1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the C++ related Decl classes.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTUnresolvedSet.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/LambdaCapture.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/ODRHash.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/AST/UnresolvedSet.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "clang/Basic/OperatorKinds.h"
36 #include "clang/Basic/PartialDiagnostic.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/raw_ostream.h"
52 using namespace clang
;
54 //===----------------------------------------------------------------------===//
55 // Decl Allocation/Deallocation Method Implementations
56 //===----------------------------------------------------------------------===//
58 void AccessSpecDecl::anchor() {}
60 AccessSpecDecl
*AccessSpecDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
61 return new (C
, ID
) AccessSpecDecl(EmptyShell());
64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext
&C
) const {
65 ExternalASTSource
*Source
= C
.getExternalSource();
66 assert(Impl
.Decls
.isLazy() && "getFromExternalSource for non-lazy set");
67 assert(Source
&& "getFromExternalSource with no external source");
69 for (ASTUnresolvedSet::iterator I
= Impl
.begin(); I
!= Impl
.end(); ++I
)
70 I
.setDecl(cast
<NamedDecl
>(Source
->GetExternalDecl(
71 reinterpret_cast<uintptr_t>(I
.getDecl()) >> 2)));
72 Impl
.Decls
.setLazy(false);
75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl
*D
)
76 : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
77 Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
78 Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
79 HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
80 HasPrivateFields(false), HasProtectedFields(false),
81 HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
82 HasOnlyCMembers(true), HasInitMethod(false), HasInClassInitializer(false),
83 HasUninitializedReferenceMember(false), HasUninitializedFields(false),
84 HasInheritedConstructor(false), HasInheritedDefaultConstructor(false),
85 HasInheritedAssignment(false),
86 NeedOverloadResolutionForCopyConstructor(false),
87 NeedOverloadResolutionForMoveConstructor(false),
88 NeedOverloadResolutionForCopyAssignment(false),
89 NeedOverloadResolutionForMoveAssignment(false),
90 NeedOverloadResolutionForDestructor(false),
91 DefaultedCopyConstructorIsDeleted(false),
92 DefaultedMoveConstructorIsDeleted(false),
93 DefaultedCopyAssignmentIsDeleted(false),
94 DefaultedMoveAssignmentIsDeleted(false),
95 DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All
),
96 HasTrivialSpecialMembersForCall(SMF_All
),
97 DeclaredNonTrivialSpecialMembers(0),
98 DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
99 HasConstexprNonCopyMoveConstructor(false),
100 HasDefaultedDefaultConstructor(false),
101 DefaultedDefaultConstructorIsConstexpr(true),
102 HasConstexprDefaultConstructor(false),
103 DefaultedDestructorIsConstexpr(true),
104 HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true),
105 UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
106 ImplicitCopyConstructorCanHaveConstParamForVBase(true),
107 ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
108 ImplicitCopyAssignmentHasConstParam(true),
109 HasDeclaredCopyConstructorWithConstParam(false),
110 HasDeclaredCopyAssignmentWithConstParam(false),
111 IsAnyDestructorNoReturn(false), IsLambda(false),
112 IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false),
113 HasODRHash(false), Definition(D
) {}
115 CXXBaseSpecifier
*CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
116 return Bases
.get(Definition
->getASTContext().getExternalSource());
119 CXXBaseSpecifier
*CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
120 return VBases
.get(Definition
->getASTContext().getExternalSource());
123 CXXRecordDecl::CXXRecordDecl(Kind K
, TagKind TK
, const ASTContext
&C
,
124 DeclContext
*DC
, SourceLocation StartLoc
,
125 SourceLocation IdLoc
, IdentifierInfo
*Id
,
126 CXXRecordDecl
*PrevDecl
)
127 : RecordDecl(K
, TK
, C
, DC
, StartLoc
, IdLoc
, Id
, PrevDecl
),
128 DefinitionData(PrevDecl
? PrevDecl
->DefinitionData
131 CXXRecordDecl
*CXXRecordDecl::Create(const ASTContext
&C
, TagKind TK
,
132 DeclContext
*DC
, SourceLocation StartLoc
,
133 SourceLocation IdLoc
, IdentifierInfo
*Id
,
134 CXXRecordDecl
*PrevDecl
,
135 bool DelayTypeCreation
) {
136 auto *R
= new (C
, DC
) CXXRecordDecl(CXXRecord
, TK
, C
, DC
, StartLoc
, IdLoc
, Id
,
138 R
->setMayHaveOutOfDateDef(C
.getLangOpts().Modules
);
140 // FIXME: DelayTypeCreation seems like such a hack
141 if (!DelayTypeCreation
)
142 C
.getTypeDeclType(R
, PrevDecl
);
147 CXXRecordDecl::CreateLambda(const ASTContext
&C
, DeclContext
*DC
,
148 TypeSourceInfo
*Info
, SourceLocation Loc
,
149 unsigned DependencyKind
, bool IsGeneric
,
150 LambdaCaptureDefault CaptureDefault
) {
151 auto *R
= new (C
, DC
) CXXRecordDecl(CXXRecord
, TTK_Class
, C
, DC
, Loc
, Loc
,
153 R
->setBeingDefined(true);
154 R
->DefinitionData
= new (C
) struct LambdaDefinitionData(
155 R
, Info
, DependencyKind
, IsGeneric
, CaptureDefault
);
156 R
->setMayHaveOutOfDateDef(false);
157 R
->setImplicit(true);
159 C
.getTypeDeclType(R
, /*PrevDecl=*/nullptr);
164 CXXRecordDecl::CreateDeserialized(const ASTContext
&C
, unsigned ID
) {
165 auto *R
= new (C
, ID
) CXXRecordDecl(
166 CXXRecord
, TTK_Struct
, C
, nullptr, SourceLocation(), SourceLocation(),
168 R
->setMayHaveOutOfDateDef(false);
172 /// Determine whether a class has a repeated base class. This is intended for
173 /// use when determining if a class is standard-layout, so makes no attempt to
174 /// handle virtual bases.
175 static bool hasRepeatedBaseClass(const CXXRecordDecl
*StartRD
) {
176 llvm::SmallPtrSet
<const CXXRecordDecl
*, 8> SeenBaseTypes
;
177 SmallVector
<const CXXRecordDecl
*, 8> WorkList
= {StartRD
};
178 while (!WorkList
.empty()) {
179 const CXXRecordDecl
*RD
= WorkList
.pop_back_val();
180 if (RD
->getTypeForDecl()->isDependentType())
182 for (const CXXBaseSpecifier
&BaseSpec
: RD
->bases()) {
183 if (const CXXRecordDecl
*B
= BaseSpec
.getType()->getAsCXXRecordDecl()) {
184 if (!SeenBaseTypes
.insert(B
).second
)
186 WorkList
.push_back(B
);
194 CXXRecordDecl::setBases(CXXBaseSpecifier
const * const *Bases
,
196 ASTContext
&C
= getASTContext();
198 if (!data().Bases
.isOffset() && data().NumBases
> 0)
199 C
.Deallocate(data().getBases());
202 if (!C
.getLangOpts().CPlusPlus17
) {
203 // C++ [dcl.init.aggr]p1:
204 // An aggregate is [...] a class with [...] no base classes [...].
205 data().Aggregate
= false;
209 // A POD-struct is an aggregate class...
210 data().PlainOldData
= false;
213 // The set of seen virtual base types.
214 llvm::SmallPtrSet
<CanQualType
, 8> SeenVBaseTypes
;
216 // The virtual bases of this class.
217 SmallVector
<const CXXBaseSpecifier
*, 8> VBases
;
219 data().Bases
= new(C
) CXXBaseSpecifier
[NumBases
];
220 data().NumBases
= NumBases
;
221 for (unsigned i
= 0; i
< NumBases
; ++i
) {
222 data().getBases()[i
] = *Bases
[i
];
223 // Keep track of inherited vbases for this base class.
224 const CXXBaseSpecifier
*Base
= Bases
[i
];
225 QualType BaseType
= Base
->getType();
226 // Skip dependent types; we can't do any checking on them now.
227 if (BaseType
->isDependentType())
229 auto *BaseClassDecl
=
230 cast
<CXXRecordDecl
>(BaseType
->castAs
<RecordType
>()->getDecl());
233 // A standard-layout class is a class that:
235 // -- has all non-static data members and bit-fields in the class and
236 // its base classes first declared in the same class
237 if (BaseClassDecl
->data().HasBasesWithFields
||
238 !BaseClassDecl
->field_empty()) {
239 if (data().HasBasesWithFields
)
240 // Two bases have members or bit-fields: not standard-layout.
241 data().IsStandardLayout
= false;
242 data().HasBasesWithFields
= true;
246 // A standard-layout class is a class that:
247 // -- [...] has [...] at most one base class with non-static data
249 if (BaseClassDecl
->data().HasBasesWithNonStaticDataMembers
||
250 BaseClassDecl
->hasDirectFields()) {
251 if (data().HasBasesWithNonStaticDataMembers
)
252 data().IsCXX11StandardLayout
= false;
253 data().HasBasesWithNonStaticDataMembers
= true;
256 if (!BaseClassDecl
->isEmpty()) {
257 // C++14 [meta.unary.prop]p4:
258 // T is a class type [...] with [...] no base class B for which
259 // is_empty<B>::value is false.
260 data().Empty
= false;
263 // C++1z [dcl.init.agg]p1:
264 // An aggregate is a class with [...] no private or protected base classes
265 if (Base
->getAccessSpecifier() != AS_public
) {
266 data().Aggregate
= false;
268 // C++20 [temp.param]p7:
269 // A structural type is [...] a literal class type with [...] all base
270 // classes [...] public
271 data().StructuralIfLiteral
= false;
274 // C++ [class.virtual]p1:
275 // A class that declares or inherits a virtual function is called a
276 // polymorphic class.
277 if (BaseClassDecl
->isPolymorphic()) {
278 data().Polymorphic
= true;
280 // An aggregate is a class with [...] no virtual functions.
281 data().Aggregate
= false;
285 // A standard-layout class is a class that: [...]
286 // -- has no non-standard-layout base classes
287 if (!BaseClassDecl
->isStandardLayout())
288 data().IsStandardLayout
= false;
289 if (!BaseClassDecl
->isCXX11StandardLayout())
290 data().IsCXX11StandardLayout
= false;
292 // Record if this base is the first non-literal field or base.
293 if (!hasNonLiteralTypeFieldsOrBases() && !BaseType
->isLiteralType(C
))
294 data().HasNonLiteralTypeFieldsOrBases
= true;
296 // Now go through all virtual bases of this base and add them.
297 for (const auto &VBase
: BaseClassDecl
->vbases()) {
298 // Add this base if it's not already in the list.
299 if (SeenVBaseTypes
.insert(C
.getCanonicalType(VBase
.getType())).second
) {
300 VBases
.push_back(&VBase
);
302 // C++11 [class.copy]p8:
303 // The implicitly-declared copy constructor for a class X will have
304 // the form 'X::X(const X&)' if each [...] virtual base class B of X
305 // has a copy constructor whose first parameter is of type
306 // 'const B&' or 'const volatile B&' [...]
307 if (CXXRecordDecl
*VBaseDecl
= VBase
.getType()->getAsCXXRecordDecl())
308 if (!VBaseDecl
->hasCopyConstructorWithConstParam())
309 data().ImplicitCopyConstructorCanHaveConstParamForVBase
= false;
311 // C++1z [dcl.init.agg]p1:
312 // An aggregate is a class with [...] no virtual base classes
313 data().Aggregate
= false;
317 if (Base
->isVirtual()) {
318 // Add this base if it's not already in the list.
319 if (SeenVBaseTypes
.insert(C
.getCanonicalType(BaseType
)).second
)
320 VBases
.push_back(Base
);
322 // C++14 [meta.unary.prop] is_empty:
323 // T is a class type, but not a union type, with ... no virtual base
325 data().Empty
= false;
327 // C++1z [dcl.init.agg]p1:
328 // An aggregate is a class with [...] no virtual base classes
329 data().Aggregate
= false;
331 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
332 // A [default constructor, copy/move constructor, or copy/move assignment
333 // operator for a class X] is trivial [...] if:
334 // -- class X has [...] no virtual base classes
335 data().HasTrivialSpecialMembers
&= SMF_Destructor
;
336 data().HasTrivialSpecialMembersForCall
&= SMF_Destructor
;
339 // A standard-layout class is a class that: [...]
340 // -- has [...] no virtual base classes
341 data().IsStandardLayout
= false;
342 data().IsCXX11StandardLayout
= false;
344 // C++20 [dcl.constexpr]p3:
345 // In the definition of a constexpr function [...]
346 // -- if the function is a constructor or destructor,
347 // its class shall not have any virtual base classes
348 data().DefaultedDefaultConstructorIsConstexpr
= false;
349 data().DefaultedDestructorIsConstexpr
= false;
351 // C++1z [class.copy]p8:
352 // The implicitly-declared copy constructor for a class X will have
353 // the form 'X::X(const X&)' if each potentially constructed subobject
354 // has a copy constructor whose first parameter is of type
355 // 'const B&' or 'const volatile B&' [...]
356 if (!BaseClassDecl
->hasCopyConstructorWithConstParam())
357 data().ImplicitCopyConstructorCanHaveConstParamForVBase
= false;
359 // C++ [class.ctor]p5:
360 // A default constructor is trivial [...] if:
361 // -- all the direct base classes of its class have trivial default
363 if (!BaseClassDecl
->hasTrivialDefaultConstructor())
364 data().HasTrivialSpecialMembers
&= ~SMF_DefaultConstructor
;
366 // C++0x [class.copy]p13:
367 // A copy/move constructor for class X is trivial if [...]
369 // -- the constructor selected to copy/move each direct base class
370 // subobject is trivial, and
371 if (!BaseClassDecl
->hasTrivialCopyConstructor())
372 data().HasTrivialSpecialMembers
&= ~SMF_CopyConstructor
;
374 if (!BaseClassDecl
->hasTrivialCopyConstructorForCall())
375 data().HasTrivialSpecialMembersForCall
&= ~SMF_CopyConstructor
;
377 // If the base class doesn't have a simple move constructor, we'll eagerly
378 // declare it and perform overload resolution to determine which function
379 // it actually calls. If it does have a simple move constructor, this
381 if (!BaseClassDecl
->hasTrivialMoveConstructor())
382 data().HasTrivialSpecialMembers
&= ~SMF_MoveConstructor
;
384 if (!BaseClassDecl
->hasTrivialMoveConstructorForCall())
385 data().HasTrivialSpecialMembersForCall
&= ~SMF_MoveConstructor
;
387 // C++0x [class.copy]p27:
388 // A copy/move assignment operator for class X is trivial if [...]
390 // -- the assignment operator selected to copy/move each direct base
391 // class subobject is trivial, and
392 if (!BaseClassDecl
->hasTrivialCopyAssignment())
393 data().HasTrivialSpecialMembers
&= ~SMF_CopyAssignment
;
394 // If the base class doesn't have a simple move assignment, we'll eagerly
395 // declare it and perform overload resolution to determine which function
396 // it actually calls. If it does have a simple move assignment, this
398 if (!BaseClassDecl
->hasTrivialMoveAssignment())
399 data().HasTrivialSpecialMembers
&= ~SMF_MoveAssignment
;
401 // C++11 [class.ctor]p6:
402 // If that user-written default constructor would satisfy the
403 // requirements of a constexpr constructor, the implicitly-defined
404 // default constructor is constexpr.
405 if (!BaseClassDecl
->hasConstexprDefaultConstructor())
406 data().DefaultedDefaultConstructorIsConstexpr
= false;
408 // C++1z [class.copy]p8:
409 // The implicitly-declared copy constructor for a class X will have
410 // the form 'X::X(const X&)' if each potentially constructed subobject
411 // has a copy constructor whose first parameter is of type
412 // 'const B&' or 'const volatile B&' [...]
413 if (!BaseClassDecl
->hasCopyConstructorWithConstParam())
414 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase
= false;
417 // C++ [class.ctor]p3:
418 // A destructor is trivial if all the direct base classes of its class
419 // have trivial destructors.
420 if (!BaseClassDecl
->hasTrivialDestructor())
421 data().HasTrivialSpecialMembers
&= ~SMF_Destructor
;
423 if (!BaseClassDecl
->hasTrivialDestructorForCall())
424 data().HasTrivialSpecialMembersForCall
&= ~SMF_Destructor
;
426 if (!BaseClassDecl
->hasIrrelevantDestructor())
427 data().HasIrrelevantDestructor
= false;
429 if (BaseClassDecl
->isAnyDestructorNoReturn())
430 data().IsAnyDestructorNoReturn
= true;
432 // C++11 [class.copy]p18:
433 // The implicitly-declared copy assignment operator for a class X will
434 // have the form 'X& X::operator=(const X&)' if each direct base class B
435 // of X has a copy assignment operator whose parameter is of type 'const
436 // B&', 'const volatile B&', or 'B' [...]
437 if (!BaseClassDecl
->hasCopyAssignmentWithConstParam())
438 data().ImplicitCopyAssignmentHasConstParam
= false;
440 // A class has an Objective-C object member if... or any of its bases
441 // has an Objective-C object member.
442 if (BaseClassDecl
->hasObjectMember())
443 setHasObjectMember(true);
445 if (BaseClassDecl
->hasVolatileMember())
446 setHasVolatileMember(true);
448 if (BaseClassDecl
->getArgPassingRestrictions() ==
449 RecordArgPassingKind::CanNeverPassInRegs
)
450 setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs
);
452 // Keep track of the presence of mutable fields.
453 if (BaseClassDecl
->hasMutableFields())
454 data().HasMutableFields
= true;
456 if (BaseClassDecl
->hasUninitializedReferenceMember())
457 data().HasUninitializedReferenceMember
= true;
459 if (!BaseClassDecl
->allowConstDefaultInit())
460 data().HasUninitializedFields
= true;
462 addedClassSubobject(BaseClassDecl
);
466 // A class S is a standard-layout class if it:
467 // -- has at most one base class subobject of any given type
469 // Note that we only need to check this for classes with more than one base
470 // class. If there's only one base class, and it's standard layout, then
471 // we know there are no repeated base classes.
472 if (data().IsStandardLayout
&& NumBases
> 1 && hasRepeatedBaseClass(this))
473 data().IsStandardLayout
= false;
475 if (VBases
.empty()) {
476 data().IsParsingBaseSpecifiers
= false;
480 // Create base specifier for any direct or indirect virtual bases.
481 data().VBases
= new (C
) CXXBaseSpecifier
[VBases
.size()];
482 data().NumVBases
= VBases
.size();
483 for (int I
= 0, E
= VBases
.size(); I
!= E
; ++I
) {
484 QualType Type
= VBases
[I
]->getType();
485 if (!Type
->isDependentType())
486 addedClassSubobject(Type
->getAsCXXRecordDecl());
487 data().getVBases()[I
] = *VBases
[I
];
490 data().IsParsingBaseSpecifiers
= false;
493 unsigned CXXRecordDecl::getODRHash() const {
494 assert(hasDefinition() && "ODRHash only for records with definitions");
496 // Previously calculated hash is stored in DefinitionData.
497 if (DefinitionData
->HasODRHash
)
498 return DefinitionData
->ODRHash
;
500 // Only calculate hash on first call of getODRHash per record.
502 Hash
.AddCXXRecordDecl(getDefinition());
503 DefinitionData
->HasODRHash
= true;
504 DefinitionData
->ODRHash
= Hash
.CalculateHash();
506 return DefinitionData
->ODRHash
;
509 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl
*Subobj
) {
510 // C++11 [class.copy]p11:
511 // A defaulted copy/move constructor for a class X is defined as
513 // -- a direct or virtual base class B that cannot be copied/moved [...]
514 // -- a non-static data member of class type M (or array thereof)
515 // that cannot be copied or moved [...]
516 if (!Subobj
->hasSimpleCopyConstructor())
517 data().NeedOverloadResolutionForCopyConstructor
= true;
518 if (!Subobj
->hasSimpleMoveConstructor())
519 data().NeedOverloadResolutionForMoveConstructor
= true;
521 // C++11 [class.copy]p23:
522 // A defaulted copy/move assignment operator for a class X is defined as
524 // -- a direct or virtual base class B that cannot be copied/moved [...]
525 // -- a non-static data member of class type M (or array thereof)
526 // that cannot be copied or moved [...]
527 if (!Subobj
->hasSimpleCopyAssignment())
528 data().NeedOverloadResolutionForCopyAssignment
= true;
529 if (!Subobj
->hasSimpleMoveAssignment())
530 data().NeedOverloadResolutionForMoveAssignment
= true;
532 // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
533 // A defaulted [ctor or dtor] for a class X is defined as
535 // -- any direct or virtual base class [...] has a type with a destructor
536 // that is deleted or inaccessible from the defaulted [ctor or dtor].
537 // -- any non-static data member has a type with a destructor
538 // that is deleted or inaccessible from the defaulted [ctor or dtor].
539 if (!Subobj
->hasSimpleDestructor()) {
540 data().NeedOverloadResolutionForCopyConstructor
= true;
541 data().NeedOverloadResolutionForMoveConstructor
= true;
542 data().NeedOverloadResolutionForDestructor
= true;
545 // C++2a [dcl.constexpr]p4:
546 // The definition of a constexpr destructor [shall] satisfy the
547 // following requirement:
548 // -- for every subobject of class type or (possibly multi-dimensional)
549 // array thereof, that class type shall have a constexpr destructor
550 if (!Subobj
->hasConstexprDestructor())
551 data().DefaultedDestructorIsConstexpr
= false;
553 // C++20 [temp.param]p7:
554 // A structural type is [...] a literal class type [for which] the types
555 // of all base classes and non-static data members are structural types or
556 // (possibly multi-dimensional) array thereof
557 if (!Subobj
->data().StructuralIfLiteral
)
558 data().StructuralIfLiteral
= false;
561 bool CXXRecordDecl::hasConstexprDestructor() const {
562 auto *Dtor
= getDestructor();
563 return Dtor
? Dtor
->isConstexpr() : defaultedDestructorIsConstexpr();
566 bool CXXRecordDecl::hasAnyDependentBases() const {
567 if (!isDependentContext())
570 return !forallBases([](const CXXRecordDecl
*) { return true; });
573 bool CXXRecordDecl::isTriviallyCopyable() const {
575 // A trivially copyable class is a class that:
576 // -- has no non-trivial copy constructors,
577 if (hasNonTrivialCopyConstructor()) return false;
578 // -- has no non-trivial move constructors,
579 if (hasNonTrivialMoveConstructor()) return false;
580 // -- has no non-trivial copy assignment operators,
581 if (hasNonTrivialCopyAssignment()) return false;
582 // -- has no non-trivial move assignment operators, and
583 if (hasNonTrivialMoveAssignment()) return false;
584 // -- has a trivial destructor.
585 if (!hasTrivialDestructor()) return false;
590 void CXXRecordDecl::markedVirtualFunctionPure() {
591 // C++ [class.abstract]p2:
592 // A class is abstract if it has at least one pure virtual function.
593 data().Abstract
= true;
596 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
597 ASTContext
&Ctx
, const CXXRecordDecl
*XFirst
) {
601 llvm::SmallPtrSet
<const CXXRecordDecl
*, 8> Bases
;
602 llvm::SmallPtrSet
<const CXXRecordDecl
*, 8> M
;
603 SmallVector
<const CXXRecordDecl
*, 8> WorkList
;
605 // Visit a type that we have determined is an element of M(S).
606 auto Visit
= [&](const CXXRecordDecl
*RD
) -> bool {
607 RD
= RD
->getCanonicalDecl();
610 // A class S is a standard-layout class if it [...] has no element of the
611 // set M(S) of types as a base class.
613 // If we find a subobject of an empty type, it might also be a base class,
614 // so we'll need to walk the base classes to check.
615 if (!RD
->data().HasBasesWithFields
) {
616 // Walk the bases the first time, stopping if we find the type. Build a
617 // set of them so we don't need to walk them again.
619 bool RDIsBase
= !forallBases([&](const CXXRecordDecl
*Base
) -> bool {
620 Base
= Base
->getCanonicalDecl();
634 if (M
.insert(RD
).second
)
635 WorkList
.push_back(RD
);
642 while (!WorkList
.empty()) {
643 const CXXRecordDecl
*X
= WorkList
.pop_back_val();
645 // FIXME: We don't check the bases of X. That matches the standard, but
646 // that sure looks like a wording bug.
648 // -- If X is a non-union class type with a non-static data member
649 // [recurse to each field] that is either of zero size or is the
650 // first non-static data member of X
651 // -- If X is a union type, [recurse to union members]
652 bool IsFirstField
= true;
653 for (auto *FD
: X
->fields()) {
654 // FIXME: Should we really care about the type of the first non-static
655 // data member of a non-union if there are preceding unnamed bit-fields?
656 if (FD
->isUnnamedBitfield())
659 if (!IsFirstField
&& !FD
->isZeroSize(Ctx
))
662 // -- If X is n array type, [visit the element type]
663 QualType T
= Ctx
.getBaseElementType(FD
->getType());
664 if (auto *RD
= T
->getAsCXXRecordDecl())
669 IsFirstField
= false;
676 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
677 assert(isLambda() && "not a lambda");
679 // C++2a [expr.prim.lambda.capture]p11:
680 // The closure type associated with a lambda-expression has no default
681 // constructor if the lambda-expression has a lambda-capture and a
682 // defaulted default constructor otherwise. It has a deleted copy
683 // assignment operator if the lambda-expression has a lambda-capture and
684 // defaulted copy and move assignment operators otherwise.
686 // C++17 [expr.prim.lambda]p21:
687 // The closure type associated with a lambda-expression has no default
688 // constructor and a deleted copy assignment operator.
689 if (!isCapturelessLambda())
691 return getASTContext().getLangOpts().CPlusPlus20
;
694 void CXXRecordDecl::addedMember(Decl
*D
) {
695 if (!D
->isImplicit() &&
696 !isa
<FieldDecl
>(D
) &&
697 !isa
<IndirectFieldDecl
>(D
) &&
698 (!isa
<TagDecl
>(D
) || cast
<TagDecl
>(D
)->getTagKind() == TTK_Class
||
699 cast
<TagDecl
>(D
)->getTagKind() == TTK_Interface
))
700 data().HasOnlyCMembers
= false;
702 // Ignore friends and invalid declarations.
703 if (D
->getFriendObjectKind() || D
->isInvalidDecl())
706 auto *FunTmpl
= dyn_cast
<FunctionTemplateDecl
>(D
);
708 D
= FunTmpl
->getTemplatedDecl();
710 // FIXME: Pass NamedDecl* to addedMember?
711 Decl
*DUnderlying
= D
;
712 if (auto *ND
= dyn_cast
<NamedDecl
>(DUnderlying
)) {
713 DUnderlying
= ND
->getUnderlyingDecl();
714 if (auto *UnderlyingFunTmpl
= dyn_cast
<FunctionTemplateDecl
>(DUnderlying
))
715 DUnderlying
= UnderlyingFunTmpl
->getTemplatedDecl();
718 if (const auto *Method
= dyn_cast
<CXXMethodDecl
>(D
)) {
719 if (Method
->isVirtual()) {
720 // C++ [dcl.init.aggr]p1:
721 // An aggregate is an array or a class with [...] no virtual functions.
722 data().Aggregate
= false;
725 // A POD-struct is an aggregate class...
726 data().PlainOldData
= false;
728 // C++14 [meta.unary.prop]p4:
729 // T is a class type [...] with [...] no virtual member functions...
730 data().Empty
= false;
732 // C++ [class.virtual]p1:
733 // A class that declares or inherits a virtual function is called a
734 // polymorphic class.
735 data().Polymorphic
= true;
737 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
738 // A [default constructor, copy/move constructor, or copy/move
739 // assignment operator for a class X] is trivial [...] if:
740 // -- class X has no virtual functions [...]
741 data().HasTrivialSpecialMembers
&= SMF_Destructor
;
742 data().HasTrivialSpecialMembersForCall
&= SMF_Destructor
;
745 // A standard-layout class is a class that: [...]
746 // -- has no virtual functions
747 data().IsStandardLayout
= false;
748 data().IsCXX11StandardLayout
= false;
752 // Notify the listener if an implicit member was added after the definition
754 if (!isBeingDefined() && D
->isImplicit())
755 if (ASTMutationListener
*L
= getASTMutationListener())
756 L
->AddedCXXImplicitMember(data().Definition
, D
);
758 // The kind of special member this declaration is, if any.
761 // Handle constructors.
762 if (const auto *Constructor
= dyn_cast
<CXXConstructorDecl
>(D
)) {
763 if (Constructor
->isInheritingConstructor()) {
764 // Ignore constructor shadow declarations. They are lazily created and
765 // so shouldn't affect any properties of the class.
767 if (!Constructor
->isImplicit()) {
768 // Note that we have a user-declared constructor.
769 data().UserDeclaredConstructor
= true;
771 const TargetInfo
&TI
= getASTContext().getTargetInfo();
772 if ((!Constructor
->isDeleted() && !Constructor
->isDefaulted()) ||
773 !TI
.areDefaultedSMFStillPOD(getLangOpts())) {
775 // A POD-struct is an aggregate class [...]
776 // Since the POD bit is meant to be C++03 POD-ness, clear it even if
777 // the type is technically an aggregate in C++0x since it wouldn't be
779 data().PlainOldData
= false;
783 if (Constructor
->isDefaultConstructor()) {
784 SMKind
|= SMF_DefaultConstructor
;
786 if (Constructor
->isUserProvided())
787 data().UserProvidedDefaultConstructor
= true;
788 if (Constructor
->isConstexpr())
789 data().HasConstexprDefaultConstructor
= true;
790 if (Constructor
->isDefaulted())
791 data().HasDefaultedDefaultConstructor
= true;
796 if (Constructor
->isCopyConstructor(Quals
)) {
797 SMKind
|= SMF_CopyConstructor
;
799 if (Quals
& Qualifiers::Const
)
800 data().HasDeclaredCopyConstructorWithConstParam
= true;
801 } else if (Constructor
->isMoveConstructor())
802 SMKind
|= SMF_MoveConstructor
;
805 // C++11 [dcl.init.aggr]p1: DR1518
806 // An aggregate is an array or a class with no user-provided [or]
807 // explicit [...] constructors
808 // C++20 [dcl.init.aggr]p1:
809 // An aggregate is an array or a class with no user-declared [...]
811 if (getASTContext().getLangOpts().CPlusPlus20
812 ? !Constructor
->isImplicit()
813 : (Constructor
->isUserProvided() || Constructor
->isExplicit()))
814 data().Aggregate
= false;
818 // Handle constructors, including those inherited from base classes.
819 if (const auto *Constructor
= dyn_cast
<CXXConstructorDecl
>(DUnderlying
)) {
820 // Record if we see any constexpr constructors which are neither copy
821 // nor move constructors.
822 // C++1z [basic.types]p10:
823 // [...] has at least one constexpr constructor or constructor template
824 // (possibly inherited from a base class) that is not a copy or move
826 if (Constructor
->isConstexpr() && !Constructor
->isCopyOrMoveConstructor())
827 data().HasConstexprNonCopyMoveConstructor
= true;
828 if (!isa
<CXXConstructorDecl
>(D
) && Constructor
->isDefaultConstructor())
829 data().HasInheritedDefaultConstructor
= true;
832 // Handle member functions.
833 if (const auto *Method
= dyn_cast
<CXXMethodDecl
>(D
)) {
834 if (isa
<CXXDestructorDecl
>(D
))
835 SMKind
|= SMF_Destructor
;
837 if (Method
->isCopyAssignmentOperator()) {
838 SMKind
|= SMF_CopyAssignment
;
840 const auto *ParamTy
=
841 Method
->getNonObjectParameter(0)->getType()->getAs
<ReferenceType
>();
842 if (!ParamTy
|| ParamTy
->getPointeeType().isConstQualified())
843 data().HasDeclaredCopyAssignmentWithConstParam
= true;
846 if (Method
->isMoveAssignmentOperator())
847 SMKind
|= SMF_MoveAssignment
;
849 // Keep the list of conversion functions up-to-date.
850 if (auto *Conversion
= dyn_cast
<CXXConversionDecl
>(D
)) {
851 // FIXME: We use the 'unsafe' accessor for the access specifier here,
852 // because Sema may not have set it yet. That's really just a misdesign
853 // in Sema. However, LLDB *will* have set the access specifier correctly,
854 // and adds declarations after the class is technically completed,
855 // so completeDefinition()'s overriding of the access specifiers doesn't
857 AccessSpecifier AS
= Conversion
->getAccessUnsafe();
859 if (Conversion
->getPrimaryTemplate()) {
860 // We don't record specializations.
862 ASTContext
&Ctx
= getASTContext();
863 ASTUnresolvedSet
&Conversions
= data().Conversions
.get(Ctx
);
865 FunTmpl
? cast
<NamedDecl
>(FunTmpl
) : cast
<NamedDecl
>(Conversion
);
866 if (Primary
->getPreviousDecl())
867 Conversions
.replace(cast
<NamedDecl
>(Primary
->getPreviousDecl()),
870 Conversions
.addDecl(Ctx
, Primary
, AS
);
875 // If this is the first declaration of a special member, we no longer have
876 // an implicit trivial special member.
877 data().HasTrivialSpecialMembers
&=
878 data().DeclaredSpecialMembers
| ~SMKind
;
879 data().HasTrivialSpecialMembersForCall
&=
880 data().DeclaredSpecialMembers
| ~SMKind
;
882 // Note when we have declared a declared special member, and suppress the
883 // implicit declaration of this special member.
884 data().DeclaredSpecialMembers
|= SMKind
;
885 if (!Method
->isImplicit()) {
886 data().UserDeclaredSpecialMembers
|= SMKind
;
888 const TargetInfo
&TI
= getASTContext().getTargetInfo();
889 if ((!Method
->isDeleted() && !Method
->isDefaulted() &&
890 SMKind
!= SMF_MoveAssignment
) ||
891 !TI
.areDefaultedSMFStillPOD(getLangOpts())) {
893 // A POD-struct is an aggregate class that has [...] no user-defined
894 // copy assignment operator and no user-defined destructor.
896 // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
897 // aggregates could not have any constructors, clear it even for an
898 // explicitly defaulted or deleted constructor.
899 // type is technically an aggregate in C++0x since it wouldn't be in
902 // Also, a user-declared move assignment operator makes a class
903 // non-POD. This is an extension in C++03.
904 data().PlainOldData
= false;
907 // When instantiating a class, we delay updating the destructor and
908 // triviality properties of the class until selecting a destructor and
909 // computing the eligibility of its special member functions. This is
910 // because there might be function constraints that we need to evaluate
911 // and compare later in the instantiation.
912 if (!Method
->isIneligibleOrNotSelected()) {
913 addedEligibleSpecialMemberFunction(Method
, SMKind
);
920 // Handle non-static data members.
921 if (const auto *Field
= dyn_cast
<FieldDecl
>(D
)) {
922 ASTContext
&Context
= getASTContext();
925 // A standard-layout class is a class that:
927 // -- has all non-static data members and bit-fields in the class and
928 // its base classes first declared in the same class
929 if (data().HasBasesWithFields
)
930 data().IsStandardLayout
= false;
932 // C++ [class.bit]p2:
933 // A declaration for a bit-field that omits the identifier declares an
934 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
936 if (Field
->isUnnamedBitfield()) {
937 // C++ [meta.unary.prop]p4: [LWG2358]
938 // T is a class type [...] with [...] no unnamed bit-fields of non-zero
940 if (data().Empty
&& !Field
->isZeroLengthBitField(Context
) &&
941 Context
.getLangOpts().getClangABICompat() >
942 LangOptions::ClangABI::Ver6
)
943 data().Empty
= false;
948 // A standard-layout class is a class that:
949 // -- either has no non-static data members in the most derived class
950 // [...] or has no base classes with non-static data members
951 if (data().HasBasesWithNonStaticDataMembers
)
952 data().IsCXX11StandardLayout
= false;
954 // C++ [dcl.init.aggr]p1:
955 // An aggregate is an array or a class (clause 9) with [...] no
956 // private or protected non-static data members (clause 11).
958 // A POD must be an aggregate.
959 if (D
->getAccess() == AS_private
|| D
->getAccess() == AS_protected
) {
960 data().Aggregate
= false;
961 data().PlainOldData
= false;
963 // C++20 [temp.param]p7:
964 // A structural type is [...] a literal class type [for which] all
965 // non-static data members are public
966 data().StructuralIfLiteral
= false;
969 // Track whether this is the first field. We use this when checking
970 // whether the class is standard-layout below.
971 bool IsFirstField
= !data().HasPrivateFields
&&
972 !data().HasProtectedFields
&& !data().HasPublicFields
;
975 // A standard-layout class is a class that:
977 // -- has the same access control for all non-static data members,
978 switch (D
->getAccess()) {
979 case AS_private
: data().HasPrivateFields
= true; break;
980 case AS_protected
: data().HasProtectedFields
= true; break;
981 case AS_public
: data().HasPublicFields
= true; break;
982 case AS_none
: llvm_unreachable("Invalid access specifier");
984 if ((data().HasPrivateFields
+ data().HasProtectedFields
+
985 data().HasPublicFields
) > 1) {
986 data().IsStandardLayout
= false;
987 data().IsCXX11StandardLayout
= false;
990 // Keep track of the presence of mutable fields.
991 if (Field
->isMutable()) {
992 data().HasMutableFields
= true;
994 // C++20 [temp.param]p7:
995 // A structural type is [...] a literal class type [for which] all
996 // non-static data members are public
997 data().StructuralIfLiteral
= false;
1000 // C++11 [class.union]p8, DR1460:
1001 // If X is a union, a non-static data member of X that is not an anonymous
1002 // union is a variant member of X.
1003 if (isUnion() && !Field
->isAnonymousStructOrUnion())
1004 data().HasVariantMembers
= true;
1007 // A POD struct is a class that is both a trivial class and a
1008 // standard-layout class, and has no non-static data members of type
1009 // non-POD struct, non-POD union (or array of such types).
1011 // Automatic Reference Counting: the presence of a member of Objective-C pointer type
1012 // that does not explicitly have no lifetime makes the class a non-POD.
1013 QualType T
= Context
.getBaseElementType(Field
->getType());
1014 if (T
->isObjCRetainableType() || T
.isObjCGCStrong()) {
1015 if (T
.hasNonTrivialObjCLifetime()) {
1016 // Objective-C Automatic Reference Counting:
1017 // If a class has a non-static data member of Objective-C pointer
1018 // type (or array thereof), it is a non-POD type and its
1019 // default constructor (if any), copy constructor, move constructor,
1020 // copy assignment operator, move assignment operator, and destructor are
1022 setHasObjectMember(true);
1023 struct DefinitionData
&Data
= data();
1024 Data
.PlainOldData
= false;
1025 Data
.HasTrivialSpecialMembers
= 0;
1027 // __strong or __weak fields do not make special functions non-trivial
1028 // for the purpose of calls.
1029 Qualifiers::ObjCLifetime LT
= T
.getQualifiers().getObjCLifetime();
1030 if (LT
!= Qualifiers::OCL_Strong
&& LT
!= Qualifiers::OCL_Weak
)
1031 data().HasTrivialSpecialMembersForCall
= 0;
1033 // Structs with __weak fields should never be passed directly.
1034 if (LT
== Qualifiers::OCL_Weak
)
1035 setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs
);
1037 Data
.HasIrrelevantDestructor
= false;
1040 data().DefaultedCopyConstructorIsDeleted
= true;
1041 data().DefaultedMoveConstructorIsDeleted
= true;
1042 data().DefaultedCopyAssignmentIsDeleted
= true;
1043 data().DefaultedMoveAssignmentIsDeleted
= true;
1044 data().DefaultedDestructorIsDeleted
= true;
1045 data().NeedOverloadResolutionForCopyConstructor
= true;
1046 data().NeedOverloadResolutionForMoveConstructor
= true;
1047 data().NeedOverloadResolutionForCopyAssignment
= true;
1048 data().NeedOverloadResolutionForMoveAssignment
= true;
1049 data().NeedOverloadResolutionForDestructor
= true;
1051 } else if (!Context
.getLangOpts().ObjCAutoRefCount
) {
1052 setHasObjectMember(true);
1054 } else if (!T
.isCXX98PODType(Context
))
1055 data().PlainOldData
= false;
1057 if (T
->isReferenceType()) {
1058 if (!Field
->hasInClassInitializer())
1059 data().HasUninitializedReferenceMember
= true;
1062 // A standard-layout class is a class that:
1063 // -- has no non-static data members of type [...] reference,
1064 data().IsStandardLayout
= false;
1065 data().IsCXX11StandardLayout
= false;
1067 // C++1z [class.copy.ctor]p10:
1068 // A defaulted copy constructor for a class X is defined as deleted if X has:
1069 // -- a non-static data member of rvalue reference type
1070 if (T
->isRValueReferenceType())
1071 data().DefaultedCopyConstructorIsDeleted
= true;
1074 if (!Field
->hasInClassInitializer() && !Field
->isMutable()) {
1075 if (CXXRecordDecl
*FieldType
= T
->getAsCXXRecordDecl()) {
1076 if (FieldType
->hasDefinition() && !FieldType
->allowConstDefaultInit())
1077 data().HasUninitializedFields
= true;
1079 data().HasUninitializedFields
= true;
1083 // Record if this field is the first non-literal or volatile field or base.
1084 if (!T
->isLiteralType(Context
) || T
.isVolatileQualified())
1085 data().HasNonLiteralTypeFieldsOrBases
= true;
1087 if (Field
->hasInClassInitializer() ||
1088 (Field
->isAnonymousStructOrUnion() &&
1089 Field
->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
1090 data().HasInClassInitializer
= true;
1093 // A default constructor is trivial if [...] no non-static data member
1094 // of its class has a brace-or-equal-initializer.
1095 data().HasTrivialSpecialMembers
&= ~SMF_DefaultConstructor
;
1097 // C++11 [dcl.init.aggr]p1:
1098 // An aggregate is a [...] class with [...] no
1099 // brace-or-equal-initializers for non-static data members.
1101 // This rule was removed in C++14.
1102 if (!getASTContext().getLangOpts().CPlusPlus14
)
1103 data().Aggregate
= false;
1105 // C++11 [class]p10:
1106 // A POD struct is [...] a trivial class.
1107 data().PlainOldData
= false;
1110 // C++11 [class.copy]p23:
1111 // A defaulted copy/move assignment operator for a class X is defined
1112 // as deleted if X has:
1113 // -- a non-static data member of reference type
1114 if (T
->isReferenceType()) {
1115 data().DefaultedCopyAssignmentIsDeleted
= true;
1116 data().DefaultedMoveAssignmentIsDeleted
= true;
1119 // Bitfields of length 0 are also zero-sized, but we already bailed out for
1120 // those because they are always unnamed.
1121 bool IsZeroSize
= Field
->isZeroSize(Context
);
1123 if (const auto *RecordTy
= T
->getAs
<RecordType
>()) {
1124 auto *FieldRec
= cast
<CXXRecordDecl
>(RecordTy
->getDecl());
1125 if (FieldRec
->getDefinition()) {
1126 addedClassSubobject(FieldRec
);
1128 // We may need to perform overload resolution to determine whether a
1129 // field can be moved if it's const or volatile qualified.
1130 if (T
.getCVRQualifiers() & (Qualifiers::Const
| Qualifiers::Volatile
)) {
1131 // We need to care about 'const' for the copy constructor because an
1132 // implicit copy constructor might be declared with a non-const
1134 data().NeedOverloadResolutionForCopyConstructor
= true;
1135 data().NeedOverloadResolutionForMoveConstructor
= true;
1136 data().NeedOverloadResolutionForCopyAssignment
= true;
1137 data().NeedOverloadResolutionForMoveAssignment
= true;
1140 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
1141 // A defaulted [special member] for a class X is defined as
1143 // -- X is a union-like class that has a variant member with a
1144 // non-trivial [corresponding special member]
1146 if (FieldRec
->hasNonTrivialCopyConstructor())
1147 data().DefaultedCopyConstructorIsDeleted
= true;
1148 if (FieldRec
->hasNonTrivialMoveConstructor())
1149 data().DefaultedMoveConstructorIsDeleted
= true;
1150 if (FieldRec
->hasNonTrivialCopyAssignment())
1151 data().DefaultedCopyAssignmentIsDeleted
= true;
1152 if (FieldRec
->hasNonTrivialMoveAssignment())
1153 data().DefaultedMoveAssignmentIsDeleted
= true;
1154 if (FieldRec
->hasNonTrivialDestructor())
1155 data().DefaultedDestructorIsDeleted
= true;
1158 // For an anonymous union member, our overload resolution will perform
1159 // overload resolution for its members.
1160 if (Field
->isAnonymousStructOrUnion()) {
1161 data().NeedOverloadResolutionForCopyConstructor
|=
1162 FieldRec
->data().NeedOverloadResolutionForCopyConstructor
;
1163 data().NeedOverloadResolutionForMoveConstructor
|=
1164 FieldRec
->data().NeedOverloadResolutionForMoveConstructor
;
1165 data().NeedOverloadResolutionForCopyAssignment
|=
1166 FieldRec
->data().NeedOverloadResolutionForCopyAssignment
;
1167 data().NeedOverloadResolutionForMoveAssignment
|=
1168 FieldRec
->data().NeedOverloadResolutionForMoveAssignment
;
1169 data().NeedOverloadResolutionForDestructor
|=
1170 FieldRec
->data().NeedOverloadResolutionForDestructor
;
1173 // C++0x [class.ctor]p5:
1174 // A default constructor is trivial [...] if:
1175 // -- for all the non-static data members of its class that are of
1176 // class type (or array thereof), each such class has a trivial
1177 // default constructor.
1178 if (!FieldRec
->hasTrivialDefaultConstructor())
1179 data().HasTrivialSpecialMembers
&= ~SMF_DefaultConstructor
;
1181 // C++0x [class.copy]p13:
1182 // A copy/move constructor for class X is trivial if [...]
1184 // -- for each non-static data member of X that is of class type (or
1185 // an array thereof), the constructor selected to copy/move that
1186 // member is trivial;
1187 if (!FieldRec
->hasTrivialCopyConstructor())
1188 data().HasTrivialSpecialMembers
&= ~SMF_CopyConstructor
;
1190 if (!FieldRec
->hasTrivialCopyConstructorForCall())
1191 data().HasTrivialSpecialMembersForCall
&= ~SMF_CopyConstructor
;
1193 // If the field doesn't have a simple move constructor, we'll eagerly
1194 // declare the move constructor for this class and we'll decide whether
1195 // it's trivial then.
1196 if (!FieldRec
->hasTrivialMoveConstructor())
1197 data().HasTrivialSpecialMembers
&= ~SMF_MoveConstructor
;
1199 if (!FieldRec
->hasTrivialMoveConstructorForCall())
1200 data().HasTrivialSpecialMembersForCall
&= ~SMF_MoveConstructor
;
1202 // C++0x [class.copy]p27:
1203 // A copy/move assignment operator for class X is trivial if [...]
1205 // -- for each non-static data member of X that is of class type (or
1206 // an array thereof), the assignment operator selected to
1207 // copy/move that member is trivial;
1208 if (!FieldRec
->hasTrivialCopyAssignment())
1209 data().HasTrivialSpecialMembers
&= ~SMF_CopyAssignment
;
1210 // If the field doesn't have a simple move assignment, we'll eagerly
1211 // declare the move assignment for this class and we'll decide whether
1212 // it's trivial then.
1213 if (!FieldRec
->hasTrivialMoveAssignment())
1214 data().HasTrivialSpecialMembers
&= ~SMF_MoveAssignment
;
1216 if (!FieldRec
->hasTrivialDestructor())
1217 data().HasTrivialSpecialMembers
&= ~SMF_Destructor
;
1218 if (!FieldRec
->hasTrivialDestructorForCall())
1219 data().HasTrivialSpecialMembersForCall
&= ~SMF_Destructor
;
1220 if (!FieldRec
->hasIrrelevantDestructor())
1221 data().HasIrrelevantDestructor
= false;
1222 if (FieldRec
->isAnyDestructorNoReturn())
1223 data().IsAnyDestructorNoReturn
= true;
1224 if (FieldRec
->hasObjectMember())
1225 setHasObjectMember(true);
1226 if (FieldRec
->hasVolatileMember())
1227 setHasVolatileMember(true);
1228 if (FieldRec
->getArgPassingRestrictions() ==
1229 RecordArgPassingKind::CanNeverPassInRegs
)
1230 setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs
);
1233 // A standard-layout class is a class that:
1234 // -- has no non-static data members of type non-standard-layout
1235 // class (or array of such types) [...]
1236 if (!FieldRec
->isStandardLayout())
1237 data().IsStandardLayout
= false;
1238 if (!FieldRec
->isCXX11StandardLayout())
1239 data().IsCXX11StandardLayout
= false;
1242 // A standard-layout class is a class that:
1244 // -- has no element of the set M(S) of types as a base class.
1245 if (data().IsStandardLayout
&&
1246 (isUnion() || IsFirstField
|| IsZeroSize
) &&
1247 hasSubobjectAtOffsetZeroOfEmptyBaseType(Context
, FieldRec
))
1248 data().IsStandardLayout
= false;
1251 // A standard-layout class is a class that:
1252 // -- has no base classes of the same type as the first non-static
1254 if (data().IsCXX11StandardLayout
&& IsFirstField
) {
1255 // FIXME: We should check all base classes here, not just direct
1257 for (const auto &BI
: bases()) {
1258 if (Context
.hasSameUnqualifiedType(BI
.getType(), T
)) {
1259 data().IsCXX11StandardLayout
= false;
1265 // Keep track of the presence of mutable fields.
1266 if (FieldRec
->hasMutableFields())
1267 data().HasMutableFields
= true;
1269 if (Field
->isMutable()) {
1270 // Our copy constructor/assignment might call something other than
1271 // the subobject's copy constructor/assignment if it's mutable and of
1273 data().NeedOverloadResolutionForCopyConstructor
= true;
1274 data().NeedOverloadResolutionForCopyAssignment
= true;
1277 // C++11 [class.copy]p13:
1278 // If the implicitly-defined constructor would satisfy the
1279 // requirements of a constexpr constructor, the implicitly-defined
1280 // constructor is constexpr.
1281 // C++11 [dcl.constexpr]p4:
1282 // -- every constructor involved in initializing non-static data
1283 // members [...] shall be a constexpr constructor
1284 if (!Field
->hasInClassInitializer() &&
1285 !FieldRec
->hasConstexprDefaultConstructor() && !isUnion())
1286 // The standard requires any in-class initializer to be a constant
1287 // expression. We consider this to be a defect.
1288 data().DefaultedDefaultConstructorIsConstexpr
= false;
1290 // C++11 [class.copy]p8:
1291 // The implicitly-declared copy constructor for a class X will have
1292 // the form 'X::X(const X&)' if each potentially constructed subobject
1293 // of a class type M (or array thereof) has a copy constructor whose
1294 // first parameter is of type 'const M&' or 'const volatile M&'.
1295 if (!FieldRec
->hasCopyConstructorWithConstParam())
1296 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase
= false;
1298 // C++11 [class.copy]p18:
1299 // The implicitly-declared copy assignment oeprator for a class X will
1300 // have the form 'X& X::operator=(const X&)' if [...] for all the
1301 // non-static data members of X that are of a class type M (or array
1302 // thereof), each such class type has a copy assignment operator whose
1303 // parameter is of type 'const M&', 'const volatile M&' or 'M'.
1304 if (!FieldRec
->hasCopyAssignmentWithConstParam())
1305 data().ImplicitCopyAssignmentHasConstParam
= false;
1307 if (FieldRec
->hasUninitializedReferenceMember() &&
1308 !Field
->hasInClassInitializer())
1309 data().HasUninitializedReferenceMember
= true;
1311 // C++11 [class.union]p8, DR1460:
1312 // a non-static data member of an anonymous union that is a member of
1313 // X is also a variant member of X.
1314 if (FieldRec
->hasVariantMembers() &&
1315 Field
->isAnonymousStructOrUnion())
1316 data().HasVariantMembers
= true;
1319 // Base element type of field is a non-class type.
1320 if (!T
->isLiteralType(Context
) ||
1321 (!Field
->hasInClassInitializer() && !isUnion() &&
1322 !Context
.getLangOpts().CPlusPlus20
))
1323 data().DefaultedDefaultConstructorIsConstexpr
= false;
1325 // C++11 [class.copy]p23:
1326 // A defaulted copy/move assignment operator for a class X is defined
1327 // as deleted if X has:
1328 // -- a non-static data member of const non-class type (or array
1330 if (T
.isConstQualified()) {
1331 data().DefaultedCopyAssignmentIsDeleted
= true;
1332 data().DefaultedMoveAssignmentIsDeleted
= true;
1335 // C++20 [temp.param]p7:
1336 // A structural type is [...] a literal class type [for which] the
1337 // types of all non-static data members are structural types or
1338 // (possibly multidimensional) array thereof
1339 // We deal with class types elsewhere.
1340 if (!T
->isStructuralType())
1341 data().StructuralIfLiteral
= false;
1344 // C++14 [meta.unary.prop]p4:
1345 // T is a class type [...] with [...] no non-static data members other
1346 // than subobjects of zero size
1347 if (data().Empty
&& !IsZeroSize
)
1348 data().Empty
= false;
1351 // Handle using declarations of conversion functions.
1352 if (auto *Shadow
= dyn_cast
<UsingShadowDecl
>(D
)) {
1353 if (Shadow
->getDeclName().getNameKind()
1354 == DeclarationName::CXXConversionFunctionName
) {
1355 ASTContext
&Ctx
= getASTContext();
1356 data().Conversions
.get(Ctx
).addDecl(Ctx
, Shadow
, Shadow
->getAccess());
1360 if (const auto *Using
= dyn_cast
<UsingDecl
>(D
)) {
1361 if (Using
->getDeclName().getNameKind() ==
1362 DeclarationName::CXXConstructorName
) {
1363 data().HasInheritedConstructor
= true;
1364 // C++1z [dcl.init.aggr]p1:
1365 // An aggregate is [...] a class [...] with no inherited constructors
1366 data().Aggregate
= false;
1369 if (Using
->getDeclName().getCXXOverloadedOperator() == OO_Equal
)
1370 data().HasInheritedAssignment
= true;
1374 void CXXRecordDecl::addedSelectedDestructor(CXXDestructorDecl
*DD
) {
1375 DD
->setIneligibleOrNotSelected(false);
1376 addedEligibleSpecialMemberFunction(DD
, SMF_Destructor
);
1379 void CXXRecordDecl::addedEligibleSpecialMemberFunction(const CXXMethodDecl
*MD
,
1381 // FIXME: We shouldn't change DeclaredNonTrivialSpecialMembers if `MD` is
1382 // a function template, but this needs CWG attention before we break ABI.
1383 // See https://github.com/llvm/llvm-project/issues/59206
1385 if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(MD
)) {
1386 if (DD
->isUserProvided())
1387 data().HasIrrelevantDestructor
= false;
1388 // If the destructor is explicitly defaulted and not trivial or not public
1389 // or if the destructor is deleted, we clear HasIrrelevantDestructor in
1390 // finishedDefaultedOrDeletedMember.
1392 // C++11 [class.dtor]p5:
1393 // A destructor is trivial if [...] the destructor is not virtual.
1394 if (DD
->isVirtual()) {
1395 data().HasTrivialSpecialMembers
&= ~SMF_Destructor
;
1396 data().HasTrivialSpecialMembersForCall
&= ~SMF_Destructor
;
1399 if (DD
->isNoReturn())
1400 data().IsAnyDestructorNoReturn
= true;
1403 if (!MD
->isImplicit() && !MD
->isUserProvided()) {
1404 // This method is user-declared but not user-provided. We can't work
1405 // out whether it's trivial yet (not until we get to the end of the
1406 // class). We'll handle this method in
1407 // finishedDefaultedOrDeletedMember.
1408 } else if (MD
->isTrivial()) {
1409 data().HasTrivialSpecialMembers
|= SMKind
;
1410 data().HasTrivialSpecialMembersForCall
|= SMKind
;
1411 } else if (MD
->isTrivialForCall()) {
1412 data().HasTrivialSpecialMembersForCall
|= SMKind
;
1413 data().DeclaredNonTrivialSpecialMembers
|= SMKind
;
1415 data().DeclaredNonTrivialSpecialMembers
|= SMKind
;
1416 // If this is a user-provided function, do not set
1417 // DeclaredNonTrivialSpecialMembersForCall here since we don't know
1418 // yet whether the method would be considered non-trivial for the
1419 // purpose of calls (attribute "trivial_abi" can be dropped from the
1420 // class later, which can change the special method's triviality).
1421 if (!MD
->isUserProvided())
1422 data().DeclaredNonTrivialSpecialMembersForCall
|= SMKind
;
1426 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl
*D
) {
1427 assert(!D
->isImplicit() && !D
->isUserProvided());
1429 // The kind of special member this declaration is, if any.
1430 unsigned SMKind
= 0;
1432 if (const auto *Constructor
= dyn_cast
<CXXConstructorDecl
>(D
)) {
1433 if (Constructor
->isDefaultConstructor()) {
1434 SMKind
|= SMF_DefaultConstructor
;
1435 if (Constructor
->isConstexpr())
1436 data().HasConstexprDefaultConstructor
= true;
1438 if (Constructor
->isCopyConstructor())
1439 SMKind
|= SMF_CopyConstructor
;
1440 else if (Constructor
->isMoveConstructor())
1441 SMKind
|= SMF_MoveConstructor
;
1442 else if (Constructor
->isConstexpr())
1443 // We may now know that the constructor is constexpr.
1444 data().HasConstexprNonCopyMoveConstructor
= true;
1445 } else if (isa
<CXXDestructorDecl
>(D
)) {
1446 SMKind
|= SMF_Destructor
;
1447 if (!D
->isTrivial() || D
->getAccess() != AS_public
|| D
->isDeleted())
1448 data().HasIrrelevantDestructor
= false;
1449 } else if (D
->isCopyAssignmentOperator())
1450 SMKind
|= SMF_CopyAssignment
;
1451 else if (D
->isMoveAssignmentOperator())
1452 SMKind
|= SMF_MoveAssignment
;
1454 // Update which trivial / non-trivial special members we have.
1455 // addedMember will have skipped this step for this member.
1456 if (!D
->isIneligibleOrNotSelected()) {
1458 data().HasTrivialSpecialMembers
|= SMKind
;
1460 data().DeclaredNonTrivialSpecialMembers
|= SMKind
;
1464 void CXXRecordDecl::LambdaDefinitionData::AddCaptureList(ASTContext
&Ctx
,
1465 Capture
*CaptureList
) {
1466 Captures
.push_back(CaptureList
);
1467 if (Captures
.size() == 2) {
1468 // The TinyPtrVector member now needs destruction.
1469 Ctx
.addDestruction(&Captures
);
1473 void CXXRecordDecl::setCaptures(ASTContext
&Context
,
1474 ArrayRef
<LambdaCapture
> Captures
) {
1475 CXXRecordDecl::LambdaDefinitionData
&Data
= getLambdaData();
1478 Data
.NumCaptures
= Captures
.size();
1479 Data
.NumExplicitCaptures
= 0;
1480 auto *ToCapture
= (LambdaCapture
*)Context
.Allocate(sizeof(LambdaCapture
) *
1482 Data
.AddCaptureList(Context
, ToCapture
);
1483 for (unsigned I
= 0, N
= Captures
.size(); I
!= N
; ++I
) {
1484 if (Captures
[I
].isExplicit())
1485 ++Data
.NumExplicitCaptures
;
1487 new (ToCapture
) LambdaCapture(Captures
[I
]);
1491 if (!lambdaIsDefaultConstructibleAndAssignable())
1492 Data
.DefaultedCopyAssignmentIsDeleted
= true;
1495 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl
*D
) {
1496 unsigned SMKind
= 0;
1498 if (const auto *Constructor
= dyn_cast
<CXXConstructorDecl
>(D
)) {
1499 if (Constructor
->isCopyConstructor())
1500 SMKind
= SMF_CopyConstructor
;
1501 else if (Constructor
->isMoveConstructor())
1502 SMKind
= SMF_MoveConstructor
;
1503 } else if (isa
<CXXDestructorDecl
>(D
))
1504 SMKind
= SMF_Destructor
;
1506 if (D
->isTrivialForCall())
1507 data().HasTrivialSpecialMembersForCall
|= SMKind
;
1509 data().DeclaredNonTrivialSpecialMembersForCall
|= SMKind
;
1512 bool CXXRecordDecl::isCLike() const {
1513 if (getTagKind() == TTK_Class
|| getTagKind() == TTK_Interface
||
1514 !TemplateOrInstantiation
.isNull())
1516 if (!hasDefinition())
1519 return isPOD() && data().HasOnlyCMembers
;
1522 bool CXXRecordDecl::isGenericLambda() const {
1523 if (!isLambda()) return false;
1524 return getLambdaData().IsGenericLambda
;
1528 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result
&R
) {
1530 if (!declaresSameEntity(D
, R
.front()))
1536 static NamedDecl
* getLambdaCallOperatorHelper(const CXXRecordDecl
&RD
) {
1537 if (!RD
.isLambda()) return nullptr;
1538 DeclarationName Name
=
1539 RD
.getASTContext().DeclarationNames
.getCXXOperatorName(OO_Call
);
1540 DeclContext::lookup_result Calls
= RD
.lookup(Name
);
1542 assert(!Calls
.empty() && "Missing lambda call operator!");
1543 assert(allLookupResultsAreTheSame(Calls
) &&
1544 "More than one lambda call operator!");
1545 return Calls
.front();
1548 FunctionTemplateDecl
* CXXRecordDecl::getDependentLambdaCallOperator() const {
1549 NamedDecl
*CallOp
= getLambdaCallOperatorHelper(*this);
1550 return dyn_cast_or_null
<FunctionTemplateDecl
>(CallOp
);
1553 CXXMethodDecl
*CXXRecordDecl::getLambdaCallOperator() const {
1554 NamedDecl
*CallOp
= getLambdaCallOperatorHelper(*this);
1556 if (CallOp
== nullptr)
1559 if (const auto *CallOpTmpl
= dyn_cast
<FunctionTemplateDecl
>(CallOp
))
1560 return cast
<CXXMethodDecl
>(CallOpTmpl
->getTemplatedDecl());
1562 return cast
<CXXMethodDecl
>(CallOp
);
1565 CXXMethodDecl
* CXXRecordDecl::getLambdaStaticInvoker() const {
1566 CXXMethodDecl
*CallOp
= getLambdaCallOperator();
1567 CallingConv CC
= CallOp
->getType()->castAs
<FunctionType
>()->getCallConv();
1568 return getLambdaStaticInvoker(CC
);
1571 static DeclContext::lookup_result
1572 getLambdaStaticInvokers(const CXXRecordDecl
&RD
) {
1573 assert(RD
.isLambda() && "Must be a lambda");
1574 DeclarationName Name
=
1575 &RD
.getASTContext().Idents
.get(getLambdaStaticInvokerName());
1576 return RD
.lookup(Name
);
1579 static CXXMethodDecl
*getInvokerAsMethod(NamedDecl
*ND
) {
1580 if (const auto *InvokerTemplate
= dyn_cast
<FunctionTemplateDecl
>(ND
))
1581 return cast
<CXXMethodDecl
>(InvokerTemplate
->getTemplatedDecl());
1582 return cast
<CXXMethodDecl
>(ND
);
1585 CXXMethodDecl
*CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC
) const {
1588 DeclContext::lookup_result Invoker
= getLambdaStaticInvokers(*this);
1590 for (NamedDecl
*ND
: Invoker
) {
1592 cast
<ValueDecl
>(ND
->getAsFunction())->getType()->castAs
<FunctionType
>();
1593 if (FTy
->getCallConv() == CC
)
1594 return getInvokerAsMethod(ND
);
1600 void CXXRecordDecl::getCaptureFields(
1601 llvm::DenseMap
<const ValueDecl
*, FieldDecl
*> &Captures
,
1602 FieldDecl
*&ThisCapture
) const {
1604 ThisCapture
= nullptr;
1606 LambdaDefinitionData
&Lambda
= getLambdaData();
1607 for (const LambdaCapture
*List
: Lambda
.Captures
) {
1608 RecordDecl::field_iterator Field
= field_begin();
1609 for (const LambdaCapture
*C
= List
, *CEnd
= C
+ Lambda
.NumCaptures
;
1610 C
!= CEnd
; ++C
, ++Field
) {
1611 if (C
->capturesThis())
1612 ThisCapture
= *Field
;
1613 else if (C
->capturesVariable())
1614 Captures
[C
->getCapturedVar()] = *Field
;
1616 assert(Field
== field_end());
1620 TemplateParameterList
*
1621 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1622 if (!isGenericLambda()) return nullptr;
1623 CXXMethodDecl
*CallOp
= getLambdaCallOperator();
1624 if (FunctionTemplateDecl
*Tmpl
= CallOp
->getDescribedFunctionTemplate())
1625 return Tmpl
->getTemplateParameters();
1629 ArrayRef
<NamedDecl
*>
1630 CXXRecordDecl::getLambdaExplicitTemplateParameters() const {
1631 TemplateParameterList
*List
= getGenericLambdaTemplateParameterList();
1635 assert(std::is_partitioned(List
->begin(), List
->end(),
1636 [](const NamedDecl
*D
) { return !D
->isImplicit(); })
1637 && "Explicit template params should be ordered before implicit ones");
1639 const auto ExplicitEnd
= llvm::partition_point(
1640 *List
, [](const NamedDecl
*D
) { return !D
->isImplicit(); });
1641 return llvm::ArrayRef(List
->begin(), ExplicitEnd
);
1644 Decl
*CXXRecordDecl::getLambdaContextDecl() const {
1645 assert(isLambda() && "Not a lambda closure type!");
1646 ExternalASTSource
*Source
= getParentASTContext().getExternalSource();
1647 return getLambdaData().ContextDecl
.get(Source
);
1650 void CXXRecordDecl::setLambdaNumbering(LambdaNumbering Numbering
) {
1651 assert(isLambda() && "Not a lambda closure type!");
1652 getLambdaData().ManglingNumber
= Numbering
.ManglingNumber
;
1653 if (Numbering
.DeviceManglingNumber
)
1654 getASTContext().DeviceLambdaManglingNumbers
[this] =
1655 Numbering
.DeviceManglingNumber
;
1656 getLambdaData().IndexInContext
= Numbering
.IndexInContext
;
1657 getLambdaData().ContextDecl
= Numbering
.ContextDecl
;
1658 getLambdaData().HasKnownInternalLinkage
= Numbering
.HasKnownInternalLinkage
;
1661 unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const {
1662 assert(isLambda() && "Not a lambda closure type!");
1663 return getASTContext().DeviceLambdaManglingNumbers
.lookup(this);
1666 static CanQualType
GetConversionType(ASTContext
&Context
, NamedDecl
*Conv
) {
1668 cast
<CXXConversionDecl
>(Conv
->getUnderlyingDecl()->getAsFunction())
1669 ->getConversionType();
1670 return Context
.getCanonicalType(T
);
1673 /// Collect the visible conversions of a base class.
1675 /// \param Record a base class of the class we're considering
1676 /// \param InVirtual whether this base class is a virtual base (or a base
1677 /// of a virtual base)
1678 /// \param Access the access along the inheritance path to this base
1679 /// \param ParentHiddenTypes the conversions provided by the inheritors
1681 /// \param Output the set to which to add conversions from non-virtual bases
1682 /// \param VOutput the set to which to add conversions from virtual bases
1683 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1684 /// virtual base along some inheritance path
1685 static void CollectVisibleConversions(
1686 ASTContext
&Context
, const CXXRecordDecl
*Record
, bool InVirtual
,
1687 AccessSpecifier Access
,
1688 const llvm::SmallPtrSet
<CanQualType
, 8> &ParentHiddenTypes
,
1689 ASTUnresolvedSet
&Output
, UnresolvedSetImpl
&VOutput
,
1690 llvm::SmallPtrSet
<NamedDecl
*, 8> &HiddenVBaseCs
) {
1691 // The set of types which have conversions in this class or its
1692 // subclasses. As an optimization, we don't copy the derived set
1693 // unless it might change.
1694 const llvm::SmallPtrSet
<CanQualType
, 8> *HiddenTypes
= &ParentHiddenTypes
;
1695 llvm::SmallPtrSet
<CanQualType
, 8> HiddenTypesBuffer
;
1697 // Collect the direct conversions and figure out which conversions
1698 // will be hidden in the subclasses.
1699 CXXRecordDecl::conversion_iterator ConvI
= Record
->conversion_begin();
1700 CXXRecordDecl::conversion_iterator ConvE
= Record
->conversion_end();
1701 if (ConvI
!= ConvE
) {
1702 HiddenTypesBuffer
= ParentHiddenTypes
;
1703 HiddenTypes
= &HiddenTypesBuffer
;
1705 for (CXXRecordDecl::conversion_iterator I
= ConvI
; I
!= ConvE
; ++I
) {
1706 CanQualType
ConvType(GetConversionType(Context
, I
.getDecl()));
1707 bool Hidden
= ParentHiddenTypes
.count(ConvType
);
1709 HiddenTypesBuffer
.insert(ConvType
);
1711 // If this conversion is hidden and we're in a virtual base,
1712 // remember that it's hidden along some inheritance path.
1713 if (Hidden
&& InVirtual
)
1714 HiddenVBaseCs
.insert(cast
<NamedDecl
>(I
.getDecl()->getCanonicalDecl()));
1716 // If this conversion isn't hidden, add it to the appropriate output.
1718 AccessSpecifier IAccess
1719 = CXXRecordDecl::MergeAccess(Access
, I
.getAccess());
1722 VOutput
.addDecl(I
.getDecl(), IAccess
);
1724 Output
.addDecl(Context
, I
.getDecl(), IAccess
);
1729 // Collect information recursively from any base classes.
1730 for (const auto &I
: Record
->bases()) {
1731 const auto *RT
= I
.getType()->getAs
<RecordType
>();
1734 AccessSpecifier BaseAccess
1735 = CXXRecordDecl::MergeAccess(Access
, I
.getAccessSpecifier());
1736 bool BaseInVirtual
= InVirtual
|| I
.isVirtual();
1738 auto *Base
= cast
<CXXRecordDecl
>(RT
->getDecl());
1739 CollectVisibleConversions(Context
, Base
, BaseInVirtual
, BaseAccess
,
1740 *HiddenTypes
, Output
, VOutput
, HiddenVBaseCs
);
1744 /// Collect the visible conversions of a class.
1746 /// This would be extremely straightforward if it weren't for virtual
1747 /// bases. It might be worth special-casing that, really.
1748 static void CollectVisibleConversions(ASTContext
&Context
,
1749 const CXXRecordDecl
*Record
,
1750 ASTUnresolvedSet
&Output
) {
1751 // The collection of all conversions in virtual bases that we've
1752 // found. These will be added to the output as long as they don't
1753 // appear in the hidden-conversions set.
1754 UnresolvedSet
<8> VBaseCs
;
1756 // The set of conversions in virtual bases that we've determined to
1758 llvm::SmallPtrSet
<NamedDecl
*, 8> HiddenVBaseCs
;
1760 // The set of types hidden by classes derived from this one.
1761 llvm::SmallPtrSet
<CanQualType
, 8> HiddenTypes
;
1763 // Go ahead and collect the direct conversions and add them to the
1764 // hidden-types set.
1765 CXXRecordDecl::conversion_iterator ConvI
= Record
->conversion_begin();
1766 CXXRecordDecl::conversion_iterator ConvE
= Record
->conversion_end();
1767 Output
.append(Context
, ConvI
, ConvE
);
1768 for (; ConvI
!= ConvE
; ++ConvI
)
1769 HiddenTypes
.insert(GetConversionType(Context
, ConvI
.getDecl()));
1771 // Recursively collect conversions from base classes.
1772 for (const auto &I
: Record
->bases()) {
1773 const auto *RT
= I
.getType()->getAs
<RecordType
>();
1776 CollectVisibleConversions(Context
, cast
<CXXRecordDecl
>(RT
->getDecl()),
1777 I
.isVirtual(), I
.getAccessSpecifier(),
1778 HiddenTypes
, Output
, VBaseCs
, HiddenVBaseCs
);
1781 // Add any unhidden conversions provided by virtual bases.
1782 for (UnresolvedSetIterator I
= VBaseCs
.begin(), E
= VBaseCs
.end();
1784 if (!HiddenVBaseCs
.count(cast
<NamedDecl
>(I
.getDecl()->getCanonicalDecl())))
1785 Output
.addDecl(Context
, I
.getDecl(), I
.getAccess());
1789 /// getVisibleConversionFunctions - get all conversion functions visible
1790 /// in current class; including conversion function templates.
1791 llvm::iterator_range
<CXXRecordDecl::conversion_iterator
>
1792 CXXRecordDecl::getVisibleConversionFunctions() const {
1793 ASTContext
&Ctx
= getASTContext();
1795 ASTUnresolvedSet
*Set
;
1796 if (bases_begin() == bases_end()) {
1797 // If root class, all conversions are visible.
1798 Set
= &data().Conversions
.get(Ctx
);
1800 Set
= &data().VisibleConversions
.get(Ctx
);
1801 // If visible conversion list is not evaluated, evaluate it.
1802 if (!data().ComputedVisibleConversions
) {
1803 CollectVisibleConversions(Ctx
, this, *Set
);
1804 data().ComputedVisibleConversions
= true;
1807 return llvm::make_range(Set
->begin(), Set
->end());
1810 void CXXRecordDecl::removeConversion(const NamedDecl
*ConvDecl
) {
1811 // This operation is O(N) but extremely rare. Sema only uses it to
1812 // remove UsingShadowDecls in a class that were followed by a direct
1813 // declaration, e.g.:
1815 // using B::operator int;
1818 // This is uncommon by itself and even more uncommon in conjunction
1819 // with sufficiently large numbers of directly-declared conversions
1820 // that asymptotic behavior matters.
1822 ASTUnresolvedSet
&Convs
= data().Conversions
.get(getASTContext());
1823 for (unsigned I
= 0, E
= Convs
.size(); I
!= E
; ++I
) {
1824 if (Convs
[I
].getDecl() == ConvDecl
) {
1826 assert(!llvm::is_contained(Convs
, ConvDecl
) &&
1827 "conversion was found multiple times in unresolved set");
1832 llvm_unreachable("conversion not found in set!");
1835 CXXRecordDecl
*CXXRecordDecl::getInstantiatedFromMemberClass() const {
1836 if (MemberSpecializationInfo
*MSInfo
= getMemberSpecializationInfo())
1837 return cast
<CXXRecordDecl
>(MSInfo
->getInstantiatedFrom());
1842 MemberSpecializationInfo
*CXXRecordDecl::getMemberSpecializationInfo() const {
1843 return TemplateOrInstantiation
.dyn_cast
<MemberSpecializationInfo
*>();
1847 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl
*RD
,
1848 TemplateSpecializationKind TSK
) {
1849 assert(TemplateOrInstantiation
.isNull() &&
1850 "Previous template or instantiation?");
1851 assert(!isa
<ClassTemplatePartialSpecializationDecl
>(this));
1852 TemplateOrInstantiation
1853 = new (getASTContext()) MemberSpecializationInfo(RD
, TSK
);
1856 ClassTemplateDecl
*CXXRecordDecl::getDescribedClassTemplate() const {
1857 return TemplateOrInstantiation
.dyn_cast
<ClassTemplateDecl
*>();
1860 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl
*Template
) {
1861 TemplateOrInstantiation
= Template
;
1864 TemplateSpecializationKind
CXXRecordDecl::getTemplateSpecializationKind() const{
1865 if (const auto *Spec
= dyn_cast
<ClassTemplateSpecializationDecl
>(this))
1866 return Spec
->getSpecializationKind();
1868 if (MemberSpecializationInfo
*MSInfo
= getMemberSpecializationInfo())
1869 return MSInfo
->getTemplateSpecializationKind();
1871 return TSK_Undeclared
;
1875 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK
) {
1876 if (auto *Spec
= dyn_cast
<ClassTemplateSpecializationDecl
>(this)) {
1877 Spec
->setSpecializationKind(TSK
);
1881 if (MemberSpecializationInfo
*MSInfo
= getMemberSpecializationInfo()) {
1882 MSInfo
->setTemplateSpecializationKind(TSK
);
1886 llvm_unreachable("Not a class template or member class specialization");
1889 const CXXRecordDecl
*CXXRecordDecl::getTemplateInstantiationPattern() const {
1890 auto GetDefinitionOrSelf
=
1891 [](const CXXRecordDecl
*D
) -> const CXXRecordDecl
* {
1892 if (auto *Def
= D
->getDefinition())
1897 // If it's a class template specialization, find the template or partial
1898 // specialization from which it was instantiated.
1899 if (auto *TD
= dyn_cast
<ClassTemplateSpecializationDecl
>(this)) {
1900 auto From
= TD
->getInstantiatedFrom();
1901 if (auto *CTD
= From
.dyn_cast
<ClassTemplateDecl
*>()) {
1902 while (auto *NewCTD
= CTD
->getInstantiatedFromMemberTemplate()) {
1903 if (NewCTD
->isMemberSpecialization())
1907 return GetDefinitionOrSelf(CTD
->getTemplatedDecl());
1910 From
.dyn_cast
<ClassTemplatePartialSpecializationDecl
*>()) {
1911 while (auto *NewCTPSD
= CTPSD
->getInstantiatedFromMember()) {
1912 if (NewCTPSD
->isMemberSpecialization())
1916 return GetDefinitionOrSelf(CTPSD
);
1920 if (MemberSpecializationInfo
*MSInfo
= getMemberSpecializationInfo()) {
1921 if (isTemplateInstantiation(MSInfo
->getTemplateSpecializationKind())) {
1922 const CXXRecordDecl
*RD
= this;
1923 while (auto *NewRD
= RD
->getInstantiatedFromMemberClass())
1925 return GetDefinitionOrSelf(RD
);
1929 assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1930 "couldn't find pattern for class template instantiation");
1934 CXXDestructorDecl
*CXXRecordDecl::getDestructor() const {
1935 ASTContext
&Context
= getASTContext();
1936 QualType ClassType
= Context
.getTypeDeclType(this);
1938 DeclarationName Name
1939 = Context
.DeclarationNames
.getCXXDestructorName(
1940 Context
.getCanonicalType(ClassType
));
1942 DeclContext::lookup_result R
= lookup(Name
);
1944 // If a destructor was marked as not selected, we skip it. We don't always
1945 // have a selected destructor: dependent types, unnamed structs.
1946 for (auto *Decl
: R
) {
1947 auto* DD
= dyn_cast
<CXXDestructorDecl
>(Decl
);
1948 if (DD
&& !DD
->isIneligibleOrNotSelected())
1954 static bool isDeclContextInNamespace(const DeclContext
*DC
) {
1955 while (!DC
->isTranslationUnit()) {
1956 if (DC
->isNamespace())
1958 DC
= DC
->getParent();
1963 bool CXXRecordDecl::isInterfaceLike() const {
1964 assert(hasDefinition() && "checking for interface-like without a definition");
1965 // All __interfaces are inheritently interface-like.
1969 // Interface-like types cannot have a user declared constructor, destructor,
1970 // friends, VBases, conversion functions, or fields. Additionally, lambdas
1971 // cannot be interface types.
1972 if (isLambda() || hasUserDeclaredConstructor() ||
1973 hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
1974 getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
1977 // No interface-like type can have a method with a definition.
1978 for (const auto *const Method
: methods())
1979 if (Method
->isDefined() && !Method
->isImplicit())
1982 // Check "Special" types.
1983 const auto *Uuid
= getAttr
<UuidAttr
>();
1984 // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
1985 // extern C++ block directly in the TU. These are only valid if in one
1986 // of these two situations.
1987 if (Uuid
&& isStruct() && !getDeclContext()->isExternCContext() &&
1988 !isDeclContextInNamespace(getDeclContext()) &&
1989 ((getName() == "IUnknown" &&
1990 Uuid
->getGuid() == "00000000-0000-0000-C000-000000000046") ||
1991 (getName() == "IDispatch" &&
1992 Uuid
->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
1993 if (getNumBases() > 0)
1998 // FIXME: Any access specifiers is supposed to make this no longer interface
2001 // If this isn't a 'special' type, it must have a single interface-like base.
2002 if (getNumBases() != 1)
2005 const auto BaseSpec
= *bases_begin();
2006 if (BaseSpec
.isVirtual() || BaseSpec
.getAccessSpecifier() != AS_public
)
2008 const auto *Base
= BaseSpec
.getType()->getAsCXXRecordDecl();
2009 if (Base
->isInterface() || !Base
->isInterfaceLike())
2014 void CXXRecordDecl::completeDefinition() {
2015 completeDefinition(nullptr);
2018 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap
*FinalOverriders
) {
2019 RecordDecl::completeDefinition();
2021 // If the class may be abstract (but hasn't been marked as such), check for
2022 // any pure final overriders.
2023 if (mayBeAbstract()) {
2024 CXXFinalOverriderMap MyFinalOverriders
;
2025 if (!FinalOverriders
) {
2026 getFinalOverriders(MyFinalOverriders
);
2027 FinalOverriders
= &MyFinalOverriders
;
2031 for (CXXFinalOverriderMap::iterator M
= FinalOverriders
->begin(),
2032 MEnd
= FinalOverriders
->end();
2033 M
!= MEnd
&& !Done
; ++M
) {
2034 for (OverridingMethods::iterator SO
= M
->second
.begin(),
2035 SOEnd
= M
->second
.end();
2036 SO
!= SOEnd
&& !Done
; ++SO
) {
2037 assert(SO
->second
.size() > 0 &&
2038 "All virtual functions have overriding virtual functions");
2040 // C++ [class.abstract]p4:
2041 // A class is abstract if it contains or inherits at least one
2042 // pure virtual function for which the final overrider is pure
2044 if (SO
->second
.front().Method
->isPure()) {
2045 data().Abstract
= true;
2053 // Set access bits correctly on the directly-declared conversions.
2054 for (conversion_iterator I
= conversion_begin(), E
= conversion_end();
2056 I
.setAccess((*I
)->getAccess());
2059 bool CXXRecordDecl::mayBeAbstract() const {
2060 if (data().Abstract
|| isInvalidDecl() || !data().Polymorphic
||
2061 isDependentContext())
2064 for (const auto &B
: bases()) {
2065 const auto *BaseDecl
=
2066 cast
<CXXRecordDecl
>(B
.getType()->castAs
<RecordType
>()->getDecl());
2067 if (BaseDecl
->isAbstract())
2074 bool CXXRecordDecl::isEffectivelyFinal() const {
2075 auto *Def
= getDefinition();
2078 if (Def
->hasAttr
<FinalAttr
>())
2080 if (const auto *Dtor
= Def
->getDestructor())
2081 if (Dtor
->hasAttr
<FinalAttr
>())
2086 void CXXDeductionGuideDecl::anchor() {}
2088 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other
) const {
2089 if ((getKind() != Other
.getKind() ||
2090 getKind() == ExplicitSpecKind::Unresolved
)) {
2091 if (getKind() == ExplicitSpecKind::Unresolved
&&
2092 Other
.getKind() == ExplicitSpecKind::Unresolved
) {
2093 ODRHash SelfHash
, OtherHash
;
2094 SelfHash
.AddStmt(getExpr());
2095 OtherHash
.AddStmt(Other
.getExpr());
2096 return SelfHash
.CalculateHash() == OtherHash
.CalculateHash();
2103 ExplicitSpecifier
ExplicitSpecifier::getFromDecl(FunctionDecl
*Function
) {
2104 switch (Function
->getDeclKind()) {
2105 case Decl::Kind::CXXConstructor
:
2106 return cast
<CXXConstructorDecl
>(Function
)->getExplicitSpecifier();
2107 case Decl::Kind::CXXConversion
:
2108 return cast
<CXXConversionDecl
>(Function
)->getExplicitSpecifier();
2109 case Decl::Kind::CXXDeductionGuide
:
2110 return cast
<CXXDeductionGuideDecl
>(Function
)->getExplicitSpecifier();
2116 CXXDeductionGuideDecl
*CXXDeductionGuideDecl::Create(
2117 ASTContext
&C
, DeclContext
*DC
, SourceLocation StartLoc
,
2118 ExplicitSpecifier ES
, const DeclarationNameInfo
&NameInfo
, QualType T
,
2119 TypeSourceInfo
*TInfo
, SourceLocation EndLocation
, CXXConstructorDecl
*Ctor
,
2120 DeductionCandidate Kind
) {
2121 return new (C
, DC
) CXXDeductionGuideDecl(C
, DC
, StartLoc
, ES
, NameInfo
, T
,
2122 TInfo
, EndLocation
, Ctor
, Kind
);
2125 CXXDeductionGuideDecl
*CXXDeductionGuideDecl::CreateDeserialized(ASTContext
&C
,
2127 return new (C
, ID
) CXXDeductionGuideDecl(
2128 C
, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(),
2129 QualType(), nullptr, SourceLocation(), nullptr,
2130 DeductionCandidate::Normal
);
2133 RequiresExprBodyDecl
*RequiresExprBodyDecl::Create(
2134 ASTContext
&C
, DeclContext
*DC
, SourceLocation StartLoc
) {
2135 return new (C
, DC
) RequiresExprBodyDecl(C
, DC
, StartLoc
);
2138 RequiresExprBodyDecl
*RequiresExprBodyDecl::CreateDeserialized(ASTContext
&C
,
2140 return new (C
, ID
) RequiresExprBodyDecl(C
, nullptr, SourceLocation());
2143 void CXXMethodDecl::anchor() {}
2145 bool CXXMethodDecl::isStatic() const {
2146 const CXXMethodDecl
*MD
= getCanonicalDecl();
2148 if (MD
->getStorageClass() == SC_Static
)
2151 OverloadedOperatorKind OOK
= getDeclName().getCXXOverloadedOperator();
2152 return isStaticOverloadedOperator(OOK
);
2155 static bool recursivelyOverrides(const CXXMethodDecl
*DerivedMD
,
2156 const CXXMethodDecl
*BaseMD
) {
2157 for (const CXXMethodDecl
*MD
: DerivedMD
->overridden_methods()) {
2158 if (MD
->getCanonicalDecl() == BaseMD
->getCanonicalDecl())
2160 if (recursivelyOverrides(MD
, BaseMD
))
2167 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl
*RD
,
2169 if (this->getParent()->getCanonicalDecl() == RD
->getCanonicalDecl())
2172 // Lookup doesn't work for destructors, so handle them separately.
2173 if (isa
<CXXDestructorDecl
>(this)) {
2174 CXXMethodDecl
*MD
= RD
->getDestructor();
2176 if (recursivelyOverrides(MD
, this))
2178 if (MayBeBase
&& recursivelyOverrides(this, MD
))
2184 for (auto *ND
: RD
->lookup(getDeclName())) {
2185 auto *MD
= dyn_cast
<CXXMethodDecl
>(ND
);
2188 if (recursivelyOverrides(MD
, this))
2190 if (MayBeBase
&& recursivelyOverrides(this, MD
))
2198 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl
*RD
,
2200 if (auto *MD
= getCorrespondingMethodDeclaredInClass(RD
, MayBeBase
))
2203 llvm::SmallVector
<CXXMethodDecl
*, 4> FinalOverriders
;
2204 auto AddFinalOverrider
= [&](CXXMethodDecl
*D
) {
2205 // If this function is overridden by a candidate final overrider, it is not
2206 // a final overrider.
2207 for (CXXMethodDecl
*OtherD
: FinalOverriders
) {
2208 if (declaresSameEntity(D
, OtherD
) || recursivelyOverrides(OtherD
, D
))
2212 // Other candidate final overriders might be overridden by this function.
2213 llvm::erase_if(FinalOverriders
, [&](CXXMethodDecl
*OtherD
) {
2214 return recursivelyOverrides(D
, OtherD
);
2217 FinalOverriders
.push_back(D
);
2220 for (const auto &I
: RD
->bases()) {
2221 const RecordType
*RT
= I
.getType()->getAs
<RecordType
>();
2224 const auto *Base
= cast
<CXXRecordDecl
>(RT
->getDecl());
2225 if (CXXMethodDecl
*D
= this->getCorrespondingMethodInClass(Base
))
2226 AddFinalOverrider(D
);
2229 return FinalOverriders
.size() == 1 ? FinalOverriders
.front() : nullptr;
2233 CXXMethodDecl::Create(ASTContext
&C
, CXXRecordDecl
*RD
, SourceLocation StartLoc
,
2234 const DeclarationNameInfo
&NameInfo
, QualType T
,
2235 TypeSourceInfo
*TInfo
, StorageClass SC
, bool UsesFPIntrin
,
2236 bool isInline
, ConstexprSpecKind ConstexprKind
,
2237 SourceLocation EndLocation
,
2238 Expr
*TrailingRequiresClause
) {
2239 return new (C
, RD
) CXXMethodDecl(
2240 CXXMethod
, C
, RD
, StartLoc
, NameInfo
, T
, TInfo
, SC
, UsesFPIntrin
,
2241 isInline
, ConstexprKind
, EndLocation
, TrailingRequiresClause
);
2244 CXXMethodDecl
*CXXMethodDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
2245 return new (C
, ID
) CXXMethodDecl(
2246 CXXMethod
, C
, nullptr, SourceLocation(), DeclarationNameInfo(),
2247 QualType(), nullptr, SC_None
, false, false,
2248 ConstexprSpecKind::Unspecified
, SourceLocation(), nullptr);
2251 CXXMethodDecl
*CXXMethodDecl::getDevirtualizedMethod(const Expr
*Base
,
2253 assert(isVirtual() && "this method is expected to be virtual");
2255 // When building with -fapple-kext, all calls must go through the vtable since
2256 // the kernel linker can do runtime patching of vtables.
2260 // If the member function is marked 'final', we know that it can't be
2261 // overridden and can therefore devirtualize it unless it's pure virtual.
2262 if (hasAttr
<FinalAttr
>())
2263 return isPure() ? nullptr : this;
2265 // If Base is unknown, we cannot devirtualize.
2269 // If the base expression (after skipping derived-to-base conversions) is a
2270 // class prvalue, then we can devirtualize.
2271 Base
= Base
->getBestDynamicClassTypeExpr();
2272 if (Base
->isPRValue() && Base
->getType()->isRecordType())
2275 // If we don't even know what we would call, we can't devirtualize.
2276 const CXXRecordDecl
*BestDynamicDecl
= Base
->getBestDynamicClassType();
2277 if (!BestDynamicDecl
)
2280 // There may be a method corresponding to MD in a derived class.
2281 CXXMethodDecl
*DevirtualizedMethod
=
2282 getCorrespondingMethodInClass(BestDynamicDecl
);
2284 // If there final overrider in the dynamic type is ambiguous, we can't
2285 // devirtualize this call.
2286 if (!DevirtualizedMethod
)
2289 // If that method is pure virtual, we can't devirtualize. If this code is
2290 // reached, the result would be UB, not a direct call to the derived class
2291 // function, and we can't assume the derived class function is defined.
2292 if (DevirtualizedMethod
->isPure())
2295 // If that method is marked final, we can devirtualize it.
2296 if (DevirtualizedMethod
->hasAttr
<FinalAttr
>())
2297 return DevirtualizedMethod
;
2299 // Similarly, if the class itself or its destructor is marked 'final',
2300 // the class can't be derived from and we can therefore devirtualize the
2301 // member function call.
2302 if (BestDynamicDecl
->isEffectivelyFinal())
2303 return DevirtualizedMethod
;
2305 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(Base
)) {
2306 if (const auto *VD
= dyn_cast
<VarDecl
>(DRE
->getDecl()))
2307 if (VD
->getType()->isRecordType())
2308 // This is a record decl. We know the type and can devirtualize it.
2309 return DevirtualizedMethod
;
2314 // We can devirtualize calls on an object accessed by a class member access
2315 // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2316 // a derived class object constructed in the same location.
2317 if (const auto *ME
= dyn_cast
<MemberExpr
>(Base
)) {
2318 const ValueDecl
*VD
= ME
->getMemberDecl();
2319 return VD
->getType()->isRecordType() ? DevirtualizedMethod
: nullptr;
2322 // Likewise for calls on an object accessed by a (non-reference) pointer to
2324 if (auto *BO
= dyn_cast
<BinaryOperator
>(Base
)) {
2325 if (BO
->isPtrMemOp()) {
2326 auto *MPT
= BO
->getRHS()->getType()->castAs
<MemberPointerType
>();
2327 if (MPT
->getPointeeType()->isRecordType())
2328 return DevirtualizedMethod
;
2332 // We can't devirtualize the call.
2336 bool CXXMethodDecl::isUsualDeallocationFunction(
2337 SmallVectorImpl
<const FunctionDecl
*> &PreventedBy
) const {
2338 assert(PreventedBy
.empty() && "PreventedBy is expected to be empty");
2339 if (getOverloadedOperator() != OO_Delete
&&
2340 getOverloadedOperator() != OO_Array_Delete
)
2343 // C++ [basic.stc.dynamic.deallocation]p2:
2344 // A template instance is never a usual deallocation function,
2345 // regardless of its signature.
2346 if (getPrimaryTemplate())
2349 // C++ [basic.stc.dynamic.deallocation]p2:
2350 // If a class T has a member deallocation function named operator delete
2351 // with exactly one parameter, then that function is a usual (non-placement)
2352 // deallocation function. [...]
2353 if (getNumParams() == 1)
2355 unsigned UsualParams
= 1;
2358 // A destroying operator delete is a usual deallocation function if
2359 // removing the std::destroying_delete_t parameter and changing the
2360 // first parameter type from T* to void* results in the signature of
2361 // a usual deallocation function.
2362 if (isDestroyingOperatorDelete())
2365 // C++ <=14 [basic.stc.dynamic.deallocation]p2:
2366 // [...] If class T does not declare such an operator delete but does
2367 // declare a member deallocation function named operator delete with
2368 // exactly two parameters, the second of which has type std::size_t (18.1),
2369 // then this function is a usual deallocation function.
2371 // C++17 says a usual deallocation function is one with the signature
2372 // (void* [, size_t] [, std::align_val_t] [, ...])
2373 // and all such functions are usual deallocation functions. It's not clear
2374 // that allowing varargs functions was intentional.
2375 ASTContext
&Context
= getASTContext();
2376 if (UsualParams
< getNumParams() &&
2377 Context
.hasSameUnqualifiedType(getParamDecl(UsualParams
)->getType(),
2378 Context
.getSizeType()))
2381 if (UsualParams
< getNumParams() &&
2382 getParamDecl(UsualParams
)->getType()->isAlignValT())
2385 if (UsualParams
!= getNumParams())
2388 // In C++17 onwards, all potential usual deallocation functions are actual
2389 // usual deallocation functions. Honor this behavior when post-C++14
2390 // deallocation functions are offered as extensions too.
2391 // FIXME(EricWF): Destroying Delete should be a language option. How do we
2392 // handle when destroying delete is used prior to C++17?
2393 if (Context
.getLangOpts().CPlusPlus17
||
2394 Context
.getLangOpts().AlignedAllocation
||
2395 isDestroyingOperatorDelete())
2398 // This function is a usual deallocation function if there are no
2399 // single-parameter deallocation functions of the same kind.
2400 DeclContext::lookup_result R
= getDeclContext()->lookup(getDeclName());
2402 for (const auto *D
: R
) {
2403 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
2404 if (FD
->getNumParams() == 1) {
2405 PreventedBy
.push_back(FD
);
2413 bool CXXMethodDecl::isExplicitObjectMemberFunction() const {
2414 // C++2b [dcl.fct]p6:
2415 // An explicit object member function is a non-static member
2416 // function with an explicit object parameter
2417 return !isStatic() && hasCXXExplicitFunctionObjectParameter();
2420 bool CXXMethodDecl::isImplicitObjectMemberFunction() const {
2421 return !isStatic() && !hasCXXExplicitFunctionObjectParameter();
2424 bool CXXMethodDecl::isCopyAssignmentOperator() const {
2425 // C++0x [class.copy]p17:
2426 // A user-declared copy assignment operator X::operator= is a non-static
2427 // non-template member function of class X with exactly one parameter of
2428 // type X, X&, const X&, volatile X& or const volatile X&.
2429 if (/*operator=*/getOverloadedOperator() != OO_Equal
||
2430 /*non-static*/ isStatic() ||
2432 /*non-template*/ getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2433 getNumExplicitParams() != 1)
2436 QualType ParamType
= getNonObjectParameter(0)->getType();
2437 if (const auto *Ref
= ParamType
->getAs
<LValueReferenceType
>())
2438 ParamType
= Ref
->getPointeeType();
2440 ASTContext
&Context
= getASTContext();
2442 = Context
.getCanonicalType(Context
.getTypeDeclType(getParent()));
2443 return Context
.hasSameUnqualifiedType(ClassType
, ParamType
);
2446 bool CXXMethodDecl::isMoveAssignmentOperator() const {
2447 // C++0x [class.copy]p19:
2448 // A user-declared move assignment operator X::operator= is a non-static
2449 // non-template member function of class X with exactly one parameter of type
2450 // X&&, const X&&, volatile X&&, or const volatile X&&.
2451 if (getOverloadedOperator() != OO_Equal
|| isStatic() ||
2452 getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2453 getNumExplicitParams() != 1)
2456 QualType ParamType
= getNonObjectParameter(0)->getType();
2457 if (!ParamType
->isRValueReferenceType())
2459 ParamType
= ParamType
->getPointeeType();
2461 ASTContext
&Context
= getASTContext();
2463 = Context
.getCanonicalType(Context
.getTypeDeclType(getParent()));
2464 return Context
.hasSameUnqualifiedType(ClassType
, ParamType
);
2467 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl
*MD
) {
2468 assert(MD
->isCanonicalDecl() && "Method is not canonical!");
2469 assert(!MD
->getParent()->isDependentContext() &&
2470 "Can't add an overridden method to a class template!");
2471 assert(MD
->isVirtual() && "Method is not virtual!");
2473 getASTContext().addOverriddenMethod(this, MD
);
2476 CXXMethodDecl::method_iterator
CXXMethodDecl::begin_overridden_methods() const {
2477 if (isa
<CXXConstructorDecl
>(this)) return nullptr;
2478 return getASTContext().overridden_methods_begin(this);
2481 CXXMethodDecl::method_iterator
CXXMethodDecl::end_overridden_methods() const {
2482 if (isa
<CXXConstructorDecl
>(this)) return nullptr;
2483 return getASTContext().overridden_methods_end(this);
2486 unsigned CXXMethodDecl::size_overridden_methods() const {
2487 if (isa
<CXXConstructorDecl
>(this)) return 0;
2488 return getASTContext().overridden_methods_size(this);
2491 CXXMethodDecl::overridden_method_range
2492 CXXMethodDecl::overridden_methods() const {
2493 if (isa
<CXXConstructorDecl
>(this))
2494 return overridden_method_range(nullptr, nullptr);
2495 return getASTContext().overridden_methods(this);
2498 static QualType
getThisObjectType(ASTContext
&C
, const FunctionProtoType
*FPT
,
2499 const CXXRecordDecl
*Decl
) {
2500 QualType ClassTy
= C
.getTypeDeclType(Decl
);
2501 return C
.getQualifiedType(ClassTy
, FPT
->getMethodQuals());
2504 QualType
CXXMethodDecl::getThisType(const FunctionProtoType
*FPT
,
2505 const CXXRecordDecl
*Decl
) {
2506 ASTContext
&C
= Decl
->getASTContext();
2507 QualType ObjectTy
= ::getThisObjectType(C
, FPT
, Decl
);
2508 return C
.getLangOpts().HLSL
? C
.getLValueReferenceType(ObjectTy
)
2509 : C
.getPointerType(ObjectTy
);
2512 QualType
CXXMethodDecl::getThisType() const {
2513 // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
2514 // If the member function is declared const, the type of this is const X*,
2515 // if the member function is declared volatile, the type of this is
2516 // volatile X*, and if the member function is declared const volatile,
2517 // the type of this is const volatile X*.
2518 assert(isInstance() && "No 'this' for static methods!");
2519 return CXXMethodDecl::getThisType(getType()->castAs
<FunctionProtoType
>(),
2523 QualType
CXXMethodDecl::getFunctionObjectParameterReferenceType() const {
2524 if (isExplicitObjectMemberFunction())
2525 return parameters()[0]->getType();
2527 ASTContext
&C
= getParentASTContext();
2528 const FunctionProtoType
*FPT
= getType()->castAs
<FunctionProtoType
>();
2529 QualType Type
= ::getThisObjectType(C
, FPT
, getParent());
2530 RefQualifierKind RK
= FPT
->getRefQualifier();
2531 if (RK
== RefQualifierKind::RQ_RValue
)
2532 return C
.getRValueReferenceType(Type
);
2533 return C
.getLValueReferenceType(Type
);
2536 bool CXXMethodDecl::hasInlineBody() const {
2537 // If this function is a template instantiation, look at the template from
2538 // which it was instantiated.
2539 const FunctionDecl
*CheckFn
= getTemplateInstantiationPattern();
2543 const FunctionDecl
*fn
;
2544 return CheckFn
->isDefined(fn
) && !fn
->isOutOfLine() &&
2545 (fn
->doesThisDeclarationHaveABody() || fn
->willHaveBody());
2548 bool CXXMethodDecl::isLambdaStaticInvoker() const {
2549 const CXXRecordDecl
*P
= getParent();
2550 return P
->isLambda() && getDeclName().isIdentifier() &&
2551 getName() == getLambdaStaticInvokerName();
2554 CXXCtorInitializer::CXXCtorInitializer(ASTContext
&Context
,
2555 TypeSourceInfo
*TInfo
, bool IsVirtual
,
2556 SourceLocation L
, Expr
*Init
,
2558 SourceLocation EllipsisLoc
)
2559 : Initializee(TInfo
), Init(Init
), MemberOrEllipsisLocation(EllipsisLoc
),
2560 LParenLoc(L
), RParenLoc(R
), IsDelegating(false), IsVirtual(IsVirtual
),
2561 IsWritten(false), SourceOrder(0) {}
2563 CXXCtorInitializer::CXXCtorInitializer(ASTContext
&Context
, FieldDecl
*Member
,
2564 SourceLocation MemberLoc
,
2565 SourceLocation L
, Expr
*Init
,
2567 : Initializee(Member
), Init(Init
), MemberOrEllipsisLocation(MemberLoc
),
2568 LParenLoc(L
), RParenLoc(R
), IsDelegating(false), IsVirtual(false),
2569 IsWritten(false), SourceOrder(0) {}
2571 CXXCtorInitializer::CXXCtorInitializer(ASTContext
&Context
,
2572 IndirectFieldDecl
*Member
,
2573 SourceLocation MemberLoc
,
2574 SourceLocation L
, Expr
*Init
,
2576 : Initializee(Member
), Init(Init
), MemberOrEllipsisLocation(MemberLoc
),
2577 LParenLoc(L
), RParenLoc(R
), IsDelegating(false), IsVirtual(false),
2578 IsWritten(false), SourceOrder(0) {}
2580 CXXCtorInitializer::CXXCtorInitializer(ASTContext
&Context
,
2581 TypeSourceInfo
*TInfo
,
2582 SourceLocation L
, Expr
*Init
,
2584 : Initializee(TInfo
), Init(Init
), LParenLoc(L
), RParenLoc(R
),
2585 IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
2587 int64_t CXXCtorInitializer::getID(const ASTContext
&Context
) const {
2588 return Context
.getAllocator()
2589 .identifyKnownAlignedObject
<CXXCtorInitializer
>(this);
2592 TypeLoc
CXXCtorInitializer::getBaseClassLoc() const {
2593 if (isBaseInitializer())
2594 return Initializee
.get
<TypeSourceInfo
*>()->getTypeLoc();
2599 const Type
*CXXCtorInitializer::getBaseClass() const {
2600 if (isBaseInitializer())
2601 return Initializee
.get
<TypeSourceInfo
*>()->getType().getTypePtr();
2606 SourceLocation
CXXCtorInitializer::getSourceLocation() const {
2607 if (isInClassMemberInitializer())
2608 return getAnyMember()->getLocation();
2610 if (isAnyMemberInitializer())
2611 return getMemberLocation();
2613 if (const auto *TSInfo
= Initializee
.get
<TypeSourceInfo
*>())
2614 return TSInfo
->getTypeLoc().getBeginLoc();
2619 SourceRange
CXXCtorInitializer::getSourceRange() const {
2620 if (isInClassMemberInitializer()) {
2621 FieldDecl
*D
= getAnyMember();
2622 if (Expr
*I
= D
->getInClassInitializer())
2623 return I
->getSourceRange();
2627 return SourceRange(getSourceLocation(), getRParenLoc());
2630 CXXConstructorDecl::CXXConstructorDecl(
2631 ASTContext
&C
, CXXRecordDecl
*RD
, SourceLocation StartLoc
,
2632 const DeclarationNameInfo
&NameInfo
, QualType T
, TypeSourceInfo
*TInfo
,
2633 ExplicitSpecifier ES
, bool UsesFPIntrin
, bool isInline
,
2634 bool isImplicitlyDeclared
, ConstexprSpecKind ConstexprKind
,
2635 InheritedConstructor Inherited
, Expr
*TrailingRequiresClause
)
2636 : CXXMethodDecl(CXXConstructor
, C
, RD
, StartLoc
, NameInfo
, T
, TInfo
,
2637 SC_None
, UsesFPIntrin
, isInline
, ConstexprKind
,
2638 SourceLocation(), TrailingRequiresClause
) {
2639 setNumCtorInitializers(0);
2640 setInheritingConstructor(static_cast<bool>(Inherited
));
2641 setImplicit(isImplicitlyDeclared
);
2642 CXXConstructorDeclBits
.HasTrailingExplicitSpecifier
= ES
.getExpr() ? 1 : 0;
2644 *getTrailingObjects
<InheritedConstructor
>() = Inherited
;
2645 setExplicitSpecifier(ES
);
2648 void CXXConstructorDecl::anchor() {}
2650 CXXConstructorDecl
*CXXConstructorDecl::CreateDeserialized(ASTContext
&C
,
2652 uint64_t AllocKind
) {
2653 bool hasTrailingExplicit
= static_cast<bool>(AllocKind
& TAKHasTailExplicit
);
2654 bool isInheritingConstructor
=
2655 static_cast<bool>(AllocKind
& TAKInheritsConstructor
);
2657 additionalSizeToAlloc
<InheritedConstructor
, ExplicitSpecifier
>(
2658 isInheritingConstructor
, hasTrailingExplicit
);
2659 auto *Result
= new (C
, ID
, Extra
) CXXConstructorDecl(
2660 C
, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2661 ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified
,
2662 InheritedConstructor(), nullptr);
2663 Result
->setInheritingConstructor(isInheritingConstructor
);
2664 Result
->CXXConstructorDeclBits
.HasTrailingExplicitSpecifier
=
2665 hasTrailingExplicit
;
2666 Result
->setExplicitSpecifier(ExplicitSpecifier());
2670 CXXConstructorDecl
*CXXConstructorDecl::Create(
2671 ASTContext
&C
, CXXRecordDecl
*RD
, SourceLocation StartLoc
,
2672 const DeclarationNameInfo
&NameInfo
, QualType T
, TypeSourceInfo
*TInfo
,
2673 ExplicitSpecifier ES
, bool UsesFPIntrin
, bool isInline
,
2674 bool isImplicitlyDeclared
, ConstexprSpecKind ConstexprKind
,
2675 InheritedConstructor Inherited
, Expr
*TrailingRequiresClause
) {
2676 assert(NameInfo
.getName().getNameKind()
2677 == DeclarationName::CXXConstructorName
&&
2678 "Name must refer to a constructor");
2680 additionalSizeToAlloc
<InheritedConstructor
, ExplicitSpecifier
>(
2681 Inherited
? 1 : 0, ES
.getExpr() ? 1 : 0);
2682 return new (C
, RD
, Extra
) CXXConstructorDecl(
2683 C
, RD
, StartLoc
, NameInfo
, T
, TInfo
, ES
, UsesFPIntrin
, isInline
,
2684 isImplicitlyDeclared
, ConstexprKind
, Inherited
, TrailingRequiresClause
);
2687 CXXConstructorDecl::init_const_iterator
CXXConstructorDecl::init_begin() const {
2688 return CtorInitializers
.get(getASTContext().getExternalSource());
2691 CXXConstructorDecl
*CXXConstructorDecl::getTargetConstructor() const {
2692 assert(isDelegatingConstructor() && "Not a delegating constructor!");
2693 Expr
*E
= (*init_begin())->getInit()->IgnoreImplicit();
2694 if (const auto *Construct
= dyn_cast
<CXXConstructExpr
>(E
))
2695 return Construct
->getConstructor();
2700 bool CXXConstructorDecl::isDefaultConstructor() const {
2701 // C++ [class.default.ctor]p1:
2702 // A default constructor for a class X is a constructor of class X for
2703 // which each parameter that is not a function parameter pack has a default
2704 // argument (including the case of a constructor with no parameters)
2705 return getMinRequiredArguments() == 0;
2709 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals
) const {
2710 return isCopyOrMoveConstructor(TypeQuals
) &&
2711 getParamDecl(0)->getType()->isLValueReferenceType();
2714 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals
) const {
2715 return isCopyOrMoveConstructor(TypeQuals
) &&
2716 getParamDecl(0)->getType()->isRValueReferenceType();
2719 /// Determine whether this is a copy or move constructor.
2720 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals
) const {
2721 // C++ [class.copy]p2:
2722 // A non-template constructor for class X is a copy constructor
2723 // if its first parameter is of type X&, const X&, volatile X& or
2724 // const volatile X&, and either there are no other parameters
2725 // or else all other parameters have default arguments (8.3.6).
2726 // C++0x [class.copy]p3:
2727 // A non-template constructor for class X is a move constructor if its
2728 // first parameter is of type X&&, const X&&, volatile X&&, or
2729 // const volatile X&&, and either there are no other parameters or else
2730 // all other parameters have default arguments.
2731 if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr ||
2732 getDescribedFunctionTemplate() != nullptr)
2735 const ParmVarDecl
*Param
= getParamDecl(0);
2737 // Do we have a reference type?
2738 const auto *ParamRefType
= Param
->getType()->getAs
<ReferenceType
>();
2742 // Is it a reference to our class type?
2743 ASTContext
&Context
= getASTContext();
2745 CanQualType PointeeType
2746 = Context
.getCanonicalType(ParamRefType
->getPointeeType());
2748 = Context
.getCanonicalType(Context
.getTagDeclType(getParent()));
2749 if (PointeeType
.getUnqualifiedType() != ClassTy
)
2752 // FIXME: other qualifiers?
2754 // We have a copy or move constructor.
2755 TypeQuals
= PointeeType
.getCVRQualifiers();
2759 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit
) const {
2760 // C++ [class.conv.ctor]p1:
2761 // A constructor declared without the function-specifier explicit
2762 // that can be called with a single parameter specifies a
2763 // conversion from the type of its first parameter to the type of
2764 // its class. Such a constructor is called a converting
2766 if (isExplicit() && !AllowExplicit
)
2769 // FIXME: This has nothing to do with the definition of converting
2770 // constructor, but is convenient for how we use this function in overload
2772 return getNumParams() == 0
2773 ? getType()->castAs
<FunctionProtoType
>()->isVariadic()
2774 : getMinRequiredArguments() <= 1;
2777 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
2778 if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr)
2781 const ParmVarDecl
*Param
= getParamDecl(0);
2783 ASTContext
&Context
= getASTContext();
2784 CanQualType ParamType
= Context
.getCanonicalType(Param
->getType());
2786 // Is it the same as our class type?
2788 = Context
.getCanonicalType(Context
.getTagDeclType(getParent()));
2789 if (ParamType
.getUnqualifiedType() != ClassTy
)
2795 void CXXDestructorDecl::anchor() {}
2798 CXXDestructorDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
2799 return new (C
, ID
) CXXDestructorDecl(
2800 C
, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2801 false, false, false, ConstexprSpecKind::Unspecified
, nullptr);
2804 CXXDestructorDecl
*CXXDestructorDecl::Create(
2805 ASTContext
&C
, CXXRecordDecl
*RD
, SourceLocation StartLoc
,
2806 const DeclarationNameInfo
&NameInfo
, QualType T
, TypeSourceInfo
*TInfo
,
2807 bool UsesFPIntrin
, bool isInline
, bool isImplicitlyDeclared
,
2808 ConstexprSpecKind ConstexprKind
, Expr
*TrailingRequiresClause
) {
2809 assert(NameInfo
.getName().getNameKind()
2810 == DeclarationName::CXXDestructorName
&&
2811 "Name must refer to a destructor");
2812 return new (C
, RD
) CXXDestructorDecl(
2813 C
, RD
, StartLoc
, NameInfo
, T
, TInfo
, UsesFPIntrin
, isInline
,
2814 isImplicitlyDeclared
, ConstexprKind
, TrailingRequiresClause
);
2817 void CXXDestructorDecl::setOperatorDelete(FunctionDecl
*OD
, Expr
*ThisArg
) {
2818 auto *First
= cast
<CXXDestructorDecl
>(getFirstDecl());
2819 if (OD
&& !First
->OperatorDelete
) {
2820 First
->OperatorDelete
= OD
;
2821 First
->OperatorDeleteThisArg
= ThisArg
;
2822 if (auto *L
= getASTMutationListener())
2823 L
->ResolvedOperatorDelete(First
, OD
, ThisArg
);
2827 void CXXConversionDecl::anchor() {}
2830 CXXConversionDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
2831 return new (C
, ID
) CXXConversionDecl(
2832 C
, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2833 false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified
,
2834 SourceLocation(), nullptr);
2837 CXXConversionDecl
*CXXConversionDecl::Create(
2838 ASTContext
&C
, CXXRecordDecl
*RD
, SourceLocation StartLoc
,
2839 const DeclarationNameInfo
&NameInfo
, QualType T
, TypeSourceInfo
*TInfo
,
2840 bool UsesFPIntrin
, bool isInline
, ExplicitSpecifier ES
,
2841 ConstexprSpecKind ConstexprKind
, SourceLocation EndLocation
,
2842 Expr
*TrailingRequiresClause
) {
2843 assert(NameInfo
.getName().getNameKind()
2844 == DeclarationName::CXXConversionFunctionName
&&
2845 "Name must refer to a conversion function");
2846 return new (C
, RD
) CXXConversionDecl(
2847 C
, RD
, StartLoc
, NameInfo
, T
, TInfo
, UsesFPIntrin
, isInline
, ES
,
2848 ConstexprKind
, EndLocation
, TrailingRequiresClause
);
2851 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2852 return isImplicit() && getParent()->isLambda() &&
2853 getConversionType()->isBlockPointerType();
2856 LinkageSpecDecl::LinkageSpecDecl(DeclContext
*DC
, SourceLocation ExternLoc
,
2857 SourceLocation LangLoc
,
2858 LinkageSpecLanguageIDs lang
, bool HasBraces
)
2859 : Decl(LinkageSpec
, DC
, LangLoc
), DeclContext(LinkageSpec
),
2860 ExternLoc(ExternLoc
), RBraceLoc(SourceLocation()) {
2862 LinkageSpecDeclBits
.HasBraces
= HasBraces
;
2865 void LinkageSpecDecl::anchor() {}
2867 LinkageSpecDecl
*LinkageSpecDecl::Create(ASTContext
&C
, DeclContext
*DC
,
2868 SourceLocation ExternLoc
,
2869 SourceLocation LangLoc
,
2870 LinkageSpecLanguageIDs Lang
,
2872 return new (C
, DC
) LinkageSpecDecl(DC
, ExternLoc
, LangLoc
, Lang
, HasBraces
);
2875 LinkageSpecDecl
*LinkageSpecDecl::CreateDeserialized(ASTContext
&C
,
2878 LinkageSpecDecl(nullptr, SourceLocation(), SourceLocation(),
2879 LinkageSpecLanguageIDs::C
, false);
2882 void UsingDirectiveDecl::anchor() {}
2884 UsingDirectiveDecl
*UsingDirectiveDecl::Create(ASTContext
&C
, DeclContext
*DC
,
2886 SourceLocation NamespaceLoc
,
2887 NestedNameSpecifierLoc QualifierLoc
,
2888 SourceLocation IdentLoc
,
2890 DeclContext
*CommonAncestor
) {
2891 if (auto *NS
= dyn_cast_or_null
<NamespaceDecl
>(Used
))
2892 Used
= NS
->getOriginalNamespace();
2893 return new (C
, DC
) UsingDirectiveDecl(DC
, L
, NamespaceLoc
, QualifierLoc
,
2894 IdentLoc
, Used
, CommonAncestor
);
2897 UsingDirectiveDecl
*UsingDirectiveDecl::CreateDeserialized(ASTContext
&C
,
2899 return new (C
, ID
) UsingDirectiveDecl(nullptr, SourceLocation(),
2901 NestedNameSpecifierLoc(),
2902 SourceLocation(), nullptr, nullptr);
2905 NamespaceDecl
*UsingDirectiveDecl::getNominatedNamespace() {
2906 if (auto *NA
= dyn_cast_or_null
<NamespaceAliasDecl
>(NominatedNamespace
))
2907 return NA
->getNamespace();
2908 return cast_or_null
<NamespaceDecl
>(NominatedNamespace
);
2911 NamespaceDecl::NamespaceDecl(ASTContext
&C
, DeclContext
*DC
, bool Inline
,
2912 SourceLocation StartLoc
, SourceLocation IdLoc
,
2913 IdentifierInfo
*Id
, NamespaceDecl
*PrevDecl
,
2915 : NamedDecl(Namespace
, DC
, IdLoc
, Id
), DeclContext(Namespace
),
2916 redeclarable_base(C
), LocStart(StartLoc
) {
2922 AnonOrFirstNamespaceAndFlags
= {nullptr, Flags
};
2923 setPreviousDecl(PrevDecl
);
2926 AnonOrFirstNamespaceAndFlags
.setPointer(PrevDecl
->getOriginalNamespace());
2929 NamespaceDecl
*NamespaceDecl::Create(ASTContext
&C
, DeclContext
*DC
,
2930 bool Inline
, SourceLocation StartLoc
,
2931 SourceLocation IdLoc
, IdentifierInfo
*Id
,
2932 NamespaceDecl
*PrevDecl
, bool Nested
) {
2934 NamespaceDecl(C
, DC
, Inline
, StartLoc
, IdLoc
, Id
, PrevDecl
, Nested
);
2937 NamespaceDecl
*NamespaceDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
2938 return new (C
, ID
) NamespaceDecl(C
, nullptr, false, SourceLocation(),
2939 SourceLocation(), nullptr, nullptr, false);
2942 NamespaceDecl
*NamespaceDecl::getOriginalNamespace() {
2946 return AnonOrFirstNamespaceAndFlags
.getPointer();
2949 const NamespaceDecl
*NamespaceDecl::getOriginalNamespace() const {
2953 return AnonOrFirstNamespaceAndFlags
.getPointer();
2956 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2958 NamespaceDecl
*NamespaceDecl::getNextRedeclarationImpl() {
2959 return getNextRedeclaration();
2962 NamespaceDecl
*NamespaceDecl::getPreviousDeclImpl() {
2963 return getPreviousDecl();
2966 NamespaceDecl
*NamespaceDecl::getMostRecentDeclImpl() {
2967 return getMostRecentDecl();
2970 void NamespaceAliasDecl::anchor() {}
2972 NamespaceAliasDecl
*NamespaceAliasDecl::getNextRedeclarationImpl() {
2973 return getNextRedeclaration();
2976 NamespaceAliasDecl
*NamespaceAliasDecl::getPreviousDeclImpl() {
2977 return getPreviousDecl();
2980 NamespaceAliasDecl
*NamespaceAliasDecl::getMostRecentDeclImpl() {
2981 return getMostRecentDecl();
2984 NamespaceAliasDecl
*NamespaceAliasDecl::Create(ASTContext
&C
, DeclContext
*DC
,
2985 SourceLocation UsingLoc
,
2986 SourceLocation AliasLoc
,
2987 IdentifierInfo
*Alias
,
2988 NestedNameSpecifierLoc QualifierLoc
,
2989 SourceLocation IdentLoc
,
2990 NamedDecl
*Namespace
) {
2991 // FIXME: Preserve the aliased namespace as written.
2992 if (auto *NS
= dyn_cast_or_null
<NamespaceDecl
>(Namespace
))
2993 Namespace
= NS
->getOriginalNamespace();
2994 return new (C
, DC
) NamespaceAliasDecl(C
, DC
, UsingLoc
, AliasLoc
, Alias
,
2995 QualifierLoc
, IdentLoc
, Namespace
);
2998 NamespaceAliasDecl
*
2999 NamespaceAliasDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
3000 return new (C
, ID
) NamespaceAliasDecl(C
, nullptr, SourceLocation(),
3001 SourceLocation(), nullptr,
3002 NestedNameSpecifierLoc(),
3003 SourceLocation(), nullptr);
3006 void LifetimeExtendedTemporaryDecl::anchor() {}
3008 /// Retrieve the storage duration for the materialized temporary.
3009 StorageDuration
LifetimeExtendedTemporaryDecl::getStorageDuration() const {
3010 const ValueDecl
*ExtendingDecl
= getExtendingDecl();
3012 return SD_FullExpression
;
3013 // FIXME: This is not necessarily correct for a temporary materialized
3014 // within a default initializer.
3015 if (isa
<FieldDecl
>(ExtendingDecl
))
3016 return SD_Automatic
;
3017 // FIXME: This only works because storage class specifiers are not allowed
3018 // on decomposition declarations.
3019 if (isa
<BindingDecl
>(ExtendingDecl
))
3020 return ExtendingDecl
->getDeclContext()->isFunctionOrMethod() ? SD_Automatic
3022 return cast
<VarDecl
>(ExtendingDecl
)->getStorageDuration();
3025 APValue
*LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate
) const {
3026 assert(getStorageDuration() == SD_Static
&&
3027 "don't need to cache the computed value for this temporary");
3028 if (MayCreate
&& !Value
) {
3029 Value
= (new (getASTContext()) APValue
);
3030 getASTContext().addDestruction(Value
);
3032 assert(Value
&& "may not be null");
3036 void UsingShadowDecl::anchor() {}
3038 UsingShadowDecl::UsingShadowDecl(Kind K
, ASTContext
&C
, DeclContext
*DC
,
3039 SourceLocation Loc
, DeclarationName Name
,
3040 BaseUsingDecl
*Introducer
, NamedDecl
*Target
)
3041 : NamedDecl(K
, DC
, Loc
, Name
), redeclarable_base(C
),
3042 UsingOrNextShadow(Introducer
) {
3044 assert(!isa
<UsingShadowDecl
>(Target
));
3045 setTargetDecl(Target
);
3050 UsingShadowDecl::UsingShadowDecl(Kind K
, ASTContext
&C
, EmptyShell Empty
)
3051 : NamedDecl(K
, nullptr, SourceLocation(), DeclarationName()),
3052 redeclarable_base(C
) {}
3055 UsingShadowDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
3056 return new (C
, ID
) UsingShadowDecl(UsingShadow
, C
, EmptyShell());
3059 BaseUsingDecl
*UsingShadowDecl::getIntroducer() const {
3060 const UsingShadowDecl
*Shadow
= this;
3061 while (const auto *NextShadow
=
3062 dyn_cast
<UsingShadowDecl
>(Shadow
->UsingOrNextShadow
))
3063 Shadow
= NextShadow
;
3064 return cast
<BaseUsingDecl
>(Shadow
->UsingOrNextShadow
);
3067 void ConstructorUsingShadowDecl::anchor() {}
3069 ConstructorUsingShadowDecl
*
3070 ConstructorUsingShadowDecl::Create(ASTContext
&C
, DeclContext
*DC
,
3071 SourceLocation Loc
, UsingDecl
*Using
,
3072 NamedDecl
*Target
, bool IsVirtual
) {
3073 return new (C
, DC
) ConstructorUsingShadowDecl(C
, DC
, Loc
, Using
, Target
,
3077 ConstructorUsingShadowDecl
*
3078 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
3079 return new (C
, ID
) ConstructorUsingShadowDecl(C
, EmptyShell());
3082 CXXRecordDecl
*ConstructorUsingShadowDecl::getNominatedBaseClass() const {
3083 return getIntroducer()->getQualifier()->getAsRecordDecl();
3086 void BaseUsingDecl::anchor() {}
3088 void BaseUsingDecl::addShadowDecl(UsingShadowDecl
*S
) {
3089 assert(!llvm::is_contained(shadows(), S
) && "declaration already in set");
3090 assert(S
->getIntroducer() == this);
3092 if (FirstUsingShadow
.getPointer())
3093 S
->UsingOrNextShadow
= FirstUsingShadow
.getPointer();
3094 FirstUsingShadow
.setPointer(S
);
3097 void BaseUsingDecl::removeShadowDecl(UsingShadowDecl
*S
) {
3098 assert(llvm::is_contained(shadows(), S
) && "declaration not in set");
3099 assert(S
->getIntroducer() == this);
3101 // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
3103 if (FirstUsingShadow
.getPointer() == S
) {
3104 FirstUsingShadow
.setPointer(
3105 dyn_cast
<UsingShadowDecl
>(S
->UsingOrNextShadow
));
3106 S
->UsingOrNextShadow
= this;
3110 UsingShadowDecl
*Prev
= FirstUsingShadow
.getPointer();
3111 while (Prev
->UsingOrNextShadow
!= S
)
3112 Prev
= cast
<UsingShadowDecl
>(Prev
->UsingOrNextShadow
);
3113 Prev
->UsingOrNextShadow
= S
->UsingOrNextShadow
;
3114 S
->UsingOrNextShadow
= this;
3117 void UsingDecl::anchor() {}
3119 UsingDecl
*UsingDecl::Create(ASTContext
&C
, DeclContext
*DC
, SourceLocation UL
,
3120 NestedNameSpecifierLoc QualifierLoc
,
3121 const DeclarationNameInfo
&NameInfo
,
3123 return new (C
, DC
) UsingDecl(DC
, UL
, QualifierLoc
, NameInfo
, HasTypename
);
3126 UsingDecl
*UsingDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
3127 return new (C
, ID
) UsingDecl(nullptr, SourceLocation(),
3128 NestedNameSpecifierLoc(), DeclarationNameInfo(),
3132 SourceRange
UsingDecl::getSourceRange() const {
3133 SourceLocation Begin
= isAccessDeclaration()
3134 ? getQualifierLoc().getBeginLoc() : UsingLocation
;
3135 return SourceRange(Begin
, getNameInfo().getEndLoc());
3138 void UsingEnumDecl::anchor() {}
3140 UsingEnumDecl
*UsingEnumDecl::Create(ASTContext
&C
, DeclContext
*DC
,
3144 TypeSourceInfo
*EnumType
) {
3145 assert(isa
<EnumDecl
>(EnumType
->getType()->getAsTagDecl()));
3147 UsingEnumDecl(DC
, EnumType
->getType()->getAsTagDecl()->getDeclName(), UL
, EL
, NL
, EnumType
);
3150 UsingEnumDecl
*UsingEnumDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
3152 UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(),
3153 SourceLocation(), SourceLocation(), nullptr);
3156 SourceRange
UsingEnumDecl::getSourceRange() const {
3157 return SourceRange(UsingLocation
, EnumType
->getTypeLoc().getEndLoc());
3160 void UsingPackDecl::anchor() {}
3162 UsingPackDecl
*UsingPackDecl::Create(ASTContext
&C
, DeclContext
*DC
,
3163 NamedDecl
*InstantiatedFrom
,
3164 ArrayRef
<NamedDecl
*> UsingDecls
) {
3165 size_t Extra
= additionalSizeToAlloc
<NamedDecl
*>(UsingDecls
.size());
3166 return new (C
, DC
, Extra
) UsingPackDecl(DC
, InstantiatedFrom
, UsingDecls
);
3169 UsingPackDecl
*UsingPackDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
,
3170 unsigned NumExpansions
) {
3171 size_t Extra
= additionalSizeToAlloc
<NamedDecl
*>(NumExpansions
);
3173 new (C
, ID
, Extra
) UsingPackDecl(nullptr, nullptr, std::nullopt
);
3174 Result
->NumExpansions
= NumExpansions
;
3175 auto *Trail
= Result
->getTrailingObjects
<NamedDecl
*>();
3176 for (unsigned I
= 0; I
!= NumExpansions
; ++I
)
3177 new (Trail
+ I
) NamedDecl
*(nullptr);
3181 void UnresolvedUsingValueDecl::anchor() {}
3183 UnresolvedUsingValueDecl
*
3184 UnresolvedUsingValueDecl::Create(ASTContext
&C
, DeclContext
*DC
,
3185 SourceLocation UsingLoc
,
3186 NestedNameSpecifierLoc QualifierLoc
,
3187 const DeclarationNameInfo
&NameInfo
,
3188 SourceLocation EllipsisLoc
) {
3189 return new (C
, DC
) UnresolvedUsingValueDecl(DC
, C
.DependentTy
, UsingLoc
,
3190 QualifierLoc
, NameInfo
,
3194 UnresolvedUsingValueDecl
*
3195 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
3196 return new (C
, ID
) UnresolvedUsingValueDecl(nullptr, QualType(),
3198 NestedNameSpecifierLoc(),
3199 DeclarationNameInfo(),
3203 SourceRange
UnresolvedUsingValueDecl::getSourceRange() const {
3204 SourceLocation Begin
= isAccessDeclaration()
3205 ? getQualifierLoc().getBeginLoc() : UsingLocation
;
3206 return SourceRange(Begin
, getNameInfo().getEndLoc());
3209 void UnresolvedUsingTypenameDecl::anchor() {}
3211 UnresolvedUsingTypenameDecl
*
3212 UnresolvedUsingTypenameDecl::Create(ASTContext
&C
, DeclContext
*DC
,
3213 SourceLocation UsingLoc
,
3214 SourceLocation TypenameLoc
,
3215 NestedNameSpecifierLoc QualifierLoc
,
3216 SourceLocation TargetNameLoc
,
3217 DeclarationName TargetName
,
3218 SourceLocation EllipsisLoc
) {
3219 return new (C
, DC
) UnresolvedUsingTypenameDecl(
3220 DC
, UsingLoc
, TypenameLoc
, QualifierLoc
, TargetNameLoc
,
3221 TargetName
.getAsIdentifierInfo(), EllipsisLoc
);
3224 UnresolvedUsingTypenameDecl
*
3225 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
3226 return new (C
, ID
) UnresolvedUsingTypenameDecl(
3227 nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
3228 SourceLocation(), nullptr, SourceLocation());
3231 UnresolvedUsingIfExistsDecl
*
3232 UnresolvedUsingIfExistsDecl::Create(ASTContext
&Ctx
, DeclContext
*DC
,
3233 SourceLocation Loc
, DeclarationName Name
) {
3234 return new (Ctx
, DC
) UnresolvedUsingIfExistsDecl(DC
, Loc
, Name
);
3237 UnresolvedUsingIfExistsDecl
*
3238 UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext
&Ctx
, unsigned ID
) {
3239 return new (Ctx
, ID
)
3240 UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName());
3243 UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext
*DC
,
3245 DeclarationName Name
)
3246 : NamedDecl(Decl::UnresolvedUsingIfExists
, DC
, Loc
, Name
) {}
3248 void UnresolvedUsingIfExistsDecl::anchor() {}
3250 void StaticAssertDecl::anchor() {}
3252 StaticAssertDecl
*StaticAssertDecl::Create(ASTContext
&C
, DeclContext
*DC
,
3253 SourceLocation StaticAssertLoc
,
3254 Expr
*AssertExpr
, Expr
*Message
,
3255 SourceLocation RParenLoc
,
3257 return new (C
, DC
) StaticAssertDecl(DC
, StaticAssertLoc
, AssertExpr
, Message
,
3261 StaticAssertDecl
*StaticAssertDecl::CreateDeserialized(ASTContext
&C
,
3263 return new (C
, ID
) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
3264 nullptr, SourceLocation(), false);
3267 VarDecl
*ValueDecl::getPotentiallyDecomposedVarDecl() {
3268 assert((isa
<VarDecl
, BindingDecl
>(this)) &&
3269 "expected a VarDecl or a BindingDecl");
3270 if (auto *Var
= llvm::dyn_cast
<VarDecl
>(this))
3272 if (auto *BD
= llvm::dyn_cast
<BindingDecl
>(this))
3273 return llvm::dyn_cast
<VarDecl
>(BD
->getDecomposedDecl());
3277 void BindingDecl::anchor() {}
3279 BindingDecl
*BindingDecl::Create(ASTContext
&C
, DeclContext
*DC
,
3280 SourceLocation IdLoc
, IdentifierInfo
*Id
) {
3281 return new (C
, DC
) BindingDecl(DC
, IdLoc
, Id
);
3284 BindingDecl
*BindingDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
3285 return new (C
, ID
) BindingDecl(nullptr, SourceLocation(), nullptr);
3288 VarDecl
*BindingDecl::getHoldingVar() const {
3289 Expr
*B
= getBinding();
3292 auto *DRE
= dyn_cast
<DeclRefExpr
>(B
->IgnoreImplicit());
3296 auto *VD
= cast
<VarDecl
>(DRE
->getDecl());
3297 assert(VD
->isImplicit() && "holding var for binding decl not implicit");
3301 void DecompositionDecl::anchor() {}
3303 DecompositionDecl
*DecompositionDecl::Create(ASTContext
&C
, DeclContext
*DC
,
3304 SourceLocation StartLoc
,
3305 SourceLocation LSquareLoc
,
3306 QualType T
, TypeSourceInfo
*TInfo
,
3308 ArrayRef
<BindingDecl
*> Bindings
) {
3309 size_t Extra
= additionalSizeToAlloc
<BindingDecl
*>(Bindings
.size());
3310 return new (C
, DC
, Extra
)
3311 DecompositionDecl(C
, DC
, StartLoc
, LSquareLoc
, T
, TInfo
, SC
, Bindings
);
3314 DecompositionDecl
*DecompositionDecl::CreateDeserialized(ASTContext
&C
,
3316 unsigned NumBindings
) {
3317 size_t Extra
= additionalSizeToAlloc
<BindingDecl
*>(NumBindings
);
3318 auto *Result
= new (C
, ID
, Extra
)
3319 DecompositionDecl(C
, nullptr, SourceLocation(), SourceLocation(),
3320 QualType(), nullptr, StorageClass(), std::nullopt
);
3321 // Set up and clean out the bindings array.
3322 Result
->NumBindings
= NumBindings
;
3323 auto *Trail
= Result
->getTrailingObjects
<BindingDecl
*>();
3324 for (unsigned I
= 0; I
!= NumBindings
; ++I
)
3325 new (Trail
+ I
) BindingDecl
*(nullptr);
3329 void DecompositionDecl::printName(llvm::raw_ostream
&OS
,
3330 const PrintingPolicy
&Policy
) const {
3333 for (const auto *B
: bindings()) {
3336 B
->printName(OS
, Policy
);
3342 void MSPropertyDecl::anchor() {}
3344 MSPropertyDecl
*MSPropertyDecl::Create(ASTContext
&C
, DeclContext
*DC
,
3345 SourceLocation L
, DeclarationName N
,
3346 QualType T
, TypeSourceInfo
*TInfo
,
3347 SourceLocation StartL
,
3348 IdentifierInfo
*Getter
,
3349 IdentifierInfo
*Setter
) {
3350 return new (C
, DC
) MSPropertyDecl(DC
, L
, N
, T
, TInfo
, StartL
, Getter
, Setter
);
3353 MSPropertyDecl
*MSPropertyDecl::CreateDeserialized(ASTContext
&C
,
3355 return new (C
, ID
) MSPropertyDecl(nullptr, SourceLocation(),
3356 DeclarationName(), QualType(), nullptr,
3357 SourceLocation(), nullptr, nullptr);
3360 void MSGuidDecl::anchor() {}
3362 MSGuidDecl::MSGuidDecl(DeclContext
*DC
, QualType T
, Parts P
)
3363 : ValueDecl(Decl::MSGuid
, DC
, SourceLocation(), DeclarationName(), T
),
3366 MSGuidDecl
*MSGuidDecl::Create(const ASTContext
&C
, QualType T
, Parts P
) {
3367 DeclContext
*DC
= C
.getTranslationUnitDecl();
3368 return new (C
, DC
) MSGuidDecl(DC
, T
, P
);
3371 MSGuidDecl
*MSGuidDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
3372 return new (C
, ID
) MSGuidDecl(nullptr, QualType(), Parts());
3375 void MSGuidDecl::printName(llvm::raw_ostream
&OS
,
3376 const PrintingPolicy
&) const {
3377 OS
<< llvm::format("GUID{%08" PRIx32
"-%04" PRIx16
"-%04" PRIx16
"-",
3378 PartVal
.Part1
, PartVal
.Part2
, PartVal
.Part3
);
3380 for (uint8_t Byte
: PartVal
.Part4And5
) {
3381 OS
<< llvm::format("%02" PRIx8
, Byte
);
3388 /// Determine if T is a valid 'struct _GUID' of the shape that we expect.
3389 static bool isValidStructGUID(ASTContext
&Ctx
, QualType T
) {
3390 // FIXME: We only need to check this once, not once each time we compute a
3392 using MatcherRef
= llvm::function_ref
<bool(QualType
)>;
3394 auto IsInt
= [&Ctx
](unsigned N
) {
3395 return [&Ctx
, N
](QualType T
) {
3396 return T
->isUnsignedIntegerOrEnumerationType() &&
3397 Ctx
.getIntWidth(T
) == N
;
3401 auto IsArray
= [&Ctx
](MatcherRef Elem
, unsigned N
) {
3402 return [&Ctx
, Elem
, N
](QualType T
) {
3403 const ConstantArrayType
*CAT
= Ctx
.getAsConstantArrayType(T
);
3404 return CAT
&& CAT
->getSize() == N
&& Elem(CAT
->getElementType());
3408 auto IsStruct
= [](std::initializer_list
<MatcherRef
> Fields
) {
3409 return [Fields
](QualType T
) {
3410 const RecordDecl
*RD
= T
->getAsRecordDecl();
3411 if (!RD
|| RD
->isUnion())
3413 RD
= RD
->getDefinition();
3416 if (auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(RD
))
3417 if (CXXRD
->getNumBases())
3419 auto MatcherIt
= Fields
.begin();
3420 for (const FieldDecl
*FD
: RD
->fields()) {
3421 if (FD
->isUnnamedBitfield()) continue;
3422 if (FD
->isBitField() || MatcherIt
== Fields
.end() ||
3423 !(*MatcherIt
)(FD
->getType()))
3427 return MatcherIt
== Fields
.end();
3431 // We expect an {i32, i16, i16, [8 x i8]}.
3432 return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T
);
3435 APValue
&MSGuidDecl::getAsAPValue() const {
3436 if (APVal
.isAbsent() && isValidStructGUID(getASTContext(), getType())) {
3439 APVal
= APValue(APValue::UninitStruct(), 0, 4);
3440 APVal
.getStructField(0) = APValue(APSInt(APInt(32, PartVal
.Part1
), true));
3441 APVal
.getStructField(1) = APValue(APSInt(APInt(16, PartVal
.Part2
), true));
3442 APVal
.getStructField(2) = APValue(APSInt(APInt(16, PartVal
.Part3
), true));
3443 APValue
&Arr
= APVal
.getStructField(3) =
3444 APValue(APValue::UninitArray(), 8, 8);
3445 for (unsigned I
= 0; I
!= 8; ++I
) {
3446 Arr
.getArrayInitializedElt(I
) =
3447 APValue(APSInt(APInt(8, PartVal
.Part4And5
[I
]), true));
3449 // Register this APValue to be destroyed if necessary. (Note that the
3450 // MSGuidDecl destructor is never run.)
3451 getASTContext().addDestruction(&APVal
);
3457 void UnnamedGlobalConstantDecl::anchor() {}
3459 UnnamedGlobalConstantDecl::UnnamedGlobalConstantDecl(const ASTContext
&C
,
3463 : ValueDecl(Decl::UnnamedGlobalConstant
, DC
, SourceLocation(),
3464 DeclarationName(), Ty
),
3466 // Cleanup the embedded APValue if required (note that our destructor is never
3468 if (Value
.needsCleanup())
3469 C
.addDestruction(&Value
);
3472 UnnamedGlobalConstantDecl
*
3473 UnnamedGlobalConstantDecl::Create(const ASTContext
&C
, QualType T
,
3474 const APValue
&Value
) {
3475 DeclContext
*DC
= C
.getTranslationUnitDecl();
3476 return new (C
, DC
) UnnamedGlobalConstantDecl(C
, DC
, T
, Value
);
3479 UnnamedGlobalConstantDecl
*
3480 UnnamedGlobalConstantDecl::CreateDeserialized(ASTContext
&C
, unsigned ID
) {
3482 UnnamedGlobalConstantDecl(C
, nullptr, QualType(), APValue());
3485 void UnnamedGlobalConstantDecl::printName(llvm::raw_ostream
&OS
,
3486 const PrintingPolicy
&) const {
3487 OS
<< "unnamed-global-constant";
3490 static const char *getAccessName(AccessSpecifier AS
) {
3493 llvm_unreachable("Invalid access specifier!");
3501 llvm_unreachable("Invalid access specifier!");
3504 const StreamingDiagnostic
&clang::operator<<(const StreamingDiagnostic
&DB
,
3505 AccessSpecifier AS
) {
3506 return DB
<< getAccessName(AS
);