::VPWidenSC, Operands, I),
1281 Opcode(I.getOpcode()) {}
1283 ~VPWidenRecipe() override = default;
1285 VP_CLASSOF_IMPL(VPDef::VPWidenSC)
1287 /// Produce widened copies of all Ingredients.
1288 void execute(VPTransformState &State) override;
1290 unsigned getOpcode() const { return Opcode; }
1292 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1293 /// Print the recipe.
1294 void print(raw_ostream &O, const Twine &Indent,
1295 VPSlotTracker &SlotTracker) const override;
1296 #endif
1299 /// VPWidenCastRecipe is a recipe to create vector cast instructions.
1300 class VPWidenCastRecipe : public VPRecipeWithIRFlags {
1301 /// Cast instruction opcode.
1302 Instruction::CastOps Opcode;
1304 /// Result type for the cast.
1305 Type *ResultTy;
1307 public:
1308 VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy,
1309 CastInst &UI)
1310 : VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op, UI), Opcode(Opcode),
1311 ResultTy(ResultTy) {
1312 assert(UI.getOpcode() == Opcode &&
1313 "opcode of underlying cast doesn't match");
1314 assert(UI.getType() == ResultTy &&
1315 "result type of underlying cast doesn't match");
1318 VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy)
1319 : VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op), Opcode(Opcode),
1320 ResultTy(ResultTy) {}
1322 ~VPWidenCastRecipe() override = default;
1324 VP_CLASSOF_IMPL(VPDef::VPWidenCastSC)
1326 /// Produce widened copies of the cast.
1327 void execute(VPTransformState &State) override;
1329 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1330 /// Print the recipe.
1331 void print(raw_ostream &O, const Twine &Indent,
1332 VPSlotTracker &SlotTracker) const override;
1333 #endif
1335 Instruction::CastOps getOpcode() const { return Opcode; }
1337 /// Returns the result type of the cast.
1338 Type *getResultType() const { return ResultTy; }
1341 /// A recipe for widening Call instructions.
1342 class VPWidenCallRecipe : public VPSingleDefRecipe {
1343 /// ID of the vector intrinsic to call when widening the call. If set the
1344 /// Intrinsic::not_intrinsic, a library call will be used instead.
1345 Intrinsic::ID VectorIntrinsicID;
1346 /// If this recipe represents a library call, Variant stores a pointer to
1347 /// the chosen function. There is a 1:1 mapping between a given VF and the
1348 /// chosen vectorized variant, so there will be a different vplan for each
1349 /// VF with a valid variant.
1350 Function *Variant;
1352 public:
1353 template <typename IterT>
1354 VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments,
1355 Intrinsic::ID VectorIntrinsicID, DebugLoc DL = {},
1356 Function *Variant = nullptr)
1357 : VPSingleDefRecipe(VPDef::VPWidenCallSC, CallArguments, &I, DL),
1358 VectorIntrinsicID(VectorIntrinsicID), Variant(Variant) {}
1360 ~VPWidenCallRecipe() override = default;
1362 VP_CLASSOF_IMPL(VPDef::VPWidenCallSC)
1364 /// Produce a widened version of the call instruction.
1365 void execute(VPTransformState &State) override;
1367 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1368 /// Print the recipe.
1369 void print(raw_ostream &O, const Twine &Indent,
1370 VPSlotTracker &SlotTracker) const override;
1371 #endif
1374 /// A recipe for widening select instructions.
1375 struct VPWidenSelectRecipe : public VPSingleDefRecipe {
1376 template <typename IterT>
1377 VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands)
1378 : VPSingleDefRecipe(VPDef::VPWidenSelectSC, Operands, &I,
1379 I.getDebugLoc()) {}
1381 ~VPWidenSelectRecipe() override = default;
1383 VP_CLASSOF_IMPL(VPDef::VPWidenSelectSC)
1385 /// Produce a widened version of the select instruction.
1386 void execute(VPTransformState &State) override;
1388 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1389 /// Print the recipe.
1390 void print(raw_ostream &O, const Twine &Indent,
1391 VPSlotTracker &SlotTracker) const override;
1392 #endif
1394 VPValue *getCond() const {
1395 return getOperand(0);
1398 bool isInvariantCond() const {
1399 return getCond()->isDefinedOutsideVectorRegions();
1403 /// A recipe for handling GEP instructions.
1404 class VPWidenGEPRecipe : public VPRecipeWithIRFlags {
1405 bool isPointerLoopInvariant() const {
1406 return getOperand(0)->isDefinedOutsideVectorRegions();
1409 bool isIndexLoopInvariant(unsigned I) const {
1410 return getOperand(I + 1)->isDefinedOutsideVectorRegions();
1413 bool areAllOperandsInvariant() const {
1414 return all_of(operands(), [](VPValue *Op) {
1415 return Op->isDefinedOutsideVectorRegions();
1419 public:
1420 template <typename IterT>
1421 VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands)
1422 : VPRecipeWithIRFlags(VPDef::VPWidenGEPSC, Operands, *GEP) {}
1424 ~VPWidenGEPRecipe() override = default;
1426 VP_CLASSOF_IMPL(VPDef::VPWidenGEPSC)
1428 /// Generate the gep nodes.
1429 void execute(VPTransformState &State) override;
1431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1432 /// Print the recipe.
1433 void print(raw_ostream &O, const Twine &Indent,
1434 VPSlotTracker &SlotTracker) const override;
1435 #endif
1438 /// A recipe to compute the pointers for widened memory accesses of IndexTy for
1439 /// all parts. If IsReverse is true, compute pointers for accessing the input in
1440 /// reverse order per part.
1441 class VPVectorPointerRecipe : public VPRecipeWithIRFlags {
1442 Type *IndexedTy;
1443 bool IsReverse;
1445 public:
1446 VPVectorPointerRecipe(VPValue *Ptr, Type *IndexedTy, bool IsReverse,
1447 bool IsInBounds, DebugLoc DL)
1448 : VPRecipeWithIRFlags(VPDef::VPVectorPointerSC, ArrayRef<VPValue *>(Ptr),
1449 GEPFlagsTy(IsInBounds), DL),
1450 IndexedTy(IndexedTy), IsReverse(IsReverse) {}
1452 VP_CLASSOF_IMPL(VPDef::VPVectorPointerSC)
1454 void execute(VPTransformState &State) override;
1456 bool onlyFirstLaneUsed(const VPValue *Op) const override {
1457 assert(is_contained(operands(), Op) &&
1458 "Op must be an operand of the recipe");
1459 return true;
1462 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1463 /// Print the recipe.
1464 void print(raw_ostream &O, const Twine &Indent,
1465 VPSlotTracker &SlotTracker) const override;
1466 #endif
1469 /// A pure virtual base class for all recipes modeling header phis, including
1470 /// phis for first order recurrences, pointer inductions and reductions. The
1471 /// start value is the first operand of the recipe and the incoming value from
1472 /// the backedge is the second operand.
1474 /// Inductions are modeled using the following sub-classes:
1475 /// * VPCanonicalIVPHIRecipe: Canonical scalar induction of the vector loop,
1476 /// starting at a specified value (zero for the main vector loop, the resume
1477 /// value for the epilogue vector loop) and stepping by 1. The induction
1478 /// controls exiting of the vector loop by comparing against the vector trip
1479 /// count. Produces a single scalar PHI for the induction value per
1480 /// iteration.
1481 /// * VPWidenIntOrFpInductionRecipe: Generates vector values for integer and
1482 /// floating point inductions with arbitrary start and step values. Produces
1483 /// a vector PHI per-part.
1484 /// * VPDerivedIVRecipe: Converts the canonical IV value to the corresponding
1485 /// value of an IV with different start and step values. Produces a single
1486 /// scalar value per iteration
1487 /// * VPScalarIVStepsRecipe: Generates scalar values per-lane based on a
1488 /// canonical or derived induction.
1489 /// * VPWidenPointerInductionRecipe: Generate vector and scalar values for a
1490 /// pointer induction. Produces either a vector PHI per-part or scalar values
1491 /// per-lane based on the canonical induction.
1492 class VPHeaderPHIRecipe : public VPSingleDefRecipe {
1493 protected:
1494 VPHeaderPHIRecipe(unsigned char VPDefID, Instruction *UnderlyingInstr,
1495 VPValue *Start = nullptr, DebugLoc DL = {})
1496 : VPSingleDefRecipe(VPDefID, ArrayRef<VPValue *>(), UnderlyingInstr, DL) {
1497 if (Start)
1498 addOperand(Start);
1501 public:
1502 ~VPHeaderPHIRecipe() override = default;
1504 /// Method to support type inquiry through isa, cast, and dyn_cast.
1505 static inline bool classof(const VPRecipeBase *B) {
1506 return B->getVPDefID() >= VPDef::VPFirstHeaderPHISC &&
1507 B->getVPDefID() <= VPDef::VPLastHeaderPHISC;
1509 static inline bool classof(const VPValue *V) {
1510 auto *B = V->getDefiningRecipe();
1511 return B && B->getVPDefID() >= VPRecipeBase::VPFirstHeaderPHISC &&
1512 B->getVPDefID() <= VPRecipeBase::VPLastHeaderPHISC;
1515 /// Generate the phi nodes.
1516 void execute(VPTransformState &State) override = 0;
1518 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1519 /// Print the recipe.
1520 void print(raw_ostream &O, const Twine &Indent,
1521 VPSlotTracker &SlotTracker) const override = 0;
1522 #endif
1524 /// Returns the start value of the phi, if one is set.
1525 VPValue *getStartValue() {
1526 return getNumOperands() == 0 ? nullptr : getOperand(0);
1528 VPValue *getStartValue() const {
1529 return getNumOperands() == 0 ? nullptr : getOperand(0);
1532 /// Update the start value of the recipe.
1533 void setStartValue(VPValue *V) { setOperand(0, V); }
1535 /// Returns the incoming value from the loop backedge.
1536 virtual VPValue *getBackedgeValue() {
1537 return getOperand(1);
1540 /// Returns the backedge value as a recipe. The backedge value is guaranteed
1541 /// to be a recipe.
1542 virtual VPRecipeBase &getBackedgeRecipe() {
1543 return *getBackedgeValue()->getDefiningRecipe();
1547 /// A recipe for handling phi nodes of integer and floating-point inductions,
1548 /// producing their vector values.
1549 class VPWidenIntOrFpInductionRecipe : public VPHeaderPHIRecipe {
1550 PHINode *IV;
1551 TruncInst *Trunc;
1552 const InductionDescriptor &IndDesc;
1554 public:
1555 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step,
1556 const InductionDescriptor &IndDesc)
1557 : VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, IV, Start), IV(IV),
1558 Trunc(nullptr), IndDesc(IndDesc) {
1559 addOperand(Step);
1562 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step,
1563 const InductionDescriptor &IndDesc,
1564 TruncInst *Trunc)
1565 : VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, Trunc, Start),
1566 IV(IV), Trunc(Trunc), IndDesc(IndDesc) {
1567 addOperand(Step);
1570 ~VPWidenIntOrFpInductionRecipe() override = default;
1572 VP_CLASSOF_IMPL(VPDef::VPWidenIntOrFpInductionSC)
1574 /// Generate the vectorized and scalarized versions of the phi node as
1575 /// needed by their users.
1576 void execute(VPTransformState &State) override;
1578 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1579 /// Print the recipe.
1580 void print(raw_ostream &O, const Twine &Indent,
1581 VPSlotTracker &SlotTracker) const override;
1582 #endif
1584 VPValue *getBackedgeValue() override {
1585 // TODO: All operands of base recipe must exist and be at same index in
1586 // derived recipe.
1587 llvm_unreachable(
1588 "VPWidenIntOrFpInductionRecipe generates its own backedge value");
1591 VPRecipeBase &getBackedgeRecipe() override {
1592 // TODO: All operands of base recipe must exist and be at same index in
1593 // derived recipe.
1594 llvm_unreachable(
1595 "VPWidenIntOrFpInductionRecipe generates its own backedge value");
1598 /// Returns the step value of the induction.
1599 VPValue *getStepValue() { return getOperand(1); }
1600 const VPValue *getStepValue() const { return getOperand(1); }
1602 /// Returns the first defined value as TruncInst, if it is one or nullptr
1603 /// otherwise.
1604 TruncInst *getTruncInst() { return Trunc; }
1605 const TruncInst *getTruncInst() const { return Trunc; }
1607 PHINode *getPHINode() { return IV; }
1609 /// Returns the induction descriptor for the recipe.
1610 const InductionDescriptor &getInductionDescriptor() const { return IndDesc; }
1612 /// Returns true if the induction is canonical, i.e. starting at 0 and
1613 /// incremented by UF * VF (= the original IV is incremented by 1).
1614 bool isCanonical() const;
1616 /// Returns the scalar type of the induction.
1617 Type *getScalarType() const {
1618 return Trunc ? Trunc->getType() : IV->getType();
1622 class VPWidenPointerInductionRecipe : public VPHeaderPHIRecipe {
1623 const InductionDescriptor &IndDesc;
1625 bool IsScalarAfterVectorization;
1627 public:
1628 /// Create a new VPWidenPointerInductionRecipe for \p Phi with start value \p
1629 /// Start.
1630 VPWidenPointerInductionRecipe(PHINode *Phi, VPValue *Start, VPValue *Step,
1631 const InductionDescriptor &IndDesc,
1632 bool IsScalarAfterVectorization)
1633 : VPHeaderPHIRecipe(VPDef::VPWidenPointerInductionSC, Phi),
1634 IndDesc(IndDesc),
1635 IsScalarAfterVectorization(IsScalarAfterVectorization) {
1636 addOperand(Start);
1637 addOperand(Step);
1640 ~VPWidenPointerInductionRecipe() override = default;
1642 VP_CLASSOF_IMPL(VPDef::VPWidenPointerInductionSC)
1644 /// Generate vector values for the pointer induction.
1645 void execute(VPTransformState &State) override;
1647 /// Returns true if only scalar values will be generated.
1648 bool onlyScalarsGenerated(ElementCount VF);
1650 /// Returns the induction descriptor for the recipe.
1651 const InductionDescriptor &getInductionDescriptor() const { return IndDesc; }
1653 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1654 /// Print the recipe.
1655 void print(raw_ostream &O, const Twine &Indent,
1656 VPSlotTracker &SlotTracker) const override;
1657 #endif
1660 /// A recipe for handling header phis that are widened in the vector loop.
1661 /// In the VPlan native path, all incoming VPValues & VPBasicBlock pairs are
1662 /// managed in the recipe directly.
1663 class VPWidenPHIRecipe : public VPHeaderPHIRecipe {
1664 /// List of incoming blocks. Only used in the VPlan native path.
1665 SmallVector<VPBasicBlock *, 2> IncomingBlocks;
1667 public:
1668 /// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start.
1669 VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr)
1670 : VPHeaderPHIRecipe(VPDef::VPWidenPHISC, Phi) {
1671 if (Start)
1672 addOperand(Start);
1675 ~VPWidenPHIRecipe() override = default;
1677 VP_CLASSOF_IMPL(VPDef::VPWidenPHISC)
1679 /// Generate the phi/select nodes.
1680 void execute(VPTransformState &State) override;
1682 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1683 /// Print the recipe.
1684 void print(raw_ostream &O, const Twine &Indent,
1685 VPSlotTracker &SlotTracker) const override;
1686 #endif
1688 /// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi.
1689 void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) {
1690 addOperand(IncomingV);
1691 IncomingBlocks.push_back(IncomingBlock);
1694 /// Returns the \p I th incoming VPBasicBlock.
1695 VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; }
1697 /// Returns the \p I th incoming VPValue.
1698 VPValue *getIncomingValue(unsigned I) { return getOperand(I); }
1701 /// A recipe for handling first-order recurrence phis. The start value is the
1702 /// first operand of the recipe and the incoming value from the backedge is the
1703 /// second operand.
1704 struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe {
1705 VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start)
1706 : VPHeaderPHIRecipe(VPDef::VPFirstOrderRecurrencePHISC, Phi, &Start) {}
1708 VP_CLASSOF_IMPL(VPDef::VPFirstOrderRecurrencePHISC)
1710 static inline bool classof(const VPHeaderPHIRecipe *R) {
1711 return R->getVPDefID() == VPDef::VPFirstOrderRecurrencePHISC;
1714 void execute(VPTransformState &State) override;
1716 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1717 /// Print the recipe.
1718 void print(raw_ostream &O, const Twine &Indent,
1719 VPSlotTracker &SlotTracker) const override;
1720 #endif
1723 /// A recipe for handling reduction phis. The start value is the first operand
1724 /// of the recipe and the incoming value from the backedge is the second
1725 /// operand.
1726 class VPReductionPHIRecipe : public VPHeaderPHIRecipe {
1727 /// Descriptor for the reduction.
1728 const RecurrenceDescriptor &RdxDesc;
1730 /// The phi is part of an in-loop reduction.
1731 bool IsInLoop;
1733 /// The phi is part of an ordered reduction. Requires IsInLoop to be true.
1734 bool IsOrdered;
1736 public:
1737 /// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p
1738 /// RdxDesc.
1739 VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc,
1740 VPValue &Start, bool IsInLoop = false,
1741 bool IsOrdered = false)
1742 : VPHeaderPHIRecipe(VPDef::VPReductionPHISC, Phi, &Start),
1743 RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered) {
1744 assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop");
1747 ~VPReductionPHIRecipe() override = default;
1749 VP_CLASSOF_IMPL(VPDef::VPReductionPHISC)
1751 static inline bool classof(const VPHeaderPHIRecipe *R) {
1752 return R->getVPDefID() == VPDef::VPReductionPHISC;
1755 /// Generate the phi/select nodes.
1756 void execute(VPTransformState &State) override;
1758 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1759 /// Print the recipe.
1760 void print(raw_ostream &O, const Twine &Indent,
1761 VPSlotTracker &SlotTracker) const override;
1762 #endif
1764 const RecurrenceDescriptor &getRecurrenceDescriptor() const {
1765 return RdxDesc;
1768 /// Returns true, if the phi is part of an ordered reduction.
1769 bool isOrdered() const { return IsOrdered; }
1771 /// Returns true, if the phi is part of an in-loop reduction.
1772 bool isInLoop() const { return IsInLoop; }
1775 /// A recipe for vectorizing a phi-node as a sequence of mask-based select
1776 /// instructions.
1777 class VPBlendRecipe : public VPSingleDefRecipe {
1778 public:
1779 /// The blend operation is a User of the incoming values and of their
1780 /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value
1781 /// might be incoming with a full mask for which there is no VPValue.
1782 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands)
1783 : VPSingleDefRecipe(VPDef::VPBlendSC, Operands, Phi, Phi->getDebugLoc()) {
1784 assert(Operands.size() > 0 &&
1785 ((Operands.size() == 1) || (Operands.size() % 2 == 0)) &&
1786 "Expected either a single incoming value or a positive even number "
1787 "of operands");
1790 VP_CLASSOF_IMPL(VPDef::VPBlendSC)
1792 /// Return the number of incoming values, taking into account that a single
1793 /// incoming value has no mask.
1794 unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; }
1796 /// Return incoming value number \p Idx.
1797 VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); }
1799 /// Return mask number \p Idx.
1800 VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); }
1802 /// Generate the phi/select nodes.
1803 void execute(VPTransformState &State) override;
1805 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1806 /// Print the recipe.
1807 void print(raw_ostream &O, const Twine &Indent,
1808 VPSlotTracker &SlotTracker) const override;
1809 #endif
1811 /// Returns true if the recipe only uses the first lane of operand \p Op.
1812 bool onlyFirstLaneUsed(const VPValue *Op) const override {
1813 assert(is_contained(operands(), Op) &&
1814 "Op must be an operand of the recipe");
1815 // Recursing through Blend recipes only, must terminate at header phi's the
1816 // latest.
1817 return all_of(users(),
1818 [this](VPUser *U) { return U->onlyFirstLaneUsed(this); });
1822 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load
1823 /// or stores into one wide load/store and shuffles. The first operand of a
1824 /// VPInterleave recipe is the address, followed by the stored values, followed
1825 /// by an optional mask.
1826 class VPInterleaveRecipe : public VPRecipeBase {
1827 const InterleaveGroup<Instruction> *IG;
1829 /// Indicates if the interleave group is in a conditional block and requires a
1830 /// mask.
1831 bool HasMask = false;
1833 /// Indicates if gaps between members of the group need to be masked out or if
1834 /// unusued gaps can be loaded speculatively.
1835 bool NeedsMaskForGaps = false;
1837 public:
1838 VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr,
1839 ArrayRef<VPValue *> StoredValues, VPValue *Mask,
1840 bool NeedsMaskForGaps)
1841 : VPRecipeBase(VPDef::VPInterleaveSC, {Addr}), IG(IG),
1842 NeedsMaskForGaps(NeedsMaskForGaps) {
1843 for (unsigned i = 0; i < IG->getFactor(); ++i)
1844 if (Instruction *I = IG->getMember(i)) {
1845 if (I->getType()->isVoidTy())
1846 continue;
1847 new VPValue(I, this);
1850 for (auto *SV : StoredValues)
1851 addOperand(SV);
1852 if (Mask) {
1853 HasMask = true;
1854 addOperand(Mask);
1857 ~VPInterleaveRecipe() override = default;
1859 VP_CLASSOF_IMPL(VPDef::VPInterleaveSC)
1861 /// Return the address accessed by this recipe.
1862 VPValue *getAddr() const {
1863 return getOperand(0); // Address is the 1st, mandatory operand.
1866 /// Return the mask used by this recipe. Note that a full mask is represented
1867 /// by a nullptr.
1868 VPValue *getMask() const {
1869 // Mask is optional and therefore the last, currently 2nd operand.
1870 return HasMask ? getOperand(getNumOperands() - 1) : nullptr;
1873 /// Return the VPValues stored by this interleave group. If it is a load
1874 /// interleave group, return an empty ArrayRef.
1875 ArrayRef<VPValue *> getStoredValues() const {
1876 // The first operand is the address, followed by the stored values, followed
1877 // by an optional mask.
1878 return ArrayRef<VPValue *>(op_begin(), getNumOperands())
1879 .slice(1, getNumStoreOperands());
1882 /// Generate the wide load or store, and shuffles.
1883 void execute(VPTransformState &State) override;
1885 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1886 /// Print the recipe.
1887 void print(raw_ostream &O, const Twine &Indent,
1888 VPSlotTracker &SlotTracker) const override;
1889 #endif
1891 const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
1893 /// Returns the number of stored operands of this interleave group. Returns 0
1894 /// for load interleave groups.
1895 unsigned getNumStoreOperands() const {
1896 return getNumOperands() - (HasMask ? 2 : 1);
1899 /// The recipe only uses the first lane of the address.
1900 bool onlyFirstLaneUsed(const VPValue *Op) const override {
1901 assert(is_contained(operands(), Op) &&
1902 "Op must be an operand of the recipe");
1903 return Op == getAddr() && !llvm::is_contained(getStoredValues(), Op);
1907 /// A recipe to represent inloop reduction operations, performing a reduction on
1908 /// a vector operand into a scalar value, and adding the result to a chain.
1909 /// The Operands are {ChainOp, VecOp, [Condition]}.
1910 class VPReductionRecipe : public VPSingleDefRecipe {
1911 /// The recurrence decriptor for the reduction in question.
1912 const RecurrenceDescriptor &RdxDesc;
1914 public:
1915 VPReductionRecipe(const RecurrenceDescriptor &R, Instruction *I,
1916 VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp)
1917 : VPSingleDefRecipe(VPDef::VPReductionSC,
1918 ArrayRef<VPValue *>({ChainOp, VecOp}), I),
1919 RdxDesc(R) {
1920 if (CondOp)
1921 addOperand(CondOp);
1924 ~VPReductionRecipe() override = default;
1926 VP_CLASSOF_IMPL(VPDef::VPReductionSC)
1928 /// Generate the reduction in the loop
1929 void execute(VPTransformState &State) override;
1931 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1932 /// Print the recipe.
1933 void print(raw_ostream &O, const Twine &Indent,
1934 VPSlotTracker &SlotTracker) const override;
1935 #endif
1937 /// The VPValue of the scalar Chain being accumulated.
1938 VPValue *getChainOp() const { return getOperand(0); }
1939 /// The VPValue of the vector value to be reduced.
1940 VPValue *getVecOp() const { return getOperand(1); }
1941 /// The VPValue of the condition for the block.
1942 VPValue *getCondOp() const {
1943 return getNumOperands() > 2 ? getOperand(2) : nullptr;
1947 /// VPReplicateRecipe replicates a given instruction producing multiple scalar
1948 /// copies of the original scalar type, one per lane, instead of producing a
1949 /// single copy of widened type for all lanes. If the instruction is known to be
1950 /// uniform only one copy, per lane zero, will be generated.
1951 class VPReplicateRecipe : public VPRecipeWithIRFlags {
1952 /// Indicator if only a single replica per lane is needed.
1953 bool IsUniform;
1955 /// Indicator if the replicas are also predicated.
1956 bool IsPredicated;
1958 public:
1959 template <typename IterT>
1960 VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands,
1961 bool IsUniform, VPValue *Mask = nullptr)
1962 : VPRecipeWithIRFlags(VPDef::VPReplicateSC, Operands, *I),
1963 IsUniform(IsUniform), IsPredicated(Mask) {
1964 if (Mask)
1965 addOperand(Mask);
1968 ~VPReplicateRecipe() override = default;
1970 VP_CLASSOF_IMPL(VPDef::VPReplicateSC)
1972 /// Generate replicas of the desired Ingredient. Replicas will be generated
1973 /// for all parts and lanes unless a specific part and lane are specified in
1974 /// the \p State.
1975 void execute(VPTransformState &State) override;
1977 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1978 /// Print the recipe.
1979 void print(raw_ostream &O, const Twine &Indent,
1980 VPSlotTracker &SlotTracker) const override;
1981 #endif
1983 bool isUniform() const { return IsUniform; }
1985 bool isPredicated() const { return IsPredicated; }
1987 /// Returns true if the recipe only uses the first lane of operand \p Op.
1988 bool onlyFirstLaneUsed(const VPValue *Op) const override {
1989 assert(is_contained(operands(), Op) &&
1990 "Op must be an operand of the recipe");
1991 return isUniform();
1994 /// Returns true if the recipe uses scalars of operand \p Op.
1995 bool usesScalars(const VPValue *Op) const override {
1996 assert(is_contained(operands(), Op) &&
1997 "Op must be an operand of the recipe");
1998 return true;
2001 /// Returns true if the recipe is used by a widened recipe via an intervening
2002 /// VPPredInstPHIRecipe. In this case, the scalar values should also be packed
2003 /// in a vector.
2004 bool shouldPack() const;
2006 /// Return the mask of a predicated VPReplicateRecipe.
2007 VPValue *getMask() {
2008 assert(isPredicated() && "Trying to get the mask of a unpredicated recipe");
2009 return getOperand(getNumOperands() - 1);
2013 /// A recipe for generating conditional branches on the bits of a mask.
2014 class VPBranchOnMaskRecipe : public VPRecipeBase {
2015 public:
2016 VPBranchOnMaskRecipe(VPValue *BlockInMask)
2017 : VPRecipeBase(VPDef::VPBranchOnMaskSC, {}) {
2018 if (BlockInMask) // nullptr means all-one mask.
2019 addOperand(BlockInMask);
2022 VP_CLASSOF_IMPL(VPDef::VPBranchOnMaskSC)
2024 /// Generate the extraction of the appropriate bit from the block mask and the
2025 /// conditional branch.
2026 void execute(VPTransformState &State) override;
2028 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2029 /// Print the recipe.
2030 void print(raw_ostream &O, const Twine &Indent,
2031 VPSlotTracker &SlotTracker) const override {
2032 O << Indent << "BRANCH-ON-MASK ";
2033 if (VPValue *Mask = getMask())
2034 Mask->printAsOperand(O, SlotTracker);
2035 else
2036 O << " All-One";
2038 #endif
2040 /// Return the mask used by this recipe. Note that a full mask is represented
2041 /// by a nullptr.
2042 VPValue *getMask() const {
2043 assert(getNumOperands() <= 1 && "should have either 0 or 1 operands");
2044 // Mask is optional.
2045 return getNumOperands() == 1 ? getOperand(0) : nullptr;
2048 /// Returns true if the recipe uses scalars of operand \p Op.
2049 bool usesScalars(const VPValue *Op) const override {
2050 assert(is_contained(operands(), Op) &&
2051 "Op must be an operand of the recipe");
2052 return true;
2056 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
2057 /// control converges back from a Branch-on-Mask. The phi nodes are needed in
2058 /// order to merge values that are set under such a branch and feed their uses.
2059 /// The phi nodes can be scalar or vector depending on the users of the value.
2060 /// This recipe works in concert with VPBranchOnMaskRecipe.
2061 class VPPredInstPHIRecipe : public VPSingleDefRecipe {
2062 public:
2063 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
2064 /// nodes after merging back from a Branch-on-Mask.
2065 VPPredInstPHIRecipe(VPValue *PredV)
2066 : VPSingleDefRecipe(VPDef::VPPredInstPHISC, PredV) {}
2067 ~VPPredInstPHIRecipe() override = default;
2069 VP_CLASSOF_IMPL(VPDef::VPPredInstPHISC)
2071 /// Generates phi nodes for live-outs as needed to retain SSA form.
2072 void execute(VPTransformState &State) override;
2074 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2075 /// Print the recipe.
2076 void print(raw_ostream &O, const Twine &Indent,
2077 VPSlotTracker &SlotTracker) const override;
2078 #endif
2080 /// Returns true if the recipe uses scalars of operand \p Op.
2081 bool usesScalars(const VPValue *Op) const override {
2082 assert(is_contained(operands(), Op) &&
2083 "Op must be an operand of the recipe");
2084 return true;
2088 /// A Recipe for widening load/store operations.
2089 /// The recipe uses the following VPValues:
2090 /// - For load: Address, optional mask
2091 /// - For store: Address, stored value, optional mask
2092 /// TODO: We currently execute only per-part unless a specific instance is
2093 /// provided.
2094 class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
2095 Instruction &Ingredient;
2097 // Whether the loaded-from / stored-to addresses are consecutive.
2098 bool Consecutive;
2100 // Whether the consecutive loaded/stored addresses are in reverse order.
2101 bool Reverse;
2103 void setMask(VPValue *Mask) {
2104 if (!Mask)
2105 return;
2106 addOperand(Mask);
2109 bool isMasked() const {
2110 return isStore() ? getNumOperands() == 3 : getNumOperands() == 2;
2113 public:
2114 VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask,
2115 bool Consecutive, bool Reverse)
2116 : VPRecipeBase(VPDef::VPWidenMemoryInstructionSC, {Addr}),
2117 Ingredient(Load), Consecutive(Consecutive), Reverse(Reverse) {
2118 assert((Consecutive || !Reverse) && "Reverse implies consecutive");
2119 new VPValue(this, &Load);
2120 setMask(Mask);
2123 VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr,
2124 VPValue *StoredValue, VPValue *Mask,
2125 bool Consecutive, bool Reverse)
2126 : VPRecipeBase(VPDef::VPWidenMemoryInstructionSC, {Addr, StoredValue}),
2127 Ingredient(Store), Consecutive(Consecutive), Reverse(Reverse) {
2128 assert((Consecutive || !Reverse) && "Reverse implies consecutive");
2129 setMask(Mask);
2132 VP_CLASSOF_IMPL(VPDef::VPWidenMemoryInstructionSC)
2134 /// Return the address accessed by this recipe.
2135 VPValue *getAddr() const {
2136 return getOperand(0); // Address is the 1st, mandatory operand.
2139 /// Return the mask used by this recipe. Note that a full mask is represented
2140 /// by a nullptr.
2141 VPValue *getMask() const {
2142 // Mask is optional and therefore the last operand.
2143 return isMasked() ? getOperand(getNumOperands() - 1) : nullptr;
2146 /// Returns true if this recipe is a store.
2147 bool isStore() const { return isa<StoreInst>(Ingredient); }
2149 /// Return the address accessed by this recipe.
2150 VPValue *getStoredValue() const {
2151 assert(isStore() && "Stored value only available for store instructions");
2152 return getOperand(1); // Stored value is the 2nd, mandatory operand.
2155 // Return whether the loaded-from / stored-to addresses are consecutive.
2156 bool isConsecutive() const { return Consecutive; }
2158 // Return whether the consecutive loaded/stored addresses are in reverse
2159 // order.
2160 bool isReverse() const { return Reverse; }
2162 /// Generate the wide load/store.
2163 void execute(VPTransformState &State) override;
2165 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2166 /// Print the recipe.
2167 void print(raw_ostream &O, const Twine &Indent,
2168 VPSlotTracker &SlotTracker) const override;
2169 #endif
2171 /// Returns true if the recipe only uses the first lane of operand \p Op.
2172 bool onlyFirstLaneUsed(const VPValue *Op) const override {
2173 assert(is_contained(operands(), Op) &&
2174 "Op must be an operand of the recipe");
2176 // Widened, consecutive memory operations only demand the first lane of
2177 // their address, unless the same operand is also stored. That latter can
2178 // happen with opaque pointers.
2179 return Op == getAddr() && isConsecutive() &&
2180 (!isStore() || Op != getStoredValue());
2183 Instruction &getIngredient() const { return Ingredient; }
2186 /// Recipe to expand a SCEV expression.
2187 class VPExpandSCEVRecipe : public VPSingleDefRecipe {
2188 const SCEV *Expr;
2189 ScalarEvolution &SE;
2191 public:
2192 VPExpandSCEVRecipe(const SCEV *Expr, ScalarEvolution &SE)
2193 : VPSingleDefRecipe(VPDef::VPExpandSCEVSC, {}), Expr(Expr), SE(SE) {}
2195 ~VPExpandSCEVRecipe() override = default;
2197 VP_CLASSOF_IMPL(VPDef::VPExpandSCEVSC)
2199 /// Generate a canonical vector induction variable of the vector loop, with
2200 void execute(VPTransformState &State) override;
2202 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2203 /// Print the recipe.
2204 void print(raw_ostream &O, const Twine &Indent,
2205 VPSlotTracker &SlotTracker) const override;
2206 #endif
2208 const SCEV *getSCEV() const { return Expr; }
2211 /// Canonical scalar induction phi of the vector loop. Starting at the specified
2212 /// start value (either 0 or the resume value when vectorizing the epilogue
2213 /// loop). VPWidenCanonicalIVRecipe represents the vector version of the
2214 /// canonical induction variable.
2215 class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe {
2216 public:
2217 VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL)
2218 : VPHeaderPHIRecipe(VPDef::VPCanonicalIVPHISC, nullptr, StartV, DL) {}
2220 ~VPCanonicalIVPHIRecipe() override = default;
2222 VP_CLASSOF_IMPL(VPDef::VPCanonicalIVPHISC)
2224 static inline bool classof(const VPHeaderPHIRecipe *D) {
2225 return D->getVPDefID() == VPDef::VPCanonicalIVPHISC;
2228 /// Generate the canonical scalar induction phi of the vector loop.
2229 void execute(VPTransformState &State) override;
2231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2232 /// Print the recipe.
2233 void print(raw_ostream &O, const Twine &Indent,
2234 VPSlotTracker &SlotTracker) const override;
2235 #endif
2237 /// Returns the scalar type of the induction.
2238 Type *getScalarType() const {
2239 return getStartValue()->getLiveInIRValue()->getType();
2242 /// Returns true if the recipe only uses the first lane of operand \p Op.
2243 bool onlyFirstLaneUsed(const VPValue *Op) const override {
2244 assert(is_contained(operands(), Op) &&
2245 "Op must be an operand of the recipe");
2246 return true;
2249 /// Returns true if the recipe only uses the first part of operand \p Op.
2250 bool onlyFirstPartUsed(const VPValue *Op) const override {
2251 assert(is_contained(operands(), Op) &&
2252 "Op must be an operand of the recipe");
2253 return true;
2256 /// Check if the induction described by \p Kind, /p Start and \p Step is
2257 /// canonical, i.e. has the same start, step (of 1), and type as the
2258 /// canonical IV.
2259 bool isCanonical(InductionDescriptor::InductionKind Kind, VPValue *Start,
2260 VPValue *Step, Type *Ty) const;
2263 /// A recipe for generating the active lane mask for the vector loop that is
2264 /// used to predicate the vector operations.
2265 /// TODO: It would be good to use the existing VPWidenPHIRecipe instead and
2266 /// remove VPActiveLaneMaskPHIRecipe.
2267 class VPActiveLaneMaskPHIRecipe : public VPHeaderPHIRecipe {
2268 public:
2269 VPActiveLaneMaskPHIRecipe(VPValue *StartMask, DebugLoc DL)
2270 : VPHeaderPHIRecipe(VPDef::VPActiveLaneMaskPHISC, nullptr, StartMask,
2271 DL) {}
2273 ~VPActiveLaneMaskPHIRecipe() override = default;
2275 VP_CLASSOF_IMPL(VPDef::VPActiveLaneMaskPHISC)
2277 static inline bool classof(const VPHeaderPHIRecipe *D) {
2278 return D->getVPDefID() == VPDef::VPActiveLaneMaskPHISC;
2281 /// Generate the active lane mask phi of the vector loop.
2282 void execute(VPTransformState &State) override;
2284 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2285 /// Print the recipe.
2286 void print(raw_ostream &O, const Twine &Indent,
2287 VPSlotTracker &SlotTracker) const override;
2288 #endif
2291 /// A Recipe for widening the canonical induction variable of the vector loop.
2292 class VPWidenCanonicalIVRecipe : public VPSingleDefRecipe {
2293 public:
2294 VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV)
2295 : VPSingleDefRecipe(VPDef::VPWidenCanonicalIVSC, {CanonicalIV}) {}
2297 ~VPWidenCanonicalIVRecipe() override = default;
2299 VP_CLASSOF_IMPL(VPDef::VPWidenCanonicalIVSC)
2301 /// Generate a canonical vector induction variable of the vector loop, with
2302 /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and
2303 /// step = <VF*UF, VF*UF, ..., VF*UF>.
2304 void execute(VPTransformState &State) override;
2306 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2307 /// Print the recipe.
2308 void print(raw_ostream &O, const Twine &Indent,
2309 VPSlotTracker &SlotTracker) const override;
2310 #endif
2312 /// Returns the scalar type of the induction.
2313 const Type *getScalarType() const {
2314 return cast<VPCanonicalIVPHIRecipe>(getOperand(0)->getDefiningRecipe())
2315 ->getScalarType();
2319 /// A recipe for converting the canonical IV value to the corresponding value of
2320 /// an IV with different start and step values, using Start + CanonicalIV *
2321 /// Step.
2322 class VPDerivedIVRecipe : public VPSingleDefRecipe {
2323 /// If not nullptr, the result of the induction will get truncated to
2324 /// TruncResultTy.
2325 Type *TruncResultTy;
2327 /// Kind of the induction.
2328 const InductionDescriptor::InductionKind Kind;
2329 /// If not nullptr, the floating point induction binary operator. Must be set
2330 /// for floating point inductions.
2331 const FPMathOperator *FPBinOp;
2333 public:
2334 VPDerivedIVRecipe(const InductionDescriptor &IndDesc, VPValue *Start,
2335 VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step,
2336 Type *TruncResultTy)
2337 : VPSingleDefRecipe(VPDef::VPDerivedIVSC, {Start, CanonicalIV, Step}),
2338 TruncResultTy(TruncResultTy), Kind(IndDesc.getKind()),
2339 FPBinOp(dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp())) {
2342 ~VPDerivedIVRecipe() override = default;
2344 VP_CLASSOF_IMPL(VPDef::VPDerivedIVSC)
2346 /// Generate the transformed value of the induction at offset StartValue (1.
2347 /// operand) + IV (2. operand) * StepValue (3, operand).
2348 void execute(VPTransformState &State) override;
2350 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2351 /// Print the recipe.
2352 void print(raw_ostream &O, const Twine &Indent,
2353 VPSlotTracker &SlotTracker) const override;
2354 #endif
2356 Type *getScalarType() const {
2357 return TruncResultTy ? TruncResultTy
2358 : getStartValue()->getLiveInIRValue()->getType();
2361 VPValue *getStartValue() const { return getOperand(0); }
2362 VPValue *getCanonicalIV() const { return getOperand(1); }
2363 VPValue *getStepValue() const { return getOperand(2); }
2365 /// Returns true if the recipe only uses the first lane of operand \p Op.
2366 bool onlyFirstLaneUsed(const VPValue *Op) const override {
2367 assert(is_contained(operands(), Op) &&
2368 "Op must be an operand of the recipe");
2369 return true;
2373 /// A recipe for handling phi nodes of integer and floating-point inductions,
2374 /// producing their scalar values.
2375 class VPScalarIVStepsRecipe : public VPRecipeWithIRFlags {
2376 Instruction::BinaryOps InductionOpcode;
2378 public:
2379 VPScalarIVStepsRecipe(VPValue *IV, VPValue *Step,
2380 Instruction::BinaryOps Opcode, FastMathFlags FMFs)
2381 : VPRecipeWithIRFlags(VPDef::VPScalarIVStepsSC,
2382 ArrayRef<VPValue *>({IV, Step}), FMFs),
2383 InductionOpcode(Opcode) {}
2385 VPScalarIVStepsRecipe(const InductionDescriptor &IndDesc, VPValue *IV,
2386 VPValue *Step)
2387 : VPScalarIVStepsRecipe(
2388 IV, Step, IndDesc.getInductionOpcode(),
2389 dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp())
2390 ? IndDesc.getInductionBinOp()->getFastMathFlags()
2391 : FastMathFlags()) {}
2393 ~VPScalarIVStepsRecipe() override = default;
2395 VP_CLASSOF_IMPL(VPDef::VPScalarIVStepsSC)
2397 /// Generate the scalarized versions of the phi node as needed by their users.
2398 void execute(VPTransformState &State) override;
2400 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2401 /// Print the recipe.
2402 void print(raw_ostream &O, const Twine &Indent,
2403 VPSlotTracker &SlotTracker) const override;
2404 #endif
2406 VPValue *getStepValue() const { return getOperand(1); }
2408 /// Returns true if the recipe only uses the first lane of operand \p Op.
2409 bool onlyFirstLaneUsed(const VPValue *Op) const override {
2410 assert(is_contained(operands(), Op) &&
2411 "Op must be an operand of the recipe");
2412 return true;
2416 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
2417 /// holds a sequence of zero or more VPRecipe's each representing a sequence of
2418 /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes.
2419 class VPBasicBlock : public VPBlockBase {
2420 public:
2421 using RecipeListTy = iplist<VPRecipeBase>;
2423 private:
2424 /// The VPRecipes held in the order of output instructions to generate.
2425 RecipeListTy Recipes;
2427 public:
2428 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
2429 : VPBlockBase(VPBasicBlockSC, Name.str()) {
2430 if (Recipe)
2431 appendRecipe(Recipe);
2434 ~VPBasicBlock() override {
2435 while (!Recipes.empty())
2436 Recipes.pop_back();
2439 /// Instruction iterators...
2440 using iterator = RecipeListTy::iterator;
2441 using const_iterator = RecipeListTy::const_iterator;
2442 using reverse_iterator = RecipeListTy::reverse_iterator;
2443 using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
2445 //===--------------------------------------------------------------------===//
2446 /// Recipe iterator methods
2448 inline iterator begin() { return Recipes.begin(); }
2449 inline const_iterator begin() const { return Recipes.begin(); }
2450 inline iterator end() { return Recipes.end(); }
2451 inline const_iterator end() const { return Recipes.end(); }
2453 inline reverse_iterator rbegin() { return Recipes.rbegin(); }
2454 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
2455 inline reverse_iterator rend() { return Recipes.rend(); }
2456 inline const_reverse_iterator rend() const { return Recipes.rend(); }
2458 inline size_t size() const { return Recipes.size(); }
2459 inline bool empty() const { return Recipes.empty(); }
2460 inline const VPRecipeBase &front() const { return Recipes.front(); }
2461 inline VPRecipeBase &front() { return Recipes.front(); }
2462 inline const VPRecipeBase &back() const { return Recipes.back(); }
2463 inline VPRecipeBase &back() { return Recipes.back(); }
2465 /// Returns a reference to the list of recipes.
2466 RecipeListTy &getRecipeList() { return Recipes; }
2468 /// Returns a pointer to a member of the recipe list.
2469 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
2470 return &VPBasicBlock::Recipes;
2473 /// Method to support type inquiry through isa, cast, and dyn_cast.
2474 static inline bool classof(const VPBlockBase *V) {
2475 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
2478 void insert(VPRecipeBase *Recipe, iterator InsertPt) {
2479 assert(Recipe && "No recipe to append.");
2480 assert(!Recipe->Parent && "Recipe already in VPlan");
2481 Recipe->Parent = this;
2482 Recipes.insert(InsertPt, Recipe);
2485 /// Augment the existing recipes of a VPBasicBlock with an additional
2486 /// \p Recipe as the last recipe.
2487 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
2489 /// The method which generates the output IR instructions that correspond to
2490 /// this VPBasicBlock, thereby "executing" the VPlan.
2491 void execute(VPTransformState *State) override;
2493 /// Return the position of the first non-phi node recipe in the block.
2494 iterator getFirstNonPhi();
2496 /// Returns an iterator range over the PHI-like recipes in the block.
2497 iterator_range<iterator> phis() {
2498 return make_range(begin(), getFirstNonPhi());
2501 void dropAllReferences(VPValue *NewValue) override;
2503 /// Split current block at \p SplitAt by inserting a new block between the
2504 /// current block and its successors and moving all recipes starting at
2505 /// SplitAt to the new block. Returns the new block.
2506 VPBasicBlock *splitAt(iterator SplitAt);
2508 VPRegionBlock *getEnclosingLoopRegion();
2510 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2511 /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p
2512 /// SlotTracker is used to print unnamed VPValue's using consequtive numbers.
2514 /// Note that the numbering is applied to the whole VPlan, so printing
2515 /// individual blocks is consistent with the whole VPlan printing.
2516 void print(raw_ostream &O, const Twine &Indent,
2517 VPSlotTracker &SlotTracker) const override;
2518 using VPBlockBase::print; // Get the print(raw_stream &O) version.
2519 #endif
2521 /// If the block has multiple successors, return the branch recipe terminating
2522 /// the block. If there are no or only a single successor, return nullptr;
2523 VPRecipeBase *getTerminator();
2524 const VPRecipeBase *getTerminator() const;
2526 /// Returns true if the block is exiting it's parent region.
2527 bool isExiting() const;
2529 private:
2530 /// Create an IR BasicBlock to hold the output instructions generated by this
2531 /// VPBasicBlock, and return it. Update the CFGState accordingly.
2532 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
2535 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
2536 /// which form a Single-Entry-Single-Exiting subgraph of the output IR CFG.
2537 /// A VPRegionBlock may indicate that its contents are to be replicated several
2538 /// times. This is designed to support predicated scalarization, in which a
2539 /// scalar if-then code structure needs to be generated VF * UF times. Having
2540 /// this replication indicator helps to keep a single model for multiple
2541 /// candidate VF's. The actual replication takes place only once the desired VF
2542 /// and UF have been determined.
2543 class VPRegionBlock : public VPBlockBase {
2544 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
2545 VPBlockBase *Entry;
2547 /// Hold the Single Exiting block of the SESE region modelled by the
2548 /// VPRegionBlock.
2549 VPBlockBase *Exiting;
2551 /// An indicator whether this region is to generate multiple replicated
2552 /// instances of output IR corresponding to its VPBlockBases.
2553 bool IsReplicator;
2555 public:
2556 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting,
2557 const std::string &Name = "", bool IsReplicator = false)
2558 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exiting(Exiting),
2559 IsReplicator(IsReplicator) {
2560 assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
2561 assert(Exiting->getSuccessors().empty() && "Exit block has successors.");
2562 Entry->setParent(this);
2563 Exiting->setParent(this);
2565 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
2566 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exiting(nullptr),
2567 IsReplicator(IsReplicator) {}
2569 ~VPRegionBlock() override {
2570 if (Entry) {
2571 VPValue DummyValue;
2572 Entry->dropAllReferences(&DummyValue);
2573 deleteCFG(Entry);
2577 /// Method to support type inquiry through isa, cast, and dyn_cast.
2578 static inline bool classof(const VPBlockBase *V) {
2579 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
2582 const VPBlockBase *getEntry() const { return Entry; }
2583 VPBlockBase *getEntry() { return Entry; }
2585 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
2586 /// EntryBlock must have no predecessors.
2587 void setEntry(VPBlockBase *EntryBlock) {
2588 assert(EntryBlock->getPredecessors().empty() &&
2589 "Entry block cannot have predecessors.");
2590 Entry = EntryBlock;
2591 EntryBlock->setParent(this);
2594 const VPBlockBase *getExiting() const { return Exiting; }
2595 VPBlockBase *getExiting() { return Exiting; }
2597 /// Set \p ExitingBlock as the exiting VPBlockBase of this VPRegionBlock. \p
2598 /// ExitingBlock must have no successors.
2599 void setExiting(VPBlockBase *ExitingBlock) {
2600 assert(ExitingBlock->getSuccessors().empty() &&
2601 "Exit block cannot have successors.");
2602 Exiting = ExitingBlock;
2603 ExitingBlock->setParent(this);
2606 /// Returns the pre-header VPBasicBlock of the loop region.
2607 VPBasicBlock *getPreheaderVPBB() {
2608 assert(!isReplicator() && "should only get pre-header of loop regions");
2609 return getSinglePredecessor()->getExitingBasicBlock();
2612 /// An indicator whether this region is to generate multiple replicated
2613 /// instances of output IR corresponding to its VPBlockBases.
2614 bool isReplicator() const { return IsReplicator; }
2616 /// The method which generates the output IR instructions that correspond to
2617 /// this VPRegionBlock, thereby "executing" the VPlan.
2618 void execute(VPTransformState *State) override;
2620 void dropAllReferences(VPValue *NewValue) override;
2622 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2623 /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with
2624 /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using
2625 /// consequtive numbers.
2627 /// Note that the numbering is applied to the whole VPlan, so printing
2628 /// individual regions is consistent with the whole VPlan printing.
2629 void print(raw_ostream &O, const Twine &Indent,
2630 VPSlotTracker &SlotTracker) const override;
2631 using VPBlockBase::print; // Get the print(raw_stream &O) version.
2632 #endif
2635 /// VPlan models a candidate for vectorization, encoding various decisions take
2636 /// to produce efficient output IR, including which branches, basic-blocks and
2637 /// output IR instructions to generate, and their cost. VPlan holds a
2638 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
2639 /// VPBasicBlock.
2640 class VPlan {
2641 friend class VPlanPrinter;
2642 friend class VPSlotTracker;
2644 /// Hold the single entry to the Hierarchical CFG of the VPlan, i.e. the
2645 /// preheader of the vector loop.
2646 VPBasicBlock *Entry;
2648 /// VPBasicBlock corresponding to the original preheader. Used to place
2649 /// VPExpandSCEV recipes for expressions used during skeleton creation and the
2650 /// rest of VPlan execution.
2651 VPBasicBlock *Preheader;
2653 /// Holds the VFs applicable to this VPlan.
2654 SmallSetVector<ElementCount, 2> VFs;
2656 /// Holds the UFs applicable to this VPlan. If empty, the VPlan is valid for
2657 /// any UF.
2658 SmallSetVector<unsigned, 2> UFs;
2660 /// Holds the name of the VPlan, for printing.
2661 std::string Name;
2663 /// Represents the trip count of the original loop, for folding
2664 /// the tail.
2665 VPValue *TripCount = nullptr;
2667 /// Represents the backedge taken count of the original loop, for folding
2668 /// the tail. It equals TripCount - 1.
2669 VPValue *BackedgeTakenCount = nullptr;
2671 /// Represents the vector trip count.
2672 VPValue VectorTripCount;
2674 /// Represents the loop-invariant VF * UF of the vector loop region.
2675 VPValue VFxUF;
2677 /// Holds a mapping between Values and their corresponding VPValue inside
2678 /// VPlan.
2679 Value2VPValueTy Value2VPValue;
2681 /// Contains all the external definitions created for this VPlan. External
2682 /// definitions are VPValues that hold a pointer to their underlying IR.
2683 SmallVector<VPValue *, 16> VPLiveInsToFree;
2685 /// Indicates whether it is safe use the Value2VPValue mapping or if the
2686 /// mapping cannot be used any longer, because it is stale.
2687 bool Value2VPValueEnabled = true;
2689 /// Values used outside the plan.
2690 MapVector<PHINode *, VPLiveOut *> LiveOuts;
2692 /// Mapping from SCEVs to the VPValues representing their expansions.
2693 /// NOTE: This mapping is temporary and will be removed once all users have
2694 /// been modeled in VPlan directly.
2695 DenseMap<const SCEV *, VPValue *> SCEVToExpansion;
2697 public:
2698 /// Construct a VPlan with original preheader \p Preheader, trip count \p TC
2699 /// and \p Entry to the plan. At the moment, \p Preheader and \p Entry need to
2700 /// be disconnected, as the bypass blocks between them are not yet modeled in
2701 /// VPlan.
2702 VPlan(VPBasicBlock *Preheader, VPValue *TC, VPBasicBlock *Entry)
2703 : VPlan(Preheader, Entry) {
2704 TripCount = TC;
2707 /// Construct a VPlan with original preheader \p Preheader and \p Entry to
2708 /// the plan. At the moment, \p Preheader and \p Entry need to be
2709 /// disconnected, as the bypass blocks between them are not yet modeled in
2710 /// VPlan.
2711 VPlan(VPBasicBlock *Preheader, VPBasicBlock *Entry)
2712 : Entry(Entry), Preheader(Preheader) {
2713 Entry->setPlan(this);
2714 Preheader->setPlan(this);
2715 assert(Preheader->getNumSuccessors() == 0 &&
2716 Preheader->getNumPredecessors() == 0 &&
2717 "preheader must be disconnected");
2720 ~VPlan();
2722 /// Create initial VPlan skeleton, having an "entry" VPBasicBlock (wrapping
2723 /// original scalar pre-header) which contains SCEV expansions that need to
2724 /// happen before the CFG is modified; a VPBasicBlock for the vector
2725 /// pre-header, followed by a region for the vector loop, followed by the
2726 /// middle VPBasicBlock.
2727 static VPlanPtr createInitialVPlan(const SCEV *TripCount,
2728 ScalarEvolution &PSE);
2730 /// Prepare the plan for execution, setting up the required live-in values.
2731 void prepareToExecute(Value *TripCount, Value *VectorTripCount,
2732 Value *CanonicalIVStartValue, VPTransformState &State);
2734 /// Generate the IR code for this VPlan.
2735 void execute(VPTransformState *State);
2737 VPBasicBlock *getEntry() { return Entry; }
2738 const VPBasicBlock *getEntry() const { return Entry; }
2740 /// The trip count of the original loop.
2741 VPValue *getTripCount() const {
2742 assert(TripCount && "trip count needs to be set before accessing it");
2743 return TripCount;
2746 /// The backedge taken count of the original loop.
2747 VPValue *getOrCreateBackedgeTakenCount() {
2748 if (!BackedgeTakenCount)
2749 BackedgeTakenCount = new VPValue();
2750 return BackedgeTakenCount;
2753 /// The vector trip count.
2754 VPValue &getVectorTripCount() { return VectorTripCount; }
2756 /// Returns VF * UF of the vector loop region.
2757 VPValue &getVFxUF() { return VFxUF; }
2759 /// Mark the plan to indicate that using Value2VPValue is not safe any
2760 /// longer, because it may be stale.
2761 void disableValue2VPValue() { Value2VPValueEnabled = false; }
2763 void addVF(ElementCount VF) { VFs.insert(VF); }
2765 void setVF(ElementCount VF) {
2766 assert(hasVF(VF) && "Cannot set VF not already in plan");
2767 VFs.clear();
2768 VFs.insert(VF);
2771 bool hasVF(ElementCount VF) { return VFs.count(VF); }
2773 bool hasScalarVFOnly() const { return VFs.size() == 1 && VFs[0].isScalar(); }
2775 bool hasUF(unsigned UF) const { return UFs.empty() || UFs.contains(UF); }
2777 void setUF(unsigned UF) {
2778 assert(hasUF(UF) && "Cannot set the UF not already in plan");
2779 UFs.clear();
2780 UFs.insert(UF);
2783 /// Return a string with the name of the plan and the applicable VFs and UFs.
2784 std::string getName() const;
2786 void setName(const Twine &newName) { Name = newName.str(); }
2788 void addVPValue(Value *V, VPValue *VPV) {
2789 assert((Value2VPValueEnabled || VPV->isLiveIn()) &&
2790 "Value2VPValue mapping may be out of date!");
2791 assert(V && "Trying to add a null Value to VPlan");
2792 assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
2793 Value2VPValue[V] = VPV;
2796 /// Returns the VPValue for \p V. \p OverrideAllowed can be used to disable
2797 /// /// checking whether it is safe to query VPValues using IR Values.
2798 VPValue *getVPValue(Value *V, bool OverrideAllowed = false) {
2799 assert(V && "Trying to get the VPValue of a null Value");
2800 assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
2801 assert((Value2VPValueEnabled || OverrideAllowed ||
2802 Value2VPValue[V]->isLiveIn()) &&
2803 "Value2VPValue mapping may be out of date!");
2804 return Value2VPValue[V];
2807 /// Gets the VPValue for \p V or adds a new live-in (if none exists yet) for
2808 /// \p V.
2809 VPValue *getVPValueOrAddLiveIn(Value *V) {
2810 assert(V && "Trying to get or add the VPValue of a null Value");
2811 if (!Value2VPValue.count(V)) {
2812 VPValue *VPV = new VPValue(V);
2813 VPLiveInsToFree.push_back(VPV);
2814 addVPValue(V, VPV);
2817 return getVPValue(V);
2820 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2821 /// Print the live-ins of this VPlan to \p O.
2822 void printLiveIns(raw_ostream &O) const;
2824 /// Print this VPlan to \p O.
2825 void print(raw_ostream &O) const;
2827 /// Print this VPlan in DOT format to \p O.
2828 void printDOT(raw_ostream &O) const;
2830 /// Dump the plan to stderr (for debugging).
2831 LLVM_DUMP_METHOD void dump() const;
2832 #endif
2834 /// Returns a range mapping the values the range \p Operands to their
2835 /// corresponding VPValues.
2836 iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>>
2837 mapToVPValues(User::op_range Operands) {
2838 std::function<VPValue *(Value *)> Fn = [this](Value *Op) {
2839 return getVPValueOrAddLiveIn(Op);
2841 return map_range(Operands, Fn);
2844 /// Returns the VPRegionBlock of the vector loop.
2845 VPRegionBlock *getVectorLoopRegion() {
2846 return cast<VPRegionBlock>(getEntry()->getSingleSuccessor());
2848 const VPRegionBlock *getVectorLoopRegion() const {
2849 return cast<VPRegionBlock>(getEntry()->getSingleSuccessor());
2852 /// Returns the canonical induction recipe of the vector loop.
2853 VPCanonicalIVPHIRecipe *getCanonicalIV() {
2854 VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock();
2855 if (EntryVPBB->empty()) {
2856 // VPlan native path.
2857 EntryVPBB = cast<VPBasicBlock>(EntryVPBB->getSingleSuccessor());
2859 return cast<VPCanonicalIVPHIRecipe>(&*EntryVPBB->begin());
2862 void addLiveOut(PHINode *PN, VPValue *V);
2864 void removeLiveOut(PHINode *PN) {
2865 delete LiveOuts[PN];
2866 LiveOuts.erase(PN);
2869 const MapVector<PHINode *, VPLiveOut *> &getLiveOuts() const {
2870 return LiveOuts;
2873 VPValue *getSCEVExpansion(const SCEV *S) const {
2874 return SCEVToExpansion.lookup(S);
2877 void addSCEVExpansion(const SCEV *S, VPValue *V) {
2878 assert(!SCEVToExpansion.contains(S) && "SCEV already expanded");
2879 SCEVToExpansion[S] = V;
2882 /// \return The block corresponding to the original preheader.
2883 VPBasicBlock *getPreheader() { return Preheader; }
2884 const VPBasicBlock *getPreheader() const { return Preheader; }
2886 private:
2887 /// Add to the given dominator tree the header block and every new basic block
2888 /// that was created between it and the latch block, inclusive.
2889 static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB,
2890 BasicBlock *LoopPreHeaderBB,
2891 BasicBlock *LoopExitBB);
2894 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2895 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
2896 /// indented and follows the dot format.
2897 class VPlanPrinter {
2898 raw_ostream &OS;
2899 const VPlan &Plan;
2900 unsigned Depth = 0;
2901 unsigned TabWidth = 2;
2902 std::string Indent;
2903 unsigned BID = 0;
2904 SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
2906 VPSlotTracker SlotTracker;
2908 /// Handle indentation.
2909 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
2911 /// Print a given \p Block of the Plan.
2912 void dumpBlock(const VPBlockBase *Block);
2914 /// Print the information related to the CFG edges going out of a given
2915 /// \p Block, followed by printing the successor blocks themselves.
2916 void dumpEdges(const VPBlockBase *Block);
2918 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
2919 /// its successor blocks.
2920 void dumpBasicBlock(const VPBasicBlock *BasicBlock);
2922 /// Print a given \p Region of the Plan.
2923 void dumpRegion(const VPRegionBlock *Region);
2925 unsigned getOrCreateBID(const VPBlockBase *Block) {
2926 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
2929 Twine getOrCreateName(const VPBlockBase *Block);
2931 Twine getUID(const VPBlockBase *Block);
2933 /// Print the information related to a CFG edge between two VPBlockBases.
2934 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
2935 const Twine &Label);
2937 public:
2938 VPlanPrinter(raw_ostream &O, const VPlan &P)
2939 : OS(O), Plan(P), SlotTracker(&P) {}
2941 LLVM_DUMP_METHOD void dump();
2944 struct VPlanIngredient {
2945 const Value *V;
2947 VPlanIngredient(const Value *V) : V(V) {}
2949 void print(raw_ostream &O) const;
2952 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
2953 I.print(OS);
2954 return OS;
2957 inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) {
2958 Plan.print(OS);
2959 return OS;
2961 #endif
2963 //===----------------------------------------------------------------------===//
2964 // VPlan Utilities
2965 //===----------------------------------------------------------------------===//
2967 /// Class that provides utilities for VPBlockBases in VPlan.
2968 class VPBlockUtils {
2969 public:
2970 VPBlockUtils() = delete;
2972 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
2973 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
2974 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. \p BlockPtr's
2975 /// successors are moved from \p BlockPtr to \p NewBlock. \p NewBlock must
2976 /// have neither successors nor predecessors.
2977 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
2978 assert(NewBlock->getSuccessors().empty() &&
2979 NewBlock->getPredecessors().empty() &&
2980 "Can't insert new block with predecessors or successors.");
2981 NewBlock->setParent(BlockPtr->getParent());
2982 SmallVector<VPBlockBase *> Succs(BlockPtr->successors());
2983 for (VPBlockBase *Succ : Succs) {
2984 disconnectBlocks(BlockPtr, Succ);
2985 connectBlocks(NewBlock, Succ);
2987 connectBlocks(BlockPtr, NewBlock);
2990 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
2991 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
2992 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
2993 /// parent to \p IfTrue and \p IfFalse. \p BlockPtr must have no successors
2994 /// and \p IfTrue and \p IfFalse must have neither successors nor
2995 /// predecessors.
2996 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
2997 VPBlockBase *BlockPtr) {
2998 assert(IfTrue->getSuccessors().empty() &&
2999 "Can't insert IfTrue with successors.");
3000 assert(IfFalse->getSuccessors().empty() &&
3001 "Can't insert IfFalse with successors.");
3002 BlockPtr->setTwoSuccessors(IfTrue, IfFalse);
3003 IfTrue->setPredecessors({BlockPtr});
3004 IfFalse->setPredecessors({BlockPtr});
3005 IfTrue->setParent(BlockPtr->getParent());
3006 IfFalse->setParent(BlockPtr->getParent());
3009 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
3010 /// the successors of \p From and \p From to the predecessors of \p To. Both
3011 /// VPBlockBases must have the same parent, which can be null. Both
3012 /// VPBlockBases can be already connected to other VPBlockBases.
3013 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
3014 assert((From->getParent() == To->getParent()) &&
3015 "Can't connect two block with different parents");
3016 assert(From->getNumSuccessors() < 2 &&
3017 "Blocks can't have more than two successors.");
3018 From->appendSuccessor(To);
3019 To->appendPredecessor(From);
3022 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
3023 /// from the successors of \p From and \p From from the predecessors of \p To.
3024 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
3025 assert(To && "Successor to disconnect is null.");
3026 From->removeSuccessor(To);
3027 To->removePredecessor(From);
3030 /// Return an iterator range over \p Range which only includes \p BlockTy
3031 /// blocks. The accesses are casted to \p BlockTy.
3032 template <typename BlockTy, typename T>
3033 static auto blocksOnly(const T &Range) {
3034 // Create BaseTy with correct const-ness based on BlockTy.
3035 using BaseTy = std::conditional_t<std::is_const<BlockTy>::value,
3036 const VPBlockBase, VPBlockBase>;
3038 // We need to first create an iterator range over (const) BlocktTy & instead
3039 // of (const) BlockTy * for filter_range to work properly.
3040 auto Mapped =
3041 map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; });
3042 auto Filter = make_filter_range(
3043 Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); });
3044 return map_range(Filter, [](BaseTy &Block) -> BlockTy * {
3045 return cast<BlockTy>(&Block);
3050 class VPInterleavedAccessInfo {
3051 DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
3052 InterleaveGroupMap;
3054 /// Type for mapping of instruction based interleave groups to VPInstruction
3055 /// interleave groups
3056 using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
3057 InterleaveGroup<VPInstruction> *>;
3059 /// Recursively \p Region and populate VPlan based interleave groups based on
3060 /// \p IAI.
3061 void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
3062 InterleavedAccessInfo &IAI);
3063 /// Recursively traverse \p Block and populate VPlan based interleave groups
3064 /// based on \p IAI.
3065 void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
3066 InterleavedAccessInfo &IAI);
3068 public:
3069 VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
3071 ~VPInterleavedAccessInfo() {
3072 SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
3073 // Avoid releasing a pointer twice.
3074 for (auto &I : InterleaveGroupMap)
3075 DelSet.insert(I.second);
3076 for (auto *Ptr : DelSet)
3077 delete Ptr;
3080 /// Get the interleave group that \p Instr belongs to.
3082 /// \returns nullptr if doesn't have such group.
3083 InterleaveGroup<VPInstruction> *
3084 getInterleaveGroup(VPInstruction *Instr) const {
3085 return InterleaveGroupMap.lookup(Instr);
3089 /// Class that maps (parts of) an existing VPlan to trees of combined
3090 /// VPInstructions.
3091 class VPlanSlp {
3092 enum class OpMode { Failed, Load, Opcode };
3094 /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
3095 /// DenseMap keys.
3096 struct BundleDenseMapInfo {
3097 static SmallVector<VPValue *, 4> getEmptyKey() {
3098 return {reinterpret_cast<VPValue *>(-1)};
3101 static SmallVector<VPValue *, 4> getTombstoneKey() {
3102 return {reinterpret_cast<VPValue *>(-2)};
3105 static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
3106 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
3109 static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
3110 const SmallVector<VPValue *, 4> &RHS) {
3111 return LHS == RHS;
3115 /// Mapping of values in the original VPlan to a combined VPInstruction.
3116 DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
3117 BundleToCombined;
3119 VPInterleavedAccessInfo &IAI;
3121 /// Basic block to operate on. For now, only instructions in a single BB are
3122 /// considered.
3123 const VPBasicBlock &BB;
3125 /// Indicates whether we managed to combine all visited instructions or not.
3126 bool CompletelySLP = true;
3128 /// Width of the widest combined bundle in bits.
3129 unsigned WidestBundleBits = 0;
3131 using MultiNodeOpTy =
3132 typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
3134 // Input operand bundles for the current multi node. Each multi node operand
3135 // bundle contains values not matching the multi node's opcode. They will
3136 // be reordered in reorderMultiNodeOps, once we completed building a
3137 // multi node.
3138 SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
3140 /// Indicates whether we are building a multi node currently.
3141 bool MultiNodeActive = false;
3143 /// Check if we can vectorize Operands together.
3144 bool areVectorizable(ArrayRef<VPValue *> Operands) const;
3146 /// Add combined instruction \p New for the bundle \p Operands.
3147 void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
3149 /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
3150 VPInstruction *markFailed();
3152 /// Reorder operands in the multi node to maximize sequential memory access
3153 /// and commutative operations.
3154 SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
3156 /// Choose the best candidate to use for the lane after \p Last. The set of
3157 /// candidates to choose from are values with an opcode matching \p Last's
3158 /// or loads consecutive to \p Last.
3159 std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
3160 SmallPtrSetImpl<VPValue *> &Candidates,
3161 VPInterleavedAccessInfo &IAI);
3163 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3164 /// Print bundle \p Values to dbgs().
3165 void dumpBundle(ArrayRef<VPValue *> Values);
3166 #endif
3168 public:
3169 VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
3171 ~VPlanSlp() = default;
3173 /// Tries to build an SLP tree rooted at \p Operands and returns a
3174 /// VPInstruction combining \p Operands, if they can be combined.
3175 VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
3177 /// Return the width of the widest combined bundle in bits.
3178 unsigned getWidestBundleBits() const { return WidestBundleBits; }
3180 /// Return true if all visited instruction can be combined.
3181 bool isCompletelySLP() const { return CompletelySLP; }
3184 namespace vputils {
3186 /// Returns true if only the first lane of \p Def is used.
3187 bool onlyFirstLaneUsed(VPValue *Def);
3189 /// Returns true if only the first part of \p Def is used.
3190 bool onlyFirstPartUsed(VPValue *Def);
3192 /// Get or create a VPValue that corresponds to the expansion of \p Expr. If \p
3193 /// Expr is a SCEVConstant or SCEVUnknown, return a VPValue wrapping the live-in
3194 /// value. Otherwise return a VPExpandSCEVRecipe to expand \p Expr. If \p Plan's
3195 /// pre-header already contains a recipe expanding \p Expr, return it. If not,
3196 /// create a new one.
3197 VPValue *getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
3198 ScalarEvolution &SE);
3200 /// Returns true if \p VPV is uniform after vectorization.
3201 inline bool isUniformAfterVectorization(VPValue *VPV) {
3202 // A value defined outside the vector region must be uniform after
3203 // vectorization inside a vector region.
3204 if (VPV->isDefinedOutsideVectorRegions())
3205 return true;
3206 VPRecipeBase *Def = VPV->getDefiningRecipe();
3207 assert(Def && "Must have definition for value defined inside vector region");
3208 if (auto Rep = dyn_cast<VPReplicateRecipe>(Def))
3209 return Rep->isUniform();
3210 if (auto *GEP = dyn_cast<VPWidenGEPRecipe>(Def))
3211 return all_of(GEP->operands(), isUniformAfterVectorization);
3212 if (auto *VPI = dyn_cast<VPInstruction>(Def))
3213 return VPI->getOpcode() == VPInstruction::ComputeReductionResult;
3214 return false;
3216 } // end namespace vputils
3218 } // end namespace llvm
3220 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H