[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang-tools-extra / clang-tidy / modernize / LoopConvertUtils.cpp
blobc92bd8afa6add82e9e84463cf0b8c9bf955bb7f6
1 //===--- LoopConvertUtils.cpp - clang-tidy --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "LoopConvertUtils.h"
10 #include "../utils/ASTUtils.h"
11 #include "clang/Basic/IdentifierTable.h"
12 #include "clang/Basic/LLVM.h"
13 #include "clang/Basic/Lambda.h"
14 #include "clang/Basic/SourceLocation.h"
15 #include "clang/Basic/SourceManager.h"
16 #include "clang/Basic/TokenKinds.h"
17 #include "clang/Lex/Lexer.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/FoldingSet.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Support/Casting.h"
22 #include <algorithm>
23 #include <cassert>
24 #include <cstddef>
25 #include <optional>
26 #include <string>
27 #include <utility>
29 using namespace clang::ast_matchers;
31 namespace clang::tidy::modernize {
33 /// Tracks a stack of parent statements during traversal.
34 ///
35 /// All this really does is inject push_back() before running
36 /// RecursiveASTVisitor::TraverseStmt() and pop_back() afterwards. The Stmt atop
37 /// the stack is the parent of the current statement (NULL for the topmost
38 /// statement).
39 bool StmtAncestorASTVisitor::TraverseStmt(Stmt *Statement) {
40 StmtAncestors.insert(std::make_pair(Statement, StmtStack.back()));
41 StmtStack.push_back(Statement);
42 RecursiveASTVisitor<StmtAncestorASTVisitor>::TraverseStmt(Statement);
43 StmtStack.pop_back();
44 return true;
47 /// Keep track of the DeclStmt associated with each VarDecl.
48 ///
49 /// Combined with StmtAncestors, this provides roughly the same information as
50 /// Scope, as we can map a VarDecl to its DeclStmt, then walk up the parent tree
51 /// using StmtAncestors.
52 bool StmtAncestorASTVisitor::VisitDeclStmt(DeclStmt *Statement) {
53 for (const auto *Decl : Statement->decls()) {
54 if (const auto *V = dyn_cast<VarDecl>(Decl))
55 DeclParents.insert(std::make_pair(V, Statement));
57 return true;
60 /// record the DeclRefExpr as part of the parent expression.
61 bool ComponentFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
62 Components.push_back(E);
63 return true;
66 /// record the MemberExpr as part of the parent expression.
67 bool ComponentFinderASTVisitor::VisitMemberExpr(MemberExpr *Member) {
68 Components.push_back(Member);
69 return true;
72 /// Forward any DeclRefExprs to a check on the referenced variable
73 /// declaration.
74 bool DependencyFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
75 if (auto *V = dyn_cast_or_null<VarDecl>(DeclRef->getDecl()))
76 return VisitVarDecl(V);
77 return true;
80 /// Determine if any this variable is declared inside the ContainingStmt.
81 bool DependencyFinderASTVisitor::VisitVarDecl(VarDecl *V) {
82 const Stmt *Curr = DeclParents->lookup(V);
83 // First, see if the variable was declared within an inner scope of the loop.
84 while (Curr != nullptr) {
85 if (Curr == ContainingStmt) {
86 DependsOnInsideVariable = true;
87 return false;
89 Curr = StmtParents->lookup(Curr);
92 // Next, check if the variable was removed from existence by an earlier
93 // iteration.
94 for (const auto &I : *ReplacedVars) {
95 if (I.second == V) {
96 DependsOnInsideVariable = true;
97 return false;
100 return true;
103 /// If we already created a variable for TheLoop, check to make sure
104 /// that the name was not already taken.
105 bool DeclFinderASTVisitor::VisitForStmt(ForStmt *TheLoop) {
106 StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(TheLoop);
107 if (I != GeneratedDecls->end() && I->second == Name) {
108 Found = true;
109 return false;
111 return true;
114 /// If any named declaration within the AST subtree has the same name,
115 /// then consider Name already taken.
116 bool DeclFinderASTVisitor::VisitNamedDecl(NamedDecl *D) {
117 const IdentifierInfo *Ident = D->getIdentifier();
118 if (Ident && Ident->getName() == Name) {
119 Found = true;
120 return false;
122 return true;
125 /// Forward any declaration references to the actual check on the
126 /// referenced declaration.
127 bool DeclFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
128 if (auto *D = dyn_cast<NamedDecl>(DeclRef->getDecl()))
129 return VisitNamedDecl(D);
130 return true;
133 /// If the new variable name conflicts with any type used in the loop,
134 /// then we mark that variable name as taken.
135 bool DeclFinderASTVisitor::VisitTypeLoc(TypeLoc TL) {
136 QualType QType = TL.getType();
138 // Check if our name conflicts with a type, to handle for typedefs.
139 if (QType.getAsString() == Name) {
140 Found = true;
141 return false;
143 // Check for base type conflicts. For example, when a struct is being
144 // referenced in the body of the loop, the above getAsString() will return the
145 // whole type (ex. "struct s"), but will be caught here.
146 if (const IdentifierInfo *Ident = QType.getBaseTypeIdentifier()) {
147 if (Ident->getName() == Name) {
148 Found = true;
149 return false;
152 return true;
155 /// Look through conversion/copy constructors and member functions to find the
156 /// explicit initialization expression, returning it is found.
158 /// The main idea is that given
159 /// vector<int> v;
160 /// we consider either of these initializations
161 /// vector<int>::iterator it = v.begin();
162 /// vector<int>::iterator it(v.begin());
163 /// vector<int>::const_iterator it(v.begin());
164 /// and retrieve `v.begin()` as the expression used to initialize `it` but do
165 /// not include
166 /// vector<int>::iterator it;
167 /// vector<int>::iterator it(v.begin(), 0); // if this constructor existed
168 /// as being initialized from `v.begin()`
169 const Expr *digThroughConstructorsConversions(const Expr *E) {
170 if (!E)
171 return nullptr;
172 E = E->IgnoreImplicit();
173 if (const auto *ConstructExpr = dyn_cast<CXXConstructExpr>(E)) {
174 // The initial constructor must take exactly one parameter, but base class
175 // and deferred constructors can take more.
176 if (ConstructExpr->getNumArgs() != 1 ||
177 ConstructExpr->getConstructionKind() != CXXConstructExpr::CK_Complete)
178 return nullptr;
179 E = ConstructExpr->getArg(0);
180 if (const auto *Temp = dyn_cast<MaterializeTemporaryExpr>(E))
181 E = Temp->getSubExpr();
182 return digThroughConstructorsConversions(E);
184 // If this is a conversion (as iterators commonly convert into their const
185 // iterator counterparts), dig through that as well.
186 if (const auto *ME = dyn_cast<CXXMemberCallExpr>(E))
187 if (isa<CXXConversionDecl>(ME->getMethodDecl()))
188 return digThroughConstructorsConversions(ME->getImplicitObjectArgument());
189 return E;
192 /// Returns true when two Exprs are equivalent.
193 bool areSameExpr(ASTContext *Context, const Expr *First, const Expr *Second) {
194 return utils::areStatementsIdentical(First, Second, *Context, true);
197 /// Returns the DeclRefExpr represented by E, or NULL if there isn't one.
198 const DeclRefExpr *getDeclRef(const Expr *E) {
199 return dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
202 /// Returns true when two ValueDecls are the same variable.
203 bool areSameVariable(const ValueDecl *First, const ValueDecl *Second) {
204 return First && Second &&
205 First->getCanonicalDecl() == Second->getCanonicalDecl();
208 /// Determines if an expression is a declaration reference to a
209 /// particular variable.
210 static bool exprReferencesVariable(const ValueDecl *Target, const Expr *E) {
211 if (!Target || !E)
212 return false;
213 const DeclRefExpr *Decl = getDeclRef(E);
214 return Decl && areSameVariable(Target, Decl->getDecl());
217 /// If the expression is a dereference or call to operator*(), return the
218 /// operand. Otherwise, return NULL.
219 static const Expr *getDereferenceOperand(const Expr *E) {
220 if (const auto *Uop = dyn_cast<UnaryOperator>(E))
221 return Uop->getOpcode() == UO_Deref ? Uop->getSubExpr() : nullptr;
223 if (const auto *OpCall = dyn_cast<CXXOperatorCallExpr>(E)) {
224 return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1
225 ? OpCall->getArg(0)
226 : nullptr;
229 return nullptr;
232 /// Returns true when the Container contains an Expr equivalent to E.
233 template <typename ContainerT>
234 static bool containsExpr(ASTContext *Context, const ContainerT *Container,
235 const Expr *E) {
236 llvm::FoldingSetNodeID ID;
237 E->Profile(ID, *Context, true);
238 for (const auto &I : *Container) {
239 if (ID == I.second)
240 return true;
242 return false;
245 /// Returns true when the index expression is a declaration reference to
246 /// IndexVar.
248 /// If the index variable is `index`, this function returns true on
249 /// arrayExpression[index];
250 /// containerExpression[index];
251 /// but not
252 /// containerExpression[notIndex];
253 static bool isIndexInSubscriptExpr(const Expr *IndexExpr,
254 const VarDecl *IndexVar) {
255 const DeclRefExpr *Idx = getDeclRef(IndexExpr);
256 return Idx && Idx->getType()->isIntegerType() &&
257 areSameVariable(IndexVar, Idx->getDecl());
260 /// Returns true when the index expression is a declaration reference to
261 /// IndexVar, Obj is the same expression as SourceExpr after all parens and
262 /// implicit casts are stripped off.
264 /// If PermitDeref is true, IndexExpression may
265 /// be a dereference (overloaded or builtin operator*).
267 /// This function is intended for array-like containers, as it makes sure that
268 /// both the container and the index match.
269 /// If the loop has index variable `index` and iterates over `container`, then
270 /// isIndexInSubscriptExpr returns true for
271 /// \code
272 /// container[index]
273 /// container.at(index)
274 /// container->at(index)
275 /// \endcode
276 /// but not for
277 /// \code
278 /// container[notIndex]
279 /// notContainer[index]
280 /// \endcode
281 /// If PermitDeref is true, then isIndexInSubscriptExpr additionally returns
282 /// true on these expressions:
283 /// \code
284 /// (*container)[index]
285 /// (*container).at(index)
286 /// \endcode
287 static bool isIndexInSubscriptExpr(ASTContext *Context, const Expr *IndexExpr,
288 const VarDecl *IndexVar, const Expr *Obj,
289 const Expr *SourceExpr, bool PermitDeref) {
290 if (!SourceExpr || !Obj || !isIndexInSubscriptExpr(IndexExpr, IndexVar))
291 return false;
293 if (areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
294 Obj->IgnoreParenImpCasts()))
295 return true;
297 if (const Expr *InnerObj = getDereferenceOperand(Obj->IgnoreParenImpCasts()))
298 if (PermitDeref && areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
299 InnerObj->IgnoreParenImpCasts()))
300 return true;
302 return false;
305 /// Returns true when Opcall is a call a one-parameter dereference of
306 /// IndexVar.
308 /// For example, if the index variable is `index`, returns true for
309 /// *index
310 /// but not
311 /// index
312 /// *notIndex
313 static bool isDereferenceOfOpCall(const CXXOperatorCallExpr *OpCall,
314 const VarDecl *IndexVar) {
315 return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1 &&
316 exprReferencesVariable(IndexVar, OpCall->getArg(0));
319 /// Returns true when Uop is a dereference of IndexVar.
321 /// For example, if the index variable is `index`, returns true for
322 /// *index
323 /// but not
324 /// index
325 /// *notIndex
326 static bool isDereferenceOfUop(const UnaryOperator *Uop,
327 const VarDecl *IndexVar) {
328 return Uop->getOpcode() == UO_Deref &&
329 exprReferencesVariable(IndexVar, Uop->getSubExpr());
332 /// Determines whether the given Decl defines a variable initialized to
333 /// the loop object.
335 /// This is intended to find cases such as
336 /// \code
337 /// for (int i = 0; i < arraySize(arr); ++i) {
338 /// T t = arr[i];
339 /// // use t, do not use i
340 /// }
341 /// \endcode
342 /// and
343 /// \code
344 /// for (iterator i = container.begin(), e = container.end(); i != e; ++i) {
345 /// T t = *i;
346 /// // use t, do not use i
347 /// }
348 /// \endcode
349 static bool isAliasDecl(ASTContext *Context, const Decl *TheDecl,
350 const VarDecl *IndexVar) {
351 const auto *VDecl = dyn_cast<VarDecl>(TheDecl);
352 if (!VDecl)
353 return false;
354 if (!VDecl->hasInit())
355 return false;
357 bool OnlyCasts = true;
358 const Expr *Init = VDecl->getInit()->IgnoreParenImpCasts();
359 if (isa_and_nonnull<CXXConstructExpr>(Init)) {
360 Init = digThroughConstructorsConversions(Init);
361 OnlyCasts = false;
363 if (!Init)
364 return false;
366 // Check that the declared type is the same as (or a reference to) the
367 // container type.
368 if (!OnlyCasts) {
369 QualType InitType = Init->getType();
370 QualType DeclarationType = VDecl->getType();
371 if (!DeclarationType.isNull() && DeclarationType->isReferenceType())
372 DeclarationType = DeclarationType.getNonReferenceType();
374 if (InitType.isNull() || DeclarationType.isNull() ||
375 !Context->hasSameUnqualifiedType(DeclarationType, InitType))
376 return false;
379 switch (Init->getStmtClass()) {
380 case Stmt::ArraySubscriptExprClass: {
381 const auto *E = cast<ArraySubscriptExpr>(Init);
382 // We don't really care which array is used here. We check to make sure
383 // it was the correct one later, since the AST will traverse it next.
384 return isIndexInSubscriptExpr(E->getIdx(), IndexVar);
387 case Stmt::UnaryOperatorClass:
388 return isDereferenceOfUop(cast<UnaryOperator>(Init), IndexVar);
390 case Stmt::CXXOperatorCallExprClass: {
391 const auto *OpCall = cast<CXXOperatorCallExpr>(Init);
392 if (OpCall->getOperator() == OO_Star)
393 return isDereferenceOfOpCall(OpCall, IndexVar);
394 if (OpCall->getOperator() == OO_Subscript) {
395 return OpCall->getNumArgs() == 2 &&
396 isIndexInSubscriptExpr(OpCall->getArg(1), IndexVar);
398 break;
401 case Stmt::CXXMemberCallExprClass: {
402 const auto *MemCall = cast<CXXMemberCallExpr>(Init);
403 // This check is needed because getMethodDecl can return nullptr if the
404 // callee is a member function pointer.
405 const auto *MDecl = MemCall->getMethodDecl();
406 if (MDecl && !isa<CXXConversionDecl>(MDecl) &&
407 MDecl->getNameAsString() == "at" && MemCall->getNumArgs() == 1) {
408 return isIndexInSubscriptExpr(MemCall->getArg(0), IndexVar);
410 return false;
413 default:
414 break;
416 return false;
419 /// Determines whether the bound of a for loop condition expression is
420 /// the same as the statically computable size of ArrayType.
422 /// Given
423 /// \code
424 /// const int N = 5;
425 /// int arr[N];
426 /// \endcode
427 /// This is intended to permit
428 /// \code
429 /// for (int i = 0; i < N; ++i) { /* use arr[i] */ }
430 /// for (int i = 0; i < arraysize(arr); ++i) { /* use arr[i] */ }
431 /// \endcode
432 static bool arrayMatchesBoundExpr(ASTContext *Context,
433 const QualType &ArrayType,
434 const Expr *ConditionExpr) {
435 if (!ConditionExpr || ConditionExpr->isValueDependent())
436 return false;
437 const ConstantArrayType *ConstType =
438 Context->getAsConstantArrayType(ArrayType);
439 if (!ConstType)
440 return false;
441 std::optional<llvm::APSInt> ConditionSize =
442 ConditionExpr->getIntegerConstantExpr(*Context);
443 if (!ConditionSize)
444 return false;
445 llvm::APSInt ArraySize(ConstType->getSize());
446 return llvm::APSInt::isSameValue(*ConditionSize, ArraySize);
449 ForLoopIndexUseVisitor::ForLoopIndexUseVisitor(ASTContext *Context,
450 const VarDecl *IndexVar,
451 const VarDecl *EndVar,
452 const Expr *ContainerExpr,
453 const Expr *ArrayBoundExpr,
454 bool ContainerNeedsDereference)
455 : Context(Context), IndexVar(IndexVar), EndVar(EndVar),
456 ContainerExpr(ContainerExpr), ArrayBoundExpr(ArrayBoundExpr),
457 ContainerNeedsDereference(ContainerNeedsDereference),
459 ConfidenceLevel(Confidence::CL_Safe) {
460 if (ContainerExpr)
461 addComponent(ContainerExpr);
464 bool ForLoopIndexUseVisitor::findAndVerifyUsages(const Stmt *Body) {
465 TraverseStmt(const_cast<Stmt *>(Body));
466 return OnlyUsedAsIndex && ContainerExpr;
469 void ForLoopIndexUseVisitor::addComponents(const ComponentVector &Components) {
470 // FIXME: add sort(on ID)+unique to avoid extra work.
471 for (const auto &I : Components)
472 addComponent(I);
475 void ForLoopIndexUseVisitor::addComponent(const Expr *E) {
476 llvm::FoldingSetNodeID ID;
477 const Expr *Node = E->IgnoreParenImpCasts();
478 Node->Profile(ID, *Context, true);
479 DependentExprs.push_back(std::make_pair(Node, ID));
482 void ForLoopIndexUseVisitor::addUsage(const Usage &U) {
483 SourceLocation Begin = U.Range.getBegin();
484 if (Begin.isMacroID())
485 Begin = Context->getSourceManager().getSpellingLoc(Begin);
487 if (UsageLocations.insert(Begin).second)
488 Usages.push_back(U);
491 /// If the unary operator is a dereference of IndexVar, include it
492 /// as a valid usage and prune the traversal.
494 /// For example, if container.begin() and container.end() both return pointers
495 /// to int, this makes sure that the initialization for `k` is not counted as an
496 /// unconvertible use of the iterator `i`.
497 /// \code
498 /// for (int *i = container.begin(), *e = container.end(); i != e; ++i) {
499 /// int k = *i + 2;
500 /// }
501 /// \endcode
502 bool ForLoopIndexUseVisitor::TraverseUnaryOperator(UnaryOperator *Uop) {
503 // If we dereference an iterator that's actually a pointer, count the
504 // occurrence.
505 if (isDereferenceOfUop(Uop, IndexVar)) {
506 addUsage(Usage(Uop));
507 return true;
510 return VisitorBase::TraverseUnaryOperator(Uop);
513 /// If the member expression is operator-> (overloaded or not) on
514 /// IndexVar, include it as a valid usage and prune the traversal.
516 /// For example, given
517 /// \code
518 /// struct Foo { int bar(); int x; };
519 /// vector<Foo> v;
520 /// \endcode
521 /// the following uses will be considered convertible:
522 /// \code
523 /// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
524 /// int b = i->bar();
525 /// int k = i->x + 1;
526 /// }
527 /// \endcode
528 /// though
529 /// \code
530 /// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
531 /// int k = i.insert(1);
532 /// }
533 /// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
534 /// int b = e->bar();
535 /// }
536 /// \endcode
537 /// will not.
538 bool ForLoopIndexUseVisitor::TraverseMemberExpr(MemberExpr *Member) {
539 const Expr *Base = Member->getBase();
540 const DeclRefExpr *Obj = getDeclRef(Base);
541 const Expr *ResultExpr = Member;
542 QualType ExprType;
543 if (const auto *Call =
544 dyn_cast<CXXOperatorCallExpr>(Base->IgnoreParenImpCasts())) {
545 // If operator->() is a MemberExpr containing a CXXOperatorCallExpr, then
546 // the MemberExpr does not have the expression we want. We therefore catch
547 // that instance here.
548 // For example, if vector<Foo>::iterator defines operator->(), then the
549 // example `i->bar()` at the top of this function is a CXXMemberCallExpr
550 // referring to `i->` as the member function called. We want just `i`, so
551 // we take the argument to operator->() as the base object.
552 if (Call->getOperator() == OO_Arrow) {
553 assert(Call->getNumArgs() == 1 &&
554 "Operator-> takes more than one argument");
555 Obj = getDeclRef(Call->getArg(0));
556 ResultExpr = Obj;
557 ExprType = Call->getCallReturnType(*Context);
561 if (Obj && exprReferencesVariable(IndexVar, Obj)) {
562 // Member calls on the iterator with '.' are not allowed.
563 if (!Member->isArrow()) {
564 OnlyUsedAsIndex = false;
565 return true;
568 if (ExprType.isNull())
569 ExprType = Obj->getType();
571 if (!ExprType->isPointerType())
572 return false;
574 // FIXME: This works around not having the location of the arrow operator.
575 // Consider adding OperatorLoc to MemberExpr?
576 SourceLocation ArrowLoc = Lexer::getLocForEndOfToken(
577 Base->getExprLoc(), 0, Context->getSourceManager(),
578 Context->getLangOpts());
579 // If something complicated is happening (i.e. the next token isn't an
580 // arrow), give up on making this work.
581 if (ArrowLoc.isValid()) {
582 addUsage(Usage(ResultExpr, Usage::UK_MemberThroughArrow,
583 SourceRange(Base->getExprLoc(), ArrowLoc)));
584 return true;
587 return VisitorBase::TraverseMemberExpr(Member);
590 /// If a member function call is the at() accessor on the container with
591 /// IndexVar as the single argument, include it as a valid usage and prune
592 /// the traversal.
594 /// Member calls on other objects will not be permitted.
595 /// Calls on the iterator object are not permitted, unless done through
596 /// operator->(). The one exception is allowing vector::at() for pseudoarrays.
597 bool ForLoopIndexUseVisitor::TraverseCXXMemberCallExpr(
598 CXXMemberCallExpr *MemberCall) {
599 auto *Member =
600 dyn_cast<MemberExpr>(MemberCall->getCallee()->IgnoreParenImpCasts());
601 if (!Member)
602 return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
604 // We specifically allow an accessor named "at" to let STL in, though
605 // this is restricted to pseudo-arrays by requiring a single, integer
606 // argument.
607 const IdentifierInfo *Ident = Member->getMemberDecl()->getIdentifier();
608 if (Ident && Ident->isStr("at") && MemberCall->getNumArgs() == 1) {
609 if (isIndexInSubscriptExpr(Context, MemberCall->getArg(0), IndexVar,
610 Member->getBase(), ContainerExpr,
611 ContainerNeedsDereference)) {
612 addUsage(Usage(MemberCall));
613 return true;
617 if (containsExpr(Context, &DependentExprs, Member->getBase()))
618 ConfidenceLevel.lowerTo(Confidence::CL_Risky);
620 return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
623 /// If an overloaded operator call is a dereference of IndexVar or
624 /// a subscript of the container with IndexVar as the single argument,
625 /// include it as a valid usage and prune the traversal.
627 /// For example, given
628 /// \code
629 /// struct Foo { int bar(); int x; };
630 /// vector<Foo> v;
631 /// void f(Foo);
632 /// \endcode
633 /// the following uses will be considered convertible:
634 /// \code
635 /// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
636 /// f(*i);
637 /// }
638 /// for (int i = 0; i < v.size(); ++i) {
639 /// int i = v[i] + 1;
640 /// }
641 /// \endcode
642 bool ForLoopIndexUseVisitor::TraverseCXXOperatorCallExpr(
643 CXXOperatorCallExpr *OpCall) {
644 switch (OpCall->getOperator()) {
645 case OO_Star:
646 if (isDereferenceOfOpCall(OpCall, IndexVar)) {
647 addUsage(Usage(OpCall));
648 return true;
650 break;
652 case OO_Subscript:
653 if (OpCall->getNumArgs() != 2)
654 break;
655 if (isIndexInSubscriptExpr(Context, OpCall->getArg(1), IndexVar,
656 OpCall->getArg(0), ContainerExpr,
657 ContainerNeedsDereference)) {
658 addUsage(Usage(OpCall));
659 return true;
661 break;
663 default:
664 break;
666 return VisitorBase::TraverseCXXOperatorCallExpr(OpCall);
669 /// If we encounter an array with IndexVar as the index of an
670 /// ArraySubscriptExpression, note it as a consistent usage and prune the
671 /// AST traversal.
673 /// For example, given
674 /// \code
675 /// const int N = 5;
676 /// int arr[N];
677 /// \endcode
678 /// This is intended to permit
679 /// \code
680 /// for (int i = 0; i < N; ++i) { /* use arr[i] */ }
681 /// \endcode
682 /// but not
683 /// \code
684 /// for (int i = 0; i < N; ++i) { /* use notArr[i] */ }
685 /// \endcode
686 /// and further checking needs to be done later to ensure that exactly one array
687 /// is referenced.
688 bool ForLoopIndexUseVisitor::TraverseArraySubscriptExpr(ArraySubscriptExpr *E) {
689 Expr *Arr = E->getBase();
690 if (!isIndexInSubscriptExpr(E->getIdx(), IndexVar))
691 return VisitorBase::TraverseArraySubscriptExpr(E);
693 if ((ContainerExpr &&
694 !areSameExpr(Context, Arr->IgnoreParenImpCasts(),
695 ContainerExpr->IgnoreParenImpCasts())) ||
696 !arrayMatchesBoundExpr(Context, Arr->IgnoreImpCasts()->getType(),
697 ArrayBoundExpr)) {
698 // If we have already discovered the array being indexed and this isn't it
699 // or this array doesn't match, mark this loop as unconvertible.
700 OnlyUsedAsIndex = false;
701 return VisitorBase::TraverseArraySubscriptExpr(E);
704 if (!ContainerExpr)
705 ContainerExpr = Arr;
707 addUsage(Usage(E));
708 return true;
711 /// If we encounter a reference to IndexVar in an unpruned branch of the
712 /// traversal, mark this loop as unconvertible.
714 /// This determines the set of convertible loops: any usages of IndexVar
715 /// not explicitly considered convertible by this traversal will be caught by
716 /// this function.
718 /// Additionally, if the container expression is more complex than just a
719 /// DeclRefExpr, and some part of it is appears elsewhere in the loop, lower
720 /// our confidence in the transformation.
722 /// For example, these are not permitted:
723 /// \code
724 /// for (int i = 0; i < N; ++i) { printf("arr[%d] = %d", i, arr[i]); }
725 /// for (vector<int>::iterator i = container.begin(), e = container.end();
726 /// i != e; ++i)
727 /// i.insert(0);
728 /// for (vector<int>::iterator i = container.begin(), e = container.end();
729 /// i != e; ++i)
730 /// if (i + 1 != e)
731 /// printf("%d", *i);
732 /// \endcode
734 /// And these will raise the risk level:
735 /// \code
736 /// int arr[10][20];
737 /// int l = 5;
738 /// for (int j = 0; j < 20; ++j)
739 /// int k = arr[l][j] + l; // using l outside arr[l] is considered risky
740 /// for (int i = 0; i < obj.getVector().size(); ++i)
741 /// obj.foo(10); // using `obj` is considered risky
742 /// \endcode
743 bool ForLoopIndexUseVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
744 const ValueDecl *TheDecl = E->getDecl();
745 if (areSameVariable(IndexVar, TheDecl) ||
746 exprReferencesVariable(IndexVar, E) || areSameVariable(EndVar, TheDecl) ||
747 exprReferencesVariable(EndVar, E))
748 OnlyUsedAsIndex = false;
749 if (containsExpr(Context, &DependentExprs, E))
750 ConfidenceLevel.lowerTo(Confidence::CL_Risky);
751 return true;
754 /// If the loop index is captured by a lambda, replace this capture
755 /// by the range-for loop variable.
757 /// For example:
758 /// \code
759 /// for (int i = 0; i < N; ++i) {
760 /// auto f = [v, i](int k) {
761 /// printf("%d\n", v[i] + k);
762 /// };
763 /// f(v[i]);
764 /// }
765 /// \endcode
767 /// Will be replaced by:
768 /// \code
769 /// for (auto & elem : v) {
770 /// auto f = [v, elem](int k) {
771 /// printf("%d\n", elem + k);
772 /// };
773 /// f(elem);
774 /// }
775 /// \endcode
776 bool ForLoopIndexUseVisitor::TraverseLambdaCapture(LambdaExpr *LE,
777 const LambdaCapture *C,
778 Expr *Init) {
779 if (C->capturesVariable()) {
780 const ValueDecl *VDecl = C->getCapturedVar();
781 if (areSameVariable(IndexVar, VDecl)) {
782 // FIXME: if the index is captured, it will count as an usage and the
783 // alias (if any) won't work, because it is only used in case of having
784 // exactly one usage.
785 addUsage(Usage(nullptr,
786 C->getCaptureKind() == LCK_ByCopy ? Usage::UK_CaptureByCopy
787 : Usage::UK_CaptureByRef,
788 C->getLocation()));
791 return VisitorBase::TraverseLambdaCapture(LE, C, Init);
794 /// If we find that another variable is created just to refer to the loop
795 /// element, note it for reuse as the loop variable.
797 /// See the comments for isAliasDecl.
798 bool ForLoopIndexUseVisitor::VisitDeclStmt(DeclStmt *S) {
799 if (!AliasDecl && S->isSingleDecl() &&
800 isAliasDecl(Context, S->getSingleDecl(), IndexVar)) {
801 AliasDecl = S;
802 if (CurrStmtParent) {
803 if (isa<IfStmt>(CurrStmtParent) || isa<WhileStmt>(CurrStmtParent) ||
804 isa<SwitchStmt>(CurrStmtParent))
805 ReplaceWithAliasUse = true;
806 else if (isa<ForStmt>(CurrStmtParent)) {
807 if (cast<ForStmt>(CurrStmtParent)->getConditionVariableDeclStmt() == S)
808 ReplaceWithAliasUse = true;
809 else
810 // It's assumed S came the for loop's init clause.
811 AliasFromForInit = true;
816 return true;
819 bool ForLoopIndexUseVisitor::TraverseStmt(Stmt *S) {
820 // If this is an initialization expression for a lambda capture, prune the
821 // traversal so that we don't end up diagnosing the contained DeclRefExpr as
822 // inconsistent usage. No need to record the usage here -- this is done in
823 // TraverseLambdaCapture().
824 if (const auto *LE = dyn_cast_or_null<LambdaExpr>(NextStmtParent)) {
825 // Any child of a LambdaExpr that isn't the body is an initialization
826 // expression.
827 if (S != LE->getBody()) {
828 return true;
832 // All this pointer swapping is a mechanism for tracking immediate parentage
833 // of Stmts.
834 const Stmt *OldNextParent = NextStmtParent;
835 CurrStmtParent = NextStmtParent;
836 NextStmtParent = S;
837 bool Result = VisitorBase::TraverseStmt(S);
838 NextStmtParent = OldNextParent;
839 return Result;
842 std::string VariableNamer::createIndexName() {
843 // FIXME: Add in naming conventions to handle:
844 // - How to handle conflicts.
845 // - An interactive process for naming.
846 std::string IteratorName;
847 StringRef ContainerName;
848 if (TheContainer)
849 ContainerName = TheContainer->getName();
851 size_t Len = ContainerName.size();
852 if (Len > 1 && ContainerName.endswith(Style == NS_UpperCase ? "S" : "s")) {
853 IteratorName = std::string(ContainerName.substr(0, Len - 1));
854 // E.g.: (auto thing : things)
855 if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName())
856 return IteratorName;
859 if (Len > 2 && ContainerName.endswith(Style == NS_UpperCase ? "S_" : "s_")) {
860 IteratorName = std::string(ContainerName.substr(0, Len - 2));
861 // E.g.: (auto thing : things_)
862 if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName())
863 return IteratorName;
866 return std::string(OldIndex->getName());
869 /// Determines whether or not the name \a Symbol conflicts with
870 /// language keywords or defined macros. Also checks if the name exists in
871 /// LoopContext, any of its parent contexts, or any of its child statements.
873 /// We also check to see if the same identifier was generated by this loop
874 /// converter in a loop nested within SourceStmt.
875 bool VariableNamer::declarationExists(StringRef Symbol) {
876 assert(Context != nullptr && "Expected an ASTContext");
877 IdentifierInfo &Ident = Context->Idents.get(Symbol);
879 // Check if the symbol is not an identifier (ie. is a keyword or alias).
880 if (!isAnyIdentifier(Ident.getTokenID()))
881 return true;
883 // Check for conflicting macro definitions.
884 if (Ident.hasMacroDefinition())
885 return true;
887 // Determine if the symbol was generated in a parent context.
888 for (const Stmt *S = SourceStmt; S != nullptr; S = ReverseAST->lookup(S)) {
889 StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(S);
890 if (I != GeneratedDecls->end() && I->second == Symbol)
891 return true;
894 // FIXME: Rather than detecting conflicts at their usages, we should check the
895 // parent context.
896 // For some reason, lookup() always returns the pair (NULL, NULL) because its
897 // StoredDeclsMap is not initialized (i.e. LookupPtr.getInt() is false inside
898 // of DeclContext::lookup()). Why is this?
900 // Finally, determine if the symbol was used in the loop or a child context.
901 DeclFinderASTVisitor DeclFinder(std::string(Symbol), GeneratedDecls);
902 return DeclFinder.findUsages(SourceStmt);
905 } // namespace clang::tidy::modernize