1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Expr class and subclasses.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/ComputeDependence.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/DependenceFlags.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/IgnoreExpr.h"
25 #include "clang/AST/Mangle.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CharInfo.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Lexer.h"
33 #include "clang/Lex/LiteralSupport.h"
34 #include "clang/Lex/Preprocessor.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/raw_ostream.h"
41 using namespace clang
;
43 const Expr
*Expr::getBestDynamicClassTypeExpr() const {
46 E
= E
->IgnoreParenBaseCasts();
48 // Follow the RHS of a comma operator.
49 if (auto *BO
= dyn_cast
<BinaryOperator
>(E
)) {
50 if (BO
->getOpcode() == BO_Comma
) {
56 // Step into initializer for materialized temporaries.
57 if (auto *MTE
= dyn_cast
<MaterializeTemporaryExpr
>(E
)) {
58 E
= MTE
->getSubExpr();
68 const CXXRecordDecl
*Expr::getBestDynamicClassType() const {
69 const Expr
*E
= getBestDynamicClassTypeExpr();
70 QualType DerivedType
= E
->getType();
71 if (const PointerType
*PTy
= DerivedType
->getAs
<PointerType
>())
72 DerivedType
= PTy
->getPointeeType();
74 if (DerivedType
->isDependentType())
77 const RecordType
*Ty
= DerivedType
->castAs
<RecordType
>();
78 Decl
*D
= Ty
->getDecl();
79 return cast
<CXXRecordDecl
>(D
);
82 const Expr
*Expr::skipRValueSubobjectAdjustments(
83 SmallVectorImpl
<const Expr
*> &CommaLHSs
,
84 SmallVectorImpl
<SubobjectAdjustment
> &Adjustments
) const {
87 E
= E
->IgnoreParens();
89 if (const CastExpr
*CE
= dyn_cast
<CastExpr
>(E
)) {
90 if ((CE
->getCastKind() == CK_DerivedToBase
||
91 CE
->getCastKind() == CK_UncheckedDerivedToBase
) &&
92 E
->getType()->isRecordType()) {
95 cast
<CXXRecordDecl
>(E
->getType()->castAs
<RecordType
>()->getDecl());
96 Adjustments
.push_back(SubobjectAdjustment(CE
, Derived
));
100 if (CE
->getCastKind() == CK_NoOp
) {
101 E
= CE
->getSubExpr();
104 } else if (const MemberExpr
*ME
= dyn_cast
<MemberExpr
>(E
)) {
105 if (!ME
->isArrow()) {
106 assert(ME
->getBase()->getType()->isRecordType());
107 if (FieldDecl
*Field
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl())) {
108 if (!Field
->isBitField() && !Field
->getType()->isReferenceType()) {
110 Adjustments
.push_back(SubobjectAdjustment(Field
));
115 } else if (const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
116 if (BO
->getOpcode() == BO_PtrMemD
) {
117 assert(BO
->getRHS()->isPRValue());
119 const MemberPointerType
*MPT
=
120 BO
->getRHS()->getType()->getAs
<MemberPointerType
>();
121 Adjustments
.push_back(SubobjectAdjustment(MPT
, BO
->getRHS()));
124 if (BO
->getOpcode() == BO_Comma
) {
125 CommaLHSs
.push_back(BO
->getLHS());
137 bool Expr::isKnownToHaveBooleanValue(bool Semantic
) const {
138 const Expr
*E
= IgnoreParens();
140 // If this value has _Bool type, it is obvious 0/1.
141 if (E
->getType()->isBooleanType()) return true;
142 // If this is a non-scalar-integer type, we don't care enough to try.
143 if (!E
->getType()->isIntegralOrEnumerationType()) return false;
145 if (const UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(E
)) {
146 switch (UO
->getOpcode()) {
148 return UO
->getSubExpr()->isKnownToHaveBooleanValue(Semantic
);
156 // Only look through implicit casts. If the user writes
157 // '(int) (a && b)' treat it as an arbitrary int.
158 // FIXME: Should we look through any cast expression in !Semantic mode?
159 if (const ImplicitCastExpr
*CE
= dyn_cast
<ImplicitCastExpr
>(E
))
160 return CE
->getSubExpr()->isKnownToHaveBooleanValue(Semantic
);
162 if (const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
163 switch (BO
->getOpcode()) {
164 default: return false;
165 case BO_LT
: // Relational operators.
169 case BO_EQ
: // Equality operators.
171 case BO_LAnd
: // AND operator.
172 case BO_LOr
: // Logical OR operator.
175 case BO_And
: // Bitwise AND operator.
176 case BO_Xor
: // Bitwise XOR operator.
177 case BO_Or
: // Bitwise OR operator.
178 // Handle things like (x==2)|(y==12).
179 return BO
->getLHS()->isKnownToHaveBooleanValue(Semantic
) &&
180 BO
->getRHS()->isKnownToHaveBooleanValue(Semantic
);
184 return BO
->getRHS()->isKnownToHaveBooleanValue(Semantic
);
188 if (const ConditionalOperator
*CO
= dyn_cast
<ConditionalOperator
>(E
))
189 return CO
->getTrueExpr()->isKnownToHaveBooleanValue(Semantic
) &&
190 CO
->getFalseExpr()->isKnownToHaveBooleanValue(Semantic
);
192 if (isa
<ObjCBoolLiteralExpr
>(E
))
195 if (const auto *OVE
= dyn_cast
<OpaqueValueExpr
>(E
))
196 return OVE
->getSourceExpr()->isKnownToHaveBooleanValue(Semantic
);
198 if (const FieldDecl
*FD
= E
->getSourceBitField())
199 if (!Semantic
&& FD
->getType()->isUnsignedIntegerType() &&
200 !FD
->getBitWidth()->isValueDependent() &&
201 FD
->getBitWidthValue(FD
->getASTContext()) == 1)
207 bool Expr::isFlexibleArrayMemberLike(
209 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel
,
210 bool IgnoreTemplateOrMacroSubstitution
) const {
211 const Expr
*E
= IgnoreParens();
212 const Decl
*D
= nullptr;
214 if (const auto *ME
= dyn_cast
<MemberExpr
>(E
))
215 D
= ME
->getMemberDecl();
216 else if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(E
))
218 else if (const auto *IRE
= dyn_cast
<ObjCIvarRefExpr
>(E
))
221 return Decl::isFlexibleArrayMemberLike(Ctx
, D
, E
->getType(),
222 StrictFlexArraysLevel
,
223 IgnoreTemplateOrMacroSubstitution
);
227 Expr::getAsBuiltinConstantDeclRef(const ASTContext
&Context
) const {
228 Expr::EvalResult Eval
;
230 if (EvaluateAsConstantExpr(Eval
, Context
)) {
231 APValue
&Value
= Eval
.Val
;
233 if (Value
.isMemberPointer())
234 return Value
.getMemberPointerDecl();
236 if (Value
.isLValue() && Value
.getLValueOffset().isZero())
237 return Value
.getLValueBase().dyn_cast
<const ValueDecl
*>();
243 // Amusing macro metaprogramming hack: check whether a class provides
244 // a more specific implementation of getExprLoc().
246 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
248 /// This implementation is used when a class provides a custom
249 /// implementation of getExprLoc.
250 template <class E
, class T
>
251 SourceLocation
getExprLocImpl(const Expr
*expr
,
252 SourceLocation (T::*v
)() const) {
253 return static_cast<const E
*>(expr
)->getExprLoc();
256 /// This implementation is used when a class doesn't provide
257 /// a custom implementation of getExprLoc. Overload resolution
258 /// should pick it over the implementation above because it's
259 /// more specialized according to function template partial ordering.
261 SourceLocation
getExprLocImpl(const Expr
*expr
,
262 SourceLocation (Expr::*v
)() const) {
263 return static_cast<const E
*>(expr
)->getBeginLoc();
267 SourceLocation
Expr::getExprLoc() const {
268 switch (getStmtClass()) {
269 case Stmt::NoStmtClass
: llvm_unreachable("statement without class");
270 #define ABSTRACT_STMT(type)
271 #define STMT(type, base) \
272 case Stmt::type##Class: break;
273 #define EXPR(type, base) \
274 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
275 #include "clang/AST/StmtNodes.inc"
277 llvm_unreachable("unknown expression kind");
280 //===----------------------------------------------------------------------===//
281 // Primary Expressions.
282 //===----------------------------------------------------------------------===//
284 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind
) {
285 assert((Kind
== ConstantExpr::RSK_APValue
||
286 Kind
== ConstantExpr::RSK_Int64
|| Kind
== ConstantExpr::RSK_None
) &&
287 "Invalid StorageKind Value");
291 ConstantExpr::ResultStorageKind
292 ConstantExpr::getStorageKind(const APValue
&Value
) {
293 switch (Value
.getKind()) {
295 case APValue::Indeterminate
:
296 return ConstantExpr::RSK_None
;
298 if (!Value
.getInt().needsCleanup())
299 return ConstantExpr::RSK_Int64
;
302 return ConstantExpr::RSK_APValue
;
306 ConstantExpr::ResultStorageKind
307 ConstantExpr::getStorageKind(const Type
*T
, const ASTContext
&Context
) {
308 if (T
->isIntegralOrEnumerationType() && Context
.getTypeInfo(T
).Width
<= 64)
309 return ConstantExpr::RSK_Int64
;
310 return ConstantExpr::RSK_APValue
;
313 ConstantExpr::ConstantExpr(Expr
*SubExpr
, ResultStorageKind StorageKind
,
314 bool IsImmediateInvocation
)
315 : FullExpr(ConstantExprClass
, SubExpr
) {
316 ConstantExprBits
.ResultKind
= StorageKind
;
317 ConstantExprBits
.APValueKind
= APValue::None
;
318 ConstantExprBits
.IsUnsigned
= false;
319 ConstantExprBits
.BitWidth
= 0;
320 ConstantExprBits
.HasCleanup
= false;
321 ConstantExprBits
.IsImmediateInvocation
= IsImmediateInvocation
;
323 if (StorageKind
== ConstantExpr::RSK_APValue
)
324 ::new (getTrailingObjects
<APValue
>()) APValue();
327 ConstantExpr
*ConstantExpr::Create(const ASTContext
&Context
, Expr
*E
,
328 ResultStorageKind StorageKind
,
329 bool IsImmediateInvocation
) {
330 assert(!isa
<ConstantExpr
>(E
));
331 AssertResultStorageKind(StorageKind
);
333 unsigned Size
= totalSizeToAlloc
<APValue
, uint64_t>(
334 StorageKind
== ConstantExpr::RSK_APValue
,
335 StorageKind
== ConstantExpr::RSK_Int64
);
336 void *Mem
= Context
.Allocate(Size
, alignof(ConstantExpr
));
337 return new (Mem
) ConstantExpr(E
, StorageKind
, IsImmediateInvocation
);
340 ConstantExpr
*ConstantExpr::Create(const ASTContext
&Context
, Expr
*E
,
341 const APValue
&Result
) {
342 ResultStorageKind StorageKind
= getStorageKind(Result
);
343 ConstantExpr
*Self
= Create(Context
, E
, StorageKind
);
344 Self
->SetResult(Result
, Context
);
348 ConstantExpr::ConstantExpr(EmptyShell Empty
, ResultStorageKind StorageKind
)
349 : FullExpr(ConstantExprClass
, Empty
) {
350 ConstantExprBits
.ResultKind
= StorageKind
;
352 if (StorageKind
== ConstantExpr::RSK_APValue
)
353 ::new (getTrailingObjects
<APValue
>()) APValue();
356 ConstantExpr
*ConstantExpr::CreateEmpty(const ASTContext
&Context
,
357 ResultStorageKind StorageKind
) {
358 AssertResultStorageKind(StorageKind
);
360 unsigned Size
= totalSizeToAlloc
<APValue
, uint64_t>(
361 StorageKind
== ConstantExpr::RSK_APValue
,
362 StorageKind
== ConstantExpr::RSK_Int64
);
363 void *Mem
= Context
.Allocate(Size
, alignof(ConstantExpr
));
364 return new (Mem
) ConstantExpr(EmptyShell(), StorageKind
);
367 void ConstantExpr::MoveIntoResult(APValue
&Value
, const ASTContext
&Context
) {
368 assert((unsigned)getStorageKind(Value
) <= ConstantExprBits
.ResultKind
&&
369 "Invalid storage for this value kind");
370 ConstantExprBits
.APValueKind
= Value
.getKind();
371 switch (ConstantExprBits
.ResultKind
) {
375 Int64Result() = *Value
.getInt().getRawData();
376 ConstantExprBits
.BitWidth
= Value
.getInt().getBitWidth();
377 ConstantExprBits
.IsUnsigned
= Value
.getInt().isUnsigned();
380 if (!ConstantExprBits
.HasCleanup
&& Value
.needsCleanup()) {
381 ConstantExprBits
.HasCleanup
= true;
382 Context
.addDestruction(&APValueResult());
384 APValueResult() = std::move(Value
);
387 llvm_unreachable("Invalid ResultKind Bits");
390 llvm::APSInt
ConstantExpr::getResultAsAPSInt() const {
391 switch (ConstantExprBits
.ResultKind
) {
392 case ConstantExpr::RSK_APValue
:
393 return APValueResult().getInt();
394 case ConstantExpr::RSK_Int64
:
395 return llvm::APSInt(llvm::APInt(ConstantExprBits
.BitWidth
, Int64Result()),
396 ConstantExprBits
.IsUnsigned
);
398 llvm_unreachable("invalid Accessor");
402 APValue
ConstantExpr::getAPValueResult() const {
404 switch (ConstantExprBits
.ResultKind
) {
405 case ConstantExpr::RSK_APValue
:
406 return APValueResult();
407 case ConstantExpr::RSK_Int64
:
409 llvm::APSInt(llvm::APInt(ConstantExprBits
.BitWidth
, Int64Result()),
410 ConstantExprBits
.IsUnsigned
));
411 case ConstantExpr::RSK_None
:
412 if (ConstantExprBits
.APValueKind
== APValue::Indeterminate
)
413 return APValue::IndeterminateValue();
416 llvm_unreachable("invalid ResultKind");
419 DeclRefExpr::DeclRefExpr(const ASTContext
&Ctx
, ValueDecl
*D
,
420 bool RefersToEnclosingVariableOrCapture
, QualType T
,
421 ExprValueKind VK
, SourceLocation L
,
422 const DeclarationNameLoc
&LocInfo
,
423 NonOdrUseReason NOUR
)
424 : Expr(DeclRefExprClass
, T
, VK
, OK_Ordinary
), D(D
), DNLoc(LocInfo
) {
425 DeclRefExprBits
.HasQualifier
= false;
426 DeclRefExprBits
.HasTemplateKWAndArgsInfo
= false;
427 DeclRefExprBits
.HasFoundDecl
= false;
428 DeclRefExprBits
.HadMultipleCandidates
= false;
429 DeclRefExprBits
.RefersToEnclosingVariableOrCapture
=
430 RefersToEnclosingVariableOrCapture
;
431 DeclRefExprBits
.CapturedByCopyInLambdaWithExplicitObjectParameter
= false;
432 DeclRefExprBits
.NonOdrUseReason
= NOUR
;
433 DeclRefExprBits
.IsImmediateEscalating
= false;
434 DeclRefExprBits
.Loc
= L
;
435 setDependence(computeDependence(this, Ctx
));
438 DeclRefExpr::DeclRefExpr(const ASTContext
&Ctx
,
439 NestedNameSpecifierLoc QualifierLoc
,
440 SourceLocation TemplateKWLoc
, ValueDecl
*D
,
441 bool RefersToEnclosingVariableOrCapture
,
442 const DeclarationNameInfo
&NameInfo
, NamedDecl
*FoundD
,
443 const TemplateArgumentListInfo
*TemplateArgs
,
444 QualType T
, ExprValueKind VK
, NonOdrUseReason NOUR
)
445 : Expr(DeclRefExprClass
, T
, VK
, OK_Ordinary
), D(D
),
446 DNLoc(NameInfo
.getInfo()) {
447 DeclRefExprBits
.Loc
= NameInfo
.getLoc();
448 DeclRefExprBits
.HasQualifier
= QualifierLoc
? 1 : 0;
450 new (getTrailingObjects
<NestedNameSpecifierLoc
>())
451 NestedNameSpecifierLoc(QualifierLoc
);
452 DeclRefExprBits
.HasFoundDecl
= FoundD
? 1 : 0;
454 *getTrailingObjects
<NamedDecl
*>() = FoundD
;
455 DeclRefExprBits
.HasTemplateKWAndArgsInfo
456 = (TemplateArgs
|| TemplateKWLoc
.isValid()) ? 1 : 0;
457 DeclRefExprBits
.RefersToEnclosingVariableOrCapture
=
458 RefersToEnclosingVariableOrCapture
;
459 DeclRefExprBits
.CapturedByCopyInLambdaWithExplicitObjectParameter
= false;
460 DeclRefExprBits
.NonOdrUseReason
= NOUR
;
462 auto Deps
= TemplateArgumentDependence::None
;
463 getTrailingObjects
<ASTTemplateKWAndArgsInfo
>()->initializeFrom(
464 TemplateKWLoc
, *TemplateArgs
, getTrailingObjects
<TemplateArgumentLoc
>(),
466 assert(!(Deps
& TemplateArgumentDependence::Dependent
) &&
467 "built a DeclRefExpr with dependent template args");
468 } else if (TemplateKWLoc
.isValid()) {
469 getTrailingObjects
<ASTTemplateKWAndArgsInfo
>()->initializeFrom(
472 DeclRefExprBits
.IsImmediateEscalating
= false;
473 DeclRefExprBits
.HadMultipleCandidates
= 0;
474 setDependence(computeDependence(this, Ctx
));
477 DeclRefExpr
*DeclRefExpr::Create(const ASTContext
&Context
,
478 NestedNameSpecifierLoc QualifierLoc
,
479 SourceLocation TemplateKWLoc
, ValueDecl
*D
,
480 bool RefersToEnclosingVariableOrCapture
,
481 SourceLocation NameLoc
, QualType T
,
482 ExprValueKind VK
, NamedDecl
*FoundD
,
483 const TemplateArgumentListInfo
*TemplateArgs
,
484 NonOdrUseReason NOUR
) {
485 return Create(Context
, QualifierLoc
, TemplateKWLoc
, D
,
486 RefersToEnclosingVariableOrCapture
,
487 DeclarationNameInfo(D
->getDeclName(), NameLoc
),
488 T
, VK
, FoundD
, TemplateArgs
, NOUR
);
491 DeclRefExpr
*DeclRefExpr::Create(const ASTContext
&Context
,
492 NestedNameSpecifierLoc QualifierLoc
,
493 SourceLocation TemplateKWLoc
, ValueDecl
*D
,
494 bool RefersToEnclosingVariableOrCapture
,
495 const DeclarationNameInfo
&NameInfo
,
496 QualType T
, ExprValueKind VK
,
498 const TemplateArgumentListInfo
*TemplateArgs
,
499 NonOdrUseReason NOUR
) {
500 // Filter out cases where the found Decl is the same as the value refenenced.
504 bool HasTemplateKWAndArgsInfo
= TemplateArgs
|| TemplateKWLoc
.isValid();
506 totalSizeToAlloc
<NestedNameSpecifierLoc
, NamedDecl
*,
507 ASTTemplateKWAndArgsInfo
, TemplateArgumentLoc
>(
508 QualifierLoc
? 1 : 0, FoundD
? 1 : 0,
509 HasTemplateKWAndArgsInfo
? 1 : 0,
510 TemplateArgs
? TemplateArgs
->size() : 0);
512 void *Mem
= Context
.Allocate(Size
, alignof(DeclRefExpr
));
513 return new (Mem
) DeclRefExpr(Context
, QualifierLoc
, TemplateKWLoc
, D
,
514 RefersToEnclosingVariableOrCapture
, NameInfo
,
515 FoundD
, TemplateArgs
, T
, VK
, NOUR
);
518 DeclRefExpr
*DeclRefExpr::CreateEmpty(const ASTContext
&Context
,
521 bool HasTemplateKWAndArgsInfo
,
522 unsigned NumTemplateArgs
) {
523 assert(NumTemplateArgs
== 0 || HasTemplateKWAndArgsInfo
);
525 totalSizeToAlloc
<NestedNameSpecifierLoc
, NamedDecl
*,
526 ASTTemplateKWAndArgsInfo
, TemplateArgumentLoc
>(
527 HasQualifier
? 1 : 0, HasFoundDecl
? 1 : 0, HasTemplateKWAndArgsInfo
,
529 void *Mem
= Context
.Allocate(Size
, alignof(DeclRefExpr
));
530 return new (Mem
) DeclRefExpr(EmptyShell());
533 void DeclRefExpr::setDecl(ValueDecl
*NewD
) {
535 if (getType()->isUndeducedType())
536 setType(NewD
->getType());
537 setDependence(computeDependence(this, NewD
->getASTContext()));
540 SourceLocation
DeclRefExpr::getBeginLoc() const {
542 return getQualifierLoc().getBeginLoc();
543 return getNameInfo().getBeginLoc();
545 SourceLocation
DeclRefExpr::getEndLoc() const {
546 if (hasExplicitTemplateArgs())
547 return getRAngleLoc();
548 return getNameInfo().getEndLoc();
551 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc
,
552 SourceLocation LParen
,
553 SourceLocation RParen
,
556 : Expr(SYCLUniqueStableNameExprClass
, ResultTy
, VK_PRValue
, OK_Ordinary
),
557 OpLoc(OpLoc
), LParen(LParen
), RParen(RParen
) {
558 setTypeSourceInfo(TSI
);
559 setDependence(computeDependence(this));
562 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty
,
564 : Expr(SYCLUniqueStableNameExprClass
, ResultTy
, VK_PRValue
, OK_Ordinary
) {}
566 SYCLUniqueStableNameExpr
*
567 SYCLUniqueStableNameExpr::Create(const ASTContext
&Ctx
, SourceLocation OpLoc
,
568 SourceLocation LParen
, SourceLocation RParen
,
569 TypeSourceInfo
*TSI
) {
570 QualType ResultTy
= Ctx
.getPointerType(Ctx
.CharTy
.withConst());
572 SYCLUniqueStableNameExpr(OpLoc
, LParen
, RParen
, ResultTy
, TSI
);
575 SYCLUniqueStableNameExpr
*
576 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext
&Ctx
) {
577 QualType ResultTy
= Ctx
.getPointerType(Ctx
.CharTy
.withConst());
578 return new (Ctx
) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy
);
581 std::string
SYCLUniqueStableNameExpr::ComputeName(ASTContext
&Context
) const {
582 return SYCLUniqueStableNameExpr::ComputeName(Context
,
583 getTypeSourceInfo()->getType());
586 std::string
SYCLUniqueStableNameExpr::ComputeName(ASTContext
&Context
,
588 auto MangleCallback
= [](ASTContext
&Ctx
,
589 const NamedDecl
*ND
) -> std::optional
<unsigned> {
590 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(ND
))
591 return RD
->getDeviceLambdaManglingNumber();
595 std::unique_ptr
<MangleContext
> Ctx
{ItaniumMangleContext::create(
596 Context
, Context
.getDiagnostics(), MangleCallback
)};
600 llvm::raw_string_ostream
Out(Buffer
);
601 Ctx
->mangleCanonicalTypeName(Ty
, Out
);
606 PredefinedExpr::PredefinedExpr(SourceLocation L
, QualType FNTy
, IdentKind IK
,
607 bool IsTransparent
, StringLiteral
*SL
)
608 : Expr(PredefinedExprClass
, FNTy
, VK_LValue
, OK_Ordinary
) {
609 PredefinedExprBits
.Kind
= IK
;
610 assert((getIdentKind() == IK
) &&
611 "IdentKind do not fit in PredefinedExprBitfields!");
612 bool HasFunctionName
= SL
!= nullptr;
613 PredefinedExprBits
.HasFunctionName
= HasFunctionName
;
614 PredefinedExprBits
.IsTransparent
= IsTransparent
;
615 PredefinedExprBits
.Loc
= L
;
618 setDependence(computeDependence(this));
621 PredefinedExpr::PredefinedExpr(EmptyShell Empty
, bool HasFunctionName
)
622 : Expr(PredefinedExprClass
, Empty
) {
623 PredefinedExprBits
.HasFunctionName
= HasFunctionName
;
626 PredefinedExpr
*PredefinedExpr::Create(const ASTContext
&Ctx
, SourceLocation L
,
627 QualType FNTy
, IdentKind IK
,
628 bool IsTransparent
, StringLiteral
*SL
) {
629 bool HasFunctionName
= SL
!= nullptr;
630 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<Stmt
*>(HasFunctionName
),
631 alignof(PredefinedExpr
));
632 return new (Mem
) PredefinedExpr(L
, FNTy
, IK
, IsTransparent
, SL
);
635 PredefinedExpr
*PredefinedExpr::CreateEmpty(const ASTContext
&Ctx
,
636 bool HasFunctionName
) {
637 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<Stmt
*>(HasFunctionName
),
638 alignof(PredefinedExpr
));
639 return new (Mem
) PredefinedExpr(EmptyShell(), HasFunctionName
);
642 StringRef
PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK
) {
647 return "__FUNCTION__";
649 return "__FUNCDNAME__";
651 return "L__FUNCTION__";
653 return "__PRETTY_FUNCTION__";
655 return "__FUNCSIG__";
657 return "L__FUNCSIG__";
658 case PrettyFunctionNoVirtual
:
661 llvm_unreachable("Unknown ident kind for PredefinedExpr");
664 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
665 // expr" policy instead.
666 std::string
PredefinedExpr::ComputeName(IdentKind IK
, const Decl
*CurrentDecl
) {
667 ASTContext
&Context
= CurrentDecl
->getASTContext();
669 if (IK
== PredefinedExpr::FuncDName
) {
670 if (const NamedDecl
*ND
= dyn_cast
<NamedDecl
>(CurrentDecl
)) {
671 std::unique_ptr
<MangleContext
> MC
;
672 MC
.reset(Context
.createMangleContext());
674 if (MC
->shouldMangleDeclName(ND
)) {
675 SmallString
<256> Buffer
;
676 llvm::raw_svector_ostream
Out(Buffer
);
678 if (const CXXConstructorDecl
*CD
= dyn_cast
<CXXConstructorDecl
>(ND
))
679 GD
= GlobalDecl(CD
, Ctor_Base
);
680 else if (const CXXDestructorDecl
*DD
= dyn_cast
<CXXDestructorDecl
>(ND
))
681 GD
= GlobalDecl(DD
, Dtor_Base
);
682 else if (ND
->hasAttr
<CUDAGlobalAttr
>())
683 GD
= GlobalDecl(cast
<FunctionDecl
>(ND
));
686 MC
->mangleName(GD
, Out
);
688 if (!Buffer
.empty() && Buffer
.front() == '\01')
689 return std::string(Buffer
.substr(1));
690 return std::string(Buffer
.str());
692 return std::string(ND
->getIdentifier()->getName());
696 if (isa
<BlockDecl
>(CurrentDecl
)) {
697 // For blocks we only emit something if it is enclosed in a function
698 // For top-level block we'd like to include the name of variable, but we
699 // don't have it at this point.
700 auto DC
= CurrentDecl
->getDeclContext();
701 if (DC
->isFileContext())
704 SmallString
<256> Buffer
;
705 llvm::raw_svector_ostream
Out(Buffer
);
706 if (auto *DCBlock
= dyn_cast
<BlockDecl
>(DC
))
707 // For nested blocks, propagate up to the parent.
708 Out
<< ComputeName(IK
, DCBlock
);
709 else if (auto *DCDecl
= dyn_cast
<Decl
>(DC
))
710 Out
<< ComputeName(IK
, DCDecl
) << "_block_invoke";
711 return std::string(Out
.str());
713 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(CurrentDecl
)) {
714 if (IK
!= PrettyFunction
&& IK
!= PrettyFunctionNoVirtual
&&
715 IK
!= FuncSig
&& IK
!= LFuncSig
)
716 return FD
->getNameAsString();
718 SmallString
<256> Name
;
719 llvm::raw_svector_ostream
Out(Name
);
721 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
722 if (MD
->isVirtual() && IK
!= PrettyFunctionNoVirtual
)
728 class PrettyCallbacks final
: public PrintingCallbacks
{
730 PrettyCallbacks(const LangOptions
&LO
) : LO(LO
) {}
731 std::string
remapPath(StringRef Path
) const override
{
732 SmallString
<128> p(Path
);
733 LO
.remapPathPrefix(p
);
734 return std::string(p
);
738 const LangOptions
&LO
;
740 PrintingPolicy
Policy(Context
.getLangOpts());
741 PrettyCallbacks
PrettyCB(Context
.getLangOpts());
742 Policy
.Callbacks
= &PrettyCB
;
744 llvm::raw_string_ostream
POut(Proto
);
746 const FunctionDecl
*Decl
= FD
;
747 if (const FunctionDecl
* Pattern
= FD
->getTemplateInstantiationPattern())
749 const FunctionType
*AFT
= Decl
->getType()->getAs
<FunctionType
>();
750 const FunctionProtoType
*FT
= nullptr;
751 if (FD
->hasWrittenPrototype())
752 FT
= dyn_cast
<FunctionProtoType
>(AFT
);
754 if (IK
== FuncSig
|| IK
== LFuncSig
) {
755 switch (AFT
->getCallConv()) {
756 case CC_C
: POut
<< "__cdecl "; break;
757 case CC_X86StdCall
: POut
<< "__stdcall "; break;
758 case CC_X86FastCall
: POut
<< "__fastcall "; break;
759 case CC_X86ThisCall
: POut
<< "__thiscall "; break;
760 case CC_X86VectorCall
: POut
<< "__vectorcall "; break;
761 case CC_X86RegCall
: POut
<< "__regcall "; break;
762 // Only bother printing the conventions that MSVC knows about.
767 FD
->printQualifiedName(POut
, Policy
);
771 for (unsigned i
= 0, e
= Decl
->getNumParams(); i
!= e
; ++i
) {
773 POut
<< Decl
->getParamDecl(i
)->getType().stream(Policy
);
776 if (FT
->isVariadic()) {
777 if (FD
->getNumParams()) POut
<< ", ";
779 } else if ((IK
== FuncSig
|| IK
== LFuncSig
||
780 !Context
.getLangOpts().CPlusPlus
) &&
781 !Decl
->getNumParams()) {
787 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
788 assert(FT
&& "We must have a written prototype in this case.");
791 if (FT
->isVolatile())
793 RefQualifierKind Ref
= MD
->getRefQualifier();
794 if (Ref
== RQ_LValue
)
796 else if (Ref
== RQ_RValue
)
800 typedef SmallVector
<const ClassTemplateSpecializationDecl
*, 8> SpecsTy
;
802 const DeclContext
*Ctx
= FD
->getDeclContext();
803 while (Ctx
&& isa
<NamedDecl
>(Ctx
)) {
804 const ClassTemplateSpecializationDecl
*Spec
805 = dyn_cast
<ClassTemplateSpecializationDecl
>(Ctx
);
806 if (Spec
&& !Spec
->isExplicitSpecialization())
807 Specs
.push_back(Spec
);
808 Ctx
= Ctx
->getParent();
811 std::string TemplateParams
;
812 llvm::raw_string_ostream
TOut(TemplateParams
);
813 for (const ClassTemplateSpecializationDecl
*D
: llvm::reverse(Specs
)) {
814 const TemplateParameterList
*Params
=
815 D
->getSpecializedTemplate()->getTemplateParameters();
816 const TemplateArgumentList
&Args
= D
->getTemplateArgs();
817 assert(Params
->size() == Args
.size());
818 for (unsigned i
= 0, numParams
= Params
->size(); i
!= numParams
; ++i
) {
819 StringRef Param
= Params
->getParam(i
)->getName();
820 if (Param
.empty()) continue;
821 TOut
<< Param
<< " = ";
822 Args
.get(i
).print(Policy
, TOut
,
823 TemplateParameterList::shouldIncludeTypeForArgument(
829 FunctionTemplateSpecializationInfo
*FSI
830 = FD
->getTemplateSpecializationInfo();
831 if (FSI
&& !FSI
->isExplicitSpecialization()) {
832 const TemplateParameterList
* Params
833 = FSI
->getTemplate()->getTemplateParameters();
834 const TemplateArgumentList
* Args
= FSI
->TemplateArguments
;
835 assert(Params
->size() == Args
->size());
836 for (unsigned i
= 0, e
= Params
->size(); i
!= e
; ++i
) {
837 StringRef Param
= Params
->getParam(i
)->getName();
838 if (Param
.empty()) continue;
839 TOut
<< Param
<< " = ";
840 Args
->get(i
).print(Policy
, TOut
, /*IncludeType*/ true);
846 if (!TemplateParams
.empty()) {
847 // remove the trailing comma and space
848 TemplateParams
.resize(TemplateParams
.size() - 2);
849 POut
<< " [" << TemplateParams
<< "]";
854 // Print "auto" for all deduced return types. This includes C++1y return
855 // type deduction and lambdas. For trailing return types resolve the
856 // decltype expression. Otherwise print the real type when this is
857 // not a constructor or destructor.
858 if (isa
<CXXMethodDecl
>(FD
) &&
859 cast
<CXXMethodDecl
>(FD
)->getParent()->isLambda())
860 Proto
= "auto " + Proto
;
861 else if (FT
&& FT
->getReturnType()->getAs
<DecltypeType
>())
863 ->getAs
<DecltypeType
>()
864 ->getUnderlyingType()
865 .getAsStringInternal(Proto
, Policy
);
866 else if (!isa
<CXXConstructorDecl
>(FD
) && !isa
<CXXDestructorDecl
>(FD
))
867 AFT
->getReturnType().getAsStringInternal(Proto
, Policy
);
871 return std::string(Name
);
873 if (const CapturedDecl
*CD
= dyn_cast
<CapturedDecl
>(CurrentDecl
)) {
874 for (const DeclContext
*DC
= CD
->getParent(); DC
; DC
= DC
->getParent())
875 // Skip to its enclosing function or method, but not its enclosing
877 if (DC
->isFunctionOrMethod() && (DC
->getDeclKind() != Decl::Captured
)) {
878 const Decl
*D
= Decl::castFromDeclContext(DC
);
879 return ComputeName(IK
, D
);
881 llvm_unreachable("CapturedDecl not inside a function or method");
883 if (const ObjCMethodDecl
*MD
= dyn_cast
<ObjCMethodDecl
>(CurrentDecl
)) {
884 SmallString
<256> Name
;
885 llvm::raw_svector_ostream
Out(Name
);
886 Out
<< (MD
->isInstanceMethod() ? '-' : '+');
889 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
890 // a null check to avoid a crash.
891 if (const ObjCInterfaceDecl
*ID
= MD
->getClassInterface())
894 if (const ObjCCategoryImplDecl
*CID
=
895 dyn_cast
<ObjCCategoryImplDecl
>(MD
->getDeclContext()))
896 Out
<< '(' << *CID
<< ')';
899 MD
->getSelector().print(Out
);
902 return std::string(Name
);
904 if (isa
<TranslationUnitDecl
>(CurrentDecl
) && IK
== PrettyFunction
) {
905 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
911 void APNumericStorage::setIntValue(const ASTContext
&C
,
912 const llvm::APInt
&Val
) {
916 BitWidth
= Val
.getBitWidth();
917 unsigned NumWords
= Val
.getNumWords();
918 const uint64_t* Words
= Val
.getRawData();
920 pVal
= new (C
) uint64_t[NumWords
];
921 std::copy(Words
, Words
+ NumWords
, pVal
);
922 } else if (NumWords
== 1)
928 IntegerLiteral::IntegerLiteral(const ASTContext
&C
, const llvm::APInt
&V
,
929 QualType type
, SourceLocation l
)
930 : Expr(IntegerLiteralClass
, type
, VK_PRValue
, OK_Ordinary
), Loc(l
) {
931 assert(type
->isIntegerType() && "Illegal type in IntegerLiteral");
932 assert(V
.getBitWidth() == C
.getIntWidth(type
) &&
933 "Integer type is not the correct size for constant.");
935 setDependence(ExprDependence::None
);
939 IntegerLiteral::Create(const ASTContext
&C
, const llvm::APInt
&V
,
940 QualType type
, SourceLocation l
) {
941 return new (C
) IntegerLiteral(C
, V
, type
, l
);
945 IntegerLiteral::Create(const ASTContext
&C
, EmptyShell Empty
) {
946 return new (C
) IntegerLiteral(Empty
);
949 FixedPointLiteral::FixedPointLiteral(const ASTContext
&C
, const llvm::APInt
&V
,
950 QualType type
, SourceLocation l
,
952 : Expr(FixedPointLiteralClass
, type
, VK_PRValue
, OK_Ordinary
), Loc(l
),
954 assert(type
->isFixedPointType() && "Illegal type in FixedPointLiteral");
955 assert(V
.getBitWidth() == C
.getTypeInfo(type
).Width
&&
956 "Fixed point type is not the correct size for constant.");
958 setDependence(ExprDependence::None
);
961 FixedPointLiteral
*FixedPointLiteral::CreateFromRawInt(const ASTContext
&C
,
962 const llvm::APInt
&V
,
966 return new (C
) FixedPointLiteral(C
, V
, type
, l
, Scale
);
969 FixedPointLiteral
*FixedPointLiteral::Create(const ASTContext
&C
,
971 return new (C
) FixedPointLiteral(Empty
);
974 std::string
FixedPointLiteral::getValueAsString(unsigned Radix
) const {
975 // Currently the longest decimal number that can be printed is the max for an
976 // unsigned long _Accum: 4294967295.99999999976716935634613037109375
977 // which is 43 characters.
979 FixedPointValueToString(
980 S
, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale
);
981 return std::string(S
.str());
984 void CharacterLiteral::print(unsigned Val
, CharacterKind Kind
,
987 case CharacterLiteral::Ascii
:
989 case CharacterLiteral::Wide
:
992 case CharacterLiteral::UTF8
:
995 case CharacterLiteral::UTF16
:
998 case CharacterLiteral::UTF32
:
1003 StringRef Escaped
= escapeCStyle
<EscapeChar::Single
>(Val
);
1004 if (!Escaped
.empty()) {
1005 OS
<< "'" << Escaped
<< "'";
1007 // A character literal might be sign-extended, which
1008 // would result in an invalid \U escape sequence.
1009 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1010 // are not correctly handled.
1011 if ((Val
& ~0xFFu
) == ~0xFFu
&& Kind
== CharacterLiteral::Ascii
)
1013 if (Val
< 256 && isPrintable((unsigned char)Val
))
1014 OS
<< "'" << (char)Val
<< "'";
1016 OS
<< "'\\x" << llvm::format("%02x", Val
) << "'";
1017 else if (Val
<= 0xFFFF)
1018 OS
<< "'\\u" << llvm::format("%04x", Val
) << "'";
1020 OS
<< "'\\U" << llvm::format("%08x", Val
) << "'";
1024 FloatingLiteral::FloatingLiteral(const ASTContext
&C
, const llvm::APFloat
&V
,
1025 bool isexact
, QualType Type
, SourceLocation L
)
1026 : Expr(FloatingLiteralClass
, Type
, VK_PRValue
, OK_Ordinary
), Loc(L
) {
1027 setSemantics(V
.getSemantics());
1028 FloatingLiteralBits
.IsExact
= isexact
;
1030 setDependence(ExprDependence::None
);
1033 FloatingLiteral::FloatingLiteral(const ASTContext
&C
, EmptyShell Empty
)
1034 : Expr(FloatingLiteralClass
, Empty
) {
1035 setRawSemantics(llvm::APFloatBase::S_IEEEhalf
);
1036 FloatingLiteralBits
.IsExact
= false;
1040 FloatingLiteral::Create(const ASTContext
&C
, const llvm::APFloat
&V
,
1041 bool isexact
, QualType Type
, SourceLocation L
) {
1042 return new (C
) FloatingLiteral(C
, V
, isexact
, Type
, L
);
1046 FloatingLiteral::Create(const ASTContext
&C
, EmptyShell Empty
) {
1047 return new (C
) FloatingLiteral(C
, Empty
);
1050 /// getValueAsApproximateDouble - This returns the value as an inaccurate
1051 /// double. Note that this may cause loss of precision, but is useful for
1052 /// debugging dumps, etc.
1053 double FloatingLiteral::getValueAsApproximateDouble() const {
1054 llvm::APFloat V
= getValue();
1056 V
.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven
,
1058 return V
.convertToDouble();
1061 unsigned StringLiteral::mapCharByteWidth(TargetInfo
const &Target
,
1063 unsigned CharByteWidth
= 0;
1067 CharByteWidth
= Target
.getCharWidth();
1070 CharByteWidth
= Target
.getWCharWidth();
1073 CharByteWidth
= Target
.getChar16Width();
1076 CharByteWidth
= Target
.getChar32Width();
1079 return sizeof(char); // Host;
1081 assert((CharByteWidth
& 7) == 0 && "Assumes character size is byte multiple");
1083 assert((CharByteWidth
== 1 || CharByteWidth
== 2 || CharByteWidth
== 4) &&
1084 "The only supported character byte widths are 1,2 and 4!");
1085 return CharByteWidth
;
1088 StringLiteral::StringLiteral(const ASTContext
&Ctx
, StringRef Str
,
1089 StringKind Kind
, bool Pascal
, QualType Ty
,
1090 const SourceLocation
*Loc
,
1091 unsigned NumConcatenated
)
1092 : Expr(StringLiteralClass
, Ty
, VK_LValue
, OK_Ordinary
) {
1094 unsigned Length
= Str
.size();
1096 StringLiteralBits
.Kind
= Kind
;
1097 StringLiteralBits
.NumConcatenated
= NumConcatenated
;
1099 if (Kind
!= StringKind::Unevaluated
) {
1100 assert(Ctx
.getAsConstantArrayType(Ty
) &&
1101 "StringLiteral must be of constant array type!");
1102 unsigned CharByteWidth
= mapCharByteWidth(Ctx
.getTargetInfo(), Kind
);
1103 unsigned ByteLength
= Str
.size();
1104 assert((ByteLength
% CharByteWidth
== 0) &&
1105 "The size of the data must be a multiple of CharByteWidth!");
1107 // Avoid the expensive division. The compiler should be able to figure it
1108 // out by itself. However as of clang 7, even with the appropriate
1109 // llvm_unreachable added just here, it is not able to do so.
1110 switch (CharByteWidth
) {
1112 Length
= ByteLength
;
1115 Length
= ByteLength
/ 2;
1118 Length
= ByteLength
/ 4;
1121 llvm_unreachable("Unsupported character width!");
1124 StringLiteralBits
.CharByteWidth
= CharByteWidth
;
1125 StringLiteralBits
.IsPascal
= Pascal
;
1127 assert(!Pascal
&& "Can't make an unevaluated Pascal string");
1128 StringLiteralBits
.CharByteWidth
= 1;
1129 StringLiteralBits
.IsPascal
= false;
1132 *getTrailingObjects
<unsigned>() = Length
;
1134 // Initialize the trailing array of SourceLocation.
1135 // This is safe since SourceLocation is POD-like.
1136 std::memcpy(getTrailingObjects
<SourceLocation
>(), Loc
,
1137 NumConcatenated
* sizeof(SourceLocation
));
1139 // Initialize the trailing array of char holding the string data.
1140 std::memcpy(getTrailingObjects
<char>(), Str
.data(), Str
.size());
1142 setDependence(ExprDependence::None
);
1145 StringLiteral::StringLiteral(EmptyShell Empty
, unsigned NumConcatenated
,
1146 unsigned Length
, unsigned CharByteWidth
)
1147 : Expr(StringLiteralClass
, Empty
) {
1148 StringLiteralBits
.CharByteWidth
= CharByteWidth
;
1149 StringLiteralBits
.NumConcatenated
= NumConcatenated
;
1150 *getTrailingObjects
<unsigned>() = Length
;
1153 StringLiteral
*StringLiteral::Create(const ASTContext
&Ctx
, StringRef Str
,
1154 StringKind Kind
, bool Pascal
, QualType Ty
,
1155 const SourceLocation
*Loc
,
1156 unsigned NumConcatenated
) {
1157 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<unsigned, SourceLocation
, char>(
1158 1, NumConcatenated
, Str
.size()),
1159 alignof(StringLiteral
));
1161 StringLiteral(Ctx
, Str
, Kind
, Pascal
, Ty
, Loc
, NumConcatenated
);
1164 StringLiteral
*StringLiteral::CreateEmpty(const ASTContext
&Ctx
,
1165 unsigned NumConcatenated
,
1167 unsigned CharByteWidth
) {
1168 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<unsigned, SourceLocation
, char>(
1169 1, NumConcatenated
, Length
* CharByteWidth
),
1170 alignof(StringLiteral
));
1172 StringLiteral(EmptyShell(), NumConcatenated
, Length
, CharByteWidth
);
1175 void StringLiteral::outputString(raw_ostream
&OS
) const {
1176 switch (getKind()) {
1179 break; // no prefix.
1180 case Wide
: OS
<< 'L'; break;
1181 case UTF8
: OS
<< "u8"; break;
1182 case UTF16
: OS
<< 'u'; break;
1183 case UTF32
: OS
<< 'U'; break;
1186 static const char Hex
[] = "0123456789ABCDEF";
1188 unsigned LastSlashX
= getLength();
1189 for (unsigned I
= 0, N
= getLength(); I
!= N
; ++I
) {
1190 uint32_t Char
= getCodeUnit(I
);
1191 StringRef Escaped
= escapeCStyle
<EscapeChar::Double
>(Char
);
1192 if (Escaped
.empty()) {
1193 // FIXME: Convert UTF-8 back to codepoints before rendering.
1195 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1196 // Leave invalid surrogates alone; we'll use \x for those.
1197 if (getKind() == UTF16
&& I
!= N
- 1 && Char
>= 0xd800 &&
1199 uint32_t Trail
= getCodeUnit(I
+ 1);
1200 if (Trail
>= 0xdc00 && Trail
<= 0xdfff) {
1201 Char
= 0x10000 + ((Char
- 0xd800) << 10) + (Trail
- 0xdc00);
1207 // If this is a wide string, output characters over 0xff using \x
1208 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1209 // codepoint: use \x escapes for invalid codepoints.
1210 if (getKind() == Wide
||
1211 (Char
>= 0xd800 && Char
<= 0xdfff) || Char
>= 0x110000) {
1212 // FIXME: Is this the best way to print wchar_t?
1215 while ((Char
>> Shift
) == 0)
1217 for (/**/; Shift
>= 0; Shift
-= 4)
1218 OS
<< Hex
[(Char
>> Shift
) & 15];
1225 << Hex
[(Char
>> 20) & 15]
1226 << Hex
[(Char
>> 16) & 15];
1229 OS
<< Hex
[(Char
>> 12) & 15]
1230 << Hex
[(Char
>> 8) & 15]
1231 << Hex
[(Char
>> 4) & 15]
1232 << Hex
[(Char
>> 0) & 15];
1236 // If we used \x... for the previous character, and this character is a
1237 // hexadecimal digit, prevent it being slurped as part of the \x.
1238 if (LastSlashX
+ 1 == I
) {
1240 case '0': case '1': case '2': case '3': case '4':
1241 case '5': case '6': case '7': case '8': case '9':
1242 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1243 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1248 assert(Char
<= 0xff &&
1249 "Characters above 0xff should already have been handled.");
1251 if (isPrintable(Char
))
1253 else // Output anything hard as an octal escape.
1255 << (char)('0' + ((Char
>> 6) & 7))
1256 << (char)('0' + ((Char
>> 3) & 7))
1257 << (char)('0' + ((Char
>> 0) & 7));
1259 // Handle some common non-printable cases to make dumps prettier.
1266 /// getLocationOfByte - Return a source location that points to the specified
1267 /// byte of this string literal.
1269 /// Strings are amazingly complex. They can be formed from multiple tokens and
1270 /// can have escape sequences in them in addition to the usual trigraph and
1271 /// escaped newline business. This routine handles this complexity.
1273 /// The *StartToken sets the first token to be searched in this function and
1274 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1275 /// returning, it updates the *StartToken to the TokNo of the token being found
1276 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1278 /// Using these two parameters can reduce the time complexity from O(n^2) to
1279 /// O(n) if one wants to get the location of byte for all the tokens in a
1283 StringLiteral::getLocationOfByte(unsigned ByteNo
, const SourceManager
&SM
,
1284 const LangOptions
&Features
,
1285 const TargetInfo
&Target
, unsigned *StartToken
,
1286 unsigned *StartTokenByteOffset
) const {
1287 assert((getKind() == StringLiteral::Ordinary
||
1288 getKind() == StringLiteral::UTF8
||
1289 getKind() == StringLiteral::Unevaluated
) &&
1290 "Only narrow string literals are currently supported");
1292 // Loop over all of the tokens in this string until we find the one that
1293 // contains the byte we're looking for.
1295 unsigned StringOffset
= 0;
1297 TokNo
= *StartToken
;
1298 if (StartTokenByteOffset
) {
1299 StringOffset
= *StartTokenByteOffset
;
1300 ByteNo
-= StringOffset
;
1303 assert(TokNo
< getNumConcatenated() && "Invalid byte number!");
1304 SourceLocation StrTokLoc
= getStrTokenLoc(TokNo
);
1306 // Get the spelling of the string so that we can get the data that makes up
1307 // the string literal, not the identifier for the macro it is potentially
1308 // expanded through.
1309 SourceLocation StrTokSpellingLoc
= SM
.getSpellingLoc(StrTokLoc
);
1311 // Re-lex the token to get its length and original spelling.
1312 std::pair
<FileID
, unsigned> LocInfo
=
1313 SM
.getDecomposedLoc(StrTokSpellingLoc
);
1314 bool Invalid
= false;
1315 StringRef Buffer
= SM
.getBufferData(LocInfo
.first
, &Invalid
);
1317 if (StartTokenByteOffset
!= nullptr)
1318 *StartTokenByteOffset
= StringOffset
;
1319 if (StartToken
!= nullptr)
1320 *StartToken
= TokNo
;
1321 return StrTokSpellingLoc
;
1324 const char *StrData
= Buffer
.data()+LocInfo
.second
;
1326 // Create a lexer starting at the beginning of this token.
1327 Lexer
TheLexer(SM
.getLocForStartOfFile(LocInfo
.first
), Features
,
1328 Buffer
.begin(), StrData
, Buffer
.end());
1330 TheLexer
.LexFromRawLexer(TheTok
);
1332 // Use the StringLiteralParser to compute the length of the string in bytes.
1333 StringLiteralParser
SLP(TheTok
, SM
, Features
, Target
);
1334 unsigned TokNumBytes
= SLP
.GetStringLength();
1336 // If the byte is in this token, return the location of the byte.
1337 if (ByteNo
< TokNumBytes
||
1338 (ByteNo
== TokNumBytes
&& TokNo
== getNumConcatenated() - 1)) {
1339 unsigned Offset
= SLP
.getOffsetOfStringByte(TheTok
, ByteNo
);
1341 // Now that we know the offset of the token in the spelling, use the
1342 // preprocessor to get the offset in the original source.
1343 if (StartTokenByteOffset
!= nullptr)
1344 *StartTokenByteOffset
= StringOffset
;
1345 if (StartToken
!= nullptr)
1346 *StartToken
= TokNo
;
1347 return Lexer::AdvanceToTokenCharacter(StrTokLoc
, Offset
, SM
, Features
);
1350 // Move to the next string token.
1351 StringOffset
+= TokNumBytes
;
1353 ByteNo
-= TokNumBytes
;
1357 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1358 /// corresponds to, e.g. "sizeof" or "[pre]++".
1359 StringRef
UnaryOperator::getOpcodeStr(Opcode Op
) {
1361 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1362 #include "clang/AST/OperationKinds.def"
1364 llvm_unreachable("Unknown unary operator");
1368 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO
, bool Postfix
) {
1370 default: llvm_unreachable("No unary operator for overloaded function");
1371 case OO_PlusPlus
: return Postfix
? UO_PostInc
: UO_PreInc
;
1372 case OO_MinusMinus
: return Postfix
? UO_PostDec
: UO_PreDec
;
1373 case OO_Amp
: return UO_AddrOf
;
1374 case OO_Star
: return UO_Deref
;
1375 case OO_Plus
: return UO_Plus
;
1376 case OO_Minus
: return UO_Minus
;
1377 case OO_Tilde
: return UO_Not
;
1378 case OO_Exclaim
: return UO_LNot
;
1379 case OO_Coawait
: return UO_Coawait
;
1383 OverloadedOperatorKind
UnaryOperator::getOverloadedOperator(Opcode Opc
) {
1385 case UO_PostInc
: case UO_PreInc
: return OO_PlusPlus
;
1386 case UO_PostDec
: case UO_PreDec
: return OO_MinusMinus
;
1387 case UO_AddrOf
: return OO_Amp
;
1388 case UO_Deref
: return OO_Star
;
1389 case UO_Plus
: return OO_Plus
;
1390 case UO_Minus
: return OO_Minus
;
1391 case UO_Not
: return OO_Tilde
;
1392 case UO_LNot
: return OO_Exclaim
;
1393 case UO_Coawait
: return OO_Coawait
;
1394 default: return OO_None
;
1399 //===----------------------------------------------------------------------===//
1400 // Postfix Operators.
1401 //===----------------------------------------------------------------------===//
1403 CallExpr::CallExpr(StmtClass SC
, Expr
*Fn
, ArrayRef
<Expr
*> PreArgs
,
1404 ArrayRef
<Expr
*> Args
, QualType Ty
, ExprValueKind VK
,
1405 SourceLocation RParenLoc
, FPOptionsOverride FPFeatures
,
1406 unsigned MinNumArgs
, ADLCallKind UsesADL
)
1407 : Expr(SC
, Ty
, VK
, OK_Ordinary
), RParenLoc(RParenLoc
) {
1408 NumArgs
= std::max
<unsigned>(Args
.size(), MinNumArgs
);
1409 unsigned NumPreArgs
= PreArgs
.size();
1410 CallExprBits
.NumPreArgs
= NumPreArgs
;
1411 assert((NumPreArgs
== getNumPreArgs()) && "NumPreArgs overflow!");
1413 unsigned OffsetToTrailingObjects
= offsetToTrailingObjects(SC
);
1414 CallExprBits
.OffsetToTrailingObjects
= OffsetToTrailingObjects
;
1415 assert((CallExprBits
.OffsetToTrailingObjects
== OffsetToTrailingObjects
) &&
1416 "OffsetToTrailingObjects overflow!");
1418 CallExprBits
.UsesADL
= static_cast<bool>(UsesADL
);
1421 for (unsigned I
= 0; I
!= NumPreArgs
; ++I
)
1422 setPreArg(I
, PreArgs
[I
]);
1423 for (unsigned I
= 0; I
!= Args
.size(); ++I
)
1425 for (unsigned I
= Args
.size(); I
!= NumArgs
; ++I
)
1428 this->computeDependence();
1430 CallExprBits
.HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
1431 if (hasStoredFPFeatures())
1432 setStoredFPFeatures(FPFeatures
);
1435 CallExpr::CallExpr(StmtClass SC
, unsigned NumPreArgs
, unsigned NumArgs
,
1436 bool HasFPFeatures
, EmptyShell Empty
)
1437 : Expr(SC
, Empty
), NumArgs(NumArgs
) {
1438 CallExprBits
.NumPreArgs
= NumPreArgs
;
1439 assert((NumPreArgs
== getNumPreArgs()) && "NumPreArgs overflow!");
1441 unsigned OffsetToTrailingObjects
= offsetToTrailingObjects(SC
);
1442 CallExprBits
.OffsetToTrailingObjects
= OffsetToTrailingObjects
;
1443 assert((CallExprBits
.OffsetToTrailingObjects
== OffsetToTrailingObjects
) &&
1444 "OffsetToTrailingObjects overflow!");
1445 CallExprBits
.HasFPFeatures
= HasFPFeatures
;
1448 CallExpr
*CallExpr::Create(const ASTContext
&Ctx
, Expr
*Fn
,
1449 ArrayRef
<Expr
*> Args
, QualType Ty
, ExprValueKind VK
,
1450 SourceLocation RParenLoc
,
1451 FPOptionsOverride FPFeatures
, unsigned MinNumArgs
,
1452 ADLCallKind UsesADL
) {
1453 unsigned NumArgs
= std::max
<unsigned>(Args
.size(), MinNumArgs
);
1454 unsigned SizeOfTrailingObjects
= CallExpr::sizeOfTrailingObjects(
1455 /*NumPreArgs=*/0, NumArgs
, FPFeatures
.requiresTrailingStorage());
1457 Ctx
.Allocate(sizeof(CallExpr
) + SizeOfTrailingObjects
, alignof(CallExpr
));
1458 return new (Mem
) CallExpr(CallExprClass
, Fn
, /*PreArgs=*/{}, Args
, Ty
, VK
,
1459 RParenLoc
, FPFeatures
, MinNumArgs
, UsesADL
);
1462 CallExpr
*CallExpr::CreateTemporary(void *Mem
, Expr
*Fn
, QualType Ty
,
1463 ExprValueKind VK
, SourceLocation RParenLoc
,
1464 ADLCallKind UsesADL
) {
1465 assert(!(reinterpret_cast<uintptr_t>(Mem
) % alignof(CallExpr
)) &&
1466 "Misaligned memory in CallExpr::CreateTemporary!");
1467 return new (Mem
) CallExpr(CallExprClass
, Fn
, /*PreArgs=*/{}, /*Args=*/{}, Ty
,
1468 VK
, RParenLoc
, FPOptionsOverride(),
1469 /*MinNumArgs=*/0, UsesADL
);
1472 CallExpr
*CallExpr::CreateEmpty(const ASTContext
&Ctx
, unsigned NumArgs
,
1473 bool HasFPFeatures
, EmptyShell Empty
) {
1474 unsigned SizeOfTrailingObjects
=
1475 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs
, HasFPFeatures
);
1477 Ctx
.Allocate(sizeof(CallExpr
) + SizeOfTrailingObjects
, alignof(CallExpr
));
1479 CallExpr(CallExprClass
, /*NumPreArgs=*/0, NumArgs
, HasFPFeatures
, Empty
);
1482 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC
) {
1485 return sizeof(CallExpr
);
1486 case CXXOperatorCallExprClass
:
1487 return sizeof(CXXOperatorCallExpr
);
1488 case CXXMemberCallExprClass
:
1489 return sizeof(CXXMemberCallExpr
);
1490 case UserDefinedLiteralClass
:
1491 return sizeof(UserDefinedLiteral
);
1492 case CUDAKernelCallExprClass
:
1493 return sizeof(CUDAKernelCallExpr
);
1495 llvm_unreachable("unexpected class deriving from CallExpr!");
1499 Decl
*Expr::getReferencedDeclOfCallee() {
1500 Expr
*CEE
= IgnoreParenImpCasts();
1502 while (auto *NTTP
= dyn_cast
<SubstNonTypeTemplateParmExpr
>(CEE
))
1503 CEE
= NTTP
->getReplacement()->IgnoreParenImpCasts();
1505 // If we're calling a dereference, look at the pointer instead.
1507 if (auto *BO
= dyn_cast
<BinaryOperator
>(CEE
)) {
1508 if (BO
->isPtrMemOp()) {
1509 CEE
= BO
->getRHS()->IgnoreParenImpCasts();
1512 } else if (auto *UO
= dyn_cast
<UnaryOperator
>(CEE
)) {
1513 if (UO
->getOpcode() == UO_Deref
|| UO
->getOpcode() == UO_AddrOf
||
1514 UO
->getOpcode() == UO_Plus
) {
1515 CEE
= UO
->getSubExpr()->IgnoreParenImpCasts();
1522 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(CEE
))
1523 return DRE
->getDecl();
1524 if (auto *ME
= dyn_cast
<MemberExpr
>(CEE
))
1525 return ME
->getMemberDecl();
1526 if (auto *BE
= dyn_cast
<BlockExpr
>(CEE
))
1527 return BE
->getBlockDecl();
1532 /// If this is a call to a builtin, return the builtin ID. If not, return 0.
1533 unsigned CallExpr::getBuiltinCallee() const {
1534 const auto *FDecl
= getDirectCallee();
1535 return FDecl
? FDecl
->getBuiltinID() : 0;
1538 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext
&Ctx
) const {
1539 if (unsigned BI
= getBuiltinCallee())
1540 return Ctx
.BuiltinInfo
.isUnevaluated(BI
);
1544 QualType
CallExpr::getCallReturnType(const ASTContext
&Ctx
) const {
1545 const Expr
*Callee
= getCallee();
1546 QualType CalleeType
= Callee
->getType();
1547 if (const auto *FnTypePtr
= CalleeType
->getAs
<PointerType
>()) {
1548 CalleeType
= FnTypePtr
->getPointeeType();
1549 } else if (const auto *BPT
= CalleeType
->getAs
<BlockPointerType
>()) {
1550 CalleeType
= BPT
->getPointeeType();
1551 } else if (CalleeType
->isSpecificPlaceholderType(BuiltinType::BoundMember
)) {
1552 if (isa
<CXXPseudoDestructorExpr
>(Callee
->IgnoreParens()))
1555 if (isa
<UnresolvedMemberExpr
>(Callee
->IgnoreParens()))
1556 return Ctx
.DependentTy
;
1558 // This should never be overloaded and so should never return null.
1559 CalleeType
= Expr::findBoundMemberType(Callee
);
1560 assert(!CalleeType
.isNull());
1561 } else if (CalleeType
->isRecordType()) {
1562 // If the Callee is a record type, then it is a not-yet-resolved
1563 // dependent call to the call operator of that type.
1564 return Ctx
.DependentTy
;
1565 } else if (CalleeType
->isDependentType() ||
1566 CalleeType
->isSpecificPlaceholderType(BuiltinType::Overload
)) {
1567 return Ctx
.DependentTy
;
1570 const FunctionType
*FnType
= CalleeType
->castAs
<FunctionType
>();
1571 return FnType
->getReturnType();
1574 const Attr
*CallExpr::getUnusedResultAttr(const ASTContext
&Ctx
) const {
1575 // If the return type is a struct, union, or enum that is marked nodiscard,
1576 // then return the return type attribute.
1577 if (const TagDecl
*TD
= getCallReturnType(Ctx
)->getAsTagDecl())
1578 if (const auto *A
= TD
->getAttr
<WarnUnusedResultAttr
>())
1581 for (const auto *TD
= getCallReturnType(Ctx
)->getAs
<TypedefType
>(); TD
;
1582 TD
= TD
->desugar()->getAs
<TypedefType
>())
1583 if (const auto *A
= TD
->getDecl()->getAttr
<WarnUnusedResultAttr
>())
1586 // Otherwise, see if the callee is marked nodiscard and return that attribute
1588 const Decl
*D
= getCalleeDecl();
1589 return D
? D
->getAttr
<WarnUnusedResultAttr
>() : nullptr;
1592 SourceLocation
CallExpr::getBeginLoc() const {
1593 if (const auto *OCE
= dyn_cast
<CXXOperatorCallExpr
>(this))
1594 return OCE
->getBeginLoc();
1596 SourceLocation begin
= getCallee()->getBeginLoc();
1597 if (begin
.isInvalid() && getNumArgs() > 0 && getArg(0))
1598 begin
= getArg(0)->getBeginLoc();
1601 SourceLocation
CallExpr::getEndLoc() const {
1602 if (const auto *OCE
= dyn_cast
<CXXOperatorCallExpr
>(this))
1603 return OCE
->getEndLoc();
1605 SourceLocation end
= getRParenLoc();
1606 if (end
.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1607 end
= getArg(getNumArgs() - 1)->getEndLoc();
1611 OffsetOfExpr
*OffsetOfExpr::Create(const ASTContext
&C
, QualType type
,
1612 SourceLocation OperatorLoc
,
1613 TypeSourceInfo
*tsi
,
1614 ArrayRef
<OffsetOfNode
> comps
,
1615 ArrayRef
<Expr
*> exprs
,
1616 SourceLocation RParenLoc
) {
1617 void *Mem
= C
.Allocate(
1618 totalSizeToAlloc
<OffsetOfNode
, Expr
*>(comps
.size(), exprs
.size()));
1620 return new (Mem
) OffsetOfExpr(C
, type
, OperatorLoc
, tsi
, comps
, exprs
,
1624 OffsetOfExpr
*OffsetOfExpr::CreateEmpty(const ASTContext
&C
,
1625 unsigned numComps
, unsigned numExprs
) {
1627 C
.Allocate(totalSizeToAlloc
<OffsetOfNode
, Expr
*>(numComps
, numExprs
));
1628 return new (Mem
) OffsetOfExpr(numComps
, numExprs
);
1631 OffsetOfExpr::OffsetOfExpr(const ASTContext
&C
, QualType type
,
1632 SourceLocation OperatorLoc
, TypeSourceInfo
*tsi
,
1633 ArrayRef
<OffsetOfNode
> comps
, ArrayRef
<Expr
*> exprs
,
1634 SourceLocation RParenLoc
)
1635 : Expr(OffsetOfExprClass
, type
, VK_PRValue
, OK_Ordinary
),
1636 OperatorLoc(OperatorLoc
), RParenLoc(RParenLoc
), TSInfo(tsi
),
1637 NumComps(comps
.size()), NumExprs(exprs
.size()) {
1638 for (unsigned i
= 0; i
!= comps
.size(); ++i
)
1639 setComponent(i
, comps
[i
]);
1640 for (unsigned i
= 0; i
!= exprs
.size(); ++i
)
1641 setIndexExpr(i
, exprs
[i
]);
1643 setDependence(computeDependence(this));
1646 IdentifierInfo
*OffsetOfNode::getFieldName() const {
1647 assert(getKind() == Field
|| getKind() == Identifier
);
1648 if (getKind() == Field
)
1649 return getField()->getIdentifier();
1651 return reinterpret_cast<IdentifierInfo
*> (Data
& ~(uintptr_t)Mask
);
1654 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1655 UnaryExprOrTypeTrait ExprKind
, Expr
*E
, QualType resultType
,
1656 SourceLocation op
, SourceLocation rp
)
1657 : Expr(UnaryExprOrTypeTraitExprClass
, resultType
, VK_PRValue
, OK_Ordinary
),
1658 OpLoc(op
), RParenLoc(rp
) {
1659 assert(ExprKind
<= UETT_Last
&& "invalid enum value!");
1660 UnaryExprOrTypeTraitExprBits
.Kind
= ExprKind
;
1661 assert(static_cast<unsigned>(ExprKind
) == UnaryExprOrTypeTraitExprBits
.Kind
&&
1662 "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1663 UnaryExprOrTypeTraitExprBits
.IsType
= false;
1665 setDependence(computeDependence(this));
1668 MemberExpr::MemberExpr(Expr
*Base
, bool IsArrow
, SourceLocation OperatorLoc
,
1669 ValueDecl
*MemberDecl
,
1670 const DeclarationNameInfo
&NameInfo
, QualType T
,
1671 ExprValueKind VK
, ExprObjectKind OK
,
1672 NonOdrUseReason NOUR
)
1673 : Expr(MemberExprClass
, T
, VK
, OK
), Base(Base
), MemberDecl(MemberDecl
),
1674 MemberDNLoc(NameInfo
.getInfo()), MemberLoc(NameInfo
.getLoc()) {
1675 assert(!NameInfo
.getName() ||
1676 MemberDecl
->getDeclName() == NameInfo
.getName());
1677 MemberExprBits
.IsArrow
= IsArrow
;
1678 MemberExprBits
.HasQualifierOrFoundDecl
= false;
1679 MemberExprBits
.HasTemplateKWAndArgsInfo
= false;
1680 MemberExprBits
.HadMultipleCandidates
= false;
1681 MemberExprBits
.NonOdrUseReason
= NOUR
;
1682 MemberExprBits
.OperatorLoc
= OperatorLoc
;
1683 setDependence(computeDependence(this));
1686 MemberExpr
*MemberExpr::Create(
1687 const ASTContext
&C
, Expr
*Base
, bool IsArrow
, SourceLocation OperatorLoc
,
1688 NestedNameSpecifierLoc QualifierLoc
, SourceLocation TemplateKWLoc
,
1689 ValueDecl
*MemberDecl
, DeclAccessPair FoundDecl
,
1690 DeclarationNameInfo NameInfo
, const TemplateArgumentListInfo
*TemplateArgs
,
1691 QualType T
, ExprValueKind VK
, ExprObjectKind OK
, NonOdrUseReason NOUR
) {
1692 bool HasQualOrFound
= QualifierLoc
|| FoundDecl
.getDecl() != MemberDecl
||
1693 FoundDecl
.getAccess() != MemberDecl
->getAccess();
1694 bool HasTemplateKWAndArgsInfo
= TemplateArgs
|| TemplateKWLoc
.isValid();
1696 totalSizeToAlloc
<MemberExprNameQualifier
, ASTTemplateKWAndArgsInfo
,
1697 TemplateArgumentLoc
>(
1698 HasQualOrFound
? 1 : 0, HasTemplateKWAndArgsInfo
? 1 : 0,
1699 TemplateArgs
? TemplateArgs
->size() : 0);
1701 void *Mem
= C
.Allocate(Size
, alignof(MemberExpr
));
1702 MemberExpr
*E
= new (Mem
) MemberExpr(Base
, IsArrow
, OperatorLoc
, MemberDecl
,
1703 NameInfo
, T
, VK
, OK
, NOUR
);
1705 if (HasQualOrFound
) {
1706 E
->MemberExprBits
.HasQualifierOrFoundDecl
= true;
1708 MemberExprNameQualifier
*NQ
=
1709 E
->getTrailingObjects
<MemberExprNameQualifier
>();
1710 NQ
->QualifierLoc
= QualifierLoc
;
1711 NQ
->FoundDecl
= FoundDecl
;
1714 E
->MemberExprBits
.HasTemplateKWAndArgsInfo
=
1715 TemplateArgs
|| TemplateKWLoc
.isValid();
1717 // FIXME: remove remaining dependence computation to computeDependence().
1718 auto Deps
= E
->getDependence();
1720 auto TemplateArgDeps
= TemplateArgumentDependence::None
;
1721 E
->getTrailingObjects
<ASTTemplateKWAndArgsInfo
>()->initializeFrom(
1722 TemplateKWLoc
, *TemplateArgs
,
1723 E
->getTrailingObjects
<TemplateArgumentLoc
>(), TemplateArgDeps
);
1724 for (const TemplateArgumentLoc
&ArgLoc
: TemplateArgs
->arguments()) {
1725 Deps
|= toExprDependence(ArgLoc
.getArgument().getDependence());
1727 } else if (TemplateKWLoc
.isValid()) {
1728 E
->getTrailingObjects
<ASTTemplateKWAndArgsInfo
>()->initializeFrom(
1731 E
->setDependence(Deps
);
1736 MemberExpr
*MemberExpr::CreateEmpty(const ASTContext
&Context
,
1737 bool HasQualifier
, bool HasFoundDecl
,
1738 bool HasTemplateKWAndArgsInfo
,
1739 unsigned NumTemplateArgs
) {
1740 assert((!NumTemplateArgs
|| HasTemplateKWAndArgsInfo
) &&
1741 "template args but no template arg info?");
1742 bool HasQualOrFound
= HasQualifier
|| HasFoundDecl
;
1744 totalSizeToAlloc
<MemberExprNameQualifier
, ASTTemplateKWAndArgsInfo
,
1745 TemplateArgumentLoc
>(HasQualOrFound
? 1 : 0,
1746 HasTemplateKWAndArgsInfo
? 1 : 0,
1748 void *Mem
= Context
.Allocate(Size
, alignof(MemberExpr
));
1749 return new (Mem
) MemberExpr(EmptyShell());
1752 void MemberExpr::setMemberDecl(ValueDecl
*NewD
) {
1754 if (getType()->isUndeducedType())
1755 setType(NewD
->getType());
1756 setDependence(computeDependence(this));
1759 SourceLocation
MemberExpr::getBeginLoc() const {
1760 if (isImplicitAccess()) {
1762 return getQualifierLoc().getBeginLoc();
1766 // FIXME: We don't want this to happen. Rather, we should be able to
1767 // detect all kinds of implicit accesses more cleanly.
1768 SourceLocation BaseStartLoc
= getBase()->getBeginLoc();
1769 if (BaseStartLoc
.isValid())
1770 return BaseStartLoc
;
1773 SourceLocation
MemberExpr::getEndLoc() const {
1774 SourceLocation EndLoc
= getMemberNameInfo().getEndLoc();
1775 if (hasExplicitTemplateArgs())
1776 EndLoc
= getRAngleLoc();
1777 else if (EndLoc
.isInvalid())
1778 EndLoc
= getBase()->getEndLoc();
1782 bool CastExpr::CastConsistency() const {
1783 switch (getCastKind()) {
1784 case CK_DerivedToBase
:
1785 case CK_UncheckedDerivedToBase
:
1786 case CK_DerivedToBaseMemberPointer
:
1787 case CK_BaseToDerived
:
1788 case CK_BaseToDerivedMemberPointer
:
1789 assert(!path_empty() && "Cast kind should have a base path!");
1792 case CK_CPointerToObjCPointerCast
:
1793 assert(getType()->isObjCObjectPointerType());
1794 assert(getSubExpr()->getType()->isPointerType());
1795 goto CheckNoBasePath
;
1797 case CK_BlockPointerToObjCPointerCast
:
1798 assert(getType()->isObjCObjectPointerType());
1799 assert(getSubExpr()->getType()->isBlockPointerType());
1800 goto CheckNoBasePath
;
1802 case CK_ReinterpretMemberPointer
:
1803 assert(getType()->isMemberPointerType());
1804 assert(getSubExpr()->getType()->isMemberPointerType());
1805 goto CheckNoBasePath
;
1808 // Arbitrary casts to C pointer types count as bitcasts.
1809 // Otherwise, we should only have block and ObjC pointer casts
1810 // here if they stay within the type kind.
1811 if (!getType()->isPointerType()) {
1812 assert(getType()->isObjCObjectPointerType() ==
1813 getSubExpr()->getType()->isObjCObjectPointerType());
1814 assert(getType()->isBlockPointerType() ==
1815 getSubExpr()->getType()->isBlockPointerType());
1817 goto CheckNoBasePath
;
1819 case CK_AnyPointerToBlockPointerCast
:
1820 assert(getType()->isBlockPointerType());
1821 assert(getSubExpr()->getType()->isAnyPointerType() &&
1822 !getSubExpr()->getType()->isBlockPointerType());
1823 goto CheckNoBasePath
;
1825 case CK_CopyAndAutoreleaseBlockObject
:
1826 assert(getType()->isBlockPointerType());
1827 assert(getSubExpr()->getType()->isBlockPointerType());
1828 goto CheckNoBasePath
;
1830 case CK_FunctionToPointerDecay
:
1831 assert(getType()->isPointerType());
1832 assert(getSubExpr()->getType()->isFunctionType());
1833 goto CheckNoBasePath
;
1835 case CK_AddressSpaceConversion
: {
1836 auto Ty
= getType();
1837 auto SETy
= getSubExpr()->getType();
1838 assert(getValueKindForType(Ty
) == Expr::getValueKindForType(SETy
));
1839 if (isPRValue() && !Ty
->isDependentType() && !SETy
->isDependentType()) {
1840 Ty
= Ty
->getPointeeType();
1841 SETy
= SETy
->getPointeeType();
1843 assert((Ty
->isDependentType() || SETy
->isDependentType()) ||
1844 (!Ty
.isNull() && !SETy
.isNull() &&
1845 Ty
.getAddressSpace() != SETy
.getAddressSpace()));
1846 goto CheckNoBasePath
;
1848 // These should not have an inheritance path.
1851 case CK_ArrayToPointerDecay
:
1852 case CK_NullToMemberPointer
:
1853 case CK_NullToPointer
:
1854 case CK_ConstructorConversion
:
1855 case CK_IntegralToPointer
:
1856 case CK_PointerToIntegral
:
1858 case CK_VectorSplat
:
1859 case CK_IntegralCast
:
1860 case CK_BooleanToSignedIntegral
:
1861 case CK_IntegralToFloating
:
1862 case CK_FloatingToIntegral
:
1863 case CK_FloatingCast
:
1864 case CK_ObjCObjectLValueCast
:
1865 case CK_FloatingRealToComplex
:
1866 case CK_FloatingComplexToReal
:
1867 case CK_FloatingComplexCast
:
1868 case CK_FloatingComplexToIntegralComplex
:
1869 case CK_IntegralRealToComplex
:
1870 case CK_IntegralComplexToReal
:
1871 case CK_IntegralComplexCast
:
1872 case CK_IntegralComplexToFloatingComplex
:
1873 case CK_ARCProduceObject
:
1874 case CK_ARCConsumeObject
:
1875 case CK_ARCReclaimReturnedObject
:
1876 case CK_ARCExtendBlockObject
:
1877 case CK_ZeroToOCLOpaqueType
:
1878 case CK_IntToOCLSampler
:
1879 case CK_FloatingToFixedPoint
:
1880 case CK_FixedPointToFloating
:
1881 case CK_FixedPointCast
:
1882 case CK_FixedPointToIntegral
:
1883 case CK_IntegralToFixedPoint
:
1885 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1886 goto CheckNoBasePath
;
1889 case CK_LValueToRValue
:
1891 case CK_AtomicToNonAtomic
:
1892 case CK_NonAtomicToAtomic
:
1893 case CK_PointerToBoolean
:
1894 case CK_IntegralToBoolean
:
1895 case CK_FloatingToBoolean
:
1896 case CK_MemberPointerToBoolean
:
1897 case CK_FloatingComplexToBoolean
:
1898 case CK_IntegralComplexToBoolean
:
1899 case CK_LValueBitCast
: // -> bool&
1900 case CK_LValueToRValueBitCast
:
1901 case CK_UserDefinedConversion
: // operator bool()
1902 case CK_BuiltinFnToFnPtr
:
1903 case CK_FixedPointToBoolean
:
1905 assert(path_empty() && "Cast kind should not have a base path!");
1911 const char *CastExpr::getCastKindName(CastKind CK
) {
1913 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1914 #include "clang/AST/OperationKinds.def"
1916 llvm_unreachable("Unhandled cast kind!");
1920 // Skip over implicit nodes produced as part of semantic analysis.
1921 // Designed for use with IgnoreExprNodes.
1922 static Expr
*ignoreImplicitSemaNodes(Expr
*E
) {
1923 if (auto *Materialize
= dyn_cast
<MaterializeTemporaryExpr
>(E
))
1924 return Materialize
->getSubExpr();
1926 if (auto *Binder
= dyn_cast
<CXXBindTemporaryExpr
>(E
))
1927 return Binder
->getSubExpr();
1929 if (auto *Full
= dyn_cast
<FullExpr
>(E
))
1930 return Full
->getSubExpr();
1932 if (auto *CPLIE
= dyn_cast
<CXXParenListInitExpr
>(E
);
1933 CPLIE
&& CPLIE
->getInitExprs().size() == 1)
1934 return CPLIE
->getInitExprs()[0];
1940 Expr
*CastExpr::getSubExprAsWritten() {
1941 const Expr
*SubExpr
= nullptr;
1943 for (const CastExpr
*E
= this; E
; E
= dyn_cast
<ImplicitCastExpr
>(SubExpr
)) {
1944 SubExpr
= IgnoreExprNodes(E
->getSubExpr(), ignoreImplicitSemaNodes
);
1946 // Conversions by constructor and conversion functions have a
1947 // subexpression describing the call; strip it off.
1948 if (E
->getCastKind() == CK_ConstructorConversion
) {
1949 SubExpr
= IgnoreExprNodes(cast
<CXXConstructExpr
>(SubExpr
)->getArg(0),
1950 ignoreImplicitSemaNodes
);
1951 } else if (E
->getCastKind() == CK_UserDefinedConversion
) {
1952 assert((isa
<CXXMemberCallExpr
>(SubExpr
) || isa
<BlockExpr
>(SubExpr
)) &&
1953 "Unexpected SubExpr for CK_UserDefinedConversion.");
1954 if (auto *MCE
= dyn_cast
<CXXMemberCallExpr
>(SubExpr
))
1955 SubExpr
= MCE
->getImplicitObjectArgument();
1959 return const_cast<Expr
*>(SubExpr
);
1962 NamedDecl
*CastExpr::getConversionFunction() const {
1963 const Expr
*SubExpr
= nullptr;
1965 for (const CastExpr
*E
= this; E
; E
= dyn_cast
<ImplicitCastExpr
>(SubExpr
)) {
1966 SubExpr
= IgnoreExprNodes(E
->getSubExpr(), ignoreImplicitSemaNodes
);
1968 if (E
->getCastKind() == CK_ConstructorConversion
)
1969 return cast
<CXXConstructExpr
>(SubExpr
)->getConstructor();
1971 if (E
->getCastKind() == CK_UserDefinedConversion
) {
1972 if (auto *MCE
= dyn_cast
<CXXMemberCallExpr
>(SubExpr
))
1973 return MCE
->getMethodDecl();
1980 CXXBaseSpecifier
**CastExpr::path_buffer() {
1981 switch (getStmtClass()) {
1982 #define ABSTRACT_STMT(x)
1983 #define CASTEXPR(Type, Base) \
1984 case Stmt::Type##Class: \
1985 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1986 #define STMT(Type, Base)
1987 #include "clang/AST/StmtNodes.inc"
1989 llvm_unreachable("non-cast expressions not possible here");
1993 const FieldDecl
*CastExpr::getTargetFieldForToUnionCast(QualType unionType
,
1995 auto RD
= unionType
->castAs
<RecordType
>()->getDecl();
1996 return getTargetFieldForToUnionCast(RD
, opType
);
1999 const FieldDecl
*CastExpr::getTargetFieldForToUnionCast(const RecordDecl
*RD
,
2001 auto &Ctx
= RD
->getASTContext();
2002 RecordDecl::field_iterator Field
, FieldEnd
;
2003 for (Field
= RD
->field_begin(), FieldEnd
= RD
->field_end();
2004 Field
!= FieldEnd
; ++Field
) {
2005 if (Ctx
.hasSameUnqualifiedType(Field
->getType(), OpType
) &&
2006 !Field
->isUnnamedBitfield()) {
2013 FPOptionsOverride
*CastExpr::getTrailingFPFeatures() {
2014 assert(hasStoredFPFeatures());
2015 switch (getStmtClass()) {
2016 case ImplicitCastExprClass
:
2017 return static_cast<ImplicitCastExpr
*>(this)
2018 ->getTrailingObjects
<FPOptionsOverride
>();
2019 case CStyleCastExprClass
:
2020 return static_cast<CStyleCastExpr
*>(this)
2021 ->getTrailingObjects
<FPOptionsOverride
>();
2022 case CXXFunctionalCastExprClass
:
2023 return static_cast<CXXFunctionalCastExpr
*>(this)
2024 ->getTrailingObjects
<FPOptionsOverride
>();
2025 case CXXStaticCastExprClass
:
2026 return static_cast<CXXStaticCastExpr
*>(this)
2027 ->getTrailingObjects
<FPOptionsOverride
>();
2029 llvm_unreachable("Cast does not have FPFeatures");
2033 ImplicitCastExpr
*ImplicitCastExpr::Create(const ASTContext
&C
, QualType T
,
2034 CastKind Kind
, Expr
*Operand
,
2035 const CXXCastPath
*BasePath
,
2037 FPOptionsOverride FPO
) {
2038 unsigned PathSize
= (BasePath
? BasePath
->size() : 0);
2040 C
.Allocate(totalSizeToAlloc
<CXXBaseSpecifier
*, FPOptionsOverride
>(
2041 PathSize
, FPO
.requiresTrailingStorage()));
2042 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2043 // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2044 assert((Kind
!= CK_LValueToRValue
||
2045 !(T
->isNullPtrType() || T
->getAsCXXRecordDecl())) &&
2046 "invalid type for lvalue-to-rvalue conversion");
2047 ImplicitCastExpr
*E
=
2048 new (Buffer
) ImplicitCastExpr(T
, Kind
, Operand
, PathSize
, FPO
, VK
);
2050 std::uninitialized_copy_n(BasePath
->data(), BasePath
->size(),
2051 E
->getTrailingObjects
<CXXBaseSpecifier
*>());
2055 ImplicitCastExpr
*ImplicitCastExpr::CreateEmpty(const ASTContext
&C
,
2057 bool HasFPFeatures
) {
2059 C
.Allocate(totalSizeToAlloc
<CXXBaseSpecifier
*, FPOptionsOverride
>(
2060 PathSize
, HasFPFeatures
));
2061 return new (Buffer
) ImplicitCastExpr(EmptyShell(), PathSize
, HasFPFeatures
);
2064 CStyleCastExpr
*CStyleCastExpr::Create(const ASTContext
&C
, QualType T
,
2065 ExprValueKind VK
, CastKind K
, Expr
*Op
,
2066 const CXXCastPath
*BasePath
,
2067 FPOptionsOverride FPO
,
2068 TypeSourceInfo
*WrittenTy
,
2069 SourceLocation L
, SourceLocation R
) {
2070 unsigned PathSize
= (BasePath
? BasePath
->size() : 0);
2072 C
.Allocate(totalSizeToAlloc
<CXXBaseSpecifier
*, FPOptionsOverride
>(
2073 PathSize
, FPO
.requiresTrailingStorage()));
2075 new (Buffer
) CStyleCastExpr(T
, VK
, K
, Op
, PathSize
, FPO
, WrittenTy
, L
, R
);
2077 std::uninitialized_copy_n(BasePath
->data(), BasePath
->size(),
2078 E
->getTrailingObjects
<CXXBaseSpecifier
*>());
2082 CStyleCastExpr
*CStyleCastExpr::CreateEmpty(const ASTContext
&C
,
2084 bool HasFPFeatures
) {
2086 C
.Allocate(totalSizeToAlloc
<CXXBaseSpecifier
*, FPOptionsOverride
>(
2087 PathSize
, HasFPFeatures
));
2088 return new (Buffer
) CStyleCastExpr(EmptyShell(), PathSize
, HasFPFeatures
);
2091 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2092 /// corresponds to, e.g. "<<=".
2093 StringRef
BinaryOperator::getOpcodeStr(Opcode Op
) {
2095 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2096 #include "clang/AST/OperationKinds.def"
2098 llvm_unreachable("Invalid OpCode!");
2102 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO
) {
2104 default: llvm_unreachable("Not an overloadable binary operator");
2105 case OO_Plus
: return BO_Add
;
2106 case OO_Minus
: return BO_Sub
;
2107 case OO_Star
: return BO_Mul
;
2108 case OO_Slash
: return BO_Div
;
2109 case OO_Percent
: return BO_Rem
;
2110 case OO_Caret
: return BO_Xor
;
2111 case OO_Amp
: return BO_And
;
2112 case OO_Pipe
: return BO_Or
;
2113 case OO_Equal
: return BO_Assign
;
2114 case OO_Spaceship
: return BO_Cmp
;
2115 case OO_Less
: return BO_LT
;
2116 case OO_Greater
: return BO_GT
;
2117 case OO_PlusEqual
: return BO_AddAssign
;
2118 case OO_MinusEqual
: return BO_SubAssign
;
2119 case OO_StarEqual
: return BO_MulAssign
;
2120 case OO_SlashEqual
: return BO_DivAssign
;
2121 case OO_PercentEqual
: return BO_RemAssign
;
2122 case OO_CaretEqual
: return BO_XorAssign
;
2123 case OO_AmpEqual
: return BO_AndAssign
;
2124 case OO_PipeEqual
: return BO_OrAssign
;
2125 case OO_LessLess
: return BO_Shl
;
2126 case OO_GreaterGreater
: return BO_Shr
;
2127 case OO_LessLessEqual
: return BO_ShlAssign
;
2128 case OO_GreaterGreaterEqual
: return BO_ShrAssign
;
2129 case OO_EqualEqual
: return BO_EQ
;
2130 case OO_ExclaimEqual
: return BO_NE
;
2131 case OO_LessEqual
: return BO_LE
;
2132 case OO_GreaterEqual
: return BO_GE
;
2133 case OO_AmpAmp
: return BO_LAnd
;
2134 case OO_PipePipe
: return BO_LOr
;
2135 case OO_Comma
: return BO_Comma
;
2136 case OO_ArrowStar
: return BO_PtrMemI
;
2140 OverloadedOperatorKind
BinaryOperator::getOverloadedOperator(Opcode Opc
) {
2141 static const OverloadedOperatorKind OverOps
[] = {
2142 /* .* Cannot be overloaded */OO_None
, OO_ArrowStar
,
2143 OO_Star
, OO_Slash
, OO_Percent
,
2145 OO_LessLess
, OO_GreaterGreater
,
2147 OO_Less
, OO_Greater
, OO_LessEqual
, OO_GreaterEqual
,
2148 OO_EqualEqual
, OO_ExclaimEqual
,
2154 OO_Equal
, OO_StarEqual
,
2155 OO_SlashEqual
, OO_PercentEqual
,
2156 OO_PlusEqual
, OO_MinusEqual
,
2157 OO_LessLessEqual
, OO_GreaterGreaterEqual
,
2158 OO_AmpEqual
, OO_CaretEqual
,
2162 return OverOps
[Opc
];
2165 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext
&Ctx
,
2172 // Check that we have one pointer and one integer operand.
2174 if (LHS
->getType()->isPointerType()) {
2175 if (!RHS
->getType()->isIntegerType())
2178 } else if (RHS
->getType()->isPointerType()) {
2179 if (!LHS
->getType()->isIntegerType())
2186 // Check that the pointer is a nullptr.
2187 if (!PExp
->IgnoreParenCasts()
2188 ->isNullPointerConstant(Ctx
, Expr::NPC_ValueDependentIsNotNull
))
2191 // Check that the pointee type is char-sized.
2192 const PointerType
*PTy
= PExp
->getType()->getAs
<PointerType
>();
2193 if (!PTy
|| !PTy
->getPointeeType()->isCharType())
2199 SourceLocExpr::SourceLocExpr(const ASTContext
&Ctx
, IdentKind Kind
,
2200 QualType ResultTy
, SourceLocation BLoc
,
2201 SourceLocation RParenLoc
,
2202 DeclContext
*ParentContext
)
2203 : Expr(SourceLocExprClass
, ResultTy
, VK_PRValue
, OK_Ordinary
),
2204 BuiltinLoc(BLoc
), RParenLoc(RParenLoc
), ParentContext(ParentContext
) {
2205 SourceLocExprBits
.Kind
= Kind
;
2206 setDependence(ExprDependence::None
);
2209 StringRef
SourceLocExpr::getBuiltinStr() const {
2210 switch (getIdentKind()) {
2212 return "__builtin_FILE";
2214 return "__builtin_FILE_NAME";
2216 return "__builtin_FUNCTION";
2218 return "__builtin_FUNCSIG";
2220 return "__builtin_LINE";
2222 return "__builtin_COLUMN";
2223 case SourceLocStruct
:
2224 return "__builtin_source_location";
2226 llvm_unreachable("unexpected IdentKind!");
2229 APValue
SourceLocExpr::EvaluateInContext(const ASTContext
&Ctx
,
2230 const Expr
*DefaultExpr
) const {
2232 const DeclContext
*Context
;
2234 if (const auto *DIE
= dyn_cast_if_present
<CXXDefaultInitExpr
>(DefaultExpr
)) {
2235 Loc
= DIE
->getUsedLocation();
2236 Context
= DIE
->getUsedContext();
2237 } else if (const auto *DAE
=
2238 dyn_cast_if_present
<CXXDefaultArgExpr
>(DefaultExpr
)) {
2239 Loc
= DAE
->getUsedLocation();
2240 Context
= DAE
->getUsedContext();
2242 Loc
= getLocation();
2243 Context
= getParentContext();
2246 PresumedLoc PLoc
= Ctx
.getSourceManager().getPresumedLoc(
2247 Ctx
.getSourceManager().getExpansionRange(Loc
).getEnd());
2249 auto MakeStringLiteral
= [&](StringRef Tmp
) {
2250 using LValuePathEntry
= APValue::LValuePathEntry
;
2251 StringLiteral
*Res
= Ctx
.getPredefinedStringLiteralFromCache(Tmp
);
2252 // Decay the string to a pointer to the first character.
2253 LValuePathEntry Path
[1] = {LValuePathEntry::ArrayIndex(0)};
2254 return APValue(Res
, CharUnits::Zero(), Path
, /*OnePastTheEnd=*/false);
2257 switch (getIdentKind()) {
2258 case SourceLocExpr::FileName
: {
2259 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the
2260 // the last part of __builtin_FILE().
2261 SmallString
<256> FileName
;
2262 clang::Preprocessor::processPathToFileName(
2263 FileName
, PLoc
, Ctx
.getLangOpts(), Ctx
.getTargetInfo());
2264 return MakeStringLiteral(FileName
);
2266 case SourceLocExpr::File
: {
2267 SmallString
<256> Path(PLoc
.getFilename());
2268 clang::Preprocessor::processPathForFileMacro(Path
, Ctx
.getLangOpts(),
2269 Ctx
.getTargetInfo());
2270 return MakeStringLiteral(Path
);
2272 case SourceLocExpr::Function
:
2273 case SourceLocExpr::FuncSig
: {
2274 const auto *CurDecl
= dyn_cast
<Decl
>(Context
);
2275 const auto Kind
= getIdentKind() == SourceLocExpr::Function
2276 ? PredefinedExpr::Function
2277 : PredefinedExpr::FuncSig
;
2278 return MakeStringLiteral(
2279 CurDecl
? PredefinedExpr::ComputeName(Kind
, CurDecl
) : std::string(""));
2281 case SourceLocExpr::Line
:
2282 return APValue(Ctx
.MakeIntValue(PLoc
.getLine(), Ctx
.UnsignedIntTy
));
2283 case SourceLocExpr::Column
:
2284 return APValue(Ctx
.MakeIntValue(PLoc
.getColumn(), Ctx
.UnsignedIntTy
));
2285 case SourceLocExpr::SourceLocStruct
: {
2286 // Fill in a std::source_location::__impl structure, by creating an
2287 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2289 const CXXRecordDecl
*ImplDecl
= getType()->getPointeeCXXRecordDecl();
2292 // Construct an APValue for the __impl struct, and get or create a Decl
2293 // corresponding to that. Note that we've already verified that the shape of
2294 // the ImplDecl type is as expected.
2296 APValue
Value(APValue::UninitStruct(), 0, 4);
2297 for (const FieldDecl
*F
: ImplDecl
->fields()) {
2298 StringRef Name
= F
->getName();
2299 if (Name
== "_M_file_name") {
2300 SmallString
<256> Path(PLoc
.getFilename());
2301 clang::Preprocessor::processPathForFileMacro(Path
, Ctx
.getLangOpts(),
2302 Ctx
.getTargetInfo());
2303 Value
.getStructField(F
->getFieldIndex()) = MakeStringLiteral(Path
);
2304 } else if (Name
== "_M_function_name") {
2305 // Note: this emits the PrettyFunction name -- different than what
2306 // __builtin_FUNCTION() above returns!
2307 const auto *CurDecl
= dyn_cast
<Decl
>(Context
);
2308 Value
.getStructField(F
->getFieldIndex()) = MakeStringLiteral(
2309 CurDecl
&& !isa
<TranslationUnitDecl
>(CurDecl
)
2310 ? StringRef(PredefinedExpr::ComputeName(
2311 PredefinedExpr::PrettyFunction
, CurDecl
))
2313 } else if (Name
== "_M_line") {
2314 llvm::APSInt IntVal
= Ctx
.MakeIntValue(PLoc
.getLine(), F
->getType());
2315 Value
.getStructField(F
->getFieldIndex()) = APValue(IntVal
);
2316 } else if (Name
== "_M_column") {
2317 llvm::APSInt IntVal
= Ctx
.MakeIntValue(PLoc
.getColumn(), F
->getType());
2318 Value
.getStructField(F
->getFieldIndex()) = APValue(IntVal
);
2322 UnnamedGlobalConstantDecl
*GV
=
2323 Ctx
.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value
);
2325 return APValue(GV
, CharUnits::Zero(), ArrayRef
<APValue::LValuePathEntry
>{},
2329 llvm_unreachable("unhandled case");
2332 InitListExpr::InitListExpr(const ASTContext
&C
, SourceLocation lbraceloc
,
2333 ArrayRef
<Expr
*> initExprs
, SourceLocation rbraceloc
)
2334 : Expr(InitListExprClass
, QualType(), VK_PRValue
, OK_Ordinary
),
2335 InitExprs(C
, initExprs
.size()), LBraceLoc(lbraceloc
),
2336 RBraceLoc(rbraceloc
), AltForm(nullptr, true) {
2337 sawArrayRangeDesignator(false);
2338 InitExprs
.insert(C
, InitExprs
.end(), initExprs
.begin(), initExprs
.end());
2340 setDependence(computeDependence(this));
2343 void InitListExpr::reserveInits(const ASTContext
&C
, unsigned NumInits
) {
2344 if (NumInits
> InitExprs
.size())
2345 InitExprs
.reserve(C
, NumInits
);
2348 void InitListExpr::resizeInits(const ASTContext
&C
, unsigned NumInits
) {
2349 InitExprs
.resize(C
, NumInits
, nullptr);
2352 Expr
*InitListExpr::updateInit(const ASTContext
&C
, unsigned Init
, Expr
*expr
) {
2353 if (Init
>= InitExprs
.size()) {
2354 InitExprs
.insert(C
, InitExprs
.end(), Init
- InitExprs
.size() + 1, nullptr);
2355 setInit(Init
, expr
);
2359 Expr
*Result
= cast_or_null
<Expr
>(InitExprs
[Init
]);
2360 setInit(Init
, expr
);
2364 void InitListExpr::setArrayFiller(Expr
*filler
) {
2365 assert(!hasArrayFiller() && "Filler already set!");
2366 ArrayFillerOrUnionFieldInit
= filler
;
2367 // Fill out any "holes" in the array due to designated initializers.
2368 Expr
**inits
= getInits();
2369 for (unsigned i
= 0, e
= getNumInits(); i
!= e
; ++i
)
2370 if (inits
[i
] == nullptr)
2374 bool InitListExpr::isStringLiteralInit() const {
2375 if (getNumInits() != 1)
2377 const ArrayType
*AT
= getType()->getAsArrayTypeUnsafe();
2378 if (!AT
|| !AT
->getElementType()->isIntegerType())
2380 // It is possible for getInit() to return null.
2381 const Expr
*Init
= getInit(0);
2384 Init
= Init
->IgnoreParenImpCasts();
2385 return isa
<StringLiteral
>(Init
) || isa
<ObjCEncodeExpr
>(Init
);
2388 bool InitListExpr::isTransparent() const {
2389 assert(isSemanticForm() && "syntactic form never semantically transparent");
2391 // A glvalue InitListExpr is always just sugar.
2393 assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2397 // Otherwise, we're sugar if and only if we have exactly one initializer that
2398 // is of the same type.
2399 if (getNumInits() != 1 || !getInit(0))
2402 // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2403 // transparent struct copy.
2404 if (!getInit(0)->isPRValue() && getType()->isRecordType())
2407 return getType().getCanonicalType() ==
2408 getInit(0)->getType().getCanonicalType();
2411 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions
&LangOpts
) const {
2412 assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2414 if (LangOpts
.CPlusPlus
|| getNumInits() != 1 || !getInit(0)) {
2418 const IntegerLiteral
*Lit
= dyn_cast
<IntegerLiteral
>(getInit(0)->IgnoreImplicit());
2419 return Lit
&& Lit
->getValue() == 0;
2422 SourceLocation
InitListExpr::getBeginLoc() const {
2423 if (InitListExpr
*SyntacticForm
= getSyntacticForm())
2424 return SyntacticForm
->getBeginLoc();
2425 SourceLocation Beg
= LBraceLoc
;
2426 if (Beg
.isInvalid()) {
2427 // Find the first non-null initializer.
2428 for (InitExprsTy::const_iterator I
= InitExprs
.begin(),
2429 E
= InitExprs
.end();
2432 Beg
= S
->getBeginLoc();
2440 SourceLocation
InitListExpr::getEndLoc() const {
2441 if (InitListExpr
*SyntacticForm
= getSyntacticForm())
2442 return SyntacticForm
->getEndLoc();
2443 SourceLocation End
= RBraceLoc
;
2444 if (End
.isInvalid()) {
2445 // Find the first non-null initializer from the end.
2446 for (Stmt
*S
: llvm::reverse(InitExprs
)) {
2448 End
= S
->getEndLoc();
2456 /// getFunctionType - Return the underlying function type for this block.
2458 const FunctionProtoType
*BlockExpr::getFunctionType() const {
2459 // The block pointer is never sugared, but the function type might be.
2460 return cast
<BlockPointerType
>(getType())
2461 ->getPointeeType()->castAs
<FunctionProtoType
>();
2464 SourceLocation
BlockExpr::getCaretLocation() const {
2465 return TheBlock
->getCaretLocation();
2467 const Stmt
*BlockExpr::getBody() const {
2468 return TheBlock
->getBody();
2470 Stmt
*BlockExpr::getBody() {
2471 return TheBlock
->getBody();
2475 //===----------------------------------------------------------------------===//
2476 // Generic Expression Routines
2477 //===----------------------------------------------------------------------===//
2479 bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2480 // In C++11, discarded-value expressions of a certain form are special,
2481 // according to [expr]p10:
2482 // The lvalue-to-rvalue conversion (4.1) is applied only if the
2483 // expression is a glvalue of volatile-qualified type and it has
2484 // one of the following forms:
2485 if (!isGLValue() || !getType().isVolatileQualified())
2488 const Expr
*E
= IgnoreParens();
2490 // - id-expression (5.1.1),
2491 if (isa
<DeclRefExpr
>(E
))
2494 // - subscripting (5.2.1),
2495 if (isa
<ArraySubscriptExpr
>(E
))
2498 // - class member access (5.2.5),
2499 if (isa
<MemberExpr
>(E
))
2502 // - indirection (5.3.1),
2503 if (auto *UO
= dyn_cast
<UnaryOperator
>(E
))
2504 if (UO
->getOpcode() == UO_Deref
)
2507 if (auto *BO
= dyn_cast
<BinaryOperator
>(E
)) {
2508 // - pointer-to-member operation (5.5),
2509 if (BO
->isPtrMemOp())
2512 // - comma expression (5.18) where the right operand is one of the above.
2513 if (BO
->getOpcode() == BO_Comma
)
2514 return BO
->getRHS()->isReadIfDiscardedInCPlusPlus11();
2517 // - conditional expression (5.16) where both the second and the third
2518 // operands are one of the above, or
2519 if (auto *CO
= dyn_cast
<ConditionalOperator
>(E
))
2520 return CO
->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2521 CO
->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2522 // The related edge case of "*x ?: *x".
2524 dyn_cast
<BinaryConditionalOperator
>(E
)) {
2525 if (auto *OVE
= dyn_cast
<OpaqueValueExpr
>(BCO
->getTrueExpr()))
2526 return OVE
->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2527 BCO
->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2530 // Objective-C++ extensions to the rule.
2531 if (isa
<ObjCIvarRefExpr
>(E
))
2533 if (const auto *POE
= dyn_cast
<PseudoObjectExpr
>(E
)) {
2534 if (isa
<ObjCPropertyRefExpr
, ObjCSubscriptRefExpr
>(POE
->getSyntacticForm()))
2541 /// isUnusedResultAWarning - Return true if this immediate expression should
2542 /// be warned about if the result is unused. If so, fill in Loc and Ranges
2543 /// with location to warn on and the source range[s] to report with the
2545 bool Expr::isUnusedResultAWarning(const Expr
*&WarnE
, SourceLocation
&Loc
,
2546 SourceRange
&R1
, SourceRange
&R2
,
2547 ASTContext
&Ctx
) const {
2548 // Don't warn if the expr is type dependent. The type could end up
2549 // instantiating to void.
2550 if (isTypeDependent())
2553 switch (getStmtClass()) {
2555 if (getType()->isVoidType())
2559 R1
= getSourceRange();
2561 case ParenExprClass
:
2562 return cast
<ParenExpr
>(this)->getSubExpr()->
2563 isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2564 case GenericSelectionExprClass
:
2565 return cast
<GenericSelectionExpr
>(this)->getResultExpr()->
2566 isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2567 case CoawaitExprClass
:
2568 case CoyieldExprClass
:
2569 return cast
<CoroutineSuspendExpr
>(this)->getResumeExpr()->
2570 isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2571 case ChooseExprClass
:
2572 return cast
<ChooseExpr
>(this)->getChosenSubExpr()->
2573 isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2574 case UnaryOperatorClass
: {
2575 const UnaryOperator
*UO
= cast
<UnaryOperator
>(this);
2577 switch (UO
->getOpcode()) {
2586 // This is just the 'operator co_await' call inside the guts of a
2587 // dependent co_await call.
2591 case UO_PreDec
: // ++/--
2592 return false; // Not a warning.
2595 // accessing a piece of a volatile complex is a side-effect.
2596 if (Ctx
.getCanonicalType(UO
->getSubExpr()->getType())
2597 .isVolatileQualified())
2601 return UO
->getSubExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2604 Loc
= UO
->getOperatorLoc();
2605 R1
= UO
->getSubExpr()->getSourceRange();
2608 case BinaryOperatorClass
: {
2609 const BinaryOperator
*BO
= cast
<BinaryOperator
>(this);
2610 switch (BO
->getOpcode()) {
2613 // Consider the RHS of comma for side effects. LHS was checked by
2614 // Sema::CheckCommaOperands.
2616 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2617 // lvalue-ness) of an assignment written in a macro.
2618 if (IntegerLiteral
*IE
=
2619 dyn_cast
<IntegerLiteral
>(BO
->getRHS()->IgnoreParens()))
2620 if (IE
->getValue() == 0)
2622 return BO
->getRHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2623 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2626 if (!BO
->getLHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
) ||
2627 !BO
->getRHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
))
2631 if (BO
->isAssignmentOp())
2634 Loc
= BO
->getOperatorLoc();
2635 R1
= BO
->getLHS()->getSourceRange();
2636 R2
= BO
->getRHS()->getSourceRange();
2639 case CompoundAssignOperatorClass
:
2640 case VAArgExprClass
:
2641 case AtomicExprClass
:
2644 case ConditionalOperatorClass
: {
2645 // If only one of the LHS or RHS is a warning, the operator might
2646 // be being used for control flow. Only warn if both the LHS and
2647 // RHS are warnings.
2648 const auto *Exp
= cast
<ConditionalOperator
>(this);
2649 return Exp
->getLHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
) &&
2650 Exp
->getRHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2652 case BinaryConditionalOperatorClass
: {
2653 const auto *Exp
= cast
<BinaryConditionalOperator
>(this);
2654 return Exp
->getFalseExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2657 case MemberExprClass
:
2659 Loc
= cast
<MemberExpr
>(this)->getMemberLoc();
2660 R1
= SourceRange(Loc
, Loc
);
2661 R2
= cast
<MemberExpr
>(this)->getBase()->getSourceRange();
2664 case ArraySubscriptExprClass
:
2666 Loc
= cast
<ArraySubscriptExpr
>(this)->getRBracketLoc();
2667 R1
= cast
<ArraySubscriptExpr
>(this)->getLHS()->getSourceRange();
2668 R2
= cast
<ArraySubscriptExpr
>(this)->getRHS()->getSourceRange();
2671 case CXXOperatorCallExprClass
: {
2672 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2673 // overloads as there is no reasonable way to define these such that they
2674 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2675 // warning: operators == and != are commonly typo'ed, and so warning on them
2676 // provides additional value as well. If this list is updated,
2677 // DiagnoseUnusedComparison should be as well.
2678 const CXXOperatorCallExpr
*Op
= cast
<CXXOperatorCallExpr
>(this);
2679 switch (Op
->getOperator()) {
2683 case OO_ExclaimEqual
:
2686 case OO_GreaterEqual
:
2688 if (Op
->getCallReturnType(Ctx
)->isReferenceType() ||
2689 Op
->getCallReturnType(Ctx
)->isVoidType())
2692 Loc
= Op
->getOperatorLoc();
2693 R1
= Op
->getSourceRange();
2697 // Fallthrough for generic call handling.
2701 case CXXMemberCallExprClass
:
2702 case UserDefinedLiteralClass
: {
2703 // If this is a direct call, get the callee.
2704 const CallExpr
*CE
= cast
<CallExpr
>(this);
2705 if (const Decl
*FD
= CE
->getCalleeDecl()) {
2706 // If the callee has attribute pure, const, or warn_unused_result, warn
2707 // about it. void foo() { strlen("bar"); } should warn.
2709 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2710 // updated to match for QoI.
2711 if (CE
->hasUnusedResultAttr(Ctx
) ||
2712 FD
->hasAttr
<PureAttr
>() || FD
->hasAttr
<ConstAttr
>()) {
2714 Loc
= CE
->getCallee()->getBeginLoc();
2715 R1
= CE
->getCallee()->getSourceRange();
2717 if (unsigned NumArgs
= CE
->getNumArgs())
2718 R2
= SourceRange(CE
->getArg(0)->getBeginLoc(),
2719 CE
->getArg(NumArgs
- 1)->getEndLoc());
2726 // If we don't know precisely what we're looking at, let's not warn.
2727 case UnresolvedLookupExprClass
:
2728 case CXXUnresolvedConstructExprClass
:
2729 case RecoveryExprClass
:
2732 case CXXTemporaryObjectExprClass
:
2733 case CXXConstructExprClass
: {
2734 if (const CXXRecordDecl
*Type
= getType()->getAsCXXRecordDecl()) {
2735 const auto *WarnURAttr
= Type
->getAttr
<WarnUnusedResultAttr
>();
2736 if (Type
->hasAttr
<WarnUnusedAttr
>() ||
2737 (WarnURAttr
&& WarnURAttr
->IsCXX11NoDiscard())) {
2739 Loc
= getBeginLoc();
2740 R1
= getSourceRange();
2745 const auto *CE
= cast
<CXXConstructExpr
>(this);
2746 if (const CXXConstructorDecl
*Ctor
= CE
->getConstructor()) {
2747 const auto *WarnURAttr
= Ctor
->getAttr
<WarnUnusedResultAttr
>();
2748 if (WarnURAttr
&& WarnURAttr
->IsCXX11NoDiscard()) {
2750 Loc
= getBeginLoc();
2751 R1
= getSourceRange();
2753 if (unsigned NumArgs
= CE
->getNumArgs())
2754 R2
= SourceRange(CE
->getArg(0)->getBeginLoc(),
2755 CE
->getArg(NumArgs
- 1)->getEndLoc());
2763 case ObjCMessageExprClass
: {
2764 const ObjCMessageExpr
*ME
= cast
<ObjCMessageExpr
>(this);
2765 if (Ctx
.getLangOpts().ObjCAutoRefCount
&&
2766 ME
->isInstanceMessage() &&
2767 !ME
->getType()->isVoidType() &&
2768 ME
->getMethodFamily() == OMF_init
) {
2771 R1
= ME
->getSourceRange();
2775 if (const ObjCMethodDecl
*MD
= ME
->getMethodDecl())
2776 if (MD
->hasAttr
<WarnUnusedResultAttr
>()) {
2785 case ObjCPropertyRefExprClass
:
2786 case ObjCSubscriptRefExprClass
:
2789 R1
= getSourceRange();
2792 case PseudoObjectExprClass
: {
2793 const auto *POE
= cast
<PseudoObjectExpr
>(this);
2795 // For some syntactic forms, we should always warn.
2796 if (isa
<ObjCPropertyRefExpr
, ObjCSubscriptRefExpr
>(
2797 POE
->getSyntacticForm())) {
2800 R1
= getSourceRange();
2804 // For others, we should never warn.
2805 if (auto *BO
= dyn_cast
<BinaryOperator
>(POE
->getSyntacticForm()))
2806 if (BO
->isAssignmentOp())
2808 if (auto *UO
= dyn_cast
<UnaryOperator
>(POE
->getSyntacticForm()))
2809 if (UO
->isIncrementDecrementOp())
2812 // Otherwise, warn if the result expression would warn.
2813 const Expr
*Result
= POE
->getResultExpr();
2814 return Result
&& Result
->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2817 case StmtExprClass
: {
2818 // Statement exprs don't logically have side effects themselves, but are
2819 // sometimes used in macros in ways that give them a type that is unused.
2820 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2821 // however, if the result of the stmt expr is dead, we don't want to emit a
2823 const CompoundStmt
*CS
= cast
<StmtExpr
>(this)->getSubStmt();
2824 if (!CS
->body_empty()) {
2825 if (const Expr
*E
= dyn_cast
<Expr
>(CS
->body_back()))
2826 return E
->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2827 if (const LabelStmt
*Label
= dyn_cast
<LabelStmt
>(CS
->body_back()))
2828 if (const Expr
*E
= dyn_cast
<Expr
>(Label
->getSubStmt()))
2829 return E
->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2832 if (getType()->isVoidType())
2835 Loc
= cast
<StmtExpr
>(this)->getLParenLoc();
2836 R1
= getSourceRange();
2839 case CXXFunctionalCastExprClass
:
2840 case CStyleCastExprClass
: {
2841 // Ignore an explicit cast to void, except in C++98 if the operand is a
2842 // volatile glvalue for which we would trigger an implicit read in any
2843 // other language mode. (Such an implicit read always happens as part of
2844 // the lvalue conversion in C, and happens in C++ for expressions of all
2845 // forms where it seems likely the user intended to trigger a volatile
2847 const CastExpr
*CE
= cast
<CastExpr
>(this);
2848 const Expr
*SubE
= CE
->getSubExpr()->IgnoreParens();
2849 if (CE
->getCastKind() == CK_ToVoid
) {
2850 if (Ctx
.getLangOpts().CPlusPlus
&& !Ctx
.getLangOpts().CPlusPlus11
&&
2851 SubE
->isReadIfDiscardedInCPlusPlus11()) {
2852 // Suppress the "unused value" warning for idiomatic usage of
2853 // '(void)var;' used to suppress "unused variable" warnings.
2854 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(SubE
))
2855 if (auto *VD
= dyn_cast
<VarDecl
>(DRE
->getDecl()))
2856 if (!VD
->isExternallyVisible())
2859 // The lvalue-to-rvalue conversion would have no effect for an array.
2860 // It's implausible that the programmer expected this to result in a
2861 // volatile array load, so don't warn.
2862 if (SubE
->getType()->isArrayType())
2865 return SubE
->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2870 // If this is a cast to a constructor conversion, check the operand.
2871 // Otherwise, the result of the cast is unused.
2872 if (CE
->getCastKind() == CK_ConstructorConversion
)
2873 return CE
->getSubExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2874 if (CE
->getCastKind() == CK_Dependent
)
2878 if (const CXXFunctionalCastExpr
*CXXCE
=
2879 dyn_cast
<CXXFunctionalCastExpr
>(this)) {
2880 Loc
= CXXCE
->getBeginLoc();
2881 R1
= CXXCE
->getSubExpr()->getSourceRange();
2883 const CStyleCastExpr
*CStyleCE
= cast
<CStyleCastExpr
>(this);
2884 Loc
= CStyleCE
->getLParenLoc();
2885 R1
= CStyleCE
->getSubExpr()->getSourceRange();
2889 case ImplicitCastExprClass
: {
2890 const CastExpr
*ICE
= cast
<ImplicitCastExpr
>(this);
2892 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2893 if (ICE
->getCastKind() == CK_LValueToRValue
&&
2894 ICE
->getSubExpr()->getType().isVolatileQualified())
2897 return ICE
->getSubExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2899 case CXXDefaultArgExprClass
:
2900 return (cast
<CXXDefaultArgExpr
>(this)
2901 ->getExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
));
2902 case CXXDefaultInitExprClass
:
2903 return (cast
<CXXDefaultInitExpr
>(this)
2904 ->getExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
));
2906 case CXXNewExprClass
:
2907 // FIXME: In theory, there might be new expressions that don't have side
2908 // effects (e.g. a placement new with an uninitialized POD).
2909 case CXXDeleteExprClass
:
2911 case MaterializeTemporaryExprClass
:
2912 return cast
<MaterializeTemporaryExpr
>(this)
2914 ->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2915 case CXXBindTemporaryExprClass
:
2916 return cast
<CXXBindTemporaryExpr
>(this)->getSubExpr()
2917 ->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2918 case ExprWithCleanupsClass
:
2919 return cast
<ExprWithCleanups
>(this)->getSubExpr()
2920 ->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2924 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2925 /// returns true, if it is; false otherwise.
2926 bool Expr::isOBJCGCCandidate(ASTContext
&Ctx
) const {
2927 const Expr
*E
= IgnoreParens();
2928 switch (E
->getStmtClass()) {
2931 case ObjCIvarRefExprClass
:
2933 case Expr::UnaryOperatorClass
:
2934 return cast
<UnaryOperator
>(E
)->getSubExpr()->isOBJCGCCandidate(Ctx
);
2935 case ImplicitCastExprClass
:
2936 return cast
<ImplicitCastExpr
>(E
)->getSubExpr()->isOBJCGCCandidate(Ctx
);
2937 case MaterializeTemporaryExprClass
:
2938 return cast
<MaterializeTemporaryExpr
>(E
)->getSubExpr()->isOBJCGCCandidate(
2940 case CStyleCastExprClass
:
2941 return cast
<CStyleCastExpr
>(E
)->getSubExpr()->isOBJCGCCandidate(Ctx
);
2942 case DeclRefExprClass
: {
2943 const Decl
*D
= cast
<DeclRefExpr
>(E
)->getDecl();
2945 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
2946 if (VD
->hasGlobalStorage())
2948 QualType T
= VD
->getType();
2949 // dereferencing to a pointer is always a gc'able candidate,
2950 // unless it is __weak.
2951 return T
->isPointerType() &&
2952 (Ctx
.getObjCGCAttrKind(T
) != Qualifiers::Weak
);
2956 case MemberExprClass
: {
2957 const MemberExpr
*M
= cast
<MemberExpr
>(E
);
2958 return M
->getBase()->isOBJCGCCandidate(Ctx
);
2960 case ArraySubscriptExprClass
:
2961 return cast
<ArraySubscriptExpr
>(E
)->getBase()->isOBJCGCCandidate(Ctx
);
2965 bool Expr::isBoundMemberFunction(ASTContext
&Ctx
) const {
2966 if (isTypeDependent())
2968 return ClassifyLValue(Ctx
) == Expr::LV_MemberFunction
;
2971 QualType
Expr::findBoundMemberType(const Expr
*expr
) {
2972 assert(expr
->hasPlaceholderType(BuiltinType::BoundMember
));
2974 // Bound member expressions are always one of these possibilities:
2975 // x->m x.m x->*y x.*y
2976 // (possibly parenthesized)
2978 expr
= expr
->IgnoreParens();
2979 if (const MemberExpr
*mem
= dyn_cast
<MemberExpr
>(expr
)) {
2980 assert(isa
<CXXMethodDecl
>(mem
->getMemberDecl()));
2981 return mem
->getMemberDecl()->getType();
2984 if (const BinaryOperator
*op
= dyn_cast
<BinaryOperator
>(expr
)) {
2985 QualType type
= op
->getRHS()->getType()->castAs
<MemberPointerType
>()
2987 assert(type
->isFunctionType());
2991 assert(isa
<UnresolvedMemberExpr
>(expr
) || isa
<CXXPseudoDestructorExpr
>(expr
));
2995 Expr
*Expr::IgnoreImpCasts() {
2996 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep
);
2999 Expr
*Expr::IgnoreCasts() {
3000 return IgnoreExprNodes(this, IgnoreCastsSingleStep
);
3003 Expr
*Expr::IgnoreImplicit() {
3004 return IgnoreExprNodes(this, IgnoreImplicitSingleStep
);
3007 Expr
*Expr::IgnoreImplicitAsWritten() {
3008 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep
);
3011 Expr
*Expr::IgnoreParens() {
3012 return IgnoreExprNodes(this, IgnoreParensSingleStep
);
3015 Expr
*Expr::IgnoreParenImpCasts() {
3016 return IgnoreExprNodes(this, IgnoreParensSingleStep
,
3017 IgnoreImplicitCastsExtraSingleStep
);
3020 Expr
*Expr::IgnoreParenCasts() {
3021 return IgnoreExprNodes(this, IgnoreParensSingleStep
, IgnoreCastsSingleStep
);
3024 Expr
*Expr::IgnoreConversionOperatorSingleStep() {
3025 if (auto *MCE
= dyn_cast
<CXXMemberCallExpr
>(this)) {
3026 if (MCE
->getMethodDecl() && isa
<CXXConversionDecl
>(MCE
->getMethodDecl()))
3027 return MCE
->getImplicitObjectArgument();
3032 Expr
*Expr::IgnoreParenLValueCasts() {
3033 return IgnoreExprNodes(this, IgnoreParensSingleStep
,
3034 IgnoreLValueCastsSingleStep
);
3037 Expr
*Expr::IgnoreParenBaseCasts() {
3038 return IgnoreExprNodes(this, IgnoreParensSingleStep
,
3039 IgnoreBaseCastsSingleStep
);
3042 Expr
*Expr::IgnoreParenNoopCasts(const ASTContext
&Ctx
) {
3043 auto IgnoreNoopCastsSingleStep
= [&Ctx
](Expr
*E
) {
3044 if (auto *CE
= dyn_cast
<CastExpr
>(E
)) {
3045 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3046 // ptr<->int casts of the same width. We also ignore all identity casts.
3047 Expr
*SubExpr
= CE
->getSubExpr();
3048 bool IsIdentityCast
=
3049 Ctx
.hasSameUnqualifiedType(E
->getType(), SubExpr
->getType());
3050 bool IsSameWidthCast
= (E
->getType()->isPointerType() ||
3051 E
->getType()->isIntegralType(Ctx
)) &&
3052 (SubExpr
->getType()->isPointerType() ||
3053 SubExpr
->getType()->isIntegralType(Ctx
)) &&
3054 (Ctx
.getTypeSize(E
->getType()) ==
3055 Ctx
.getTypeSize(SubExpr
->getType()));
3057 if (IsIdentityCast
|| IsSameWidthCast
)
3059 } else if (auto *NTTP
= dyn_cast
<SubstNonTypeTemplateParmExpr
>(E
))
3060 return NTTP
->getReplacement();
3064 return IgnoreExprNodes(this, IgnoreParensSingleStep
,
3065 IgnoreNoopCastsSingleStep
);
3068 Expr
*Expr::IgnoreUnlessSpelledInSource() {
3069 auto IgnoreImplicitConstructorSingleStep
= [](Expr
*E
) {
3070 if (auto *Cast
= dyn_cast
<CXXFunctionalCastExpr
>(E
)) {
3071 auto *SE
= Cast
->getSubExpr();
3072 if (SE
->getSourceRange() == E
->getSourceRange())
3076 if (auto *C
= dyn_cast
<CXXConstructExpr
>(E
)) {
3077 auto NumArgs
= C
->getNumArgs();
3079 (NumArgs
> 1 && isa
<CXXDefaultArgExpr
>(C
->getArg(1)))) {
3080 Expr
*A
= C
->getArg(0);
3081 if (A
->getSourceRange() == E
->getSourceRange() || C
->isElidable())
3087 auto IgnoreImplicitMemberCallSingleStep
= [](Expr
*E
) {
3088 if (auto *C
= dyn_cast
<CXXMemberCallExpr
>(E
)) {
3089 Expr
*ExprNode
= C
->getImplicitObjectArgument();
3090 if (ExprNode
->getSourceRange() == E
->getSourceRange()) {
3093 if (auto *PE
= dyn_cast
<ParenExpr
>(ExprNode
)) {
3094 if (PE
->getSourceRange() == C
->getSourceRange()) {
3095 return cast
<Expr
>(PE
);
3098 ExprNode
= ExprNode
->IgnoreParenImpCasts();
3099 if (ExprNode
->getSourceRange() == E
->getSourceRange())
3104 return IgnoreExprNodes(
3105 this, IgnoreImplicitSingleStep
, IgnoreImplicitCastsExtraSingleStep
,
3106 IgnoreParensOnlySingleStep
, IgnoreImplicitConstructorSingleStep
,
3107 IgnoreImplicitMemberCallSingleStep
);
3110 bool Expr::isDefaultArgument() const {
3111 const Expr
*E
= this;
3112 if (const MaterializeTemporaryExpr
*M
= dyn_cast
<MaterializeTemporaryExpr
>(E
))
3113 E
= M
->getSubExpr();
3115 while (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
))
3116 E
= ICE
->getSubExprAsWritten();
3118 return isa
<CXXDefaultArgExpr
>(E
);
3121 /// Skip over any no-op casts and any temporary-binding
3123 static const Expr
*skipTemporaryBindingsNoOpCastsAndParens(const Expr
*E
) {
3124 if (const MaterializeTemporaryExpr
*M
= dyn_cast
<MaterializeTemporaryExpr
>(E
))
3125 E
= M
->getSubExpr();
3127 while (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
3128 if (ICE
->getCastKind() == CK_NoOp
)
3129 E
= ICE
->getSubExpr();
3134 while (const CXXBindTemporaryExpr
*BE
= dyn_cast
<CXXBindTemporaryExpr
>(E
))
3135 E
= BE
->getSubExpr();
3137 while (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
3138 if (ICE
->getCastKind() == CK_NoOp
)
3139 E
= ICE
->getSubExpr();
3144 return E
->IgnoreParens();
3147 /// isTemporaryObject - Determines if this expression produces a
3148 /// temporary of the given class type.
3149 bool Expr::isTemporaryObject(ASTContext
&C
, const CXXRecordDecl
*TempTy
) const {
3150 if (!C
.hasSameUnqualifiedType(getType(), C
.getTypeDeclType(TempTy
)))
3153 const Expr
*E
= skipTemporaryBindingsNoOpCastsAndParens(this);
3155 // Temporaries are by definition pr-values of class type.
3156 if (!E
->Classify(C
).isPRValue()) {
3157 // In this context, property reference is a message call and is pr-value.
3158 if (!isa
<ObjCPropertyRefExpr
>(E
))
3162 // Black-list a few cases which yield pr-values of class type that don't
3163 // refer to temporaries of that type:
3165 // - implicit derived-to-base conversions
3166 if (isa
<ImplicitCastExpr
>(E
)) {
3167 switch (cast
<ImplicitCastExpr
>(E
)->getCastKind()) {
3168 case CK_DerivedToBase
:
3169 case CK_UncheckedDerivedToBase
:
3176 // - member expressions (all)
3177 if (isa
<MemberExpr
>(E
))
3180 if (const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
))
3181 if (BO
->isPtrMemOp())
3184 // - opaque values (all)
3185 if (isa
<OpaqueValueExpr
>(E
))
3191 bool Expr::isImplicitCXXThis() const {
3192 const Expr
*E
= this;
3194 // Strip away parentheses and casts we don't care about.
3196 if (const ParenExpr
*Paren
= dyn_cast
<ParenExpr
>(E
)) {
3197 E
= Paren
->getSubExpr();
3201 if (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
3202 if (ICE
->getCastKind() == CK_NoOp
||
3203 ICE
->getCastKind() == CK_LValueToRValue
||
3204 ICE
->getCastKind() == CK_DerivedToBase
||
3205 ICE
->getCastKind() == CK_UncheckedDerivedToBase
) {
3206 E
= ICE
->getSubExpr();
3211 if (const UnaryOperator
* UnOp
= dyn_cast
<UnaryOperator
>(E
)) {
3212 if (UnOp
->getOpcode() == UO_Extension
) {
3213 E
= UnOp
->getSubExpr();
3218 if (const MaterializeTemporaryExpr
*M
3219 = dyn_cast
<MaterializeTemporaryExpr
>(E
)) {
3220 E
= M
->getSubExpr();
3227 if (const CXXThisExpr
*This
= dyn_cast
<CXXThisExpr
>(E
))
3228 return This
->isImplicit();
3233 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3234 /// in Exprs is type-dependent.
3235 bool Expr::hasAnyTypeDependentArguments(ArrayRef
<Expr
*> Exprs
) {
3236 for (unsigned I
= 0; I
< Exprs
.size(); ++I
)
3237 if (Exprs
[I
]->isTypeDependent())
3243 bool Expr::isConstantInitializer(ASTContext
&Ctx
, bool IsForRef
,
3244 const Expr
**Culprit
) const {
3245 assert(!isValueDependent() &&
3246 "Expression evaluator can't be called on a dependent expression.");
3248 // This function is attempting whether an expression is an initializer
3249 // which can be evaluated at compile-time. It very closely parallels
3250 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3251 // will lead to unexpected results. Like ConstExprEmitter, it falls back
3252 // to isEvaluatable most of the time.
3254 // If we ever capture reference-binding directly in the AST, we can
3255 // kill the second parameter.
3258 if (auto *EWC
= dyn_cast
<ExprWithCleanups
>(this))
3259 return EWC
->getSubExpr()->isConstantInitializer(Ctx
, true, Culprit
);
3260 if (auto *MTE
= dyn_cast
<MaterializeTemporaryExpr
>(this))
3261 return MTE
->getSubExpr()->isConstantInitializer(Ctx
, false, Culprit
);
3263 if (EvaluateAsLValue(Result
, Ctx
) && !Result
.HasSideEffects
)
3270 switch (getStmtClass()) {
3272 case Stmt::ExprWithCleanupsClass
:
3273 return cast
<ExprWithCleanups
>(this)->getSubExpr()->isConstantInitializer(
3274 Ctx
, IsForRef
, Culprit
);
3275 case StringLiteralClass
:
3276 case ObjCEncodeExprClass
:
3278 case CXXTemporaryObjectExprClass
:
3279 case CXXConstructExprClass
: {
3280 const CXXConstructExpr
*CE
= cast
<CXXConstructExpr
>(this);
3282 if (CE
->getConstructor()->isTrivial() &&
3283 CE
->getConstructor()->getParent()->hasTrivialDestructor()) {
3284 // Trivial default constructor
3285 if (!CE
->getNumArgs()) return true;
3287 // Trivial copy constructor
3288 assert(CE
->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3289 return CE
->getArg(0)->isConstantInitializer(Ctx
, false, Culprit
);
3294 case ConstantExprClass
: {
3295 // FIXME: We should be able to return "true" here, but it can lead to extra
3296 // error messages. E.g. in Sema/array-init.c.
3297 const Expr
*Exp
= cast
<ConstantExpr
>(this)->getSubExpr();
3298 return Exp
->isConstantInitializer(Ctx
, false, Culprit
);
3300 case CompoundLiteralExprClass
: {
3301 // This handles gcc's extension that allows global initializers like
3302 // "struct x {int x;} x = (struct x) {};".
3303 // FIXME: This accepts other cases it shouldn't!
3304 const Expr
*Exp
= cast
<CompoundLiteralExpr
>(this)->getInitializer();
3305 return Exp
->isConstantInitializer(Ctx
, false, Culprit
);
3307 case DesignatedInitUpdateExprClass
: {
3308 const DesignatedInitUpdateExpr
*DIUE
= cast
<DesignatedInitUpdateExpr
>(this);
3309 return DIUE
->getBase()->isConstantInitializer(Ctx
, false, Culprit
) &&
3310 DIUE
->getUpdater()->isConstantInitializer(Ctx
, false, Culprit
);
3312 case InitListExprClass
: {
3313 const InitListExpr
*ILE
= cast
<InitListExpr
>(this);
3314 assert(ILE
->isSemanticForm() && "InitListExpr must be in semantic form");
3315 if (ILE
->getType()->isArrayType()) {
3316 unsigned numInits
= ILE
->getNumInits();
3317 for (unsigned i
= 0; i
< numInits
; i
++) {
3318 if (!ILE
->getInit(i
)->isConstantInitializer(Ctx
, false, Culprit
))
3324 if (ILE
->getType()->isRecordType()) {
3325 unsigned ElementNo
= 0;
3326 RecordDecl
*RD
= ILE
->getType()->castAs
<RecordType
>()->getDecl();
3327 for (const auto *Field
: RD
->fields()) {
3328 // If this is a union, skip all the fields that aren't being initialized.
3329 if (RD
->isUnion() && ILE
->getInitializedFieldInUnion() != Field
)
3332 // Don't emit anonymous bitfields, they just affect layout.
3333 if (Field
->isUnnamedBitfield())
3336 if (ElementNo
< ILE
->getNumInits()) {
3337 const Expr
*Elt
= ILE
->getInit(ElementNo
++);
3338 if (Field
->isBitField()) {
3339 // Bitfields have to evaluate to an integer.
3341 if (!Elt
->EvaluateAsInt(Result
, Ctx
)) {
3347 bool RefType
= Field
->getType()->isReferenceType();
3348 if (!Elt
->isConstantInitializer(Ctx
, RefType
, Culprit
))
3358 case ImplicitValueInitExprClass
:
3359 case NoInitExprClass
:
3361 case ParenExprClass
:
3362 return cast
<ParenExpr
>(this)->getSubExpr()
3363 ->isConstantInitializer(Ctx
, IsForRef
, Culprit
);
3364 case GenericSelectionExprClass
:
3365 return cast
<GenericSelectionExpr
>(this)->getResultExpr()
3366 ->isConstantInitializer(Ctx
, IsForRef
, Culprit
);
3367 case ChooseExprClass
:
3368 if (cast
<ChooseExpr
>(this)->isConditionDependent()) {
3373 return cast
<ChooseExpr
>(this)->getChosenSubExpr()
3374 ->isConstantInitializer(Ctx
, IsForRef
, Culprit
);
3375 case UnaryOperatorClass
: {
3376 const UnaryOperator
* Exp
= cast
<UnaryOperator
>(this);
3377 if (Exp
->getOpcode() == UO_Extension
)
3378 return Exp
->getSubExpr()->isConstantInitializer(Ctx
, false, Culprit
);
3381 case CXXFunctionalCastExprClass
:
3382 case CXXStaticCastExprClass
:
3383 case ImplicitCastExprClass
:
3384 case CStyleCastExprClass
:
3385 case ObjCBridgedCastExprClass
:
3386 case CXXDynamicCastExprClass
:
3387 case CXXReinterpretCastExprClass
:
3388 case CXXAddrspaceCastExprClass
:
3389 case CXXConstCastExprClass
: {
3390 const CastExpr
*CE
= cast
<CastExpr
>(this);
3392 // Handle misc casts we want to ignore.
3393 if (CE
->getCastKind() == CK_NoOp
||
3394 CE
->getCastKind() == CK_LValueToRValue
||
3395 CE
->getCastKind() == CK_ToUnion
||
3396 CE
->getCastKind() == CK_ConstructorConversion
||
3397 CE
->getCastKind() == CK_NonAtomicToAtomic
||
3398 CE
->getCastKind() == CK_AtomicToNonAtomic
||
3399 CE
->getCastKind() == CK_NullToPointer
||
3400 CE
->getCastKind() == CK_IntToOCLSampler
)
3401 return CE
->getSubExpr()->isConstantInitializer(Ctx
, false, Culprit
);
3405 case MaterializeTemporaryExprClass
:
3406 return cast
<MaterializeTemporaryExpr
>(this)
3408 ->isConstantInitializer(Ctx
, false, Culprit
);
3410 case SubstNonTypeTemplateParmExprClass
:
3411 return cast
<SubstNonTypeTemplateParmExpr
>(this)->getReplacement()
3412 ->isConstantInitializer(Ctx
, false, Culprit
);
3413 case CXXDefaultArgExprClass
:
3414 return cast
<CXXDefaultArgExpr
>(this)->getExpr()
3415 ->isConstantInitializer(Ctx
, false, Culprit
);
3416 case CXXDefaultInitExprClass
:
3417 return cast
<CXXDefaultInitExpr
>(this)->getExpr()
3418 ->isConstantInitializer(Ctx
, false, Culprit
);
3420 // Allow certain forms of UB in constant initializers: signed integer
3421 // overflow and floating-point division by zero. We'll give a warning on
3422 // these, but they're common enough that we have to accept them.
3423 if (isEvaluatable(Ctx
, SE_AllowUndefinedBehavior
))
3430 bool CallExpr::isBuiltinAssumeFalse(const ASTContext
&Ctx
) const {
3431 unsigned BuiltinID
= getBuiltinCallee();
3432 if (BuiltinID
!= Builtin::BI__assume
&&
3433 BuiltinID
!= Builtin::BI__builtin_assume
)
3436 const Expr
* Arg
= getArg(0);
3438 return !Arg
->isValueDependent() &&
3439 Arg
->EvaluateAsBooleanCondition(ArgVal
, Ctx
) && !ArgVal
;
3442 bool CallExpr::isCallToStdMove() const {
3443 return getBuiltinCallee() == Builtin::BImove
;
3447 /// Look for any side effects within a Stmt.
3448 class SideEffectFinder
: public ConstEvaluatedExprVisitor
<SideEffectFinder
> {
3449 typedef ConstEvaluatedExprVisitor
<SideEffectFinder
> Inherited
;
3450 const bool IncludePossibleEffects
;
3451 bool HasSideEffects
;
3454 explicit SideEffectFinder(const ASTContext
&Context
, bool IncludePossible
)
3455 : Inherited(Context
),
3456 IncludePossibleEffects(IncludePossible
), HasSideEffects(false) { }
3458 bool hasSideEffects() const { return HasSideEffects
; }
3460 void VisitDecl(const Decl
*D
) {
3464 // We assume the caller checks subexpressions (eg, the initializer, VLA
3465 // bounds) for side-effects on our behalf.
3466 if (auto *VD
= dyn_cast
<VarDecl
>(D
)) {
3467 // Registering a destructor is a side-effect.
3468 if (IncludePossibleEffects
&& VD
->isThisDeclarationADefinition() &&
3469 VD
->needsDestruction(Context
))
3470 HasSideEffects
= true;
3474 void VisitDeclStmt(const DeclStmt
*DS
) {
3475 for (auto *D
: DS
->decls())
3477 Inherited::VisitDeclStmt(DS
);
3480 void VisitExpr(const Expr
*E
) {
3481 if (!HasSideEffects
&&
3482 E
->HasSideEffects(Context
, IncludePossibleEffects
))
3483 HasSideEffects
= true;
3488 bool Expr::HasSideEffects(const ASTContext
&Ctx
,
3489 bool IncludePossibleEffects
) const {
3490 // In circumstances where we care about definite side effects instead of
3491 // potential side effects, we want to ignore expressions that are part of a
3492 // macro expansion as a potential side effect.
3493 if (!IncludePossibleEffects
&& getExprLoc().isMacroID())
3496 switch (getStmtClass()) {
3498 #define ABSTRACT_STMT(Type)
3499 #define STMT(Type, Base) case Type##Class:
3500 #define EXPR(Type, Base)
3501 #include "clang/AST/StmtNodes.inc"
3502 llvm_unreachable("unexpected Expr kind");
3504 case DependentScopeDeclRefExprClass
:
3505 case CXXUnresolvedConstructExprClass
:
3506 case CXXDependentScopeMemberExprClass
:
3507 case UnresolvedLookupExprClass
:
3508 case UnresolvedMemberExprClass
:
3509 case PackExpansionExprClass
:
3510 case SubstNonTypeTemplateParmPackExprClass
:
3511 case FunctionParmPackExprClass
:
3513 case RecoveryExprClass
:
3514 case CXXFoldExprClass
:
3515 // Make a conservative assumption for dependent nodes.
3516 return IncludePossibleEffects
;
3518 case DeclRefExprClass
:
3519 case ObjCIvarRefExprClass
:
3520 case PredefinedExprClass
:
3521 case IntegerLiteralClass
:
3522 case FixedPointLiteralClass
:
3523 case FloatingLiteralClass
:
3524 case ImaginaryLiteralClass
:
3525 case StringLiteralClass
:
3526 case CharacterLiteralClass
:
3527 case OffsetOfExprClass
:
3528 case ImplicitValueInitExprClass
:
3529 case UnaryExprOrTypeTraitExprClass
:
3530 case AddrLabelExprClass
:
3531 case GNUNullExprClass
:
3532 case ArrayInitIndexExprClass
:
3533 case NoInitExprClass
:
3534 case CXXBoolLiteralExprClass
:
3535 case CXXNullPtrLiteralExprClass
:
3536 case CXXThisExprClass
:
3537 case CXXScalarValueInitExprClass
:
3538 case TypeTraitExprClass
:
3539 case ArrayTypeTraitExprClass
:
3540 case ExpressionTraitExprClass
:
3541 case CXXNoexceptExprClass
:
3542 case SizeOfPackExprClass
:
3543 case ObjCStringLiteralClass
:
3544 case ObjCEncodeExprClass
:
3545 case ObjCBoolLiteralExprClass
:
3546 case ObjCAvailabilityCheckExprClass
:
3547 case CXXUuidofExprClass
:
3548 case OpaqueValueExprClass
:
3549 case SourceLocExprClass
:
3550 case ConceptSpecializationExprClass
:
3551 case RequiresExprClass
:
3552 case SYCLUniqueStableNameExprClass
:
3553 // These never have a side-effect.
3556 case ConstantExprClass
:
3557 // FIXME: Move this into the "return false;" block above.
3558 return cast
<ConstantExpr
>(this)->getSubExpr()->HasSideEffects(
3559 Ctx
, IncludePossibleEffects
);
3562 case CXXOperatorCallExprClass
:
3563 case CXXMemberCallExprClass
:
3564 case CUDAKernelCallExprClass
:
3565 case UserDefinedLiteralClass
: {
3566 // We don't know a call definitely has side effects, except for calls
3567 // to pure/const functions that definitely don't.
3568 // If the call itself is considered side-effect free, check the operands.
3569 const Decl
*FD
= cast
<CallExpr
>(this)->getCalleeDecl();
3570 bool IsPure
= FD
&& (FD
->hasAttr
<ConstAttr
>() || FD
->hasAttr
<PureAttr
>());
3571 if (IsPure
|| !IncludePossibleEffects
)
3576 case BlockExprClass
:
3577 case CXXBindTemporaryExprClass
:
3578 if (!IncludePossibleEffects
)
3582 case MSPropertyRefExprClass
:
3583 case MSPropertySubscriptExprClass
:
3584 case CompoundAssignOperatorClass
:
3585 case VAArgExprClass
:
3586 case AtomicExprClass
:
3587 case CXXThrowExprClass
:
3588 case CXXNewExprClass
:
3589 case CXXDeleteExprClass
:
3590 case CoawaitExprClass
:
3591 case DependentCoawaitExprClass
:
3592 case CoyieldExprClass
:
3593 // These always have a side-effect.
3596 case StmtExprClass
: {
3597 // StmtExprs have a side-effect if any substatement does.
3598 SideEffectFinder
Finder(Ctx
, IncludePossibleEffects
);
3599 Finder
.Visit(cast
<StmtExpr
>(this)->getSubStmt());
3600 return Finder
.hasSideEffects();
3603 case ExprWithCleanupsClass
:
3604 if (IncludePossibleEffects
)
3605 if (cast
<ExprWithCleanups
>(this)->cleanupsHaveSideEffects())
3609 case ParenExprClass
:
3610 case ArraySubscriptExprClass
:
3611 case MatrixSubscriptExprClass
:
3612 case OMPArraySectionExprClass
:
3613 case OMPArrayShapingExprClass
:
3614 case OMPIteratorExprClass
:
3615 case MemberExprClass
:
3616 case ConditionalOperatorClass
:
3617 case BinaryConditionalOperatorClass
:
3618 case CompoundLiteralExprClass
:
3619 case ExtVectorElementExprClass
:
3620 case DesignatedInitExprClass
:
3621 case DesignatedInitUpdateExprClass
:
3622 case ArrayInitLoopExprClass
:
3623 case ParenListExprClass
:
3624 case CXXPseudoDestructorExprClass
:
3625 case CXXRewrittenBinaryOperatorClass
:
3626 case CXXStdInitializerListExprClass
:
3627 case SubstNonTypeTemplateParmExprClass
:
3628 case MaterializeTemporaryExprClass
:
3629 case ShuffleVectorExprClass
:
3630 case ConvertVectorExprClass
:
3631 case AsTypeExprClass
:
3632 case CXXParenListInitExprClass
:
3633 // These have a side-effect if any subexpression does.
3636 case UnaryOperatorClass
:
3637 if (cast
<UnaryOperator
>(this)->isIncrementDecrementOp())
3641 case BinaryOperatorClass
:
3642 if (cast
<BinaryOperator
>(this)->isAssignmentOp())
3646 case InitListExprClass
:
3647 // FIXME: The children for an InitListExpr doesn't include the array filler.
3648 if (const Expr
*E
= cast
<InitListExpr
>(this)->getArrayFiller())
3649 if (E
->HasSideEffects(Ctx
, IncludePossibleEffects
))
3653 case GenericSelectionExprClass
:
3654 return cast
<GenericSelectionExpr
>(this)->getResultExpr()->
3655 HasSideEffects(Ctx
, IncludePossibleEffects
);
3657 case ChooseExprClass
:
3658 return cast
<ChooseExpr
>(this)->getChosenSubExpr()->HasSideEffects(
3659 Ctx
, IncludePossibleEffects
);
3661 case CXXDefaultArgExprClass
:
3662 return cast
<CXXDefaultArgExpr
>(this)->getExpr()->HasSideEffects(
3663 Ctx
, IncludePossibleEffects
);
3665 case CXXDefaultInitExprClass
: {
3666 const FieldDecl
*FD
= cast
<CXXDefaultInitExpr
>(this)->getField();
3667 if (const Expr
*E
= FD
->getInClassInitializer())
3668 return E
->HasSideEffects(Ctx
, IncludePossibleEffects
);
3669 // If we've not yet parsed the initializer, assume it has side-effects.
3673 case CXXDynamicCastExprClass
: {
3674 // A dynamic_cast expression has side-effects if it can throw.
3675 const CXXDynamicCastExpr
*DCE
= cast
<CXXDynamicCastExpr
>(this);
3676 if (DCE
->getTypeAsWritten()->isReferenceType() &&
3677 DCE
->getCastKind() == CK_Dynamic
)
3681 case ImplicitCastExprClass
:
3682 case CStyleCastExprClass
:
3683 case CXXStaticCastExprClass
:
3684 case CXXReinterpretCastExprClass
:
3685 case CXXConstCastExprClass
:
3686 case CXXAddrspaceCastExprClass
:
3687 case CXXFunctionalCastExprClass
:
3688 case BuiltinBitCastExprClass
: {
3689 // While volatile reads are side-effecting in both C and C++, we treat them
3690 // as having possible (not definite) side-effects. This allows idiomatic
3691 // code to behave without warning, such as sizeof(*v) for a volatile-
3692 // qualified pointer.
3693 if (!IncludePossibleEffects
)
3696 const CastExpr
*CE
= cast
<CastExpr
>(this);
3697 if (CE
->getCastKind() == CK_LValueToRValue
&&
3698 CE
->getSubExpr()->getType().isVolatileQualified())
3703 case CXXTypeidExprClass
:
3704 // typeid might throw if its subexpression is potentially-evaluated, so has
3705 // side-effects in that case whether or not its subexpression does.
3706 return cast
<CXXTypeidExpr
>(this)->isPotentiallyEvaluated();
3708 case CXXConstructExprClass
:
3709 case CXXTemporaryObjectExprClass
: {
3710 const CXXConstructExpr
*CE
= cast
<CXXConstructExpr
>(this);
3711 if (!CE
->getConstructor()->isTrivial() && IncludePossibleEffects
)
3713 // A trivial constructor does not add any side-effects of its own. Just look
3714 // at its arguments.
3718 case CXXInheritedCtorInitExprClass
: {
3719 const auto *ICIE
= cast
<CXXInheritedCtorInitExpr
>(this);
3720 if (!ICIE
->getConstructor()->isTrivial() && IncludePossibleEffects
)
3725 case LambdaExprClass
: {
3726 const LambdaExpr
*LE
= cast
<LambdaExpr
>(this);
3727 for (Expr
*E
: LE
->capture_inits())
3728 if (E
&& E
->HasSideEffects(Ctx
, IncludePossibleEffects
))
3733 case PseudoObjectExprClass
: {
3734 // Only look for side-effects in the semantic form, and look past
3735 // OpaqueValueExpr bindings in that form.
3736 const PseudoObjectExpr
*PO
= cast
<PseudoObjectExpr
>(this);
3737 for (PseudoObjectExpr::const_semantics_iterator I
= PO
->semantics_begin(),
3738 E
= PO
->semantics_end();
3740 const Expr
*Subexpr
= *I
;
3741 if (const OpaqueValueExpr
*OVE
= dyn_cast
<OpaqueValueExpr
>(Subexpr
))
3742 Subexpr
= OVE
->getSourceExpr();
3743 if (Subexpr
->HasSideEffects(Ctx
, IncludePossibleEffects
))
3749 case ObjCBoxedExprClass
:
3750 case ObjCArrayLiteralClass
:
3751 case ObjCDictionaryLiteralClass
:
3752 case ObjCSelectorExprClass
:
3753 case ObjCProtocolExprClass
:
3754 case ObjCIsaExprClass
:
3755 case ObjCIndirectCopyRestoreExprClass
:
3756 case ObjCSubscriptRefExprClass
:
3757 case ObjCBridgedCastExprClass
:
3758 case ObjCMessageExprClass
:
3759 case ObjCPropertyRefExprClass
:
3760 // FIXME: Classify these cases better.
3761 if (IncludePossibleEffects
)
3766 // Recurse to children.
3767 for (const Stmt
*SubStmt
: children())
3769 cast
<Expr
>(SubStmt
)->HasSideEffects(Ctx
, IncludePossibleEffects
))
3775 FPOptions
Expr::getFPFeaturesInEffect(const LangOptions
&LO
) const {
3776 if (auto Call
= dyn_cast
<CallExpr
>(this))
3777 return Call
->getFPFeaturesInEffect(LO
);
3778 if (auto UO
= dyn_cast
<UnaryOperator
>(this))
3779 return UO
->getFPFeaturesInEffect(LO
);
3780 if (auto BO
= dyn_cast
<BinaryOperator
>(this))
3781 return BO
->getFPFeaturesInEffect(LO
);
3782 if (auto Cast
= dyn_cast
<CastExpr
>(this))
3783 return Cast
->getFPFeaturesInEffect(LO
);
3784 return FPOptions::defaultWithoutTrailingStorage(LO
);
3788 /// Look for a call to a non-trivial function within an expression.
3789 class NonTrivialCallFinder
: public ConstEvaluatedExprVisitor
<NonTrivialCallFinder
>
3791 typedef ConstEvaluatedExprVisitor
<NonTrivialCallFinder
> Inherited
;
3796 explicit NonTrivialCallFinder(const ASTContext
&Context
)
3797 : Inherited(Context
), NonTrivial(false) { }
3799 bool hasNonTrivialCall() const { return NonTrivial
; }
3801 void VisitCallExpr(const CallExpr
*E
) {
3802 if (const CXXMethodDecl
*Method
3803 = dyn_cast_or_null
<const CXXMethodDecl
>(E
->getCalleeDecl())) {
3804 if (Method
->isTrivial()) {
3805 // Recurse to children of the call.
3806 Inherited::VisitStmt(E
);
3814 void VisitCXXConstructExpr(const CXXConstructExpr
*E
) {
3815 if (E
->getConstructor()->isTrivial()) {
3816 // Recurse to children of the call.
3817 Inherited::VisitStmt(E
);
3824 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr
*E
) {
3825 if (E
->getTemporary()->getDestructor()->isTrivial()) {
3826 Inherited::VisitStmt(E
);
3835 bool Expr::hasNonTrivialCall(const ASTContext
&Ctx
) const {
3836 NonTrivialCallFinder
Finder(Ctx
);
3838 return Finder
.hasNonTrivialCall();
3841 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3842 /// pointer constant or not, as well as the specific kind of constant detected.
3843 /// Null pointer constants can be integer constant expressions with the
3844 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3845 /// (a GNU extension).
3846 Expr::NullPointerConstantKind
3847 Expr::isNullPointerConstant(ASTContext
&Ctx
,
3848 NullPointerConstantValueDependence NPC
) const {
3849 if (isValueDependent() &&
3850 (!Ctx
.getLangOpts().CPlusPlus11
|| Ctx
.getLangOpts().MSVCCompat
)) {
3851 // Error-dependent expr should never be a null pointer.
3852 if (containsErrors())
3853 return NPCK_NotNull
;
3855 case NPC_NeverValueDependent
:
3856 llvm_unreachable("Unexpected value dependent expression!");
3857 case NPC_ValueDependentIsNull
:
3858 if (isTypeDependent() || getType()->isIntegralType(Ctx
))
3859 return NPCK_ZeroExpression
;
3861 return NPCK_NotNull
;
3863 case NPC_ValueDependentIsNotNull
:
3864 return NPCK_NotNull
;
3868 // Strip off a cast to void*, if it exists. Except in C++.
3869 if (const ExplicitCastExpr
*CE
= dyn_cast
<ExplicitCastExpr
>(this)) {
3870 if (!Ctx
.getLangOpts().CPlusPlus
) {
3871 // Check that it is a cast to void*.
3872 if (const PointerType
*PT
= CE
->getType()->getAs
<PointerType
>()) {
3873 QualType Pointee
= PT
->getPointeeType();
3874 Qualifiers Qs
= Pointee
.getQualifiers();
3875 // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3876 // has non-default address space it is not treated as nullptr.
3877 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3878 // since it cannot be assigned to a pointer to constant address space.
3879 if (Ctx
.getLangOpts().OpenCL
&&
3880 Pointee
.getAddressSpace() == Ctx
.getDefaultOpenCLPointeeAddrSpace())
3881 Qs
.removeAddressSpace();
3883 if (Pointee
->isVoidType() && Qs
.empty() && // to void*
3884 CE
->getSubExpr()->getType()->isIntegerType()) // from int
3885 return CE
->getSubExpr()->isNullPointerConstant(Ctx
, NPC
);
3888 } else if (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(this)) {
3889 // Ignore the ImplicitCastExpr type entirely.
3890 return ICE
->getSubExpr()->isNullPointerConstant(Ctx
, NPC
);
3891 } else if (const ParenExpr
*PE
= dyn_cast
<ParenExpr
>(this)) {
3892 // Accept ((void*)0) as a null pointer constant, as many other
3893 // implementations do.
3894 return PE
->getSubExpr()->isNullPointerConstant(Ctx
, NPC
);
3895 } else if (const GenericSelectionExpr
*GE
=
3896 dyn_cast
<GenericSelectionExpr
>(this)) {
3897 if (GE
->isResultDependent())
3898 return NPCK_NotNull
;
3899 return GE
->getResultExpr()->isNullPointerConstant(Ctx
, NPC
);
3900 } else if (const ChooseExpr
*CE
= dyn_cast
<ChooseExpr
>(this)) {
3901 if (CE
->isConditionDependent())
3902 return NPCK_NotNull
;
3903 return CE
->getChosenSubExpr()->isNullPointerConstant(Ctx
, NPC
);
3904 } else if (const CXXDefaultArgExpr
*DefaultArg
3905 = dyn_cast
<CXXDefaultArgExpr
>(this)) {
3906 // See through default argument expressions.
3907 return DefaultArg
->getExpr()->isNullPointerConstant(Ctx
, NPC
);
3908 } else if (const CXXDefaultInitExpr
*DefaultInit
3909 = dyn_cast
<CXXDefaultInitExpr
>(this)) {
3910 // See through default initializer expressions.
3911 return DefaultInit
->getExpr()->isNullPointerConstant(Ctx
, NPC
);
3912 } else if (isa
<GNUNullExpr
>(this)) {
3913 // The GNU __null extension is always a null pointer constant.
3914 return NPCK_GNUNull
;
3915 } else if (const MaterializeTemporaryExpr
*M
3916 = dyn_cast
<MaterializeTemporaryExpr
>(this)) {
3917 return M
->getSubExpr()->isNullPointerConstant(Ctx
, NPC
);
3918 } else if (const OpaqueValueExpr
*OVE
= dyn_cast
<OpaqueValueExpr
>(this)) {
3919 if (const Expr
*Source
= OVE
->getSourceExpr())
3920 return Source
->isNullPointerConstant(Ctx
, NPC
);
3923 // If the expression has no type information, it cannot be a null pointer
3925 if (getType().isNull())
3926 return NPCK_NotNull
;
3928 // C++11/C23 nullptr_t is always a null pointer constant.
3929 if (getType()->isNullPtrType())
3930 return NPCK_CXX11_nullptr
;
3932 if (const RecordType
*UT
= getType()->getAsUnionType())
3933 if (!Ctx
.getLangOpts().CPlusPlus11
&&
3934 UT
&& UT
->getDecl()->hasAttr
<TransparentUnionAttr
>())
3935 if (const CompoundLiteralExpr
*CLE
= dyn_cast
<CompoundLiteralExpr
>(this)){
3936 const Expr
*InitExpr
= CLE
->getInitializer();
3937 if (const InitListExpr
*ILE
= dyn_cast
<InitListExpr
>(InitExpr
))
3938 return ILE
->getInit(0)->isNullPointerConstant(Ctx
, NPC
);
3940 // This expression must be an integer type.
3941 if (!getType()->isIntegerType() ||
3942 (Ctx
.getLangOpts().CPlusPlus
&& getType()->isEnumeralType()))
3943 return NPCK_NotNull
;
3945 if (Ctx
.getLangOpts().CPlusPlus11
) {
3946 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3947 // value zero or a prvalue of type std::nullptr_t.
3948 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3949 const IntegerLiteral
*Lit
= dyn_cast
<IntegerLiteral
>(this);
3950 if (Lit
&& !Lit
->getValue())
3951 return NPCK_ZeroLiteral
;
3952 if (!Ctx
.getLangOpts().MSVCCompat
|| !isCXX98IntegralConstantExpr(Ctx
))
3953 return NPCK_NotNull
;
3955 // If we have an integer constant expression, we need to *evaluate* it and
3956 // test for the value 0.
3957 if (!isIntegerConstantExpr(Ctx
))
3958 return NPCK_NotNull
;
3961 if (EvaluateKnownConstInt(Ctx
) != 0)
3962 return NPCK_NotNull
;
3964 if (isa
<IntegerLiteral
>(this))
3965 return NPCK_ZeroLiteral
;
3966 return NPCK_ZeroExpression
;
3969 /// If this expression is an l-value for an Objective C
3970 /// property, find the underlying property reference expression.
3971 const ObjCPropertyRefExpr
*Expr::getObjCProperty() const {
3972 const Expr
*E
= this;
3974 assert((E
->isLValue() && E
->getObjectKind() == OK_ObjCProperty
) &&
3975 "expression is not a property reference");
3976 E
= E
->IgnoreParenCasts();
3977 if (const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
3978 if (BO
->getOpcode() == BO_Comma
) {
3987 return cast
<ObjCPropertyRefExpr
>(E
);
3990 bool Expr::isObjCSelfExpr() const {
3991 const Expr
*E
= IgnoreParenImpCasts();
3993 const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
);
3997 const ImplicitParamDecl
*Param
= dyn_cast
<ImplicitParamDecl
>(DRE
->getDecl());
4001 const ObjCMethodDecl
*M
= dyn_cast
<ObjCMethodDecl
>(Param
->getDeclContext());
4005 return M
->getSelfDecl() == Param
;
4008 FieldDecl
*Expr::getSourceBitField() {
4009 Expr
*E
= this->IgnoreParens();
4011 while (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
4012 if (ICE
->getCastKind() == CK_LValueToRValue
||
4013 (ICE
->isGLValue() && ICE
->getCastKind() == CK_NoOp
))
4014 E
= ICE
->getSubExpr()->IgnoreParens();
4019 if (MemberExpr
*MemRef
= dyn_cast
<MemberExpr
>(E
))
4020 if (FieldDecl
*Field
= dyn_cast
<FieldDecl
>(MemRef
->getMemberDecl()))
4021 if (Field
->isBitField())
4024 if (ObjCIvarRefExpr
*IvarRef
= dyn_cast
<ObjCIvarRefExpr
>(E
)) {
4025 FieldDecl
*Ivar
= IvarRef
->getDecl();
4026 if (Ivar
->isBitField())
4030 if (DeclRefExpr
*DeclRef
= dyn_cast
<DeclRefExpr
>(E
)) {
4031 if (FieldDecl
*Field
= dyn_cast
<FieldDecl
>(DeclRef
->getDecl()))
4032 if (Field
->isBitField())
4035 if (BindingDecl
*BD
= dyn_cast
<BindingDecl
>(DeclRef
->getDecl()))
4036 if (Expr
*E
= BD
->getBinding())
4037 return E
->getSourceBitField();
4040 if (BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(E
)) {
4041 if (BinOp
->isAssignmentOp() && BinOp
->getLHS())
4042 return BinOp
->getLHS()->getSourceBitField();
4044 if (BinOp
->getOpcode() == BO_Comma
&& BinOp
->getRHS())
4045 return BinOp
->getRHS()->getSourceBitField();
4048 if (UnaryOperator
*UnOp
= dyn_cast
<UnaryOperator
>(E
))
4049 if (UnOp
->isPrefix() && UnOp
->isIncrementDecrementOp())
4050 return UnOp
->getSubExpr()->getSourceBitField();
4055 bool Expr::refersToVectorElement() const {
4056 // FIXME: Why do we not just look at the ObjectKind here?
4057 const Expr
*E
= this->IgnoreParens();
4059 while (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
4060 if (ICE
->isGLValue() && ICE
->getCastKind() == CK_NoOp
)
4061 E
= ICE
->getSubExpr()->IgnoreParens();
4066 if (const ArraySubscriptExpr
*ASE
= dyn_cast
<ArraySubscriptExpr
>(E
))
4067 return ASE
->getBase()->getType()->isVectorType();
4069 if (isa
<ExtVectorElementExpr
>(E
))
4072 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(E
))
4073 if (auto *BD
= dyn_cast
<BindingDecl
>(DRE
->getDecl()))
4074 if (auto *E
= BD
->getBinding())
4075 return E
->refersToVectorElement();
4080 bool Expr::refersToGlobalRegisterVar() const {
4081 const Expr
*E
= this->IgnoreParenImpCasts();
4083 if (const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
))
4084 if (const auto *VD
= dyn_cast
<VarDecl
>(DRE
->getDecl()))
4085 if (VD
->getStorageClass() == SC_Register
&&
4086 VD
->hasAttr
<AsmLabelAttr
>() && !VD
->isLocalVarDecl())
4092 bool Expr::isSameComparisonOperand(const Expr
* E1
, const Expr
* E2
) {
4093 E1
= E1
->IgnoreParens();
4094 E2
= E2
->IgnoreParens();
4096 if (E1
->getStmtClass() != E2
->getStmtClass())
4099 switch (E1
->getStmtClass()) {
4102 case CXXThisExprClass
:
4104 case DeclRefExprClass
: {
4105 // DeclRefExpr without an ImplicitCastExpr can happen for integral
4106 // template parameters.
4107 const auto *DRE1
= cast
<DeclRefExpr
>(E1
);
4108 const auto *DRE2
= cast
<DeclRefExpr
>(E2
);
4109 return DRE1
->isPRValue() && DRE2
->isPRValue() &&
4110 DRE1
->getDecl() == DRE2
->getDecl();
4112 case ImplicitCastExprClass
: {
4113 // Peel off implicit casts.
4115 const auto *ICE1
= dyn_cast
<ImplicitCastExpr
>(E1
);
4116 const auto *ICE2
= dyn_cast
<ImplicitCastExpr
>(E2
);
4119 if (ICE1
->getCastKind() != ICE2
->getCastKind())
4121 E1
= ICE1
->getSubExpr()->IgnoreParens();
4122 E2
= ICE2
->getSubExpr()->IgnoreParens();
4123 // The final cast must be one of these types.
4124 if (ICE1
->getCastKind() == CK_LValueToRValue
||
4125 ICE1
->getCastKind() == CK_ArrayToPointerDecay
||
4126 ICE1
->getCastKind() == CK_FunctionToPointerDecay
) {
4131 const auto *DRE1
= dyn_cast
<DeclRefExpr
>(E1
);
4132 const auto *DRE2
= dyn_cast
<DeclRefExpr
>(E2
);
4134 return declaresSameEntity(DRE1
->getDecl(), DRE2
->getDecl());
4136 const auto *Ivar1
= dyn_cast
<ObjCIvarRefExpr
>(E1
);
4137 const auto *Ivar2
= dyn_cast
<ObjCIvarRefExpr
>(E2
);
4138 if (Ivar1
&& Ivar2
) {
4139 return Ivar1
->isFreeIvar() && Ivar2
->isFreeIvar() &&
4140 declaresSameEntity(Ivar1
->getDecl(), Ivar2
->getDecl());
4143 const auto *Array1
= dyn_cast
<ArraySubscriptExpr
>(E1
);
4144 const auto *Array2
= dyn_cast
<ArraySubscriptExpr
>(E2
);
4145 if (Array1
&& Array2
) {
4146 if (!isSameComparisonOperand(Array1
->getBase(), Array2
->getBase()))
4149 auto Idx1
= Array1
->getIdx();
4150 auto Idx2
= Array2
->getIdx();
4151 const auto Integer1
= dyn_cast
<IntegerLiteral
>(Idx1
);
4152 const auto Integer2
= dyn_cast
<IntegerLiteral
>(Idx2
);
4153 if (Integer1
&& Integer2
) {
4154 if (!llvm::APInt::isSameValue(Integer1
->getValue(),
4155 Integer2
->getValue()))
4158 if (!isSameComparisonOperand(Idx1
, Idx2
))
4165 // Walk the MemberExpr chain.
4166 while (isa
<MemberExpr
>(E1
) && isa
<MemberExpr
>(E2
)) {
4167 const auto *ME1
= cast
<MemberExpr
>(E1
);
4168 const auto *ME2
= cast
<MemberExpr
>(E2
);
4169 if (!declaresSameEntity(ME1
->getMemberDecl(), ME2
->getMemberDecl()))
4171 if (const auto *D
= dyn_cast
<VarDecl
>(ME1
->getMemberDecl()))
4172 if (D
->isStaticDataMember())
4174 E1
= ME1
->getBase()->IgnoreParenImpCasts();
4175 E2
= ME2
->getBase()->IgnoreParenImpCasts();
4178 if (isa
<CXXThisExpr
>(E1
) && isa
<CXXThisExpr
>(E2
))
4181 // A static member variable can end the MemberExpr chain with either
4182 // a MemberExpr or a DeclRefExpr.
4183 auto getAnyDecl
= [](const Expr
*E
) -> const ValueDecl
* {
4184 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(E
))
4185 return DRE
->getDecl();
4186 if (const auto *ME
= dyn_cast
<MemberExpr
>(E
))
4187 return ME
->getMemberDecl();
4191 const ValueDecl
*VD1
= getAnyDecl(E1
);
4192 const ValueDecl
*VD2
= getAnyDecl(E2
);
4193 return declaresSameEntity(VD1
, VD2
);
4198 /// isArrow - Return true if the base expression is a pointer to vector,
4199 /// return false if the base expression is a vector.
4200 bool ExtVectorElementExpr::isArrow() const {
4201 return getBase()->getType()->isPointerType();
4204 unsigned ExtVectorElementExpr::getNumElements() const {
4205 if (const VectorType
*VT
= getType()->getAs
<VectorType
>())
4206 return VT
->getNumElements();
4210 /// containsDuplicateElements - Return true if any element access is repeated.
4211 bool ExtVectorElementExpr::containsDuplicateElements() const {
4212 // FIXME: Refactor this code to an accessor on the AST node which returns the
4213 // "type" of component access, and share with code below and in Sema.
4214 StringRef Comp
= Accessor
->getName();
4216 // Halving swizzles do not contain duplicate elements.
4217 if (Comp
== "hi" || Comp
== "lo" || Comp
== "even" || Comp
== "odd")
4220 // Advance past s-char prefix on hex swizzles.
4221 if (Comp
[0] == 's' || Comp
[0] == 'S')
4222 Comp
= Comp
.substr(1);
4224 for (unsigned i
= 0, e
= Comp
.size(); i
!= e
; ++i
)
4225 if (Comp
.substr(i
+ 1).contains(Comp
[i
]))
4231 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4232 void ExtVectorElementExpr::getEncodedElementAccess(
4233 SmallVectorImpl
<uint32_t> &Elts
) const {
4234 StringRef Comp
= Accessor
->getName();
4235 bool isNumericAccessor
= false;
4236 if (Comp
[0] == 's' || Comp
[0] == 'S') {
4237 Comp
= Comp
.substr(1);
4238 isNumericAccessor
= true;
4241 bool isHi
= Comp
== "hi";
4242 bool isLo
= Comp
== "lo";
4243 bool isEven
= Comp
== "even";
4244 bool isOdd
= Comp
== "odd";
4246 for (unsigned i
= 0, e
= getNumElements(); i
!= e
; ++i
) {
4258 Index
= ExtVectorType::getAccessorIdx(Comp
[i
], isNumericAccessor
);
4260 Elts
.push_back(Index
);
4264 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext
&C
, ArrayRef
<Expr
*> args
,
4265 QualType Type
, SourceLocation BLoc
,
4267 : Expr(ShuffleVectorExprClass
, Type
, VK_PRValue
, OK_Ordinary
),
4268 BuiltinLoc(BLoc
), RParenLoc(RP
), NumExprs(args
.size()) {
4269 SubExprs
= new (C
) Stmt
*[args
.size()];
4270 for (unsigned i
= 0; i
!= args
.size(); i
++)
4271 SubExprs
[i
] = args
[i
];
4273 setDependence(computeDependence(this));
4276 void ShuffleVectorExpr::setExprs(const ASTContext
&C
, ArrayRef
<Expr
*> Exprs
) {
4277 if (SubExprs
) C
.Deallocate(SubExprs
);
4279 this->NumExprs
= Exprs
.size();
4280 SubExprs
= new (C
) Stmt
*[NumExprs
];
4281 memcpy(SubExprs
, Exprs
.data(), sizeof(Expr
*) * Exprs
.size());
4284 GenericSelectionExpr::GenericSelectionExpr(
4285 const ASTContext
&, SourceLocation GenericLoc
, Expr
*ControllingExpr
,
4286 ArrayRef
<TypeSourceInfo
*> AssocTypes
, ArrayRef
<Expr
*> AssocExprs
,
4287 SourceLocation DefaultLoc
, SourceLocation RParenLoc
,
4288 bool ContainsUnexpandedParameterPack
, unsigned ResultIndex
)
4289 : Expr(GenericSelectionExprClass
, AssocExprs
[ResultIndex
]->getType(),
4290 AssocExprs
[ResultIndex
]->getValueKind(),
4291 AssocExprs
[ResultIndex
]->getObjectKind()),
4292 NumAssocs(AssocExprs
.size()), ResultIndex(ResultIndex
),
4293 IsExprPredicate(true), DefaultLoc(DefaultLoc
), RParenLoc(RParenLoc
) {
4294 assert(AssocTypes
.size() == AssocExprs
.size() &&
4295 "Must have the same number of association expressions"
4296 " and TypeSourceInfo!");
4297 assert(ResultIndex
< NumAssocs
&& "ResultIndex is out-of-bounds!");
4299 GenericSelectionExprBits
.GenericLoc
= GenericLoc
;
4300 getTrailingObjects
<Stmt
*>()[getIndexOfControllingExpression()] =
4302 std::copy(AssocExprs
.begin(), AssocExprs
.end(),
4303 getTrailingObjects
<Stmt
*>() + getIndexOfStartOfAssociatedExprs());
4304 std::copy(AssocTypes
.begin(), AssocTypes
.end(),
4305 getTrailingObjects
<TypeSourceInfo
*>() +
4306 getIndexOfStartOfAssociatedTypes());
4308 setDependence(computeDependence(this, ContainsUnexpandedParameterPack
));
4311 GenericSelectionExpr::GenericSelectionExpr(
4312 const ASTContext
&, SourceLocation GenericLoc
,
4313 TypeSourceInfo
*ControllingType
, ArrayRef
<TypeSourceInfo
*> AssocTypes
,
4314 ArrayRef
<Expr
*> AssocExprs
, SourceLocation DefaultLoc
,
4315 SourceLocation RParenLoc
, bool ContainsUnexpandedParameterPack
,
4316 unsigned ResultIndex
)
4317 : Expr(GenericSelectionExprClass
, AssocExprs
[ResultIndex
]->getType(),
4318 AssocExprs
[ResultIndex
]->getValueKind(),
4319 AssocExprs
[ResultIndex
]->getObjectKind()),
4320 NumAssocs(AssocExprs
.size()), ResultIndex(ResultIndex
),
4321 IsExprPredicate(false), DefaultLoc(DefaultLoc
), RParenLoc(RParenLoc
) {
4322 assert(AssocTypes
.size() == AssocExprs
.size() &&
4323 "Must have the same number of association expressions"
4324 " and TypeSourceInfo!");
4325 assert(ResultIndex
< NumAssocs
&& "ResultIndex is out-of-bounds!");
4327 GenericSelectionExprBits
.GenericLoc
= GenericLoc
;
4328 getTrailingObjects
<TypeSourceInfo
*>()[getIndexOfControllingType()] =
4330 std::copy(AssocExprs
.begin(), AssocExprs
.end(),
4331 getTrailingObjects
<Stmt
*>() + getIndexOfStartOfAssociatedExprs());
4332 std::copy(AssocTypes
.begin(), AssocTypes
.end(),
4333 getTrailingObjects
<TypeSourceInfo
*>() +
4334 getIndexOfStartOfAssociatedTypes());
4336 setDependence(computeDependence(this, ContainsUnexpandedParameterPack
));
4339 GenericSelectionExpr::GenericSelectionExpr(
4340 const ASTContext
&Context
, SourceLocation GenericLoc
, Expr
*ControllingExpr
,
4341 ArrayRef
<TypeSourceInfo
*> AssocTypes
, ArrayRef
<Expr
*> AssocExprs
,
4342 SourceLocation DefaultLoc
, SourceLocation RParenLoc
,
4343 bool ContainsUnexpandedParameterPack
)
4344 : Expr(GenericSelectionExprClass
, Context
.DependentTy
, VK_PRValue
,
4346 NumAssocs(AssocExprs
.size()), ResultIndex(ResultDependentIndex
),
4347 IsExprPredicate(true), DefaultLoc(DefaultLoc
), RParenLoc(RParenLoc
) {
4348 assert(AssocTypes
.size() == AssocExprs
.size() &&
4349 "Must have the same number of association expressions"
4350 " and TypeSourceInfo!");
4352 GenericSelectionExprBits
.GenericLoc
= GenericLoc
;
4353 getTrailingObjects
<Stmt
*>()[getIndexOfControllingExpression()] =
4355 std::copy(AssocExprs
.begin(), AssocExprs
.end(),
4356 getTrailingObjects
<Stmt
*>() + getIndexOfStartOfAssociatedExprs());
4357 std::copy(AssocTypes
.begin(), AssocTypes
.end(),
4358 getTrailingObjects
<TypeSourceInfo
*>() +
4359 getIndexOfStartOfAssociatedTypes());
4361 setDependence(computeDependence(this, ContainsUnexpandedParameterPack
));
4364 GenericSelectionExpr::GenericSelectionExpr(
4365 const ASTContext
&Context
, SourceLocation GenericLoc
,
4366 TypeSourceInfo
*ControllingType
, ArrayRef
<TypeSourceInfo
*> AssocTypes
,
4367 ArrayRef
<Expr
*> AssocExprs
, SourceLocation DefaultLoc
,
4368 SourceLocation RParenLoc
, bool ContainsUnexpandedParameterPack
)
4369 : Expr(GenericSelectionExprClass
, Context
.DependentTy
, VK_PRValue
,
4371 NumAssocs(AssocExprs
.size()), ResultIndex(ResultDependentIndex
),
4372 IsExprPredicate(false), DefaultLoc(DefaultLoc
), RParenLoc(RParenLoc
) {
4373 assert(AssocTypes
.size() == AssocExprs
.size() &&
4374 "Must have the same number of association expressions"
4375 " and TypeSourceInfo!");
4377 GenericSelectionExprBits
.GenericLoc
= GenericLoc
;
4378 getTrailingObjects
<TypeSourceInfo
*>()[getIndexOfControllingType()] =
4380 std::copy(AssocExprs
.begin(), AssocExprs
.end(),
4381 getTrailingObjects
<Stmt
*>() + getIndexOfStartOfAssociatedExprs());
4382 std::copy(AssocTypes
.begin(), AssocTypes
.end(),
4383 getTrailingObjects
<TypeSourceInfo
*>() +
4384 getIndexOfStartOfAssociatedTypes());
4386 setDependence(computeDependence(this, ContainsUnexpandedParameterPack
));
4389 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty
, unsigned NumAssocs
)
4390 : Expr(GenericSelectionExprClass
, Empty
), NumAssocs(NumAssocs
) {}
4392 GenericSelectionExpr
*GenericSelectionExpr::Create(
4393 const ASTContext
&Context
, SourceLocation GenericLoc
, Expr
*ControllingExpr
,
4394 ArrayRef
<TypeSourceInfo
*> AssocTypes
, ArrayRef
<Expr
*> AssocExprs
,
4395 SourceLocation DefaultLoc
, SourceLocation RParenLoc
,
4396 bool ContainsUnexpandedParameterPack
, unsigned ResultIndex
) {
4397 unsigned NumAssocs
= AssocExprs
.size();
4398 void *Mem
= Context
.Allocate(
4399 totalSizeToAlloc
<Stmt
*, TypeSourceInfo
*>(1 + NumAssocs
, NumAssocs
),
4400 alignof(GenericSelectionExpr
));
4401 return new (Mem
) GenericSelectionExpr(
4402 Context
, GenericLoc
, ControllingExpr
, AssocTypes
, AssocExprs
, DefaultLoc
,
4403 RParenLoc
, ContainsUnexpandedParameterPack
, ResultIndex
);
4406 GenericSelectionExpr
*GenericSelectionExpr::Create(
4407 const ASTContext
&Context
, SourceLocation GenericLoc
, Expr
*ControllingExpr
,
4408 ArrayRef
<TypeSourceInfo
*> AssocTypes
, ArrayRef
<Expr
*> AssocExprs
,
4409 SourceLocation DefaultLoc
, SourceLocation RParenLoc
,
4410 bool ContainsUnexpandedParameterPack
) {
4411 unsigned NumAssocs
= AssocExprs
.size();
4412 void *Mem
= Context
.Allocate(
4413 totalSizeToAlloc
<Stmt
*, TypeSourceInfo
*>(1 + NumAssocs
, NumAssocs
),
4414 alignof(GenericSelectionExpr
));
4415 return new (Mem
) GenericSelectionExpr(
4416 Context
, GenericLoc
, ControllingExpr
, AssocTypes
, AssocExprs
, DefaultLoc
,
4417 RParenLoc
, ContainsUnexpandedParameterPack
);
4420 GenericSelectionExpr
*GenericSelectionExpr::Create(
4421 const ASTContext
&Context
, SourceLocation GenericLoc
,
4422 TypeSourceInfo
*ControllingType
, ArrayRef
<TypeSourceInfo
*> AssocTypes
,
4423 ArrayRef
<Expr
*> AssocExprs
, SourceLocation DefaultLoc
,
4424 SourceLocation RParenLoc
, bool ContainsUnexpandedParameterPack
,
4425 unsigned ResultIndex
) {
4426 unsigned NumAssocs
= AssocExprs
.size();
4427 void *Mem
= Context
.Allocate(
4428 totalSizeToAlloc
<Stmt
*, TypeSourceInfo
*>(1 + NumAssocs
, NumAssocs
),
4429 alignof(GenericSelectionExpr
));
4430 return new (Mem
) GenericSelectionExpr(
4431 Context
, GenericLoc
, ControllingType
, AssocTypes
, AssocExprs
, DefaultLoc
,
4432 RParenLoc
, ContainsUnexpandedParameterPack
, ResultIndex
);
4435 GenericSelectionExpr
*GenericSelectionExpr::Create(
4436 const ASTContext
&Context
, SourceLocation GenericLoc
,
4437 TypeSourceInfo
*ControllingType
, ArrayRef
<TypeSourceInfo
*> AssocTypes
,
4438 ArrayRef
<Expr
*> AssocExprs
, SourceLocation DefaultLoc
,
4439 SourceLocation RParenLoc
, bool ContainsUnexpandedParameterPack
) {
4440 unsigned NumAssocs
= AssocExprs
.size();
4441 void *Mem
= Context
.Allocate(
4442 totalSizeToAlloc
<Stmt
*, TypeSourceInfo
*>(1 + NumAssocs
, NumAssocs
),
4443 alignof(GenericSelectionExpr
));
4444 return new (Mem
) GenericSelectionExpr(
4445 Context
, GenericLoc
, ControllingType
, AssocTypes
, AssocExprs
, DefaultLoc
,
4446 RParenLoc
, ContainsUnexpandedParameterPack
);
4449 GenericSelectionExpr
*
4450 GenericSelectionExpr::CreateEmpty(const ASTContext
&Context
,
4451 unsigned NumAssocs
) {
4452 void *Mem
= Context
.Allocate(
4453 totalSizeToAlloc
<Stmt
*, TypeSourceInfo
*>(1 + NumAssocs
, NumAssocs
),
4454 alignof(GenericSelectionExpr
));
4455 return new (Mem
) GenericSelectionExpr(EmptyShell(), NumAssocs
);
4458 //===----------------------------------------------------------------------===//
4459 // DesignatedInitExpr
4460 //===----------------------------------------------------------------------===//
4462 const IdentifierInfo
*DesignatedInitExpr::Designator::getFieldName() const {
4463 assert(isFieldDesignator() && "Only valid on a field designator");
4464 if (FieldInfo
.NameOrField
& 0x01)
4465 return reinterpret_cast<IdentifierInfo
*>(FieldInfo
.NameOrField
& ~0x01);
4466 return getFieldDecl()->getIdentifier();
4469 DesignatedInitExpr::DesignatedInitExpr(const ASTContext
&C
, QualType Ty
,
4470 llvm::ArrayRef
<Designator
> Designators
,
4471 SourceLocation EqualOrColonLoc
,
4473 ArrayRef
<Expr
*> IndexExprs
, Expr
*Init
)
4474 : Expr(DesignatedInitExprClass
, Ty
, Init
->getValueKind(),
4475 Init
->getObjectKind()),
4476 EqualOrColonLoc(EqualOrColonLoc
), GNUSyntax(GNUSyntax
),
4477 NumDesignators(Designators
.size()), NumSubExprs(IndexExprs
.size() + 1) {
4478 this->Designators
= new (C
) Designator
[NumDesignators
];
4480 // Record the initializer itself.
4481 child_iterator Child
= child_begin();
4484 // Copy the designators and their subexpressions, computing
4485 // value-dependence along the way.
4486 unsigned IndexIdx
= 0;
4487 for (unsigned I
= 0; I
!= NumDesignators
; ++I
) {
4488 this->Designators
[I
] = Designators
[I
];
4489 if (this->Designators
[I
].isArrayDesignator()) {
4490 // Copy the index expressions into permanent storage.
4491 *Child
++ = IndexExprs
[IndexIdx
++];
4492 } else if (this->Designators
[I
].isArrayRangeDesignator()) {
4493 // Copy the start/end expressions into permanent storage.
4494 *Child
++ = IndexExprs
[IndexIdx
++];
4495 *Child
++ = IndexExprs
[IndexIdx
++];
4499 assert(IndexIdx
== IndexExprs
.size() && "Wrong number of index expressions");
4500 setDependence(computeDependence(this));
4503 DesignatedInitExpr
*
4504 DesignatedInitExpr::Create(const ASTContext
&C
,
4505 llvm::ArrayRef
<Designator
> Designators
,
4506 ArrayRef
<Expr
*> IndexExprs
,
4507 SourceLocation ColonOrEqualLoc
,
4508 bool UsesColonSyntax
, Expr
*Init
) {
4509 void *Mem
= C
.Allocate(totalSizeToAlloc
<Stmt
*>(IndexExprs
.size() + 1),
4510 alignof(DesignatedInitExpr
));
4511 return new (Mem
) DesignatedInitExpr(C
, C
.VoidTy
, Designators
,
4512 ColonOrEqualLoc
, UsesColonSyntax
,
4516 DesignatedInitExpr
*DesignatedInitExpr::CreateEmpty(const ASTContext
&C
,
4517 unsigned NumIndexExprs
) {
4518 void *Mem
= C
.Allocate(totalSizeToAlloc
<Stmt
*>(NumIndexExprs
+ 1),
4519 alignof(DesignatedInitExpr
));
4520 return new (Mem
) DesignatedInitExpr(NumIndexExprs
+ 1);
4523 void DesignatedInitExpr::setDesignators(const ASTContext
&C
,
4524 const Designator
*Desigs
,
4525 unsigned NumDesigs
) {
4526 Designators
= new (C
) Designator
[NumDesigs
];
4527 NumDesignators
= NumDesigs
;
4528 for (unsigned I
= 0; I
!= NumDesigs
; ++I
)
4529 Designators
[I
] = Desigs
[I
];
4532 SourceRange
DesignatedInitExpr::getDesignatorsSourceRange() const {
4533 DesignatedInitExpr
*DIE
= const_cast<DesignatedInitExpr
*>(this);
4535 return DIE
->getDesignator(0)->getSourceRange();
4536 return SourceRange(DIE
->getDesignator(0)->getBeginLoc(),
4537 DIE
->getDesignator(size() - 1)->getEndLoc());
4540 SourceLocation
DesignatedInitExpr::getBeginLoc() const {
4541 auto *DIE
= const_cast<DesignatedInitExpr
*>(this);
4542 Designator
&First
= *DIE
->getDesignator(0);
4543 if (First
.isFieldDesignator())
4544 return GNUSyntax
? First
.getFieldLoc() : First
.getDotLoc();
4545 return First
.getLBracketLoc();
4548 SourceLocation
DesignatedInitExpr::getEndLoc() const {
4549 return getInit()->getEndLoc();
4552 Expr
*DesignatedInitExpr::getArrayIndex(const Designator
& D
) const {
4553 assert(D
.isArrayDesignator() && "Requires array designator");
4554 return getSubExpr(D
.getArrayIndex() + 1);
4557 Expr
*DesignatedInitExpr::getArrayRangeStart(const Designator
&D
) const {
4558 assert(D
.isArrayRangeDesignator() && "Requires array range designator");
4559 return getSubExpr(D
.getArrayIndex() + 1);
4562 Expr
*DesignatedInitExpr::getArrayRangeEnd(const Designator
&D
) const {
4563 assert(D
.isArrayRangeDesignator() && "Requires array range designator");
4564 return getSubExpr(D
.getArrayIndex() + 2);
4567 /// Replaces the designator at index @p Idx with the series
4568 /// of designators in [First, Last).
4569 void DesignatedInitExpr::ExpandDesignator(const ASTContext
&C
, unsigned Idx
,
4570 const Designator
*First
,
4571 const Designator
*Last
) {
4572 unsigned NumNewDesignators
= Last
- First
;
4573 if (NumNewDesignators
== 0) {
4574 std::copy_backward(Designators
+ Idx
+ 1,
4575 Designators
+ NumDesignators
,
4577 --NumNewDesignators
;
4580 if (NumNewDesignators
== 1) {
4581 Designators
[Idx
] = *First
;
4585 Designator
*NewDesignators
4586 = new (C
) Designator
[NumDesignators
- 1 + NumNewDesignators
];
4587 std::copy(Designators
, Designators
+ Idx
, NewDesignators
);
4588 std::copy(First
, Last
, NewDesignators
+ Idx
);
4589 std::copy(Designators
+ Idx
+ 1, Designators
+ NumDesignators
,
4590 NewDesignators
+ Idx
+ NumNewDesignators
);
4591 Designators
= NewDesignators
;
4592 NumDesignators
= NumDesignators
- 1 + NumNewDesignators
;
4595 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext
&C
,
4596 SourceLocation lBraceLoc
,
4598 SourceLocation rBraceLoc
)
4599 : Expr(DesignatedInitUpdateExprClass
, baseExpr
->getType(), VK_PRValue
,
4601 BaseAndUpdaterExprs
[0] = baseExpr
;
4604 new (C
) InitListExpr(C
, lBraceLoc
, std::nullopt
, rBraceLoc
);
4605 ILE
->setType(baseExpr
->getType());
4606 BaseAndUpdaterExprs
[1] = ILE
;
4608 // FIXME: this is wrong, set it correctly.
4609 setDependence(ExprDependence::None
);
4612 SourceLocation
DesignatedInitUpdateExpr::getBeginLoc() const {
4613 return getBase()->getBeginLoc();
4616 SourceLocation
DesignatedInitUpdateExpr::getEndLoc() const {
4617 return getBase()->getEndLoc();
4620 ParenListExpr::ParenListExpr(SourceLocation LParenLoc
, ArrayRef
<Expr
*> Exprs
,
4621 SourceLocation RParenLoc
)
4622 : Expr(ParenListExprClass
, QualType(), VK_PRValue
, OK_Ordinary
),
4623 LParenLoc(LParenLoc
), RParenLoc(RParenLoc
) {
4624 ParenListExprBits
.NumExprs
= Exprs
.size();
4626 for (unsigned I
= 0, N
= Exprs
.size(); I
!= N
; ++I
)
4627 getTrailingObjects
<Stmt
*>()[I
] = Exprs
[I
];
4628 setDependence(computeDependence(this));
4631 ParenListExpr::ParenListExpr(EmptyShell Empty
, unsigned NumExprs
)
4632 : Expr(ParenListExprClass
, Empty
) {
4633 ParenListExprBits
.NumExprs
= NumExprs
;
4636 ParenListExpr
*ParenListExpr::Create(const ASTContext
&Ctx
,
4637 SourceLocation LParenLoc
,
4638 ArrayRef
<Expr
*> Exprs
,
4639 SourceLocation RParenLoc
) {
4640 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<Stmt
*>(Exprs
.size()),
4641 alignof(ParenListExpr
));
4642 return new (Mem
) ParenListExpr(LParenLoc
, Exprs
, RParenLoc
);
4645 ParenListExpr
*ParenListExpr::CreateEmpty(const ASTContext
&Ctx
,
4646 unsigned NumExprs
) {
4648 Ctx
.Allocate(totalSizeToAlloc
<Stmt
*>(NumExprs
), alignof(ParenListExpr
));
4649 return new (Mem
) ParenListExpr(EmptyShell(), NumExprs
);
4652 BinaryOperator::BinaryOperator(const ASTContext
&Ctx
, Expr
*lhs
, Expr
*rhs
,
4653 Opcode opc
, QualType ResTy
, ExprValueKind VK
,
4654 ExprObjectKind OK
, SourceLocation opLoc
,
4655 FPOptionsOverride FPFeatures
)
4656 : Expr(BinaryOperatorClass
, ResTy
, VK
, OK
) {
4657 BinaryOperatorBits
.Opc
= opc
;
4658 assert(!isCompoundAssignmentOp() &&
4659 "Use CompoundAssignOperator for compound assignments");
4660 BinaryOperatorBits
.OpLoc
= opLoc
;
4661 SubExprs
[LHS
] = lhs
;
4662 SubExprs
[RHS
] = rhs
;
4663 BinaryOperatorBits
.HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
4664 if (hasStoredFPFeatures())
4665 setStoredFPFeatures(FPFeatures
);
4666 setDependence(computeDependence(this));
4669 BinaryOperator::BinaryOperator(const ASTContext
&Ctx
, Expr
*lhs
, Expr
*rhs
,
4670 Opcode opc
, QualType ResTy
, ExprValueKind VK
,
4671 ExprObjectKind OK
, SourceLocation opLoc
,
4672 FPOptionsOverride FPFeatures
, bool dead2
)
4673 : Expr(CompoundAssignOperatorClass
, ResTy
, VK
, OK
) {
4674 BinaryOperatorBits
.Opc
= opc
;
4675 assert(isCompoundAssignmentOp() &&
4676 "Use CompoundAssignOperator for compound assignments");
4677 BinaryOperatorBits
.OpLoc
= opLoc
;
4678 SubExprs
[LHS
] = lhs
;
4679 SubExprs
[RHS
] = rhs
;
4680 BinaryOperatorBits
.HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
4681 if (hasStoredFPFeatures())
4682 setStoredFPFeatures(FPFeatures
);
4683 setDependence(computeDependence(this));
4686 BinaryOperator
*BinaryOperator::CreateEmpty(const ASTContext
&C
,
4687 bool HasFPFeatures
) {
4688 unsigned Extra
= sizeOfTrailingObjects(HasFPFeatures
);
4690 C
.Allocate(sizeof(BinaryOperator
) + Extra
, alignof(BinaryOperator
));
4691 return new (Mem
) BinaryOperator(EmptyShell());
4694 BinaryOperator
*BinaryOperator::Create(const ASTContext
&C
, Expr
*lhs
,
4695 Expr
*rhs
, Opcode opc
, QualType ResTy
,
4696 ExprValueKind VK
, ExprObjectKind OK
,
4697 SourceLocation opLoc
,
4698 FPOptionsOverride FPFeatures
) {
4699 bool HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
4700 unsigned Extra
= sizeOfTrailingObjects(HasFPFeatures
);
4702 C
.Allocate(sizeof(BinaryOperator
) + Extra
, alignof(BinaryOperator
));
4704 BinaryOperator(C
, lhs
, rhs
, opc
, ResTy
, VK
, OK
, opLoc
, FPFeatures
);
4707 CompoundAssignOperator
*
4708 CompoundAssignOperator::CreateEmpty(const ASTContext
&C
, bool HasFPFeatures
) {
4709 unsigned Extra
= sizeOfTrailingObjects(HasFPFeatures
);
4710 void *Mem
= C
.Allocate(sizeof(CompoundAssignOperator
) + Extra
,
4711 alignof(CompoundAssignOperator
));
4712 return new (Mem
) CompoundAssignOperator(C
, EmptyShell(), HasFPFeatures
);
4715 CompoundAssignOperator
*
4716 CompoundAssignOperator::Create(const ASTContext
&C
, Expr
*lhs
, Expr
*rhs
,
4717 Opcode opc
, QualType ResTy
, ExprValueKind VK
,
4718 ExprObjectKind OK
, SourceLocation opLoc
,
4719 FPOptionsOverride FPFeatures
,
4720 QualType CompLHSType
, QualType CompResultType
) {
4721 bool HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
4722 unsigned Extra
= sizeOfTrailingObjects(HasFPFeatures
);
4723 void *Mem
= C
.Allocate(sizeof(CompoundAssignOperator
) + Extra
,
4724 alignof(CompoundAssignOperator
));
4726 CompoundAssignOperator(C
, lhs
, rhs
, opc
, ResTy
, VK
, OK
, opLoc
, FPFeatures
,
4727 CompLHSType
, CompResultType
);
4730 UnaryOperator
*UnaryOperator::CreateEmpty(const ASTContext
&C
,
4731 bool hasFPFeatures
) {
4732 void *Mem
= C
.Allocate(totalSizeToAlloc
<FPOptionsOverride
>(hasFPFeatures
),
4733 alignof(UnaryOperator
));
4734 return new (Mem
) UnaryOperator(hasFPFeatures
, EmptyShell());
4737 UnaryOperator::UnaryOperator(const ASTContext
&Ctx
, Expr
*input
, Opcode opc
,
4738 QualType type
, ExprValueKind VK
, ExprObjectKind OK
,
4739 SourceLocation l
, bool CanOverflow
,
4740 FPOptionsOverride FPFeatures
)
4741 : Expr(UnaryOperatorClass
, type
, VK
, OK
), Val(input
) {
4742 UnaryOperatorBits
.Opc
= opc
;
4743 UnaryOperatorBits
.CanOverflow
= CanOverflow
;
4744 UnaryOperatorBits
.Loc
= l
;
4745 UnaryOperatorBits
.HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
4746 if (hasStoredFPFeatures())
4747 setStoredFPFeatures(FPFeatures
);
4748 setDependence(computeDependence(this, Ctx
));
4751 UnaryOperator
*UnaryOperator::Create(const ASTContext
&C
, Expr
*input
,
4752 Opcode opc
, QualType type
,
4753 ExprValueKind VK
, ExprObjectKind OK
,
4754 SourceLocation l
, bool CanOverflow
,
4755 FPOptionsOverride FPFeatures
) {
4756 bool HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
4757 unsigned Size
= totalSizeToAlloc
<FPOptionsOverride
>(HasFPFeatures
);
4758 void *Mem
= C
.Allocate(Size
, alignof(UnaryOperator
));
4760 UnaryOperator(C
, input
, opc
, type
, VK
, OK
, l
, CanOverflow
, FPFeatures
);
4763 const OpaqueValueExpr
*OpaqueValueExpr::findInCopyConstruct(const Expr
*e
) {
4764 if (const ExprWithCleanups
*ewc
= dyn_cast
<ExprWithCleanups
>(e
))
4765 e
= ewc
->getSubExpr();
4766 if (const MaterializeTemporaryExpr
*m
= dyn_cast
<MaterializeTemporaryExpr
>(e
))
4767 e
= m
->getSubExpr();
4768 e
= cast
<CXXConstructExpr
>(e
)->getArg(0);
4769 while (const ImplicitCastExpr
*ice
= dyn_cast
<ImplicitCastExpr
>(e
))
4770 e
= ice
->getSubExpr();
4771 return cast
<OpaqueValueExpr
>(e
);
4774 PseudoObjectExpr
*PseudoObjectExpr::Create(const ASTContext
&Context
,
4776 unsigned numSemanticExprs
) {
4778 Context
.Allocate(totalSizeToAlloc
<Expr
*>(1 + numSemanticExprs
),
4779 alignof(PseudoObjectExpr
));
4780 return new(buffer
) PseudoObjectExpr(sh
, numSemanticExprs
);
4783 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell
, unsigned numSemanticExprs
)
4784 : Expr(PseudoObjectExprClass
, shell
) {
4785 PseudoObjectExprBits
.NumSubExprs
= numSemanticExprs
+ 1;
4788 PseudoObjectExpr
*PseudoObjectExpr::Create(const ASTContext
&C
, Expr
*syntax
,
4789 ArrayRef
<Expr
*> semantics
,
4790 unsigned resultIndex
) {
4791 assert(syntax
&& "no syntactic expression!");
4792 assert(semantics
.size() && "no semantic expressions!");
4796 if (resultIndex
== NoResult
) {
4800 assert(resultIndex
< semantics
.size());
4801 type
= semantics
[resultIndex
]->getType();
4802 VK
= semantics
[resultIndex
]->getValueKind();
4803 assert(semantics
[resultIndex
]->getObjectKind() == OK_Ordinary
);
4806 void *buffer
= C
.Allocate(totalSizeToAlloc
<Expr
*>(semantics
.size() + 1),
4807 alignof(PseudoObjectExpr
));
4808 return new(buffer
) PseudoObjectExpr(type
, VK
, syntax
, semantics
,
4812 PseudoObjectExpr::PseudoObjectExpr(QualType type
, ExprValueKind VK
,
4813 Expr
*syntax
, ArrayRef
<Expr
*> semantics
,
4814 unsigned resultIndex
)
4815 : Expr(PseudoObjectExprClass
, type
, VK
, OK_Ordinary
) {
4816 PseudoObjectExprBits
.NumSubExprs
= semantics
.size() + 1;
4817 PseudoObjectExprBits
.ResultIndex
= resultIndex
+ 1;
4819 for (unsigned i
= 0, e
= semantics
.size() + 1; i
!= e
; ++i
) {
4820 Expr
*E
= (i
== 0 ? syntax
: semantics
[i
-1]);
4821 getSubExprsBuffer()[i
] = E
;
4823 if (isa
<OpaqueValueExpr
>(E
))
4824 assert(cast
<OpaqueValueExpr
>(E
)->getSourceExpr() != nullptr &&
4825 "opaque-value semantic expressions for pseudo-object "
4826 "operations must have sources");
4829 setDependence(computeDependence(this));
4832 //===----------------------------------------------------------------------===//
4833 // Child Iterators for iterating over subexpressions/substatements
4834 //===----------------------------------------------------------------------===//
4836 // UnaryExprOrTypeTraitExpr
4837 Stmt::child_range
UnaryExprOrTypeTraitExpr::children() {
4838 const_child_range CCR
=
4839 const_cast<const UnaryExprOrTypeTraitExpr
*>(this)->children();
4840 return child_range(cast_away_const(CCR
.begin()), cast_away_const(CCR
.end()));
4843 Stmt::const_child_range
UnaryExprOrTypeTraitExpr::children() const {
4844 // If this is of a type and the type is a VLA type (and not a typedef), the
4845 // size expression of the VLA needs to be treated as an executable expression.
4846 // Why isn't this weirdness documented better in StmtIterator?
4847 if (isArgumentType()) {
4848 if (const VariableArrayType
*T
=
4849 dyn_cast
<VariableArrayType
>(getArgumentType().getTypePtr()))
4850 return const_child_range(const_child_iterator(T
), const_child_iterator());
4851 return const_child_range(const_child_iterator(), const_child_iterator());
4853 return const_child_range(&Argument
.Ex
, &Argument
.Ex
+ 1);
4856 AtomicExpr::AtomicExpr(SourceLocation BLoc
, ArrayRef
<Expr
*> args
, QualType t
,
4857 AtomicOp op
, SourceLocation RP
)
4858 : Expr(AtomicExprClass
, t
, VK_PRValue
, OK_Ordinary
),
4859 NumSubExprs(args
.size()), BuiltinLoc(BLoc
), RParenLoc(RP
), Op(op
) {
4860 assert(args
.size() == getNumSubExprs(op
) && "wrong number of subexpressions");
4861 for (unsigned i
= 0; i
!= args
.size(); i
++)
4862 SubExprs
[i
] = args
[i
];
4863 setDependence(computeDependence(this));
4866 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op
) {
4868 case AO__c11_atomic_init
:
4869 case AO__opencl_atomic_init
:
4870 case AO__c11_atomic_load
:
4871 case AO__atomic_load_n
:
4874 case AO__opencl_atomic_load
:
4875 case AO__hip_atomic_load
:
4876 case AO__c11_atomic_store
:
4877 case AO__c11_atomic_exchange
:
4878 case AO__atomic_load
:
4879 case AO__atomic_store
:
4880 case AO__atomic_store_n
:
4881 case AO__atomic_exchange_n
:
4882 case AO__c11_atomic_fetch_add
:
4883 case AO__c11_atomic_fetch_sub
:
4884 case AO__c11_atomic_fetch_and
:
4885 case AO__c11_atomic_fetch_or
:
4886 case AO__c11_atomic_fetch_xor
:
4887 case AO__c11_atomic_fetch_nand
:
4888 case AO__c11_atomic_fetch_max
:
4889 case AO__c11_atomic_fetch_min
:
4890 case AO__atomic_fetch_add
:
4891 case AO__atomic_fetch_sub
:
4892 case AO__atomic_fetch_and
:
4893 case AO__atomic_fetch_or
:
4894 case AO__atomic_fetch_xor
:
4895 case AO__atomic_fetch_nand
:
4896 case AO__atomic_add_fetch
:
4897 case AO__atomic_sub_fetch
:
4898 case AO__atomic_and_fetch
:
4899 case AO__atomic_or_fetch
:
4900 case AO__atomic_xor_fetch
:
4901 case AO__atomic_nand_fetch
:
4902 case AO__atomic_min_fetch
:
4903 case AO__atomic_max_fetch
:
4904 case AO__atomic_fetch_min
:
4905 case AO__atomic_fetch_max
:
4908 case AO__hip_atomic_exchange
:
4909 case AO__hip_atomic_fetch_add
:
4910 case AO__hip_atomic_fetch_sub
:
4911 case AO__hip_atomic_fetch_and
:
4912 case AO__hip_atomic_fetch_or
:
4913 case AO__hip_atomic_fetch_xor
:
4914 case AO__hip_atomic_fetch_min
:
4915 case AO__hip_atomic_fetch_max
:
4916 case AO__opencl_atomic_store
:
4917 case AO__hip_atomic_store
:
4918 case AO__opencl_atomic_exchange
:
4919 case AO__opencl_atomic_fetch_add
:
4920 case AO__opencl_atomic_fetch_sub
:
4921 case AO__opencl_atomic_fetch_and
:
4922 case AO__opencl_atomic_fetch_or
:
4923 case AO__opencl_atomic_fetch_xor
:
4924 case AO__opencl_atomic_fetch_min
:
4925 case AO__opencl_atomic_fetch_max
:
4926 case AO__atomic_exchange
:
4929 case AO__c11_atomic_compare_exchange_strong
:
4930 case AO__c11_atomic_compare_exchange_weak
:
4932 case AO__hip_atomic_compare_exchange_strong
:
4933 case AO__opencl_atomic_compare_exchange_strong
:
4934 case AO__opencl_atomic_compare_exchange_weak
:
4935 case AO__hip_atomic_compare_exchange_weak
:
4936 case AO__atomic_compare_exchange
:
4937 case AO__atomic_compare_exchange_n
:
4940 llvm_unreachable("unknown atomic op");
4943 QualType
AtomicExpr::getValueType() const {
4944 auto T
= getPtr()->getType()->castAs
<PointerType
>()->getPointeeType();
4945 if (auto AT
= T
->getAs
<AtomicType
>())
4946 return AT
->getValueType();
4950 QualType
OMPArraySectionExpr::getBaseOriginalType(const Expr
*Base
) {
4951 unsigned ArraySectionCount
= 0;
4952 while (auto *OASE
= dyn_cast
<OMPArraySectionExpr
>(Base
->IgnoreParens())) {
4953 Base
= OASE
->getBase();
4954 ++ArraySectionCount
;
4957 dyn_cast
<ArraySubscriptExpr
>(Base
->IgnoreParenImpCasts())) {
4958 Base
= ASE
->getBase();
4959 ++ArraySectionCount
;
4961 Base
= Base
->IgnoreParenImpCasts();
4962 auto OriginalTy
= Base
->getType();
4963 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(Base
))
4964 if (auto *PVD
= dyn_cast
<ParmVarDecl
>(DRE
->getDecl()))
4965 OriginalTy
= PVD
->getOriginalType().getNonReferenceType();
4967 for (unsigned Cnt
= 0; Cnt
< ArraySectionCount
; ++Cnt
) {
4968 if (OriginalTy
->isAnyPointerType())
4969 OriginalTy
= OriginalTy
->getPointeeType();
4971 assert (OriginalTy
->isArrayType());
4972 OriginalTy
= OriginalTy
->castAsArrayTypeUnsafe()->getElementType();
4978 RecoveryExpr::RecoveryExpr(ASTContext
&Ctx
, QualType T
, SourceLocation BeginLoc
,
4979 SourceLocation EndLoc
, ArrayRef
<Expr
*> SubExprs
)
4980 : Expr(RecoveryExprClass
, T
.getNonReferenceType(),
4981 T
->isDependentType() ? VK_LValue
: getValueKindForType(T
),
4983 BeginLoc(BeginLoc
), EndLoc(EndLoc
), NumExprs(SubExprs
.size()) {
4984 assert(!T
.isNull());
4985 assert(!llvm::is_contained(SubExprs
, nullptr));
4987 llvm::copy(SubExprs
, getTrailingObjects
<Expr
*>());
4988 setDependence(computeDependence(this));
4991 RecoveryExpr
*RecoveryExpr::Create(ASTContext
&Ctx
, QualType T
,
4992 SourceLocation BeginLoc
,
4993 SourceLocation EndLoc
,
4994 ArrayRef
<Expr
*> SubExprs
) {
4995 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<Expr
*>(SubExprs
.size()),
4996 alignof(RecoveryExpr
));
4997 return new (Mem
) RecoveryExpr(Ctx
, T
, BeginLoc
, EndLoc
, SubExprs
);
5000 RecoveryExpr
*RecoveryExpr::CreateEmpty(ASTContext
&Ctx
, unsigned NumSubExprs
) {
5001 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<Expr
*>(NumSubExprs
),
5002 alignof(RecoveryExpr
));
5003 return new (Mem
) RecoveryExpr(EmptyShell(), NumSubExprs
);
5006 void OMPArrayShapingExpr::setDimensions(ArrayRef
<Expr
*> Dims
) {
5008 NumDims
== Dims
.size() &&
5009 "Preallocated number of dimensions is different from the provided one.");
5010 llvm::copy(Dims
, getTrailingObjects
<Expr
*>());
5013 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef
<SourceRange
> BR
) {
5015 NumDims
== BR
.size() &&
5016 "Preallocated number of dimensions is different from the provided one.");
5017 llvm::copy(BR
, getTrailingObjects
<SourceRange
>());
5020 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy
, Expr
*Op
,
5021 SourceLocation L
, SourceLocation R
,
5022 ArrayRef
<Expr
*> Dims
)
5023 : Expr(OMPArrayShapingExprClass
, ExprTy
, VK_LValue
, OK_Ordinary
), LPLoc(L
),
5024 RPLoc(R
), NumDims(Dims
.size()) {
5026 setDimensions(Dims
);
5027 setDependence(computeDependence(this));
5030 OMPArrayShapingExpr
*
5031 OMPArrayShapingExpr::Create(const ASTContext
&Context
, QualType T
, Expr
*Op
,
5032 SourceLocation L
, SourceLocation R
,
5033 ArrayRef
<Expr
*> Dims
,
5034 ArrayRef
<SourceRange
> BracketRanges
) {
5035 assert(Dims
.size() == BracketRanges
.size() &&
5036 "Different number of dimensions and brackets ranges.");
5037 void *Mem
= Context
.Allocate(
5038 totalSizeToAlloc
<Expr
*, SourceRange
>(Dims
.size() + 1, Dims
.size()),
5039 alignof(OMPArrayShapingExpr
));
5040 auto *E
= new (Mem
) OMPArrayShapingExpr(T
, Op
, L
, R
, Dims
);
5041 E
->setBracketsRanges(BracketRanges
);
5045 OMPArrayShapingExpr
*OMPArrayShapingExpr::CreateEmpty(const ASTContext
&Context
,
5047 void *Mem
= Context
.Allocate(
5048 totalSizeToAlloc
<Expr
*, SourceRange
>(NumDims
+ 1, NumDims
),
5049 alignof(OMPArrayShapingExpr
));
5050 return new (Mem
) OMPArrayShapingExpr(EmptyShell(), NumDims
);
5053 void OMPIteratorExpr::setIteratorDeclaration(unsigned I
, Decl
*D
) {
5054 assert(I
< NumIterators
&&
5055 "Idx is greater or equal the number of iterators definitions.");
5056 getTrailingObjects
<Decl
*>()[I
] = D
;
5059 void OMPIteratorExpr::setAssignmentLoc(unsigned I
, SourceLocation Loc
) {
5060 assert(I
< NumIterators
&&
5061 "Idx is greater or equal the number of iterators definitions.");
5063 SourceLocation
>()[I
* static_cast<int>(RangeLocOffset::Total
) +
5064 static_cast<int>(RangeLocOffset::AssignLoc
)] = Loc
;
5067 void OMPIteratorExpr::setIteratorRange(unsigned I
, Expr
*Begin
,
5068 SourceLocation ColonLoc
, Expr
*End
,
5069 SourceLocation SecondColonLoc
,
5071 assert(I
< NumIterators
&&
5072 "Idx is greater or equal the number of iterators definitions.");
5073 getTrailingObjects
<Expr
*>()[I
* static_cast<int>(RangeExprOffset::Total
) +
5074 static_cast<int>(RangeExprOffset::Begin
)] =
5076 getTrailingObjects
<Expr
*>()[I
* static_cast<int>(RangeExprOffset::Total
) +
5077 static_cast<int>(RangeExprOffset::End
)] = End
;
5078 getTrailingObjects
<Expr
*>()[I
* static_cast<int>(RangeExprOffset::Total
) +
5079 static_cast<int>(RangeExprOffset::Step
)] = Step
;
5081 SourceLocation
>()[I
* static_cast<int>(RangeLocOffset::Total
) +
5082 static_cast<int>(RangeLocOffset::FirstColonLoc
)] =
5085 SourceLocation
>()[I
* static_cast<int>(RangeLocOffset::Total
) +
5086 static_cast<int>(RangeLocOffset::SecondColonLoc
)] =
5090 Decl
*OMPIteratorExpr::getIteratorDecl(unsigned I
) {
5091 return getTrailingObjects
<Decl
*>()[I
];
5094 OMPIteratorExpr::IteratorRange
OMPIteratorExpr::getIteratorRange(unsigned I
) {
5097 getTrailingObjects
<Expr
*>()[I
* static_cast<int>(
5098 RangeExprOffset::Total
) +
5099 static_cast<int>(RangeExprOffset::Begin
)];
5101 getTrailingObjects
<Expr
*>()[I
* static_cast<int>(
5102 RangeExprOffset::Total
) +
5103 static_cast<int>(RangeExprOffset::End
)];
5105 getTrailingObjects
<Expr
*>()[I
* static_cast<int>(
5106 RangeExprOffset::Total
) +
5107 static_cast<int>(RangeExprOffset::Step
)];
5111 SourceLocation
OMPIteratorExpr::getAssignLoc(unsigned I
) const {
5112 return getTrailingObjects
<
5113 SourceLocation
>()[I
* static_cast<int>(RangeLocOffset::Total
) +
5114 static_cast<int>(RangeLocOffset::AssignLoc
)];
5117 SourceLocation
OMPIteratorExpr::getColonLoc(unsigned I
) const {
5118 return getTrailingObjects
<
5119 SourceLocation
>()[I
* static_cast<int>(RangeLocOffset::Total
) +
5120 static_cast<int>(RangeLocOffset::FirstColonLoc
)];
5123 SourceLocation
OMPIteratorExpr::getSecondColonLoc(unsigned I
) const {
5124 return getTrailingObjects
<
5125 SourceLocation
>()[I
* static_cast<int>(RangeLocOffset::Total
) +
5126 static_cast<int>(RangeLocOffset::SecondColonLoc
)];
5129 void OMPIteratorExpr::setHelper(unsigned I
, const OMPIteratorHelperData
&D
) {
5130 getTrailingObjects
<OMPIteratorHelperData
>()[I
] = D
;
5133 OMPIteratorHelperData
&OMPIteratorExpr::getHelper(unsigned I
) {
5134 return getTrailingObjects
<OMPIteratorHelperData
>()[I
];
5137 const OMPIteratorHelperData
&OMPIteratorExpr::getHelper(unsigned I
) const {
5138 return getTrailingObjects
<OMPIteratorHelperData
>()[I
];
5141 OMPIteratorExpr::OMPIteratorExpr(
5142 QualType ExprTy
, SourceLocation IteratorKwLoc
, SourceLocation L
,
5143 SourceLocation R
, ArrayRef
<OMPIteratorExpr::IteratorDefinition
> Data
,
5144 ArrayRef
<OMPIteratorHelperData
> Helpers
)
5145 : Expr(OMPIteratorExprClass
, ExprTy
, VK_LValue
, OK_Ordinary
),
5146 IteratorKwLoc(IteratorKwLoc
), LPLoc(L
), RPLoc(R
),
5147 NumIterators(Data
.size()) {
5148 for (unsigned I
= 0, E
= Data
.size(); I
< E
; ++I
) {
5149 const IteratorDefinition
&D
= Data
[I
];
5150 setIteratorDeclaration(I
, D
.IteratorDecl
);
5151 setAssignmentLoc(I
, D
.AssignmentLoc
);
5152 setIteratorRange(I
, D
.Range
.Begin
, D
.ColonLoc
, D
.Range
.End
,
5153 D
.SecondColonLoc
, D
.Range
.Step
);
5154 setHelper(I
, Helpers
[I
]);
5156 setDependence(computeDependence(this));
5160 OMPIteratorExpr::Create(const ASTContext
&Context
, QualType T
,
5161 SourceLocation IteratorKwLoc
, SourceLocation L
,
5163 ArrayRef
<OMPIteratorExpr::IteratorDefinition
> Data
,
5164 ArrayRef
<OMPIteratorHelperData
> Helpers
) {
5165 assert(Data
.size() == Helpers
.size() &&
5166 "Data and helpers must have the same size.");
5167 void *Mem
= Context
.Allocate(
5168 totalSizeToAlloc
<Decl
*, Expr
*, SourceLocation
, OMPIteratorHelperData
>(
5169 Data
.size(), Data
.size() * static_cast<int>(RangeExprOffset::Total
),
5170 Data
.size() * static_cast<int>(RangeLocOffset::Total
),
5172 alignof(OMPIteratorExpr
));
5173 return new (Mem
) OMPIteratorExpr(T
, IteratorKwLoc
, L
, R
, Data
, Helpers
);
5176 OMPIteratorExpr
*OMPIteratorExpr::CreateEmpty(const ASTContext
&Context
,
5177 unsigned NumIterators
) {
5178 void *Mem
= Context
.Allocate(
5179 totalSizeToAlloc
<Decl
*, Expr
*, SourceLocation
, OMPIteratorHelperData
>(
5180 NumIterators
, NumIterators
* static_cast<int>(RangeExprOffset::Total
),
5181 NumIterators
* static_cast<int>(RangeLocOffset::Total
), NumIterators
),
5182 alignof(OMPIteratorExpr
));
5183 return new (Mem
) OMPIteratorExpr(EmptyShell(), NumIterators
);