[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / AST / ExprConstant.cpp
blobb6b1e6617dffaa97938608d3c9da4d10661f7cbd
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
11 // Constant expression evaluation produces four main results:
13 // * A success/failure flag indicating whether constant folding was successful.
14 // This is the 'bool' return value used by most of the code in this file. A
15 // 'false' return value indicates that constant folding has failed, and any
16 // appropriate diagnostic has already been produced.
18 // * An evaluated result, valid only if constant folding has not failed.
20 // * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 // where it is possible to determine the evaluated result regardless.
24 // * A set of notes indicating why the evaluation was not a constant expression
25 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 // too, why the expression could not be folded.
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
33 //===----------------------------------------------------------------------===//
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/DiagnosticSema.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "llvm/ADT/APFixedPoint.h"
56 #include "llvm/ADT/SmallBitVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/SaveAndRestore.h"
60 #include "llvm/Support/TimeProfiler.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <cstring>
63 #include <functional>
64 #include <optional>
66 #define DEBUG_TYPE "exprconstant"
68 using namespace clang;
69 using llvm::APFixedPoint;
70 using llvm::APInt;
71 using llvm::APSInt;
72 using llvm::APFloat;
73 using llvm::FixedPointSemantics;
75 namespace {
76 struct LValue;
77 class CallStackFrame;
78 class EvalInfo;
80 using SourceLocExprScopeGuard =
81 CurrentSourceLocExprScope::SourceLocExprScopeGuard;
83 static QualType getType(APValue::LValueBase B) {
84 return B.getType();
87 /// Get an LValue path entry, which is known to not be an array index, as a
88 /// field declaration.
89 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
90 return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
92 /// Get an LValue path entry, which is known to not be an array index, as a
93 /// base class declaration.
94 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
95 return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
97 /// Determine whether this LValue path entry for a base class names a virtual
98 /// base class.
99 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
100 return E.getAsBaseOrMember().getInt();
103 /// Given an expression, determine the type used to store the result of
104 /// evaluating that expression.
105 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
106 if (E->isPRValue())
107 return E->getType();
108 return Ctx.getLValueReferenceType(E->getType());
111 /// Given a CallExpr, try to get the alloc_size attribute. May return null.
112 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
113 if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
114 return DirectCallee->getAttr<AllocSizeAttr>();
115 if (const Decl *IndirectCallee = CE->getCalleeDecl())
116 return IndirectCallee->getAttr<AllocSizeAttr>();
117 return nullptr;
120 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
121 /// This will look through a single cast.
123 /// Returns null if we couldn't unwrap a function with alloc_size.
124 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
125 if (!E->getType()->isPointerType())
126 return nullptr;
128 E = E->IgnoreParens();
129 // If we're doing a variable assignment from e.g. malloc(N), there will
130 // probably be a cast of some kind. In exotic cases, we might also see a
131 // top-level ExprWithCleanups. Ignore them either way.
132 if (const auto *FE = dyn_cast<FullExpr>(E))
133 E = FE->getSubExpr()->IgnoreParens();
135 if (const auto *Cast = dyn_cast<CastExpr>(E))
136 E = Cast->getSubExpr()->IgnoreParens();
138 if (const auto *CE = dyn_cast<CallExpr>(E))
139 return getAllocSizeAttr(CE) ? CE : nullptr;
140 return nullptr;
143 /// Determines whether or not the given Base contains a call to a function
144 /// with the alloc_size attribute.
145 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
146 const auto *E = Base.dyn_cast<const Expr *>();
147 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
150 /// Determines whether the given kind of constant expression is only ever
151 /// used for name mangling. If so, it's permitted to reference things that we
152 /// can't generate code for (in particular, dllimported functions).
153 static bool isForManglingOnly(ConstantExprKind Kind) {
154 switch (Kind) {
155 case ConstantExprKind::Normal:
156 case ConstantExprKind::ClassTemplateArgument:
157 case ConstantExprKind::ImmediateInvocation:
158 // Note that non-type template arguments of class type are emitted as
159 // template parameter objects.
160 return false;
162 case ConstantExprKind::NonClassTemplateArgument:
163 return true;
165 llvm_unreachable("unknown ConstantExprKind");
168 static bool isTemplateArgument(ConstantExprKind Kind) {
169 switch (Kind) {
170 case ConstantExprKind::Normal:
171 case ConstantExprKind::ImmediateInvocation:
172 return false;
174 case ConstantExprKind::ClassTemplateArgument:
175 case ConstantExprKind::NonClassTemplateArgument:
176 return true;
178 llvm_unreachable("unknown ConstantExprKind");
181 /// The bound to claim that an array of unknown bound has.
182 /// The value in MostDerivedArraySize is undefined in this case. So, set it
183 /// to an arbitrary value that's likely to loudly break things if it's used.
184 static const uint64_t AssumedSizeForUnsizedArray =
185 std::numeric_limits<uint64_t>::max() / 2;
187 /// Determines if an LValue with the given LValueBase will have an unsized
188 /// array in its designator.
189 /// Find the path length and type of the most-derived subobject in the given
190 /// path, and find the size of the containing array, if any.
191 static unsigned
192 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
193 ArrayRef<APValue::LValuePathEntry> Path,
194 uint64_t &ArraySize, QualType &Type, bool &IsArray,
195 bool &FirstEntryIsUnsizedArray) {
196 // This only accepts LValueBases from APValues, and APValues don't support
197 // arrays that lack size info.
198 assert(!isBaseAnAllocSizeCall(Base) &&
199 "Unsized arrays shouldn't appear here");
200 unsigned MostDerivedLength = 0;
201 Type = getType(Base);
203 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
204 if (Type->isArrayType()) {
205 const ArrayType *AT = Ctx.getAsArrayType(Type);
206 Type = AT->getElementType();
207 MostDerivedLength = I + 1;
208 IsArray = true;
210 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
211 ArraySize = CAT->getSize().getZExtValue();
212 } else {
213 assert(I == 0 && "unexpected unsized array designator");
214 FirstEntryIsUnsizedArray = true;
215 ArraySize = AssumedSizeForUnsizedArray;
217 } else if (Type->isAnyComplexType()) {
218 const ComplexType *CT = Type->castAs<ComplexType>();
219 Type = CT->getElementType();
220 ArraySize = 2;
221 MostDerivedLength = I + 1;
222 IsArray = true;
223 } else if (const FieldDecl *FD = getAsField(Path[I])) {
224 Type = FD->getType();
225 ArraySize = 0;
226 MostDerivedLength = I + 1;
227 IsArray = false;
228 } else {
229 // Path[I] describes a base class.
230 ArraySize = 0;
231 IsArray = false;
234 return MostDerivedLength;
237 /// A path from a glvalue to a subobject of that glvalue.
238 struct SubobjectDesignator {
239 /// True if the subobject was named in a manner not supported by C++11. Such
240 /// lvalues can still be folded, but they are not core constant expressions
241 /// and we cannot perform lvalue-to-rvalue conversions on them.
242 unsigned Invalid : 1;
244 /// Is this a pointer one past the end of an object?
245 unsigned IsOnePastTheEnd : 1;
247 /// Indicator of whether the first entry is an unsized array.
248 unsigned FirstEntryIsAnUnsizedArray : 1;
250 /// Indicator of whether the most-derived object is an array element.
251 unsigned MostDerivedIsArrayElement : 1;
253 /// The length of the path to the most-derived object of which this is a
254 /// subobject.
255 unsigned MostDerivedPathLength : 28;
257 /// The size of the array of which the most-derived object is an element.
258 /// This will always be 0 if the most-derived object is not an array
259 /// element. 0 is not an indicator of whether or not the most-derived object
260 /// is an array, however, because 0-length arrays are allowed.
262 /// If the current array is an unsized array, the value of this is
263 /// undefined.
264 uint64_t MostDerivedArraySize;
266 /// The type of the most derived object referred to by this address.
267 QualType MostDerivedType;
269 typedef APValue::LValuePathEntry PathEntry;
271 /// The entries on the path from the glvalue to the designated subobject.
272 SmallVector<PathEntry, 8> Entries;
274 SubobjectDesignator() : Invalid(true) {}
276 explicit SubobjectDesignator(QualType T)
277 : Invalid(false), IsOnePastTheEnd(false),
278 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
279 MostDerivedPathLength(0), MostDerivedArraySize(0),
280 MostDerivedType(T) {}
282 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
283 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
284 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
285 MostDerivedPathLength(0), MostDerivedArraySize(0) {
286 assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
287 if (!Invalid) {
288 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
289 ArrayRef<PathEntry> VEntries = V.getLValuePath();
290 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
291 if (V.getLValueBase()) {
292 bool IsArray = false;
293 bool FirstIsUnsizedArray = false;
294 MostDerivedPathLength = findMostDerivedSubobject(
295 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
296 MostDerivedType, IsArray, FirstIsUnsizedArray);
297 MostDerivedIsArrayElement = IsArray;
298 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
303 void truncate(ASTContext &Ctx, APValue::LValueBase Base,
304 unsigned NewLength) {
305 if (Invalid)
306 return;
308 assert(Base && "cannot truncate path for null pointer");
309 assert(NewLength <= Entries.size() && "not a truncation");
311 if (NewLength == Entries.size())
312 return;
313 Entries.resize(NewLength);
315 bool IsArray = false;
316 bool FirstIsUnsizedArray = false;
317 MostDerivedPathLength = findMostDerivedSubobject(
318 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
319 FirstIsUnsizedArray);
320 MostDerivedIsArrayElement = IsArray;
321 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
324 void setInvalid() {
325 Invalid = true;
326 Entries.clear();
329 /// Determine whether the most derived subobject is an array without a
330 /// known bound.
331 bool isMostDerivedAnUnsizedArray() const {
332 assert(!Invalid && "Calling this makes no sense on invalid designators");
333 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
336 /// Determine what the most derived array's size is. Results in an assertion
337 /// failure if the most derived array lacks a size.
338 uint64_t getMostDerivedArraySize() const {
339 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
340 return MostDerivedArraySize;
343 /// Determine whether this is a one-past-the-end pointer.
344 bool isOnePastTheEnd() const {
345 assert(!Invalid);
346 if (IsOnePastTheEnd)
347 return true;
348 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
349 Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
350 MostDerivedArraySize)
351 return true;
352 return false;
355 /// Get the range of valid index adjustments in the form
356 /// {maximum value that can be subtracted from this pointer,
357 /// maximum value that can be added to this pointer}
358 std::pair<uint64_t, uint64_t> validIndexAdjustments() {
359 if (Invalid || isMostDerivedAnUnsizedArray())
360 return {0, 0};
362 // [expr.add]p4: For the purposes of these operators, a pointer to a
363 // nonarray object behaves the same as a pointer to the first element of
364 // an array of length one with the type of the object as its element type.
365 bool IsArray = MostDerivedPathLength == Entries.size() &&
366 MostDerivedIsArrayElement;
367 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
368 : (uint64_t)IsOnePastTheEnd;
369 uint64_t ArraySize =
370 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
371 return {ArrayIndex, ArraySize - ArrayIndex};
374 /// Check that this refers to a valid subobject.
375 bool isValidSubobject() const {
376 if (Invalid)
377 return false;
378 return !isOnePastTheEnd();
380 /// Check that this refers to a valid subobject, and if not, produce a
381 /// relevant diagnostic and set the designator as invalid.
382 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
384 /// Get the type of the designated object.
385 QualType getType(ASTContext &Ctx) const {
386 assert(!Invalid && "invalid designator has no subobject type");
387 return MostDerivedPathLength == Entries.size()
388 ? MostDerivedType
389 : Ctx.getRecordType(getAsBaseClass(Entries.back()));
392 /// Update this designator to refer to the first element within this array.
393 void addArrayUnchecked(const ConstantArrayType *CAT) {
394 Entries.push_back(PathEntry::ArrayIndex(0));
396 // This is a most-derived object.
397 MostDerivedType = CAT->getElementType();
398 MostDerivedIsArrayElement = true;
399 MostDerivedArraySize = CAT->getSize().getZExtValue();
400 MostDerivedPathLength = Entries.size();
402 /// Update this designator to refer to the first element within the array of
403 /// elements of type T. This is an array of unknown size.
404 void addUnsizedArrayUnchecked(QualType ElemTy) {
405 Entries.push_back(PathEntry::ArrayIndex(0));
407 MostDerivedType = ElemTy;
408 MostDerivedIsArrayElement = true;
409 // The value in MostDerivedArraySize is undefined in this case. So, set it
410 // to an arbitrary value that's likely to loudly break things if it's
411 // used.
412 MostDerivedArraySize = AssumedSizeForUnsizedArray;
413 MostDerivedPathLength = Entries.size();
415 /// Update this designator to refer to the given base or member of this
416 /// object.
417 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
418 Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
420 // If this isn't a base class, it's a new most-derived object.
421 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
422 MostDerivedType = FD->getType();
423 MostDerivedIsArrayElement = false;
424 MostDerivedArraySize = 0;
425 MostDerivedPathLength = Entries.size();
428 /// Update this designator to refer to the given complex component.
429 void addComplexUnchecked(QualType EltTy, bool Imag) {
430 Entries.push_back(PathEntry::ArrayIndex(Imag));
432 // This is technically a most-derived object, though in practice this
433 // is unlikely to matter.
434 MostDerivedType = EltTy;
435 MostDerivedIsArrayElement = true;
436 MostDerivedArraySize = 2;
437 MostDerivedPathLength = Entries.size();
439 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
440 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
441 const APSInt &N);
442 /// Add N to the address of this subobject.
443 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
444 if (Invalid || !N) return;
445 uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
446 if (isMostDerivedAnUnsizedArray()) {
447 diagnoseUnsizedArrayPointerArithmetic(Info, E);
448 // Can't verify -- trust that the user is doing the right thing (or if
449 // not, trust that the caller will catch the bad behavior).
450 // FIXME: Should we reject if this overflows, at least?
451 Entries.back() = PathEntry::ArrayIndex(
452 Entries.back().getAsArrayIndex() + TruncatedN);
453 return;
456 // [expr.add]p4: For the purposes of these operators, a pointer to a
457 // nonarray object behaves the same as a pointer to the first element of
458 // an array of length one with the type of the object as its element type.
459 bool IsArray = MostDerivedPathLength == Entries.size() &&
460 MostDerivedIsArrayElement;
461 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
462 : (uint64_t)IsOnePastTheEnd;
463 uint64_t ArraySize =
464 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
466 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
467 // Calculate the actual index in a wide enough type, so we can include
468 // it in the note.
469 N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
470 (llvm::APInt&)N += ArrayIndex;
471 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
472 diagnosePointerArithmetic(Info, E, N);
473 setInvalid();
474 return;
477 ArrayIndex += TruncatedN;
478 assert(ArrayIndex <= ArraySize &&
479 "bounds check succeeded for out-of-bounds index");
481 if (IsArray)
482 Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
483 else
484 IsOnePastTheEnd = (ArrayIndex != 0);
488 /// A scope at the end of which an object can need to be destroyed.
489 enum class ScopeKind {
490 Block,
491 FullExpression,
492 Call
495 /// A reference to a particular call and its arguments.
496 struct CallRef {
497 CallRef() : OrigCallee(), CallIndex(0), Version() {}
498 CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
499 : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
501 explicit operator bool() const { return OrigCallee; }
503 /// Get the parameter that the caller initialized, corresponding to the
504 /// given parameter in the callee.
505 const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
506 return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
507 : PVD;
510 /// The callee at the point where the arguments were evaluated. This might
511 /// be different from the actual callee (a different redeclaration, or a
512 /// virtual override), but this function's parameters are the ones that
513 /// appear in the parameter map.
514 const FunctionDecl *OrigCallee;
515 /// The call index of the frame that holds the argument values.
516 unsigned CallIndex;
517 /// The version of the parameters corresponding to this call.
518 unsigned Version;
521 /// A stack frame in the constexpr call stack.
522 class CallStackFrame : public interp::Frame {
523 public:
524 EvalInfo &Info;
526 /// Parent - The caller of this stack frame.
527 CallStackFrame *Caller;
529 /// Callee - The function which was called.
530 const FunctionDecl *Callee;
532 /// This - The binding for the this pointer in this call, if any.
533 const LValue *This;
535 /// CallExpr - The syntactical structure of member function calls
536 const Expr *CallExpr;
538 /// Information on how to find the arguments to this call. Our arguments
539 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
540 /// key and this value as the version.
541 CallRef Arguments;
543 /// Source location information about the default argument or default
544 /// initializer expression we're evaluating, if any.
545 CurrentSourceLocExprScope CurSourceLocExprScope;
547 // Note that we intentionally use std::map here so that references to
548 // values are stable.
549 typedef std::pair<const void *, unsigned> MapKeyTy;
550 typedef std::map<MapKeyTy, APValue> MapTy;
551 /// Temporaries - Temporary lvalues materialized within this stack frame.
552 MapTy Temporaries;
554 /// CallRange - The source range of the call expression for this call.
555 SourceRange CallRange;
557 /// Index - The call index of this call.
558 unsigned Index;
560 /// The stack of integers for tracking version numbers for temporaries.
561 SmallVector<unsigned, 2> TempVersionStack = {1};
562 unsigned CurTempVersion = TempVersionStack.back();
564 unsigned getTempVersion() const { return TempVersionStack.back(); }
566 void pushTempVersion() {
567 TempVersionStack.push_back(++CurTempVersion);
570 void popTempVersion() {
571 TempVersionStack.pop_back();
574 CallRef createCall(const FunctionDecl *Callee) {
575 return {Callee, Index, ++CurTempVersion};
578 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
579 // on the overall stack usage of deeply-recursing constexpr evaluations.
580 // (We should cache this map rather than recomputing it repeatedly.)
581 // But let's try this and see how it goes; we can look into caching the map
582 // as a later change.
584 /// LambdaCaptureFields - Mapping from captured variables/this to
585 /// corresponding data members in the closure class.
586 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
587 FieldDecl *LambdaThisCaptureField = nullptr;
589 CallStackFrame(EvalInfo &Info, SourceRange CallRange,
590 const FunctionDecl *Callee, const LValue *This,
591 const Expr *CallExpr, CallRef Arguments);
592 ~CallStackFrame();
594 // Return the temporary for Key whose version number is Version.
595 APValue *getTemporary(const void *Key, unsigned Version) {
596 MapKeyTy KV(Key, Version);
597 auto LB = Temporaries.lower_bound(KV);
598 if (LB != Temporaries.end() && LB->first == KV)
599 return &LB->second;
600 return nullptr;
603 // Return the current temporary for Key in the map.
604 APValue *getCurrentTemporary(const void *Key) {
605 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
606 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
607 return &std::prev(UB)->second;
608 return nullptr;
611 // Return the version number of the current temporary for Key.
612 unsigned getCurrentTemporaryVersion(const void *Key) const {
613 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
614 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
615 return std::prev(UB)->first.second;
616 return 0;
619 /// Allocate storage for an object of type T in this stack frame.
620 /// Populates LV with a handle to the created object. Key identifies
621 /// the temporary within the stack frame, and must not be reused without
622 /// bumping the temporary version number.
623 template<typename KeyT>
624 APValue &createTemporary(const KeyT *Key, QualType T,
625 ScopeKind Scope, LValue &LV);
627 /// Allocate storage for a parameter of a function call made in this frame.
628 APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
630 void describe(llvm::raw_ostream &OS) const override;
632 Frame *getCaller() const override { return Caller; }
633 SourceRange getCallRange() const override { return CallRange; }
634 const FunctionDecl *getCallee() const override { return Callee; }
636 bool isStdFunction() const {
637 for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
638 if (DC->isStdNamespace())
639 return true;
640 return false;
643 private:
644 APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
645 ScopeKind Scope);
648 /// Temporarily override 'this'.
649 class ThisOverrideRAII {
650 public:
651 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
652 : Frame(Frame), OldThis(Frame.This) {
653 if (Enable)
654 Frame.This = NewThis;
656 ~ThisOverrideRAII() {
657 Frame.This = OldThis;
659 private:
660 CallStackFrame &Frame;
661 const LValue *OldThis;
664 // A shorthand time trace scope struct, prints source range, for example
665 // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}}
666 class ExprTimeTraceScope {
667 public:
668 ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name)
669 : TimeScope(Name, [E, &Ctx] {
670 return E->getSourceRange().printToString(Ctx.getSourceManager());
671 }) {}
673 private:
674 llvm::TimeTraceScope TimeScope;
678 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
679 const LValue &This, QualType ThisType);
680 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
681 APValue::LValueBase LVBase, APValue &Value,
682 QualType T);
684 namespace {
685 /// A cleanup, and a flag indicating whether it is lifetime-extended.
686 class Cleanup {
687 llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
688 APValue::LValueBase Base;
689 QualType T;
691 public:
692 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
693 ScopeKind Scope)
694 : Value(Val, Scope), Base(Base), T(T) {}
696 /// Determine whether this cleanup should be performed at the end of the
697 /// given kind of scope.
698 bool isDestroyedAtEndOf(ScopeKind K) const {
699 return (int)Value.getInt() >= (int)K;
701 bool endLifetime(EvalInfo &Info, bool RunDestructors) {
702 if (RunDestructors) {
703 SourceLocation Loc;
704 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
705 Loc = VD->getLocation();
706 else if (const Expr *E = Base.dyn_cast<const Expr*>())
707 Loc = E->getExprLoc();
708 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
710 *Value.getPointer() = APValue();
711 return true;
714 bool hasSideEffect() {
715 return T.isDestructedType();
719 /// A reference to an object whose construction we are currently evaluating.
720 struct ObjectUnderConstruction {
721 APValue::LValueBase Base;
722 ArrayRef<APValue::LValuePathEntry> Path;
723 friend bool operator==(const ObjectUnderConstruction &LHS,
724 const ObjectUnderConstruction &RHS) {
725 return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
727 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
728 return llvm::hash_combine(Obj.Base, Obj.Path);
731 enum class ConstructionPhase {
732 None,
733 Bases,
734 AfterBases,
735 AfterFields,
736 Destroying,
737 DestroyingBases
741 namespace llvm {
742 template<> struct DenseMapInfo<ObjectUnderConstruction> {
743 using Base = DenseMapInfo<APValue::LValueBase>;
744 static ObjectUnderConstruction getEmptyKey() {
745 return {Base::getEmptyKey(), {}}; }
746 static ObjectUnderConstruction getTombstoneKey() {
747 return {Base::getTombstoneKey(), {}};
749 static unsigned getHashValue(const ObjectUnderConstruction &Object) {
750 return hash_value(Object);
752 static bool isEqual(const ObjectUnderConstruction &LHS,
753 const ObjectUnderConstruction &RHS) {
754 return LHS == RHS;
759 namespace {
760 /// A dynamically-allocated heap object.
761 struct DynAlloc {
762 /// The value of this heap-allocated object.
763 APValue Value;
764 /// The allocating expression; used for diagnostics. Either a CXXNewExpr
765 /// or a CallExpr (the latter is for direct calls to operator new inside
766 /// std::allocator<T>::allocate).
767 const Expr *AllocExpr = nullptr;
769 enum Kind {
770 New,
771 ArrayNew,
772 StdAllocator
775 /// Get the kind of the allocation. This must match between allocation
776 /// and deallocation.
777 Kind getKind() const {
778 if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
779 return NE->isArray() ? ArrayNew : New;
780 assert(isa<CallExpr>(AllocExpr));
781 return StdAllocator;
785 struct DynAllocOrder {
786 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
787 return L.getIndex() < R.getIndex();
791 /// EvalInfo - This is a private struct used by the evaluator to capture
792 /// information about a subexpression as it is folded. It retains information
793 /// about the AST context, but also maintains information about the folded
794 /// expression.
796 /// If an expression could be evaluated, it is still possible it is not a C
797 /// "integer constant expression" or constant expression. If not, this struct
798 /// captures information about how and why not.
800 /// One bit of information passed *into* the request for constant folding
801 /// indicates whether the subexpression is "evaluated" or not according to C
802 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
803 /// evaluate the expression regardless of what the RHS is, but C only allows
804 /// certain things in certain situations.
805 class EvalInfo : public interp::State {
806 public:
807 ASTContext &Ctx;
809 /// EvalStatus - Contains information about the evaluation.
810 Expr::EvalStatus &EvalStatus;
812 /// CurrentCall - The top of the constexpr call stack.
813 CallStackFrame *CurrentCall;
815 /// CallStackDepth - The number of calls in the call stack right now.
816 unsigned CallStackDepth;
818 /// NextCallIndex - The next call index to assign.
819 unsigned NextCallIndex;
821 /// StepsLeft - The remaining number of evaluation steps we're permitted
822 /// to perform. This is essentially a limit for the number of statements
823 /// we will evaluate.
824 unsigned StepsLeft;
826 /// Enable the experimental new constant interpreter. If an expression is
827 /// not supported by the interpreter, an error is triggered.
828 bool EnableNewConstInterp;
830 /// BottomFrame - The frame in which evaluation started. This must be
831 /// initialized after CurrentCall and CallStackDepth.
832 CallStackFrame BottomFrame;
834 /// A stack of values whose lifetimes end at the end of some surrounding
835 /// evaluation frame.
836 llvm::SmallVector<Cleanup, 16> CleanupStack;
838 /// EvaluatingDecl - This is the declaration whose initializer is being
839 /// evaluated, if any.
840 APValue::LValueBase EvaluatingDecl;
842 enum class EvaluatingDeclKind {
843 None,
844 /// We're evaluating the construction of EvaluatingDecl.
845 Ctor,
846 /// We're evaluating the destruction of EvaluatingDecl.
847 Dtor,
849 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
851 /// EvaluatingDeclValue - This is the value being constructed for the
852 /// declaration whose initializer is being evaluated, if any.
853 APValue *EvaluatingDeclValue;
855 /// Set of objects that are currently being constructed.
856 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
857 ObjectsUnderConstruction;
859 /// Current heap allocations, along with the location where each was
860 /// allocated. We use std::map here because we need stable addresses
861 /// for the stored APValues.
862 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
864 /// The number of heap allocations performed so far in this evaluation.
865 unsigned NumHeapAllocs = 0;
867 struct EvaluatingConstructorRAII {
868 EvalInfo &EI;
869 ObjectUnderConstruction Object;
870 bool DidInsert;
871 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
872 bool HasBases)
873 : EI(EI), Object(Object) {
874 DidInsert =
875 EI.ObjectsUnderConstruction
876 .insert({Object, HasBases ? ConstructionPhase::Bases
877 : ConstructionPhase::AfterBases})
878 .second;
880 void finishedConstructingBases() {
881 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
883 void finishedConstructingFields() {
884 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
886 ~EvaluatingConstructorRAII() {
887 if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
891 struct EvaluatingDestructorRAII {
892 EvalInfo &EI;
893 ObjectUnderConstruction Object;
894 bool DidInsert;
895 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
896 : EI(EI), Object(Object) {
897 DidInsert = EI.ObjectsUnderConstruction
898 .insert({Object, ConstructionPhase::Destroying})
899 .second;
901 void startedDestroyingBases() {
902 EI.ObjectsUnderConstruction[Object] =
903 ConstructionPhase::DestroyingBases;
905 ~EvaluatingDestructorRAII() {
906 if (DidInsert)
907 EI.ObjectsUnderConstruction.erase(Object);
911 ConstructionPhase
912 isEvaluatingCtorDtor(APValue::LValueBase Base,
913 ArrayRef<APValue::LValuePathEntry> Path) {
914 return ObjectsUnderConstruction.lookup({Base, Path});
917 /// If we're currently speculatively evaluating, the outermost call stack
918 /// depth at which we can mutate state, otherwise 0.
919 unsigned SpeculativeEvaluationDepth = 0;
921 /// The current array initialization index, if we're performing array
922 /// initialization.
923 uint64_t ArrayInitIndex = -1;
925 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
926 /// notes attached to it will also be stored, otherwise they will not be.
927 bool HasActiveDiagnostic;
929 /// Have we emitted a diagnostic explaining why we couldn't constant
930 /// fold (not just why it's not strictly a constant expression)?
931 bool HasFoldFailureDiagnostic;
933 /// Whether we're checking that an expression is a potential constant
934 /// expression. If so, do not fail on constructs that could become constant
935 /// later on (such as a use of an undefined global).
936 bool CheckingPotentialConstantExpression = false;
938 /// Whether we're checking for an expression that has undefined behavior.
939 /// If so, we will produce warnings if we encounter an operation that is
940 /// always undefined.
942 /// Note that we still need to evaluate the expression normally when this
943 /// is set; this is used when evaluating ICEs in C.
944 bool CheckingForUndefinedBehavior = false;
946 enum EvaluationMode {
947 /// Evaluate as a constant expression. Stop if we find that the expression
948 /// is not a constant expression.
949 EM_ConstantExpression,
951 /// Evaluate as a constant expression. Stop if we find that the expression
952 /// is not a constant expression. Some expressions can be retried in the
953 /// optimizer if we don't constant fold them here, but in an unevaluated
954 /// context we try to fold them immediately since the optimizer never
955 /// gets a chance to look at it.
956 EM_ConstantExpressionUnevaluated,
958 /// Fold the expression to a constant. Stop if we hit a side-effect that
959 /// we can't model.
960 EM_ConstantFold,
962 /// Evaluate in any way we know how. Don't worry about side-effects that
963 /// can't be modeled.
964 EM_IgnoreSideEffects,
965 } EvalMode;
967 /// Are we checking whether the expression is a potential constant
968 /// expression?
969 bool checkingPotentialConstantExpression() const override {
970 return CheckingPotentialConstantExpression;
973 /// Are we checking an expression for overflow?
974 // FIXME: We should check for any kind of undefined or suspicious behavior
975 // in such constructs, not just overflow.
976 bool checkingForUndefinedBehavior() const override {
977 return CheckingForUndefinedBehavior;
980 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
981 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
982 CallStackDepth(0), NextCallIndex(1),
983 StepsLeft(C.getLangOpts().ConstexprStepLimit),
984 EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
985 BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr,
986 /*This=*/nullptr,
987 /*CallExpr=*/nullptr, CallRef()),
988 EvaluatingDecl((const ValueDecl *)nullptr),
989 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
990 HasFoldFailureDiagnostic(false), EvalMode(Mode) {}
992 ~EvalInfo() {
993 discardCleanups();
996 ASTContext &getCtx() const override { return Ctx; }
998 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
999 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
1000 EvaluatingDecl = Base;
1001 IsEvaluatingDecl = EDK;
1002 EvaluatingDeclValue = &Value;
1005 bool CheckCallLimit(SourceLocation Loc) {
1006 // Don't perform any constexpr calls (other than the call we're checking)
1007 // when checking a potential constant expression.
1008 if (checkingPotentialConstantExpression() && CallStackDepth > 1)
1009 return false;
1010 if (NextCallIndex == 0) {
1011 // NextCallIndex has wrapped around.
1012 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1013 return false;
1015 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1016 return true;
1017 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1018 << getLangOpts().ConstexprCallDepth;
1019 return false;
1022 bool CheckArraySize(SourceLocation Loc, unsigned BitWidth,
1023 uint64_t ElemCount, bool Diag) {
1024 // FIXME: GH63562
1025 // APValue stores array extents as unsigned,
1026 // so anything that is greater that unsigned would overflow when
1027 // constructing the array, we catch this here.
1028 if (BitWidth > ConstantArrayType::getMaxSizeBits(Ctx) ||
1029 ElemCount > uint64_t(std::numeric_limits<unsigned>::max())) {
1030 if (Diag)
1031 FFDiag(Loc, diag::note_constexpr_new_too_large) << ElemCount;
1032 return false;
1035 // FIXME: GH63562
1036 // Arrays allocate an APValue per element.
1037 // We use the number of constexpr steps as a proxy for the maximum size
1038 // of arrays to avoid exhausting the system resources, as initialization
1039 // of each element is likely to take some number of steps anyway.
1040 uint64_t Limit = Ctx.getLangOpts().ConstexprStepLimit;
1041 if (ElemCount > Limit) {
1042 if (Diag)
1043 FFDiag(Loc, diag::note_constexpr_new_exceeds_limits)
1044 << ElemCount << Limit;
1045 return false;
1047 return true;
1050 std::pair<CallStackFrame *, unsigned>
1051 getCallFrameAndDepth(unsigned CallIndex) {
1052 assert(CallIndex && "no call index in getCallFrameAndDepth");
1053 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1054 // be null in this loop.
1055 unsigned Depth = CallStackDepth;
1056 CallStackFrame *Frame = CurrentCall;
1057 while (Frame->Index > CallIndex) {
1058 Frame = Frame->Caller;
1059 --Depth;
1061 if (Frame->Index == CallIndex)
1062 return {Frame, Depth};
1063 return {nullptr, 0};
1066 bool nextStep(const Stmt *S) {
1067 if (!StepsLeft) {
1068 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1069 return false;
1071 --StepsLeft;
1072 return true;
1075 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1077 std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) {
1078 std::optional<DynAlloc *> Result;
1079 auto It = HeapAllocs.find(DA);
1080 if (It != HeapAllocs.end())
1081 Result = &It->second;
1082 return Result;
1085 /// Get the allocated storage for the given parameter of the given call.
1086 APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1087 CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1088 return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1089 : nullptr;
1092 /// Information about a stack frame for std::allocator<T>::[de]allocate.
1093 struct StdAllocatorCaller {
1094 unsigned FrameIndex;
1095 QualType ElemType;
1096 explicit operator bool() const { return FrameIndex != 0; };
1099 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1100 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1101 Call = Call->Caller) {
1102 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1103 if (!MD)
1104 continue;
1105 const IdentifierInfo *FnII = MD->getIdentifier();
1106 if (!FnII || !FnII->isStr(FnName))
1107 continue;
1109 const auto *CTSD =
1110 dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1111 if (!CTSD)
1112 continue;
1114 const IdentifierInfo *ClassII = CTSD->getIdentifier();
1115 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1116 if (CTSD->isInStdNamespace() && ClassII &&
1117 ClassII->isStr("allocator") && TAL.size() >= 1 &&
1118 TAL[0].getKind() == TemplateArgument::Type)
1119 return {Call->Index, TAL[0].getAsType()};
1122 return {};
1125 void performLifetimeExtension() {
1126 // Disable the cleanups for lifetime-extended temporaries.
1127 llvm::erase_if(CleanupStack, [](Cleanup &C) {
1128 return !C.isDestroyedAtEndOf(ScopeKind::FullExpression);
1132 /// Throw away any remaining cleanups at the end of evaluation. If any
1133 /// cleanups would have had a side-effect, note that as an unmodeled
1134 /// side-effect and return false. Otherwise, return true.
1135 bool discardCleanups() {
1136 for (Cleanup &C : CleanupStack) {
1137 if (C.hasSideEffect() && !noteSideEffect()) {
1138 CleanupStack.clear();
1139 return false;
1142 CleanupStack.clear();
1143 return true;
1146 private:
1147 interp::Frame *getCurrentFrame() override { return CurrentCall; }
1148 const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1150 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1151 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1153 void setFoldFailureDiagnostic(bool Flag) override {
1154 HasFoldFailureDiagnostic = Flag;
1157 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1159 // If we have a prior diagnostic, it will be noting that the expression
1160 // isn't a constant expression. This diagnostic is more important,
1161 // unless we require this evaluation to produce a constant expression.
1163 // FIXME: We might want to show both diagnostics to the user in
1164 // EM_ConstantFold mode.
1165 bool hasPriorDiagnostic() override {
1166 if (!EvalStatus.Diag->empty()) {
1167 switch (EvalMode) {
1168 case EM_ConstantFold:
1169 case EM_IgnoreSideEffects:
1170 if (!HasFoldFailureDiagnostic)
1171 break;
1172 // We've already failed to fold something. Keep that diagnostic.
1173 [[fallthrough]];
1174 case EM_ConstantExpression:
1175 case EM_ConstantExpressionUnevaluated:
1176 setActiveDiagnostic(false);
1177 return true;
1180 return false;
1183 unsigned getCallStackDepth() override { return CallStackDepth; }
1185 public:
1186 /// Should we continue evaluation after encountering a side-effect that we
1187 /// couldn't model?
1188 bool keepEvaluatingAfterSideEffect() {
1189 switch (EvalMode) {
1190 case EM_IgnoreSideEffects:
1191 return true;
1193 case EM_ConstantExpression:
1194 case EM_ConstantExpressionUnevaluated:
1195 case EM_ConstantFold:
1196 // By default, assume any side effect might be valid in some other
1197 // evaluation of this expression from a different context.
1198 return checkingPotentialConstantExpression() ||
1199 checkingForUndefinedBehavior();
1201 llvm_unreachable("Missed EvalMode case");
1204 /// Note that we have had a side-effect, and determine whether we should
1205 /// keep evaluating.
1206 bool noteSideEffect() {
1207 EvalStatus.HasSideEffects = true;
1208 return keepEvaluatingAfterSideEffect();
1211 /// Should we continue evaluation after encountering undefined behavior?
1212 bool keepEvaluatingAfterUndefinedBehavior() {
1213 switch (EvalMode) {
1214 case EM_IgnoreSideEffects:
1215 case EM_ConstantFold:
1216 return true;
1218 case EM_ConstantExpression:
1219 case EM_ConstantExpressionUnevaluated:
1220 return checkingForUndefinedBehavior();
1222 llvm_unreachable("Missed EvalMode case");
1225 /// Note that we hit something that was technically undefined behavior, but
1226 /// that we can evaluate past it (such as signed overflow or floating-point
1227 /// division by zero.)
1228 bool noteUndefinedBehavior() override {
1229 EvalStatus.HasUndefinedBehavior = true;
1230 return keepEvaluatingAfterUndefinedBehavior();
1233 /// Should we continue evaluation as much as possible after encountering a
1234 /// construct which can't be reduced to a value?
1235 bool keepEvaluatingAfterFailure() const override {
1236 if (!StepsLeft)
1237 return false;
1239 switch (EvalMode) {
1240 case EM_ConstantExpression:
1241 case EM_ConstantExpressionUnevaluated:
1242 case EM_ConstantFold:
1243 case EM_IgnoreSideEffects:
1244 return checkingPotentialConstantExpression() ||
1245 checkingForUndefinedBehavior();
1247 llvm_unreachable("Missed EvalMode case");
1250 /// Notes that we failed to evaluate an expression that other expressions
1251 /// directly depend on, and determine if we should keep evaluating. This
1252 /// should only be called if we actually intend to keep evaluating.
1254 /// Call noteSideEffect() instead if we may be able to ignore the value that
1255 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1257 /// (Foo(), 1) // use noteSideEffect
1258 /// (Foo() || true) // use noteSideEffect
1259 /// Foo() + 1 // use noteFailure
1260 [[nodiscard]] bool noteFailure() {
1261 // Failure when evaluating some expression often means there is some
1262 // subexpression whose evaluation was skipped. Therefore, (because we
1263 // don't track whether we skipped an expression when unwinding after an
1264 // evaluation failure) every evaluation failure that bubbles up from a
1265 // subexpression implies that a side-effect has potentially happened. We
1266 // skip setting the HasSideEffects flag to true until we decide to
1267 // continue evaluating after that point, which happens here.
1268 bool KeepGoing = keepEvaluatingAfterFailure();
1269 EvalStatus.HasSideEffects |= KeepGoing;
1270 return KeepGoing;
1273 class ArrayInitLoopIndex {
1274 EvalInfo &Info;
1275 uint64_t OuterIndex;
1277 public:
1278 ArrayInitLoopIndex(EvalInfo &Info)
1279 : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1280 Info.ArrayInitIndex = 0;
1282 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1284 operator uint64_t&() { return Info.ArrayInitIndex; }
1288 /// Object used to treat all foldable expressions as constant expressions.
1289 struct FoldConstant {
1290 EvalInfo &Info;
1291 bool Enabled;
1292 bool HadNoPriorDiags;
1293 EvalInfo::EvaluationMode OldMode;
1295 explicit FoldConstant(EvalInfo &Info, bool Enabled)
1296 : Info(Info),
1297 Enabled(Enabled),
1298 HadNoPriorDiags(Info.EvalStatus.Diag &&
1299 Info.EvalStatus.Diag->empty() &&
1300 !Info.EvalStatus.HasSideEffects),
1301 OldMode(Info.EvalMode) {
1302 if (Enabled)
1303 Info.EvalMode = EvalInfo::EM_ConstantFold;
1305 void keepDiagnostics() { Enabled = false; }
1306 ~FoldConstant() {
1307 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1308 !Info.EvalStatus.HasSideEffects)
1309 Info.EvalStatus.Diag->clear();
1310 Info.EvalMode = OldMode;
1314 /// RAII object used to set the current evaluation mode to ignore
1315 /// side-effects.
1316 struct IgnoreSideEffectsRAII {
1317 EvalInfo &Info;
1318 EvalInfo::EvaluationMode OldMode;
1319 explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1320 : Info(Info), OldMode(Info.EvalMode) {
1321 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1324 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1327 /// RAII object used to optionally suppress diagnostics and side-effects from
1328 /// a speculative evaluation.
1329 class SpeculativeEvaluationRAII {
1330 EvalInfo *Info = nullptr;
1331 Expr::EvalStatus OldStatus;
1332 unsigned OldSpeculativeEvaluationDepth = 0;
1334 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1335 Info = Other.Info;
1336 OldStatus = Other.OldStatus;
1337 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1338 Other.Info = nullptr;
1341 void maybeRestoreState() {
1342 if (!Info)
1343 return;
1345 Info->EvalStatus = OldStatus;
1346 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1349 public:
1350 SpeculativeEvaluationRAII() = default;
1352 SpeculativeEvaluationRAII(
1353 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1354 : Info(&Info), OldStatus(Info.EvalStatus),
1355 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1356 Info.EvalStatus.Diag = NewDiag;
1357 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1360 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1361 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1362 moveFromAndCancel(std::move(Other));
1365 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1366 maybeRestoreState();
1367 moveFromAndCancel(std::move(Other));
1368 return *this;
1371 ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1374 /// RAII object wrapping a full-expression or block scope, and handling
1375 /// the ending of the lifetime of temporaries created within it.
1376 template<ScopeKind Kind>
1377 class ScopeRAII {
1378 EvalInfo &Info;
1379 unsigned OldStackSize;
1380 public:
1381 ScopeRAII(EvalInfo &Info)
1382 : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1383 // Push a new temporary version. This is needed to distinguish between
1384 // temporaries created in different iterations of a loop.
1385 Info.CurrentCall->pushTempVersion();
1387 bool destroy(bool RunDestructors = true) {
1388 bool OK = cleanup(Info, RunDestructors, OldStackSize);
1389 OldStackSize = -1U;
1390 return OK;
1392 ~ScopeRAII() {
1393 if (OldStackSize != -1U)
1394 destroy(false);
1395 // Body moved to a static method to encourage the compiler to inline away
1396 // instances of this class.
1397 Info.CurrentCall->popTempVersion();
1399 private:
1400 static bool cleanup(EvalInfo &Info, bool RunDestructors,
1401 unsigned OldStackSize) {
1402 assert(OldStackSize <= Info.CleanupStack.size() &&
1403 "running cleanups out of order?");
1405 // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1406 // for a full-expression scope.
1407 bool Success = true;
1408 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1409 if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1410 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1411 Success = false;
1412 break;
1417 // Compact any retained cleanups.
1418 auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1419 if (Kind != ScopeKind::Block)
1420 NewEnd =
1421 std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1422 return C.isDestroyedAtEndOf(Kind);
1424 Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1425 return Success;
1428 typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1429 typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1430 typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1433 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1434 CheckSubobjectKind CSK) {
1435 if (Invalid)
1436 return false;
1437 if (isOnePastTheEnd()) {
1438 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1439 << CSK;
1440 setInvalid();
1441 return false;
1443 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1444 // must actually be at least one array element; even a VLA cannot have a
1445 // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1446 return true;
1449 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1450 const Expr *E) {
1451 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1452 // Do not set the designator as invalid: we can represent this situation,
1453 // and correct handling of __builtin_object_size requires us to do so.
1456 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1457 const Expr *E,
1458 const APSInt &N) {
1459 // If we're complaining, we must be able to statically determine the size of
1460 // the most derived array.
1461 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1462 Info.CCEDiag(E, diag::note_constexpr_array_index)
1463 << N << /*array*/ 0
1464 << static_cast<unsigned>(getMostDerivedArraySize());
1465 else
1466 Info.CCEDiag(E, diag::note_constexpr_array_index)
1467 << N << /*non-array*/ 1;
1468 setInvalid();
1471 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceRange CallRange,
1472 const FunctionDecl *Callee, const LValue *This,
1473 const Expr *CallExpr, CallRef Call)
1474 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1475 CallExpr(CallExpr), Arguments(Call), CallRange(CallRange),
1476 Index(Info.NextCallIndex++) {
1477 Info.CurrentCall = this;
1478 ++Info.CallStackDepth;
1481 CallStackFrame::~CallStackFrame() {
1482 assert(Info.CurrentCall == this && "calls retired out of order");
1483 --Info.CallStackDepth;
1484 Info.CurrentCall = Caller;
1487 static bool isRead(AccessKinds AK) {
1488 return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1491 static bool isModification(AccessKinds AK) {
1492 switch (AK) {
1493 case AK_Read:
1494 case AK_ReadObjectRepresentation:
1495 case AK_MemberCall:
1496 case AK_DynamicCast:
1497 case AK_TypeId:
1498 return false;
1499 case AK_Assign:
1500 case AK_Increment:
1501 case AK_Decrement:
1502 case AK_Construct:
1503 case AK_Destroy:
1504 return true;
1506 llvm_unreachable("unknown access kind");
1509 static bool isAnyAccess(AccessKinds AK) {
1510 return isRead(AK) || isModification(AK);
1513 /// Is this an access per the C++ definition?
1514 static bool isFormalAccess(AccessKinds AK) {
1515 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1518 /// Is this kind of axcess valid on an indeterminate object value?
1519 static bool isValidIndeterminateAccess(AccessKinds AK) {
1520 switch (AK) {
1521 case AK_Read:
1522 case AK_Increment:
1523 case AK_Decrement:
1524 // These need the object's value.
1525 return false;
1527 case AK_ReadObjectRepresentation:
1528 case AK_Assign:
1529 case AK_Construct:
1530 case AK_Destroy:
1531 // Construction and destruction don't need the value.
1532 return true;
1534 case AK_MemberCall:
1535 case AK_DynamicCast:
1536 case AK_TypeId:
1537 // These aren't really meaningful on scalars.
1538 return true;
1540 llvm_unreachable("unknown access kind");
1543 namespace {
1544 struct ComplexValue {
1545 private:
1546 bool IsInt;
1548 public:
1549 APSInt IntReal, IntImag;
1550 APFloat FloatReal, FloatImag;
1552 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1554 void makeComplexFloat() { IsInt = false; }
1555 bool isComplexFloat() const { return !IsInt; }
1556 APFloat &getComplexFloatReal() { return FloatReal; }
1557 APFloat &getComplexFloatImag() { return FloatImag; }
1559 void makeComplexInt() { IsInt = true; }
1560 bool isComplexInt() const { return IsInt; }
1561 APSInt &getComplexIntReal() { return IntReal; }
1562 APSInt &getComplexIntImag() { return IntImag; }
1564 void moveInto(APValue &v) const {
1565 if (isComplexFloat())
1566 v = APValue(FloatReal, FloatImag);
1567 else
1568 v = APValue(IntReal, IntImag);
1570 void setFrom(const APValue &v) {
1571 assert(v.isComplexFloat() || v.isComplexInt());
1572 if (v.isComplexFloat()) {
1573 makeComplexFloat();
1574 FloatReal = v.getComplexFloatReal();
1575 FloatImag = v.getComplexFloatImag();
1576 } else {
1577 makeComplexInt();
1578 IntReal = v.getComplexIntReal();
1579 IntImag = v.getComplexIntImag();
1584 struct LValue {
1585 APValue::LValueBase Base;
1586 CharUnits Offset;
1587 SubobjectDesignator Designator;
1588 bool IsNullPtr : 1;
1589 bool InvalidBase : 1;
1591 const APValue::LValueBase getLValueBase() const { return Base; }
1592 CharUnits &getLValueOffset() { return Offset; }
1593 const CharUnits &getLValueOffset() const { return Offset; }
1594 SubobjectDesignator &getLValueDesignator() { return Designator; }
1595 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1596 bool isNullPointer() const { return IsNullPtr;}
1598 unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1599 unsigned getLValueVersion() const { return Base.getVersion(); }
1601 void moveInto(APValue &V) const {
1602 if (Designator.Invalid)
1603 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1604 else {
1605 assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1606 V = APValue(Base, Offset, Designator.Entries,
1607 Designator.IsOnePastTheEnd, IsNullPtr);
1610 void setFrom(ASTContext &Ctx, const APValue &V) {
1611 assert(V.isLValue() && "Setting LValue from a non-LValue?");
1612 Base = V.getLValueBase();
1613 Offset = V.getLValueOffset();
1614 InvalidBase = false;
1615 Designator = SubobjectDesignator(Ctx, V);
1616 IsNullPtr = V.isNullPointer();
1619 void set(APValue::LValueBase B, bool BInvalid = false) {
1620 #ifndef NDEBUG
1621 // We only allow a few types of invalid bases. Enforce that here.
1622 if (BInvalid) {
1623 const auto *E = B.get<const Expr *>();
1624 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1625 "Unexpected type of invalid base");
1627 #endif
1629 Base = B;
1630 Offset = CharUnits::fromQuantity(0);
1631 InvalidBase = BInvalid;
1632 Designator = SubobjectDesignator(getType(B));
1633 IsNullPtr = false;
1636 void setNull(ASTContext &Ctx, QualType PointerTy) {
1637 Base = (const ValueDecl *)nullptr;
1638 Offset =
1639 CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1640 InvalidBase = false;
1641 Designator = SubobjectDesignator(PointerTy->getPointeeType());
1642 IsNullPtr = true;
1645 void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1646 set(B, true);
1649 std::string toString(ASTContext &Ctx, QualType T) const {
1650 APValue Printable;
1651 moveInto(Printable);
1652 return Printable.getAsString(Ctx, T);
1655 private:
1656 // Check that this LValue is not based on a null pointer. If it is, produce
1657 // a diagnostic and mark the designator as invalid.
1658 template <typename GenDiagType>
1659 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1660 if (Designator.Invalid)
1661 return false;
1662 if (IsNullPtr) {
1663 GenDiag();
1664 Designator.setInvalid();
1665 return false;
1667 return true;
1670 public:
1671 bool checkNullPointer(EvalInfo &Info, const Expr *E,
1672 CheckSubobjectKind CSK) {
1673 return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1674 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1678 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1679 AccessKinds AK) {
1680 return checkNullPointerDiagnosingWith([&Info, E, AK] {
1681 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1685 // Check this LValue refers to an object. If not, set the designator to be
1686 // invalid and emit a diagnostic.
1687 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1688 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1689 Designator.checkSubobject(Info, E, CSK);
1692 void addDecl(EvalInfo &Info, const Expr *E,
1693 const Decl *D, bool Virtual = false) {
1694 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1695 Designator.addDeclUnchecked(D, Virtual);
1697 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1698 if (!Designator.Entries.empty()) {
1699 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1700 Designator.setInvalid();
1701 return;
1703 if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1704 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1705 Designator.FirstEntryIsAnUnsizedArray = true;
1706 Designator.addUnsizedArrayUnchecked(ElemTy);
1709 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1710 if (checkSubobject(Info, E, CSK_ArrayToPointer))
1711 Designator.addArrayUnchecked(CAT);
1713 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1714 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1715 Designator.addComplexUnchecked(EltTy, Imag);
1717 void clearIsNullPointer() {
1718 IsNullPtr = false;
1720 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1721 const APSInt &Index, CharUnits ElementSize) {
1722 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1723 // but we're not required to diagnose it and it's valid in C++.)
1724 if (!Index)
1725 return;
1727 // Compute the new offset in the appropriate width, wrapping at 64 bits.
1728 // FIXME: When compiling for a 32-bit target, we should use 32-bit
1729 // offsets.
1730 uint64_t Offset64 = Offset.getQuantity();
1731 uint64_t ElemSize64 = ElementSize.getQuantity();
1732 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1733 Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1735 if (checkNullPointer(Info, E, CSK_ArrayIndex))
1736 Designator.adjustIndex(Info, E, Index);
1737 clearIsNullPointer();
1739 void adjustOffset(CharUnits N) {
1740 Offset += N;
1741 if (N.getQuantity())
1742 clearIsNullPointer();
1746 struct MemberPtr {
1747 MemberPtr() {}
1748 explicit MemberPtr(const ValueDecl *Decl)
1749 : DeclAndIsDerivedMember(Decl, false) {}
1751 /// The member or (direct or indirect) field referred to by this member
1752 /// pointer, or 0 if this is a null member pointer.
1753 const ValueDecl *getDecl() const {
1754 return DeclAndIsDerivedMember.getPointer();
1756 /// Is this actually a member of some type derived from the relevant class?
1757 bool isDerivedMember() const {
1758 return DeclAndIsDerivedMember.getInt();
1760 /// Get the class which the declaration actually lives in.
1761 const CXXRecordDecl *getContainingRecord() const {
1762 return cast<CXXRecordDecl>(
1763 DeclAndIsDerivedMember.getPointer()->getDeclContext());
1766 void moveInto(APValue &V) const {
1767 V = APValue(getDecl(), isDerivedMember(), Path);
1769 void setFrom(const APValue &V) {
1770 assert(V.isMemberPointer());
1771 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1772 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1773 Path.clear();
1774 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1775 Path.insert(Path.end(), P.begin(), P.end());
1778 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1779 /// whether the member is a member of some class derived from the class type
1780 /// of the member pointer.
1781 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1782 /// Path - The path of base/derived classes from the member declaration's
1783 /// class (exclusive) to the class type of the member pointer (inclusive).
1784 SmallVector<const CXXRecordDecl*, 4> Path;
1786 /// Perform a cast towards the class of the Decl (either up or down the
1787 /// hierarchy).
1788 bool castBack(const CXXRecordDecl *Class) {
1789 assert(!Path.empty());
1790 const CXXRecordDecl *Expected;
1791 if (Path.size() >= 2)
1792 Expected = Path[Path.size() - 2];
1793 else
1794 Expected = getContainingRecord();
1795 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1796 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1797 // if B does not contain the original member and is not a base or
1798 // derived class of the class containing the original member, the result
1799 // of the cast is undefined.
1800 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1801 // (D::*). We consider that to be a language defect.
1802 return false;
1804 Path.pop_back();
1805 return true;
1807 /// Perform a base-to-derived member pointer cast.
1808 bool castToDerived(const CXXRecordDecl *Derived) {
1809 if (!getDecl())
1810 return true;
1811 if (!isDerivedMember()) {
1812 Path.push_back(Derived);
1813 return true;
1815 if (!castBack(Derived))
1816 return false;
1817 if (Path.empty())
1818 DeclAndIsDerivedMember.setInt(false);
1819 return true;
1821 /// Perform a derived-to-base member pointer cast.
1822 bool castToBase(const CXXRecordDecl *Base) {
1823 if (!getDecl())
1824 return true;
1825 if (Path.empty())
1826 DeclAndIsDerivedMember.setInt(true);
1827 if (isDerivedMember()) {
1828 Path.push_back(Base);
1829 return true;
1831 return castBack(Base);
1835 /// Compare two member pointers, which are assumed to be of the same type.
1836 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1837 if (!LHS.getDecl() || !RHS.getDecl())
1838 return !LHS.getDecl() && !RHS.getDecl();
1839 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1840 return false;
1841 return LHS.Path == RHS.Path;
1845 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1846 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1847 const LValue &This, const Expr *E,
1848 bool AllowNonLiteralTypes = false);
1849 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1850 bool InvalidBaseOK = false);
1851 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1852 bool InvalidBaseOK = false);
1853 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1854 EvalInfo &Info);
1855 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1856 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1857 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1858 EvalInfo &Info);
1859 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1860 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1861 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1862 EvalInfo &Info);
1863 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1864 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1865 EvalInfo &Info);
1867 /// Evaluate an integer or fixed point expression into an APResult.
1868 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1869 EvalInfo &Info);
1871 /// Evaluate only a fixed point expression into an APResult.
1872 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1873 EvalInfo &Info);
1875 //===----------------------------------------------------------------------===//
1876 // Misc utilities
1877 //===----------------------------------------------------------------------===//
1879 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1880 /// preserving its value (by extending by up to one bit as needed).
1881 static void negateAsSigned(APSInt &Int) {
1882 if (Int.isUnsigned() || Int.isMinSignedValue()) {
1883 Int = Int.extend(Int.getBitWidth() + 1);
1884 Int.setIsSigned(true);
1886 Int = -Int;
1889 template<typename KeyT>
1890 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1891 ScopeKind Scope, LValue &LV) {
1892 unsigned Version = getTempVersion();
1893 APValue::LValueBase Base(Key, Index, Version);
1894 LV.set(Base);
1895 return createLocal(Base, Key, T, Scope);
1898 /// Allocate storage for a parameter of a function call made in this frame.
1899 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1900 LValue &LV) {
1901 assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1902 APValue::LValueBase Base(PVD, Index, Args.Version);
1903 LV.set(Base);
1904 // We always destroy parameters at the end of the call, even if we'd allow
1905 // them to live to the end of the full-expression at runtime, in order to
1906 // give portable results and match other compilers.
1907 return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1910 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1911 QualType T, ScopeKind Scope) {
1912 assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1913 unsigned Version = Base.getVersion();
1914 APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1915 assert(Result.isAbsent() && "local created multiple times");
1917 // If we're creating a local immediately in the operand of a speculative
1918 // evaluation, don't register a cleanup to be run outside the speculative
1919 // evaluation context, since we won't actually be able to initialize this
1920 // object.
1921 if (Index <= Info.SpeculativeEvaluationDepth) {
1922 if (T.isDestructedType())
1923 Info.noteSideEffect();
1924 } else {
1925 Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1927 return Result;
1930 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1931 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1932 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1933 return nullptr;
1936 DynamicAllocLValue DA(NumHeapAllocs++);
1937 LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1938 auto Result = HeapAllocs.emplace(std::piecewise_construct,
1939 std::forward_as_tuple(DA), std::tuple<>());
1940 assert(Result.second && "reused a heap alloc index?");
1941 Result.first->second.AllocExpr = E;
1942 return &Result.first->second.Value;
1945 /// Produce a string describing the given constexpr call.
1946 void CallStackFrame::describe(raw_ostream &Out) const {
1947 unsigned ArgIndex = 0;
1948 bool IsMemberCall =
1949 isa<CXXMethodDecl>(Callee) && !isa<CXXConstructorDecl>(Callee) &&
1950 cast<CXXMethodDecl>(Callee)->isImplicitObjectMemberFunction();
1952 if (!IsMemberCall)
1953 Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(),
1954 /*Qualified=*/false);
1956 if (This && IsMemberCall) {
1957 if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(CallExpr)) {
1958 const Expr *Object = MCE->getImplicitObjectArgument();
1959 Object->printPretty(Out, /*Helper=*/nullptr, Info.Ctx.getPrintingPolicy(),
1960 /*Indentation=*/0);
1961 if (Object->getType()->isPointerType())
1962 Out << "->";
1963 else
1964 Out << ".";
1965 } else if (const auto *OCE =
1966 dyn_cast_if_present<CXXOperatorCallExpr>(CallExpr)) {
1967 OCE->getArg(0)->printPretty(Out, /*Helper=*/nullptr,
1968 Info.Ctx.getPrintingPolicy(),
1969 /*Indentation=*/0);
1970 Out << ".";
1971 } else {
1972 APValue Val;
1973 This->moveInto(Val);
1974 Val.printPretty(
1975 Out, Info.Ctx,
1976 Info.Ctx.getLValueReferenceType(This->Designator.MostDerivedType));
1977 Out << ".";
1979 Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(),
1980 /*Qualified=*/false);
1981 IsMemberCall = false;
1984 Out << '(';
1986 for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1987 E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1988 if (ArgIndex > (unsigned)IsMemberCall)
1989 Out << ", ";
1991 const ParmVarDecl *Param = *I;
1992 APValue *V = Info.getParamSlot(Arguments, Param);
1993 if (V)
1994 V->printPretty(Out, Info.Ctx, Param->getType());
1995 else
1996 Out << "<...>";
1998 if (ArgIndex == 0 && IsMemberCall)
1999 Out << "->" << *Callee << '(';
2002 Out << ')';
2005 /// Evaluate an expression to see if it had side-effects, and discard its
2006 /// result.
2007 /// \return \c true if the caller should keep evaluating.
2008 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
2009 assert(!E->isValueDependent());
2010 APValue Scratch;
2011 if (!Evaluate(Scratch, Info, E))
2012 // We don't need the value, but we might have skipped a side effect here.
2013 return Info.noteSideEffect();
2014 return true;
2017 /// Should this call expression be treated as a no-op?
2018 static bool IsNoOpCall(const CallExpr *E) {
2019 unsigned Builtin = E->getBuiltinCallee();
2020 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
2021 Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
2022 Builtin == Builtin::BI__builtin_function_start);
2025 static bool IsGlobalLValue(APValue::LValueBase B) {
2026 // C++11 [expr.const]p3 An address constant expression is a prvalue core
2027 // constant expression of pointer type that evaluates to...
2029 // ... a null pointer value, or a prvalue core constant expression of type
2030 // std::nullptr_t.
2031 if (!B)
2032 return true;
2034 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
2035 // ... the address of an object with static storage duration,
2036 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2037 return VD->hasGlobalStorage();
2038 if (isa<TemplateParamObjectDecl>(D))
2039 return true;
2040 // ... the address of a function,
2041 // ... the address of a GUID [MS extension],
2042 // ... the address of an unnamed global constant
2043 return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D);
2046 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
2047 return true;
2049 const Expr *E = B.get<const Expr*>();
2050 switch (E->getStmtClass()) {
2051 default:
2052 return false;
2053 case Expr::CompoundLiteralExprClass: {
2054 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
2055 return CLE->isFileScope() && CLE->isLValue();
2057 case Expr::MaterializeTemporaryExprClass:
2058 // A materialized temporary might have been lifetime-extended to static
2059 // storage duration.
2060 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
2061 // A string literal has static storage duration.
2062 case Expr::StringLiteralClass:
2063 case Expr::PredefinedExprClass:
2064 case Expr::ObjCStringLiteralClass:
2065 case Expr::ObjCEncodeExprClass:
2066 return true;
2067 case Expr::ObjCBoxedExprClass:
2068 return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2069 case Expr::CallExprClass:
2070 return IsNoOpCall(cast<CallExpr>(E));
2071 // For GCC compatibility, &&label has static storage duration.
2072 case Expr::AddrLabelExprClass:
2073 return true;
2074 // A Block literal expression may be used as the initialization value for
2075 // Block variables at global or local static scope.
2076 case Expr::BlockExprClass:
2077 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2078 // The APValue generated from a __builtin_source_location will be emitted as a
2079 // literal.
2080 case Expr::SourceLocExprClass:
2081 return true;
2082 case Expr::ImplicitValueInitExprClass:
2083 // FIXME:
2084 // We can never form an lvalue with an implicit value initialization as its
2085 // base through expression evaluation, so these only appear in one case: the
2086 // implicit variable declaration we invent when checking whether a constexpr
2087 // constructor can produce a constant expression. We must assume that such
2088 // an expression might be a global lvalue.
2089 return true;
2093 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2094 return LVal.Base.dyn_cast<const ValueDecl*>();
2097 static bool IsLiteralLValue(const LValue &Value) {
2098 if (Value.getLValueCallIndex())
2099 return false;
2100 const Expr *E = Value.Base.dyn_cast<const Expr*>();
2101 return E && !isa<MaterializeTemporaryExpr>(E);
2104 static bool IsWeakLValue(const LValue &Value) {
2105 const ValueDecl *Decl = GetLValueBaseDecl(Value);
2106 return Decl && Decl->isWeak();
2109 static bool isZeroSized(const LValue &Value) {
2110 const ValueDecl *Decl = GetLValueBaseDecl(Value);
2111 if (Decl && isa<VarDecl>(Decl)) {
2112 QualType Ty = Decl->getType();
2113 if (Ty->isArrayType())
2114 return Ty->isIncompleteType() ||
2115 Decl->getASTContext().getTypeSize(Ty) == 0;
2117 return false;
2120 static bool HasSameBase(const LValue &A, const LValue &B) {
2121 if (!A.getLValueBase())
2122 return !B.getLValueBase();
2123 if (!B.getLValueBase())
2124 return false;
2126 if (A.getLValueBase().getOpaqueValue() !=
2127 B.getLValueBase().getOpaqueValue())
2128 return false;
2130 return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2131 A.getLValueVersion() == B.getLValueVersion();
2134 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2135 assert(Base && "no location for a null lvalue");
2136 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2138 // For a parameter, find the corresponding call stack frame (if it still
2139 // exists), and point at the parameter of the function definition we actually
2140 // invoked.
2141 if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2142 unsigned Idx = PVD->getFunctionScopeIndex();
2143 for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2144 if (F->Arguments.CallIndex == Base.getCallIndex() &&
2145 F->Arguments.Version == Base.getVersion() && F->Callee &&
2146 Idx < F->Callee->getNumParams()) {
2147 VD = F->Callee->getParamDecl(Idx);
2148 break;
2153 if (VD)
2154 Info.Note(VD->getLocation(), diag::note_declared_at);
2155 else if (const Expr *E = Base.dyn_cast<const Expr*>())
2156 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2157 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2158 // FIXME: Produce a note for dangling pointers too.
2159 if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA))
2160 Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2161 diag::note_constexpr_dynamic_alloc_here);
2164 // We have no information to show for a typeid(T) object.
2167 enum class CheckEvaluationResultKind {
2168 ConstantExpression,
2169 FullyInitialized,
2172 /// Materialized temporaries that we've already checked to determine if they're
2173 /// initializsed by a constant expression.
2174 using CheckedTemporaries =
2175 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2177 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2178 EvalInfo &Info, SourceLocation DiagLoc,
2179 QualType Type, const APValue &Value,
2180 ConstantExprKind Kind,
2181 const FieldDecl *SubobjectDecl,
2182 CheckedTemporaries &CheckedTemps);
2184 /// Check that this reference or pointer core constant expression is a valid
2185 /// value for an address or reference constant expression. Return true if we
2186 /// can fold this expression, whether or not it's a constant expression.
2187 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2188 QualType Type, const LValue &LVal,
2189 ConstantExprKind Kind,
2190 CheckedTemporaries &CheckedTemps) {
2191 bool IsReferenceType = Type->isReferenceType();
2193 APValue::LValueBase Base = LVal.getLValueBase();
2194 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2196 const Expr *BaseE = Base.dyn_cast<const Expr *>();
2197 const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2199 // Additional restrictions apply in a template argument. We only enforce the
2200 // C++20 restrictions here; additional syntactic and semantic restrictions
2201 // are applied elsewhere.
2202 if (isTemplateArgument(Kind)) {
2203 int InvalidBaseKind = -1;
2204 StringRef Ident;
2205 if (Base.is<TypeInfoLValue>())
2206 InvalidBaseKind = 0;
2207 else if (isa_and_nonnull<StringLiteral>(BaseE))
2208 InvalidBaseKind = 1;
2209 else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2210 isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2211 InvalidBaseKind = 2;
2212 else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2213 InvalidBaseKind = 3;
2214 Ident = PE->getIdentKindName();
2217 if (InvalidBaseKind != -1) {
2218 Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2219 << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2220 << Ident;
2221 return false;
2225 if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD);
2226 FD && FD->isImmediateFunction()) {
2227 Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2228 << !Type->isAnyPointerType();
2229 Info.Note(FD->getLocation(), diag::note_declared_at);
2230 return false;
2233 // Check that the object is a global. Note that the fake 'this' object we
2234 // manufacture when checking potential constant expressions is conservatively
2235 // assumed to be global here.
2236 if (!IsGlobalLValue(Base)) {
2237 if (Info.getLangOpts().CPlusPlus11) {
2238 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2239 << IsReferenceType << !Designator.Entries.empty() << !!BaseVD
2240 << BaseVD;
2241 auto *VarD = dyn_cast_or_null<VarDecl>(BaseVD);
2242 if (VarD && VarD->isConstexpr()) {
2243 // Non-static local constexpr variables have unintuitive semantics:
2244 // constexpr int a = 1;
2245 // constexpr const int *p = &a;
2246 // ... is invalid because the address of 'a' is not constant. Suggest
2247 // adding a 'static' in this case.
2248 Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2249 << VarD
2250 << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2251 } else {
2252 NoteLValueLocation(Info, Base);
2254 } else {
2255 Info.FFDiag(Loc);
2257 // Don't allow references to temporaries to escape.
2258 return false;
2260 assert((Info.checkingPotentialConstantExpression() ||
2261 LVal.getLValueCallIndex() == 0) &&
2262 "have call index for global lvalue");
2264 if (Base.is<DynamicAllocLValue>()) {
2265 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2266 << IsReferenceType << !Designator.Entries.empty();
2267 NoteLValueLocation(Info, Base);
2268 return false;
2271 if (BaseVD) {
2272 if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2273 // Check if this is a thread-local variable.
2274 if (Var->getTLSKind())
2275 // FIXME: Diagnostic!
2276 return false;
2278 // A dllimport variable never acts like a constant, unless we're
2279 // evaluating a value for use only in name mangling.
2280 if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2281 // FIXME: Diagnostic!
2282 return false;
2284 // In CUDA/HIP device compilation, only device side variables have
2285 // constant addresses.
2286 if (Info.getCtx().getLangOpts().CUDA &&
2287 Info.getCtx().getLangOpts().CUDAIsDevice &&
2288 Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) {
2289 if ((!Var->hasAttr<CUDADeviceAttr>() &&
2290 !Var->hasAttr<CUDAConstantAttr>() &&
2291 !Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
2292 !Var->getType()->isCUDADeviceBuiltinTextureType()) ||
2293 Var->hasAttr<HIPManagedAttr>())
2294 return false;
2297 if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2298 // __declspec(dllimport) must be handled very carefully:
2299 // We must never initialize an expression with the thunk in C++.
2300 // Doing otherwise would allow the same id-expression to yield
2301 // different addresses for the same function in different translation
2302 // units. However, this means that we must dynamically initialize the
2303 // expression with the contents of the import address table at runtime.
2305 // The C language has no notion of ODR; furthermore, it has no notion of
2306 // dynamic initialization. This means that we are permitted to
2307 // perform initialization with the address of the thunk.
2308 if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2309 FD->hasAttr<DLLImportAttr>())
2310 // FIXME: Diagnostic!
2311 return false;
2313 } else if (const auto *MTE =
2314 dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2315 if (CheckedTemps.insert(MTE).second) {
2316 QualType TempType = getType(Base);
2317 if (TempType.isDestructedType()) {
2318 Info.FFDiag(MTE->getExprLoc(),
2319 diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2320 << TempType;
2321 return false;
2324 APValue *V = MTE->getOrCreateValue(false);
2325 assert(V && "evasluation result refers to uninitialised temporary");
2326 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2327 Info, MTE->getExprLoc(), TempType, *V, Kind,
2328 /*SubobjectDecl=*/nullptr, CheckedTemps))
2329 return false;
2333 // Allow address constant expressions to be past-the-end pointers. This is
2334 // an extension: the standard requires them to point to an object.
2335 if (!IsReferenceType)
2336 return true;
2338 // A reference constant expression must refer to an object.
2339 if (!Base) {
2340 // FIXME: diagnostic
2341 Info.CCEDiag(Loc);
2342 return true;
2345 // Does this refer one past the end of some object?
2346 if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2347 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2348 << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2349 NoteLValueLocation(Info, Base);
2352 return true;
2355 /// Member pointers are constant expressions unless they point to a
2356 /// non-virtual dllimport member function.
2357 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2358 SourceLocation Loc,
2359 QualType Type,
2360 const APValue &Value,
2361 ConstantExprKind Kind) {
2362 const ValueDecl *Member = Value.getMemberPointerDecl();
2363 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2364 if (!FD)
2365 return true;
2366 if (FD->isImmediateFunction()) {
2367 Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2368 Info.Note(FD->getLocation(), diag::note_declared_at);
2369 return false;
2371 return isForManglingOnly(Kind) || FD->isVirtual() ||
2372 !FD->hasAttr<DLLImportAttr>();
2375 /// Check that this core constant expression is of literal type, and if not,
2376 /// produce an appropriate diagnostic.
2377 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2378 const LValue *This = nullptr) {
2379 if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx))
2380 return true;
2382 // C++1y: A constant initializer for an object o [...] may also invoke
2383 // constexpr constructors for o and its subobjects even if those objects
2384 // are of non-literal class types.
2386 // C++11 missed this detail for aggregates, so classes like this:
2387 // struct foo_t { union { int i; volatile int j; } u; };
2388 // are not (obviously) initializable like so:
2389 // __attribute__((__require_constant_initialization__))
2390 // static const foo_t x = {{0}};
2391 // because "i" is a subobject with non-literal initialization (due to the
2392 // volatile member of the union). See:
2393 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2394 // Therefore, we use the C++1y behavior.
2395 if (This && Info.EvaluatingDecl == This->getLValueBase())
2396 return true;
2398 // Prvalue constant expressions must be of literal types.
2399 if (Info.getLangOpts().CPlusPlus11)
2400 Info.FFDiag(E, diag::note_constexpr_nonliteral)
2401 << E->getType();
2402 else
2403 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2404 return false;
2407 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2408 EvalInfo &Info, SourceLocation DiagLoc,
2409 QualType Type, const APValue &Value,
2410 ConstantExprKind Kind,
2411 const FieldDecl *SubobjectDecl,
2412 CheckedTemporaries &CheckedTemps) {
2413 if (!Value.hasValue()) {
2414 if (SubobjectDecl) {
2415 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2416 << /*(name)*/ 1 << SubobjectDecl;
2417 Info.Note(SubobjectDecl->getLocation(),
2418 diag::note_constexpr_subobject_declared_here);
2419 } else {
2420 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2421 << /*of type*/ 0 << Type;
2423 return false;
2426 // We allow _Atomic(T) to be initialized from anything that T can be
2427 // initialized from.
2428 if (const AtomicType *AT = Type->getAs<AtomicType>())
2429 Type = AT->getValueType();
2431 // Core issue 1454: For a literal constant expression of array or class type,
2432 // each subobject of its value shall have been initialized by a constant
2433 // expression.
2434 if (Value.isArray()) {
2435 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2436 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2437 if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2438 Value.getArrayInitializedElt(I), Kind,
2439 SubobjectDecl, CheckedTemps))
2440 return false;
2442 if (!Value.hasArrayFiller())
2443 return true;
2444 return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2445 Value.getArrayFiller(), Kind, SubobjectDecl,
2446 CheckedTemps);
2448 if (Value.isUnion() && Value.getUnionField()) {
2449 return CheckEvaluationResult(
2450 CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2451 Value.getUnionValue(), Kind, Value.getUnionField(), CheckedTemps);
2453 if (Value.isStruct()) {
2454 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2455 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2456 unsigned BaseIndex = 0;
2457 for (const CXXBaseSpecifier &BS : CD->bases()) {
2458 const APValue &BaseValue = Value.getStructBase(BaseIndex);
2459 if (!BaseValue.hasValue()) {
2460 SourceLocation TypeBeginLoc = BS.getBaseTypeLoc();
2461 Info.FFDiag(TypeBeginLoc, diag::note_constexpr_uninitialized_base)
2462 << BS.getType() << SourceRange(TypeBeginLoc, BS.getEndLoc());
2463 return false;
2465 if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), BaseValue,
2466 Kind, /*SubobjectDecl=*/nullptr,
2467 CheckedTemps))
2468 return false;
2469 ++BaseIndex;
2472 for (const auto *I : RD->fields()) {
2473 if (I->isUnnamedBitfield())
2474 continue;
2476 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2477 Value.getStructField(I->getFieldIndex()), Kind,
2478 I, CheckedTemps))
2479 return false;
2483 if (Value.isLValue() &&
2484 CERK == CheckEvaluationResultKind::ConstantExpression) {
2485 LValue LVal;
2486 LVal.setFrom(Info.Ctx, Value);
2487 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2488 CheckedTemps);
2491 if (Value.isMemberPointer() &&
2492 CERK == CheckEvaluationResultKind::ConstantExpression)
2493 return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2495 // Everything else is fine.
2496 return true;
2499 /// Check that this core constant expression value is a valid value for a
2500 /// constant expression. If not, report an appropriate diagnostic. Does not
2501 /// check that the expression is of literal type.
2502 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2503 QualType Type, const APValue &Value,
2504 ConstantExprKind Kind) {
2505 // Nothing to check for a constant expression of type 'cv void'.
2506 if (Type->isVoidType())
2507 return true;
2509 CheckedTemporaries CheckedTemps;
2510 return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2511 Info, DiagLoc, Type, Value, Kind,
2512 /*SubobjectDecl=*/nullptr, CheckedTemps);
2515 /// Check that this evaluated value is fully-initialized and can be loaded by
2516 /// an lvalue-to-rvalue conversion.
2517 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2518 QualType Type, const APValue &Value) {
2519 CheckedTemporaries CheckedTemps;
2520 return CheckEvaluationResult(
2521 CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2522 ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps);
2525 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2526 /// "the allocated storage is deallocated within the evaluation".
2527 static bool CheckMemoryLeaks(EvalInfo &Info) {
2528 if (!Info.HeapAllocs.empty()) {
2529 // We can still fold to a constant despite a compile-time memory leak,
2530 // so long as the heap allocation isn't referenced in the result (we check
2531 // that in CheckConstantExpression).
2532 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2533 diag::note_constexpr_memory_leak)
2534 << unsigned(Info.HeapAllocs.size() - 1);
2536 return true;
2539 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2540 // A null base expression indicates a null pointer. These are always
2541 // evaluatable, and they are false unless the offset is zero.
2542 if (!Value.getLValueBase()) {
2543 // TODO: Should a non-null pointer with an offset of zero evaluate to true?
2544 Result = !Value.getLValueOffset().isZero();
2545 return true;
2548 // We have a non-null base. These are generally known to be true, but if it's
2549 // a weak declaration it can be null at runtime.
2550 Result = true;
2551 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2552 return !Decl || !Decl->isWeak();
2555 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2556 // TODO: This function should produce notes if it fails.
2557 switch (Val.getKind()) {
2558 case APValue::None:
2559 case APValue::Indeterminate:
2560 return false;
2561 case APValue::Int:
2562 Result = Val.getInt().getBoolValue();
2563 return true;
2564 case APValue::FixedPoint:
2565 Result = Val.getFixedPoint().getBoolValue();
2566 return true;
2567 case APValue::Float:
2568 Result = !Val.getFloat().isZero();
2569 return true;
2570 case APValue::ComplexInt:
2571 Result = Val.getComplexIntReal().getBoolValue() ||
2572 Val.getComplexIntImag().getBoolValue();
2573 return true;
2574 case APValue::ComplexFloat:
2575 Result = !Val.getComplexFloatReal().isZero() ||
2576 !Val.getComplexFloatImag().isZero();
2577 return true;
2578 case APValue::LValue:
2579 return EvalPointerValueAsBool(Val, Result);
2580 case APValue::MemberPointer:
2581 if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) {
2582 return false;
2584 Result = Val.getMemberPointerDecl();
2585 return true;
2586 case APValue::Vector:
2587 case APValue::Array:
2588 case APValue::Struct:
2589 case APValue::Union:
2590 case APValue::AddrLabelDiff:
2591 return false;
2594 llvm_unreachable("unknown APValue kind");
2597 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2598 EvalInfo &Info) {
2599 assert(!E->isValueDependent());
2600 assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2601 APValue Val;
2602 if (!Evaluate(Val, Info, E))
2603 return false;
2604 return HandleConversionToBool(Val, Result);
2607 template<typename T>
2608 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2609 const T &SrcValue, QualType DestType) {
2610 Info.CCEDiag(E, diag::note_constexpr_overflow)
2611 << SrcValue << DestType;
2612 return Info.noteUndefinedBehavior();
2615 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2616 QualType SrcType, const APFloat &Value,
2617 QualType DestType, APSInt &Result) {
2618 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2619 // Determine whether we are converting to unsigned or signed.
2620 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2622 Result = APSInt(DestWidth, !DestSigned);
2623 bool ignored;
2624 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2625 & APFloat::opInvalidOp)
2626 return HandleOverflow(Info, E, Value, DestType);
2627 return true;
2630 /// Get rounding mode to use in evaluation of the specified expression.
2632 /// If rounding mode is unknown at compile time, still try to evaluate the
2633 /// expression. If the result is exact, it does not depend on rounding mode.
2634 /// So return "tonearest" mode instead of "dynamic".
2635 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) {
2636 llvm::RoundingMode RM =
2637 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2638 if (RM == llvm::RoundingMode::Dynamic)
2639 RM = llvm::RoundingMode::NearestTiesToEven;
2640 return RM;
2643 /// Check if the given evaluation result is allowed for constant evaluation.
2644 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2645 APFloat::opStatus St) {
2646 // In a constant context, assume that any dynamic rounding mode or FP
2647 // exception state matches the default floating-point environment.
2648 if (Info.InConstantContext)
2649 return true;
2651 FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2652 if ((St & APFloat::opInexact) &&
2653 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2654 // Inexact result means that it depends on rounding mode. If the requested
2655 // mode is dynamic, the evaluation cannot be made in compile time.
2656 Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2657 return false;
2660 if ((St != APFloat::opOK) &&
2661 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2662 FPO.getExceptionMode() != LangOptions::FPE_Ignore ||
2663 FPO.getAllowFEnvAccess())) {
2664 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2665 return false;
2668 if ((St & APFloat::opStatus::opInvalidOp) &&
2669 FPO.getExceptionMode() != LangOptions::FPE_Ignore) {
2670 // There is no usefully definable result.
2671 Info.FFDiag(E);
2672 return false;
2675 // FIXME: if:
2676 // - evaluation triggered other FP exception, and
2677 // - exception mode is not "ignore", and
2678 // - the expression being evaluated is not a part of global variable
2679 // initializer,
2680 // the evaluation probably need to be rejected.
2681 return true;
2684 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2685 QualType SrcType, QualType DestType,
2686 APFloat &Result) {
2687 assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
2688 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2689 APFloat::opStatus St;
2690 APFloat Value = Result;
2691 bool ignored;
2692 St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2693 return checkFloatingPointResult(Info, E, St);
2696 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2697 QualType DestType, QualType SrcType,
2698 const APSInt &Value) {
2699 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2700 // Figure out if this is a truncate, extend or noop cast.
2701 // If the input is signed, do a sign extend, noop, or truncate.
2702 APSInt Result = Value.extOrTrunc(DestWidth);
2703 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2704 if (DestType->isBooleanType())
2705 Result = Value.getBoolValue();
2706 return Result;
2709 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2710 const FPOptions FPO,
2711 QualType SrcType, const APSInt &Value,
2712 QualType DestType, APFloat &Result) {
2713 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2714 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2715 APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), RM);
2716 return checkFloatingPointResult(Info, E, St);
2719 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2720 APValue &Value, const FieldDecl *FD) {
2721 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2723 if (!Value.isInt()) {
2724 // Trying to store a pointer-cast-to-integer into a bitfield.
2725 // FIXME: In this case, we should provide the diagnostic for casting
2726 // a pointer to an integer.
2727 assert(Value.isLValue() && "integral value neither int nor lvalue?");
2728 Info.FFDiag(E);
2729 return false;
2732 APSInt &Int = Value.getInt();
2733 unsigned OldBitWidth = Int.getBitWidth();
2734 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2735 if (NewBitWidth < OldBitWidth)
2736 Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2737 return true;
2740 /// Perform the given integer operation, which is known to need at most BitWidth
2741 /// bits, and check for overflow in the original type (if that type was not an
2742 /// unsigned type).
2743 template<typename Operation>
2744 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2745 const APSInt &LHS, const APSInt &RHS,
2746 unsigned BitWidth, Operation Op,
2747 APSInt &Result) {
2748 if (LHS.isUnsigned()) {
2749 Result = Op(LHS, RHS);
2750 return true;
2753 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2754 Result = Value.trunc(LHS.getBitWidth());
2755 if (Result.extend(BitWidth) != Value) {
2756 if (Info.checkingForUndefinedBehavior())
2757 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2758 diag::warn_integer_constant_overflow)
2759 << toString(Result, 10) << E->getType() << E->getSourceRange();
2760 return HandleOverflow(Info, E, Value, E->getType());
2762 return true;
2765 /// Perform the given binary integer operation.
2766 static bool handleIntIntBinOp(EvalInfo &Info, const BinaryOperator *E,
2767 const APSInt &LHS, BinaryOperatorKind Opcode,
2768 APSInt RHS, APSInt &Result) {
2769 bool HandleOverflowResult = true;
2770 switch (Opcode) {
2771 default:
2772 Info.FFDiag(E);
2773 return false;
2774 case BO_Mul:
2775 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2776 std::multiplies<APSInt>(), Result);
2777 case BO_Add:
2778 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2779 std::plus<APSInt>(), Result);
2780 case BO_Sub:
2781 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2782 std::minus<APSInt>(), Result);
2783 case BO_And: Result = LHS & RHS; return true;
2784 case BO_Xor: Result = LHS ^ RHS; return true;
2785 case BO_Or: Result = LHS | RHS; return true;
2786 case BO_Div:
2787 case BO_Rem:
2788 if (RHS == 0) {
2789 Info.FFDiag(E, diag::note_expr_divide_by_zero)
2790 << E->getRHS()->getSourceRange();
2791 return false;
2793 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2794 // this operation and gives the two's complement result.
2795 if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2796 LHS.isMinSignedValue())
2797 HandleOverflowResult = HandleOverflow(
2798 Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
2799 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2800 return HandleOverflowResult;
2801 case BO_Shl: {
2802 if (Info.getLangOpts().OpenCL)
2803 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2804 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2805 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2806 RHS.isUnsigned());
2807 else if (RHS.isSigned() && RHS.isNegative()) {
2808 // During constant-folding, a negative shift is an opposite shift. Such
2809 // a shift is not a constant expression.
2810 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2811 RHS = -RHS;
2812 goto shift_right;
2814 shift_left:
2815 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2816 // the shifted type.
2817 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2818 if (SA != RHS) {
2819 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2820 << RHS << E->getType() << LHS.getBitWidth();
2821 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2822 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2823 // operand, and must not overflow the corresponding unsigned type.
2824 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2825 // E1 x 2^E2 module 2^N.
2826 if (LHS.isNegative())
2827 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2828 else if (LHS.countl_zero() < SA)
2829 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2831 Result = LHS << SA;
2832 return true;
2834 case BO_Shr: {
2835 if (Info.getLangOpts().OpenCL)
2836 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2837 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2838 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2839 RHS.isUnsigned());
2840 else if (RHS.isSigned() && RHS.isNegative()) {
2841 // During constant-folding, a negative shift is an opposite shift. Such a
2842 // shift is not a constant expression.
2843 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2844 RHS = -RHS;
2845 goto shift_left;
2847 shift_right:
2848 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2849 // shifted type.
2850 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2851 if (SA != RHS)
2852 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2853 << RHS << E->getType() << LHS.getBitWidth();
2854 Result = LHS >> SA;
2855 return true;
2858 case BO_LT: Result = LHS < RHS; return true;
2859 case BO_GT: Result = LHS > RHS; return true;
2860 case BO_LE: Result = LHS <= RHS; return true;
2861 case BO_GE: Result = LHS >= RHS; return true;
2862 case BO_EQ: Result = LHS == RHS; return true;
2863 case BO_NE: Result = LHS != RHS; return true;
2864 case BO_Cmp:
2865 llvm_unreachable("BO_Cmp should be handled elsewhere");
2869 /// Perform the given binary floating-point operation, in-place, on LHS.
2870 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2871 APFloat &LHS, BinaryOperatorKind Opcode,
2872 const APFloat &RHS) {
2873 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2874 APFloat::opStatus St;
2875 switch (Opcode) {
2876 default:
2877 Info.FFDiag(E);
2878 return false;
2879 case BO_Mul:
2880 St = LHS.multiply(RHS, RM);
2881 break;
2882 case BO_Add:
2883 St = LHS.add(RHS, RM);
2884 break;
2885 case BO_Sub:
2886 St = LHS.subtract(RHS, RM);
2887 break;
2888 case BO_Div:
2889 // [expr.mul]p4:
2890 // If the second operand of / or % is zero the behavior is undefined.
2891 if (RHS.isZero())
2892 Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2893 St = LHS.divide(RHS, RM);
2894 break;
2897 // [expr.pre]p4:
2898 // If during the evaluation of an expression, the result is not
2899 // mathematically defined [...], the behavior is undefined.
2900 // FIXME: C++ rules require us to not conform to IEEE 754 here.
2901 if (LHS.isNaN()) {
2902 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2903 return Info.noteUndefinedBehavior();
2906 return checkFloatingPointResult(Info, E, St);
2909 static bool handleLogicalOpForVector(const APInt &LHSValue,
2910 BinaryOperatorKind Opcode,
2911 const APInt &RHSValue, APInt &Result) {
2912 bool LHS = (LHSValue != 0);
2913 bool RHS = (RHSValue != 0);
2915 if (Opcode == BO_LAnd)
2916 Result = LHS && RHS;
2917 else
2918 Result = LHS || RHS;
2919 return true;
2921 static bool handleLogicalOpForVector(const APFloat &LHSValue,
2922 BinaryOperatorKind Opcode,
2923 const APFloat &RHSValue, APInt &Result) {
2924 bool LHS = !LHSValue.isZero();
2925 bool RHS = !RHSValue.isZero();
2927 if (Opcode == BO_LAnd)
2928 Result = LHS && RHS;
2929 else
2930 Result = LHS || RHS;
2931 return true;
2934 static bool handleLogicalOpForVector(const APValue &LHSValue,
2935 BinaryOperatorKind Opcode,
2936 const APValue &RHSValue, APInt &Result) {
2937 // The result is always an int type, however operands match the first.
2938 if (LHSValue.getKind() == APValue::Int)
2939 return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2940 RHSValue.getInt(), Result);
2941 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2942 return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2943 RHSValue.getFloat(), Result);
2946 template <typename APTy>
2947 static bool
2948 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2949 const APTy &RHSValue, APInt &Result) {
2950 switch (Opcode) {
2951 default:
2952 llvm_unreachable("unsupported binary operator");
2953 case BO_EQ:
2954 Result = (LHSValue == RHSValue);
2955 break;
2956 case BO_NE:
2957 Result = (LHSValue != RHSValue);
2958 break;
2959 case BO_LT:
2960 Result = (LHSValue < RHSValue);
2961 break;
2962 case BO_GT:
2963 Result = (LHSValue > RHSValue);
2964 break;
2965 case BO_LE:
2966 Result = (LHSValue <= RHSValue);
2967 break;
2968 case BO_GE:
2969 Result = (LHSValue >= RHSValue);
2970 break;
2973 // The boolean operations on these vector types use an instruction that
2974 // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1
2975 // to -1 to make sure that we produce the correct value.
2976 Result.negate();
2978 return true;
2981 static bool handleCompareOpForVector(const APValue &LHSValue,
2982 BinaryOperatorKind Opcode,
2983 const APValue &RHSValue, APInt &Result) {
2984 // The result is always an int type, however operands match the first.
2985 if (LHSValue.getKind() == APValue::Int)
2986 return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
2987 RHSValue.getInt(), Result);
2988 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2989 return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
2990 RHSValue.getFloat(), Result);
2993 // Perform binary operations for vector types, in place on the LHS.
2994 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
2995 BinaryOperatorKind Opcode,
2996 APValue &LHSValue,
2997 const APValue &RHSValue) {
2998 assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
2999 "Operation not supported on vector types");
3001 const auto *VT = E->getType()->castAs<VectorType>();
3002 unsigned NumElements = VT->getNumElements();
3003 QualType EltTy = VT->getElementType();
3005 // In the cases (typically C as I've observed) where we aren't evaluating
3006 // constexpr but are checking for cases where the LHS isn't yet evaluatable,
3007 // just give up.
3008 if (!LHSValue.isVector()) {
3009 assert(LHSValue.isLValue() &&
3010 "A vector result that isn't a vector OR uncalculated LValue");
3011 Info.FFDiag(E);
3012 return false;
3015 assert(LHSValue.getVectorLength() == NumElements &&
3016 RHSValue.getVectorLength() == NumElements && "Different vector sizes");
3018 SmallVector<APValue, 4> ResultElements;
3020 for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
3021 APValue LHSElt = LHSValue.getVectorElt(EltNum);
3022 APValue RHSElt = RHSValue.getVectorElt(EltNum);
3024 if (EltTy->isIntegerType()) {
3025 APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
3026 EltTy->isUnsignedIntegerType()};
3027 bool Success = true;
3029 if (BinaryOperator::isLogicalOp(Opcode))
3030 Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3031 else if (BinaryOperator::isComparisonOp(Opcode))
3032 Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3033 else
3034 Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
3035 RHSElt.getInt(), EltResult);
3037 if (!Success) {
3038 Info.FFDiag(E);
3039 return false;
3041 ResultElements.emplace_back(EltResult);
3043 } else if (EltTy->isFloatingType()) {
3044 assert(LHSElt.getKind() == APValue::Float &&
3045 RHSElt.getKind() == APValue::Float &&
3046 "Mismatched LHS/RHS/Result Type");
3047 APFloat LHSFloat = LHSElt.getFloat();
3049 if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3050 RHSElt.getFloat())) {
3051 Info.FFDiag(E);
3052 return false;
3055 ResultElements.emplace_back(LHSFloat);
3059 LHSValue = APValue(ResultElements.data(), ResultElements.size());
3060 return true;
3063 /// Cast an lvalue referring to a base subobject to a derived class, by
3064 /// truncating the lvalue's path to the given length.
3065 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3066 const RecordDecl *TruncatedType,
3067 unsigned TruncatedElements) {
3068 SubobjectDesignator &D = Result.Designator;
3070 // Check we actually point to a derived class object.
3071 if (TruncatedElements == D.Entries.size())
3072 return true;
3073 assert(TruncatedElements >= D.MostDerivedPathLength &&
3074 "not casting to a derived class");
3075 if (!Result.checkSubobject(Info, E, CSK_Derived))
3076 return false;
3078 // Truncate the path to the subobject, and remove any derived-to-base offsets.
3079 const RecordDecl *RD = TruncatedType;
3080 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3081 if (RD->isInvalidDecl()) return false;
3082 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3083 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3084 if (isVirtualBaseClass(D.Entries[I]))
3085 Result.Offset -= Layout.getVBaseClassOffset(Base);
3086 else
3087 Result.Offset -= Layout.getBaseClassOffset(Base);
3088 RD = Base;
3090 D.Entries.resize(TruncatedElements);
3091 return true;
3094 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3095 const CXXRecordDecl *Derived,
3096 const CXXRecordDecl *Base,
3097 const ASTRecordLayout *RL = nullptr) {
3098 if (!RL) {
3099 if (Derived->isInvalidDecl()) return false;
3100 RL = &Info.Ctx.getASTRecordLayout(Derived);
3103 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3104 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3105 return true;
3108 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3109 const CXXRecordDecl *DerivedDecl,
3110 const CXXBaseSpecifier *Base) {
3111 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3113 if (!Base->isVirtual())
3114 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3116 SubobjectDesignator &D = Obj.Designator;
3117 if (D.Invalid)
3118 return false;
3120 // Extract most-derived object and corresponding type.
3121 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3122 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3123 return false;
3125 // Find the virtual base class.
3126 if (DerivedDecl->isInvalidDecl()) return false;
3127 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3128 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3129 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3130 return true;
3133 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3134 QualType Type, LValue &Result) {
3135 for (CastExpr::path_const_iterator PathI = E->path_begin(),
3136 PathE = E->path_end();
3137 PathI != PathE; ++PathI) {
3138 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3139 *PathI))
3140 return false;
3141 Type = (*PathI)->getType();
3143 return true;
3146 /// Cast an lvalue referring to a derived class to a known base subobject.
3147 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3148 const CXXRecordDecl *DerivedRD,
3149 const CXXRecordDecl *BaseRD) {
3150 CXXBasePaths Paths(/*FindAmbiguities=*/false,
3151 /*RecordPaths=*/true, /*DetectVirtual=*/false);
3152 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3153 llvm_unreachable("Class must be derived from the passed in base class!");
3155 for (CXXBasePathElement &Elem : Paths.front())
3156 if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3157 return false;
3158 return true;
3161 /// Update LVal to refer to the given field, which must be a member of the type
3162 /// currently described by LVal.
3163 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3164 const FieldDecl *FD,
3165 const ASTRecordLayout *RL = nullptr) {
3166 if (!RL) {
3167 if (FD->getParent()->isInvalidDecl()) return false;
3168 RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3171 unsigned I = FD->getFieldIndex();
3172 LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3173 LVal.addDecl(Info, E, FD);
3174 return true;
3177 /// Update LVal to refer to the given indirect field.
3178 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3179 LValue &LVal,
3180 const IndirectFieldDecl *IFD) {
3181 for (const auto *C : IFD->chain())
3182 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3183 return false;
3184 return true;
3187 /// Get the size of the given type in char units.
3188 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
3189 QualType Type, CharUnits &Size) {
3190 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3191 // extension.
3192 if (Type->isVoidType() || Type->isFunctionType()) {
3193 Size = CharUnits::One();
3194 return true;
3197 if (Type->isDependentType()) {
3198 Info.FFDiag(Loc);
3199 return false;
3202 if (!Type->isConstantSizeType()) {
3203 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3204 // FIXME: Better diagnostic.
3205 Info.FFDiag(Loc);
3206 return false;
3209 Size = Info.Ctx.getTypeSizeInChars(Type);
3210 return true;
3213 /// Update a pointer value to model pointer arithmetic.
3214 /// \param Info - Information about the ongoing evaluation.
3215 /// \param E - The expression being evaluated, for diagnostic purposes.
3216 /// \param LVal - The pointer value to be updated.
3217 /// \param EltTy - The pointee type represented by LVal.
3218 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
3219 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3220 LValue &LVal, QualType EltTy,
3221 APSInt Adjustment) {
3222 CharUnits SizeOfPointee;
3223 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3224 return false;
3226 LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3227 return true;
3230 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3231 LValue &LVal, QualType EltTy,
3232 int64_t Adjustment) {
3233 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3234 APSInt::get(Adjustment));
3237 /// Update an lvalue to refer to a component of a complex number.
3238 /// \param Info - Information about the ongoing evaluation.
3239 /// \param LVal - The lvalue to be updated.
3240 /// \param EltTy - The complex number's component type.
3241 /// \param Imag - False for the real component, true for the imaginary.
3242 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3243 LValue &LVal, QualType EltTy,
3244 bool Imag) {
3245 if (Imag) {
3246 CharUnits SizeOfComponent;
3247 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3248 return false;
3249 LVal.Offset += SizeOfComponent;
3251 LVal.addComplex(Info, E, EltTy, Imag);
3252 return true;
3255 /// Try to evaluate the initializer for a variable declaration.
3257 /// \param Info Information about the ongoing evaluation.
3258 /// \param E An expression to be used when printing diagnostics.
3259 /// \param VD The variable whose initializer should be obtained.
3260 /// \param Version The version of the variable within the frame.
3261 /// \param Frame The frame in which the variable was created. Must be null
3262 /// if this variable is not local to the evaluation.
3263 /// \param Result Filled in with a pointer to the value of the variable.
3264 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3265 const VarDecl *VD, CallStackFrame *Frame,
3266 unsigned Version, APValue *&Result) {
3267 APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3269 // If this is a local variable, dig out its value.
3270 if (Frame) {
3271 Result = Frame->getTemporary(VD, Version);
3272 if (Result)
3273 return true;
3275 if (!isa<ParmVarDecl>(VD)) {
3276 // Assume variables referenced within a lambda's call operator that were
3277 // not declared within the call operator are captures and during checking
3278 // of a potential constant expression, assume they are unknown constant
3279 // expressions.
3280 assert(isLambdaCallOperator(Frame->Callee) &&
3281 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3282 "missing value for local variable");
3283 if (Info.checkingPotentialConstantExpression())
3284 return false;
3285 // FIXME: This diagnostic is bogus; we do support captures. Is this code
3286 // still reachable at all?
3287 Info.FFDiag(E->getBeginLoc(),
3288 diag::note_unimplemented_constexpr_lambda_feature_ast)
3289 << "captures not currently allowed";
3290 return false;
3294 // If we're currently evaluating the initializer of this declaration, use that
3295 // in-flight value.
3296 if (Info.EvaluatingDecl == Base) {
3297 Result = Info.EvaluatingDeclValue;
3298 return true;
3301 if (isa<ParmVarDecl>(VD)) {
3302 // Assume parameters of a potential constant expression are usable in
3303 // constant expressions.
3304 if (!Info.checkingPotentialConstantExpression() ||
3305 !Info.CurrentCall->Callee ||
3306 !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3307 if (Info.getLangOpts().CPlusPlus11) {
3308 Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3309 << VD;
3310 NoteLValueLocation(Info, Base);
3311 } else {
3312 Info.FFDiag(E);
3315 return false;
3318 if (E->isValueDependent())
3319 return false;
3321 // Dig out the initializer, and use the declaration which it's attached to.
3322 // FIXME: We should eventually check whether the variable has a reachable
3323 // initializing declaration.
3324 const Expr *Init = VD->getAnyInitializer(VD);
3325 if (!Init) {
3326 // Don't diagnose during potential constant expression checking; an
3327 // initializer might be added later.
3328 if (!Info.checkingPotentialConstantExpression()) {
3329 Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3330 << VD;
3331 NoteLValueLocation(Info, Base);
3333 return false;
3336 if (Init->isValueDependent()) {
3337 // The DeclRefExpr is not value-dependent, but the variable it refers to
3338 // has a value-dependent initializer. This should only happen in
3339 // constant-folding cases, where the variable is not actually of a suitable
3340 // type for use in a constant expression (otherwise the DeclRefExpr would
3341 // have been value-dependent too), so diagnose that.
3342 assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3343 if (!Info.checkingPotentialConstantExpression()) {
3344 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3345 ? diag::note_constexpr_ltor_non_constexpr
3346 : diag::note_constexpr_ltor_non_integral, 1)
3347 << VD << VD->getType();
3348 NoteLValueLocation(Info, Base);
3350 return false;
3353 // Check that we can fold the initializer. In C++, we will have already done
3354 // this in the cases where it matters for conformance.
3355 if (!VD->evaluateValue()) {
3356 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3357 NoteLValueLocation(Info, Base);
3358 return false;
3361 // Check that the variable is actually usable in constant expressions. For a
3362 // const integral variable or a reference, we might have a non-constant
3363 // initializer that we can nonetheless evaluate the initializer for. Such
3364 // variables are not usable in constant expressions. In C++98, the
3365 // initializer also syntactically needs to be an ICE.
3367 // FIXME: We don't diagnose cases that aren't potentially usable in constant
3368 // expressions here; doing so would regress diagnostics for things like
3369 // reading from a volatile constexpr variable.
3370 if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3371 VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3372 ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3373 !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3374 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3375 NoteLValueLocation(Info, Base);
3378 // Never use the initializer of a weak variable, not even for constant
3379 // folding. We can't be sure that this is the definition that will be used.
3380 if (VD->isWeak()) {
3381 Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3382 NoteLValueLocation(Info, Base);
3383 return false;
3386 Result = VD->getEvaluatedValue();
3387 return true;
3390 /// Get the base index of the given base class within an APValue representing
3391 /// the given derived class.
3392 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3393 const CXXRecordDecl *Base) {
3394 Base = Base->getCanonicalDecl();
3395 unsigned Index = 0;
3396 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3397 E = Derived->bases_end(); I != E; ++I, ++Index) {
3398 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3399 return Index;
3402 llvm_unreachable("base class missing from derived class's bases list");
3405 /// Extract the value of a character from a string literal.
3406 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3407 uint64_t Index) {
3408 assert(!isa<SourceLocExpr>(Lit) &&
3409 "SourceLocExpr should have already been converted to a StringLiteral");
3411 // FIXME: Support MakeStringConstant
3412 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3413 std::string Str;
3414 Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3415 assert(Index <= Str.size() && "Index too large");
3416 return APSInt::getUnsigned(Str.c_str()[Index]);
3419 if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3420 Lit = PE->getFunctionName();
3421 const StringLiteral *S = cast<StringLiteral>(Lit);
3422 const ConstantArrayType *CAT =
3423 Info.Ctx.getAsConstantArrayType(S->getType());
3424 assert(CAT && "string literal isn't an array");
3425 QualType CharType = CAT->getElementType();
3426 assert(CharType->isIntegerType() && "unexpected character type");
3427 APSInt Value(Info.Ctx.getTypeSize(CharType),
3428 CharType->isUnsignedIntegerType());
3429 if (Index < S->getLength())
3430 Value = S->getCodeUnit(Index);
3431 return Value;
3434 // Expand a string literal into an array of characters.
3436 // FIXME: This is inefficient; we should probably introduce something similar
3437 // to the LLVM ConstantDataArray to make this cheaper.
3438 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3439 APValue &Result,
3440 QualType AllocType = QualType()) {
3441 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3442 AllocType.isNull() ? S->getType() : AllocType);
3443 assert(CAT && "string literal isn't an array");
3444 QualType CharType = CAT->getElementType();
3445 assert(CharType->isIntegerType() && "unexpected character type");
3447 unsigned Elts = CAT->getSize().getZExtValue();
3448 Result = APValue(APValue::UninitArray(),
3449 std::min(S->getLength(), Elts), Elts);
3450 APSInt Value(Info.Ctx.getTypeSize(CharType),
3451 CharType->isUnsignedIntegerType());
3452 if (Result.hasArrayFiller())
3453 Result.getArrayFiller() = APValue(Value);
3454 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3455 Value = S->getCodeUnit(I);
3456 Result.getArrayInitializedElt(I) = APValue(Value);
3460 // Expand an array so that it has more than Index filled elements.
3461 static void expandArray(APValue &Array, unsigned Index) {
3462 unsigned Size = Array.getArraySize();
3463 assert(Index < Size);
3465 // Always at least double the number of elements for which we store a value.
3466 unsigned OldElts = Array.getArrayInitializedElts();
3467 unsigned NewElts = std::max(Index+1, OldElts * 2);
3468 NewElts = std::min(Size, std::max(NewElts, 8u));
3470 // Copy the data across.
3471 APValue NewValue(APValue::UninitArray(), NewElts, Size);
3472 for (unsigned I = 0; I != OldElts; ++I)
3473 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3474 for (unsigned I = OldElts; I != NewElts; ++I)
3475 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3476 if (NewValue.hasArrayFiller())
3477 NewValue.getArrayFiller() = Array.getArrayFiller();
3478 Array.swap(NewValue);
3481 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3482 /// conversion. If it's of class type, we may assume that the copy operation
3483 /// is trivial. Note that this is never true for a union type with fields
3484 /// (because the copy always "reads" the active member) and always true for
3485 /// a non-class type.
3486 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
3487 static bool isReadByLvalueToRvalueConversion(QualType T) {
3488 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3489 return !RD || isReadByLvalueToRvalueConversion(RD);
3491 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3492 // FIXME: A trivial copy of a union copies the object representation, even if
3493 // the union is empty.
3494 if (RD->isUnion())
3495 return !RD->field_empty();
3496 if (RD->isEmpty())
3497 return false;
3499 for (auto *Field : RD->fields())
3500 if (!Field->isUnnamedBitfield() &&
3501 isReadByLvalueToRvalueConversion(Field->getType()))
3502 return true;
3504 for (auto &BaseSpec : RD->bases())
3505 if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3506 return true;
3508 return false;
3511 /// Diagnose an attempt to read from any unreadable field within the specified
3512 /// type, which might be a class type.
3513 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3514 QualType T) {
3515 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3516 if (!RD)
3517 return false;
3519 if (!RD->hasMutableFields())
3520 return false;
3522 for (auto *Field : RD->fields()) {
3523 // If we're actually going to read this field in some way, then it can't
3524 // be mutable. If we're in a union, then assigning to a mutable field
3525 // (even an empty one) can change the active member, so that's not OK.
3526 // FIXME: Add core issue number for the union case.
3527 if (Field->isMutable() &&
3528 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3529 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3530 Info.Note(Field->getLocation(), diag::note_declared_at);
3531 return true;
3534 if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3535 return true;
3538 for (auto &BaseSpec : RD->bases())
3539 if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3540 return true;
3542 // All mutable fields were empty, and thus not actually read.
3543 return false;
3546 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3547 APValue::LValueBase Base,
3548 bool MutableSubobject = false) {
3549 // A temporary or transient heap allocation we created.
3550 if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3551 return true;
3553 switch (Info.IsEvaluatingDecl) {
3554 case EvalInfo::EvaluatingDeclKind::None:
3555 return false;
3557 case EvalInfo::EvaluatingDeclKind::Ctor:
3558 // The variable whose initializer we're evaluating.
3559 if (Info.EvaluatingDecl == Base)
3560 return true;
3562 // A temporary lifetime-extended by the variable whose initializer we're
3563 // evaluating.
3564 if (auto *BaseE = Base.dyn_cast<const Expr *>())
3565 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3566 return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3567 return false;
3569 case EvalInfo::EvaluatingDeclKind::Dtor:
3570 // C++2a [expr.const]p6:
3571 // [during constant destruction] the lifetime of a and its non-mutable
3572 // subobjects (but not its mutable subobjects) [are] considered to start
3573 // within e.
3574 if (MutableSubobject || Base != Info.EvaluatingDecl)
3575 return false;
3576 // FIXME: We can meaningfully extend this to cover non-const objects, but
3577 // we will need special handling: we should be able to access only
3578 // subobjects of such objects that are themselves declared const.
3579 QualType T = getType(Base);
3580 return T.isConstQualified() || T->isReferenceType();
3583 llvm_unreachable("unknown evaluating decl kind");
3586 static bool CheckArraySize(EvalInfo &Info, const ConstantArrayType *CAT,
3587 SourceLocation CallLoc = {}) {
3588 return Info.CheckArraySize(
3589 CAT->getSizeExpr() ? CAT->getSizeExpr()->getBeginLoc() : CallLoc,
3590 CAT->getNumAddressingBits(Info.Ctx), CAT->getSize().getZExtValue(),
3591 /*Diag=*/true);
3594 namespace {
3595 /// A handle to a complete object (an object that is not a subobject of
3596 /// another object).
3597 struct CompleteObject {
3598 /// The identity of the object.
3599 APValue::LValueBase Base;
3600 /// The value of the complete object.
3601 APValue *Value;
3602 /// The type of the complete object.
3603 QualType Type;
3605 CompleteObject() : Value(nullptr) {}
3606 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3607 : Base(Base), Value(Value), Type(Type) {}
3609 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3610 // If this isn't a "real" access (eg, if it's just accessing the type
3611 // info), allow it. We assume the type doesn't change dynamically for
3612 // subobjects of constexpr objects (even though we'd hit UB here if it
3613 // did). FIXME: Is this right?
3614 if (!isAnyAccess(AK))
3615 return true;
3617 // In C++14 onwards, it is permitted to read a mutable member whose
3618 // lifetime began within the evaluation.
3619 // FIXME: Should we also allow this in C++11?
3620 if (!Info.getLangOpts().CPlusPlus14)
3621 return false;
3622 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3625 explicit operator bool() const { return !Type.isNull(); }
3627 } // end anonymous namespace
3629 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3630 bool IsMutable = false) {
3631 // C++ [basic.type.qualifier]p1:
3632 // - A const object is an object of type const T or a non-mutable subobject
3633 // of a const object.
3634 if (ObjType.isConstQualified() && !IsMutable)
3635 SubobjType.addConst();
3636 // - A volatile object is an object of type const T or a subobject of a
3637 // volatile object.
3638 if (ObjType.isVolatileQualified())
3639 SubobjType.addVolatile();
3640 return SubobjType;
3643 /// Find the designated sub-object of an rvalue.
3644 template<typename SubobjectHandler>
3645 typename SubobjectHandler::result_type
3646 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3647 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3648 if (Sub.Invalid)
3649 // A diagnostic will have already been produced.
3650 return handler.failed();
3651 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3652 if (Info.getLangOpts().CPlusPlus11)
3653 Info.FFDiag(E, Sub.isOnePastTheEnd()
3654 ? diag::note_constexpr_access_past_end
3655 : diag::note_constexpr_access_unsized_array)
3656 << handler.AccessKind;
3657 else
3658 Info.FFDiag(E);
3659 return handler.failed();
3662 APValue *O = Obj.Value;
3663 QualType ObjType = Obj.Type;
3664 const FieldDecl *LastField = nullptr;
3665 const FieldDecl *VolatileField = nullptr;
3667 // Walk the designator's path to find the subobject.
3668 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3669 // Reading an indeterminate value is undefined, but assigning over one is OK.
3670 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3671 (O->isIndeterminate() &&
3672 !isValidIndeterminateAccess(handler.AccessKind))) {
3673 if (!Info.checkingPotentialConstantExpression())
3674 Info.FFDiag(E, diag::note_constexpr_access_uninit)
3675 << handler.AccessKind << O->isIndeterminate()
3676 << E->getSourceRange();
3677 return handler.failed();
3680 // C++ [class.ctor]p5, C++ [class.dtor]p5:
3681 // const and volatile semantics are not applied on an object under
3682 // {con,de}struction.
3683 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3684 ObjType->isRecordType() &&
3685 Info.isEvaluatingCtorDtor(
3686 Obj.Base,
3687 llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) !=
3688 ConstructionPhase::None) {
3689 ObjType = Info.Ctx.getCanonicalType(ObjType);
3690 ObjType.removeLocalConst();
3691 ObjType.removeLocalVolatile();
3694 // If this is our last pass, check that the final object type is OK.
3695 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3696 // Accesses to volatile objects are prohibited.
3697 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3698 if (Info.getLangOpts().CPlusPlus) {
3699 int DiagKind;
3700 SourceLocation Loc;
3701 const NamedDecl *Decl = nullptr;
3702 if (VolatileField) {
3703 DiagKind = 2;
3704 Loc = VolatileField->getLocation();
3705 Decl = VolatileField;
3706 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3707 DiagKind = 1;
3708 Loc = VD->getLocation();
3709 Decl = VD;
3710 } else {
3711 DiagKind = 0;
3712 if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3713 Loc = E->getExprLoc();
3715 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3716 << handler.AccessKind << DiagKind << Decl;
3717 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3718 } else {
3719 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3721 return handler.failed();
3724 // If we are reading an object of class type, there may still be more
3725 // things we need to check: if there are any mutable subobjects, we
3726 // cannot perform this read. (This only happens when performing a trivial
3727 // copy or assignment.)
3728 if (ObjType->isRecordType() &&
3729 !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3730 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3731 return handler.failed();
3734 if (I == N) {
3735 if (!handler.found(*O, ObjType))
3736 return false;
3738 // If we modified a bit-field, truncate it to the right width.
3739 if (isModification(handler.AccessKind) &&
3740 LastField && LastField->isBitField() &&
3741 !truncateBitfieldValue(Info, E, *O, LastField))
3742 return false;
3744 return true;
3747 LastField = nullptr;
3748 if (ObjType->isArrayType()) {
3749 // Next subobject is an array element.
3750 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3751 assert(CAT && "vla in literal type?");
3752 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3753 if (CAT->getSize().ule(Index)) {
3754 // Note, it should not be possible to form a pointer with a valid
3755 // designator which points more than one past the end of the array.
3756 if (Info.getLangOpts().CPlusPlus11)
3757 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3758 << handler.AccessKind;
3759 else
3760 Info.FFDiag(E);
3761 return handler.failed();
3764 ObjType = CAT->getElementType();
3766 if (O->getArrayInitializedElts() > Index)
3767 O = &O->getArrayInitializedElt(Index);
3768 else if (!isRead(handler.AccessKind)) {
3769 if (!CheckArraySize(Info, CAT, E->getExprLoc()))
3770 return handler.failed();
3772 expandArray(*O, Index);
3773 O = &O->getArrayInitializedElt(Index);
3774 } else
3775 O = &O->getArrayFiller();
3776 } else if (ObjType->isAnyComplexType()) {
3777 // Next subobject is a complex number.
3778 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3779 if (Index > 1) {
3780 if (Info.getLangOpts().CPlusPlus11)
3781 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3782 << handler.AccessKind;
3783 else
3784 Info.FFDiag(E);
3785 return handler.failed();
3788 ObjType = getSubobjectType(
3789 ObjType, ObjType->castAs<ComplexType>()->getElementType());
3791 assert(I == N - 1 && "extracting subobject of scalar?");
3792 if (O->isComplexInt()) {
3793 return handler.found(Index ? O->getComplexIntImag()
3794 : O->getComplexIntReal(), ObjType);
3795 } else {
3796 assert(O->isComplexFloat());
3797 return handler.found(Index ? O->getComplexFloatImag()
3798 : O->getComplexFloatReal(), ObjType);
3800 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3801 if (Field->isMutable() &&
3802 !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3803 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3804 << handler.AccessKind << Field;
3805 Info.Note(Field->getLocation(), diag::note_declared_at);
3806 return handler.failed();
3809 // Next subobject is a class, struct or union field.
3810 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3811 if (RD->isUnion()) {
3812 const FieldDecl *UnionField = O->getUnionField();
3813 if (!UnionField ||
3814 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3815 if (I == N - 1 && handler.AccessKind == AK_Construct) {
3816 // Placement new onto an inactive union member makes it active.
3817 O->setUnion(Field, APValue());
3818 } else {
3819 // FIXME: If O->getUnionValue() is absent, report that there's no
3820 // active union member rather than reporting the prior active union
3821 // member. We'll need to fix nullptr_t to not use APValue() as its
3822 // representation first.
3823 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3824 << handler.AccessKind << Field << !UnionField << UnionField;
3825 return handler.failed();
3828 O = &O->getUnionValue();
3829 } else
3830 O = &O->getStructField(Field->getFieldIndex());
3832 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3833 LastField = Field;
3834 if (Field->getType().isVolatileQualified())
3835 VolatileField = Field;
3836 } else {
3837 // Next subobject is a base class.
3838 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3839 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3840 O = &O->getStructBase(getBaseIndex(Derived, Base));
3842 ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3847 namespace {
3848 struct ExtractSubobjectHandler {
3849 EvalInfo &Info;
3850 const Expr *E;
3851 APValue &Result;
3852 const AccessKinds AccessKind;
3854 typedef bool result_type;
3855 bool failed() { return false; }
3856 bool found(APValue &Subobj, QualType SubobjType) {
3857 Result = Subobj;
3858 if (AccessKind == AK_ReadObjectRepresentation)
3859 return true;
3860 return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3862 bool found(APSInt &Value, QualType SubobjType) {
3863 Result = APValue(Value);
3864 return true;
3866 bool found(APFloat &Value, QualType SubobjType) {
3867 Result = APValue(Value);
3868 return true;
3871 } // end anonymous namespace
3873 /// Extract the designated sub-object of an rvalue.
3874 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3875 const CompleteObject &Obj,
3876 const SubobjectDesignator &Sub, APValue &Result,
3877 AccessKinds AK = AK_Read) {
3878 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3879 ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3880 return findSubobject(Info, E, Obj, Sub, Handler);
3883 namespace {
3884 struct ModifySubobjectHandler {
3885 EvalInfo &Info;
3886 APValue &NewVal;
3887 const Expr *E;
3889 typedef bool result_type;
3890 static const AccessKinds AccessKind = AK_Assign;
3892 bool checkConst(QualType QT) {
3893 // Assigning to a const object has undefined behavior.
3894 if (QT.isConstQualified()) {
3895 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3896 return false;
3898 return true;
3901 bool failed() { return false; }
3902 bool found(APValue &Subobj, QualType SubobjType) {
3903 if (!checkConst(SubobjType))
3904 return false;
3905 // We've been given ownership of NewVal, so just swap it in.
3906 Subobj.swap(NewVal);
3907 return true;
3909 bool found(APSInt &Value, QualType SubobjType) {
3910 if (!checkConst(SubobjType))
3911 return false;
3912 if (!NewVal.isInt()) {
3913 // Maybe trying to write a cast pointer value into a complex?
3914 Info.FFDiag(E);
3915 return false;
3917 Value = NewVal.getInt();
3918 return true;
3920 bool found(APFloat &Value, QualType SubobjType) {
3921 if (!checkConst(SubobjType))
3922 return false;
3923 Value = NewVal.getFloat();
3924 return true;
3927 } // end anonymous namespace
3929 const AccessKinds ModifySubobjectHandler::AccessKind;
3931 /// Update the designated sub-object of an rvalue to the given value.
3932 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3933 const CompleteObject &Obj,
3934 const SubobjectDesignator &Sub,
3935 APValue &NewVal) {
3936 ModifySubobjectHandler Handler = { Info, NewVal, E };
3937 return findSubobject(Info, E, Obj, Sub, Handler);
3940 /// Find the position where two subobject designators diverge, or equivalently
3941 /// the length of the common initial subsequence.
3942 static unsigned FindDesignatorMismatch(QualType ObjType,
3943 const SubobjectDesignator &A,
3944 const SubobjectDesignator &B,
3945 bool &WasArrayIndex) {
3946 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3947 for (/**/; I != N; ++I) {
3948 if (!ObjType.isNull() &&
3949 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3950 // Next subobject is an array element.
3951 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3952 WasArrayIndex = true;
3953 return I;
3955 if (ObjType->isAnyComplexType())
3956 ObjType = ObjType->castAs<ComplexType>()->getElementType();
3957 else
3958 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3959 } else {
3960 if (A.Entries[I].getAsBaseOrMember() !=
3961 B.Entries[I].getAsBaseOrMember()) {
3962 WasArrayIndex = false;
3963 return I;
3965 if (const FieldDecl *FD = getAsField(A.Entries[I]))
3966 // Next subobject is a field.
3967 ObjType = FD->getType();
3968 else
3969 // Next subobject is a base class.
3970 ObjType = QualType();
3973 WasArrayIndex = false;
3974 return I;
3977 /// Determine whether the given subobject designators refer to elements of the
3978 /// same array object.
3979 static bool AreElementsOfSameArray(QualType ObjType,
3980 const SubobjectDesignator &A,
3981 const SubobjectDesignator &B) {
3982 if (A.Entries.size() != B.Entries.size())
3983 return false;
3985 bool IsArray = A.MostDerivedIsArrayElement;
3986 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3987 // A is a subobject of the array element.
3988 return false;
3990 // If A (and B) designates an array element, the last entry will be the array
3991 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3992 // of length 1' case, and the entire path must match.
3993 bool WasArrayIndex;
3994 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3995 return CommonLength >= A.Entries.size() - IsArray;
3998 /// Find the complete object to which an LValue refers.
3999 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
4000 AccessKinds AK, const LValue &LVal,
4001 QualType LValType) {
4002 if (LVal.InvalidBase) {
4003 Info.FFDiag(E);
4004 return CompleteObject();
4007 if (!LVal.Base) {
4008 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
4009 return CompleteObject();
4012 CallStackFrame *Frame = nullptr;
4013 unsigned Depth = 0;
4014 if (LVal.getLValueCallIndex()) {
4015 std::tie(Frame, Depth) =
4016 Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
4017 if (!Frame) {
4018 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
4019 << AK << LVal.Base.is<const ValueDecl*>();
4020 NoteLValueLocation(Info, LVal.Base);
4021 return CompleteObject();
4025 bool IsAccess = isAnyAccess(AK);
4027 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
4028 // is not a constant expression (even if the object is non-volatile). We also
4029 // apply this rule to C++98, in order to conform to the expected 'volatile'
4030 // semantics.
4031 if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
4032 if (Info.getLangOpts().CPlusPlus)
4033 Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
4034 << AK << LValType;
4035 else
4036 Info.FFDiag(E);
4037 return CompleteObject();
4040 // Compute value storage location and type of base object.
4041 APValue *BaseVal = nullptr;
4042 QualType BaseType = getType(LVal.Base);
4044 if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
4045 lifetimeStartedInEvaluation(Info, LVal.Base)) {
4046 // This is the object whose initializer we're evaluating, so its lifetime
4047 // started in the current evaluation.
4048 BaseVal = Info.EvaluatingDeclValue;
4049 } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4050 // Allow reading from a GUID declaration.
4051 if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
4052 if (isModification(AK)) {
4053 // All the remaining cases do not permit modification of the object.
4054 Info.FFDiag(E, diag::note_constexpr_modify_global);
4055 return CompleteObject();
4057 APValue &V = GD->getAsAPValue();
4058 if (V.isAbsent()) {
4059 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4060 << GD->getType();
4061 return CompleteObject();
4063 return CompleteObject(LVal.Base, &V, GD->getType());
4066 // Allow reading the APValue from an UnnamedGlobalConstantDecl.
4067 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) {
4068 if (isModification(AK)) {
4069 Info.FFDiag(E, diag::note_constexpr_modify_global);
4070 return CompleteObject();
4072 return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()),
4073 GCD->getType());
4076 // Allow reading from template parameter objects.
4077 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4078 if (isModification(AK)) {
4079 Info.FFDiag(E, diag::note_constexpr_modify_global);
4080 return CompleteObject();
4082 return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4083 TPO->getType());
4086 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4087 // In C++11, constexpr, non-volatile variables initialized with constant
4088 // expressions are constant expressions too. Inside constexpr functions,
4089 // parameters are constant expressions even if they're non-const.
4090 // In C++1y, objects local to a constant expression (those with a Frame) are
4091 // both readable and writable inside constant expressions.
4092 // In C, such things can also be folded, although they are not ICEs.
4093 const VarDecl *VD = dyn_cast<VarDecl>(D);
4094 if (VD) {
4095 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4096 VD = VDef;
4098 if (!VD || VD->isInvalidDecl()) {
4099 Info.FFDiag(E);
4100 return CompleteObject();
4103 bool IsConstant = BaseType.isConstant(Info.Ctx);
4105 // Unless we're looking at a local variable or argument in a constexpr call,
4106 // the variable we're reading must be const.
4107 if (!Frame) {
4108 if (IsAccess && isa<ParmVarDecl>(VD)) {
4109 // Access of a parameter that's not associated with a frame isn't going
4110 // to work out, but we can leave it to evaluateVarDeclInit to provide a
4111 // suitable diagnostic.
4112 } else if (Info.getLangOpts().CPlusPlus14 &&
4113 lifetimeStartedInEvaluation(Info, LVal.Base)) {
4114 // OK, we can read and modify an object if we're in the process of
4115 // evaluating its initializer, because its lifetime began in this
4116 // evaluation.
4117 } else if (isModification(AK)) {
4118 // All the remaining cases do not permit modification of the object.
4119 Info.FFDiag(E, diag::note_constexpr_modify_global);
4120 return CompleteObject();
4121 } else if (VD->isConstexpr()) {
4122 // OK, we can read this variable.
4123 } else if (BaseType->isIntegralOrEnumerationType()) {
4124 if (!IsConstant) {
4125 if (!IsAccess)
4126 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4127 if (Info.getLangOpts().CPlusPlus) {
4128 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4129 Info.Note(VD->getLocation(), diag::note_declared_at);
4130 } else {
4131 Info.FFDiag(E);
4133 return CompleteObject();
4135 } else if (!IsAccess) {
4136 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4137 } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4138 BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4139 // This variable might end up being constexpr. Don't diagnose it yet.
4140 } else if (IsConstant) {
4141 // Keep evaluating to see what we can do. In particular, we support
4142 // folding of const floating-point types, in order to make static const
4143 // data members of such types (supported as an extension) more useful.
4144 if (Info.getLangOpts().CPlusPlus) {
4145 Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4146 ? diag::note_constexpr_ltor_non_constexpr
4147 : diag::note_constexpr_ltor_non_integral, 1)
4148 << VD << BaseType;
4149 Info.Note(VD->getLocation(), diag::note_declared_at);
4150 } else {
4151 Info.CCEDiag(E);
4153 } else {
4154 // Never allow reading a non-const value.
4155 if (Info.getLangOpts().CPlusPlus) {
4156 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4157 ? diag::note_constexpr_ltor_non_constexpr
4158 : diag::note_constexpr_ltor_non_integral, 1)
4159 << VD << BaseType;
4160 Info.Note(VD->getLocation(), diag::note_declared_at);
4161 } else {
4162 Info.FFDiag(E);
4164 return CompleteObject();
4168 if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4169 return CompleteObject();
4170 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4171 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
4172 if (!Alloc) {
4173 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4174 return CompleteObject();
4176 return CompleteObject(LVal.Base, &(*Alloc)->Value,
4177 LVal.Base.getDynamicAllocType());
4178 } else {
4179 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4181 if (!Frame) {
4182 if (const MaterializeTemporaryExpr *MTE =
4183 dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4184 assert(MTE->getStorageDuration() == SD_Static &&
4185 "should have a frame for a non-global materialized temporary");
4187 // C++20 [expr.const]p4: [DR2126]
4188 // An object or reference is usable in constant expressions if it is
4189 // - a temporary object of non-volatile const-qualified literal type
4190 // whose lifetime is extended to that of a variable that is usable
4191 // in constant expressions
4193 // C++20 [expr.const]p5:
4194 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4195 // - a non-volatile glvalue that refers to an object that is usable
4196 // in constant expressions, or
4197 // - a non-volatile glvalue of literal type that refers to a
4198 // non-volatile object whose lifetime began within the evaluation
4199 // of E;
4201 // C++11 misses the 'began within the evaluation of e' check and
4202 // instead allows all temporaries, including things like:
4203 // int &&r = 1;
4204 // int x = ++r;
4205 // constexpr int k = r;
4206 // Therefore we use the C++14-onwards rules in C++11 too.
4208 // Note that temporaries whose lifetimes began while evaluating a
4209 // variable's constructor are not usable while evaluating the
4210 // corresponding destructor, not even if they're of const-qualified
4211 // types.
4212 if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4213 !lifetimeStartedInEvaluation(Info, LVal.Base)) {
4214 if (!IsAccess)
4215 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4216 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4217 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4218 return CompleteObject();
4221 BaseVal = MTE->getOrCreateValue(false);
4222 assert(BaseVal && "got reference to unevaluated temporary");
4223 } else {
4224 if (!IsAccess)
4225 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4226 APValue Val;
4227 LVal.moveInto(Val);
4228 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4229 << AK
4230 << Val.getAsString(Info.Ctx,
4231 Info.Ctx.getLValueReferenceType(LValType));
4232 NoteLValueLocation(Info, LVal.Base);
4233 return CompleteObject();
4235 } else {
4236 BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4237 assert(BaseVal && "missing value for temporary");
4241 // In C++14, we can't safely access any mutable state when we might be
4242 // evaluating after an unmodeled side effect. Parameters are modeled as state
4243 // in the caller, but aren't visible once the call returns, so they can be
4244 // modified in a speculatively-evaluated call.
4246 // FIXME: Not all local state is mutable. Allow local constant subobjects
4247 // to be read here (but take care with 'mutable' fields).
4248 unsigned VisibleDepth = Depth;
4249 if (llvm::isa_and_nonnull<ParmVarDecl>(
4250 LVal.Base.dyn_cast<const ValueDecl *>()))
4251 ++VisibleDepth;
4252 if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4253 Info.EvalStatus.HasSideEffects) ||
4254 (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4255 return CompleteObject();
4257 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4260 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4261 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4262 /// glvalue referred to by an entity of reference type.
4264 /// \param Info - Information about the ongoing evaluation.
4265 /// \param Conv - The expression for which we are performing the conversion.
4266 /// Used for diagnostics.
4267 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4268 /// case of a non-class type).
4269 /// \param LVal - The glvalue on which we are attempting to perform this action.
4270 /// \param RVal - The produced value will be placed here.
4271 /// \param WantObjectRepresentation - If true, we're looking for the object
4272 /// representation rather than the value, and in particular,
4273 /// there is no requirement that the result be fully initialized.
4274 static bool
4275 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4276 const LValue &LVal, APValue &RVal,
4277 bool WantObjectRepresentation = false) {
4278 if (LVal.Designator.Invalid)
4279 return false;
4281 // Check for special cases where there is no existing APValue to look at.
4282 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4284 AccessKinds AK =
4285 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4287 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4288 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4289 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4290 // initializer until now for such expressions. Such an expression can't be
4291 // an ICE in C, so this only matters for fold.
4292 if (Type.isVolatileQualified()) {
4293 Info.FFDiag(Conv);
4294 return false;
4297 APValue Lit;
4298 if (!Evaluate(Lit, Info, CLE->getInitializer()))
4299 return false;
4301 // According to GCC info page:
4303 // 6.28 Compound Literals
4305 // As an optimization, G++ sometimes gives array compound literals longer
4306 // lifetimes: when the array either appears outside a function or has a
4307 // const-qualified type. If foo and its initializer had elements of type
4308 // char *const rather than char *, or if foo were a global variable, the
4309 // array would have static storage duration. But it is probably safest
4310 // just to avoid the use of array compound literals in C++ code.
4312 // Obey that rule by checking constness for converted array types.
4314 QualType CLETy = CLE->getType();
4315 if (CLETy->isArrayType() && !Type->isArrayType()) {
4316 if (!CLETy.isConstant(Info.Ctx)) {
4317 Info.FFDiag(Conv);
4318 Info.Note(CLE->getExprLoc(), diag::note_declared_at);
4319 return false;
4323 CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4324 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4325 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4326 // Special-case character extraction so we don't have to construct an
4327 // APValue for the whole string.
4328 assert(LVal.Designator.Entries.size() <= 1 &&
4329 "Can only read characters from string literals");
4330 if (LVal.Designator.Entries.empty()) {
4331 // Fail for now for LValue to RValue conversion of an array.
4332 // (This shouldn't show up in C/C++, but it could be triggered by a
4333 // weird EvaluateAsRValue call from a tool.)
4334 Info.FFDiag(Conv);
4335 return false;
4337 if (LVal.Designator.isOnePastTheEnd()) {
4338 if (Info.getLangOpts().CPlusPlus11)
4339 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4340 else
4341 Info.FFDiag(Conv);
4342 return false;
4344 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4345 RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4346 return true;
4350 CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4351 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4354 /// Perform an assignment of Val to LVal. Takes ownership of Val.
4355 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4356 QualType LValType, APValue &Val) {
4357 if (LVal.Designator.Invalid)
4358 return false;
4360 if (!Info.getLangOpts().CPlusPlus14) {
4361 Info.FFDiag(E);
4362 return false;
4365 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4366 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4369 namespace {
4370 struct CompoundAssignSubobjectHandler {
4371 EvalInfo &Info;
4372 const CompoundAssignOperator *E;
4373 QualType PromotedLHSType;
4374 BinaryOperatorKind Opcode;
4375 const APValue &RHS;
4377 static const AccessKinds AccessKind = AK_Assign;
4379 typedef bool result_type;
4381 bool checkConst(QualType QT) {
4382 // Assigning to a const object has undefined behavior.
4383 if (QT.isConstQualified()) {
4384 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4385 return false;
4387 return true;
4390 bool failed() { return false; }
4391 bool found(APValue &Subobj, QualType SubobjType) {
4392 switch (Subobj.getKind()) {
4393 case APValue::Int:
4394 return found(Subobj.getInt(), SubobjType);
4395 case APValue::Float:
4396 return found(Subobj.getFloat(), SubobjType);
4397 case APValue::ComplexInt:
4398 case APValue::ComplexFloat:
4399 // FIXME: Implement complex compound assignment.
4400 Info.FFDiag(E);
4401 return false;
4402 case APValue::LValue:
4403 return foundPointer(Subobj, SubobjType);
4404 case APValue::Vector:
4405 return foundVector(Subobj, SubobjType);
4406 case APValue::Indeterminate:
4407 Info.FFDiag(E, diag::note_constexpr_access_uninit)
4408 << /*read of=*/0 << /*uninitialized object=*/1
4409 << E->getLHS()->getSourceRange();
4410 return false;
4411 default:
4412 // FIXME: can this happen?
4413 Info.FFDiag(E);
4414 return false;
4418 bool foundVector(APValue &Value, QualType SubobjType) {
4419 if (!checkConst(SubobjType))
4420 return false;
4422 if (!SubobjType->isVectorType()) {
4423 Info.FFDiag(E);
4424 return false;
4426 return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4429 bool found(APSInt &Value, QualType SubobjType) {
4430 if (!checkConst(SubobjType))
4431 return false;
4433 if (!SubobjType->isIntegerType()) {
4434 // We don't support compound assignment on integer-cast-to-pointer
4435 // values.
4436 Info.FFDiag(E);
4437 return false;
4440 if (RHS.isInt()) {
4441 APSInt LHS =
4442 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4443 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4444 return false;
4445 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4446 return true;
4447 } else if (RHS.isFloat()) {
4448 const FPOptions FPO = E->getFPFeaturesInEffect(
4449 Info.Ctx.getLangOpts());
4450 APFloat FValue(0.0);
4451 return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4452 PromotedLHSType, FValue) &&
4453 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4454 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4455 Value);
4458 Info.FFDiag(E);
4459 return false;
4461 bool found(APFloat &Value, QualType SubobjType) {
4462 return checkConst(SubobjType) &&
4463 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4464 Value) &&
4465 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4466 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4468 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4469 if (!checkConst(SubobjType))
4470 return false;
4472 QualType PointeeType;
4473 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4474 PointeeType = PT->getPointeeType();
4476 if (PointeeType.isNull() || !RHS.isInt() ||
4477 (Opcode != BO_Add && Opcode != BO_Sub)) {
4478 Info.FFDiag(E);
4479 return false;
4482 APSInt Offset = RHS.getInt();
4483 if (Opcode == BO_Sub)
4484 negateAsSigned(Offset);
4486 LValue LVal;
4487 LVal.setFrom(Info.Ctx, Subobj);
4488 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4489 return false;
4490 LVal.moveInto(Subobj);
4491 return true;
4494 } // end anonymous namespace
4496 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4498 /// Perform a compound assignment of LVal <op>= RVal.
4499 static bool handleCompoundAssignment(EvalInfo &Info,
4500 const CompoundAssignOperator *E,
4501 const LValue &LVal, QualType LValType,
4502 QualType PromotedLValType,
4503 BinaryOperatorKind Opcode,
4504 const APValue &RVal) {
4505 if (LVal.Designator.Invalid)
4506 return false;
4508 if (!Info.getLangOpts().CPlusPlus14) {
4509 Info.FFDiag(E);
4510 return false;
4513 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4514 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4515 RVal };
4516 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4519 namespace {
4520 struct IncDecSubobjectHandler {
4521 EvalInfo &Info;
4522 const UnaryOperator *E;
4523 AccessKinds AccessKind;
4524 APValue *Old;
4526 typedef bool result_type;
4528 bool checkConst(QualType QT) {
4529 // Assigning to a const object has undefined behavior.
4530 if (QT.isConstQualified()) {
4531 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4532 return false;
4534 return true;
4537 bool failed() { return false; }
4538 bool found(APValue &Subobj, QualType SubobjType) {
4539 // Stash the old value. Also clear Old, so we don't clobber it later
4540 // if we're post-incrementing a complex.
4541 if (Old) {
4542 *Old = Subobj;
4543 Old = nullptr;
4546 switch (Subobj.getKind()) {
4547 case APValue::Int:
4548 return found(Subobj.getInt(), SubobjType);
4549 case APValue::Float:
4550 return found(Subobj.getFloat(), SubobjType);
4551 case APValue::ComplexInt:
4552 return found(Subobj.getComplexIntReal(),
4553 SubobjType->castAs<ComplexType>()->getElementType()
4554 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4555 case APValue::ComplexFloat:
4556 return found(Subobj.getComplexFloatReal(),
4557 SubobjType->castAs<ComplexType>()->getElementType()
4558 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4559 case APValue::LValue:
4560 return foundPointer(Subobj, SubobjType);
4561 default:
4562 // FIXME: can this happen?
4563 Info.FFDiag(E);
4564 return false;
4567 bool found(APSInt &Value, QualType SubobjType) {
4568 if (!checkConst(SubobjType))
4569 return false;
4571 if (!SubobjType->isIntegerType()) {
4572 // We don't support increment / decrement on integer-cast-to-pointer
4573 // values.
4574 Info.FFDiag(E);
4575 return false;
4578 if (Old) *Old = APValue(Value);
4580 // bool arithmetic promotes to int, and the conversion back to bool
4581 // doesn't reduce mod 2^n, so special-case it.
4582 if (SubobjType->isBooleanType()) {
4583 if (AccessKind == AK_Increment)
4584 Value = 1;
4585 else
4586 Value = !Value;
4587 return true;
4590 bool WasNegative = Value.isNegative();
4591 if (AccessKind == AK_Increment) {
4592 ++Value;
4594 if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4595 APSInt ActualValue(Value, /*IsUnsigned*/true);
4596 return HandleOverflow(Info, E, ActualValue, SubobjType);
4598 } else {
4599 --Value;
4601 if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4602 unsigned BitWidth = Value.getBitWidth();
4603 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4604 ActualValue.setBit(BitWidth);
4605 return HandleOverflow(Info, E, ActualValue, SubobjType);
4608 return true;
4610 bool found(APFloat &Value, QualType SubobjType) {
4611 if (!checkConst(SubobjType))
4612 return false;
4614 if (Old) *Old = APValue(Value);
4616 APFloat One(Value.getSemantics(), 1);
4617 if (AccessKind == AK_Increment)
4618 Value.add(One, APFloat::rmNearestTiesToEven);
4619 else
4620 Value.subtract(One, APFloat::rmNearestTiesToEven);
4621 return true;
4623 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4624 if (!checkConst(SubobjType))
4625 return false;
4627 QualType PointeeType;
4628 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4629 PointeeType = PT->getPointeeType();
4630 else {
4631 Info.FFDiag(E);
4632 return false;
4635 LValue LVal;
4636 LVal.setFrom(Info.Ctx, Subobj);
4637 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4638 AccessKind == AK_Increment ? 1 : -1))
4639 return false;
4640 LVal.moveInto(Subobj);
4641 return true;
4644 } // end anonymous namespace
4646 /// Perform an increment or decrement on LVal.
4647 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4648 QualType LValType, bool IsIncrement, APValue *Old) {
4649 if (LVal.Designator.Invalid)
4650 return false;
4652 if (!Info.getLangOpts().CPlusPlus14) {
4653 Info.FFDiag(E);
4654 return false;
4657 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4658 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4659 IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4660 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4663 /// Build an lvalue for the object argument of a member function call.
4664 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4665 LValue &This) {
4666 if (Object->getType()->isPointerType() && Object->isPRValue())
4667 return EvaluatePointer(Object, This, Info);
4669 if (Object->isGLValue())
4670 return EvaluateLValue(Object, This, Info);
4672 if (Object->getType()->isLiteralType(Info.Ctx))
4673 return EvaluateTemporary(Object, This, Info);
4675 if (Object->getType()->isRecordType() && Object->isPRValue())
4676 return EvaluateTemporary(Object, This, Info);
4678 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4679 return false;
4682 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4683 /// lvalue referring to the result.
4685 /// \param Info - Information about the ongoing evaluation.
4686 /// \param LV - An lvalue referring to the base of the member pointer.
4687 /// \param RHS - The member pointer expression.
4688 /// \param IncludeMember - Specifies whether the member itself is included in
4689 /// the resulting LValue subobject designator. This is not possible when
4690 /// creating a bound member function.
4691 /// \return The field or method declaration to which the member pointer refers,
4692 /// or 0 if evaluation fails.
4693 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4694 QualType LVType,
4695 LValue &LV,
4696 const Expr *RHS,
4697 bool IncludeMember = true) {
4698 MemberPtr MemPtr;
4699 if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4700 return nullptr;
4702 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4703 // member value, the behavior is undefined.
4704 if (!MemPtr.getDecl()) {
4705 // FIXME: Specific diagnostic.
4706 Info.FFDiag(RHS);
4707 return nullptr;
4710 if (MemPtr.isDerivedMember()) {
4711 // This is a member of some derived class. Truncate LV appropriately.
4712 // The end of the derived-to-base path for the base object must match the
4713 // derived-to-base path for the member pointer.
4714 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4715 LV.Designator.Entries.size()) {
4716 Info.FFDiag(RHS);
4717 return nullptr;
4719 unsigned PathLengthToMember =
4720 LV.Designator.Entries.size() - MemPtr.Path.size();
4721 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4722 const CXXRecordDecl *LVDecl = getAsBaseClass(
4723 LV.Designator.Entries[PathLengthToMember + I]);
4724 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4725 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4726 Info.FFDiag(RHS);
4727 return nullptr;
4731 // Truncate the lvalue to the appropriate derived class.
4732 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4733 PathLengthToMember))
4734 return nullptr;
4735 } else if (!MemPtr.Path.empty()) {
4736 // Extend the LValue path with the member pointer's path.
4737 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4738 MemPtr.Path.size() + IncludeMember);
4740 // Walk down to the appropriate base class.
4741 if (const PointerType *PT = LVType->getAs<PointerType>())
4742 LVType = PT->getPointeeType();
4743 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4744 assert(RD && "member pointer access on non-class-type expression");
4745 // The first class in the path is that of the lvalue.
4746 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4747 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4748 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4749 return nullptr;
4750 RD = Base;
4752 // Finally cast to the class containing the member.
4753 if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4754 MemPtr.getContainingRecord()))
4755 return nullptr;
4758 // Add the member. Note that we cannot build bound member functions here.
4759 if (IncludeMember) {
4760 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4761 if (!HandleLValueMember(Info, RHS, LV, FD))
4762 return nullptr;
4763 } else if (const IndirectFieldDecl *IFD =
4764 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4765 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4766 return nullptr;
4767 } else {
4768 llvm_unreachable("can't construct reference to bound member function");
4772 return MemPtr.getDecl();
4775 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4776 const BinaryOperator *BO,
4777 LValue &LV,
4778 bool IncludeMember = true) {
4779 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4781 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4782 if (Info.noteFailure()) {
4783 MemberPtr MemPtr;
4784 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4786 return nullptr;
4789 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4790 BO->getRHS(), IncludeMember);
4793 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4794 /// the provided lvalue, which currently refers to the base object.
4795 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4796 LValue &Result) {
4797 SubobjectDesignator &D = Result.Designator;
4798 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4799 return false;
4801 QualType TargetQT = E->getType();
4802 if (const PointerType *PT = TargetQT->getAs<PointerType>())
4803 TargetQT = PT->getPointeeType();
4805 // Check this cast lands within the final derived-to-base subobject path.
4806 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4807 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4808 << D.MostDerivedType << TargetQT;
4809 return false;
4812 // Check the type of the final cast. We don't need to check the path,
4813 // since a cast can only be formed if the path is unique.
4814 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4815 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4816 const CXXRecordDecl *FinalType;
4817 if (NewEntriesSize == D.MostDerivedPathLength)
4818 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4819 else
4820 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4821 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4822 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4823 << D.MostDerivedType << TargetQT;
4824 return false;
4827 // Truncate the lvalue to the appropriate derived class.
4828 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4831 /// Get the value to use for a default-initialized object of type T.
4832 /// Return false if it encounters something invalid.
4833 static bool handleDefaultInitValue(QualType T, APValue &Result) {
4834 bool Success = true;
4836 // If there is already a value present don't overwrite it.
4837 if (!Result.isAbsent())
4838 return true;
4840 if (auto *RD = T->getAsCXXRecordDecl()) {
4841 if (RD->isInvalidDecl()) {
4842 Result = APValue();
4843 return false;
4845 if (RD->isUnion()) {
4846 Result = APValue((const FieldDecl *)nullptr);
4847 return true;
4849 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4850 std::distance(RD->field_begin(), RD->field_end()));
4852 unsigned Index = 0;
4853 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4854 End = RD->bases_end();
4855 I != End; ++I, ++Index)
4856 Success &=
4857 handleDefaultInitValue(I->getType(), Result.getStructBase(Index));
4859 for (const auto *I : RD->fields()) {
4860 if (I->isUnnamedBitfield())
4861 continue;
4862 Success &= handleDefaultInitValue(
4863 I->getType(), Result.getStructField(I->getFieldIndex()));
4865 return Success;
4868 if (auto *AT =
4869 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4870 Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4871 if (Result.hasArrayFiller())
4872 Success &=
4873 handleDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4875 return Success;
4878 Result = APValue::IndeterminateValue();
4879 return true;
4882 namespace {
4883 enum EvalStmtResult {
4884 /// Evaluation failed.
4885 ESR_Failed,
4886 /// Hit a 'return' statement.
4887 ESR_Returned,
4888 /// Evaluation succeeded.
4889 ESR_Succeeded,
4890 /// Hit a 'continue' statement.
4891 ESR_Continue,
4892 /// Hit a 'break' statement.
4893 ESR_Break,
4894 /// Still scanning for 'case' or 'default' statement.
4895 ESR_CaseNotFound
4899 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4900 if (VD->isInvalidDecl())
4901 return false;
4902 // We don't need to evaluate the initializer for a static local.
4903 if (!VD->hasLocalStorage())
4904 return true;
4906 LValue Result;
4907 APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4908 ScopeKind::Block, Result);
4910 const Expr *InitE = VD->getInit();
4911 if (!InitE) {
4912 if (VD->getType()->isDependentType())
4913 return Info.noteSideEffect();
4914 return handleDefaultInitValue(VD->getType(), Val);
4916 if (InitE->isValueDependent())
4917 return false;
4919 if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4920 // Wipe out any partially-computed value, to allow tracking that this
4921 // evaluation failed.
4922 Val = APValue();
4923 return false;
4926 return true;
4929 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4930 bool OK = true;
4932 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4933 OK &= EvaluateVarDecl(Info, VD);
4935 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4936 for (auto *BD : DD->bindings())
4937 if (auto *VD = BD->getHoldingVar())
4938 OK &= EvaluateDecl(Info, VD);
4940 return OK;
4943 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
4944 assert(E->isValueDependent());
4945 if (Info.noteSideEffect())
4946 return true;
4947 assert(E->containsErrors() && "valid value-dependent expression should never "
4948 "reach invalid code path.");
4949 return false;
4952 /// Evaluate a condition (either a variable declaration or an expression).
4953 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4954 const Expr *Cond, bool &Result) {
4955 if (Cond->isValueDependent())
4956 return false;
4957 FullExpressionRAII Scope(Info);
4958 if (CondDecl && !EvaluateDecl(Info, CondDecl))
4959 return false;
4960 if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4961 return false;
4962 return Scope.destroy();
4965 namespace {
4966 /// A location where the result (returned value) of evaluating a
4967 /// statement should be stored.
4968 struct StmtResult {
4969 /// The APValue that should be filled in with the returned value.
4970 APValue &Value;
4971 /// The location containing the result, if any (used to support RVO).
4972 const LValue *Slot;
4975 struct TempVersionRAII {
4976 CallStackFrame &Frame;
4978 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4979 Frame.pushTempVersion();
4982 ~TempVersionRAII() {
4983 Frame.popTempVersion();
4989 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4990 const Stmt *S,
4991 const SwitchCase *SC = nullptr);
4993 /// Evaluate the body of a loop, and translate the result as appropriate.
4994 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4995 const Stmt *Body,
4996 const SwitchCase *Case = nullptr) {
4997 BlockScopeRAII Scope(Info);
4999 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
5000 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5001 ESR = ESR_Failed;
5003 switch (ESR) {
5004 case ESR_Break:
5005 return ESR_Succeeded;
5006 case ESR_Succeeded:
5007 case ESR_Continue:
5008 return ESR_Continue;
5009 case ESR_Failed:
5010 case ESR_Returned:
5011 case ESR_CaseNotFound:
5012 return ESR;
5014 llvm_unreachable("Invalid EvalStmtResult!");
5017 /// Evaluate a switch statement.
5018 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
5019 const SwitchStmt *SS) {
5020 BlockScopeRAII Scope(Info);
5022 // Evaluate the switch condition.
5023 APSInt Value;
5025 if (const Stmt *Init = SS->getInit()) {
5026 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5027 if (ESR != ESR_Succeeded) {
5028 if (ESR != ESR_Failed && !Scope.destroy())
5029 ESR = ESR_Failed;
5030 return ESR;
5034 FullExpressionRAII CondScope(Info);
5035 if (SS->getConditionVariable() &&
5036 !EvaluateDecl(Info, SS->getConditionVariable()))
5037 return ESR_Failed;
5038 if (SS->getCond()->isValueDependent()) {
5039 // We don't know what the value is, and which branch should jump to.
5040 EvaluateDependentExpr(SS->getCond(), Info);
5041 return ESR_Failed;
5043 if (!EvaluateInteger(SS->getCond(), Value, Info))
5044 return ESR_Failed;
5046 if (!CondScope.destroy())
5047 return ESR_Failed;
5050 // Find the switch case corresponding to the value of the condition.
5051 // FIXME: Cache this lookup.
5052 const SwitchCase *Found = nullptr;
5053 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
5054 SC = SC->getNextSwitchCase()) {
5055 if (isa<DefaultStmt>(SC)) {
5056 Found = SC;
5057 continue;
5060 const CaseStmt *CS = cast<CaseStmt>(SC);
5061 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
5062 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
5063 : LHS;
5064 if (LHS <= Value && Value <= RHS) {
5065 Found = SC;
5066 break;
5070 if (!Found)
5071 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5073 // Search the switch body for the switch case and evaluate it from there.
5074 EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
5075 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5076 return ESR_Failed;
5078 switch (ESR) {
5079 case ESR_Break:
5080 return ESR_Succeeded;
5081 case ESR_Succeeded:
5082 case ESR_Continue:
5083 case ESR_Failed:
5084 case ESR_Returned:
5085 return ESR;
5086 case ESR_CaseNotFound:
5087 // This can only happen if the switch case is nested within a statement
5088 // expression. We have no intention of supporting that.
5089 Info.FFDiag(Found->getBeginLoc(),
5090 diag::note_constexpr_stmt_expr_unsupported);
5091 return ESR_Failed;
5093 llvm_unreachable("Invalid EvalStmtResult!");
5096 static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) {
5097 // An expression E is a core constant expression unless the evaluation of E
5098 // would evaluate one of the following: [C++23] - a control flow that passes
5099 // through a declaration of a variable with static or thread storage duration
5100 // unless that variable is usable in constant expressions.
5101 if (VD->isLocalVarDecl() && VD->isStaticLocal() &&
5102 !VD->isUsableInConstantExpressions(Info.Ctx)) {
5103 Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local)
5104 << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD;
5105 return false;
5107 return true;
5110 // Evaluate a statement.
5111 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5112 const Stmt *S, const SwitchCase *Case) {
5113 if (!Info.nextStep(S))
5114 return ESR_Failed;
5116 // If we're hunting down a 'case' or 'default' label, recurse through
5117 // substatements until we hit the label.
5118 if (Case) {
5119 switch (S->getStmtClass()) {
5120 case Stmt::CompoundStmtClass:
5121 // FIXME: Precompute which substatement of a compound statement we
5122 // would jump to, and go straight there rather than performing a
5123 // linear scan each time.
5124 case Stmt::LabelStmtClass:
5125 case Stmt::AttributedStmtClass:
5126 case Stmt::DoStmtClass:
5127 break;
5129 case Stmt::CaseStmtClass:
5130 case Stmt::DefaultStmtClass:
5131 if (Case == S)
5132 Case = nullptr;
5133 break;
5135 case Stmt::IfStmtClass: {
5136 // FIXME: Precompute which side of an 'if' we would jump to, and go
5137 // straight there rather than scanning both sides.
5138 const IfStmt *IS = cast<IfStmt>(S);
5140 // Wrap the evaluation in a block scope, in case it's a DeclStmt
5141 // preceded by our switch label.
5142 BlockScopeRAII Scope(Info);
5144 // Step into the init statement in case it brings an (uninitialized)
5145 // variable into scope.
5146 if (const Stmt *Init = IS->getInit()) {
5147 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5148 if (ESR != ESR_CaseNotFound) {
5149 assert(ESR != ESR_Succeeded);
5150 return ESR;
5154 // Condition variable must be initialized if it exists.
5155 // FIXME: We can skip evaluating the body if there's a condition
5156 // variable, as there can't be any case labels within it.
5157 // (The same is true for 'for' statements.)
5159 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5160 if (ESR == ESR_Failed)
5161 return ESR;
5162 if (ESR != ESR_CaseNotFound)
5163 return Scope.destroy() ? ESR : ESR_Failed;
5164 if (!IS->getElse())
5165 return ESR_CaseNotFound;
5167 ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5168 if (ESR == ESR_Failed)
5169 return ESR;
5170 if (ESR != ESR_CaseNotFound)
5171 return Scope.destroy() ? ESR : ESR_Failed;
5172 return ESR_CaseNotFound;
5175 case Stmt::WhileStmtClass: {
5176 EvalStmtResult ESR =
5177 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5178 if (ESR != ESR_Continue)
5179 return ESR;
5180 break;
5183 case Stmt::ForStmtClass: {
5184 const ForStmt *FS = cast<ForStmt>(S);
5185 BlockScopeRAII Scope(Info);
5187 // Step into the init statement in case it brings an (uninitialized)
5188 // variable into scope.
5189 if (const Stmt *Init = FS->getInit()) {
5190 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5191 if (ESR != ESR_CaseNotFound) {
5192 assert(ESR != ESR_Succeeded);
5193 return ESR;
5197 EvalStmtResult ESR =
5198 EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5199 if (ESR != ESR_Continue)
5200 return ESR;
5201 if (const auto *Inc = FS->getInc()) {
5202 if (Inc->isValueDependent()) {
5203 if (!EvaluateDependentExpr(Inc, Info))
5204 return ESR_Failed;
5205 } else {
5206 FullExpressionRAII IncScope(Info);
5207 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5208 return ESR_Failed;
5211 break;
5214 case Stmt::DeclStmtClass: {
5215 // Start the lifetime of any uninitialized variables we encounter. They
5216 // might be used by the selected branch of the switch.
5217 const DeclStmt *DS = cast<DeclStmt>(S);
5218 for (const auto *D : DS->decls()) {
5219 if (const auto *VD = dyn_cast<VarDecl>(D)) {
5220 if (!CheckLocalVariableDeclaration(Info, VD))
5221 return ESR_Failed;
5222 if (VD->hasLocalStorage() && !VD->getInit())
5223 if (!EvaluateVarDecl(Info, VD))
5224 return ESR_Failed;
5225 // FIXME: If the variable has initialization that can't be jumped
5226 // over, bail out of any immediately-surrounding compound-statement
5227 // too. There can't be any case labels here.
5230 return ESR_CaseNotFound;
5233 default:
5234 return ESR_CaseNotFound;
5238 switch (S->getStmtClass()) {
5239 default:
5240 if (const Expr *E = dyn_cast<Expr>(S)) {
5241 if (E->isValueDependent()) {
5242 if (!EvaluateDependentExpr(E, Info))
5243 return ESR_Failed;
5244 } else {
5245 // Don't bother evaluating beyond an expression-statement which couldn't
5246 // be evaluated.
5247 // FIXME: Do we need the FullExpressionRAII object here?
5248 // VisitExprWithCleanups should create one when necessary.
5249 FullExpressionRAII Scope(Info);
5250 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5251 return ESR_Failed;
5253 return ESR_Succeeded;
5256 Info.FFDiag(S->getBeginLoc()) << S->getSourceRange();
5257 return ESR_Failed;
5259 case Stmt::NullStmtClass:
5260 return ESR_Succeeded;
5262 case Stmt::DeclStmtClass: {
5263 const DeclStmt *DS = cast<DeclStmt>(S);
5264 for (const auto *D : DS->decls()) {
5265 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
5266 if (VD && !CheckLocalVariableDeclaration(Info, VD))
5267 return ESR_Failed;
5268 // Each declaration initialization is its own full-expression.
5269 FullExpressionRAII Scope(Info);
5270 if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5271 return ESR_Failed;
5272 if (!Scope.destroy())
5273 return ESR_Failed;
5275 return ESR_Succeeded;
5278 case Stmt::ReturnStmtClass: {
5279 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5280 FullExpressionRAII Scope(Info);
5281 if (RetExpr && RetExpr->isValueDependent()) {
5282 EvaluateDependentExpr(RetExpr, Info);
5283 // We know we returned, but we don't know what the value is.
5284 return ESR_Failed;
5286 if (RetExpr &&
5287 !(Result.Slot
5288 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5289 : Evaluate(Result.Value, Info, RetExpr)))
5290 return ESR_Failed;
5291 return Scope.destroy() ? ESR_Returned : ESR_Failed;
5294 case Stmt::CompoundStmtClass: {
5295 BlockScopeRAII Scope(Info);
5297 const CompoundStmt *CS = cast<CompoundStmt>(S);
5298 for (const auto *BI : CS->body()) {
5299 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5300 if (ESR == ESR_Succeeded)
5301 Case = nullptr;
5302 else if (ESR != ESR_CaseNotFound) {
5303 if (ESR != ESR_Failed && !Scope.destroy())
5304 return ESR_Failed;
5305 return ESR;
5308 if (Case)
5309 return ESR_CaseNotFound;
5310 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5313 case Stmt::IfStmtClass: {
5314 const IfStmt *IS = cast<IfStmt>(S);
5316 // Evaluate the condition, as either a var decl or as an expression.
5317 BlockScopeRAII Scope(Info);
5318 if (const Stmt *Init = IS->getInit()) {
5319 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5320 if (ESR != ESR_Succeeded) {
5321 if (ESR != ESR_Failed && !Scope.destroy())
5322 return ESR_Failed;
5323 return ESR;
5326 bool Cond;
5327 if (IS->isConsteval()) {
5328 Cond = IS->isNonNegatedConsteval();
5329 // If we are not in a constant context, if consteval should not evaluate
5330 // to true.
5331 if (!Info.InConstantContext)
5332 Cond = !Cond;
5333 } else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(),
5334 Cond))
5335 return ESR_Failed;
5337 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5338 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5339 if (ESR != ESR_Succeeded) {
5340 if (ESR != ESR_Failed && !Scope.destroy())
5341 return ESR_Failed;
5342 return ESR;
5345 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5348 case Stmt::WhileStmtClass: {
5349 const WhileStmt *WS = cast<WhileStmt>(S);
5350 while (true) {
5351 BlockScopeRAII Scope(Info);
5352 bool Continue;
5353 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5354 Continue))
5355 return ESR_Failed;
5356 if (!Continue)
5357 break;
5359 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5360 if (ESR != ESR_Continue) {
5361 if (ESR != ESR_Failed && !Scope.destroy())
5362 return ESR_Failed;
5363 return ESR;
5365 if (!Scope.destroy())
5366 return ESR_Failed;
5368 return ESR_Succeeded;
5371 case Stmt::DoStmtClass: {
5372 const DoStmt *DS = cast<DoStmt>(S);
5373 bool Continue;
5374 do {
5375 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5376 if (ESR != ESR_Continue)
5377 return ESR;
5378 Case = nullptr;
5380 if (DS->getCond()->isValueDependent()) {
5381 EvaluateDependentExpr(DS->getCond(), Info);
5382 // Bailout as we don't know whether to keep going or terminate the loop.
5383 return ESR_Failed;
5385 FullExpressionRAII CondScope(Info);
5386 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5387 !CondScope.destroy())
5388 return ESR_Failed;
5389 } while (Continue);
5390 return ESR_Succeeded;
5393 case Stmt::ForStmtClass: {
5394 const ForStmt *FS = cast<ForStmt>(S);
5395 BlockScopeRAII ForScope(Info);
5396 if (FS->getInit()) {
5397 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5398 if (ESR != ESR_Succeeded) {
5399 if (ESR != ESR_Failed && !ForScope.destroy())
5400 return ESR_Failed;
5401 return ESR;
5404 while (true) {
5405 BlockScopeRAII IterScope(Info);
5406 bool Continue = true;
5407 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5408 FS->getCond(), Continue))
5409 return ESR_Failed;
5410 if (!Continue)
5411 break;
5413 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5414 if (ESR != ESR_Continue) {
5415 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5416 return ESR_Failed;
5417 return ESR;
5420 if (const auto *Inc = FS->getInc()) {
5421 if (Inc->isValueDependent()) {
5422 if (!EvaluateDependentExpr(Inc, Info))
5423 return ESR_Failed;
5424 } else {
5425 FullExpressionRAII IncScope(Info);
5426 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5427 return ESR_Failed;
5431 if (!IterScope.destroy())
5432 return ESR_Failed;
5434 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5437 case Stmt::CXXForRangeStmtClass: {
5438 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5439 BlockScopeRAII Scope(Info);
5441 // Evaluate the init-statement if present.
5442 if (FS->getInit()) {
5443 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5444 if (ESR != ESR_Succeeded) {
5445 if (ESR != ESR_Failed && !Scope.destroy())
5446 return ESR_Failed;
5447 return ESR;
5451 // Initialize the __range variable.
5452 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5453 if (ESR != ESR_Succeeded) {
5454 if (ESR != ESR_Failed && !Scope.destroy())
5455 return ESR_Failed;
5456 return ESR;
5459 // In error-recovery cases it's possible to get here even if we failed to
5460 // synthesize the __begin and __end variables.
5461 if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5462 return ESR_Failed;
5464 // Create the __begin and __end iterators.
5465 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5466 if (ESR != ESR_Succeeded) {
5467 if (ESR != ESR_Failed && !Scope.destroy())
5468 return ESR_Failed;
5469 return ESR;
5471 ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5472 if (ESR != ESR_Succeeded) {
5473 if (ESR != ESR_Failed && !Scope.destroy())
5474 return ESR_Failed;
5475 return ESR;
5478 while (true) {
5479 // Condition: __begin != __end.
5481 if (FS->getCond()->isValueDependent()) {
5482 EvaluateDependentExpr(FS->getCond(), Info);
5483 // We don't know whether to keep going or terminate the loop.
5484 return ESR_Failed;
5486 bool Continue = true;
5487 FullExpressionRAII CondExpr(Info);
5488 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5489 return ESR_Failed;
5490 if (!Continue)
5491 break;
5494 // User's variable declaration, initialized by *__begin.
5495 BlockScopeRAII InnerScope(Info);
5496 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5497 if (ESR != ESR_Succeeded) {
5498 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5499 return ESR_Failed;
5500 return ESR;
5503 // Loop body.
5504 ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5505 if (ESR != ESR_Continue) {
5506 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5507 return ESR_Failed;
5508 return ESR;
5510 if (FS->getInc()->isValueDependent()) {
5511 if (!EvaluateDependentExpr(FS->getInc(), Info))
5512 return ESR_Failed;
5513 } else {
5514 // Increment: ++__begin
5515 if (!EvaluateIgnoredValue(Info, FS->getInc()))
5516 return ESR_Failed;
5519 if (!InnerScope.destroy())
5520 return ESR_Failed;
5523 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5526 case Stmt::SwitchStmtClass:
5527 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5529 case Stmt::ContinueStmtClass:
5530 return ESR_Continue;
5532 case Stmt::BreakStmtClass:
5533 return ESR_Break;
5535 case Stmt::LabelStmtClass:
5536 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5538 case Stmt::AttributedStmtClass:
5539 // As a general principle, C++11 attributes can be ignored without
5540 // any semantic impact.
5541 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
5542 Case);
5544 case Stmt::CaseStmtClass:
5545 case Stmt::DefaultStmtClass:
5546 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5547 case Stmt::CXXTryStmtClass:
5548 // Evaluate try blocks by evaluating all sub statements.
5549 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5553 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5554 /// default constructor. If so, we'll fold it whether or not it's marked as
5555 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5556 /// so we need special handling.
5557 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5558 const CXXConstructorDecl *CD,
5559 bool IsValueInitialization) {
5560 if (!CD->isTrivial() || !CD->isDefaultConstructor())
5561 return false;
5563 // Value-initialization does not call a trivial default constructor, so such a
5564 // call is a core constant expression whether or not the constructor is
5565 // constexpr.
5566 if (!CD->isConstexpr() && !IsValueInitialization) {
5567 if (Info.getLangOpts().CPlusPlus11) {
5568 // FIXME: If DiagDecl is an implicitly-declared special member function,
5569 // we should be much more explicit about why it's not constexpr.
5570 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5571 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5572 Info.Note(CD->getLocation(), diag::note_declared_at);
5573 } else {
5574 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5577 return true;
5580 /// CheckConstexprFunction - Check that a function can be called in a constant
5581 /// expression.
5582 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5583 const FunctionDecl *Declaration,
5584 const FunctionDecl *Definition,
5585 const Stmt *Body) {
5586 // Potential constant expressions can contain calls to declared, but not yet
5587 // defined, constexpr functions.
5588 if (Info.checkingPotentialConstantExpression() && !Definition &&
5589 Declaration->isConstexpr())
5590 return false;
5592 // Bail out if the function declaration itself is invalid. We will
5593 // have produced a relevant diagnostic while parsing it, so just
5594 // note the problematic sub-expression.
5595 if (Declaration->isInvalidDecl()) {
5596 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5597 return false;
5600 // DR1872: An instantiated virtual constexpr function can't be called in a
5601 // constant expression (prior to C++20). We can still constant-fold such a
5602 // call.
5603 if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5604 cast<CXXMethodDecl>(Declaration)->isVirtual())
5605 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5607 if (Definition && Definition->isInvalidDecl()) {
5608 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5609 return false;
5612 // Can we evaluate this function call?
5613 if (Definition && Definition->isConstexpr() && Body)
5614 return true;
5616 if (Info.getLangOpts().CPlusPlus11) {
5617 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5619 // If this function is not constexpr because it is an inherited
5620 // non-constexpr constructor, diagnose that directly.
5621 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5622 if (CD && CD->isInheritingConstructor()) {
5623 auto *Inherited = CD->getInheritedConstructor().getConstructor();
5624 if (!Inherited->isConstexpr())
5625 DiagDecl = CD = Inherited;
5628 // FIXME: If DiagDecl is an implicitly-declared special member function
5629 // or an inheriting constructor, we should be much more explicit about why
5630 // it's not constexpr.
5631 if (CD && CD->isInheritingConstructor())
5632 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5633 << CD->getInheritedConstructor().getConstructor()->getParent();
5634 else
5635 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5636 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5637 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5638 } else {
5639 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5641 return false;
5644 namespace {
5645 struct CheckDynamicTypeHandler {
5646 AccessKinds AccessKind;
5647 typedef bool result_type;
5648 bool failed() { return false; }
5649 bool found(APValue &Subobj, QualType SubobjType) { return true; }
5650 bool found(APSInt &Value, QualType SubobjType) { return true; }
5651 bool found(APFloat &Value, QualType SubobjType) { return true; }
5653 } // end anonymous namespace
5655 /// Check that we can access the notional vptr of an object / determine its
5656 /// dynamic type.
5657 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5658 AccessKinds AK, bool Polymorphic) {
5659 if (This.Designator.Invalid)
5660 return false;
5662 CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5664 if (!Obj)
5665 return false;
5667 if (!Obj.Value) {
5668 // The object is not usable in constant expressions, so we can't inspect
5669 // its value to see if it's in-lifetime or what the active union members
5670 // are. We can still check for a one-past-the-end lvalue.
5671 if (This.Designator.isOnePastTheEnd() ||
5672 This.Designator.isMostDerivedAnUnsizedArray()) {
5673 Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5674 ? diag::note_constexpr_access_past_end
5675 : diag::note_constexpr_access_unsized_array)
5676 << AK;
5677 return false;
5678 } else if (Polymorphic) {
5679 // Conservatively refuse to perform a polymorphic operation if we would
5680 // not be able to read a notional 'vptr' value.
5681 APValue Val;
5682 This.moveInto(Val);
5683 QualType StarThisType =
5684 Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5685 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5686 << AK << Val.getAsString(Info.Ctx, StarThisType);
5687 return false;
5689 return true;
5692 CheckDynamicTypeHandler Handler{AK};
5693 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5696 /// Check that the pointee of the 'this' pointer in a member function call is
5697 /// either within its lifetime or in its period of construction or destruction.
5698 static bool
5699 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5700 const LValue &This,
5701 const CXXMethodDecl *NamedMember) {
5702 return checkDynamicType(
5703 Info, E, This,
5704 isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5707 struct DynamicType {
5708 /// The dynamic class type of the object.
5709 const CXXRecordDecl *Type;
5710 /// The corresponding path length in the lvalue.
5711 unsigned PathLength;
5714 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5715 unsigned PathLength) {
5716 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5717 Designator.Entries.size() && "invalid path length");
5718 return (PathLength == Designator.MostDerivedPathLength)
5719 ? Designator.MostDerivedType->getAsCXXRecordDecl()
5720 : getAsBaseClass(Designator.Entries[PathLength - 1]);
5723 /// Determine the dynamic type of an object.
5724 static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info,
5725 const Expr *E,
5726 LValue &This,
5727 AccessKinds AK) {
5728 // If we don't have an lvalue denoting an object of class type, there is no
5729 // meaningful dynamic type. (We consider objects of non-class type to have no
5730 // dynamic type.)
5731 if (!checkDynamicType(Info, E, This, AK, true))
5732 return std::nullopt;
5734 // Refuse to compute a dynamic type in the presence of virtual bases. This
5735 // shouldn't happen other than in constant-folding situations, since literal
5736 // types can't have virtual bases.
5738 // Note that consumers of DynamicType assume that the type has no virtual
5739 // bases, and will need modifications if this restriction is relaxed.
5740 const CXXRecordDecl *Class =
5741 This.Designator.MostDerivedType->getAsCXXRecordDecl();
5742 if (!Class || Class->getNumVBases()) {
5743 Info.FFDiag(E);
5744 return std::nullopt;
5747 // FIXME: For very deep class hierarchies, it might be beneficial to use a
5748 // binary search here instead. But the overwhelmingly common case is that
5749 // we're not in the middle of a constructor, so it probably doesn't matter
5750 // in practice.
5751 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5752 for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5753 PathLength <= Path.size(); ++PathLength) {
5754 switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5755 Path.slice(0, PathLength))) {
5756 case ConstructionPhase::Bases:
5757 case ConstructionPhase::DestroyingBases:
5758 // We're constructing or destroying a base class. This is not the dynamic
5759 // type.
5760 break;
5762 case ConstructionPhase::None:
5763 case ConstructionPhase::AfterBases:
5764 case ConstructionPhase::AfterFields:
5765 case ConstructionPhase::Destroying:
5766 // We've finished constructing the base classes and not yet started
5767 // destroying them again, so this is the dynamic type.
5768 return DynamicType{getBaseClassType(This.Designator, PathLength),
5769 PathLength};
5773 // CWG issue 1517: we're constructing a base class of the object described by
5774 // 'This', so that object has not yet begun its period of construction and
5775 // any polymorphic operation on it results in undefined behavior.
5776 Info.FFDiag(E);
5777 return std::nullopt;
5780 /// Perform virtual dispatch.
5781 static const CXXMethodDecl *HandleVirtualDispatch(
5782 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5783 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5784 std::optional<DynamicType> DynType = ComputeDynamicType(
5785 Info, E, This,
5786 isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5787 if (!DynType)
5788 return nullptr;
5790 // Find the final overrider. It must be declared in one of the classes on the
5791 // path from the dynamic type to the static type.
5792 // FIXME: If we ever allow literal types to have virtual base classes, that
5793 // won't be true.
5794 const CXXMethodDecl *Callee = Found;
5795 unsigned PathLength = DynType->PathLength;
5796 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5797 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5798 const CXXMethodDecl *Overrider =
5799 Found->getCorrespondingMethodDeclaredInClass(Class, false);
5800 if (Overrider) {
5801 Callee = Overrider;
5802 break;
5806 // C++2a [class.abstract]p6:
5807 // the effect of making a virtual call to a pure virtual function [...] is
5808 // undefined
5809 if (Callee->isPure()) {
5810 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5811 Info.Note(Callee->getLocation(), diag::note_declared_at);
5812 return nullptr;
5815 // If necessary, walk the rest of the path to determine the sequence of
5816 // covariant adjustment steps to apply.
5817 if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5818 Found->getReturnType())) {
5819 CovariantAdjustmentPath.push_back(Callee->getReturnType());
5820 for (unsigned CovariantPathLength = PathLength + 1;
5821 CovariantPathLength != This.Designator.Entries.size();
5822 ++CovariantPathLength) {
5823 const CXXRecordDecl *NextClass =
5824 getBaseClassType(This.Designator, CovariantPathLength);
5825 const CXXMethodDecl *Next =
5826 Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5827 if (Next && !Info.Ctx.hasSameUnqualifiedType(
5828 Next->getReturnType(), CovariantAdjustmentPath.back()))
5829 CovariantAdjustmentPath.push_back(Next->getReturnType());
5831 if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5832 CovariantAdjustmentPath.back()))
5833 CovariantAdjustmentPath.push_back(Found->getReturnType());
5836 // Perform 'this' adjustment.
5837 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5838 return nullptr;
5840 return Callee;
5843 /// Perform the adjustment from a value returned by a virtual function to
5844 /// a value of the statically expected type, which may be a pointer or
5845 /// reference to a base class of the returned type.
5846 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5847 APValue &Result,
5848 ArrayRef<QualType> Path) {
5849 assert(Result.isLValue() &&
5850 "unexpected kind of APValue for covariant return");
5851 if (Result.isNullPointer())
5852 return true;
5854 LValue LVal;
5855 LVal.setFrom(Info.Ctx, Result);
5857 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5858 for (unsigned I = 1; I != Path.size(); ++I) {
5859 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5860 assert(OldClass && NewClass && "unexpected kind of covariant return");
5861 if (OldClass != NewClass &&
5862 !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5863 return false;
5864 OldClass = NewClass;
5867 LVal.moveInto(Result);
5868 return true;
5871 /// Determine whether \p Base, which is known to be a direct base class of
5872 /// \p Derived, is a public base class.
5873 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5874 const CXXRecordDecl *Base) {
5875 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5876 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5877 if (BaseClass && declaresSameEntity(BaseClass, Base))
5878 return BaseSpec.getAccessSpecifier() == AS_public;
5880 llvm_unreachable("Base is not a direct base of Derived");
5883 /// Apply the given dynamic cast operation on the provided lvalue.
5885 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5886 /// to find a suitable target subobject.
5887 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5888 LValue &Ptr) {
5889 // We can't do anything with a non-symbolic pointer value.
5890 SubobjectDesignator &D = Ptr.Designator;
5891 if (D.Invalid)
5892 return false;
5894 // C++ [expr.dynamic.cast]p6:
5895 // If v is a null pointer value, the result is a null pointer value.
5896 if (Ptr.isNullPointer() && !E->isGLValue())
5897 return true;
5899 // For all the other cases, we need the pointer to point to an object within
5900 // its lifetime / period of construction / destruction, and we need to know
5901 // its dynamic type.
5902 std::optional<DynamicType> DynType =
5903 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5904 if (!DynType)
5905 return false;
5907 // C++ [expr.dynamic.cast]p7:
5908 // If T is "pointer to cv void", then the result is a pointer to the most
5909 // derived object
5910 if (E->getType()->isVoidPointerType())
5911 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5913 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5914 assert(C && "dynamic_cast target is not void pointer nor class");
5915 CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5917 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5918 // C++ [expr.dynamic.cast]p9:
5919 if (!E->isGLValue()) {
5920 // The value of a failed cast to pointer type is the null pointer value
5921 // of the required result type.
5922 Ptr.setNull(Info.Ctx, E->getType());
5923 return true;
5926 // A failed cast to reference type throws [...] std::bad_cast.
5927 unsigned DiagKind;
5928 if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5929 DynType->Type->isDerivedFrom(C)))
5930 DiagKind = 0;
5931 else if (!Paths || Paths->begin() == Paths->end())
5932 DiagKind = 1;
5933 else if (Paths->isAmbiguous(CQT))
5934 DiagKind = 2;
5935 else {
5936 assert(Paths->front().Access != AS_public && "why did the cast fail?");
5937 DiagKind = 3;
5939 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5940 << DiagKind << Ptr.Designator.getType(Info.Ctx)
5941 << Info.Ctx.getRecordType(DynType->Type)
5942 << E->getType().getUnqualifiedType();
5943 return false;
5946 // Runtime check, phase 1:
5947 // Walk from the base subobject towards the derived object looking for the
5948 // target type.
5949 for (int PathLength = Ptr.Designator.Entries.size();
5950 PathLength >= (int)DynType->PathLength; --PathLength) {
5951 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5952 if (declaresSameEntity(Class, C))
5953 return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5954 // We can only walk across public inheritance edges.
5955 if (PathLength > (int)DynType->PathLength &&
5956 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5957 Class))
5958 return RuntimeCheckFailed(nullptr);
5961 // Runtime check, phase 2:
5962 // Search the dynamic type for an unambiguous public base of type C.
5963 CXXBasePaths Paths(/*FindAmbiguities=*/true,
5964 /*RecordPaths=*/true, /*DetectVirtual=*/false);
5965 if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5966 Paths.front().Access == AS_public) {
5967 // Downcast to the dynamic type...
5968 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5969 return false;
5970 // ... then upcast to the chosen base class subobject.
5971 for (CXXBasePathElement &Elem : Paths.front())
5972 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5973 return false;
5974 return true;
5977 // Otherwise, the runtime check fails.
5978 return RuntimeCheckFailed(&Paths);
5981 namespace {
5982 struct StartLifetimeOfUnionMemberHandler {
5983 EvalInfo &Info;
5984 const Expr *LHSExpr;
5985 const FieldDecl *Field;
5986 bool DuringInit;
5987 bool Failed = false;
5988 static const AccessKinds AccessKind = AK_Assign;
5990 typedef bool result_type;
5991 bool failed() { return Failed; }
5992 bool found(APValue &Subobj, QualType SubobjType) {
5993 // We are supposed to perform no initialization but begin the lifetime of
5994 // the object. We interpret that as meaning to do what default
5995 // initialization of the object would do if all constructors involved were
5996 // trivial:
5997 // * All base, non-variant member, and array element subobjects' lifetimes
5998 // begin
5999 // * No variant members' lifetimes begin
6000 // * All scalar subobjects whose lifetimes begin have indeterminate values
6001 assert(SubobjType->isUnionType());
6002 if (declaresSameEntity(Subobj.getUnionField(), Field)) {
6003 // This union member is already active. If it's also in-lifetime, there's
6004 // nothing to do.
6005 if (Subobj.getUnionValue().hasValue())
6006 return true;
6007 } else if (DuringInit) {
6008 // We're currently in the process of initializing a different union
6009 // member. If we carried on, that initialization would attempt to
6010 // store to an inactive union member, resulting in undefined behavior.
6011 Info.FFDiag(LHSExpr,
6012 diag::note_constexpr_union_member_change_during_init);
6013 return false;
6015 APValue Result;
6016 Failed = !handleDefaultInitValue(Field->getType(), Result);
6017 Subobj.setUnion(Field, Result);
6018 return true;
6020 bool found(APSInt &Value, QualType SubobjType) {
6021 llvm_unreachable("wrong value kind for union object");
6023 bool found(APFloat &Value, QualType SubobjType) {
6024 llvm_unreachable("wrong value kind for union object");
6027 } // end anonymous namespace
6029 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
6031 /// Handle a builtin simple-assignment or a call to a trivial assignment
6032 /// operator whose left-hand side might involve a union member access. If it
6033 /// does, implicitly start the lifetime of any accessed union elements per
6034 /// C++20 [class.union]5.
6035 static bool MaybeHandleUnionActiveMemberChange(EvalInfo &Info,
6036 const Expr *LHSExpr,
6037 const LValue &LHS) {
6038 if (LHS.InvalidBase || LHS.Designator.Invalid)
6039 return false;
6041 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
6042 // C++ [class.union]p5:
6043 // define the set S(E) of subexpressions of E as follows:
6044 unsigned PathLength = LHS.Designator.Entries.size();
6045 for (const Expr *E = LHSExpr; E != nullptr;) {
6046 // -- If E is of the form A.B, S(E) contains the elements of S(A)...
6047 if (auto *ME = dyn_cast<MemberExpr>(E)) {
6048 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
6049 // Note that we can't implicitly start the lifetime of a reference,
6050 // so we don't need to proceed any further if we reach one.
6051 if (!FD || FD->getType()->isReferenceType())
6052 break;
6054 // ... and also contains A.B if B names a union member ...
6055 if (FD->getParent()->isUnion()) {
6056 // ... of a non-class, non-array type, or of a class type with a
6057 // trivial default constructor that is not deleted, or an array of
6058 // such types.
6059 auto *RD =
6060 FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6061 if (!RD || RD->hasTrivialDefaultConstructor())
6062 UnionPathLengths.push_back({PathLength - 1, FD});
6065 E = ME->getBase();
6066 --PathLength;
6067 assert(declaresSameEntity(FD,
6068 LHS.Designator.Entries[PathLength]
6069 .getAsBaseOrMember().getPointer()));
6071 // -- If E is of the form A[B] and is interpreted as a built-in array
6072 // subscripting operator, S(E) is [S(the array operand, if any)].
6073 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
6074 // Step over an ArrayToPointerDecay implicit cast.
6075 auto *Base = ASE->getBase()->IgnoreImplicit();
6076 if (!Base->getType()->isArrayType())
6077 break;
6079 E = Base;
6080 --PathLength;
6082 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6083 // Step over a derived-to-base conversion.
6084 E = ICE->getSubExpr();
6085 if (ICE->getCastKind() == CK_NoOp)
6086 continue;
6087 if (ICE->getCastKind() != CK_DerivedToBase &&
6088 ICE->getCastKind() != CK_UncheckedDerivedToBase)
6089 break;
6090 // Walk path backwards as we walk up from the base to the derived class.
6091 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
6092 if (Elt->isVirtual()) {
6093 // A class with virtual base classes never has a trivial default
6094 // constructor, so S(E) is empty in this case.
6095 E = nullptr;
6096 break;
6099 --PathLength;
6100 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
6101 LHS.Designator.Entries[PathLength]
6102 .getAsBaseOrMember().getPointer()));
6105 // -- Otherwise, S(E) is empty.
6106 } else {
6107 break;
6111 // Common case: no unions' lifetimes are started.
6112 if (UnionPathLengths.empty())
6113 return true;
6115 // if modification of X [would access an inactive union member], an object
6116 // of the type of X is implicitly created
6117 CompleteObject Obj =
6118 findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
6119 if (!Obj)
6120 return false;
6121 for (std::pair<unsigned, const FieldDecl *> LengthAndField :
6122 llvm::reverse(UnionPathLengths)) {
6123 // Form a designator for the union object.
6124 SubobjectDesignator D = LHS.Designator;
6125 D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
6127 bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
6128 ConstructionPhase::AfterBases;
6129 StartLifetimeOfUnionMemberHandler StartLifetime{
6130 Info, LHSExpr, LengthAndField.second, DuringInit};
6131 if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
6132 return false;
6135 return true;
6138 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6139 CallRef Call, EvalInfo &Info,
6140 bool NonNull = false) {
6141 LValue LV;
6142 // Create the parameter slot and register its destruction. For a vararg
6143 // argument, create a temporary.
6144 // FIXME: For calling conventions that destroy parameters in the callee,
6145 // should we consider performing destruction when the function returns
6146 // instead?
6147 APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
6148 : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
6149 ScopeKind::Call, LV);
6150 if (!EvaluateInPlace(V, Info, LV, Arg))
6151 return false;
6153 // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6154 // undefined behavior, so is non-constant.
6155 if (NonNull && V.isLValue() && V.isNullPointer()) {
6156 Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6157 return false;
6160 return true;
6163 /// Evaluate the arguments to a function call.
6164 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6165 EvalInfo &Info, const FunctionDecl *Callee,
6166 bool RightToLeft = false) {
6167 bool Success = true;
6168 llvm::SmallBitVector ForbiddenNullArgs;
6169 if (Callee->hasAttr<NonNullAttr>()) {
6170 ForbiddenNullArgs.resize(Args.size());
6171 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6172 if (!Attr->args_size()) {
6173 ForbiddenNullArgs.set();
6174 break;
6175 } else
6176 for (auto Idx : Attr->args()) {
6177 unsigned ASTIdx = Idx.getASTIndex();
6178 if (ASTIdx >= Args.size())
6179 continue;
6180 ForbiddenNullArgs[ASTIdx] = true;
6184 for (unsigned I = 0; I < Args.size(); I++) {
6185 unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6186 const ParmVarDecl *PVD =
6187 Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
6188 bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6189 if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
6190 // If we're checking for a potential constant expression, evaluate all
6191 // initializers even if some of them fail.
6192 if (!Info.noteFailure())
6193 return false;
6194 Success = false;
6197 return Success;
6200 /// Perform a trivial copy from Param, which is the parameter of a copy or move
6201 /// constructor or assignment operator.
6202 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6203 const Expr *E, APValue &Result,
6204 bool CopyObjectRepresentation) {
6205 // Find the reference argument.
6206 CallStackFrame *Frame = Info.CurrentCall;
6207 APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6208 if (!RefValue) {
6209 Info.FFDiag(E);
6210 return false;
6213 // Copy out the contents of the RHS object.
6214 LValue RefLValue;
6215 RefLValue.setFrom(Info.Ctx, *RefValue);
6216 return handleLValueToRValueConversion(
6217 Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6218 CopyObjectRepresentation);
6221 /// Evaluate a function call.
6222 static bool HandleFunctionCall(SourceLocation CallLoc,
6223 const FunctionDecl *Callee, const LValue *This,
6224 const Expr *E, ArrayRef<const Expr *> Args,
6225 CallRef Call, const Stmt *Body, EvalInfo &Info,
6226 APValue &Result, const LValue *ResultSlot) {
6227 if (!Info.CheckCallLimit(CallLoc))
6228 return false;
6230 CallStackFrame Frame(Info, E->getSourceRange(), Callee, This, E, Call);
6232 // For a trivial copy or move assignment, perform an APValue copy. This is
6233 // essential for unions, where the operations performed by the assignment
6234 // operator cannot be represented as statements.
6236 // Skip this for non-union classes with no fields; in that case, the defaulted
6237 // copy/move does not actually read the object.
6238 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6239 if (MD && MD->isDefaulted() &&
6240 (MD->getParent()->isUnion() ||
6241 (MD->isTrivial() &&
6242 isReadByLvalueToRvalueConversion(MD->getParent())))) {
6243 assert(This &&
6244 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6245 APValue RHSValue;
6246 if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6247 MD->getParent()->isUnion()))
6248 return false;
6249 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6250 RHSValue))
6251 return false;
6252 This->moveInto(Result);
6253 return true;
6254 } else if (MD && isLambdaCallOperator(MD)) {
6255 // We're in a lambda; determine the lambda capture field maps unless we're
6256 // just constexpr checking a lambda's call operator. constexpr checking is
6257 // done before the captures have been added to the closure object (unless
6258 // we're inferring constexpr-ness), so we don't have access to them in this
6259 // case. But since we don't need the captures to constexpr check, we can
6260 // just ignore them.
6261 if (!Info.checkingPotentialConstantExpression())
6262 MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6263 Frame.LambdaThisCaptureField);
6266 StmtResult Ret = {Result, ResultSlot};
6267 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6268 if (ESR == ESR_Succeeded) {
6269 if (Callee->getReturnType()->isVoidType())
6270 return true;
6271 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6273 return ESR == ESR_Returned;
6276 /// Evaluate a constructor call.
6277 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6278 CallRef Call,
6279 const CXXConstructorDecl *Definition,
6280 EvalInfo &Info, APValue &Result) {
6281 SourceLocation CallLoc = E->getExprLoc();
6282 if (!Info.CheckCallLimit(CallLoc))
6283 return false;
6285 const CXXRecordDecl *RD = Definition->getParent();
6286 if (RD->getNumVBases()) {
6287 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6288 return false;
6291 EvalInfo::EvaluatingConstructorRAII EvalObj(
6292 Info,
6293 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6294 RD->getNumBases());
6295 CallStackFrame Frame(Info, E->getSourceRange(), Definition, &This, E, Call);
6297 // FIXME: Creating an APValue just to hold a nonexistent return value is
6298 // wasteful.
6299 APValue RetVal;
6300 StmtResult Ret = {RetVal, nullptr};
6302 // If it's a delegating constructor, delegate.
6303 if (Definition->isDelegatingConstructor()) {
6304 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6305 if ((*I)->getInit()->isValueDependent()) {
6306 if (!EvaluateDependentExpr((*I)->getInit(), Info))
6307 return false;
6308 } else {
6309 FullExpressionRAII InitScope(Info);
6310 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6311 !InitScope.destroy())
6312 return false;
6314 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6317 // For a trivial copy or move constructor, perform an APValue copy. This is
6318 // essential for unions (or classes with anonymous union members), where the
6319 // operations performed by the constructor cannot be represented by
6320 // ctor-initializers.
6322 // Skip this for empty non-union classes; we should not perform an
6323 // lvalue-to-rvalue conversion on them because their copy constructor does not
6324 // actually read them.
6325 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6326 (Definition->getParent()->isUnion() ||
6327 (Definition->isTrivial() &&
6328 isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6329 return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6330 Definition->getParent()->isUnion());
6333 // Reserve space for the struct members.
6334 if (!Result.hasValue()) {
6335 if (!RD->isUnion())
6336 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6337 std::distance(RD->field_begin(), RD->field_end()));
6338 else
6339 // A union starts with no active member.
6340 Result = APValue((const FieldDecl*)nullptr);
6343 if (RD->isInvalidDecl()) return false;
6344 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6346 // A scope for temporaries lifetime-extended by reference members.
6347 BlockScopeRAII LifetimeExtendedScope(Info);
6349 bool Success = true;
6350 unsigned BasesSeen = 0;
6351 #ifndef NDEBUG
6352 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6353 #endif
6354 CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6355 auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6356 // We might be initializing the same field again if this is an indirect
6357 // field initialization.
6358 if (FieldIt == RD->field_end() ||
6359 FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6360 assert(Indirect && "fields out of order?");
6361 return;
6364 // Default-initialize any fields with no explicit initializer.
6365 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6366 assert(FieldIt != RD->field_end() && "missing field?");
6367 if (!FieldIt->isUnnamedBitfield())
6368 Success &= handleDefaultInitValue(
6369 FieldIt->getType(),
6370 Result.getStructField(FieldIt->getFieldIndex()));
6372 ++FieldIt;
6374 for (const auto *I : Definition->inits()) {
6375 LValue Subobject = This;
6376 LValue SubobjectParent = This;
6377 APValue *Value = &Result;
6379 // Determine the subobject to initialize.
6380 FieldDecl *FD = nullptr;
6381 if (I->isBaseInitializer()) {
6382 QualType BaseType(I->getBaseClass(), 0);
6383 #ifndef NDEBUG
6384 // Non-virtual base classes are initialized in the order in the class
6385 // definition. We have already checked for virtual base classes.
6386 assert(!BaseIt->isVirtual() && "virtual base for literal type");
6387 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
6388 "base class initializers not in expected order");
6389 ++BaseIt;
6390 #endif
6391 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6392 BaseType->getAsCXXRecordDecl(), &Layout))
6393 return false;
6394 Value = &Result.getStructBase(BasesSeen++);
6395 } else if ((FD = I->getMember())) {
6396 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6397 return false;
6398 if (RD->isUnion()) {
6399 Result = APValue(FD);
6400 Value = &Result.getUnionValue();
6401 } else {
6402 SkipToField(FD, false);
6403 Value = &Result.getStructField(FD->getFieldIndex());
6405 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6406 // Walk the indirect field decl's chain to find the object to initialize,
6407 // and make sure we've initialized every step along it.
6408 auto IndirectFieldChain = IFD->chain();
6409 for (auto *C : IndirectFieldChain) {
6410 FD = cast<FieldDecl>(C);
6411 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6412 // Switch the union field if it differs. This happens if we had
6413 // preceding zero-initialization, and we're now initializing a union
6414 // subobject other than the first.
6415 // FIXME: In this case, the values of the other subobjects are
6416 // specified, since zero-initialization sets all padding bits to zero.
6417 if (!Value->hasValue() ||
6418 (Value->isUnion() && Value->getUnionField() != FD)) {
6419 if (CD->isUnion())
6420 *Value = APValue(FD);
6421 else
6422 // FIXME: This immediately starts the lifetime of all members of
6423 // an anonymous struct. It would be preferable to strictly start
6424 // member lifetime in initialization order.
6425 Success &=
6426 handleDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6428 // Store Subobject as its parent before updating it for the last element
6429 // in the chain.
6430 if (C == IndirectFieldChain.back())
6431 SubobjectParent = Subobject;
6432 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6433 return false;
6434 if (CD->isUnion())
6435 Value = &Value->getUnionValue();
6436 else {
6437 if (C == IndirectFieldChain.front() && !RD->isUnion())
6438 SkipToField(FD, true);
6439 Value = &Value->getStructField(FD->getFieldIndex());
6442 } else {
6443 llvm_unreachable("unknown base initializer kind");
6446 // Need to override This for implicit field initializers as in this case
6447 // This refers to innermost anonymous struct/union containing initializer,
6448 // not to currently constructed class.
6449 const Expr *Init = I->getInit();
6450 if (Init->isValueDependent()) {
6451 if (!EvaluateDependentExpr(Init, Info))
6452 return false;
6453 } else {
6454 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6455 isa<CXXDefaultInitExpr>(Init));
6456 FullExpressionRAII InitScope(Info);
6457 if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6458 (FD && FD->isBitField() &&
6459 !truncateBitfieldValue(Info, Init, *Value, FD))) {
6460 // If we're checking for a potential constant expression, evaluate all
6461 // initializers even if some of them fail.
6462 if (!Info.noteFailure())
6463 return false;
6464 Success = false;
6468 // This is the point at which the dynamic type of the object becomes this
6469 // class type.
6470 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6471 EvalObj.finishedConstructingBases();
6474 // Default-initialize any remaining fields.
6475 if (!RD->isUnion()) {
6476 for (; FieldIt != RD->field_end(); ++FieldIt) {
6477 if (!FieldIt->isUnnamedBitfield())
6478 Success &= handleDefaultInitValue(
6479 FieldIt->getType(),
6480 Result.getStructField(FieldIt->getFieldIndex()));
6484 EvalObj.finishedConstructingFields();
6486 return Success &&
6487 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6488 LifetimeExtendedScope.destroy();
6491 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6492 ArrayRef<const Expr*> Args,
6493 const CXXConstructorDecl *Definition,
6494 EvalInfo &Info, APValue &Result) {
6495 CallScopeRAII CallScope(Info);
6496 CallRef Call = Info.CurrentCall->createCall(Definition);
6497 if (!EvaluateArgs(Args, Call, Info, Definition))
6498 return false;
6500 return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6501 CallScope.destroy();
6504 static bool HandleDestructionImpl(EvalInfo &Info, SourceRange CallRange,
6505 const LValue &This, APValue &Value,
6506 QualType T) {
6507 // Objects can only be destroyed while they're within their lifetimes.
6508 // FIXME: We have no representation for whether an object of type nullptr_t
6509 // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6510 // as indeterminate instead?
6511 if (Value.isAbsent() && !T->isNullPtrType()) {
6512 APValue Printable;
6513 This.moveInto(Printable);
6514 Info.FFDiag(CallRange.getBegin(),
6515 diag::note_constexpr_destroy_out_of_lifetime)
6516 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6517 return false;
6520 // Invent an expression for location purposes.
6521 // FIXME: We shouldn't need to do this.
6522 OpaqueValueExpr LocE(CallRange.getBegin(), Info.Ctx.IntTy, VK_PRValue);
6524 // For arrays, destroy elements right-to-left.
6525 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6526 uint64_t Size = CAT->getSize().getZExtValue();
6527 QualType ElemT = CAT->getElementType();
6529 if (!CheckArraySize(Info, CAT, CallRange.getBegin()))
6530 return false;
6532 LValue ElemLV = This;
6533 ElemLV.addArray(Info, &LocE, CAT);
6534 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6535 return false;
6537 // Ensure that we have actual array elements available to destroy; the
6538 // destructors might mutate the value, so we can't run them on the array
6539 // filler.
6540 if (Size && Size > Value.getArrayInitializedElts())
6541 expandArray(Value, Value.getArraySize() - 1);
6543 for (; Size != 0; --Size) {
6544 APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6545 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6546 !HandleDestructionImpl(Info, CallRange, ElemLV, Elem, ElemT))
6547 return false;
6550 // End the lifetime of this array now.
6551 Value = APValue();
6552 return true;
6555 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6556 if (!RD) {
6557 if (T.isDestructedType()) {
6558 Info.FFDiag(CallRange.getBegin(),
6559 diag::note_constexpr_unsupported_destruction)
6560 << T;
6561 return false;
6564 Value = APValue();
6565 return true;
6568 if (RD->getNumVBases()) {
6569 Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_virtual_base) << RD;
6570 return false;
6573 const CXXDestructorDecl *DD = RD->getDestructor();
6574 if (!DD && !RD->hasTrivialDestructor()) {
6575 Info.FFDiag(CallRange.getBegin());
6576 return false;
6579 if (!DD || DD->isTrivial() ||
6580 (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6581 // A trivial destructor just ends the lifetime of the object. Check for
6582 // this case before checking for a body, because we might not bother
6583 // building a body for a trivial destructor. Note that it doesn't matter
6584 // whether the destructor is constexpr in this case; all trivial
6585 // destructors are constexpr.
6587 // If an anonymous union would be destroyed, some enclosing destructor must
6588 // have been explicitly defined, and the anonymous union destruction should
6589 // have no effect.
6590 Value = APValue();
6591 return true;
6594 if (!Info.CheckCallLimit(CallRange.getBegin()))
6595 return false;
6597 const FunctionDecl *Definition = nullptr;
6598 const Stmt *Body = DD->getBody(Definition);
6600 if (!CheckConstexprFunction(Info, CallRange.getBegin(), DD, Definition, Body))
6601 return false;
6603 CallStackFrame Frame(Info, CallRange, Definition, &This, /*CallExpr=*/nullptr,
6604 CallRef());
6606 // We're now in the period of destruction of this object.
6607 unsigned BasesLeft = RD->getNumBases();
6608 EvalInfo::EvaluatingDestructorRAII EvalObj(
6609 Info,
6610 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6611 if (!EvalObj.DidInsert) {
6612 // C++2a [class.dtor]p19:
6613 // the behavior is undefined if the destructor is invoked for an object
6614 // whose lifetime has ended
6615 // (Note that formally the lifetime ends when the period of destruction
6616 // begins, even though certain uses of the object remain valid until the
6617 // period of destruction ends.)
6618 Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_double_destroy);
6619 return false;
6622 // FIXME: Creating an APValue just to hold a nonexistent return value is
6623 // wasteful.
6624 APValue RetVal;
6625 StmtResult Ret = {RetVal, nullptr};
6626 if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6627 return false;
6629 // A union destructor does not implicitly destroy its members.
6630 if (RD->isUnion())
6631 return true;
6633 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6635 // We don't have a good way to iterate fields in reverse, so collect all the
6636 // fields first and then walk them backwards.
6637 SmallVector<FieldDecl*, 16> Fields(RD->fields());
6638 for (const FieldDecl *FD : llvm::reverse(Fields)) {
6639 if (FD->isUnnamedBitfield())
6640 continue;
6642 LValue Subobject = This;
6643 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6644 return false;
6646 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6647 if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue,
6648 FD->getType()))
6649 return false;
6652 if (BasesLeft != 0)
6653 EvalObj.startedDestroyingBases();
6655 // Destroy base classes in reverse order.
6656 for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6657 --BasesLeft;
6659 QualType BaseType = Base.getType();
6660 LValue Subobject = This;
6661 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6662 BaseType->getAsCXXRecordDecl(), &Layout))
6663 return false;
6665 APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6666 if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue,
6667 BaseType))
6668 return false;
6670 assert(BasesLeft == 0 && "NumBases was wrong?");
6672 // The period of destruction ends now. The object is gone.
6673 Value = APValue();
6674 return true;
6677 namespace {
6678 struct DestroyObjectHandler {
6679 EvalInfo &Info;
6680 const Expr *E;
6681 const LValue &This;
6682 const AccessKinds AccessKind;
6684 typedef bool result_type;
6685 bool failed() { return false; }
6686 bool found(APValue &Subobj, QualType SubobjType) {
6687 return HandleDestructionImpl(Info, E->getSourceRange(), This, Subobj,
6688 SubobjType);
6690 bool found(APSInt &Value, QualType SubobjType) {
6691 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6692 return false;
6694 bool found(APFloat &Value, QualType SubobjType) {
6695 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6696 return false;
6701 /// Perform a destructor or pseudo-destructor call on the given object, which
6702 /// might in general not be a complete object.
6703 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6704 const LValue &This, QualType ThisType) {
6705 CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6706 DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6707 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6710 /// Destroy and end the lifetime of the given complete object.
6711 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6712 APValue::LValueBase LVBase, APValue &Value,
6713 QualType T) {
6714 // If we've had an unmodeled side-effect, we can't rely on mutable state
6715 // (such as the object we're about to destroy) being correct.
6716 if (Info.EvalStatus.HasSideEffects)
6717 return false;
6719 LValue LV;
6720 LV.set({LVBase});
6721 return HandleDestructionImpl(Info, Loc, LV, Value, T);
6724 /// Perform a call to 'operator new' or to `__builtin_operator_new'.
6725 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6726 LValue &Result) {
6727 if (Info.checkingPotentialConstantExpression() ||
6728 Info.SpeculativeEvaluationDepth)
6729 return false;
6731 // This is permitted only within a call to std::allocator<T>::allocate.
6732 auto Caller = Info.getStdAllocatorCaller("allocate");
6733 if (!Caller) {
6734 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6735 ? diag::note_constexpr_new_untyped
6736 : diag::note_constexpr_new);
6737 return false;
6740 QualType ElemType = Caller.ElemType;
6741 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6742 Info.FFDiag(E->getExprLoc(),
6743 diag::note_constexpr_new_not_complete_object_type)
6744 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6745 return false;
6748 APSInt ByteSize;
6749 if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6750 return false;
6751 bool IsNothrow = false;
6752 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6753 EvaluateIgnoredValue(Info, E->getArg(I));
6754 IsNothrow |= E->getType()->isNothrowT();
6757 CharUnits ElemSize;
6758 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6759 return false;
6760 APInt Size, Remainder;
6761 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6762 APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6763 if (Remainder != 0) {
6764 // This likely indicates a bug in the implementation of 'std::allocator'.
6765 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6766 << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6767 return false;
6770 if (!Info.CheckArraySize(E->getBeginLoc(), ByteSize.getActiveBits(),
6771 Size.getZExtValue(), /*Diag=*/!IsNothrow)) {
6772 if (IsNothrow) {
6773 Result.setNull(Info.Ctx, E->getType());
6774 return true;
6776 return false;
6779 QualType AllocType = Info.Ctx.getConstantArrayType(
6780 ElemType, Size, nullptr, ArraySizeModifier::Normal, 0);
6781 APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6782 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6783 Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6784 return true;
6787 static bool hasVirtualDestructor(QualType T) {
6788 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6789 if (CXXDestructorDecl *DD = RD->getDestructor())
6790 return DD->isVirtual();
6791 return false;
6794 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6795 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6796 if (CXXDestructorDecl *DD = RD->getDestructor())
6797 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6798 return nullptr;
6801 /// Check that the given object is a suitable pointer to a heap allocation that
6802 /// still exists and is of the right kind for the purpose of a deletion.
6804 /// On success, returns the heap allocation to deallocate. On failure, produces
6805 /// a diagnostic and returns std::nullopt.
6806 static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6807 const LValue &Pointer,
6808 DynAlloc::Kind DeallocKind) {
6809 auto PointerAsString = [&] {
6810 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6813 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6814 if (!DA) {
6815 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6816 << PointerAsString();
6817 if (Pointer.Base)
6818 NoteLValueLocation(Info, Pointer.Base);
6819 return std::nullopt;
6822 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6823 if (!Alloc) {
6824 Info.FFDiag(E, diag::note_constexpr_double_delete);
6825 return std::nullopt;
6828 if (DeallocKind != (*Alloc)->getKind()) {
6829 QualType AllocType = Pointer.Base.getDynamicAllocType();
6830 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6831 << DeallocKind << (*Alloc)->getKind() << AllocType;
6832 NoteLValueLocation(Info, Pointer.Base);
6833 return std::nullopt;
6836 bool Subobject = false;
6837 if (DeallocKind == DynAlloc::New) {
6838 Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6839 Pointer.Designator.isOnePastTheEnd();
6840 } else {
6841 Subobject = Pointer.Designator.Entries.size() != 1 ||
6842 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6844 if (Subobject) {
6845 Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6846 << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6847 return std::nullopt;
6850 return Alloc;
6853 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
6854 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6855 if (Info.checkingPotentialConstantExpression() ||
6856 Info.SpeculativeEvaluationDepth)
6857 return false;
6859 // This is permitted only within a call to std::allocator<T>::deallocate.
6860 if (!Info.getStdAllocatorCaller("deallocate")) {
6861 Info.FFDiag(E->getExprLoc());
6862 return true;
6865 LValue Pointer;
6866 if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6867 return false;
6868 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6869 EvaluateIgnoredValue(Info, E->getArg(I));
6871 if (Pointer.Designator.Invalid)
6872 return false;
6874 // Deleting a null pointer would have no effect, but it's not permitted by
6875 // std::allocator<T>::deallocate's contract.
6876 if (Pointer.isNullPointer()) {
6877 Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6878 return true;
6881 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6882 return false;
6884 Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6885 return true;
6888 //===----------------------------------------------------------------------===//
6889 // Generic Evaluation
6890 //===----------------------------------------------------------------------===//
6891 namespace {
6893 class BitCastBuffer {
6894 // FIXME: We're going to need bit-level granularity when we support
6895 // bit-fields.
6896 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6897 // we don't support a host or target where that is the case. Still, we should
6898 // use a more generic type in case we ever do.
6899 SmallVector<std::optional<unsigned char>, 32> Bytes;
6901 static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6902 "Need at least 8 bit unsigned char");
6904 bool TargetIsLittleEndian;
6906 public:
6907 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6908 : Bytes(Width.getQuantity()),
6909 TargetIsLittleEndian(TargetIsLittleEndian) {}
6911 [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width,
6912 SmallVectorImpl<unsigned char> &Output) const {
6913 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6914 // If a byte of an integer is uninitialized, then the whole integer is
6915 // uninitialized.
6916 if (!Bytes[I.getQuantity()])
6917 return false;
6918 Output.push_back(*Bytes[I.getQuantity()]);
6920 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6921 std::reverse(Output.begin(), Output.end());
6922 return true;
6925 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6926 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6927 std::reverse(Input.begin(), Input.end());
6929 size_t Index = 0;
6930 for (unsigned char Byte : Input) {
6931 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6932 Bytes[Offset.getQuantity() + Index] = Byte;
6933 ++Index;
6937 size_t size() { return Bytes.size(); }
6940 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6941 /// target would represent the value at runtime.
6942 class APValueToBufferConverter {
6943 EvalInfo &Info;
6944 BitCastBuffer Buffer;
6945 const CastExpr *BCE;
6947 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6948 const CastExpr *BCE)
6949 : Info(Info),
6950 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6951 BCE(BCE) {}
6953 bool visit(const APValue &Val, QualType Ty) {
6954 return visit(Val, Ty, CharUnits::fromQuantity(0));
6957 // Write out Val with type Ty into Buffer starting at Offset.
6958 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6959 assert((size_t)Offset.getQuantity() <= Buffer.size());
6961 // As a special case, nullptr_t has an indeterminate value.
6962 if (Ty->isNullPtrType())
6963 return true;
6965 // Dig through Src to find the byte at SrcOffset.
6966 switch (Val.getKind()) {
6967 case APValue::Indeterminate:
6968 case APValue::None:
6969 return true;
6971 case APValue::Int:
6972 return visitInt(Val.getInt(), Ty, Offset);
6973 case APValue::Float:
6974 return visitFloat(Val.getFloat(), Ty, Offset);
6975 case APValue::Array:
6976 return visitArray(Val, Ty, Offset);
6977 case APValue::Struct:
6978 return visitRecord(Val, Ty, Offset);
6979 case APValue::Vector:
6980 return visitVector(Val, Ty, Offset);
6982 case APValue::ComplexInt:
6983 case APValue::ComplexFloat:
6984 case APValue::FixedPoint:
6985 // FIXME: We should support these.
6987 case APValue::Union:
6988 case APValue::MemberPointer:
6989 case APValue::AddrLabelDiff: {
6990 Info.FFDiag(BCE->getBeginLoc(),
6991 diag::note_constexpr_bit_cast_unsupported_type)
6992 << Ty;
6993 return false;
6996 case APValue::LValue:
6997 llvm_unreachable("LValue subobject in bit_cast?");
6999 llvm_unreachable("Unhandled APValue::ValueKind");
7002 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
7003 const RecordDecl *RD = Ty->getAsRecordDecl();
7004 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7006 // Visit the base classes.
7007 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7008 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7009 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7010 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7012 if (!visitRecord(Val.getStructBase(I), BS.getType(),
7013 Layout.getBaseClassOffset(BaseDecl) + Offset))
7014 return false;
7018 // Visit the fields.
7019 unsigned FieldIdx = 0;
7020 for (FieldDecl *FD : RD->fields()) {
7021 if (FD->isBitField()) {
7022 Info.FFDiag(BCE->getBeginLoc(),
7023 diag::note_constexpr_bit_cast_unsupported_bitfield);
7024 return false;
7027 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7029 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
7030 "only bit-fields can have sub-char alignment");
7031 CharUnits FieldOffset =
7032 Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
7033 QualType FieldTy = FD->getType();
7034 if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
7035 return false;
7036 ++FieldIdx;
7039 return true;
7042 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
7043 const auto *CAT =
7044 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
7045 if (!CAT)
7046 return false;
7048 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
7049 unsigned NumInitializedElts = Val.getArrayInitializedElts();
7050 unsigned ArraySize = Val.getArraySize();
7051 // First, initialize the initialized elements.
7052 for (unsigned I = 0; I != NumInitializedElts; ++I) {
7053 const APValue &SubObj = Val.getArrayInitializedElt(I);
7054 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
7055 return false;
7058 // Next, initialize the rest of the array using the filler.
7059 if (Val.hasArrayFiller()) {
7060 const APValue &Filler = Val.getArrayFiller();
7061 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
7062 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
7063 return false;
7067 return true;
7070 bool visitVector(const APValue &Val, QualType Ty, CharUnits Offset) {
7071 const VectorType *VTy = Ty->castAs<VectorType>();
7072 QualType EltTy = VTy->getElementType();
7073 unsigned NElts = VTy->getNumElements();
7074 unsigned EltSize =
7075 VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(EltTy);
7077 if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) {
7078 // The vector's size in bits is not a multiple of the target's byte size,
7079 // so its layout is unspecified. For now, we'll simply treat these cases
7080 // as unsupported (this should only be possible with OpenCL bool vectors
7081 // whose element count isn't a multiple of the byte size).
7082 Info.FFDiag(BCE->getBeginLoc(),
7083 diag::note_constexpr_bit_cast_invalid_vector)
7084 << Ty.getCanonicalType() << EltSize << NElts
7085 << Info.Ctx.getCharWidth();
7086 return false;
7089 if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(EltTy) ==
7090 &APFloat::x87DoubleExtended()) {
7091 // The layout for x86_fp80 vectors seems to be handled very inconsistently
7092 // by both clang and LLVM, so for now we won't allow bit_casts involving
7093 // it in a constexpr context.
7094 Info.FFDiag(BCE->getBeginLoc(),
7095 diag::note_constexpr_bit_cast_unsupported_type)
7096 << EltTy;
7097 return false;
7100 if (VTy->isExtVectorBoolType()) {
7101 // Special handling for OpenCL bool vectors:
7102 // Since these vectors are stored as packed bits, but we can't write
7103 // individual bits to the BitCastBuffer, we'll buffer all of the elements
7104 // together into an appropriately sized APInt and write them all out at
7105 // once. Because we don't accept vectors where NElts * EltSize isn't a
7106 // multiple of the char size, there will be no padding space, so we don't
7107 // have to worry about writing data which should have been left
7108 // uninitialized.
7109 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
7111 llvm::APInt Res = llvm::APInt::getZero(NElts);
7112 for (unsigned I = 0; I < NElts; ++I) {
7113 const llvm::APSInt &EltAsInt = Val.getVectorElt(I).getInt();
7114 assert(EltAsInt.isUnsigned() && EltAsInt.getBitWidth() == 1 &&
7115 "bool vector element must be 1-bit unsigned integer!");
7117 Res.insertBits(EltAsInt, BigEndian ? (NElts - I - 1) : I);
7120 SmallVector<uint8_t, 8> Bytes(NElts / 8);
7121 llvm::StoreIntToMemory(Res, &*Bytes.begin(), NElts / 8);
7122 Buffer.writeObject(Offset, Bytes);
7123 } else {
7124 // Iterate over each of the elements and write them out to the buffer at
7125 // the appropriate offset.
7126 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy);
7127 for (unsigned I = 0; I < NElts; ++I) {
7128 if (!visit(Val.getVectorElt(I), EltTy, Offset + I * EltSizeChars))
7129 return false;
7133 return true;
7136 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
7137 APSInt AdjustedVal = Val;
7138 unsigned Width = AdjustedVal.getBitWidth();
7139 if (Ty->isBooleanType()) {
7140 Width = Info.Ctx.getTypeSize(Ty);
7141 AdjustedVal = AdjustedVal.extend(Width);
7144 SmallVector<uint8_t, 8> Bytes(Width / 8);
7145 llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
7146 Buffer.writeObject(Offset, Bytes);
7147 return true;
7150 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
7151 APSInt AsInt(Val.bitcastToAPInt());
7152 return visitInt(AsInt, Ty, Offset);
7155 public:
7156 static std::optional<BitCastBuffer>
7157 convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) {
7158 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
7159 APValueToBufferConverter Converter(Info, DstSize, BCE);
7160 if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
7161 return std::nullopt;
7162 return Converter.Buffer;
7166 /// Write an BitCastBuffer into an APValue.
7167 class BufferToAPValueConverter {
7168 EvalInfo &Info;
7169 const BitCastBuffer &Buffer;
7170 const CastExpr *BCE;
7172 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
7173 const CastExpr *BCE)
7174 : Info(Info), Buffer(Buffer), BCE(BCE) {}
7176 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
7177 // with an invalid type, so anything left is a deficiency on our part (FIXME).
7178 // Ideally this will be unreachable.
7179 std::nullopt_t unsupportedType(QualType Ty) {
7180 Info.FFDiag(BCE->getBeginLoc(),
7181 diag::note_constexpr_bit_cast_unsupported_type)
7182 << Ty;
7183 return std::nullopt;
7186 std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) {
7187 Info.FFDiag(BCE->getBeginLoc(),
7188 diag::note_constexpr_bit_cast_unrepresentable_value)
7189 << Ty << toString(Val, /*Radix=*/10);
7190 return std::nullopt;
7193 std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
7194 const EnumType *EnumSugar = nullptr) {
7195 if (T->isNullPtrType()) {
7196 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
7197 return APValue((Expr *)nullptr,
7198 /*Offset=*/CharUnits::fromQuantity(NullValue),
7199 APValue::NoLValuePath{}, /*IsNullPtr=*/true);
7202 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
7204 // Work around floating point types that contain unused padding bytes. This
7205 // is really just `long double` on x86, which is the only fundamental type
7206 // with padding bytes.
7207 if (T->isRealFloatingType()) {
7208 const llvm::fltSemantics &Semantics =
7209 Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7210 unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
7211 assert(NumBits % 8 == 0);
7212 CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
7213 if (NumBytes != SizeOf)
7214 SizeOf = NumBytes;
7217 SmallVector<uint8_t, 8> Bytes;
7218 if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
7219 // If this is std::byte or unsigned char, then its okay to store an
7220 // indeterminate value.
7221 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7222 bool IsUChar =
7223 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7224 T->isSpecificBuiltinType(BuiltinType::Char_U));
7225 if (!IsStdByte && !IsUChar) {
7226 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7227 Info.FFDiag(BCE->getExprLoc(),
7228 diag::note_constexpr_bit_cast_indet_dest)
7229 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7230 return std::nullopt;
7233 return APValue::IndeterminateValue();
7236 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7237 llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
7239 if (T->isIntegralOrEnumerationType()) {
7240 Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7242 unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
7243 if (IntWidth != Val.getBitWidth()) {
7244 APSInt Truncated = Val.trunc(IntWidth);
7245 if (Truncated.extend(Val.getBitWidth()) != Val)
7246 return unrepresentableValue(QualType(T, 0), Val);
7247 Val = Truncated;
7250 return APValue(Val);
7253 if (T->isRealFloatingType()) {
7254 const llvm::fltSemantics &Semantics =
7255 Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7256 return APValue(APFloat(Semantics, Val));
7259 return unsupportedType(QualType(T, 0));
7262 std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7263 const RecordDecl *RD = RTy->getAsRecordDecl();
7264 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7266 unsigned NumBases = 0;
7267 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7268 NumBases = CXXRD->getNumBases();
7270 APValue ResultVal(APValue::UninitStruct(), NumBases,
7271 std::distance(RD->field_begin(), RD->field_end()));
7273 // Visit the base classes.
7274 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7275 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7276 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7277 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7278 if (BaseDecl->isEmpty() ||
7279 Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
7280 continue;
7282 std::optional<APValue> SubObj = visitType(
7283 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7284 if (!SubObj)
7285 return std::nullopt;
7286 ResultVal.getStructBase(I) = *SubObj;
7290 // Visit the fields.
7291 unsigned FieldIdx = 0;
7292 for (FieldDecl *FD : RD->fields()) {
7293 // FIXME: We don't currently support bit-fields. A lot of the logic for
7294 // this is in CodeGen, so we need to factor it around.
7295 if (FD->isBitField()) {
7296 Info.FFDiag(BCE->getBeginLoc(),
7297 diag::note_constexpr_bit_cast_unsupported_bitfield);
7298 return std::nullopt;
7301 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7302 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7304 CharUnits FieldOffset =
7305 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7306 Offset;
7307 QualType FieldTy = FD->getType();
7308 std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7309 if (!SubObj)
7310 return std::nullopt;
7311 ResultVal.getStructField(FieldIdx) = *SubObj;
7312 ++FieldIdx;
7315 return ResultVal;
7318 std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7319 QualType RepresentationType = Ty->getDecl()->getIntegerType();
7320 assert(!RepresentationType.isNull() &&
7321 "enum forward decl should be caught by Sema");
7322 const auto *AsBuiltin =
7323 RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7324 // Recurse into the underlying type. Treat std::byte transparently as
7325 // unsigned char.
7326 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7329 std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7330 size_t Size = Ty->getSize().getLimitedValue();
7331 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7333 APValue ArrayValue(APValue::UninitArray(), Size, Size);
7334 for (size_t I = 0; I != Size; ++I) {
7335 std::optional<APValue> ElementValue =
7336 visitType(Ty->getElementType(), Offset + I * ElementWidth);
7337 if (!ElementValue)
7338 return std::nullopt;
7339 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7342 return ArrayValue;
7345 std::optional<APValue> visit(const VectorType *VTy, CharUnits Offset) {
7346 QualType EltTy = VTy->getElementType();
7347 unsigned NElts = VTy->getNumElements();
7348 unsigned EltSize =
7349 VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(EltTy);
7351 if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) {
7352 // The vector's size in bits is not a multiple of the target's byte size,
7353 // so its layout is unspecified. For now, we'll simply treat these cases
7354 // as unsupported (this should only be possible with OpenCL bool vectors
7355 // whose element count isn't a multiple of the byte size).
7356 Info.FFDiag(BCE->getBeginLoc(),
7357 diag::note_constexpr_bit_cast_invalid_vector)
7358 << QualType(VTy, 0) << EltSize << NElts << Info.Ctx.getCharWidth();
7359 return std::nullopt;
7362 if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(EltTy) ==
7363 &APFloat::x87DoubleExtended()) {
7364 // The layout for x86_fp80 vectors seems to be handled very inconsistently
7365 // by both clang and LLVM, so for now we won't allow bit_casts involving
7366 // it in a constexpr context.
7367 Info.FFDiag(BCE->getBeginLoc(),
7368 diag::note_constexpr_bit_cast_unsupported_type)
7369 << EltTy;
7370 return std::nullopt;
7373 SmallVector<APValue, 4> Elts;
7374 Elts.reserve(NElts);
7375 if (VTy->isExtVectorBoolType()) {
7376 // Special handling for OpenCL bool vectors:
7377 // Since these vectors are stored as packed bits, but we can't read
7378 // individual bits from the BitCastBuffer, we'll buffer all of the
7379 // elements together into an appropriately sized APInt and write them all
7380 // out at once. Because we don't accept vectors where NElts * EltSize
7381 // isn't a multiple of the char size, there will be no padding space, so
7382 // we don't have to worry about reading any padding data which didn't
7383 // actually need to be accessed.
7384 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
7386 SmallVector<uint8_t, 8> Bytes;
7387 Bytes.reserve(NElts / 8);
7388 if (!Buffer.readObject(Offset, CharUnits::fromQuantity(NElts / 8), Bytes))
7389 return std::nullopt;
7391 APSInt SValInt(NElts, true);
7392 llvm::LoadIntFromMemory(SValInt, &*Bytes.begin(), Bytes.size());
7394 for (unsigned I = 0; I < NElts; ++I) {
7395 llvm::APInt Elt =
7396 SValInt.extractBits(1, (BigEndian ? NElts - I - 1 : I) * EltSize);
7397 Elts.emplace_back(
7398 APSInt(std::move(Elt), !EltTy->isSignedIntegerType()));
7400 } else {
7401 // Iterate over each of the elements and read them from the buffer at
7402 // the appropriate offset.
7403 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy);
7404 for (unsigned I = 0; I < NElts; ++I) {
7405 std::optional<APValue> EltValue =
7406 visitType(EltTy, Offset + I * EltSizeChars);
7407 if (!EltValue)
7408 return std::nullopt;
7409 Elts.push_back(std::move(*EltValue));
7413 return APValue(Elts.data(), Elts.size());
7416 std::optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7417 return unsupportedType(QualType(Ty, 0));
7420 std::optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7421 QualType Can = Ty.getCanonicalType();
7423 switch (Can->getTypeClass()) {
7424 #define TYPE(Class, Base) \
7425 case Type::Class: \
7426 return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7427 #define ABSTRACT_TYPE(Class, Base)
7428 #define NON_CANONICAL_TYPE(Class, Base) \
7429 case Type::Class: \
7430 llvm_unreachable("non-canonical type should be impossible!");
7431 #define DEPENDENT_TYPE(Class, Base) \
7432 case Type::Class: \
7433 llvm_unreachable( \
7434 "dependent types aren't supported in the constant evaluator!");
7435 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \
7436 case Type::Class: \
7437 llvm_unreachable("either dependent or not canonical!");
7438 #include "clang/AST/TypeNodes.inc"
7440 llvm_unreachable("Unhandled Type::TypeClass");
7443 public:
7444 // Pull out a full value of type DstType.
7445 static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7446 const CastExpr *BCE) {
7447 BufferToAPValueConverter Converter(Info, Buffer, BCE);
7448 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7452 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7453 QualType Ty, EvalInfo *Info,
7454 const ASTContext &Ctx,
7455 bool CheckingDest) {
7456 Ty = Ty.getCanonicalType();
7458 auto diag = [&](int Reason) {
7459 if (Info)
7460 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7461 << CheckingDest << (Reason == 4) << Reason;
7462 return false;
7464 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7465 if (Info)
7466 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7467 << NoteTy << Construct << Ty;
7468 return false;
7471 if (Ty->isUnionType())
7472 return diag(0);
7473 if (Ty->isPointerType())
7474 return diag(1);
7475 if (Ty->isMemberPointerType())
7476 return diag(2);
7477 if (Ty.isVolatileQualified())
7478 return diag(3);
7480 if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7481 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7482 for (CXXBaseSpecifier &BS : CXXRD->bases())
7483 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7484 CheckingDest))
7485 return note(1, BS.getType(), BS.getBeginLoc());
7487 for (FieldDecl *FD : Record->fields()) {
7488 if (FD->getType()->isReferenceType())
7489 return diag(4);
7490 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7491 CheckingDest))
7492 return note(0, FD->getType(), FD->getBeginLoc());
7496 if (Ty->isArrayType() &&
7497 !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7498 Info, Ctx, CheckingDest))
7499 return false;
7501 return true;
7504 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7505 const ASTContext &Ctx,
7506 const CastExpr *BCE) {
7507 bool DestOK = checkBitCastConstexprEligibilityType(
7508 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7509 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7510 BCE->getBeginLoc(),
7511 BCE->getSubExpr()->getType(), Info, Ctx, false);
7512 return SourceOK;
7515 static bool handleRValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7516 const APValue &SourceRValue,
7517 const CastExpr *BCE) {
7518 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7519 "no host or target supports non 8-bit chars");
7521 if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7522 return false;
7524 // Read out SourceValue into a char buffer.
7525 std::optional<BitCastBuffer> Buffer =
7526 APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7527 if (!Buffer)
7528 return false;
7530 // Write out the buffer into a new APValue.
7531 std::optional<APValue> MaybeDestValue =
7532 BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7533 if (!MaybeDestValue)
7534 return false;
7536 DestValue = std::move(*MaybeDestValue);
7537 return true;
7540 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7541 APValue &SourceValue,
7542 const CastExpr *BCE) {
7543 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7544 "no host or target supports non 8-bit chars");
7545 assert(SourceValue.isLValue() &&
7546 "LValueToRValueBitcast requires an lvalue operand!");
7548 LValue SourceLValue;
7549 APValue SourceRValue;
7550 SourceLValue.setFrom(Info.Ctx, SourceValue);
7551 if (!handleLValueToRValueConversion(
7552 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7553 SourceRValue, /*WantObjectRepresentation=*/true))
7554 return false;
7556 return handleRValueToRValueBitCast(Info, DestValue, SourceRValue, BCE);
7559 template <class Derived>
7560 class ExprEvaluatorBase
7561 : public ConstStmtVisitor<Derived, bool> {
7562 private:
7563 Derived &getDerived() { return static_cast<Derived&>(*this); }
7564 bool DerivedSuccess(const APValue &V, const Expr *E) {
7565 return getDerived().Success(V, E);
7567 bool DerivedZeroInitialization(const Expr *E) {
7568 return getDerived().ZeroInitialization(E);
7571 // Check whether a conditional operator with a non-constant condition is a
7572 // potential constant expression. If neither arm is a potential constant
7573 // expression, then the conditional operator is not either.
7574 template<typename ConditionalOperator>
7575 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7576 assert(Info.checkingPotentialConstantExpression());
7578 // Speculatively evaluate both arms.
7579 SmallVector<PartialDiagnosticAt, 8> Diag;
7581 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7582 StmtVisitorTy::Visit(E->getFalseExpr());
7583 if (Diag.empty())
7584 return;
7588 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7589 Diag.clear();
7590 StmtVisitorTy::Visit(E->getTrueExpr());
7591 if (Diag.empty())
7592 return;
7595 Error(E, diag::note_constexpr_conditional_never_const);
7599 template<typename ConditionalOperator>
7600 bool HandleConditionalOperator(const ConditionalOperator *E) {
7601 bool BoolResult;
7602 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7603 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7604 CheckPotentialConstantConditional(E);
7605 return false;
7607 if (Info.noteFailure()) {
7608 StmtVisitorTy::Visit(E->getTrueExpr());
7609 StmtVisitorTy::Visit(E->getFalseExpr());
7611 return false;
7614 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7615 return StmtVisitorTy::Visit(EvalExpr);
7618 protected:
7619 EvalInfo &Info;
7620 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7621 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7623 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7624 return Info.CCEDiag(E, D);
7627 bool ZeroInitialization(const Expr *E) { return Error(E); }
7629 bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) {
7630 unsigned BuiltinOp = E->getBuiltinCallee();
7631 return BuiltinOp != 0 &&
7632 Info.Ctx.BuiltinInfo.isConstantEvaluated(BuiltinOp);
7635 public:
7636 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7638 EvalInfo &getEvalInfo() { return Info; }
7640 /// Report an evaluation error. This should only be called when an error is
7641 /// first discovered. When propagating an error, just return false.
7642 bool Error(const Expr *E, diag::kind D) {
7643 Info.FFDiag(E, D) << E->getSourceRange();
7644 return false;
7646 bool Error(const Expr *E) {
7647 return Error(E, diag::note_invalid_subexpr_in_const_expr);
7650 bool VisitStmt(const Stmt *) {
7651 llvm_unreachable("Expression evaluator should not be called on stmts");
7653 bool VisitExpr(const Expr *E) {
7654 return Error(E);
7657 bool VisitPredefinedExpr(const PredefinedExpr *E) {
7658 return StmtVisitorTy::Visit(E->getFunctionName());
7660 bool VisitConstantExpr(const ConstantExpr *E) {
7661 if (E->hasAPValueResult())
7662 return DerivedSuccess(E->getAPValueResult(), E);
7664 return StmtVisitorTy::Visit(E->getSubExpr());
7667 bool VisitParenExpr(const ParenExpr *E)
7668 { return StmtVisitorTy::Visit(E->getSubExpr()); }
7669 bool VisitUnaryExtension(const UnaryOperator *E)
7670 { return StmtVisitorTy::Visit(E->getSubExpr()); }
7671 bool VisitUnaryPlus(const UnaryOperator *E)
7672 { return StmtVisitorTy::Visit(E->getSubExpr()); }
7673 bool VisitChooseExpr(const ChooseExpr *E)
7674 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
7675 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7676 { return StmtVisitorTy::Visit(E->getResultExpr()); }
7677 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7678 { return StmtVisitorTy::Visit(E->getReplacement()); }
7679 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7680 TempVersionRAII RAII(*Info.CurrentCall);
7681 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7682 return StmtVisitorTy::Visit(E->getExpr());
7684 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7685 TempVersionRAII RAII(*Info.CurrentCall);
7686 // The initializer may not have been parsed yet, or might be erroneous.
7687 if (!E->getExpr())
7688 return Error(E);
7689 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7690 return StmtVisitorTy::Visit(E->getExpr());
7693 bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7694 FullExpressionRAII Scope(Info);
7695 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7698 // Temporaries are registered when created, so we don't care about
7699 // CXXBindTemporaryExpr.
7700 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7701 return StmtVisitorTy::Visit(E->getSubExpr());
7704 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7705 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7706 return static_cast<Derived*>(this)->VisitCastExpr(E);
7708 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7709 if (!Info.Ctx.getLangOpts().CPlusPlus20)
7710 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7711 return static_cast<Derived*>(this)->VisitCastExpr(E);
7713 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7714 return static_cast<Derived*>(this)->VisitCastExpr(E);
7717 bool VisitBinaryOperator(const BinaryOperator *E) {
7718 switch (E->getOpcode()) {
7719 default:
7720 return Error(E);
7722 case BO_Comma:
7723 VisitIgnoredValue(E->getLHS());
7724 return StmtVisitorTy::Visit(E->getRHS());
7726 case BO_PtrMemD:
7727 case BO_PtrMemI: {
7728 LValue Obj;
7729 if (!HandleMemberPointerAccess(Info, E, Obj))
7730 return false;
7731 APValue Result;
7732 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7733 return false;
7734 return DerivedSuccess(Result, E);
7739 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7740 return StmtVisitorTy::Visit(E->getSemanticForm());
7743 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7744 // Evaluate and cache the common expression. We treat it as a temporary,
7745 // even though it's not quite the same thing.
7746 LValue CommonLV;
7747 if (!Evaluate(Info.CurrentCall->createTemporary(
7748 E->getOpaqueValue(),
7749 getStorageType(Info.Ctx, E->getOpaqueValue()),
7750 ScopeKind::FullExpression, CommonLV),
7751 Info, E->getCommon()))
7752 return false;
7754 return HandleConditionalOperator(E);
7757 bool VisitConditionalOperator(const ConditionalOperator *E) {
7758 bool IsBcpCall = false;
7759 // If the condition (ignoring parens) is a __builtin_constant_p call,
7760 // the result is a constant expression if it can be folded without
7761 // side-effects. This is an important GNU extension. See GCC PR38377
7762 // for discussion.
7763 if (const CallExpr *CallCE =
7764 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7765 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7766 IsBcpCall = true;
7768 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7769 // constant expression; we can't check whether it's potentially foldable.
7770 // FIXME: We should instead treat __builtin_constant_p as non-constant if
7771 // it would return 'false' in this mode.
7772 if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7773 return false;
7775 FoldConstant Fold(Info, IsBcpCall);
7776 if (!HandleConditionalOperator(E)) {
7777 Fold.keepDiagnostics();
7778 return false;
7781 return true;
7784 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7785 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E);
7786 Value && !Value->isAbsent())
7787 return DerivedSuccess(*Value, E);
7789 const Expr *Source = E->getSourceExpr();
7790 if (!Source)
7791 return Error(E);
7792 if (Source == E) {
7793 assert(0 && "OpaqueValueExpr recursively refers to itself");
7794 return Error(E);
7796 return StmtVisitorTy::Visit(Source);
7799 bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7800 for (const Expr *SemE : E->semantics()) {
7801 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7802 // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7803 // result expression: there could be two different LValues that would
7804 // refer to the same object in that case, and we can't model that.
7805 if (SemE == E->getResultExpr())
7806 return Error(E);
7808 // Unique OVEs get evaluated if and when we encounter them when
7809 // emitting the rest of the semantic form, rather than eagerly.
7810 if (OVE->isUnique())
7811 continue;
7813 LValue LV;
7814 if (!Evaluate(Info.CurrentCall->createTemporary(
7815 OVE, getStorageType(Info.Ctx, OVE),
7816 ScopeKind::FullExpression, LV),
7817 Info, OVE->getSourceExpr()))
7818 return false;
7819 } else if (SemE == E->getResultExpr()) {
7820 if (!StmtVisitorTy::Visit(SemE))
7821 return false;
7822 } else {
7823 if (!EvaluateIgnoredValue(Info, SemE))
7824 return false;
7827 return true;
7830 bool VisitCallExpr(const CallExpr *E) {
7831 APValue Result;
7832 if (!handleCallExpr(E, Result, nullptr))
7833 return false;
7834 return DerivedSuccess(Result, E);
7837 bool handleCallExpr(const CallExpr *E, APValue &Result,
7838 const LValue *ResultSlot) {
7839 CallScopeRAII CallScope(Info);
7841 const Expr *Callee = E->getCallee()->IgnoreParens();
7842 QualType CalleeType = Callee->getType();
7844 const FunctionDecl *FD = nullptr;
7845 LValue *This = nullptr, ThisVal;
7846 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
7847 bool HasQualifier = false;
7849 CallRef Call;
7851 // Extract function decl and 'this' pointer from the callee.
7852 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7853 const CXXMethodDecl *Member = nullptr;
7854 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7855 // Explicit bound member calls, such as x.f() or p->g();
7856 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7857 return false;
7858 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7859 if (!Member)
7860 return Error(Callee);
7861 This = &ThisVal;
7862 HasQualifier = ME->hasQualifier();
7863 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7864 // Indirect bound member calls ('.*' or '->*').
7865 const ValueDecl *D =
7866 HandleMemberPointerAccess(Info, BE, ThisVal, false);
7867 if (!D)
7868 return false;
7869 Member = dyn_cast<CXXMethodDecl>(D);
7870 if (!Member)
7871 return Error(Callee);
7872 This = &ThisVal;
7873 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7874 if (!Info.getLangOpts().CPlusPlus20)
7875 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7876 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7877 HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7878 } else
7879 return Error(Callee);
7880 FD = Member;
7881 } else if (CalleeType->isFunctionPointerType()) {
7882 LValue CalleeLV;
7883 if (!EvaluatePointer(Callee, CalleeLV, Info))
7884 return false;
7886 if (!CalleeLV.getLValueOffset().isZero())
7887 return Error(Callee);
7888 if (CalleeLV.isNullPointer()) {
7889 Info.FFDiag(Callee, diag::note_constexpr_null_callee)
7890 << const_cast<Expr *>(Callee);
7891 return false;
7893 FD = dyn_cast_or_null<FunctionDecl>(
7894 CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7895 if (!FD)
7896 return Error(Callee);
7897 // Don't call function pointers which have been cast to some other type.
7898 // Per DR (no number yet), the caller and callee can differ in noexcept.
7899 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7900 CalleeType->getPointeeType(), FD->getType())) {
7901 return Error(E);
7904 // For an (overloaded) assignment expression, evaluate the RHS before the
7905 // LHS.
7906 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7907 if (OCE && OCE->isAssignmentOp()) {
7908 assert(Args.size() == 2 && "wrong number of arguments in assignment");
7909 Call = Info.CurrentCall->createCall(FD);
7910 bool HasThis = false;
7911 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
7912 HasThis = MD->isImplicitObjectMemberFunction();
7913 if (!EvaluateArgs(HasThis ? Args.slice(1) : Args, Call, Info, FD,
7914 /*RightToLeft=*/true))
7915 return false;
7918 // Overloaded operator calls to member functions are represented as normal
7919 // calls with '*this' as the first argument.
7920 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7921 if (MD && MD->isImplicitObjectMemberFunction()) {
7922 // FIXME: When selecting an implicit conversion for an overloaded
7923 // operator delete, we sometimes try to evaluate calls to conversion
7924 // operators without a 'this' parameter!
7925 if (Args.empty())
7926 return Error(E);
7928 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7929 return false;
7930 This = &ThisVal;
7932 // If this is syntactically a simple assignment using a trivial
7933 // assignment operator, start the lifetimes of union members as needed,
7934 // per C++20 [class.union]5.
7935 if (Info.getLangOpts().CPlusPlus20 && OCE &&
7936 OCE->getOperator() == OO_Equal && MD->isTrivial() &&
7937 !MaybeHandleUnionActiveMemberChange(Info, Args[0], ThisVal))
7938 return false;
7940 Args = Args.slice(1);
7941 } else if (MD && MD->isLambdaStaticInvoker()) {
7942 // Map the static invoker for the lambda back to the call operator.
7943 // Conveniently, we don't have to slice out the 'this' argument (as is
7944 // being done for the non-static case), since a static member function
7945 // doesn't have an implicit argument passed in.
7946 const CXXRecordDecl *ClosureClass = MD->getParent();
7947 assert(
7948 ClosureClass->captures_begin() == ClosureClass->captures_end() &&
7949 "Number of captures must be zero for conversion to function-ptr");
7951 const CXXMethodDecl *LambdaCallOp =
7952 ClosureClass->getLambdaCallOperator();
7954 // Set 'FD', the function that will be called below, to the call
7955 // operator. If the closure object represents a generic lambda, find
7956 // the corresponding specialization of the call operator.
7958 if (ClosureClass->isGenericLambda()) {
7959 assert(MD->isFunctionTemplateSpecialization() &&
7960 "A generic lambda's static-invoker function must be a "
7961 "template specialization");
7962 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
7963 FunctionTemplateDecl *CallOpTemplate =
7964 LambdaCallOp->getDescribedFunctionTemplate();
7965 void *InsertPos = nullptr;
7966 FunctionDecl *CorrespondingCallOpSpecialization =
7967 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
7968 assert(CorrespondingCallOpSpecialization &&
7969 "We must always have a function call operator specialization "
7970 "that corresponds to our static invoker specialization");
7971 FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
7972 } else
7973 FD = LambdaCallOp;
7974 } else if (FD->isReplaceableGlobalAllocationFunction()) {
7975 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
7976 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
7977 LValue Ptr;
7978 if (!HandleOperatorNewCall(Info, E, Ptr))
7979 return false;
7980 Ptr.moveInto(Result);
7981 return CallScope.destroy();
7982 } else {
7983 return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
7986 } else
7987 return Error(E);
7989 // Evaluate the arguments now if we've not already done so.
7990 if (!Call) {
7991 Call = Info.CurrentCall->createCall(FD);
7992 if (!EvaluateArgs(Args, Call, Info, FD))
7993 return false;
7996 SmallVector<QualType, 4> CovariantAdjustmentPath;
7997 if (This) {
7998 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
7999 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
8000 // Perform virtual dispatch, if necessary.
8001 FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
8002 CovariantAdjustmentPath);
8003 if (!FD)
8004 return false;
8005 } else if (NamedMember && NamedMember->isImplicitObjectMemberFunction()) {
8006 // Check that the 'this' pointer points to an object of the right type.
8007 // FIXME: If this is an assignment operator call, we may need to change
8008 // the active union member before we check this.
8009 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
8010 return false;
8014 // Destructor calls are different enough that they have their own codepath.
8015 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
8016 assert(This && "no 'this' pointer for destructor call");
8017 return HandleDestruction(Info, E, *This,
8018 Info.Ctx.getRecordType(DD->getParent())) &&
8019 CallScope.destroy();
8022 const FunctionDecl *Definition = nullptr;
8023 Stmt *Body = FD->getBody(Definition);
8025 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
8026 !HandleFunctionCall(E->getExprLoc(), Definition, This, E, Args, Call,
8027 Body, Info, Result, ResultSlot))
8028 return false;
8030 if (!CovariantAdjustmentPath.empty() &&
8031 !HandleCovariantReturnAdjustment(Info, E, Result,
8032 CovariantAdjustmentPath))
8033 return false;
8035 return CallScope.destroy();
8038 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8039 return StmtVisitorTy::Visit(E->getInitializer());
8041 bool VisitInitListExpr(const InitListExpr *E) {
8042 if (E->getNumInits() == 0)
8043 return DerivedZeroInitialization(E);
8044 if (E->getNumInits() == 1)
8045 return StmtVisitorTy::Visit(E->getInit(0));
8046 return Error(E);
8048 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
8049 return DerivedZeroInitialization(E);
8051 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
8052 return DerivedZeroInitialization(E);
8054 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
8055 return DerivedZeroInitialization(E);
8058 /// A member expression where the object is a prvalue is itself a prvalue.
8059 bool VisitMemberExpr(const MemberExpr *E) {
8060 assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
8061 "missing temporary materialization conversion");
8062 assert(!E->isArrow() && "missing call to bound member function?");
8064 APValue Val;
8065 if (!Evaluate(Val, Info, E->getBase()))
8066 return false;
8068 QualType BaseTy = E->getBase()->getType();
8070 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
8071 if (!FD) return Error(E);
8072 assert(!FD->getType()->isReferenceType() && "prvalue reference?");
8073 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8074 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8076 // Note: there is no lvalue base here. But this case should only ever
8077 // happen in C or in C++98, where we cannot be evaluating a constexpr
8078 // constructor, which is the only case the base matters.
8079 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
8080 SubobjectDesignator Designator(BaseTy);
8081 Designator.addDeclUnchecked(FD);
8083 APValue Result;
8084 return extractSubobject(Info, E, Obj, Designator, Result) &&
8085 DerivedSuccess(Result, E);
8088 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
8089 APValue Val;
8090 if (!Evaluate(Val, Info, E->getBase()))
8091 return false;
8093 if (Val.isVector()) {
8094 SmallVector<uint32_t, 4> Indices;
8095 E->getEncodedElementAccess(Indices);
8096 if (Indices.size() == 1) {
8097 // Return scalar.
8098 return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
8099 } else {
8100 // Construct new APValue vector.
8101 SmallVector<APValue, 4> Elts;
8102 for (unsigned I = 0; I < Indices.size(); ++I) {
8103 Elts.push_back(Val.getVectorElt(Indices[I]));
8105 APValue VecResult(Elts.data(), Indices.size());
8106 return DerivedSuccess(VecResult, E);
8110 return false;
8113 bool VisitCastExpr(const CastExpr *E) {
8114 switch (E->getCastKind()) {
8115 default:
8116 break;
8118 case CK_AtomicToNonAtomic: {
8119 APValue AtomicVal;
8120 // This does not need to be done in place even for class/array types:
8121 // atomic-to-non-atomic conversion implies copying the object
8122 // representation.
8123 if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
8124 return false;
8125 return DerivedSuccess(AtomicVal, E);
8128 case CK_NoOp:
8129 case CK_UserDefinedConversion:
8130 return StmtVisitorTy::Visit(E->getSubExpr());
8132 case CK_LValueToRValue: {
8133 LValue LVal;
8134 if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
8135 return false;
8136 APValue RVal;
8137 // Note, we use the subexpression's type in order to retain cv-qualifiers.
8138 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8139 LVal, RVal))
8140 return false;
8141 return DerivedSuccess(RVal, E);
8143 case CK_LValueToRValueBitCast: {
8144 APValue DestValue, SourceValue;
8145 if (!Evaluate(SourceValue, Info, E->getSubExpr()))
8146 return false;
8147 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
8148 return false;
8149 return DerivedSuccess(DestValue, E);
8152 case CK_AddressSpaceConversion: {
8153 APValue Value;
8154 if (!Evaluate(Value, Info, E->getSubExpr()))
8155 return false;
8156 return DerivedSuccess(Value, E);
8160 return Error(E);
8163 bool VisitUnaryPostInc(const UnaryOperator *UO) {
8164 return VisitUnaryPostIncDec(UO);
8166 bool VisitUnaryPostDec(const UnaryOperator *UO) {
8167 return VisitUnaryPostIncDec(UO);
8169 bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
8170 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8171 return Error(UO);
8173 LValue LVal;
8174 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
8175 return false;
8176 APValue RVal;
8177 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
8178 UO->isIncrementOp(), &RVal))
8179 return false;
8180 return DerivedSuccess(RVal, UO);
8183 bool VisitStmtExpr(const StmtExpr *E) {
8184 // We will have checked the full-expressions inside the statement expression
8185 // when they were completed, and don't need to check them again now.
8186 llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior,
8187 false);
8189 const CompoundStmt *CS = E->getSubStmt();
8190 if (CS->body_empty())
8191 return true;
8193 BlockScopeRAII Scope(Info);
8194 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
8195 BE = CS->body_end();
8196 /**/; ++BI) {
8197 if (BI + 1 == BE) {
8198 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
8199 if (!FinalExpr) {
8200 Info.FFDiag((*BI)->getBeginLoc(),
8201 diag::note_constexpr_stmt_expr_unsupported);
8202 return false;
8204 return this->Visit(FinalExpr) && Scope.destroy();
8207 APValue ReturnValue;
8208 StmtResult Result = { ReturnValue, nullptr };
8209 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
8210 if (ESR != ESR_Succeeded) {
8211 // FIXME: If the statement-expression terminated due to 'return',
8212 // 'break', or 'continue', it would be nice to propagate that to
8213 // the outer statement evaluation rather than bailing out.
8214 if (ESR != ESR_Failed)
8215 Info.FFDiag((*BI)->getBeginLoc(),
8216 diag::note_constexpr_stmt_expr_unsupported);
8217 return false;
8221 llvm_unreachable("Return from function from the loop above.");
8224 /// Visit a value which is evaluated, but whose value is ignored.
8225 void VisitIgnoredValue(const Expr *E) {
8226 EvaluateIgnoredValue(Info, E);
8229 /// Potentially visit a MemberExpr's base expression.
8230 void VisitIgnoredBaseExpression(const Expr *E) {
8231 // While MSVC doesn't evaluate the base expression, it does diagnose the
8232 // presence of side-effecting behavior.
8233 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
8234 return;
8235 VisitIgnoredValue(E);
8239 } // namespace
8241 //===----------------------------------------------------------------------===//
8242 // Common base class for lvalue and temporary evaluation.
8243 //===----------------------------------------------------------------------===//
8244 namespace {
8245 template<class Derived>
8246 class LValueExprEvaluatorBase
8247 : public ExprEvaluatorBase<Derived> {
8248 protected:
8249 LValue &Result;
8250 bool InvalidBaseOK;
8251 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
8252 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
8254 bool Success(APValue::LValueBase B) {
8255 Result.set(B);
8256 return true;
8259 bool evaluatePointer(const Expr *E, LValue &Result) {
8260 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
8263 public:
8264 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
8265 : ExprEvaluatorBaseTy(Info), Result(Result),
8266 InvalidBaseOK(InvalidBaseOK) {}
8268 bool Success(const APValue &V, const Expr *E) {
8269 Result.setFrom(this->Info.Ctx, V);
8270 return true;
8273 bool VisitMemberExpr(const MemberExpr *E) {
8274 // Handle non-static data members.
8275 QualType BaseTy;
8276 bool EvalOK;
8277 if (E->isArrow()) {
8278 EvalOK = evaluatePointer(E->getBase(), Result);
8279 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
8280 } else if (E->getBase()->isPRValue()) {
8281 assert(E->getBase()->getType()->isRecordType());
8282 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
8283 BaseTy = E->getBase()->getType();
8284 } else {
8285 EvalOK = this->Visit(E->getBase());
8286 BaseTy = E->getBase()->getType();
8288 if (!EvalOK) {
8289 if (!InvalidBaseOK)
8290 return false;
8291 Result.setInvalid(E);
8292 return true;
8295 const ValueDecl *MD = E->getMemberDecl();
8296 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
8297 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8298 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8299 (void)BaseTy;
8300 if (!HandleLValueMember(this->Info, E, Result, FD))
8301 return false;
8302 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
8303 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
8304 return false;
8305 } else
8306 return this->Error(E);
8308 if (MD->getType()->isReferenceType()) {
8309 APValue RefValue;
8310 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
8311 RefValue))
8312 return false;
8313 return Success(RefValue, E);
8315 return true;
8318 bool VisitBinaryOperator(const BinaryOperator *E) {
8319 switch (E->getOpcode()) {
8320 default:
8321 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8323 case BO_PtrMemD:
8324 case BO_PtrMemI:
8325 return HandleMemberPointerAccess(this->Info, E, Result);
8329 bool VisitCastExpr(const CastExpr *E) {
8330 switch (E->getCastKind()) {
8331 default:
8332 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8334 case CK_DerivedToBase:
8335 case CK_UncheckedDerivedToBase:
8336 if (!this->Visit(E->getSubExpr()))
8337 return false;
8339 // Now figure out the necessary offset to add to the base LV to get from
8340 // the derived class to the base class.
8341 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8342 Result);
8348 //===----------------------------------------------------------------------===//
8349 // LValue Evaluation
8351 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8352 // function designators (in C), decl references to void objects (in C), and
8353 // temporaries (if building with -Wno-address-of-temporary).
8355 // LValue evaluation produces values comprising a base expression of one of the
8356 // following types:
8357 // - Declarations
8358 // * VarDecl
8359 // * FunctionDecl
8360 // - Literals
8361 // * CompoundLiteralExpr in C (and in global scope in C++)
8362 // * StringLiteral
8363 // * PredefinedExpr
8364 // * ObjCStringLiteralExpr
8365 // * ObjCEncodeExpr
8366 // * AddrLabelExpr
8367 // * BlockExpr
8368 // * CallExpr for a MakeStringConstant builtin
8369 // - typeid(T) expressions, as TypeInfoLValues
8370 // - Locals and temporaries
8371 // * MaterializeTemporaryExpr
8372 // * Any Expr, with a CallIndex indicating the function in which the temporary
8373 // was evaluated, for cases where the MaterializeTemporaryExpr is missing
8374 // from the AST (FIXME).
8375 // * A MaterializeTemporaryExpr that has static storage duration, with no
8376 // CallIndex, for a lifetime-extended temporary.
8377 // * The ConstantExpr that is currently being evaluated during evaluation of an
8378 // immediate invocation.
8379 // plus an offset in bytes.
8380 //===----------------------------------------------------------------------===//
8381 namespace {
8382 class LValueExprEvaluator
8383 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8384 public:
8385 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8386 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8388 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8389 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8391 bool VisitCallExpr(const CallExpr *E);
8392 bool VisitDeclRefExpr(const DeclRefExpr *E);
8393 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8394 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8395 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8396 bool VisitMemberExpr(const MemberExpr *E);
8397 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
8398 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8399 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8400 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8401 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8402 bool VisitUnaryDeref(const UnaryOperator *E);
8403 bool VisitUnaryReal(const UnaryOperator *E);
8404 bool VisitUnaryImag(const UnaryOperator *E);
8405 bool VisitUnaryPreInc(const UnaryOperator *UO) {
8406 return VisitUnaryPreIncDec(UO);
8408 bool VisitUnaryPreDec(const UnaryOperator *UO) {
8409 return VisitUnaryPreIncDec(UO);
8411 bool VisitBinAssign(const BinaryOperator *BO);
8412 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8414 bool VisitCastExpr(const CastExpr *E) {
8415 switch (E->getCastKind()) {
8416 default:
8417 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8419 case CK_LValueBitCast:
8420 this->CCEDiag(E, diag::note_constexpr_invalid_cast)
8421 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
8422 if (!Visit(E->getSubExpr()))
8423 return false;
8424 Result.Designator.setInvalid();
8425 return true;
8427 case CK_BaseToDerived:
8428 if (!Visit(E->getSubExpr()))
8429 return false;
8430 return HandleBaseToDerivedCast(Info, E, Result);
8432 case CK_Dynamic:
8433 if (!Visit(E->getSubExpr()))
8434 return false;
8435 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8439 } // end anonymous namespace
8441 /// Evaluate an expression as an lvalue. This can be legitimately called on
8442 /// expressions which are not glvalues, in three cases:
8443 /// * function designators in C, and
8444 /// * "extern void" objects
8445 /// * @selector() expressions in Objective-C
8446 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8447 bool InvalidBaseOK) {
8448 assert(!E->isValueDependent());
8449 assert(E->isGLValue() || E->getType()->isFunctionType() ||
8450 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens()));
8451 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8454 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8455 const NamedDecl *D = E->getDecl();
8456 if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl,
8457 UnnamedGlobalConstantDecl>(D))
8458 return Success(cast<ValueDecl>(D));
8459 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8460 return VisitVarDecl(E, VD);
8461 if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8462 return Visit(BD->getBinding());
8463 return Error(E);
8467 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8469 // If we are within a lambda's call operator, check whether the 'VD' referred
8470 // to within 'E' actually represents a lambda-capture that maps to a
8471 // data-member/field within the closure object, and if so, evaluate to the
8472 // field or what the field refers to.
8473 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8474 isa<DeclRefExpr>(E) &&
8475 cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8476 // We don't always have a complete capture-map when checking or inferring if
8477 // the function call operator meets the requirements of a constexpr function
8478 // - but we don't need to evaluate the captures to determine constexprness
8479 // (dcl.constexpr C++17).
8480 if (Info.checkingPotentialConstantExpression())
8481 return false;
8483 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8484 // Start with 'Result' referring to the complete closure object...
8485 if (auto *MD = cast<CXXMethodDecl>(Info.CurrentCall->Callee);
8486 MD->isExplicitObjectMemberFunction()) {
8487 APValue *RefValue =
8488 Info.getParamSlot(Info.CurrentCall->Arguments, MD->getParamDecl(0));
8489 Result.setFrom(Info.Ctx, *RefValue);
8490 } else
8491 Result = *Info.CurrentCall->This;
8492 // ... then update it to refer to the field of the closure object
8493 // that represents the capture.
8494 if (!HandleLValueMember(Info, E, Result, FD))
8495 return false;
8496 // And if the field is of reference type, update 'Result' to refer to what
8497 // the field refers to.
8498 if (FD->getType()->isReferenceType()) {
8499 APValue RVal;
8500 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
8501 RVal))
8502 return false;
8503 Result.setFrom(Info.Ctx, RVal);
8505 return true;
8509 CallStackFrame *Frame = nullptr;
8510 unsigned Version = 0;
8511 if (VD->hasLocalStorage()) {
8512 // Only if a local variable was declared in the function currently being
8513 // evaluated, do we expect to be able to find its value in the current
8514 // frame. (Otherwise it was likely declared in an enclosing context and
8515 // could either have a valid evaluatable value (for e.g. a constexpr
8516 // variable) or be ill-formed (and trigger an appropriate evaluation
8517 // diagnostic)).
8518 CallStackFrame *CurrFrame = Info.CurrentCall;
8519 if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8520 // Function parameters are stored in some caller's frame. (Usually the
8521 // immediate caller, but for an inherited constructor they may be more
8522 // distant.)
8523 if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8524 if (CurrFrame->Arguments) {
8525 VD = CurrFrame->Arguments.getOrigParam(PVD);
8526 Frame =
8527 Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8528 Version = CurrFrame->Arguments.Version;
8530 } else {
8531 Frame = CurrFrame;
8532 Version = CurrFrame->getCurrentTemporaryVersion(VD);
8537 if (!VD->getType()->isReferenceType()) {
8538 if (Frame) {
8539 Result.set({VD, Frame->Index, Version});
8540 return true;
8542 return Success(VD);
8545 if (!Info.getLangOpts().CPlusPlus11) {
8546 Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8547 << VD << VD->getType();
8548 Info.Note(VD->getLocation(), diag::note_declared_at);
8551 APValue *V;
8552 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8553 return false;
8554 if (!V->hasValue()) {
8555 // FIXME: Is it possible for V to be indeterminate here? If so, we should
8556 // adjust the diagnostic to say that.
8557 if (!Info.checkingPotentialConstantExpression())
8558 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8559 return false;
8561 return Success(*V, E);
8564 bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) {
8565 if (!IsConstantEvaluatedBuiltinCall(E))
8566 return ExprEvaluatorBaseTy::VisitCallExpr(E);
8568 switch (E->getBuiltinCallee()) {
8569 default:
8570 return false;
8571 case Builtin::BIas_const:
8572 case Builtin::BIforward:
8573 case Builtin::BIforward_like:
8574 case Builtin::BImove:
8575 case Builtin::BImove_if_noexcept:
8576 if (cast<FunctionDecl>(E->getCalleeDecl())->isConstexpr())
8577 return Visit(E->getArg(0));
8578 break;
8581 return ExprEvaluatorBaseTy::VisitCallExpr(E);
8584 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8585 const MaterializeTemporaryExpr *E) {
8586 // Walk through the expression to find the materialized temporary itself.
8587 SmallVector<const Expr *, 2> CommaLHSs;
8588 SmallVector<SubobjectAdjustment, 2> Adjustments;
8589 const Expr *Inner =
8590 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8592 // If we passed any comma operators, evaluate their LHSs.
8593 for (const Expr *E : CommaLHSs)
8594 if (!EvaluateIgnoredValue(Info, E))
8595 return false;
8597 // A materialized temporary with static storage duration can appear within the
8598 // result of a constant expression evaluation, so we need to preserve its
8599 // value for use outside this evaluation.
8600 APValue *Value;
8601 if (E->getStorageDuration() == SD_Static) {
8602 if (Info.EvalMode == EvalInfo::EM_ConstantFold)
8603 return false;
8604 // FIXME: What about SD_Thread?
8605 Value = E->getOrCreateValue(true);
8606 *Value = APValue();
8607 Result.set(E);
8608 } else {
8609 Value = &Info.CurrentCall->createTemporary(
8610 E, E->getType(),
8611 E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8612 : ScopeKind::Block,
8613 Result);
8616 QualType Type = Inner->getType();
8618 // Materialize the temporary itself.
8619 if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8620 *Value = APValue();
8621 return false;
8624 // Adjust our lvalue to refer to the desired subobject.
8625 for (unsigned I = Adjustments.size(); I != 0; /**/) {
8626 --I;
8627 switch (Adjustments[I].Kind) {
8628 case SubobjectAdjustment::DerivedToBaseAdjustment:
8629 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8630 Type, Result))
8631 return false;
8632 Type = Adjustments[I].DerivedToBase.BasePath->getType();
8633 break;
8635 case SubobjectAdjustment::FieldAdjustment:
8636 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8637 return false;
8638 Type = Adjustments[I].Field->getType();
8639 break;
8641 case SubobjectAdjustment::MemberPointerAdjustment:
8642 if (!HandleMemberPointerAccess(this->Info, Type, Result,
8643 Adjustments[I].Ptr.RHS))
8644 return false;
8645 Type = Adjustments[I].Ptr.MPT->getPointeeType();
8646 break;
8650 return true;
8653 bool
8654 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8655 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8656 "lvalue compound literal in c++?");
8657 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8658 // only see this when folding in C, so there's no standard to follow here.
8659 return Success(E);
8662 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8663 TypeInfoLValue TypeInfo;
8665 if (!E->isPotentiallyEvaluated()) {
8666 if (E->isTypeOperand())
8667 TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8668 else
8669 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8670 } else {
8671 if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8672 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8673 << E->getExprOperand()->getType()
8674 << E->getExprOperand()->getSourceRange();
8677 if (!Visit(E->getExprOperand()))
8678 return false;
8680 std::optional<DynamicType> DynType =
8681 ComputeDynamicType(Info, E, Result, AK_TypeId);
8682 if (!DynType)
8683 return false;
8685 TypeInfo =
8686 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8689 return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8692 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8693 return Success(E->getGuidDecl());
8696 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8697 // Handle static data members.
8698 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8699 VisitIgnoredBaseExpression(E->getBase());
8700 return VisitVarDecl(E, VD);
8703 // Handle static member functions.
8704 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8705 if (MD->isStatic()) {
8706 VisitIgnoredBaseExpression(E->getBase());
8707 return Success(MD);
8711 // Handle non-static data members.
8712 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8715 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8716 // FIXME: Deal with vectors as array subscript bases.
8717 if (E->getBase()->getType()->isVectorType() ||
8718 E->getBase()->getType()->isSveVLSBuiltinType())
8719 return Error(E);
8721 APSInt Index;
8722 bool Success = true;
8724 // C++17's rules require us to evaluate the LHS first, regardless of which
8725 // side is the base.
8726 for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8727 if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8728 : !EvaluateInteger(SubExpr, Index, Info)) {
8729 if (!Info.noteFailure())
8730 return false;
8731 Success = false;
8735 return Success &&
8736 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8739 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8740 return evaluatePointer(E->getSubExpr(), Result);
8743 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8744 if (!Visit(E->getSubExpr()))
8745 return false;
8746 // __real is a no-op on scalar lvalues.
8747 if (E->getSubExpr()->getType()->isAnyComplexType())
8748 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8749 return true;
8752 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8753 assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8754 "lvalue __imag__ on scalar?");
8755 if (!Visit(E->getSubExpr()))
8756 return false;
8757 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8758 return true;
8761 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8762 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8763 return Error(UO);
8765 if (!this->Visit(UO->getSubExpr()))
8766 return false;
8768 return handleIncDec(
8769 this->Info, UO, Result, UO->getSubExpr()->getType(),
8770 UO->isIncrementOp(), nullptr);
8773 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8774 const CompoundAssignOperator *CAO) {
8775 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8776 return Error(CAO);
8778 bool Success = true;
8780 // C++17 onwards require that we evaluate the RHS first.
8781 APValue RHS;
8782 if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8783 if (!Info.noteFailure())
8784 return false;
8785 Success = false;
8788 // The overall lvalue result is the result of evaluating the LHS.
8789 if (!this->Visit(CAO->getLHS()) || !Success)
8790 return false;
8792 return handleCompoundAssignment(
8793 this->Info, CAO,
8794 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8795 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8798 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8799 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8800 return Error(E);
8802 bool Success = true;
8804 // C++17 onwards require that we evaluate the RHS first.
8805 APValue NewVal;
8806 if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8807 if (!Info.noteFailure())
8808 return false;
8809 Success = false;
8812 if (!this->Visit(E->getLHS()) || !Success)
8813 return false;
8815 if (Info.getLangOpts().CPlusPlus20 &&
8816 !MaybeHandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8817 return false;
8819 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8820 NewVal);
8823 //===----------------------------------------------------------------------===//
8824 // Pointer Evaluation
8825 //===----------------------------------------------------------------------===//
8827 /// Attempts to compute the number of bytes available at the pointer
8828 /// returned by a function with the alloc_size attribute. Returns true if we
8829 /// were successful. Places an unsigned number into `Result`.
8831 /// This expects the given CallExpr to be a call to a function with an
8832 /// alloc_size attribute.
8833 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8834 const CallExpr *Call,
8835 llvm::APInt &Result) {
8836 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8838 assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8839 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8840 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8841 if (Call->getNumArgs() <= SizeArgNo)
8842 return false;
8844 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8845 Expr::EvalResult ExprResult;
8846 if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8847 return false;
8848 Into = ExprResult.Val.getInt();
8849 if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8850 return false;
8851 Into = Into.zext(BitsInSizeT);
8852 return true;
8855 APSInt SizeOfElem;
8856 if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8857 return false;
8859 if (!AllocSize->getNumElemsParam().isValid()) {
8860 Result = std::move(SizeOfElem);
8861 return true;
8864 APSInt NumberOfElems;
8865 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8866 if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
8867 return false;
8869 bool Overflow;
8870 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
8871 if (Overflow)
8872 return false;
8874 Result = std::move(BytesAvailable);
8875 return true;
8878 /// Convenience function. LVal's base must be a call to an alloc_size
8879 /// function.
8880 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8881 const LValue &LVal,
8882 llvm::APInt &Result) {
8883 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8884 "Can't get the size of a non alloc_size function");
8885 const auto *Base = LVal.getLValueBase().get<const Expr *>();
8886 const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
8887 return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
8890 /// Attempts to evaluate the given LValueBase as the result of a call to
8891 /// a function with the alloc_size attribute. If it was possible to do so, this
8892 /// function will return true, make Result's Base point to said function call,
8893 /// and mark Result's Base as invalid.
8894 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8895 LValue &Result) {
8896 if (Base.isNull())
8897 return false;
8899 // Because we do no form of static analysis, we only support const variables.
8901 // Additionally, we can't support parameters, nor can we support static
8902 // variables (in the latter case, use-before-assign isn't UB; in the former,
8903 // we have no clue what they'll be assigned to).
8904 const auto *VD =
8905 dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
8906 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8907 return false;
8909 const Expr *Init = VD->getAnyInitializer();
8910 if (!Init || Init->getType().isNull())
8911 return false;
8913 const Expr *E = Init->IgnoreParens();
8914 if (!tryUnwrapAllocSizeCall(E))
8915 return false;
8917 // Store E instead of E unwrapped so that the type of the LValue's base is
8918 // what the user wanted.
8919 Result.setInvalid(E);
8921 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8922 Result.addUnsizedArray(Info, E, Pointee);
8923 return true;
8926 namespace {
8927 class PointerExprEvaluator
8928 : public ExprEvaluatorBase<PointerExprEvaluator> {
8929 LValue &Result;
8930 bool InvalidBaseOK;
8932 bool Success(const Expr *E) {
8933 Result.set(E);
8934 return true;
8937 bool evaluateLValue(const Expr *E, LValue &Result) {
8938 return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8941 bool evaluatePointer(const Expr *E, LValue &Result) {
8942 return EvaluatePointer(E, Result, Info, InvalidBaseOK);
8945 bool visitNonBuiltinCallExpr(const CallExpr *E);
8946 public:
8948 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
8949 : ExprEvaluatorBaseTy(info), Result(Result),
8950 InvalidBaseOK(InvalidBaseOK) {}
8952 bool Success(const APValue &V, const Expr *E) {
8953 Result.setFrom(Info.Ctx, V);
8954 return true;
8956 bool ZeroInitialization(const Expr *E) {
8957 Result.setNull(Info.Ctx, E->getType());
8958 return true;
8961 bool VisitBinaryOperator(const BinaryOperator *E);
8962 bool VisitCastExpr(const CastExpr* E);
8963 bool VisitUnaryAddrOf(const UnaryOperator *E);
8964 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
8965 { return Success(E); }
8966 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
8967 if (E->isExpressibleAsConstantInitializer())
8968 return Success(E);
8969 if (Info.noteFailure())
8970 EvaluateIgnoredValue(Info, E->getSubExpr());
8971 return Error(E);
8973 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
8974 { return Success(E); }
8975 bool VisitCallExpr(const CallExpr *E);
8976 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
8977 bool VisitBlockExpr(const BlockExpr *E) {
8978 if (!E->getBlockDecl()->hasCaptures())
8979 return Success(E);
8980 return Error(E);
8982 bool VisitCXXThisExpr(const CXXThisExpr *E) {
8983 // Can't look at 'this' when checking a potential constant expression.
8984 if (Info.checkingPotentialConstantExpression())
8985 return false;
8986 if (!Info.CurrentCall->This) {
8987 if (Info.getLangOpts().CPlusPlus11)
8988 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
8989 else
8990 Info.FFDiag(E);
8991 return false;
8993 Result = *Info.CurrentCall->This;
8995 if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
8996 // Ensure we actually have captured 'this'. If something was wrong with
8997 // 'this' capture, the error would have been previously reported.
8998 // Otherwise we can be inside of a default initialization of an object
8999 // declared by lambda's body, so no need to return false.
9000 if (!Info.CurrentCall->LambdaThisCaptureField)
9001 return true;
9003 // If we have captured 'this', the 'this' expression refers
9004 // to the enclosing '*this' object (either by value or reference) which is
9005 // either copied into the closure object's field that represents the
9006 // '*this' or refers to '*this'.
9007 // Update 'Result' to refer to the data member/field of the closure object
9008 // that represents the '*this' capture.
9009 if (!HandleLValueMember(Info, E, Result,
9010 Info.CurrentCall->LambdaThisCaptureField))
9011 return false;
9012 // If we captured '*this' by reference, replace the field with its referent.
9013 if (Info.CurrentCall->LambdaThisCaptureField->getType()
9014 ->isPointerType()) {
9015 APValue RVal;
9016 if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
9017 RVal))
9018 return false;
9020 Result.setFrom(Info.Ctx, RVal);
9023 return true;
9026 bool VisitCXXNewExpr(const CXXNewExpr *E);
9028 bool VisitSourceLocExpr(const SourceLocExpr *E) {
9029 assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?");
9030 APValue LValResult = E->EvaluateInContext(
9031 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
9032 Result.setFrom(Info.Ctx, LValResult);
9033 return true;
9036 bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
9037 std::string ResultStr = E->ComputeName(Info.Ctx);
9039 QualType CharTy = Info.Ctx.CharTy.withConst();
9040 APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()),
9041 ResultStr.size() + 1);
9042 QualType ArrayTy = Info.Ctx.getConstantArrayType(
9043 CharTy, Size, nullptr, ArraySizeModifier::Normal, 0);
9045 StringLiteral *SL =
9046 StringLiteral::Create(Info.Ctx, ResultStr, StringLiteral::Ordinary,
9047 /*Pascal*/ false, ArrayTy, E->getLocation());
9049 evaluateLValue(SL, Result);
9050 Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy));
9051 return true;
9054 // FIXME: Missing: @protocol, @selector
9056 } // end anonymous namespace
9058 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
9059 bool InvalidBaseOK) {
9060 assert(!E->isValueDependent());
9061 assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
9062 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
9065 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
9066 if (E->getOpcode() != BO_Add &&
9067 E->getOpcode() != BO_Sub)
9068 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
9070 const Expr *PExp = E->getLHS();
9071 const Expr *IExp = E->getRHS();
9072 if (IExp->getType()->isPointerType())
9073 std::swap(PExp, IExp);
9075 bool EvalPtrOK = evaluatePointer(PExp, Result);
9076 if (!EvalPtrOK && !Info.noteFailure())
9077 return false;
9079 llvm::APSInt Offset;
9080 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
9081 return false;
9083 if (E->getOpcode() == BO_Sub)
9084 negateAsSigned(Offset);
9086 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
9087 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
9090 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9091 return evaluateLValue(E->getSubExpr(), Result);
9094 // Is the provided decl 'std::source_location::current'?
9095 static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) {
9096 if (!FD)
9097 return false;
9098 const IdentifierInfo *FnII = FD->getIdentifier();
9099 if (!FnII || !FnII->isStr("current"))
9100 return false;
9102 const auto *RD = dyn_cast<RecordDecl>(FD->getParent());
9103 if (!RD)
9104 return false;
9106 const IdentifierInfo *ClassII = RD->getIdentifier();
9107 return RD->isInStdNamespace() && ClassII && ClassII->isStr("source_location");
9110 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9111 const Expr *SubExpr = E->getSubExpr();
9113 switch (E->getCastKind()) {
9114 default:
9115 break;
9116 case CK_BitCast:
9117 case CK_CPointerToObjCPointerCast:
9118 case CK_BlockPointerToObjCPointerCast:
9119 case CK_AnyPointerToBlockPointerCast:
9120 case CK_AddressSpaceConversion:
9121 if (!Visit(SubExpr))
9122 return false;
9123 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
9124 // permitted in constant expressions in C++11. Bitcasts from cv void* are
9125 // also static_casts, but we disallow them as a resolution to DR1312.
9126 if (!E->getType()->isVoidPointerType()) {
9127 // In some circumstances, we permit casting from void* to cv1 T*, when the
9128 // actual pointee object is actually a cv2 T.
9129 bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid &&
9130 !Result.IsNullPtr;
9131 bool VoidPtrCastMaybeOK =
9132 HasValidResult &&
9133 Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
9134 E->getType()->getPointeeType());
9135 // 1. We'll allow it in std::allocator::allocate, and anything which that
9136 // calls.
9137 // 2. HACK 2022-03-28: Work around an issue with libstdc++'s
9138 // <source_location> header. Fixed in GCC 12 and later (2022-04-??).
9139 // We'll allow it in the body of std::source_location::current. GCC's
9140 // implementation had a parameter of type `void*`, and casts from
9141 // that back to `const __impl*` in its body.
9142 if (VoidPtrCastMaybeOK &&
9143 (Info.getStdAllocatorCaller("allocate") ||
9144 IsDeclSourceLocationCurrent(Info.CurrentCall->Callee) ||
9145 Info.getLangOpts().CPlusPlus26)) {
9146 // Permitted.
9147 } else {
9148 if (SubExpr->getType()->isVoidPointerType()) {
9149 if (HasValidResult)
9150 CCEDiag(E, diag::note_constexpr_invalid_void_star_cast)
9151 << SubExpr->getType() << Info.getLangOpts().CPlusPlus26
9152 << Result.Designator.getType(Info.Ctx).getCanonicalType()
9153 << E->getType()->getPointeeType();
9154 else
9155 CCEDiag(E, diag::note_constexpr_invalid_cast)
9156 << 3 << SubExpr->getType();
9157 } else
9158 CCEDiag(E, diag::note_constexpr_invalid_cast)
9159 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
9160 Result.Designator.setInvalid();
9163 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
9164 ZeroInitialization(E);
9165 return true;
9167 case CK_DerivedToBase:
9168 case CK_UncheckedDerivedToBase:
9169 if (!evaluatePointer(E->getSubExpr(), Result))
9170 return false;
9171 if (!Result.Base && Result.Offset.isZero())
9172 return true;
9174 // Now figure out the necessary offset to add to the base LV to get from
9175 // the derived class to the base class.
9176 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
9177 castAs<PointerType>()->getPointeeType(),
9178 Result);
9180 case CK_BaseToDerived:
9181 if (!Visit(E->getSubExpr()))
9182 return false;
9183 if (!Result.Base && Result.Offset.isZero())
9184 return true;
9185 return HandleBaseToDerivedCast(Info, E, Result);
9187 case CK_Dynamic:
9188 if (!Visit(E->getSubExpr()))
9189 return false;
9190 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
9192 case CK_NullToPointer:
9193 VisitIgnoredValue(E->getSubExpr());
9194 return ZeroInitialization(E);
9196 case CK_IntegralToPointer: {
9197 CCEDiag(E, diag::note_constexpr_invalid_cast)
9198 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
9200 APValue Value;
9201 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
9202 break;
9204 if (Value.isInt()) {
9205 unsigned Size = Info.Ctx.getTypeSize(E->getType());
9206 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
9207 Result.Base = (Expr*)nullptr;
9208 Result.InvalidBase = false;
9209 Result.Offset = CharUnits::fromQuantity(N);
9210 Result.Designator.setInvalid();
9211 Result.IsNullPtr = false;
9212 return true;
9213 } else {
9214 // Cast is of an lvalue, no need to change value.
9215 Result.setFrom(Info.Ctx, Value);
9216 return true;
9220 case CK_ArrayToPointerDecay: {
9221 if (SubExpr->isGLValue()) {
9222 if (!evaluateLValue(SubExpr, Result))
9223 return false;
9224 } else {
9225 APValue &Value = Info.CurrentCall->createTemporary(
9226 SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
9227 if (!EvaluateInPlace(Value, Info, Result, SubExpr))
9228 return false;
9230 // The result is a pointer to the first element of the array.
9231 auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
9232 if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
9233 Result.addArray(Info, E, CAT);
9234 else
9235 Result.addUnsizedArray(Info, E, AT->getElementType());
9236 return true;
9239 case CK_FunctionToPointerDecay:
9240 return evaluateLValue(SubExpr, Result);
9242 case CK_LValueToRValue: {
9243 LValue LVal;
9244 if (!evaluateLValue(E->getSubExpr(), LVal))
9245 return false;
9247 APValue RVal;
9248 // Note, we use the subexpression's type in order to retain cv-qualifiers.
9249 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
9250 LVal, RVal))
9251 return InvalidBaseOK &&
9252 evaluateLValueAsAllocSize(Info, LVal.Base, Result);
9253 return Success(RVal, E);
9257 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9260 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
9261 UnaryExprOrTypeTrait ExprKind) {
9262 // C++ [expr.alignof]p3:
9263 // When alignof is applied to a reference type, the result is the
9264 // alignment of the referenced type.
9265 T = T.getNonReferenceType();
9267 if (T.getQualifiers().hasUnaligned())
9268 return CharUnits::One();
9270 const bool AlignOfReturnsPreferred =
9271 Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
9273 // __alignof is defined to return the preferred alignment.
9274 // Before 8, clang returned the preferred alignment for alignof and _Alignof
9275 // as well.
9276 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
9277 return Info.Ctx.toCharUnitsFromBits(
9278 Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
9279 // alignof and _Alignof are defined to return the ABI alignment.
9280 else if (ExprKind == UETT_AlignOf)
9281 return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
9282 else
9283 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
9286 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
9287 UnaryExprOrTypeTrait ExprKind) {
9288 E = E->IgnoreParens();
9290 // The kinds of expressions that we have special-case logic here for
9291 // should be kept up to date with the special checks for those
9292 // expressions in Sema.
9294 // alignof decl is always accepted, even if it doesn't make sense: we default
9295 // to 1 in those cases.
9296 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
9297 return Info.Ctx.getDeclAlign(DRE->getDecl(),
9298 /*RefAsPointee*/true);
9300 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
9301 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
9302 /*RefAsPointee*/true);
9304 return GetAlignOfType(Info, E->getType(), ExprKind);
9307 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
9308 if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
9309 return Info.Ctx.getDeclAlign(VD);
9310 if (const auto *E = Value.Base.dyn_cast<const Expr *>())
9311 return GetAlignOfExpr(Info, E, UETT_AlignOf);
9312 return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
9315 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
9316 /// __builtin_is_aligned and __builtin_assume_aligned.
9317 static bool getAlignmentArgument(const Expr *E, QualType ForType,
9318 EvalInfo &Info, APSInt &Alignment) {
9319 if (!EvaluateInteger(E, Alignment, Info))
9320 return false;
9321 if (Alignment < 0 || !Alignment.isPowerOf2()) {
9322 Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
9323 return false;
9325 unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
9326 APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
9327 if (APSInt::compareValues(Alignment, MaxValue) > 0) {
9328 Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
9329 << MaxValue << ForType << Alignment;
9330 return false;
9332 // Ensure both alignment and source value have the same bit width so that we
9333 // don't assert when computing the resulting value.
9334 APSInt ExtAlignment =
9335 APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
9336 assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
9337 "Alignment should not be changed by ext/trunc");
9338 Alignment = ExtAlignment;
9339 assert(Alignment.getBitWidth() == SrcWidth);
9340 return true;
9343 // To be clear: this happily visits unsupported builtins. Better name welcomed.
9344 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
9345 if (ExprEvaluatorBaseTy::VisitCallExpr(E))
9346 return true;
9348 if (!(InvalidBaseOK && getAllocSizeAttr(E)))
9349 return false;
9351 Result.setInvalid(E);
9352 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
9353 Result.addUnsizedArray(Info, E, PointeeTy);
9354 return true;
9357 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
9358 if (!IsConstantEvaluatedBuiltinCall(E))
9359 return visitNonBuiltinCallExpr(E);
9360 return VisitBuiltinCallExpr(E, E->getBuiltinCallee());
9363 // Determine if T is a character type for which we guarantee that
9364 // sizeof(T) == 1.
9365 static bool isOneByteCharacterType(QualType T) {
9366 return T->isCharType() || T->isChar8Type();
9369 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
9370 unsigned BuiltinOp) {
9371 if (IsNoOpCall(E))
9372 return Success(E);
9374 switch (BuiltinOp) {
9375 case Builtin::BIaddressof:
9376 case Builtin::BI__addressof:
9377 case Builtin::BI__builtin_addressof:
9378 return evaluateLValue(E->getArg(0), Result);
9379 case Builtin::BI__builtin_assume_aligned: {
9380 // We need to be very careful here because: if the pointer does not have the
9381 // asserted alignment, then the behavior is undefined, and undefined
9382 // behavior is non-constant.
9383 if (!evaluatePointer(E->getArg(0), Result))
9384 return false;
9386 LValue OffsetResult(Result);
9387 APSInt Alignment;
9388 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9389 Alignment))
9390 return false;
9391 CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
9393 if (E->getNumArgs() > 2) {
9394 APSInt Offset;
9395 if (!EvaluateInteger(E->getArg(2), Offset, Info))
9396 return false;
9398 int64_t AdditionalOffset = -Offset.getZExtValue();
9399 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
9402 // If there is a base object, then it must have the correct alignment.
9403 if (OffsetResult.Base) {
9404 CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
9406 if (BaseAlignment < Align) {
9407 Result.Designator.setInvalid();
9408 // FIXME: Add support to Diagnostic for long / long long.
9409 CCEDiag(E->getArg(0),
9410 diag::note_constexpr_baa_insufficient_alignment) << 0
9411 << (unsigned)BaseAlignment.getQuantity()
9412 << (unsigned)Align.getQuantity();
9413 return false;
9417 // The offset must also have the correct alignment.
9418 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9419 Result.Designator.setInvalid();
9421 (OffsetResult.Base
9422 ? CCEDiag(E->getArg(0),
9423 diag::note_constexpr_baa_insufficient_alignment) << 1
9424 : CCEDiag(E->getArg(0),
9425 diag::note_constexpr_baa_value_insufficient_alignment))
9426 << (int)OffsetResult.Offset.getQuantity()
9427 << (unsigned)Align.getQuantity();
9428 return false;
9431 return true;
9433 case Builtin::BI__builtin_align_up:
9434 case Builtin::BI__builtin_align_down: {
9435 if (!evaluatePointer(E->getArg(0), Result))
9436 return false;
9437 APSInt Alignment;
9438 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9439 Alignment))
9440 return false;
9441 CharUnits BaseAlignment = getBaseAlignment(Info, Result);
9442 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
9443 // For align_up/align_down, we can return the same value if the alignment
9444 // is known to be greater or equal to the requested value.
9445 if (PtrAlign.getQuantity() >= Alignment)
9446 return true;
9448 // The alignment could be greater than the minimum at run-time, so we cannot
9449 // infer much about the resulting pointer value. One case is possible:
9450 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9451 // can infer the correct index if the requested alignment is smaller than
9452 // the base alignment so we can perform the computation on the offset.
9453 if (BaseAlignment.getQuantity() >= Alignment) {
9454 assert(Alignment.getBitWidth() <= 64 &&
9455 "Cannot handle > 64-bit address-space");
9456 uint64_t Alignment64 = Alignment.getZExtValue();
9457 CharUnits NewOffset = CharUnits::fromQuantity(
9458 BuiltinOp == Builtin::BI__builtin_align_down
9459 ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9460 : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9461 Result.adjustOffset(NewOffset - Result.Offset);
9462 // TODO: diagnose out-of-bounds values/only allow for arrays?
9463 return true;
9465 // Otherwise, we cannot constant-evaluate the result.
9466 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9467 << Alignment;
9468 return false;
9470 case Builtin::BI__builtin_operator_new:
9471 return HandleOperatorNewCall(Info, E, Result);
9472 case Builtin::BI__builtin_launder:
9473 return evaluatePointer(E->getArg(0), Result);
9474 case Builtin::BIstrchr:
9475 case Builtin::BIwcschr:
9476 case Builtin::BImemchr:
9477 case Builtin::BIwmemchr:
9478 if (Info.getLangOpts().CPlusPlus11)
9479 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9480 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9481 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9482 else
9483 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9484 [[fallthrough]];
9485 case Builtin::BI__builtin_strchr:
9486 case Builtin::BI__builtin_wcschr:
9487 case Builtin::BI__builtin_memchr:
9488 case Builtin::BI__builtin_char_memchr:
9489 case Builtin::BI__builtin_wmemchr: {
9490 if (!Visit(E->getArg(0)))
9491 return false;
9492 APSInt Desired;
9493 if (!EvaluateInteger(E->getArg(1), Desired, Info))
9494 return false;
9495 uint64_t MaxLength = uint64_t(-1);
9496 if (BuiltinOp != Builtin::BIstrchr &&
9497 BuiltinOp != Builtin::BIwcschr &&
9498 BuiltinOp != Builtin::BI__builtin_strchr &&
9499 BuiltinOp != Builtin::BI__builtin_wcschr) {
9500 APSInt N;
9501 if (!EvaluateInteger(E->getArg(2), N, Info))
9502 return false;
9503 MaxLength = N.getZExtValue();
9505 // We cannot find the value if there are no candidates to match against.
9506 if (MaxLength == 0u)
9507 return ZeroInitialization(E);
9508 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9509 Result.Designator.Invalid)
9510 return false;
9511 QualType CharTy = Result.Designator.getType(Info.Ctx);
9512 bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9513 BuiltinOp == Builtin::BI__builtin_memchr;
9514 assert(IsRawByte ||
9515 Info.Ctx.hasSameUnqualifiedType(
9516 CharTy, E->getArg(0)->getType()->getPointeeType()));
9517 // Pointers to const void may point to objects of incomplete type.
9518 if (IsRawByte && CharTy->isIncompleteType()) {
9519 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9520 return false;
9522 // Give up on byte-oriented matching against multibyte elements.
9523 // FIXME: We can compare the bytes in the correct order.
9524 if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9525 Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9526 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
9527 << CharTy;
9528 return false;
9530 // Figure out what value we're actually looking for (after converting to
9531 // the corresponding unsigned type if necessary).
9532 uint64_t DesiredVal;
9533 bool StopAtNull = false;
9534 switch (BuiltinOp) {
9535 case Builtin::BIstrchr:
9536 case Builtin::BI__builtin_strchr:
9537 // strchr compares directly to the passed integer, and therefore
9538 // always fails if given an int that is not a char.
9539 if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9540 E->getArg(1)->getType(),
9541 Desired),
9542 Desired))
9543 return ZeroInitialization(E);
9544 StopAtNull = true;
9545 [[fallthrough]];
9546 case Builtin::BImemchr:
9547 case Builtin::BI__builtin_memchr:
9548 case Builtin::BI__builtin_char_memchr:
9549 // memchr compares by converting both sides to unsigned char. That's also
9550 // correct for strchr if we get this far (to cope with plain char being
9551 // unsigned in the strchr case).
9552 DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9553 break;
9555 case Builtin::BIwcschr:
9556 case Builtin::BI__builtin_wcschr:
9557 StopAtNull = true;
9558 [[fallthrough]];
9559 case Builtin::BIwmemchr:
9560 case Builtin::BI__builtin_wmemchr:
9561 // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9562 DesiredVal = Desired.getZExtValue();
9563 break;
9566 for (; MaxLength; --MaxLength) {
9567 APValue Char;
9568 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9569 !Char.isInt())
9570 return false;
9571 if (Char.getInt().getZExtValue() == DesiredVal)
9572 return true;
9573 if (StopAtNull && !Char.getInt())
9574 break;
9575 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9576 return false;
9578 // Not found: return nullptr.
9579 return ZeroInitialization(E);
9582 case Builtin::BImemcpy:
9583 case Builtin::BImemmove:
9584 case Builtin::BIwmemcpy:
9585 case Builtin::BIwmemmove:
9586 if (Info.getLangOpts().CPlusPlus11)
9587 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9588 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9589 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9590 else
9591 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9592 [[fallthrough]];
9593 case Builtin::BI__builtin_memcpy:
9594 case Builtin::BI__builtin_memmove:
9595 case Builtin::BI__builtin_wmemcpy:
9596 case Builtin::BI__builtin_wmemmove: {
9597 bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9598 BuiltinOp == Builtin::BIwmemmove ||
9599 BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9600 BuiltinOp == Builtin::BI__builtin_wmemmove;
9601 bool Move = BuiltinOp == Builtin::BImemmove ||
9602 BuiltinOp == Builtin::BIwmemmove ||
9603 BuiltinOp == Builtin::BI__builtin_memmove ||
9604 BuiltinOp == Builtin::BI__builtin_wmemmove;
9606 // The result of mem* is the first argument.
9607 if (!Visit(E->getArg(0)))
9608 return false;
9609 LValue Dest = Result;
9611 LValue Src;
9612 if (!EvaluatePointer(E->getArg(1), Src, Info))
9613 return false;
9615 APSInt N;
9616 if (!EvaluateInteger(E->getArg(2), N, Info))
9617 return false;
9618 assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9620 // If the size is zero, we treat this as always being a valid no-op.
9621 // (Even if one of the src and dest pointers is null.)
9622 if (!N)
9623 return true;
9625 // Otherwise, if either of the operands is null, we can't proceed. Don't
9626 // try to determine the type of the copied objects, because there aren't
9627 // any.
9628 if (!Src.Base || !Dest.Base) {
9629 APValue Val;
9630 (!Src.Base ? Src : Dest).moveInto(Val);
9631 Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9632 << Move << WChar << !!Src.Base
9633 << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9634 return false;
9636 if (Src.Designator.Invalid || Dest.Designator.Invalid)
9637 return false;
9639 // We require that Src and Dest are both pointers to arrays of
9640 // trivially-copyable type. (For the wide version, the designator will be
9641 // invalid if the designated object is not a wchar_t.)
9642 QualType T = Dest.Designator.getType(Info.Ctx);
9643 QualType SrcT = Src.Designator.getType(Info.Ctx);
9644 if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9645 // FIXME: Consider using our bit_cast implementation to support this.
9646 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9647 return false;
9649 if (T->isIncompleteType()) {
9650 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9651 return false;
9653 if (!T.isTriviallyCopyableType(Info.Ctx)) {
9654 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9655 return false;
9658 // Figure out how many T's we're copying.
9659 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9660 if (TSize == 0)
9661 return false;
9662 if (!WChar) {
9663 uint64_t Remainder;
9664 llvm::APInt OrigN = N;
9665 llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9666 if (Remainder) {
9667 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9668 << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
9669 << (unsigned)TSize;
9670 return false;
9674 // Check that the copying will remain within the arrays, just so that we
9675 // can give a more meaningful diagnostic. This implicitly also checks that
9676 // N fits into 64 bits.
9677 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9678 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9679 if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9680 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9681 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9682 << toString(N, 10, /*Signed*/false);
9683 return false;
9685 uint64_t NElems = N.getZExtValue();
9686 uint64_t NBytes = NElems * TSize;
9688 // Check for overlap.
9689 int Direction = 1;
9690 if (HasSameBase(Src, Dest)) {
9691 uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9692 uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9693 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9694 // Dest is inside the source region.
9695 if (!Move) {
9696 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9697 return false;
9699 // For memmove and friends, copy backwards.
9700 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9701 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9702 return false;
9703 Direction = -1;
9704 } else if (!Move && SrcOffset >= DestOffset &&
9705 SrcOffset - DestOffset < NBytes) {
9706 // Src is inside the destination region for memcpy: invalid.
9707 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9708 return false;
9712 while (true) {
9713 APValue Val;
9714 // FIXME: Set WantObjectRepresentation to true if we're copying a
9715 // char-like type?
9716 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9717 !handleAssignment(Info, E, Dest, T, Val))
9718 return false;
9719 // Do not iterate past the last element; if we're copying backwards, that
9720 // might take us off the start of the array.
9721 if (--NElems == 0)
9722 return true;
9723 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9724 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9725 return false;
9729 default:
9730 return false;
9734 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9735 APValue &Result, const InitListExpr *ILE,
9736 QualType AllocType);
9737 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9738 APValue &Result,
9739 const CXXConstructExpr *CCE,
9740 QualType AllocType);
9742 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9743 if (!Info.getLangOpts().CPlusPlus20)
9744 Info.CCEDiag(E, diag::note_constexpr_new);
9746 // We cannot speculatively evaluate a delete expression.
9747 if (Info.SpeculativeEvaluationDepth)
9748 return false;
9750 FunctionDecl *OperatorNew = E->getOperatorNew();
9752 bool IsNothrow = false;
9753 bool IsPlacement = false;
9754 if (OperatorNew->isReservedGlobalPlacementOperator() &&
9755 Info.CurrentCall->isStdFunction() && !E->isArray()) {
9756 // FIXME Support array placement new.
9757 assert(E->getNumPlacementArgs() == 1);
9758 if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9759 return false;
9760 if (Result.Designator.Invalid)
9761 return false;
9762 IsPlacement = true;
9763 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9764 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9765 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9766 return false;
9767 } else if (E->getNumPlacementArgs()) {
9768 // The only new-placement list we support is of the form (std::nothrow).
9770 // FIXME: There is no restriction on this, but it's not clear that any
9771 // other form makes any sense. We get here for cases such as:
9773 // new (std::align_val_t{N}) X(int)
9775 // (which should presumably be valid only if N is a multiple of
9776 // alignof(int), and in any case can't be deallocated unless N is
9777 // alignof(X) and X has new-extended alignment).
9778 if (E->getNumPlacementArgs() != 1 ||
9779 !E->getPlacementArg(0)->getType()->isNothrowT())
9780 return Error(E, diag::note_constexpr_new_placement);
9782 LValue Nothrow;
9783 if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9784 return false;
9785 IsNothrow = true;
9788 const Expr *Init = E->getInitializer();
9789 const InitListExpr *ResizedArrayILE = nullptr;
9790 const CXXConstructExpr *ResizedArrayCCE = nullptr;
9791 bool ValueInit = false;
9793 QualType AllocType = E->getAllocatedType();
9794 if (std::optional<const Expr *> ArraySize = E->getArraySize()) {
9795 const Expr *Stripped = *ArraySize;
9796 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9797 Stripped = ICE->getSubExpr())
9798 if (ICE->getCastKind() != CK_NoOp &&
9799 ICE->getCastKind() != CK_IntegralCast)
9800 break;
9802 llvm::APSInt ArrayBound;
9803 if (!EvaluateInteger(Stripped, ArrayBound, Info))
9804 return false;
9806 // C++ [expr.new]p9:
9807 // The expression is erroneous if:
9808 // -- [...] its value before converting to size_t [or] applying the
9809 // second standard conversion sequence is less than zero
9810 if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9811 if (IsNothrow)
9812 return ZeroInitialization(E);
9814 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9815 << ArrayBound << (*ArraySize)->getSourceRange();
9816 return false;
9819 // -- its value is such that the size of the allocated object would
9820 // exceed the implementation-defined limit
9821 if (!Info.CheckArraySize(ArraySize.value()->getExprLoc(),
9822 ConstantArrayType::getNumAddressingBits(
9823 Info.Ctx, AllocType, ArrayBound),
9824 ArrayBound.getZExtValue(), /*Diag=*/!IsNothrow)) {
9825 if (IsNothrow)
9826 return ZeroInitialization(E);
9827 return false;
9830 // -- the new-initializer is a braced-init-list and the number of
9831 // array elements for which initializers are provided [...]
9832 // exceeds the number of elements to initialize
9833 if (!Init) {
9834 // No initialization is performed.
9835 } else if (isa<CXXScalarValueInitExpr>(Init) ||
9836 isa<ImplicitValueInitExpr>(Init)) {
9837 ValueInit = true;
9838 } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9839 ResizedArrayCCE = CCE;
9840 } else {
9841 auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9842 assert(CAT && "unexpected type for array initializer");
9844 unsigned Bits =
9845 std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
9846 llvm::APInt InitBound = CAT->getSize().zext(Bits);
9847 llvm::APInt AllocBound = ArrayBound.zext(Bits);
9848 if (InitBound.ugt(AllocBound)) {
9849 if (IsNothrow)
9850 return ZeroInitialization(E);
9852 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9853 << toString(AllocBound, 10, /*Signed=*/false)
9854 << toString(InitBound, 10, /*Signed=*/false)
9855 << (*ArraySize)->getSourceRange();
9856 return false;
9859 // If the sizes differ, we must have an initializer list, and we need
9860 // special handling for this case when we initialize.
9861 if (InitBound != AllocBound)
9862 ResizedArrayILE = cast<InitListExpr>(Init);
9865 AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
9866 ArraySizeModifier::Normal, 0);
9867 } else {
9868 assert(!AllocType->isArrayType() &&
9869 "array allocation with non-array new");
9872 APValue *Val;
9873 if (IsPlacement) {
9874 AccessKinds AK = AK_Construct;
9875 struct FindObjectHandler {
9876 EvalInfo &Info;
9877 const Expr *E;
9878 QualType AllocType;
9879 const AccessKinds AccessKind;
9880 APValue *Value;
9882 typedef bool result_type;
9883 bool failed() { return false; }
9884 bool found(APValue &Subobj, QualType SubobjType) {
9885 // FIXME: Reject the cases where [basic.life]p8 would not permit the
9886 // old name of the object to be used to name the new object.
9887 if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9888 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9889 SubobjType << AllocType;
9890 return false;
9892 Value = &Subobj;
9893 return true;
9895 bool found(APSInt &Value, QualType SubobjType) {
9896 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9897 return false;
9899 bool found(APFloat &Value, QualType SubobjType) {
9900 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9901 return false;
9903 } Handler = {Info, E, AllocType, AK, nullptr};
9905 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9906 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9907 return false;
9909 Val = Handler.Value;
9911 // [basic.life]p1:
9912 // The lifetime of an object o of type T ends when [...] the storage
9913 // which the object occupies is [...] reused by an object that is not
9914 // nested within o (6.6.2).
9915 *Val = APValue();
9916 } else {
9917 // Perform the allocation and obtain a pointer to the resulting object.
9918 Val = Info.createHeapAlloc(E, AllocType, Result);
9919 if (!Val)
9920 return false;
9923 if (ValueInit) {
9924 ImplicitValueInitExpr VIE(AllocType);
9925 if (!EvaluateInPlace(*Val, Info, Result, &VIE))
9926 return false;
9927 } else if (ResizedArrayILE) {
9928 if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
9929 AllocType))
9930 return false;
9931 } else if (ResizedArrayCCE) {
9932 if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
9933 AllocType))
9934 return false;
9935 } else if (Init) {
9936 if (!EvaluateInPlace(*Val, Info, Result, Init))
9937 return false;
9938 } else if (!handleDefaultInitValue(AllocType, *Val)) {
9939 return false;
9942 // Array new returns a pointer to the first element, not a pointer to the
9943 // array.
9944 if (auto *AT = AllocType->getAsArrayTypeUnsafe())
9945 Result.addArray(Info, E, cast<ConstantArrayType>(AT));
9947 return true;
9949 //===----------------------------------------------------------------------===//
9950 // Member Pointer Evaluation
9951 //===----------------------------------------------------------------------===//
9953 namespace {
9954 class MemberPointerExprEvaluator
9955 : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
9956 MemberPtr &Result;
9958 bool Success(const ValueDecl *D) {
9959 Result = MemberPtr(D);
9960 return true;
9962 public:
9964 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
9965 : ExprEvaluatorBaseTy(Info), Result(Result) {}
9967 bool Success(const APValue &V, const Expr *E) {
9968 Result.setFrom(V);
9969 return true;
9971 bool ZeroInitialization(const Expr *E) {
9972 return Success((const ValueDecl*)nullptr);
9975 bool VisitCastExpr(const CastExpr *E);
9976 bool VisitUnaryAddrOf(const UnaryOperator *E);
9978 } // end anonymous namespace
9980 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
9981 EvalInfo &Info) {
9982 assert(!E->isValueDependent());
9983 assert(E->isPRValue() && E->getType()->isMemberPointerType());
9984 return MemberPointerExprEvaluator(Info, Result).Visit(E);
9987 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9988 switch (E->getCastKind()) {
9989 default:
9990 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9992 case CK_NullToMemberPointer:
9993 VisitIgnoredValue(E->getSubExpr());
9994 return ZeroInitialization(E);
9996 case CK_BaseToDerivedMemberPointer: {
9997 if (!Visit(E->getSubExpr()))
9998 return false;
9999 if (E->path_empty())
10000 return true;
10001 // Base-to-derived member pointer casts store the path in derived-to-base
10002 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
10003 // the wrong end of the derived->base arc, so stagger the path by one class.
10004 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
10005 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
10006 PathI != PathE; ++PathI) {
10007 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
10008 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
10009 if (!Result.castToDerived(Derived))
10010 return Error(E);
10012 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
10013 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
10014 return Error(E);
10015 return true;
10018 case CK_DerivedToBaseMemberPointer:
10019 if (!Visit(E->getSubExpr()))
10020 return false;
10021 for (CastExpr::path_const_iterator PathI = E->path_begin(),
10022 PathE = E->path_end(); PathI != PathE; ++PathI) {
10023 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
10024 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
10025 if (!Result.castToBase(Base))
10026 return Error(E);
10028 return true;
10032 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
10033 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
10034 // member can be formed.
10035 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
10038 //===----------------------------------------------------------------------===//
10039 // Record Evaluation
10040 //===----------------------------------------------------------------------===//
10042 namespace {
10043 class RecordExprEvaluator
10044 : public ExprEvaluatorBase<RecordExprEvaluator> {
10045 const LValue &This;
10046 APValue &Result;
10047 public:
10049 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
10050 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
10052 bool Success(const APValue &V, const Expr *E) {
10053 Result = V;
10054 return true;
10056 bool ZeroInitialization(const Expr *E) {
10057 return ZeroInitialization(E, E->getType());
10059 bool ZeroInitialization(const Expr *E, QualType T);
10061 bool VisitCallExpr(const CallExpr *E) {
10062 return handleCallExpr(E, Result, &This);
10064 bool VisitCastExpr(const CastExpr *E);
10065 bool VisitInitListExpr(const InitListExpr *E);
10066 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10067 return VisitCXXConstructExpr(E, E->getType());
10069 bool VisitLambdaExpr(const LambdaExpr *E);
10070 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
10071 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
10072 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
10073 bool VisitBinCmp(const BinaryOperator *E);
10074 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
10075 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
10076 ArrayRef<Expr *> Args);
10080 /// Perform zero-initialization on an object of non-union class type.
10081 /// C++11 [dcl.init]p5:
10082 /// To zero-initialize an object or reference of type T means:
10083 /// [...]
10084 /// -- if T is a (possibly cv-qualified) non-union class type,
10085 /// each non-static data member and each base-class subobject is
10086 /// zero-initialized
10087 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
10088 const RecordDecl *RD,
10089 const LValue &This, APValue &Result) {
10090 assert(!RD->isUnion() && "Expected non-union class type");
10091 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
10092 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
10093 std::distance(RD->field_begin(), RD->field_end()));
10095 if (RD->isInvalidDecl()) return false;
10096 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
10098 if (CD) {
10099 unsigned Index = 0;
10100 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
10101 End = CD->bases_end(); I != End; ++I, ++Index) {
10102 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
10103 LValue Subobject = This;
10104 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
10105 return false;
10106 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
10107 Result.getStructBase(Index)))
10108 return false;
10112 for (const auto *I : RD->fields()) {
10113 // -- if T is a reference type, no initialization is performed.
10114 if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
10115 continue;
10117 LValue Subobject = This;
10118 if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
10119 return false;
10121 ImplicitValueInitExpr VIE(I->getType());
10122 if (!EvaluateInPlace(
10123 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
10124 return false;
10127 return true;
10130 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
10131 const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
10132 if (RD->isInvalidDecl()) return false;
10133 if (RD->isUnion()) {
10134 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
10135 // object's first non-static named data member is zero-initialized
10136 RecordDecl::field_iterator I = RD->field_begin();
10137 while (I != RD->field_end() && (*I)->isUnnamedBitfield())
10138 ++I;
10139 if (I == RD->field_end()) {
10140 Result = APValue((const FieldDecl*)nullptr);
10141 return true;
10144 LValue Subobject = This;
10145 if (!HandleLValueMember(Info, E, Subobject, *I))
10146 return false;
10147 Result = APValue(*I);
10148 ImplicitValueInitExpr VIE(I->getType());
10149 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
10152 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
10153 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
10154 return false;
10157 return HandleClassZeroInitialization(Info, E, RD, This, Result);
10160 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
10161 switch (E->getCastKind()) {
10162 default:
10163 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10165 case CK_ConstructorConversion:
10166 return Visit(E->getSubExpr());
10168 case CK_DerivedToBase:
10169 case CK_UncheckedDerivedToBase: {
10170 APValue DerivedObject;
10171 if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
10172 return false;
10173 if (!DerivedObject.isStruct())
10174 return Error(E->getSubExpr());
10176 // Derived-to-base rvalue conversion: just slice off the derived part.
10177 APValue *Value = &DerivedObject;
10178 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
10179 for (CastExpr::path_const_iterator PathI = E->path_begin(),
10180 PathE = E->path_end(); PathI != PathE; ++PathI) {
10181 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
10182 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
10183 Value = &Value->getStructBase(getBaseIndex(RD, Base));
10184 RD = Base;
10186 Result = *Value;
10187 return true;
10192 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10193 if (E->isTransparent())
10194 return Visit(E->getInit(0));
10195 return VisitCXXParenListOrInitListExpr(E, E->inits());
10198 bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr(
10199 const Expr *ExprToVisit, ArrayRef<Expr *> Args) {
10200 const RecordDecl *RD =
10201 ExprToVisit->getType()->castAs<RecordType>()->getDecl();
10202 if (RD->isInvalidDecl()) return false;
10203 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
10204 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
10206 EvalInfo::EvaluatingConstructorRAII EvalObj(
10207 Info,
10208 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
10209 CXXRD && CXXRD->getNumBases());
10211 if (RD->isUnion()) {
10212 const FieldDecl *Field;
10213 if (auto *ILE = dyn_cast<InitListExpr>(ExprToVisit)) {
10214 Field = ILE->getInitializedFieldInUnion();
10215 } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(ExprToVisit)) {
10216 Field = PLIE->getInitializedFieldInUnion();
10217 } else {
10218 llvm_unreachable(
10219 "Expression is neither an init list nor a C++ paren list");
10222 Result = APValue(Field);
10223 if (!Field)
10224 return true;
10226 // If the initializer list for a union does not contain any elements, the
10227 // first element of the union is value-initialized.
10228 // FIXME: The element should be initialized from an initializer list.
10229 // Is this difference ever observable for initializer lists which
10230 // we don't build?
10231 ImplicitValueInitExpr VIE(Field->getType());
10232 const Expr *InitExpr = Args.empty() ? &VIE : Args[0];
10234 LValue Subobject = This;
10235 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
10236 return false;
10238 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10239 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10240 isa<CXXDefaultInitExpr>(InitExpr));
10242 if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) {
10243 if (Field->isBitField())
10244 return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(),
10245 Field);
10246 return true;
10249 return false;
10252 if (!Result.hasValue())
10253 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
10254 std::distance(RD->field_begin(), RD->field_end()));
10255 unsigned ElementNo = 0;
10256 bool Success = true;
10258 // Initialize base classes.
10259 if (CXXRD && CXXRD->getNumBases()) {
10260 for (const auto &Base : CXXRD->bases()) {
10261 assert(ElementNo < Args.size() && "missing init for base class");
10262 const Expr *Init = Args[ElementNo];
10264 LValue Subobject = This;
10265 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
10266 return false;
10268 APValue &FieldVal = Result.getStructBase(ElementNo);
10269 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
10270 if (!Info.noteFailure())
10271 return false;
10272 Success = false;
10274 ++ElementNo;
10277 EvalObj.finishedConstructingBases();
10280 // Initialize members.
10281 for (const auto *Field : RD->fields()) {
10282 // Anonymous bit-fields are not considered members of the class for
10283 // purposes of aggregate initialization.
10284 if (Field->isUnnamedBitfield())
10285 continue;
10287 LValue Subobject = This;
10289 bool HaveInit = ElementNo < Args.size();
10291 // FIXME: Diagnostics here should point to the end of the initializer
10292 // list, not the start.
10293 if (!HandleLValueMember(Info, HaveInit ? Args[ElementNo] : ExprToVisit,
10294 Subobject, Field, &Layout))
10295 return false;
10297 // Perform an implicit value-initialization for members beyond the end of
10298 // the initializer list.
10299 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
10300 const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE;
10302 if (Field->getType()->isIncompleteArrayType()) {
10303 if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) {
10304 if (!CAT->getSize().isZero()) {
10305 // Bail out for now. This might sort of "work", but the rest of the
10306 // code isn't really prepared to handle it.
10307 Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array);
10308 return false;
10313 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10314 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10315 isa<CXXDefaultInitExpr>(Init));
10317 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10318 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
10319 (Field->isBitField() && !truncateBitfieldValue(Info, Init,
10320 FieldVal, Field))) {
10321 if (!Info.noteFailure())
10322 return false;
10323 Success = false;
10327 EvalObj.finishedConstructingFields();
10329 return Success;
10332 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10333 QualType T) {
10334 // Note that E's type is not necessarily the type of our class here; we might
10335 // be initializing an array element instead.
10336 const CXXConstructorDecl *FD = E->getConstructor();
10337 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
10339 bool ZeroInit = E->requiresZeroInitialization();
10340 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
10341 // If we've already performed zero-initialization, we're already done.
10342 if (Result.hasValue())
10343 return true;
10345 if (ZeroInit)
10346 return ZeroInitialization(E, T);
10348 return handleDefaultInitValue(T, Result);
10351 const FunctionDecl *Definition = nullptr;
10352 auto Body = FD->getBody(Definition);
10354 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10355 return false;
10357 // Avoid materializing a temporary for an elidable copy/move constructor.
10358 if (E->isElidable() && !ZeroInit) {
10359 // FIXME: This only handles the simplest case, where the source object
10360 // is passed directly as the first argument to the constructor.
10361 // This should also handle stepping though implicit casts and
10362 // and conversion sequences which involve two steps, with a
10363 // conversion operator followed by a converting constructor.
10364 const Expr *SrcObj = E->getArg(0);
10365 assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
10366 assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
10367 if (const MaterializeTemporaryExpr *ME =
10368 dyn_cast<MaterializeTemporaryExpr>(SrcObj))
10369 return Visit(ME->getSubExpr());
10372 if (ZeroInit && !ZeroInitialization(E, T))
10373 return false;
10375 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
10376 return HandleConstructorCall(E, This, Args,
10377 cast<CXXConstructorDecl>(Definition), Info,
10378 Result);
10381 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
10382 const CXXInheritedCtorInitExpr *E) {
10383 if (!Info.CurrentCall) {
10384 assert(Info.checkingPotentialConstantExpression());
10385 return false;
10388 const CXXConstructorDecl *FD = E->getConstructor();
10389 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
10390 return false;
10392 const FunctionDecl *Definition = nullptr;
10393 auto Body = FD->getBody(Definition);
10395 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10396 return false;
10398 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
10399 cast<CXXConstructorDecl>(Definition), Info,
10400 Result);
10403 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
10404 const CXXStdInitializerListExpr *E) {
10405 const ConstantArrayType *ArrayType =
10406 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
10408 LValue Array;
10409 if (!EvaluateLValue(E->getSubExpr(), Array, Info))
10410 return false;
10412 assert(ArrayType && "unexpected type for array initializer");
10414 // Get a pointer to the first element of the array.
10415 Array.addArray(Info, E, ArrayType);
10417 auto InvalidType = [&] {
10418 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
10419 << E->getType();
10420 return false;
10423 // FIXME: Perform the checks on the field types in SemaInit.
10424 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
10425 RecordDecl::field_iterator Field = Record->field_begin();
10426 if (Field == Record->field_end())
10427 return InvalidType();
10429 // Start pointer.
10430 if (!Field->getType()->isPointerType() ||
10431 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10432 ArrayType->getElementType()))
10433 return InvalidType();
10435 // FIXME: What if the initializer_list type has base classes, etc?
10436 Result = APValue(APValue::UninitStruct(), 0, 2);
10437 Array.moveInto(Result.getStructField(0));
10439 if (++Field == Record->field_end())
10440 return InvalidType();
10442 if (Field->getType()->isPointerType() &&
10443 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10444 ArrayType->getElementType())) {
10445 // End pointer.
10446 if (!HandleLValueArrayAdjustment(Info, E, Array,
10447 ArrayType->getElementType(),
10448 ArrayType->getSize().getZExtValue()))
10449 return false;
10450 Array.moveInto(Result.getStructField(1));
10451 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
10452 // Length.
10453 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
10454 else
10455 return InvalidType();
10457 if (++Field != Record->field_end())
10458 return InvalidType();
10460 return true;
10463 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10464 const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10465 if (ClosureClass->isInvalidDecl())
10466 return false;
10468 const size_t NumFields =
10469 std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10471 assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
10472 E->capture_init_end()) &&
10473 "The number of lambda capture initializers should equal the number of "
10474 "fields within the closure type");
10476 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10477 // Iterate through all the lambda's closure object's fields and initialize
10478 // them.
10479 auto *CaptureInitIt = E->capture_init_begin();
10480 bool Success = true;
10481 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10482 for (const auto *Field : ClosureClass->fields()) {
10483 assert(CaptureInitIt != E->capture_init_end());
10484 // Get the initializer for this field
10485 Expr *const CurFieldInit = *CaptureInitIt++;
10487 // If there is no initializer, either this is a VLA or an error has
10488 // occurred.
10489 if (!CurFieldInit)
10490 return Error(E);
10492 LValue Subobject = This;
10494 if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10495 return false;
10497 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10498 if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10499 if (!Info.keepEvaluatingAfterFailure())
10500 return false;
10501 Success = false;
10504 return Success;
10507 static bool EvaluateRecord(const Expr *E, const LValue &This,
10508 APValue &Result, EvalInfo &Info) {
10509 assert(!E->isValueDependent());
10510 assert(E->isPRValue() && E->getType()->isRecordType() &&
10511 "can't evaluate expression as a record rvalue");
10512 return RecordExprEvaluator(Info, This, Result).Visit(E);
10515 //===----------------------------------------------------------------------===//
10516 // Temporary Evaluation
10518 // Temporaries are represented in the AST as rvalues, but generally behave like
10519 // lvalues. The full-object of which the temporary is a subobject is implicitly
10520 // materialized so that a reference can bind to it.
10521 //===----------------------------------------------------------------------===//
10522 namespace {
10523 class TemporaryExprEvaluator
10524 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10525 public:
10526 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10527 LValueExprEvaluatorBaseTy(Info, Result, false) {}
10529 /// Visit an expression which constructs the value of this temporary.
10530 bool VisitConstructExpr(const Expr *E) {
10531 APValue &Value = Info.CurrentCall->createTemporary(
10532 E, E->getType(), ScopeKind::FullExpression, Result);
10533 return EvaluateInPlace(Value, Info, Result, E);
10536 bool VisitCastExpr(const CastExpr *E) {
10537 switch (E->getCastKind()) {
10538 default:
10539 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10541 case CK_ConstructorConversion:
10542 return VisitConstructExpr(E->getSubExpr());
10545 bool VisitInitListExpr(const InitListExpr *E) {
10546 return VisitConstructExpr(E);
10548 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10549 return VisitConstructExpr(E);
10551 bool VisitCallExpr(const CallExpr *E) {
10552 return VisitConstructExpr(E);
10554 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10555 return VisitConstructExpr(E);
10557 bool VisitLambdaExpr(const LambdaExpr *E) {
10558 return VisitConstructExpr(E);
10561 } // end anonymous namespace
10563 /// Evaluate an expression of record type as a temporary.
10564 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10565 assert(!E->isValueDependent());
10566 assert(E->isPRValue() && E->getType()->isRecordType());
10567 return TemporaryExprEvaluator(Info, Result).Visit(E);
10570 //===----------------------------------------------------------------------===//
10571 // Vector Evaluation
10572 //===----------------------------------------------------------------------===//
10574 namespace {
10575 class VectorExprEvaluator
10576 : public ExprEvaluatorBase<VectorExprEvaluator> {
10577 APValue &Result;
10578 public:
10580 VectorExprEvaluator(EvalInfo &info, APValue &Result)
10581 : ExprEvaluatorBaseTy(info), Result(Result) {}
10583 bool Success(ArrayRef<APValue> V, const Expr *E) {
10584 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10585 // FIXME: remove this APValue copy.
10586 Result = APValue(V.data(), V.size());
10587 return true;
10589 bool Success(const APValue &V, const Expr *E) {
10590 assert(V.isVector());
10591 Result = V;
10592 return true;
10594 bool ZeroInitialization(const Expr *E);
10596 bool VisitUnaryReal(const UnaryOperator *E)
10597 { return Visit(E->getSubExpr()); }
10598 bool VisitCastExpr(const CastExpr* E);
10599 bool VisitInitListExpr(const InitListExpr *E);
10600 bool VisitUnaryImag(const UnaryOperator *E);
10601 bool VisitBinaryOperator(const BinaryOperator *E);
10602 bool VisitUnaryOperator(const UnaryOperator *E);
10603 // FIXME: Missing: conditional operator (for GNU
10604 // conditional select), shufflevector, ExtVectorElementExpr
10606 } // end anonymous namespace
10608 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10609 assert(E->isPRValue() && E->getType()->isVectorType() &&
10610 "not a vector prvalue");
10611 return VectorExprEvaluator(Info, Result).Visit(E);
10614 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10615 const VectorType *VTy = E->getType()->castAs<VectorType>();
10616 unsigned NElts = VTy->getNumElements();
10618 const Expr *SE = E->getSubExpr();
10619 QualType SETy = SE->getType();
10621 switch (E->getCastKind()) {
10622 case CK_VectorSplat: {
10623 APValue Val = APValue();
10624 if (SETy->isIntegerType()) {
10625 APSInt IntResult;
10626 if (!EvaluateInteger(SE, IntResult, Info))
10627 return false;
10628 Val = APValue(std::move(IntResult));
10629 } else if (SETy->isRealFloatingType()) {
10630 APFloat FloatResult(0.0);
10631 if (!EvaluateFloat(SE, FloatResult, Info))
10632 return false;
10633 Val = APValue(std::move(FloatResult));
10634 } else {
10635 return Error(E);
10638 // Splat and create vector APValue.
10639 SmallVector<APValue, 4> Elts(NElts, Val);
10640 return Success(Elts, E);
10642 case CK_BitCast: {
10643 APValue SVal;
10644 if (!Evaluate(SVal, Info, SE))
10645 return false;
10647 if (!SVal.isInt() && !SVal.isFloat() && !SVal.isVector()) {
10648 // Give up if the input isn't an int, float, or vector. For example, we
10649 // reject "(v4i16)(intptr_t)&a".
10650 Info.FFDiag(E, diag::note_constexpr_invalid_cast)
10651 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
10652 return false;
10655 if (!handleRValueToRValueBitCast(Info, Result, SVal, E))
10656 return false;
10658 return true;
10660 default:
10661 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10665 bool
10666 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10667 const VectorType *VT = E->getType()->castAs<VectorType>();
10668 unsigned NumInits = E->getNumInits();
10669 unsigned NumElements = VT->getNumElements();
10671 QualType EltTy = VT->getElementType();
10672 SmallVector<APValue, 4> Elements;
10674 // The number of initializers can be less than the number of
10675 // vector elements. For OpenCL, this can be due to nested vector
10676 // initialization. For GCC compatibility, missing trailing elements
10677 // should be initialized with zeroes.
10678 unsigned CountInits = 0, CountElts = 0;
10679 while (CountElts < NumElements) {
10680 // Handle nested vector initialization.
10681 if (CountInits < NumInits
10682 && E->getInit(CountInits)->getType()->isVectorType()) {
10683 APValue v;
10684 if (!EvaluateVector(E->getInit(CountInits), v, Info))
10685 return Error(E);
10686 unsigned vlen = v.getVectorLength();
10687 for (unsigned j = 0; j < vlen; j++)
10688 Elements.push_back(v.getVectorElt(j));
10689 CountElts += vlen;
10690 } else if (EltTy->isIntegerType()) {
10691 llvm::APSInt sInt(32);
10692 if (CountInits < NumInits) {
10693 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10694 return false;
10695 } else // trailing integer zero.
10696 sInt = Info.Ctx.MakeIntValue(0, EltTy);
10697 Elements.push_back(APValue(sInt));
10698 CountElts++;
10699 } else {
10700 llvm::APFloat f(0.0);
10701 if (CountInits < NumInits) {
10702 if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10703 return false;
10704 } else // trailing float zero.
10705 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10706 Elements.push_back(APValue(f));
10707 CountElts++;
10709 CountInits++;
10711 return Success(Elements, E);
10714 bool
10715 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10716 const auto *VT = E->getType()->castAs<VectorType>();
10717 QualType EltTy = VT->getElementType();
10718 APValue ZeroElement;
10719 if (EltTy->isIntegerType())
10720 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10721 else
10722 ZeroElement =
10723 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10725 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10726 return Success(Elements, E);
10729 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10730 VisitIgnoredValue(E->getSubExpr());
10731 return ZeroInitialization(E);
10734 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10735 BinaryOperatorKind Op = E->getOpcode();
10736 assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10737 "Operation not supported on vector types");
10739 if (Op == BO_Comma)
10740 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10742 Expr *LHS = E->getLHS();
10743 Expr *RHS = E->getRHS();
10745 assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10746 "Must both be vector types");
10747 // Checking JUST the types are the same would be fine, except shifts don't
10748 // need to have their types be the same (since you always shift by an int).
10749 assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
10750 E->getType()->castAs<VectorType>()->getNumElements() &&
10751 RHS->getType()->castAs<VectorType>()->getNumElements() ==
10752 E->getType()->castAs<VectorType>()->getNumElements() &&
10753 "All operands must be the same size.");
10755 APValue LHSValue;
10756 APValue RHSValue;
10757 bool LHSOK = Evaluate(LHSValue, Info, LHS);
10758 if (!LHSOK && !Info.noteFailure())
10759 return false;
10760 if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10761 return false;
10763 if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10764 return false;
10766 return Success(LHSValue, E);
10769 static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
10770 QualType ResultTy,
10771 UnaryOperatorKind Op,
10772 APValue Elt) {
10773 switch (Op) {
10774 case UO_Plus:
10775 // Nothing to do here.
10776 return Elt;
10777 case UO_Minus:
10778 if (Elt.getKind() == APValue::Int) {
10779 Elt.getInt().negate();
10780 } else {
10781 assert(Elt.getKind() == APValue::Float &&
10782 "Vector can only be int or float type");
10783 Elt.getFloat().changeSign();
10785 return Elt;
10786 case UO_Not:
10787 // This is only valid for integral types anyway, so we don't have to handle
10788 // float here.
10789 assert(Elt.getKind() == APValue::Int &&
10790 "Vector operator ~ can only be int");
10791 Elt.getInt().flipAllBits();
10792 return Elt;
10793 case UO_LNot: {
10794 if (Elt.getKind() == APValue::Int) {
10795 Elt.getInt() = !Elt.getInt();
10796 // operator ! on vectors returns -1 for 'truth', so negate it.
10797 Elt.getInt().negate();
10798 return Elt;
10800 assert(Elt.getKind() == APValue::Float &&
10801 "Vector can only be int or float type");
10802 // Float types result in an int of the same size, but -1 for true, or 0 for
10803 // false.
10804 APSInt EltResult{Ctx.getIntWidth(ResultTy),
10805 ResultTy->isUnsignedIntegerType()};
10806 if (Elt.getFloat().isZero())
10807 EltResult.setAllBits();
10808 else
10809 EltResult.clearAllBits();
10811 return APValue{EltResult};
10813 default:
10814 // FIXME: Implement the rest of the unary operators.
10815 return std::nullopt;
10819 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10820 Expr *SubExpr = E->getSubExpr();
10821 const auto *VD = SubExpr->getType()->castAs<VectorType>();
10822 // This result element type differs in the case of negating a floating point
10823 // vector, since the result type is the a vector of the equivilant sized
10824 // integer.
10825 const QualType ResultEltTy = VD->getElementType();
10826 UnaryOperatorKind Op = E->getOpcode();
10828 APValue SubExprValue;
10829 if (!Evaluate(SubExprValue, Info, SubExpr))
10830 return false;
10832 // FIXME: This vector evaluator someday needs to be changed to be LValue
10833 // aware/keep LValue information around, rather than dealing with just vector
10834 // types directly. Until then, we cannot handle cases where the operand to
10835 // these unary operators is an LValue. The only case I've been able to see
10836 // cause this is operator++ assigning to a member expression (only valid in
10837 // altivec compilations) in C mode, so this shouldn't limit us too much.
10838 if (SubExprValue.isLValue())
10839 return false;
10841 assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
10842 "Vector length doesn't match type?");
10844 SmallVector<APValue, 4> ResultElements;
10845 for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
10846 std::optional<APValue> Elt = handleVectorUnaryOperator(
10847 Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum));
10848 if (!Elt)
10849 return false;
10850 ResultElements.push_back(*Elt);
10852 return Success(APValue(ResultElements.data(), ResultElements.size()), E);
10855 //===----------------------------------------------------------------------===//
10856 // Array Evaluation
10857 //===----------------------------------------------------------------------===//
10859 namespace {
10860 class ArrayExprEvaluator
10861 : public ExprEvaluatorBase<ArrayExprEvaluator> {
10862 const LValue &This;
10863 APValue &Result;
10864 public:
10866 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10867 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10869 bool Success(const APValue &V, const Expr *E) {
10870 assert(V.isArray() && "expected array");
10871 Result = V;
10872 return true;
10875 bool ZeroInitialization(const Expr *E) {
10876 const ConstantArrayType *CAT =
10877 Info.Ctx.getAsConstantArrayType(E->getType());
10878 if (!CAT) {
10879 if (E->getType()->isIncompleteArrayType()) {
10880 // We can be asked to zero-initialize a flexible array member; this
10881 // is represented as an ImplicitValueInitExpr of incomplete array
10882 // type. In this case, the array has zero elements.
10883 Result = APValue(APValue::UninitArray(), 0, 0);
10884 return true;
10886 // FIXME: We could handle VLAs here.
10887 return Error(E);
10890 Result = APValue(APValue::UninitArray(), 0,
10891 CAT->getSize().getZExtValue());
10892 if (!Result.hasArrayFiller())
10893 return true;
10895 // Zero-initialize all elements.
10896 LValue Subobject = This;
10897 Subobject.addArray(Info, E, CAT);
10898 ImplicitValueInitExpr VIE(CAT->getElementType());
10899 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
10902 bool VisitCallExpr(const CallExpr *E) {
10903 return handleCallExpr(E, Result, &This);
10905 bool VisitInitListExpr(const InitListExpr *E,
10906 QualType AllocType = QualType());
10907 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
10908 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
10909 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
10910 const LValue &Subobject,
10911 APValue *Value, QualType Type);
10912 bool VisitStringLiteral(const StringLiteral *E,
10913 QualType AllocType = QualType()) {
10914 expandStringLiteral(Info, E, Result, AllocType);
10915 return true;
10917 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
10918 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
10919 ArrayRef<Expr *> Args,
10920 const Expr *ArrayFiller,
10921 QualType AllocType = QualType());
10923 } // end anonymous namespace
10925 static bool EvaluateArray(const Expr *E, const LValue &This,
10926 APValue &Result, EvalInfo &Info) {
10927 assert(!E->isValueDependent());
10928 assert(E->isPRValue() && E->getType()->isArrayType() &&
10929 "not an array prvalue");
10930 return ArrayExprEvaluator(Info, This, Result).Visit(E);
10933 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10934 APValue &Result, const InitListExpr *ILE,
10935 QualType AllocType) {
10936 assert(!ILE->isValueDependent());
10937 assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
10938 "not an array prvalue");
10939 return ArrayExprEvaluator(Info, This, Result)
10940 .VisitInitListExpr(ILE, AllocType);
10943 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
10944 APValue &Result,
10945 const CXXConstructExpr *CCE,
10946 QualType AllocType) {
10947 assert(!CCE->isValueDependent());
10948 assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
10949 "not an array prvalue");
10950 return ArrayExprEvaluator(Info, This, Result)
10951 .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
10954 // Return true iff the given array filler may depend on the element index.
10955 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
10956 // For now, just allow non-class value-initialization and initialization
10957 // lists comprised of them.
10958 if (isa<ImplicitValueInitExpr>(FillerExpr))
10959 return false;
10960 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
10961 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
10962 if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
10963 return true;
10966 if (ILE->hasArrayFiller() &&
10967 MaybeElementDependentArrayFiller(ILE->getArrayFiller()))
10968 return true;
10970 return false;
10972 return true;
10975 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
10976 QualType AllocType) {
10977 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10978 AllocType.isNull() ? E->getType() : AllocType);
10979 if (!CAT)
10980 return Error(E);
10982 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10983 // an appropriately-typed string literal enclosed in braces.
10984 if (E->isStringLiteralInit()) {
10985 auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts());
10986 // FIXME: Support ObjCEncodeExpr here once we support it in
10987 // ArrayExprEvaluator generally.
10988 if (!SL)
10989 return Error(E);
10990 return VisitStringLiteral(SL, AllocType);
10992 // Any other transparent list init will need proper handling of the
10993 // AllocType; we can't just recurse to the inner initializer.
10994 assert(!E->isTransparent() &&
10995 "transparent array list initialization is not string literal init?");
10997 return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(),
10998 AllocType);
11001 bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr(
11002 const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller,
11003 QualType AllocType) {
11004 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
11005 AllocType.isNull() ? ExprToVisit->getType() : AllocType);
11007 bool Success = true;
11009 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
11010 "zero-initialized array shouldn't have any initialized elts");
11011 APValue Filler;
11012 if (Result.isArray() && Result.hasArrayFiller())
11013 Filler = Result.getArrayFiller();
11015 unsigned NumEltsToInit = Args.size();
11016 unsigned NumElts = CAT->getSize().getZExtValue();
11018 // If the initializer might depend on the array index, run it for each
11019 // array element.
11020 if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(ArrayFiller))
11021 NumEltsToInit = NumElts;
11023 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
11024 << NumEltsToInit << ".\n");
11026 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
11028 // If the array was previously zero-initialized, preserve the
11029 // zero-initialized values.
11030 if (Filler.hasValue()) {
11031 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
11032 Result.getArrayInitializedElt(I) = Filler;
11033 if (Result.hasArrayFiller())
11034 Result.getArrayFiller() = Filler;
11037 LValue Subobject = This;
11038 Subobject.addArray(Info, ExprToVisit, CAT);
11039 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
11040 const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller;
11041 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
11042 Info, Subobject, Init) ||
11043 !HandleLValueArrayAdjustment(Info, Init, Subobject,
11044 CAT->getElementType(), 1)) {
11045 if (!Info.noteFailure())
11046 return false;
11047 Success = false;
11051 if (!Result.hasArrayFiller())
11052 return Success;
11054 // If we get here, we have a trivial filler, which we can just evaluate
11055 // once and splat over the rest of the array elements.
11056 assert(ArrayFiller && "no array filler for incomplete init list");
11057 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
11058 ArrayFiller) &&
11059 Success;
11062 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
11063 LValue CommonLV;
11064 if (E->getCommonExpr() &&
11065 !Evaluate(Info.CurrentCall->createTemporary(
11066 E->getCommonExpr(),
11067 getStorageType(Info.Ctx, E->getCommonExpr()),
11068 ScopeKind::FullExpression, CommonLV),
11069 Info, E->getCommonExpr()->getSourceExpr()))
11070 return false;
11072 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
11074 uint64_t Elements = CAT->getSize().getZExtValue();
11075 Result = APValue(APValue::UninitArray(), Elements, Elements);
11077 LValue Subobject = This;
11078 Subobject.addArray(Info, E, CAT);
11080 bool Success = true;
11081 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
11082 // C++ [class.temporary]/5
11083 // There are four contexts in which temporaries are destroyed at a different
11084 // point than the end of the full-expression. [...] The second context is
11085 // when a copy constructor is called to copy an element of an array while
11086 // the entire array is copied [...]. In either case, if the constructor has
11087 // one or more default arguments, the destruction of every temporary created
11088 // in a default argument is sequenced before the construction of the next
11089 // array element, if any.
11090 FullExpressionRAII Scope(Info);
11092 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
11093 Info, Subobject, E->getSubExpr()) ||
11094 !HandleLValueArrayAdjustment(Info, E, Subobject,
11095 CAT->getElementType(), 1)) {
11096 if (!Info.noteFailure())
11097 return false;
11098 Success = false;
11101 // Make sure we run the destructors too.
11102 Scope.destroy();
11105 return Success;
11108 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
11109 return VisitCXXConstructExpr(E, This, &Result, E->getType());
11112 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
11113 const LValue &Subobject,
11114 APValue *Value,
11115 QualType Type) {
11116 bool HadZeroInit = Value->hasValue();
11118 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
11119 unsigned FinalSize = CAT->getSize().getZExtValue();
11121 // Preserve the array filler if we had prior zero-initialization.
11122 APValue Filler =
11123 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
11124 : APValue();
11126 *Value = APValue(APValue::UninitArray(), 0, FinalSize);
11127 if (FinalSize == 0)
11128 return true;
11130 bool HasTrivialConstructor = CheckTrivialDefaultConstructor(
11131 Info, E->getExprLoc(), E->getConstructor(),
11132 E->requiresZeroInitialization());
11133 LValue ArrayElt = Subobject;
11134 ArrayElt.addArray(Info, E, CAT);
11135 // We do the whole initialization in two passes, first for just one element,
11136 // then for the whole array. It's possible we may find out we can't do const
11137 // init in the first pass, in which case we avoid allocating a potentially
11138 // large array. We don't do more passes because expanding array requires
11139 // copying the data, which is wasteful.
11140 for (const unsigned N : {1u, FinalSize}) {
11141 unsigned OldElts = Value->getArrayInitializedElts();
11142 if (OldElts == N)
11143 break;
11145 // Expand the array to appropriate size.
11146 APValue NewValue(APValue::UninitArray(), N, FinalSize);
11147 for (unsigned I = 0; I < OldElts; ++I)
11148 NewValue.getArrayInitializedElt(I).swap(
11149 Value->getArrayInitializedElt(I));
11150 Value->swap(NewValue);
11152 if (HadZeroInit)
11153 for (unsigned I = OldElts; I < N; ++I)
11154 Value->getArrayInitializedElt(I) = Filler;
11156 if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) {
11157 // If we have a trivial constructor, only evaluate it once and copy
11158 // the result into all the array elements.
11159 APValue &FirstResult = Value->getArrayInitializedElt(0);
11160 for (unsigned I = OldElts; I < FinalSize; ++I)
11161 Value->getArrayInitializedElt(I) = FirstResult;
11162 } else {
11163 for (unsigned I = OldElts; I < N; ++I) {
11164 if (!VisitCXXConstructExpr(E, ArrayElt,
11165 &Value->getArrayInitializedElt(I),
11166 CAT->getElementType()) ||
11167 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
11168 CAT->getElementType(), 1))
11169 return false;
11170 // When checking for const initilization any diagnostic is considered
11171 // an error.
11172 if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
11173 !Info.keepEvaluatingAfterFailure())
11174 return false;
11179 return true;
11182 if (!Type->isRecordType())
11183 return Error(E);
11185 return RecordExprEvaluator(Info, Subobject, *Value)
11186 .VisitCXXConstructExpr(E, Type);
11189 bool ArrayExprEvaluator::VisitCXXParenListInitExpr(
11190 const CXXParenListInitExpr *E) {
11191 assert(dyn_cast<ConstantArrayType>(E->getType()) &&
11192 "Expression result is not a constant array type");
11194 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
11195 E->getArrayFiller());
11198 //===----------------------------------------------------------------------===//
11199 // Integer Evaluation
11201 // As a GNU extension, we support casting pointers to sufficiently-wide integer
11202 // types and back in constant folding. Integer values are thus represented
11203 // either as an integer-valued APValue, or as an lvalue-valued APValue.
11204 //===----------------------------------------------------------------------===//
11206 namespace {
11207 class IntExprEvaluator
11208 : public ExprEvaluatorBase<IntExprEvaluator> {
11209 APValue &Result;
11210 public:
11211 IntExprEvaluator(EvalInfo &info, APValue &result)
11212 : ExprEvaluatorBaseTy(info), Result(result) {}
11214 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
11215 assert(E->getType()->isIntegralOrEnumerationType() &&
11216 "Invalid evaluation result.");
11217 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
11218 "Invalid evaluation result.");
11219 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11220 "Invalid evaluation result.");
11221 Result = APValue(SI);
11222 return true;
11224 bool Success(const llvm::APSInt &SI, const Expr *E) {
11225 return Success(SI, E, Result);
11228 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
11229 assert(E->getType()->isIntegralOrEnumerationType() &&
11230 "Invalid evaluation result.");
11231 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11232 "Invalid evaluation result.");
11233 Result = APValue(APSInt(I));
11234 Result.getInt().setIsUnsigned(
11235 E->getType()->isUnsignedIntegerOrEnumerationType());
11236 return true;
11238 bool Success(const llvm::APInt &I, const Expr *E) {
11239 return Success(I, E, Result);
11242 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
11243 assert(E->getType()->isIntegralOrEnumerationType() &&
11244 "Invalid evaluation result.");
11245 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
11246 return true;
11248 bool Success(uint64_t Value, const Expr *E) {
11249 return Success(Value, E, Result);
11252 bool Success(CharUnits Size, const Expr *E) {
11253 return Success(Size.getQuantity(), E);
11256 bool Success(const APValue &V, const Expr *E) {
11257 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
11258 Result = V;
11259 return true;
11261 return Success(V.getInt(), E);
11264 bool ZeroInitialization(const Expr *E) { return Success(0, E); }
11266 //===--------------------------------------------------------------------===//
11267 // Visitor Methods
11268 //===--------------------------------------------------------------------===//
11270 bool VisitIntegerLiteral(const IntegerLiteral *E) {
11271 return Success(E->getValue(), E);
11273 bool VisitCharacterLiteral(const CharacterLiteral *E) {
11274 return Success(E->getValue(), E);
11277 bool CheckReferencedDecl(const Expr *E, const Decl *D);
11278 bool VisitDeclRefExpr(const DeclRefExpr *E) {
11279 if (CheckReferencedDecl(E, E->getDecl()))
11280 return true;
11282 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
11284 bool VisitMemberExpr(const MemberExpr *E) {
11285 if (CheckReferencedDecl(E, E->getMemberDecl())) {
11286 VisitIgnoredBaseExpression(E->getBase());
11287 return true;
11290 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
11293 bool VisitCallExpr(const CallExpr *E);
11294 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
11295 bool VisitBinaryOperator(const BinaryOperator *E);
11296 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
11297 bool VisitUnaryOperator(const UnaryOperator *E);
11299 bool VisitCastExpr(const CastExpr* E);
11300 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
11302 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
11303 return Success(E->getValue(), E);
11306 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
11307 return Success(E->getValue(), E);
11310 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
11311 if (Info.ArrayInitIndex == uint64_t(-1)) {
11312 // We were asked to evaluate this subexpression independent of the
11313 // enclosing ArrayInitLoopExpr. We can't do that.
11314 Info.FFDiag(E);
11315 return false;
11317 return Success(Info.ArrayInitIndex, E);
11320 // Note, GNU defines __null as an integer, not a pointer.
11321 bool VisitGNUNullExpr(const GNUNullExpr *E) {
11322 return ZeroInitialization(E);
11325 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
11326 return Success(E->getValue(), E);
11329 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
11330 return Success(E->getValue(), E);
11333 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
11334 return Success(E->getValue(), E);
11337 bool VisitUnaryReal(const UnaryOperator *E);
11338 bool VisitUnaryImag(const UnaryOperator *E);
11340 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
11341 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
11342 bool VisitSourceLocExpr(const SourceLocExpr *E);
11343 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
11344 bool VisitRequiresExpr(const RequiresExpr *E);
11345 // FIXME: Missing: array subscript of vector, member of vector
11348 class FixedPointExprEvaluator
11349 : public ExprEvaluatorBase<FixedPointExprEvaluator> {
11350 APValue &Result;
11352 public:
11353 FixedPointExprEvaluator(EvalInfo &info, APValue &result)
11354 : ExprEvaluatorBaseTy(info), Result(result) {}
11356 bool Success(const llvm::APInt &I, const Expr *E) {
11357 return Success(
11358 APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11361 bool Success(uint64_t Value, const Expr *E) {
11362 return Success(
11363 APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11366 bool Success(const APValue &V, const Expr *E) {
11367 return Success(V.getFixedPoint(), E);
11370 bool Success(const APFixedPoint &V, const Expr *E) {
11371 assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
11372 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11373 "Invalid evaluation result.");
11374 Result = APValue(V);
11375 return true;
11378 //===--------------------------------------------------------------------===//
11379 // Visitor Methods
11380 //===--------------------------------------------------------------------===//
11382 bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
11383 return Success(E->getValue(), E);
11386 bool VisitCastExpr(const CastExpr *E);
11387 bool VisitUnaryOperator(const UnaryOperator *E);
11388 bool VisitBinaryOperator(const BinaryOperator *E);
11390 } // end anonymous namespace
11392 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
11393 /// produce either the integer value or a pointer.
11395 /// GCC has a heinous extension which folds casts between pointer types and
11396 /// pointer-sized integral types. We support this by allowing the evaluation of
11397 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
11398 /// Some simple arithmetic on such values is supported (they are treated much
11399 /// like char*).
11400 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
11401 EvalInfo &Info) {
11402 assert(!E->isValueDependent());
11403 assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
11404 return IntExprEvaluator(Info, Result).Visit(E);
11407 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
11408 assert(!E->isValueDependent());
11409 APValue Val;
11410 if (!EvaluateIntegerOrLValue(E, Val, Info))
11411 return false;
11412 if (!Val.isInt()) {
11413 // FIXME: It would be better to produce the diagnostic for casting
11414 // a pointer to an integer.
11415 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11416 return false;
11418 Result = Val.getInt();
11419 return true;
11422 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
11423 APValue Evaluated = E->EvaluateInContext(
11424 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
11425 return Success(Evaluated, E);
11428 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
11429 EvalInfo &Info) {
11430 assert(!E->isValueDependent());
11431 if (E->getType()->isFixedPointType()) {
11432 APValue Val;
11433 if (!FixedPointExprEvaluator(Info, Val).Visit(E))
11434 return false;
11435 if (!Val.isFixedPoint())
11436 return false;
11438 Result = Val.getFixedPoint();
11439 return true;
11441 return false;
11444 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
11445 EvalInfo &Info) {
11446 assert(!E->isValueDependent());
11447 if (E->getType()->isIntegerType()) {
11448 auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
11449 APSInt Val;
11450 if (!EvaluateInteger(E, Val, Info))
11451 return false;
11452 Result = APFixedPoint(Val, FXSema);
11453 return true;
11454 } else if (E->getType()->isFixedPointType()) {
11455 return EvaluateFixedPoint(E, Result, Info);
11457 return false;
11460 /// Check whether the given declaration can be directly converted to an integral
11461 /// rvalue. If not, no diagnostic is produced; there are other things we can
11462 /// try.
11463 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
11464 // Enums are integer constant exprs.
11465 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
11466 // Check for signedness/width mismatches between E type and ECD value.
11467 bool SameSign = (ECD->getInitVal().isSigned()
11468 == E->getType()->isSignedIntegerOrEnumerationType());
11469 bool SameWidth = (ECD->getInitVal().getBitWidth()
11470 == Info.Ctx.getIntWidth(E->getType()));
11471 if (SameSign && SameWidth)
11472 return Success(ECD->getInitVal(), E);
11473 else {
11474 // Get rid of mismatch (otherwise Success assertions will fail)
11475 // by computing a new value matching the type of E.
11476 llvm::APSInt Val = ECD->getInitVal();
11477 if (!SameSign)
11478 Val.setIsSigned(!ECD->getInitVal().isSigned());
11479 if (!SameWidth)
11480 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
11481 return Success(Val, E);
11484 return false;
11487 /// Values returned by __builtin_classify_type, chosen to match the values
11488 /// produced by GCC's builtin.
11489 enum class GCCTypeClass {
11490 None = -1,
11491 Void = 0,
11492 Integer = 1,
11493 // GCC reserves 2 for character types, but instead classifies them as
11494 // integers.
11495 Enum = 3,
11496 Bool = 4,
11497 Pointer = 5,
11498 // GCC reserves 6 for references, but appears to never use it (because
11499 // expressions never have reference type, presumably).
11500 PointerToDataMember = 7,
11501 RealFloat = 8,
11502 Complex = 9,
11503 // GCC reserves 10 for functions, but does not use it since GCC version 6 due
11504 // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
11505 // GCC claims to reserve 11 for pointers to member functions, but *actually*
11506 // uses 12 for that purpose, same as for a class or struct. Maybe it
11507 // internally implements a pointer to member as a struct? Who knows.
11508 PointerToMemberFunction = 12, // Not a bug, see above.
11509 ClassOrStruct = 12,
11510 Union = 13,
11511 // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
11512 // decay to pointer. (Prior to version 6 it was only used in C++ mode).
11513 // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
11514 // literals.
11517 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11518 /// as GCC.
11519 static GCCTypeClass
11520 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
11521 assert(!T->isDependentType() && "unexpected dependent type");
11523 QualType CanTy = T.getCanonicalType();
11525 switch (CanTy->getTypeClass()) {
11526 #define TYPE(ID, BASE)
11527 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11528 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11529 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11530 #include "clang/AST/TypeNodes.inc"
11531 case Type::Auto:
11532 case Type::DeducedTemplateSpecialization:
11533 llvm_unreachable("unexpected non-canonical or dependent type");
11535 case Type::Builtin:
11536 switch (cast<BuiltinType>(CanTy)->getKind()) {
11537 #define BUILTIN_TYPE(ID, SINGLETON_ID)
11538 #define SIGNED_TYPE(ID, SINGLETON_ID) \
11539 case BuiltinType::ID: return GCCTypeClass::Integer;
11540 #define FLOATING_TYPE(ID, SINGLETON_ID) \
11541 case BuiltinType::ID: return GCCTypeClass::RealFloat;
11542 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11543 case BuiltinType::ID: break;
11544 #include "clang/AST/BuiltinTypes.def"
11545 case BuiltinType::Void:
11546 return GCCTypeClass::Void;
11548 case BuiltinType::Bool:
11549 return GCCTypeClass::Bool;
11551 case BuiltinType::Char_U:
11552 case BuiltinType::UChar:
11553 case BuiltinType::WChar_U:
11554 case BuiltinType::Char8:
11555 case BuiltinType::Char16:
11556 case BuiltinType::Char32:
11557 case BuiltinType::UShort:
11558 case BuiltinType::UInt:
11559 case BuiltinType::ULong:
11560 case BuiltinType::ULongLong:
11561 case BuiltinType::UInt128:
11562 return GCCTypeClass::Integer;
11564 case BuiltinType::UShortAccum:
11565 case BuiltinType::UAccum:
11566 case BuiltinType::ULongAccum:
11567 case BuiltinType::UShortFract:
11568 case BuiltinType::UFract:
11569 case BuiltinType::ULongFract:
11570 case BuiltinType::SatUShortAccum:
11571 case BuiltinType::SatUAccum:
11572 case BuiltinType::SatULongAccum:
11573 case BuiltinType::SatUShortFract:
11574 case BuiltinType::SatUFract:
11575 case BuiltinType::SatULongFract:
11576 return GCCTypeClass::None;
11578 case BuiltinType::NullPtr:
11580 case BuiltinType::ObjCId:
11581 case BuiltinType::ObjCClass:
11582 case BuiltinType::ObjCSel:
11583 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11584 case BuiltinType::Id:
11585 #include "clang/Basic/OpenCLImageTypes.def"
11586 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11587 case BuiltinType::Id:
11588 #include "clang/Basic/OpenCLExtensionTypes.def"
11589 case BuiltinType::OCLSampler:
11590 case BuiltinType::OCLEvent:
11591 case BuiltinType::OCLClkEvent:
11592 case BuiltinType::OCLQueue:
11593 case BuiltinType::OCLReserveID:
11594 #define SVE_TYPE(Name, Id, SingletonId) \
11595 case BuiltinType::Id:
11596 #include "clang/Basic/AArch64SVEACLETypes.def"
11597 #define PPC_VECTOR_TYPE(Name, Id, Size) \
11598 case BuiltinType::Id:
11599 #include "clang/Basic/PPCTypes.def"
11600 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11601 #include "clang/Basic/RISCVVTypes.def"
11602 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11603 #include "clang/Basic/WebAssemblyReferenceTypes.def"
11604 return GCCTypeClass::None;
11606 case BuiltinType::Dependent:
11607 llvm_unreachable("unexpected dependent type");
11609 llvm_unreachable("unexpected placeholder type");
11611 case Type::Enum:
11612 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11614 case Type::Pointer:
11615 case Type::ConstantArray:
11616 case Type::VariableArray:
11617 case Type::IncompleteArray:
11618 case Type::FunctionNoProto:
11619 case Type::FunctionProto:
11620 return GCCTypeClass::Pointer;
11622 case Type::MemberPointer:
11623 return CanTy->isMemberDataPointerType()
11624 ? GCCTypeClass::PointerToDataMember
11625 : GCCTypeClass::PointerToMemberFunction;
11627 case Type::Complex:
11628 return GCCTypeClass::Complex;
11630 case Type::Record:
11631 return CanTy->isUnionType() ? GCCTypeClass::Union
11632 : GCCTypeClass::ClassOrStruct;
11634 case Type::Atomic:
11635 // GCC classifies _Atomic T the same as T.
11636 return EvaluateBuiltinClassifyType(
11637 CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11639 case Type::BlockPointer:
11640 case Type::Vector:
11641 case Type::ExtVector:
11642 case Type::ConstantMatrix:
11643 case Type::ObjCObject:
11644 case Type::ObjCInterface:
11645 case Type::ObjCObjectPointer:
11646 case Type::Pipe:
11647 case Type::BitInt:
11648 // GCC classifies vectors as None. We follow its lead and classify all
11649 // other types that don't fit into the regular classification the same way.
11650 return GCCTypeClass::None;
11652 case Type::LValueReference:
11653 case Type::RValueReference:
11654 llvm_unreachable("invalid type for expression");
11657 llvm_unreachable("unexpected type class");
11660 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11661 /// as GCC.
11662 static GCCTypeClass
11663 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11664 // If no argument was supplied, default to None. This isn't
11665 // ideal, however it is what gcc does.
11666 if (E->getNumArgs() == 0)
11667 return GCCTypeClass::None;
11669 // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11670 // being an ICE, but still folds it to a constant using the type of the first
11671 // argument.
11672 return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
11675 /// EvaluateBuiltinConstantPForLValue - Determine the result of
11676 /// __builtin_constant_p when applied to the given pointer.
11678 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
11679 /// or it points to the first character of a string literal.
11680 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11681 APValue::LValueBase Base = LV.getLValueBase();
11682 if (Base.isNull()) {
11683 // A null base is acceptable.
11684 return true;
11685 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11686 if (!isa<StringLiteral>(E))
11687 return false;
11688 return LV.getLValueOffset().isZero();
11689 } else if (Base.is<TypeInfoLValue>()) {
11690 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11691 // evaluate to true.
11692 return true;
11693 } else {
11694 // Any other base is not constant enough for GCC.
11695 return false;
11699 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11700 /// GCC as we can manage.
11701 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11702 // This evaluation is not permitted to have side-effects, so evaluate it in
11703 // a speculative evaluation context.
11704 SpeculativeEvaluationRAII SpeculativeEval(Info);
11706 // Constant-folding is always enabled for the operand of __builtin_constant_p
11707 // (even when the enclosing evaluation context otherwise requires a strict
11708 // language-specific constant expression).
11709 FoldConstant Fold(Info, true);
11711 QualType ArgType = Arg->getType();
11713 // __builtin_constant_p always has one operand. The rules which gcc follows
11714 // are not precisely documented, but are as follows:
11716 // - If the operand is of integral, floating, complex or enumeration type,
11717 // and can be folded to a known value of that type, it returns 1.
11718 // - If the operand can be folded to a pointer to the first character
11719 // of a string literal (or such a pointer cast to an integral type)
11720 // or to a null pointer or an integer cast to a pointer, it returns 1.
11722 // Otherwise, it returns 0.
11724 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11725 // its support for this did not work prior to GCC 9 and is not yet well
11726 // understood.
11727 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11728 ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11729 ArgType->isNullPtrType()) {
11730 APValue V;
11731 if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
11732 Fold.keepDiagnostics();
11733 return false;
11736 // For a pointer (possibly cast to integer), there are special rules.
11737 if (V.getKind() == APValue::LValue)
11738 return EvaluateBuiltinConstantPForLValue(V);
11740 // Otherwise, any constant value is good enough.
11741 return V.hasValue();
11744 // Anything else isn't considered to be sufficiently constant.
11745 return false;
11748 /// Retrieves the "underlying object type" of the given expression,
11749 /// as used by __builtin_object_size.
11750 static QualType getObjectType(APValue::LValueBase B) {
11751 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11752 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
11753 return VD->getType();
11754 } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11755 if (isa<CompoundLiteralExpr>(E))
11756 return E->getType();
11757 } else if (B.is<TypeInfoLValue>()) {
11758 return B.getTypeInfoType();
11759 } else if (B.is<DynamicAllocLValue>()) {
11760 return B.getDynamicAllocType();
11763 return QualType();
11766 /// A more selective version of E->IgnoreParenCasts for
11767 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11768 /// to change the type of E.
11769 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11771 /// Always returns an RValue with a pointer representation.
11772 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11773 assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
11775 auto *NoParens = E->IgnoreParens();
11776 auto *Cast = dyn_cast<CastExpr>(NoParens);
11777 if (Cast == nullptr)
11778 return NoParens;
11780 // We only conservatively allow a few kinds of casts, because this code is
11781 // inherently a simple solution that seeks to support the common case.
11782 auto CastKind = Cast->getCastKind();
11783 if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11784 CastKind != CK_AddressSpaceConversion)
11785 return NoParens;
11787 auto *SubExpr = Cast->getSubExpr();
11788 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
11789 return NoParens;
11790 return ignorePointerCastsAndParens(SubExpr);
11793 /// Checks to see if the given LValue's Designator is at the end of the LValue's
11794 /// record layout. e.g.
11795 /// struct { struct { int a, b; } fst, snd; } obj;
11796 /// obj.fst // no
11797 /// obj.snd // yes
11798 /// obj.fst.a // no
11799 /// obj.fst.b // no
11800 /// obj.snd.a // no
11801 /// obj.snd.b // yes
11803 /// Please note: this function is specialized for how __builtin_object_size
11804 /// views "objects".
11806 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
11807 /// correct result, it will always return true.
11808 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11809 assert(!LVal.Designator.Invalid);
11811 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11812 const RecordDecl *Parent = FD->getParent();
11813 Invalid = Parent->isInvalidDecl();
11814 if (Invalid || Parent->isUnion())
11815 return true;
11816 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
11817 return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11820 auto &Base = LVal.getLValueBase();
11821 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
11822 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
11823 bool Invalid;
11824 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11825 return Invalid;
11826 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
11827 for (auto *FD : IFD->chain()) {
11828 bool Invalid;
11829 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
11830 return Invalid;
11835 unsigned I = 0;
11836 QualType BaseType = getType(Base);
11837 if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11838 // If we don't know the array bound, conservatively assume we're looking at
11839 // the final array element.
11840 ++I;
11841 if (BaseType->isIncompleteArrayType())
11842 BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
11843 else
11844 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11847 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11848 const auto &Entry = LVal.Designator.Entries[I];
11849 if (BaseType->isArrayType()) {
11850 // Because __builtin_object_size treats arrays as objects, we can ignore
11851 // the index iff this is the last array in the Designator.
11852 if (I + 1 == E)
11853 return true;
11854 const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
11855 uint64_t Index = Entry.getAsArrayIndex();
11856 if (Index + 1 != CAT->getSize())
11857 return false;
11858 BaseType = CAT->getElementType();
11859 } else if (BaseType->isAnyComplexType()) {
11860 const auto *CT = BaseType->castAs<ComplexType>();
11861 uint64_t Index = Entry.getAsArrayIndex();
11862 if (Index != 1)
11863 return false;
11864 BaseType = CT->getElementType();
11865 } else if (auto *FD = getAsField(Entry)) {
11866 bool Invalid;
11867 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11868 return Invalid;
11869 BaseType = FD->getType();
11870 } else {
11871 assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
11872 return false;
11875 return true;
11878 /// Tests to see if the LValue has a user-specified designator (that isn't
11879 /// necessarily valid). Note that this always returns 'true' if the LValue has
11880 /// an unsized array as its first designator entry, because there's currently no
11881 /// way to tell if the user typed *foo or foo[0].
11882 static bool refersToCompleteObject(const LValue &LVal) {
11883 if (LVal.Designator.Invalid)
11884 return false;
11886 if (!LVal.Designator.Entries.empty())
11887 return LVal.Designator.isMostDerivedAnUnsizedArray();
11889 if (!LVal.InvalidBase)
11890 return true;
11892 // If `E` is a MemberExpr, then the first part of the designator is hiding in
11893 // the LValueBase.
11894 const auto *E = LVal.Base.dyn_cast<const Expr *>();
11895 return !E || !isa<MemberExpr>(E);
11898 /// Attempts to detect a user writing into a piece of memory that's impossible
11899 /// to figure out the size of by just using types.
11900 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11901 const SubobjectDesignator &Designator = LVal.Designator;
11902 // Notes:
11903 // - Users can only write off of the end when we have an invalid base. Invalid
11904 // bases imply we don't know where the memory came from.
11905 // - We used to be a bit more aggressive here; we'd only be conservative if
11906 // the array at the end was flexible, or if it had 0 or 1 elements. This
11907 // broke some common standard library extensions (PR30346), but was
11908 // otherwise seemingly fine. It may be useful to reintroduce this behavior
11909 // with some sort of list. OTOH, it seems that GCC is always
11910 // conservative with the last element in structs (if it's an array), so our
11911 // current behavior is more compatible than an explicit list approach would
11912 // be.
11913 auto isFlexibleArrayMember = [&] {
11914 using FAMKind = LangOptions::StrictFlexArraysLevelKind;
11915 FAMKind StrictFlexArraysLevel =
11916 Ctx.getLangOpts().getStrictFlexArraysLevel();
11918 if (Designator.isMostDerivedAnUnsizedArray())
11919 return true;
11921 if (StrictFlexArraysLevel == FAMKind::Default)
11922 return true;
11924 if (Designator.getMostDerivedArraySize() == 0 &&
11925 StrictFlexArraysLevel != FAMKind::IncompleteOnly)
11926 return true;
11928 if (Designator.getMostDerivedArraySize() == 1 &&
11929 StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete)
11930 return true;
11932 return false;
11935 return LVal.InvalidBase &&
11936 Designator.Entries.size() == Designator.MostDerivedPathLength &&
11937 Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() &&
11938 isDesignatorAtObjectEnd(Ctx, LVal);
11941 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11942 /// Fails if the conversion would cause loss of precision.
11943 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
11944 CharUnits &Result) {
11945 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
11946 if (Int.ugt(CharUnitsMax))
11947 return false;
11948 Result = CharUnits::fromQuantity(Int.getZExtValue());
11949 return true;
11952 /// If we're evaluating the object size of an instance of a struct that
11953 /// contains a flexible array member, add the size of the initializer.
11954 static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T,
11955 const LValue &LV, CharUnits &Size) {
11956 if (!T.isNull() && T->isStructureType() &&
11957 T->getAsStructureType()->getDecl()->hasFlexibleArrayMember())
11958 if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>())
11959 if (const auto *VD = dyn_cast<VarDecl>(V))
11960 if (VD->hasInit())
11961 Size += VD->getFlexibleArrayInitChars(Info.Ctx);
11964 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
11965 /// determine how many bytes exist from the beginning of the object to either
11966 /// the end of the current subobject, or the end of the object itself, depending
11967 /// on what the LValue looks like + the value of Type.
11969 /// If this returns false, the value of Result is undefined.
11970 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
11971 unsigned Type, const LValue &LVal,
11972 CharUnits &EndOffset) {
11973 bool DetermineForCompleteObject = refersToCompleteObject(LVal);
11975 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
11976 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
11977 return false;
11978 return HandleSizeof(Info, ExprLoc, Ty, Result);
11981 // We want to evaluate the size of the entire object. This is a valid fallback
11982 // for when Type=1 and the designator is invalid, because we're asked for an
11983 // upper-bound.
11984 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
11985 // Type=3 wants a lower bound, so we can't fall back to this.
11986 if (Type == 3 && !DetermineForCompleteObject)
11987 return false;
11989 llvm::APInt APEndOffset;
11990 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11991 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11992 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11994 if (LVal.InvalidBase)
11995 return false;
11997 QualType BaseTy = getObjectType(LVal.getLValueBase());
11998 const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset);
11999 addFlexibleArrayMemberInitSize(Info, BaseTy, LVal, EndOffset);
12000 return Ret;
12003 // We want to evaluate the size of a subobject.
12004 const SubobjectDesignator &Designator = LVal.Designator;
12006 // The following is a moderately common idiom in C:
12008 // struct Foo { int a; char c[1]; };
12009 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
12010 // strcpy(&F->c[0], Bar);
12012 // In order to not break too much legacy code, we need to support it.
12013 if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
12014 // If we can resolve this to an alloc_size call, we can hand that back,
12015 // because we know for certain how many bytes there are to write to.
12016 llvm::APInt APEndOffset;
12017 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
12018 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
12019 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
12021 // If we cannot determine the size of the initial allocation, then we can't
12022 // given an accurate upper-bound. However, we are still able to give
12023 // conservative lower-bounds for Type=3.
12024 if (Type == 1)
12025 return false;
12028 CharUnits BytesPerElem;
12029 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
12030 return false;
12032 // According to the GCC documentation, we want the size of the subobject
12033 // denoted by the pointer. But that's not quite right -- what we actually
12034 // want is the size of the immediately-enclosing array, if there is one.
12035 int64_t ElemsRemaining;
12036 if (Designator.MostDerivedIsArrayElement &&
12037 Designator.Entries.size() == Designator.MostDerivedPathLength) {
12038 uint64_t ArraySize = Designator.getMostDerivedArraySize();
12039 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
12040 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
12041 } else {
12042 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
12045 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
12046 return true;
12049 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
12050 /// returns true and stores the result in @p Size.
12052 /// If @p WasError is non-null, this will report whether the failure to evaluate
12053 /// is to be treated as an Error in IntExprEvaluator.
12054 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
12055 EvalInfo &Info, uint64_t &Size) {
12056 // Determine the denoted object.
12057 LValue LVal;
12059 // The operand of __builtin_object_size is never evaluated for side-effects.
12060 // If there are any, but we can determine the pointed-to object anyway, then
12061 // ignore the side-effects.
12062 SpeculativeEvaluationRAII SpeculativeEval(Info);
12063 IgnoreSideEffectsRAII Fold(Info);
12065 if (E->isGLValue()) {
12066 // It's possible for us to be given GLValues if we're called via
12067 // Expr::tryEvaluateObjectSize.
12068 APValue RVal;
12069 if (!EvaluateAsRValue(Info, E, RVal))
12070 return false;
12071 LVal.setFrom(Info.Ctx, RVal);
12072 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
12073 /*InvalidBaseOK=*/true))
12074 return false;
12077 // If we point to before the start of the object, there are no accessible
12078 // bytes.
12079 if (LVal.getLValueOffset().isNegative()) {
12080 Size = 0;
12081 return true;
12084 CharUnits EndOffset;
12085 if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
12086 return false;
12088 // If we've fallen outside of the end offset, just pretend there's nothing to
12089 // write to/read from.
12090 if (EndOffset <= LVal.getLValueOffset())
12091 Size = 0;
12092 else
12093 Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
12094 return true;
12097 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
12098 if (!IsConstantEvaluatedBuiltinCall(E))
12099 return ExprEvaluatorBaseTy::VisitCallExpr(E);
12100 return VisitBuiltinCallExpr(E, E->getBuiltinCallee());
12103 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
12104 APValue &Val, APSInt &Alignment) {
12105 QualType SrcTy = E->getArg(0)->getType();
12106 if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
12107 return false;
12108 // Even though we are evaluating integer expressions we could get a pointer
12109 // argument for the __builtin_is_aligned() case.
12110 if (SrcTy->isPointerType()) {
12111 LValue Ptr;
12112 if (!EvaluatePointer(E->getArg(0), Ptr, Info))
12113 return false;
12114 Ptr.moveInto(Val);
12115 } else if (!SrcTy->isIntegralOrEnumerationType()) {
12116 Info.FFDiag(E->getArg(0));
12117 return false;
12118 } else {
12119 APSInt SrcInt;
12120 if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
12121 return false;
12122 assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
12123 "Bit widths must be the same");
12124 Val = APValue(SrcInt);
12126 assert(Val.hasValue());
12127 return true;
12130 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
12131 unsigned BuiltinOp) {
12132 switch (BuiltinOp) {
12133 default:
12134 return false;
12136 case Builtin::BI__builtin_dynamic_object_size:
12137 case Builtin::BI__builtin_object_size: {
12138 // The type was checked when we built the expression.
12139 unsigned Type =
12140 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
12141 assert(Type <= 3 && "unexpected type");
12143 uint64_t Size;
12144 if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
12145 return Success(Size, E);
12147 if (E->getArg(0)->HasSideEffects(Info.Ctx))
12148 return Success((Type & 2) ? 0 : -1, E);
12150 // Expression had no side effects, but we couldn't statically determine the
12151 // size of the referenced object.
12152 switch (Info.EvalMode) {
12153 case EvalInfo::EM_ConstantExpression:
12154 case EvalInfo::EM_ConstantFold:
12155 case EvalInfo::EM_IgnoreSideEffects:
12156 // Leave it to IR generation.
12157 return Error(E);
12158 case EvalInfo::EM_ConstantExpressionUnevaluated:
12159 // Reduce it to a constant now.
12160 return Success((Type & 2) ? 0 : -1, E);
12163 llvm_unreachable("unexpected EvalMode");
12166 case Builtin::BI__builtin_os_log_format_buffer_size: {
12167 analyze_os_log::OSLogBufferLayout Layout;
12168 analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
12169 return Success(Layout.size().getQuantity(), E);
12172 case Builtin::BI__builtin_is_aligned: {
12173 APValue Src;
12174 APSInt Alignment;
12175 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
12176 return false;
12177 if (Src.isLValue()) {
12178 // If we evaluated a pointer, check the minimum known alignment.
12179 LValue Ptr;
12180 Ptr.setFrom(Info.Ctx, Src);
12181 CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
12182 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
12183 // We can return true if the known alignment at the computed offset is
12184 // greater than the requested alignment.
12185 assert(PtrAlign.isPowerOfTwo());
12186 assert(Alignment.isPowerOf2());
12187 if (PtrAlign.getQuantity() >= Alignment)
12188 return Success(1, E);
12189 // If the alignment is not known to be sufficient, some cases could still
12190 // be aligned at run time. However, if the requested alignment is less or
12191 // equal to the base alignment and the offset is not aligned, we know that
12192 // the run-time value can never be aligned.
12193 if (BaseAlignment.getQuantity() >= Alignment &&
12194 PtrAlign.getQuantity() < Alignment)
12195 return Success(0, E);
12196 // Otherwise we can't infer whether the value is sufficiently aligned.
12197 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
12198 // in cases where we can't fully evaluate the pointer.
12199 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
12200 << Alignment;
12201 return false;
12203 assert(Src.isInt());
12204 return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
12206 case Builtin::BI__builtin_align_up: {
12207 APValue Src;
12208 APSInt Alignment;
12209 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
12210 return false;
12211 if (!Src.isInt())
12212 return Error(E);
12213 APSInt AlignedVal =
12214 APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
12215 Src.getInt().isUnsigned());
12216 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12217 return Success(AlignedVal, E);
12219 case Builtin::BI__builtin_align_down: {
12220 APValue Src;
12221 APSInt Alignment;
12222 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
12223 return false;
12224 if (!Src.isInt())
12225 return Error(E);
12226 APSInt AlignedVal =
12227 APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
12228 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12229 return Success(AlignedVal, E);
12232 case Builtin::BI__builtin_bitreverse8:
12233 case Builtin::BI__builtin_bitreverse16:
12234 case Builtin::BI__builtin_bitreverse32:
12235 case Builtin::BI__builtin_bitreverse64: {
12236 APSInt Val;
12237 if (!EvaluateInteger(E->getArg(0), Val, Info))
12238 return false;
12240 return Success(Val.reverseBits(), E);
12243 case Builtin::BI__builtin_bswap16:
12244 case Builtin::BI__builtin_bswap32:
12245 case Builtin::BI__builtin_bswap64: {
12246 APSInt Val;
12247 if (!EvaluateInteger(E->getArg(0), Val, Info))
12248 return false;
12250 return Success(Val.byteSwap(), E);
12253 case Builtin::BI__builtin_classify_type:
12254 return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
12256 case Builtin::BI__builtin_clrsb:
12257 case Builtin::BI__builtin_clrsbl:
12258 case Builtin::BI__builtin_clrsbll: {
12259 APSInt Val;
12260 if (!EvaluateInteger(E->getArg(0), Val, Info))
12261 return false;
12263 return Success(Val.getBitWidth() - Val.getSignificantBits(), E);
12266 case Builtin::BI__builtin_clz:
12267 case Builtin::BI__builtin_clzl:
12268 case Builtin::BI__builtin_clzll:
12269 case Builtin::BI__builtin_clzs:
12270 case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes
12271 case Builtin::BI__lzcnt:
12272 case Builtin::BI__lzcnt64: {
12273 APSInt Val;
12274 if (!EvaluateInteger(E->getArg(0), Val, Info))
12275 return false;
12277 // When the argument is 0, the result of GCC builtins is undefined, whereas
12278 // for Microsoft intrinsics, the result is the bit-width of the argument.
12279 bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 &&
12280 BuiltinOp != Builtin::BI__lzcnt &&
12281 BuiltinOp != Builtin::BI__lzcnt64;
12283 if (ZeroIsUndefined && !Val)
12284 return Error(E);
12286 return Success(Val.countl_zero(), E);
12289 case Builtin::BI__builtin_constant_p: {
12290 const Expr *Arg = E->getArg(0);
12291 if (EvaluateBuiltinConstantP(Info, Arg))
12292 return Success(true, E);
12293 if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
12294 // Outside a constant context, eagerly evaluate to false in the presence
12295 // of side-effects in order to avoid -Wunsequenced false-positives in
12296 // a branch on __builtin_constant_p(expr).
12297 return Success(false, E);
12299 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12300 return false;
12303 case Builtin::BI__builtin_is_constant_evaluated: {
12304 const auto *Callee = Info.CurrentCall->getCallee();
12305 if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
12306 (Info.CallStackDepth == 1 ||
12307 (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
12308 Callee->getIdentifier() &&
12309 Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
12310 // FIXME: Find a better way to avoid duplicated diagnostics.
12311 if (Info.EvalStatus.Diag)
12312 Info.report((Info.CallStackDepth == 1)
12313 ? E->getExprLoc()
12314 : Info.CurrentCall->getCallRange().getBegin(),
12315 diag::warn_is_constant_evaluated_always_true_constexpr)
12316 << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
12317 : "std::is_constant_evaluated");
12320 return Success(Info.InConstantContext, E);
12323 case Builtin::BI__builtin_ctz:
12324 case Builtin::BI__builtin_ctzl:
12325 case Builtin::BI__builtin_ctzll:
12326 case Builtin::BI__builtin_ctzs: {
12327 APSInt Val;
12328 if (!EvaluateInteger(E->getArg(0), Val, Info))
12329 return false;
12330 if (!Val)
12331 return Error(E);
12333 return Success(Val.countr_zero(), E);
12336 case Builtin::BI__builtin_eh_return_data_regno: {
12337 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
12338 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
12339 return Success(Operand, E);
12342 case Builtin::BI__builtin_expect:
12343 case Builtin::BI__builtin_expect_with_probability:
12344 return Visit(E->getArg(0));
12346 case Builtin::BI__builtin_ffs:
12347 case Builtin::BI__builtin_ffsl:
12348 case Builtin::BI__builtin_ffsll: {
12349 APSInt Val;
12350 if (!EvaluateInteger(E->getArg(0), Val, Info))
12351 return false;
12353 unsigned N = Val.countr_zero();
12354 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
12357 case Builtin::BI__builtin_fpclassify: {
12358 APFloat Val(0.0);
12359 if (!EvaluateFloat(E->getArg(5), Val, Info))
12360 return false;
12361 unsigned Arg;
12362 switch (Val.getCategory()) {
12363 case APFloat::fcNaN: Arg = 0; break;
12364 case APFloat::fcInfinity: Arg = 1; break;
12365 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
12366 case APFloat::fcZero: Arg = 4; break;
12368 return Visit(E->getArg(Arg));
12371 case Builtin::BI__builtin_isinf_sign: {
12372 APFloat Val(0.0);
12373 return EvaluateFloat(E->getArg(0), Val, Info) &&
12374 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
12377 case Builtin::BI__builtin_isinf: {
12378 APFloat Val(0.0);
12379 return EvaluateFloat(E->getArg(0), Val, Info) &&
12380 Success(Val.isInfinity() ? 1 : 0, E);
12383 case Builtin::BI__builtin_isfinite: {
12384 APFloat Val(0.0);
12385 return EvaluateFloat(E->getArg(0), Val, Info) &&
12386 Success(Val.isFinite() ? 1 : 0, E);
12389 case Builtin::BI__builtin_isnan: {
12390 APFloat Val(0.0);
12391 return EvaluateFloat(E->getArg(0), Val, Info) &&
12392 Success(Val.isNaN() ? 1 : 0, E);
12395 case Builtin::BI__builtin_isnormal: {
12396 APFloat Val(0.0);
12397 return EvaluateFloat(E->getArg(0), Val, Info) &&
12398 Success(Val.isNormal() ? 1 : 0, E);
12401 case Builtin::BI__builtin_issubnormal: {
12402 APFloat Val(0.0);
12403 return EvaluateFloat(E->getArg(0), Val, Info) &&
12404 Success(Val.isDenormal() ? 1 : 0, E);
12407 case Builtin::BI__builtin_iszero: {
12408 APFloat Val(0.0);
12409 return EvaluateFloat(E->getArg(0), Val, Info) &&
12410 Success(Val.isZero() ? 1 : 0, E);
12413 case Builtin::BI__builtin_issignaling: {
12414 APFloat Val(0.0);
12415 return EvaluateFloat(E->getArg(0), Val, Info) &&
12416 Success(Val.isSignaling() ? 1 : 0, E);
12419 case Builtin::BI__builtin_isfpclass: {
12420 APSInt MaskVal;
12421 if (!EvaluateInteger(E->getArg(1), MaskVal, Info))
12422 return false;
12423 unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue());
12424 APFloat Val(0.0);
12425 return EvaluateFloat(E->getArg(0), Val, Info) &&
12426 Success((Val.classify() & Test) ? 1 : 0, E);
12429 case Builtin::BI__builtin_parity:
12430 case Builtin::BI__builtin_parityl:
12431 case Builtin::BI__builtin_parityll: {
12432 APSInt Val;
12433 if (!EvaluateInteger(E->getArg(0), Val, Info))
12434 return false;
12436 return Success(Val.popcount() % 2, E);
12439 case Builtin::BI__builtin_popcount:
12440 case Builtin::BI__builtin_popcountl:
12441 case Builtin::BI__builtin_popcountll:
12442 case Builtin::BI__popcnt16: // Microsoft variants of popcount
12443 case Builtin::BI__popcnt:
12444 case Builtin::BI__popcnt64: {
12445 APSInt Val;
12446 if (!EvaluateInteger(E->getArg(0), Val, Info))
12447 return false;
12449 return Success(Val.popcount(), E);
12452 case Builtin::BI__builtin_rotateleft8:
12453 case Builtin::BI__builtin_rotateleft16:
12454 case Builtin::BI__builtin_rotateleft32:
12455 case Builtin::BI__builtin_rotateleft64:
12456 case Builtin::BI_rotl8: // Microsoft variants of rotate right
12457 case Builtin::BI_rotl16:
12458 case Builtin::BI_rotl:
12459 case Builtin::BI_lrotl:
12460 case Builtin::BI_rotl64: {
12461 APSInt Val, Amt;
12462 if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12463 !EvaluateInteger(E->getArg(1), Amt, Info))
12464 return false;
12466 return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
12469 case Builtin::BI__builtin_rotateright8:
12470 case Builtin::BI__builtin_rotateright16:
12471 case Builtin::BI__builtin_rotateright32:
12472 case Builtin::BI__builtin_rotateright64:
12473 case Builtin::BI_rotr8: // Microsoft variants of rotate right
12474 case Builtin::BI_rotr16:
12475 case Builtin::BI_rotr:
12476 case Builtin::BI_lrotr:
12477 case Builtin::BI_rotr64: {
12478 APSInt Val, Amt;
12479 if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12480 !EvaluateInteger(E->getArg(1), Amt, Info))
12481 return false;
12483 return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
12486 case Builtin::BIstrlen:
12487 case Builtin::BIwcslen:
12488 // A call to strlen is not a constant expression.
12489 if (Info.getLangOpts().CPlusPlus11)
12490 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12491 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12492 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12493 else
12494 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12495 [[fallthrough]];
12496 case Builtin::BI__builtin_strlen:
12497 case Builtin::BI__builtin_wcslen: {
12498 // As an extension, we support __builtin_strlen() as a constant expression,
12499 // and support folding strlen() to a constant.
12500 uint64_t StrLen;
12501 if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info))
12502 return Success(StrLen, E);
12503 return false;
12506 case Builtin::BIstrcmp:
12507 case Builtin::BIwcscmp:
12508 case Builtin::BIstrncmp:
12509 case Builtin::BIwcsncmp:
12510 case Builtin::BImemcmp:
12511 case Builtin::BIbcmp:
12512 case Builtin::BIwmemcmp:
12513 // A call to strlen is not a constant expression.
12514 if (Info.getLangOpts().CPlusPlus11)
12515 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12516 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12517 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12518 else
12519 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12520 [[fallthrough]];
12521 case Builtin::BI__builtin_strcmp:
12522 case Builtin::BI__builtin_wcscmp:
12523 case Builtin::BI__builtin_strncmp:
12524 case Builtin::BI__builtin_wcsncmp:
12525 case Builtin::BI__builtin_memcmp:
12526 case Builtin::BI__builtin_bcmp:
12527 case Builtin::BI__builtin_wmemcmp: {
12528 LValue String1, String2;
12529 if (!EvaluatePointer(E->getArg(0), String1, Info) ||
12530 !EvaluatePointer(E->getArg(1), String2, Info))
12531 return false;
12533 uint64_t MaxLength = uint64_t(-1);
12534 if (BuiltinOp != Builtin::BIstrcmp &&
12535 BuiltinOp != Builtin::BIwcscmp &&
12536 BuiltinOp != Builtin::BI__builtin_strcmp &&
12537 BuiltinOp != Builtin::BI__builtin_wcscmp) {
12538 APSInt N;
12539 if (!EvaluateInteger(E->getArg(2), N, Info))
12540 return false;
12541 MaxLength = N.getZExtValue();
12544 // Empty substrings compare equal by definition.
12545 if (MaxLength == 0u)
12546 return Success(0, E);
12548 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12549 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12550 String1.Designator.Invalid || String2.Designator.Invalid)
12551 return false;
12553 QualType CharTy1 = String1.Designator.getType(Info.Ctx);
12554 QualType CharTy2 = String2.Designator.getType(Info.Ctx);
12556 bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
12557 BuiltinOp == Builtin::BIbcmp ||
12558 BuiltinOp == Builtin::BI__builtin_memcmp ||
12559 BuiltinOp == Builtin::BI__builtin_bcmp;
12561 assert(IsRawByte ||
12562 (Info.Ctx.hasSameUnqualifiedType(
12563 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
12564 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
12566 // For memcmp, allow comparing any arrays of '[[un]signed] char' or
12567 // 'char8_t', but no other types.
12568 if (IsRawByte &&
12569 !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
12570 // FIXME: Consider using our bit_cast implementation to support this.
12571 Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
12572 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
12573 << CharTy1 << CharTy2;
12574 return false;
12577 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
12578 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
12579 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
12580 Char1.isInt() && Char2.isInt();
12582 const auto &AdvanceElems = [&] {
12583 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
12584 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
12587 bool StopAtNull =
12588 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
12589 BuiltinOp != Builtin::BIwmemcmp &&
12590 BuiltinOp != Builtin::BI__builtin_memcmp &&
12591 BuiltinOp != Builtin::BI__builtin_bcmp &&
12592 BuiltinOp != Builtin::BI__builtin_wmemcmp);
12593 bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
12594 BuiltinOp == Builtin::BIwcsncmp ||
12595 BuiltinOp == Builtin::BIwmemcmp ||
12596 BuiltinOp == Builtin::BI__builtin_wcscmp ||
12597 BuiltinOp == Builtin::BI__builtin_wcsncmp ||
12598 BuiltinOp == Builtin::BI__builtin_wmemcmp;
12600 for (; MaxLength; --MaxLength) {
12601 APValue Char1, Char2;
12602 if (!ReadCurElems(Char1, Char2))
12603 return false;
12604 if (Char1.getInt().ne(Char2.getInt())) {
12605 if (IsWide) // wmemcmp compares with wchar_t signedness.
12606 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
12607 // memcmp always compares unsigned chars.
12608 return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
12610 if (StopAtNull && !Char1.getInt())
12611 return Success(0, E);
12612 assert(!(StopAtNull && !Char2.getInt()));
12613 if (!AdvanceElems())
12614 return false;
12616 // We hit the strncmp / memcmp limit.
12617 return Success(0, E);
12620 case Builtin::BI__atomic_always_lock_free:
12621 case Builtin::BI__atomic_is_lock_free:
12622 case Builtin::BI__c11_atomic_is_lock_free: {
12623 APSInt SizeVal;
12624 if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
12625 return false;
12627 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12628 // of two less than or equal to the maximum inline atomic width, we know it
12629 // is lock-free. If the size isn't a power of two, or greater than the
12630 // maximum alignment where we promote atomics, we know it is not lock-free
12631 // (at least not in the sense of atomic_is_lock_free). Otherwise,
12632 // the answer can only be determined at runtime; for example, 16-byte
12633 // atomics have lock-free implementations on some, but not all,
12634 // x86-64 processors.
12636 // Check power-of-two.
12637 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
12638 if (Size.isPowerOfTwo()) {
12639 // Check against inlining width.
12640 unsigned InlineWidthBits =
12641 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
12642 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
12643 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
12644 Size == CharUnits::One() ||
12645 E->getArg(1)->isNullPointerConstant(Info.Ctx,
12646 Expr::NPC_NeverValueDependent))
12647 // OK, we will inline appropriately-aligned operations of this size,
12648 // and _Atomic(T) is appropriately-aligned.
12649 return Success(1, E);
12651 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
12652 castAs<PointerType>()->getPointeeType();
12653 if (!PointeeType->isIncompleteType() &&
12654 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
12655 // OK, we will inline operations on this object.
12656 return Success(1, E);
12661 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12662 Success(0, E) : Error(E);
12664 case Builtin::BI__builtin_add_overflow:
12665 case Builtin::BI__builtin_sub_overflow:
12666 case Builtin::BI__builtin_mul_overflow:
12667 case Builtin::BI__builtin_sadd_overflow:
12668 case Builtin::BI__builtin_uadd_overflow:
12669 case Builtin::BI__builtin_uaddl_overflow:
12670 case Builtin::BI__builtin_uaddll_overflow:
12671 case Builtin::BI__builtin_usub_overflow:
12672 case Builtin::BI__builtin_usubl_overflow:
12673 case Builtin::BI__builtin_usubll_overflow:
12674 case Builtin::BI__builtin_umul_overflow:
12675 case Builtin::BI__builtin_umull_overflow:
12676 case Builtin::BI__builtin_umulll_overflow:
12677 case Builtin::BI__builtin_saddl_overflow:
12678 case Builtin::BI__builtin_saddll_overflow:
12679 case Builtin::BI__builtin_ssub_overflow:
12680 case Builtin::BI__builtin_ssubl_overflow:
12681 case Builtin::BI__builtin_ssubll_overflow:
12682 case Builtin::BI__builtin_smul_overflow:
12683 case Builtin::BI__builtin_smull_overflow:
12684 case Builtin::BI__builtin_smulll_overflow: {
12685 LValue ResultLValue;
12686 APSInt LHS, RHS;
12688 QualType ResultType = E->getArg(2)->getType()->getPointeeType();
12689 if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
12690 !EvaluateInteger(E->getArg(1), RHS, Info) ||
12691 !EvaluatePointer(E->getArg(2), ResultLValue, Info))
12692 return false;
12694 APSInt Result;
12695 bool DidOverflow = false;
12697 // If the types don't have to match, enlarge all 3 to the largest of them.
12698 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12699 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12700 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12701 bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
12702 ResultType->isSignedIntegerOrEnumerationType();
12703 bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
12704 ResultType->isSignedIntegerOrEnumerationType();
12705 uint64_t LHSSize = LHS.getBitWidth();
12706 uint64_t RHSSize = RHS.getBitWidth();
12707 uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
12708 uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
12710 // Add an additional bit if the signedness isn't uniformly agreed to. We
12711 // could do this ONLY if there is a signed and an unsigned that both have
12712 // MaxBits, but the code to check that is pretty nasty. The issue will be
12713 // caught in the shrink-to-result later anyway.
12714 if (IsSigned && !AllSigned)
12715 ++MaxBits;
12717 LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
12718 RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
12719 Result = APSInt(MaxBits, !IsSigned);
12722 // Find largest int.
12723 switch (BuiltinOp) {
12724 default:
12725 llvm_unreachable("Invalid value for BuiltinOp");
12726 case Builtin::BI__builtin_add_overflow:
12727 case Builtin::BI__builtin_sadd_overflow:
12728 case Builtin::BI__builtin_saddl_overflow:
12729 case Builtin::BI__builtin_saddll_overflow:
12730 case Builtin::BI__builtin_uadd_overflow:
12731 case Builtin::BI__builtin_uaddl_overflow:
12732 case Builtin::BI__builtin_uaddll_overflow:
12733 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
12734 : LHS.uadd_ov(RHS, DidOverflow);
12735 break;
12736 case Builtin::BI__builtin_sub_overflow:
12737 case Builtin::BI__builtin_ssub_overflow:
12738 case Builtin::BI__builtin_ssubl_overflow:
12739 case Builtin::BI__builtin_ssubll_overflow:
12740 case Builtin::BI__builtin_usub_overflow:
12741 case Builtin::BI__builtin_usubl_overflow:
12742 case Builtin::BI__builtin_usubll_overflow:
12743 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
12744 : LHS.usub_ov(RHS, DidOverflow);
12745 break;
12746 case Builtin::BI__builtin_mul_overflow:
12747 case Builtin::BI__builtin_smul_overflow:
12748 case Builtin::BI__builtin_smull_overflow:
12749 case Builtin::BI__builtin_smulll_overflow:
12750 case Builtin::BI__builtin_umul_overflow:
12751 case Builtin::BI__builtin_umull_overflow:
12752 case Builtin::BI__builtin_umulll_overflow:
12753 Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
12754 : LHS.umul_ov(RHS, DidOverflow);
12755 break;
12758 // In the case where multiple sizes are allowed, truncate and see if
12759 // the values are the same.
12760 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12761 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12762 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12763 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12764 // since it will give us the behavior of a TruncOrSelf in the case where
12765 // its parameter <= its size. We previously set Result to be at least the
12766 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12767 // will work exactly like TruncOrSelf.
12768 APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
12769 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12771 if (!APSInt::isSameValue(Temp, Result))
12772 DidOverflow = true;
12773 Result = Temp;
12776 APValue APV{Result};
12777 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12778 return false;
12779 return Success(DidOverflow, E);
12784 /// Determine whether this is a pointer past the end of the complete
12785 /// object referred to by the lvalue.
12786 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12787 const LValue &LV) {
12788 // A null pointer can be viewed as being "past the end" but we don't
12789 // choose to look at it that way here.
12790 if (!LV.getLValueBase())
12791 return false;
12793 // If the designator is valid and refers to a subobject, we're not pointing
12794 // past the end.
12795 if (!LV.getLValueDesignator().Invalid &&
12796 !LV.getLValueDesignator().isOnePastTheEnd())
12797 return false;
12799 // A pointer to an incomplete type might be past-the-end if the type's size is
12800 // zero. We cannot tell because the type is incomplete.
12801 QualType Ty = getType(LV.getLValueBase());
12802 if (Ty->isIncompleteType())
12803 return true;
12805 // We're a past-the-end pointer if we point to the byte after the object,
12806 // no matter what our type or path is.
12807 auto Size = Ctx.getTypeSizeInChars(Ty);
12808 return LV.getLValueOffset() == Size;
12811 namespace {
12813 /// Data recursive integer evaluator of certain binary operators.
12815 /// We use a data recursive algorithm for binary operators so that we are able
12816 /// to handle extreme cases of chained binary operators without causing stack
12817 /// overflow.
12818 class DataRecursiveIntBinOpEvaluator {
12819 struct EvalResult {
12820 APValue Val;
12821 bool Failed = false;
12823 EvalResult() = default;
12825 void swap(EvalResult &RHS) {
12826 Val.swap(RHS.Val);
12827 Failed = RHS.Failed;
12828 RHS.Failed = false;
12832 struct Job {
12833 const Expr *E;
12834 EvalResult LHSResult; // meaningful only for binary operator expression.
12835 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
12837 Job() = default;
12838 Job(Job &&) = default;
12840 void startSpeculativeEval(EvalInfo &Info) {
12841 SpecEvalRAII = SpeculativeEvaluationRAII(Info);
12844 private:
12845 SpeculativeEvaluationRAII SpecEvalRAII;
12848 SmallVector<Job, 16> Queue;
12850 IntExprEvaluator &IntEval;
12851 EvalInfo &Info;
12852 APValue &FinalResult;
12854 public:
12855 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
12856 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
12858 /// True if \param E is a binary operator that we are going to handle
12859 /// data recursively.
12860 /// We handle binary operators that are comma, logical, or that have operands
12861 /// with integral or enumeration type.
12862 static bool shouldEnqueue(const BinaryOperator *E) {
12863 return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
12864 (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
12865 E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12866 E->getRHS()->getType()->isIntegralOrEnumerationType());
12869 bool Traverse(const BinaryOperator *E) {
12870 enqueue(E);
12871 EvalResult PrevResult;
12872 while (!Queue.empty())
12873 process(PrevResult);
12875 if (PrevResult.Failed) return false;
12877 FinalResult.swap(PrevResult.Val);
12878 return true;
12881 private:
12882 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12883 return IntEval.Success(Value, E, Result);
12885 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
12886 return IntEval.Success(Value, E, Result);
12888 bool Error(const Expr *E) {
12889 return IntEval.Error(E);
12891 bool Error(const Expr *E, diag::kind D) {
12892 return IntEval.Error(E, D);
12895 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
12896 return Info.CCEDiag(E, D);
12899 // Returns true if visiting the RHS is necessary, false otherwise.
12900 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12901 bool &SuppressRHSDiags);
12903 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12904 const BinaryOperator *E, APValue &Result);
12906 void EvaluateExpr(const Expr *E, EvalResult &Result) {
12907 Result.Failed = !Evaluate(Result.Val, Info, E);
12908 if (Result.Failed)
12909 Result.Val = APValue();
12912 void process(EvalResult &Result);
12914 void enqueue(const Expr *E) {
12915 E = E->IgnoreParens();
12916 Queue.resize(Queue.size()+1);
12917 Queue.back().E = E;
12918 Queue.back().Kind = Job::AnyExprKind;
12924 bool DataRecursiveIntBinOpEvaluator::
12925 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12926 bool &SuppressRHSDiags) {
12927 if (E->getOpcode() == BO_Comma) {
12928 // Ignore LHS but note if we could not evaluate it.
12929 if (LHSResult.Failed)
12930 return Info.noteSideEffect();
12931 return true;
12934 if (E->isLogicalOp()) {
12935 bool LHSAsBool;
12936 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
12937 // We were able to evaluate the LHS, see if we can get away with not
12938 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12939 if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
12940 Success(LHSAsBool, E, LHSResult.Val);
12941 return false; // Ignore RHS
12943 } else {
12944 LHSResult.Failed = true;
12946 // Since we weren't able to evaluate the left hand side, it
12947 // might have had side effects.
12948 if (!Info.noteSideEffect())
12949 return false;
12951 // We can't evaluate the LHS; however, sometimes the result
12952 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12953 // Don't ignore RHS and suppress diagnostics from this arm.
12954 SuppressRHSDiags = true;
12957 return true;
12960 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12961 E->getRHS()->getType()->isIntegralOrEnumerationType());
12963 if (LHSResult.Failed && !Info.noteFailure())
12964 return false; // Ignore RHS;
12966 return true;
12969 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
12970 bool IsSub) {
12971 // Compute the new offset in the appropriate width, wrapping at 64 bits.
12972 // FIXME: When compiling for a 32-bit target, we should use 32-bit
12973 // offsets.
12974 assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
12975 CharUnits &Offset = LVal.getLValueOffset();
12976 uint64_t Offset64 = Offset.getQuantity();
12977 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
12978 Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
12979 : Offset64 + Index64);
12982 bool DataRecursiveIntBinOpEvaluator::
12983 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12984 const BinaryOperator *E, APValue &Result) {
12985 if (E->getOpcode() == BO_Comma) {
12986 if (RHSResult.Failed)
12987 return false;
12988 Result = RHSResult.Val;
12989 return true;
12992 if (E->isLogicalOp()) {
12993 bool lhsResult, rhsResult;
12994 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
12995 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
12997 if (LHSIsOK) {
12998 if (RHSIsOK) {
12999 if (E->getOpcode() == BO_LOr)
13000 return Success(lhsResult || rhsResult, E, Result);
13001 else
13002 return Success(lhsResult && rhsResult, E, Result);
13004 } else {
13005 if (RHSIsOK) {
13006 // We can't evaluate the LHS; however, sometimes the result
13007 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
13008 if (rhsResult == (E->getOpcode() == BO_LOr))
13009 return Success(rhsResult, E, Result);
13013 return false;
13016 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
13017 E->getRHS()->getType()->isIntegralOrEnumerationType());
13019 if (LHSResult.Failed || RHSResult.Failed)
13020 return false;
13022 const APValue &LHSVal = LHSResult.Val;
13023 const APValue &RHSVal = RHSResult.Val;
13025 // Handle cases like (unsigned long)&a + 4.
13026 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
13027 Result = LHSVal;
13028 addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
13029 return true;
13032 // Handle cases like 4 + (unsigned long)&a
13033 if (E->getOpcode() == BO_Add &&
13034 RHSVal.isLValue() && LHSVal.isInt()) {
13035 Result = RHSVal;
13036 addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
13037 return true;
13040 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
13041 // Handle (intptr_t)&&A - (intptr_t)&&B.
13042 if (!LHSVal.getLValueOffset().isZero() ||
13043 !RHSVal.getLValueOffset().isZero())
13044 return false;
13045 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
13046 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
13047 if (!LHSExpr || !RHSExpr)
13048 return false;
13049 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13050 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13051 if (!LHSAddrExpr || !RHSAddrExpr)
13052 return false;
13053 // Make sure both labels come from the same function.
13054 if (LHSAddrExpr->getLabel()->getDeclContext() !=
13055 RHSAddrExpr->getLabel()->getDeclContext())
13056 return false;
13057 Result = APValue(LHSAddrExpr, RHSAddrExpr);
13058 return true;
13061 // All the remaining cases expect both operands to be an integer
13062 if (!LHSVal.isInt() || !RHSVal.isInt())
13063 return Error(E);
13065 // Set up the width and signedness manually, in case it can't be deduced
13066 // from the operation we're performing.
13067 // FIXME: Don't do this in the cases where we can deduce it.
13068 APSInt Value(Info.Ctx.getIntWidth(E->getType()),
13069 E->getType()->isUnsignedIntegerOrEnumerationType());
13070 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
13071 RHSVal.getInt(), Value))
13072 return false;
13073 return Success(Value, E, Result);
13076 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
13077 Job &job = Queue.back();
13079 switch (job.Kind) {
13080 case Job::AnyExprKind: {
13081 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
13082 if (shouldEnqueue(Bop)) {
13083 job.Kind = Job::BinOpKind;
13084 enqueue(Bop->getLHS());
13085 return;
13089 EvaluateExpr(job.E, Result);
13090 Queue.pop_back();
13091 return;
13094 case Job::BinOpKind: {
13095 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
13096 bool SuppressRHSDiags = false;
13097 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
13098 Queue.pop_back();
13099 return;
13101 if (SuppressRHSDiags)
13102 job.startSpeculativeEval(Info);
13103 job.LHSResult.swap(Result);
13104 job.Kind = Job::BinOpVisitedLHSKind;
13105 enqueue(Bop->getRHS());
13106 return;
13109 case Job::BinOpVisitedLHSKind: {
13110 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
13111 EvalResult RHS;
13112 RHS.swap(Result);
13113 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
13114 Queue.pop_back();
13115 return;
13119 llvm_unreachable("Invalid Job::Kind!");
13122 namespace {
13123 enum class CmpResult {
13124 Unequal,
13125 Less,
13126 Equal,
13127 Greater,
13128 Unordered,
13132 template <class SuccessCB, class AfterCB>
13133 static bool
13134 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
13135 SuccessCB &&Success, AfterCB &&DoAfter) {
13136 assert(!E->isValueDependent());
13137 assert(E->isComparisonOp() && "expected comparison operator");
13138 assert((E->getOpcode() == BO_Cmp ||
13139 E->getType()->isIntegralOrEnumerationType()) &&
13140 "unsupported binary expression evaluation");
13141 auto Error = [&](const Expr *E) {
13142 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
13143 return false;
13146 bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
13147 bool IsEquality = E->isEqualityOp();
13149 QualType LHSTy = E->getLHS()->getType();
13150 QualType RHSTy = E->getRHS()->getType();
13152 if (LHSTy->isIntegralOrEnumerationType() &&
13153 RHSTy->isIntegralOrEnumerationType()) {
13154 APSInt LHS, RHS;
13155 bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
13156 if (!LHSOK && !Info.noteFailure())
13157 return false;
13158 if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
13159 return false;
13160 if (LHS < RHS)
13161 return Success(CmpResult::Less, E);
13162 if (LHS > RHS)
13163 return Success(CmpResult::Greater, E);
13164 return Success(CmpResult::Equal, E);
13167 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
13168 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
13169 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
13171 bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
13172 if (!LHSOK && !Info.noteFailure())
13173 return false;
13174 if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
13175 return false;
13176 if (LHSFX < RHSFX)
13177 return Success(CmpResult::Less, E);
13178 if (LHSFX > RHSFX)
13179 return Success(CmpResult::Greater, E);
13180 return Success(CmpResult::Equal, E);
13183 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
13184 ComplexValue LHS, RHS;
13185 bool LHSOK;
13186 if (E->isAssignmentOp()) {
13187 LValue LV;
13188 EvaluateLValue(E->getLHS(), LV, Info);
13189 LHSOK = false;
13190 } else if (LHSTy->isRealFloatingType()) {
13191 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
13192 if (LHSOK) {
13193 LHS.makeComplexFloat();
13194 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
13196 } else {
13197 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
13199 if (!LHSOK && !Info.noteFailure())
13200 return false;
13202 if (E->getRHS()->getType()->isRealFloatingType()) {
13203 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
13204 return false;
13205 RHS.makeComplexFloat();
13206 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
13207 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
13208 return false;
13210 if (LHS.isComplexFloat()) {
13211 APFloat::cmpResult CR_r =
13212 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
13213 APFloat::cmpResult CR_i =
13214 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
13215 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
13216 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
13217 } else {
13218 assert(IsEquality && "invalid complex comparison");
13219 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
13220 LHS.getComplexIntImag() == RHS.getComplexIntImag();
13221 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
13225 if (LHSTy->isRealFloatingType() &&
13226 RHSTy->isRealFloatingType()) {
13227 APFloat RHS(0.0), LHS(0.0);
13229 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
13230 if (!LHSOK && !Info.noteFailure())
13231 return false;
13233 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
13234 return false;
13236 assert(E->isComparisonOp() && "Invalid binary operator!");
13237 llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
13238 if (!Info.InConstantContext &&
13239 APFloatCmpResult == APFloat::cmpUnordered &&
13240 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
13241 // Note: Compares may raise invalid in some cases involving NaN or sNaN.
13242 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
13243 return false;
13245 auto GetCmpRes = [&]() {
13246 switch (APFloatCmpResult) {
13247 case APFloat::cmpEqual:
13248 return CmpResult::Equal;
13249 case APFloat::cmpLessThan:
13250 return CmpResult::Less;
13251 case APFloat::cmpGreaterThan:
13252 return CmpResult::Greater;
13253 case APFloat::cmpUnordered:
13254 return CmpResult::Unordered;
13256 llvm_unreachable("Unrecognised APFloat::cmpResult enum");
13258 return Success(GetCmpRes(), E);
13261 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
13262 LValue LHSValue, RHSValue;
13264 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13265 if (!LHSOK && !Info.noteFailure())
13266 return false;
13268 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13269 return false;
13271 // Reject differing bases from the normal codepath; we special-case
13272 // comparisons to null.
13273 if (!HasSameBase(LHSValue, RHSValue)) {
13274 auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) {
13275 std::string LHS = LHSValue.toString(Info.Ctx, E->getLHS()->getType());
13276 std::string RHS = RHSValue.toString(Info.Ctx, E->getRHS()->getType());
13277 Info.FFDiag(E, DiagID)
13278 << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS);
13279 return false;
13281 // Inequalities and subtractions between unrelated pointers have
13282 // unspecified or undefined behavior.
13283 if (!IsEquality)
13284 return DiagComparison(
13285 diag::note_constexpr_pointer_comparison_unspecified);
13286 // A constant address may compare equal to the address of a symbol.
13287 // The one exception is that address of an object cannot compare equal
13288 // to a null pointer constant.
13289 // TODO: Should we restrict this to actual null pointers, and exclude the
13290 // case of zero cast to pointer type?
13291 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
13292 (!RHSValue.Base && !RHSValue.Offset.isZero()))
13293 return DiagComparison(diag::note_constexpr_pointer_constant_comparison,
13294 !RHSValue.Base);
13295 // It's implementation-defined whether distinct literals will have
13296 // distinct addresses. In clang, the result of such a comparison is
13297 // unspecified, so it is not a constant expression. However, we do know
13298 // that the address of a literal will be non-null.
13299 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
13300 LHSValue.Base && RHSValue.Base)
13301 return DiagComparison(diag::note_constexpr_literal_comparison);
13302 // We can't tell whether weak symbols will end up pointing to the same
13303 // object.
13304 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
13305 return DiagComparison(diag::note_constexpr_pointer_weak_comparison,
13306 !IsWeakLValue(LHSValue));
13307 // We can't compare the address of the start of one object with the
13308 // past-the-end address of another object, per C++ DR1652.
13309 if (LHSValue.Base && LHSValue.Offset.isZero() &&
13310 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue))
13311 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13312 true);
13313 if (RHSValue.Base && RHSValue.Offset.isZero() &&
13314 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))
13315 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13316 false);
13317 // We can't tell whether an object is at the same address as another
13318 // zero sized object.
13319 if ((RHSValue.Base && isZeroSized(LHSValue)) ||
13320 (LHSValue.Base && isZeroSized(RHSValue)))
13321 return DiagComparison(
13322 diag::note_constexpr_pointer_comparison_zero_sized);
13323 return Success(CmpResult::Unequal, E);
13326 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13327 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13329 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13330 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13332 // C++11 [expr.rel]p3:
13333 // Pointers to void (after pointer conversions) can be compared, with a
13334 // result defined as follows: If both pointers represent the same
13335 // address or are both the null pointer value, the result is true if the
13336 // operator is <= or >= and false otherwise; otherwise the result is
13337 // unspecified.
13338 // We interpret this as applying to pointers to *cv* void.
13339 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
13340 Info.CCEDiag(E, diag::note_constexpr_void_comparison);
13342 // C++11 [expr.rel]p2:
13343 // - If two pointers point to non-static data members of the same object,
13344 // or to subobjects or array elements fo such members, recursively, the
13345 // pointer to the later declared member compares greater provided the
13346 // two members have the same access control and provided their class is
13347 // not a union.
13348 // [...]
13349 // - Otherwise pointer comparisons are unspecified.
13350 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
13351 bool WasArrayIndex;
13352 unsigned Mismatch = FindDesignatorMismatch(
13353 getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
13354 // At the point where the designators diverge, the comparison has a
13355 // specified value if:
13356 // - we are comparing array indices
13357 // - we are comparing fields of a union, or fields with the same access
13358 // Otherwise, the result is unspecified and thus the comparison is not a
13359 // constant expression.
13360 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
13361 Mismatch < RHSDesignator.Entries.size()) {
13362 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
13363 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
13364 if (!LF && !RF)
13365 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
13366 else if (!LF)
13367 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13368 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
13369 << RF->getParent() << RF;
13370 else if (!RF)
13371 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13372 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
13373 << LF->getParent() << LF;
13374 else if (!LF->getParent()->isUnion() &&
13375 LF->getAccess() != RF->getAccess())
13376 Info.CCEDiag(E,
13377 diag::note_constexpr_pointer_comparison_differing_access)
13378 << LF << LF->getAccess() << RF << RF->getAccess()
13379 << LF->getParent();
13383 // The comparison here must be unsigned, and performed with the same
13384 // width as the pointer.
13385 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
13386 uint64_t CompareLHS = LHSOffset.getQuantity();
13387 uint64_t CompareRHS = RHSOffset.getQuantity();
13388 assert(PtrSize <= 64 && "Unexpected pointer width");
13389 uint64_t Mask = ~0ULL >> (64 - PtrSize);
13390 CompareLHS &= Mask;
13391 CompareRHS &= Mask;
13393 // If there is a base and this is a relational operator, we can only
13394 // compare pointers within the object in question; otherwise, the result
13395 // depends on where the object is located in memory.
13396 if (!LHSValue.Base.isNull() && IsRelational) {
13397 QualType BaseTy = getType(LHSValue.Base);
13398 if (BaseTy->isIncompleteType())
13399 return Error(E);
13400 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
13401 uint64_t OffsetLimit = Size.getQuantity();
13402 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
13403 return Error(E);
13406 if (CompareLHS < CompareRHS)
13407 return Success(CmpResult::Less, E);
13408 if (CompareLHS > CompareRHS)
13409 return Success(CmpResult::Greater, E);
13410 return Success(CmpResult::Equal, E);
13413 if (LHSTy->isMemberPointerType()) {
13414 assert(IsEquality && "unexpected member pointer operation");
13415 assert(RHSTy->isMemberPointerType() && "invalid comparison");
13417 MemberPtr LHSValue, RHSValue;
13419 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
13420 if (!LHSOK && !Info.noteFailure())
13421 return false;
13423 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13424 return false;
13426 // If either operand is a pointer to a weak function, the comparison is not
13427 // constant.
13428 if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) {
13429 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13430 << LHSValue.getDecl();
13431 return false;
13433 if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) {
13434 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13435 << RHSValue.getDecl();
13436 return false;
13439 // C++11 [expr.eq]p2:
13440 // If both operands are null, they compare equal. Otherwise if only one is
13441 // null, they compare unequal.
13442 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
13443 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
13444 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13447 // Otherwise if either is a pointer to a virtual member function, the
13448 // result is unspecified.
13449 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
13450 if (MD->isVirtual())
13451 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13452 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
13453 if (MD->isVirtual())
13454 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13456 // Otherwise they compare equal if and only if they would refer to the
13457 // same member of the same most derived object or the same subobject if
13458 // they were dereferenced with a hypothetical object of the associated
13459 // class type.
13460 bool Equal = LHSValue == RHSValue;
13461 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13464 if (LHSTy->isNullPtrType()) {
13465 assert(E->isComparisonOp() && "unexpected nullptr operation");
13466 assert(RHSTy->isNullPtrType() && "missing pointer conversion");
13467 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
13468 // are compared, the result is true of the operator is <=, >= or ==, and
13469 // false otherwise.
13470 LValue Res;
13471 if (!EvaluatePointer(E->getLHS(), Res, Info) ||
13472 !EvaluatePointer(E->getRHS(), Res, Info))
13473 return false;
13474 return Success(CmpResult::Equal, E);
13477 return DoAfter();
13480 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
13481 if (!CheckLiteralType(Info, E))
13482 return false;
13484 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13485 ComparisonCategoryResult CCR;
13486 switch (CR) {
13487 case CmpResult::Unequal:
13488 llvm_unreachable("should never produce Unequal for three-way comparison");
13489 case CmpResult::Less:
13490 CCR = ComparisonCategoryResult::Less;
13491 break;
13492 case CmpResult::Equal:
13493 CCR = ComparisonCategoryResult::Equal;
13494 break;
13495 case CmpResult::Greater:
13496 CCR = ComparisonCategoryResult::Greater;
13497 break;
13498 case CmpResult::Unordered:
13499 CCR = ComparisonCategoryResult::Unordered;
13500 break;
13502 // Evaluation succeeded. Lookup the information for the comparison category
13503 // type and fetch the VarDecl for the result.
13504 const ComparisonCategoryInfo &CmpInfo =
13505 Info.Ctx.CompCategories.getInfoForType(E->getType());
13506 const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
13507 // Check and evaluate the result as a constant expression.
13508 LValue LV;
13509 LV.set(VD);
13510 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
13511 return false;
13512 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
13513 ConstantExprKind::Normal);
13515 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13516 return ExprEvaluatorBaseTy::VisitBinCmp(E);
13520 bool RecordExprEvaluator::VisitCXXParenListInitExpr(
13521 const CXXParenListInitExpr *E) {
13522 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs());
13525 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13526 // We don't support assignment in C. C++ assignments don't get here because
13527 // assignment is an lvalue in C++.
13528 if (E->isAssignmentOp()) {
13529 Error(E);
13530 if (!Info.noteFailure())
13531 return false;
13534 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
13535 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
13537 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
13538 !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
13539 "DataRecursiveIntBinOpEvaluator should have handled integral types");
13541 if (E->isComparisonOp()) {
13542 // Evaluate builtin binary comparisons by evaluating them as three-way
13543 // comparisons and then translating the result.
13544 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13545 assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
13546 "should only produce Unequal for equality comparisons");
13547 bool IsEqual = CR == CmpResult::Equal,
13548 IsLess = CR == CmpResult::Less,
13549 IsGreater = CR == CmpResult::Greater;
13550 auto Op = E->getOpcode();
13551 switch (Op) {
13552 default:
13553 llvm_unreachable("unsupported binary operator");
13554 case BO_EQ:
13555 case BO_NE:
13556 return Success(IsEqual == (Op == BO_EQ), E);
13557 case BO_LT:
13558 return Success(IsLess, E);
13559 case BO_GT:
13560 return Success(IsGreater, E);
13561 case BO_LE:
13562 return Success(IsEqual || IsLess, E);
13563 case BO_GE:
13564 return Success(IsEqual || IsGreater, E);
13567 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13568 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13572 QualType LHSTy = E->getLHS()->getType();
13573 QualType RHSTy = E->getRHS()->getType();
13575 if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
13576 E->getOpcode() == BO_Sub) {
13577 LValue LHSValue, RHSValue;
13579 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13580 if (!LHSOK && !Info.noteFailure())
13581 return false;
13583 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13584 return false;
13586 // Reject differing bases from the normal codepath; we special-case
13587 // comparisons to null.
13588 if (!HasSameBase(LHSValue, RHSValue)) {
13589 // Handle &&A - &&B.
13590 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
13591 return Error(E);
13592 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
13593 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
13594 if (!LHSExpr || !RHSExpr)
13595 return Error(E);
13596 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13597 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13598 if (!LHSAddrExpr || !RHSAddrExpr)
13599 return Error(E);
13600 // Make sure both labels come from the same function.
13601 if (LHSAddrExpr->getLabel()->getDeclContext() !=
13602 RHSAddrExpr->getLabel()->getDeclContext())
13603 return Error(E);
13604 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
13606 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13607 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13609 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13610 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13612 // C++11 [expr.add]p6:
13613 // Unless both pointers point to elements of the same array object, or
13614 // one past the last element of the array object, the behavior is
13615 // undefined.
13616 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
13617 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
13618 RHSDesignator))
13619 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
13621 QualType Type = E->getLHS()->getType();
13622 QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
13624 CharUnits ElementSize;
13625 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
13626 return false;
13628 // As an extension, a type may have zero size (empty struct or union in
13629 // C, array of zero length). Pointer subtraction in such cases has
13630 // undefined behavior, so is not constant.
13631 if (ElementSize.isZero()) {
13632 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
13633 << ElementType;
13634 return false;
13637 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
13638 // and produce incorrect results when it overflows. Such behavior
13639 // appears to be non-conforming, but is common, so perhaps we should
13640 // assume the standard intended for such cases to be undefined behavior
13641 // and check for them.
13643 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
13644 // overflow in the final conversion to ptrdiff_t.
13645 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
13646 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
13647 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
13648 false);
13649 APSInt TrueResult = (LHS - RHS) / ElemSize;
13650 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
13652 if (Result.extend(65) != TrueResult &&
13653 !HandleOverflow(Info, E, TrueResult, E->getType()))
13654 return false;
13655 return Success(Result, E);
13658 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13661 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
13662 /// a result as the expression's type.
13663 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
13664 const UnaryExprOrTypeTraitExpr *E) {
13665 switch(E->getKind()) {
13666 case UETT_PreferredAlignOf:
13667 case UETT_AlignOf: {
13668 if (E->isArgumentType())
13669 return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
13671 else
13672 return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
13676 case UETT_VecStep: {
13677 QualType Ty = E->getTypeOfArgument();
13679 if (Ty->isVectorType()) {
13680 unsigned n = Ty->castAs<VectorType>()->getNumElements();
13682 // The vec_step built-in functions that take a 3-component
13683 // vector return 4. (OpenCL 1.1 spec 6.11.12)
13684 if (n == 3)
13685 n = 4;
13687 return Success(n, E);
13688 } else
13689 return Success(1, E);
13692 case UETT_SizeOf: {
13693 QualType SrcTy = E->getTypeOfArgument();
13694 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13695 // the result is the size of the referenced type."
13696 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
13697 SrcTy = Ref->getPointeeType();
13699 CharUnits Sizeof;
13700 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
13701 return false;
13702 return Success(Sizeof, E);
13704 case UETT_OpenMPRequiredSimdAlign:
13705 assert(E->isArgumentType());
13706 return Success(
13707 Info.Ctx.toCharUnitsFromBits(
13708 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
13709 .getQuantity(),
13711 case UETT_VectorElements: {
13712 QualType Ty = E->getTypeOfArgument();
13713 // If the vector has a fixed size, we can determine the number of elements
13714 // at compile time.
13715 if (Ty->isVectorType())
13716 return Success(Ty->castAs<VectorType>()->getNumElements(), E);
13718 assert(Ty->isSizelessVectorType());
13719 if (Info.InConstantContext)
13720 Info.CCEDiag(E, diag::note_constexpr_non_const_vectorelements)
13721 << E->getSourceRange();
13723 return false;
13727 llvm_unreachable("unknown expr/type trait");
13730 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
13731 CharUnits Result;
13732 unsigned n = OOE->getNumComponents();
13733 if (n == 0)
13734 return Error(OOE);
13735 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
13736 for (unsigned i = 0; i != n; ++i) {
13737 OffsetOfNode ON = OOE->getComponent(i);
13738 switch (ON.getKind()) {
13739 case OffsetOfNode::Array: {
13740 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
13741 APSInt IdxResult;
13742 if (!EvaluateInteger(Idx, IdxResult, Info))
13743 return false;
13744 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
13745 if (!AT)
13746 return Error(OOE);
13747 CurrentType = AT->getElementType();
13748 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
13749 Result += IdxResult.getSExtValue() * ElementSize;
13750 break;
13753 case OffsetOfNode::Field: {
13754 FieldDecl *MemberDecl = ON.getField();
13755 const RecordType *RT = CurrentType->getAs<RecordType>();
13756 if (!RT)
13757 return Error(OOE);
13758 RecordDecl *RD = RT->getDecl();
13759 if (RD->isInvalidDecl()) return false;
13760 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13761 unsigned i = MemberDecl->getFieldIndex();
13762 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
13763 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
13764 CurrentType = MemberDecl->getType().getNonReferenceType();
13765 break;
13768 case OffsetOfNode::Identifier:
13769 llvm_unreachable("dependent __builtin_offsetof");
13771 case OffsetOfNode::Base: {
13772 CXXBaseSpecifier *BaseSpec = ON.getBase();
13773 if (BaseSpec->isVirtual())
13774 return Error(OOE);
13776 // Find the layout of the class whose base we are looking into.
13777 const RecordType *RT = CurrentType->getAs<RecordType>();
13778 if (!RT)
13779 return Error(OOE);
13780 RecordDecl *RD = RT->getDecl();
13781 if (RD->isInvalidDecl()) return false;
13782 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13784 // Find the base class itself.
13785 CurrentType = BaseSpec->getType();
13786 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13787 if (!BaseRT)
13788 return Error(OOE);
13790 // Add the offset to the base.
13791 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
13792 break;
13796 return Success(Result, OOE);
13799 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13800 switch (E->getOpcode()) {
13801 default:
13802 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13803 // See C99 6.6p3.
13804 return Error(E);
13805 case UO_Extension:
13806 // FIXME: Should extension allow i-c-e extension expressions in its scope?
13807 // If so, we could clear the diagnostic ID.
13808 return Visit(E->getSubExpr());
13809 case UO_Plus:
13810 // The result is just the value.
13811 return Visit(E->getSubExpr());
13812 case UO_Minus: {
13813 if (!Visit(E->getSubExpr()))
13814 return false;
13815 if (!Result.isInt()) return Error(E);
13816 const APSInt &Value = Result.getInt();
13817 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) {
13818 if (Info.checkingForUndefinedBehavior())
13819 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13820 diag::warn_integer_constant_overflow)
13821 << toString(Value, 10) << E->getType() << E->getSourceRange();
13823 if (!HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
13824 E->getType()))
13825 return false;
13827 return Success(-Value, E);
13829 case UO_Not: {
13830 if (!Visit(E->getSubExpr()))
13831 return false;
13832 if (!Result.isInt()) return Error(E);
13833 return Success(~Result.getInt(), E);
13835 case UO_LNot: {
13836 bool bres;
13837 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13838 return false;
13839 return Success(!bres, E);
13844 /// HandleCast - This is used to evaluate implicit or explicit casts where the
13845 /// result type is integer.
13846 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
13847 const Expr *SubExpr = E->getSubExpr();
13848 QualType DestType = E->getType();
13849 QualType SrcType = SubExpr->getType();
13851 switch (E->getCastKind()) {
13852 case CK_BaseToDerived:
13853 case CK_DerivedToBase:
13854 case CK_UncheckedDerivedToBase:
13855 case CK_Dynamic:
13856 case CK_ToUnion:
13857 case CK_ArrayToPointerDecay:
13858 case CK_FunctionToPointerDecay:
13859 case CK_NullToPointer:
13860 case CK_NullToMemberPointer:
13861 case CK_BaseToDerivedMemberPointer:
13862 case CK_DerivedToBaseMemberPointer:
13863 case CK_ReinterpretMemberPointer:
13864 case CK_ConstructorConversion:
13865 case CK_IntegralToPointer:
13866 case CK_ToVoid:
13867 case CK_VectorSplat:
13868 case CK_IntegralToFloating:
13869 case CK_FloatingCast:
13870 case CK_CPointerToObjCPointerCast:
13871 case CK_BlockPointerToObjCPointerCast:
13872 case CK_AnyPointerToBlockPointerCast:
13873 case CK_ObjCObjectLValueCast:
13874 case CK_FloatingRealToComplex:
13875 case CK_FloatingComplexToReal:
13876 case CK_FloatingComplexCast:
13877 case CK_FloatingComplexToIntegralComplex:
13878 case CK_IntegralRealToComplex:
13879 case CK_IntegralComplexCast:
13880 case CK_IntegralComplexToFloatingComplex:
13881 case CK_BuiltinFnToFnPtr:
13882 case CK_ZeroToOCLOpaqueType:
13883 case CK_NonAtomicToAtomic:
13884 case CK_AddressSpaceConversion:
13885 case CK_IntToOCLSampler:
13886 case CK_FloatingToFixedPoint:
13887 case CK_FixedPointToFloating:
13888 case CK_FixedPointCast:
13889 case CK_IntegralToFixedPoint:
13890 case CK_MatrixCast:
13891 llvm_unreachable("invalid cast kind for integral value");
13893 case CK_BitCast:
13894 case CK_Dependent:
13895 case CK_LValueBitCast:
13896 case CK_ARCProduceObject:
13897 case CK_ARCConsumeObject:
13898 case CK_ARCReclaimReturnedObject:
13899 case CK_ARCExtendBlockObject:
13900 case CK_CopyAndAutoreleaseBlockObject:
13901 return Error(E);
13903 case CK_UserDefinedConversion:
13904 case CK_LValueToRValue:
13905 case CK_AtomicToNonAtomic:
13906 case CK_NoOp:
13907 case CK_LValueToRValueBitCast:
13908 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13910 case CK_MemberPointerToBoolean:
13911 case CK_PointerToBoolean:
13912 case CK_IntegralToBoolean:
13913 case CK_FloatingToBoolean:
13914 case CK_BooleanToSignedIntegral:
13915 case CK_FloatingComplexToBoolean:
13916 case CK_IntegralComplexToBoolean: {
13917 bool BoolResult;
13918 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
13919 return false;
13920 uint64_t IntResult = BoolResult;
13921 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
13922 IntResult = (uint64_t)-1;
13923 return Success(IntResult, E);
13926 case CK_FixedPointToIntegral: {
13927 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
13928 if (!EvaluateFixedPoint(SubExpr, Src, Info))
13929 return false;
13930 bool Overflowed;
13931 llvm::APSInt Result = Src.convertToInt(
13932 Info.Ctx.getIntWidth(DestType),
13933 DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
13934 if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
13935 return false;
13936 return Success(Result, E);
13939 case CK_FixedPointToBoolean: {
13940 // Unsigned padding does not affect this.
13941 APValue Val;
13942 if (!Evaluate(Val, Info, SubExpr))
13943 return false;
13944 return Success(Val.getFixedPoint().getBoolValue(), E);
13947 case CK_IntegralCast: {
13948 if (!Visit(SubExpr))
13949 return false;
13951 if (!Result.isInt()) {
13952 // Allow casts of address-of-label differences if they are no-ops
13953 // or narrowing. (The narrowing case isn't actually guaranteed to
13954 // be constant-evaluatable except in some narrow cases which are hard
13955 // to detect here. We let it through on the assumption the user knows
13956 // what they are doing.)
13957 if (Result.isAddrLabelDiff())
13958 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
13959 // Only allow casts of lvalues if they are lossless.
13960 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
13963 if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext &&
13964 Info.EvalMode == EvalInfo::EM_ConstantExpression &&
13965 DestType->isEnumeralType()) {
13967 bool ConstexprVar = true;
13969 // We know if we are here that we are in a context that we might require
13970 // a constant expression or a context that requires a constant
13971 // value. But if we are initializing a value we don't know if it is a
13972 // constexpr variable or not. We can check the EvaluatingDecl to determine
13973 // if it constexpr or not. If not then we don't want to emit a diagnostic.
13974 if (const auto *VD = dyn_cast_or_null<VarDecl>(
13975 Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()))
13976 ConstexprVar = VD->isConstexpr();
13978 const EnumType *ET = dyn_cast<EnumType>(DestType.getCanonicalType());
13979 const EnumDecl *ED = ET->getDecl();
13980 // Check that the value is within the range of the enumeration values.
13982 // This corressponds to [expr.static.cast]p10 which says:
13983 // A value of integral or enumeration type can be explicitly converted
13984 // to a complete enumeration type ... If the enumeration type does not
13985 // have a fixed underlying type, the value is unchanged if the original
13986 // value is within the range of the enumeration values ([dcl.enum]), and
13987 // otherwise, the behavior is undefined.
13989 // This was resolved as part of DR2338 which has CD5 status.
13990 if (!ED->isFixed()) {
13991 llvm::APInt Min;
13992 llvm::APInt Max;
13994 ED->getValueRange(Max, Min);
13995 --Max;
13997 if (ED->getNumNegativeBits() && ConstexprVar &&
13998 (Max.slt(Result.getInt().getSExtValue()) ||
13999 Min.sgt(Result.getInt().getSExtValue())))
14000 Info.Ctx.getDiagnostics().Report(
14001 E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
14002 << llvm::toString(Result.getInt(), 10) << Min.getSExtValue()
14003 << Max.getSExtValue() << ED;
14004 else if (!ED->getNumNegativeBits() && ConstexprVar &&
14005 Max.ult(Result.getInt().getZExtValue()))
14006 Info.Ctx.getDiagnostics().Report(
14007 E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
14008 << llvm::toString(Result.getInt(), 10) << Min.getZExtValue()
14009 << Max.getZExtValue() << ED;
14013 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
14014 Result.getInt()), E);
14017 case CK_PointerToIntegral: {
14018 CCEDiag(E, diag::note_constexpr_invalid_cast)
14019 << 2 << Info.Ctx.getLangOpts().CPlusPlus << E->getSourceRange();
14021 LValue LV;
14022 if (!EvaluatePointer(SubExpr, LV, Info))
14023 return false;
14025 if (LV.getLValueBase()) {
14026 // Only allow based lvalue casts if they are lossless.
14027 // FIXME: Allow a larger integer size than the pointer size, and allow
14028 // narrowing back down to pointer width in subsequent integral casts.
14029 // FIXME: Check integer type's active bits, not its type size.
14030 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
14031 return Error(E);
14033 LV.Designator.setInvalid();
14034 LV.moveInto(Result);
14035 return true;
14038 APSInt AsInt;
14039 APValue V;
14040 LV.moveInto(V);
14041 if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
14042 llvm_unreachable("Can't cast this!");
14044 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
14047 case CK_IntegralComplexToReal: {
14048 ComplexValue C;
14049 if (!EvaluateComplex(SubExpr, C, Info))
14050 return false;
14051 return Success(C.getComplexIntReal(), E);
14054 case CK_FloatingToIntegral: {
14055 APFloat F(0.0);
14056 if (!EvaluateFloat(SubExpr, F, Info))
14057 return false;
14059 APSInt Value;
14060 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
14061 return false;
14062 return Success(Value, E);
14066 llvm_unreachable("unknown cast resulting in integral value");
14069 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
14070 if (E->getSubExpr()->getType()->isAnyComplexType()) {
14071 ComplexValue LV;
14072 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
14073 return false;
14074 if (!LV.isComplexInt())
14075 return Error(E);
14076 return Success(LV.getComplexIntReal(), E);
14079 return Visit(E->getSubExpr());
14082 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
14083 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
14084 ComplexValue LV;
14085 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
14086 return false;
14087 if (!LV.isComplexInt())
14088 return Error(E);
14089 return Success(LV.getComplexIntImag(), E);
14092 VisitIgnoredValue(E->getSubExpr());
14093 return Success(0, E);
14096 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
14097 return Success(E->getPackLength(), E);
14100 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
14101 return Success(E->getValue(), E);
14104 bool IntExprEvaluator::VisitConceptSpecializationExpr(
14105 const ConceptSpecializationExpr *E) {
14106 return Success(E->isSatisfied(), E);
14109 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
14110 return Success(E->isSatisfied(), E);
14113 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14114 switch (E->getOpcode()) {
14115 default:
14116 // Invalid unary operators
14117 return Error(E);
14118 case UO_Plus:
14119 // The result is just the value.
14120 return Visit(E->getSubExpr());
14121 case UO_Minus: {
14122 if (!Visit(E->getSubExpr())) return false;
14123 if (!Result.isFixedPoint())
14124 return Error(E);
14125 bool Overflowed;
14126 APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
14127 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
14128 return false;
14129 return Success(Negated, E);
14131 case UO_LNot: {
14132 bool bres;
14133 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
14134 return false;
14135 return Success(!bres, E);
14140 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
14141 const Expr *SubExpr = E->getSubExpr();
14142 QualType DestType = E->getType();
14143 assert(DestType->isFixedPointType() &&
14144 "Expected destination type to be a fixed point type");
14145 auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
14147 switch (E->getCastKind()) {
14148 case CK_FixedPointCast: {
14149 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
14150 if (!EvaluateFixedPoint(SubExpr, Src, Info))
14151 return false;
14152 bool Overflowed;
14153 APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
14154 if (Overflowed) {
14155 if (Info.checkingForUndefinedBehavior())
14156 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14157 diag::warn_fixedpoint_constant_overflow)
14158 << Result.toString() << E->getType();
14159 if (!HandleOverflow(Info, E, Result, E->getType()))
14160 return false;
14162 return Success(Result, E);
14164 case CK_IntegralToFixedPoint: {
14165 APSInt Src;
14166 if (!EvaluateInteger(SubExpr, Src, Info))
14167 return false;
14169 bool Overflowed;
14170 APFixedPoint IntResult = APFixedPoint::getFromIntValue(
14171 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
14173 if (Overflowed) {
14174 if (Info.checkingForUndefinedBehavior())
14175 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14176 diag::warn_fixedpoint_constant_overflow)
14177 << IntResult.toString() << E->getType();
14178 if (!HandleOverflow(Info, E, IntResult, E->getType()))
14179 return false;
14182 return Success(IntResult, E);
14184 case CK_FloatingToFixedPoint: {
14185 APFloat Src(0.0);
14186 if (!EvaluateFloat(SubExpr, Src, Info))
14187 return false;
14189 bool Overflowed;
14190 APFixedPoint Result = APFixedPoint::getFromFloatValue(
14191 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
14193 if (Overflowed) {
14194 if (Info.checkingForUndefinedBehavior())
14195 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14196 diag::warn_fixedpoint_constant_overflow)
14197 << Result.toString() << E->getType();
14198 if (!HandleOverflow(Info, E, Result, E->getType()))
14199 return false;
14202 return Success(Result, E);
14204 case CK_NoOp:
14205 case CK_LValueToRValue:
14206 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14207 default:
14208 return Error(E);
14212 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14213 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14214 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14216 const Expr *LHS = E->getLHS();
14217 const Expr *RHS = E->getRHS();
14218 FixedPointSemantics ResultFXSema =
14219 Info.Ctx.getFixedPointSemantics(E->getType());
14221 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
14222 if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
14223 return false;
14224 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
14225 if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
14226 return false;
14228 bool OpOverflow = false, ConversionOverflow = false;
14229 APFixedPoint Result(LHSFX.getSemantics());
14230 switch (E->getOpcode()) {
14231 case BO_Add: {
14232 Result = LHSFX.add(RHSFX, &OpOverflow)
14233 .convert(ResultFXSema, &ConversionOverflow);
14234 break;
14236 case BO_Sub: {
14237 Result = LHSFX.sub(RHSFX, &OpOverflow)
14238 .convert(ResultFXSema, &ConversionOverflow);
14239 break;
14241 case BO_Mul: {
14242 Result = LHSFX.mul(RHSFX, &OpOverflow)
14243 .convert(ResultFXSema, &ConversionOverflow);
14244 break;
14246 case BO_Div: {
14247 if (RHSFX.getValue() == 0) {
14248 Info.FFDiag(E, diag::note_expr_divide_by_zero);
14249 return false;
14251 Result = LHSFX.div(RHSFX, &OpOverflow)
14252 .convert(ResultFXSema, &ConversionOverflow);
14253 break;
14255 case BO_Shl:
14256 case BO_Shr: {
14257 FixedPointSemantics LHSSema = LHSFX.getSemantics();
14258 llvm::APSInt RHSVal = RHSFX.getValue();
14260 unsigned ShiftBW =
14261 LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
14262 unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
14263 // Embedded-C 4.1.6.2.2:
14264 // The right operand must be nonnegative and less than the total number
14265 // of (nonpadding) bits of the fixed-point operand ...
14266 if (RHSVal.isNegative())
14267 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
14268 else if (Amt != RHSVal)
14269 Info.CCEDiag(E, diag::note_constexpr_large_shift)
14270 << RHSVal << E->getType() << ShiftBW;
14272 if (E->getOpcode() == BO_Shl)
14273 Result = LHSFX.shl(Amt, &OpOverflow);
14274 else
14275 Result = LHSFX.shr(Amt, &OpOverflow);
14276 break;
14278 default:
14279 return false;
14281 if (OpOverflow || ConversionOverflow) {
14282 if (Info.checkingForUndefinedBehavior())
14283 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14284 diag::warn_fixedpoint_constant_overflow)
14285 << Result.toString() << E->getType();
14286 if (!HandleOverflow(Info, E, Result, E->getType()))
14287 return false;
14289 return Success(Result, E);
14292 //===----------------------------------------------------------------------===//
14293 // Float Evaluation
14294 //===----------------------------------------------------------------------===//
14296 namespace {
14297 class FloatExprEvaluator
14298 : public ExprEvaluatorBase<FloatExprEvaluator> {
14299 APFloat &Result;
14300 public:
14301 FloatExprEvaluator(EvalInfo &info, APFloat &result)
14302 : ExprEvaluatorBaseTy(info), Result(result) {}
14304 bool Success(const APValue &V, const Expr *e) {
14305 Result = V.getFloat();
14306 return true;
14309 bool ZeroInitialization(const Expr *E) {
14310 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
14311 return true;
14314 bool VisitCallExpr(const CallExpr *E);
14316 bool VisitUnaryOperator(const UnaryOperator *E);
14317 bool VisitBinaryOperator(const BinaryOperator *E);
14318 bool VisitFloatingLiteral(const FloatingLiteral *E);
14319 bool VisitCastExpr(const CastExpr *E);
14321 bool VisitUnaryReal(const UnaryOperator *E);
14322 bool VisitUnaryImag(const UnaryOperator *E);
14324 // FIXME: Missing: array subscript of vector, member of vector
14326 } // end anonymous namespace
14328 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
14329 assert(!E->isValueDependent());
14330 assert(E->isPRValue() && E->getType()->isRealFloatingType());
14331 return FloatExprEvaluator(Info, Result).Visit(E);
14334 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
14335 QualType ResultTy,
14336 const Expr *Arg,
14337 bool SNaN,
14338 llvm::APFloat &Result) {
14339 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
14340 if (!S) return false;
14342 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
14344 llvm::APInt fill;
14346 // Treat empty strings as if they were zero.
14347 if (S->getString().empty())
14348 fill = llvm::APInt(32, 0);
14349 else if (S->getString().getAsInteger(0, fill))
14350 return false;
14352 if (Context.getTargetInfo().isNan2008()) {
14353 if (SNaN)
14354 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
14355 else
14356 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
14357 } else {
14358 // Prior to IEEE 754-2008, architectures were allowed to choose whether
14359 // the first bit of their significand was set for qNaN or sNaN. MIPS chose
14360 // a different encoding to what became a standard in 2008, and for pre-
14361 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
14362 // sNaN. This is now known as "legacy NaN" encoding.
14363 if (SNaN)
14364 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
14365 else
14366 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
14369 return true;
14372 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
14373 if (!IsConstantEvaluatedBuiltinCall(E))
14374 return ExprEvaluatorBaseTy::VisitCallExpr(E);
14376 switch (E->getBuiltinCallee()) {
14377 default:
14378 return false;
14380 case Builtin::BI__builtin_huge_val:
14381 case Builtin::BI__builtin_huge_valf:
14382 case Builtin::BI__builtin_huge_vall:
14383 case Builtin::BI__builtin_huge_valf16:
14384 case Builtin::BI__builtin_huge_valf128:
14385 case Builtin::BI__builtin_inf:
14386 case Builtin::BI__builtin_inff:
14387 case Builtin::BI__builtin_infl:
14388 case Builtin::BI__builtin_inff16:
14389 case Builtin::BI__builtin_inff128: {
14390 const llvm::fltSemantics &Sem =
14391 Info.Ctx.getFloatTypeSemantics(E->getType());
14392 Result = llvm::APFloat::getInf(Sem);
14393 return true;
14396 case Builtin::BI__builtin_nans:
14397 case Builtin::BI__builtin_nansf:
14398 case Builtin::BI__builtin_nansl:
14399 case Builtin::BI__builtin_nansf16:
14400 case Builtin::BI__builtin_nansf128:
14401 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
14402 true, Result))
14403 return Error(E);
14404 return true;
14406 case Builtin::BI__builtin_nan:
14407 case Builtin::BI__builtin_nanf:
14408 case Builtin::BI__builtin_nanl:
14409 case Builtin::BI__builtin_nanf16:
14410 case Builtin::BI__builtin_nanf128:
14411 // If this is __builtin_nan() turn this into a nan, otherwise we
14412 // can't constant fold it.
14413 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
14414 false, Result))
14415 return Error(E);
14416 return true;
14418 case Builtin::BI__builtin_fabs:
14419 case Builtin::BI__builtin_fabsf:
14420 case Builtin::BI__builtin_fabsl:
14421 case Builtin::BI__builtin_fabsf128:
14422 // The C standard says "fabs raises no floating-point exceptions,
14423 // even if x is a signaling NaN. The returned value is independent of
14424 // the current rounding direction mode." Therefore constant folding can
14425 // proceed without regard to the floating point settings.
14426 // Reference, WG14 N2478 F.10.4.3
14427 if (!EvaluateFloat(E->getArg(0), Result, Info))
14428 return false;
14430 if (Result.isNegative())
14431 Result.changeSign();
14432 return true;
14434 case Builtin::BI__arithmetic_fence:
14435 return EvaluateFloat(E->getArg(0), Result, Info);
14437 // FIXME: Builtin::BI__builtin_powi
14438 // FIXME: Builtin::BI__builtin_powif
14439 // FIXME: Builtin::BI__builtin_powil
14441 case Builtin::BI__builtin_copysign:
14442 case Builtin::BI__builtin_copysignf:
14443 case Builtin::BI__builtin_copysignl:
14444 case Builtin::BI__builtin_copysignf128: {
14445 APFloat RHS(0.);
14446 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14447 !EvaluateFloat(E->getArg(1), RHS, Info))
14448 return false;
14449 Result.copySign(RHS);
14450 return true;
14453 case Builtin::BI__builtin_fmax:
14454 case Builtin::BI__builtin_fmaxf:
14455 case Builtin::BI__builtin_fmaxl:
14456 case Builtin::BI__builtin_fmaxf16:
14457 case Builtin::BI__builtin_fmaxf128: {
14458 // TODO: Handle sNaN.
14459 APFloat RHS(0.);
14460 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14461 !EvaluateFloat(E->getArg(1), RHS, Info))
14462 return false;
14463 // When comparing zeroes, return +0.0 if one of the zeroes is positive.
14464 if (Result.isZero() && RHS.isZero() && Result.isNegative())
14465 Result = RHS;
14466 else if (Result.isNaN() || RHS > Result)
14467 Result = RHS;
14468 return true;
14471 case Builtin::BI__builtin_fmin:
14472 case Builtin::BI__builtin_fminf:
14473 case Builtin::BI__builtin_fminl:
14474 case Builtin::BI__builtin_fminf16:
14475 case Builtin::BI__builtin_fminf128: {
14476 // TODO: Handle sNaN.
14477 APFloat RHS(0.);
14478 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14479 !EvaluateFloat(E->getArg(1), RHS, Info))
14480 return false;
14481 // When comparing zeroes, return -0.0 if one of the zeroes is negative.
14482 if (Result.isZero() && RHS.isZero() && RHS.isNegative())
14483 Result = RHS;
14484 else if (Result.isNaN() || RHS < Result)
14485 Result = RHS;
14486 return true;
14491 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
14492 if (E->getSubExpr()->getType()->isAnyComplexType()) {
14493 ComplexValue CV;
14494 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
14495 return false;
14496 Result = CV.FloatReal;
14497 return true;
14500 return Visit(E->getSubExpr());
14503 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
14504 if (E->getSubExpr()->getType()->isAnyComplexType()) {
14505 ComplexValue CV;
14506 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
14507 return false;
14508 Result = CV.FloatImag;
14509 return true;
14512 VisitIgnoredValue(E->getSubExpr());
14513 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
14514 Result = llvm::APFloat::getZero(Sem);
14515 return true;
14518 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14519 switch (E->getOpcode()) {
14520 default: return Error(E);
14521 case UO_Plus:
14522 return EvaluateFloat(E->getSubExpr(), Result, Info);
14523 case UO_Minus:
14524 // In C standard, WG14 N2478 F.3 p4
14525 // "the unary - raises no floating point exceptions,
14526 // even if the operand is signalling."
14527 if (!EvaluateFloat(E->getSubExpr(), Result, Info))
14528 return false;
14529 Result.changeSign();
14530 return true;
14534 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14535 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14536 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14538 APFloat RHS(0.0);
14539 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
14540 if (!LHSOK && !Info.noteFailure())
14541 return false;
14542 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
14543 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
14546 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
14547 Result = E->getValue();
14548 return true;
14551 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
14552 const Expr* SubExpr = E->getSubExpr();
14554 switch (E->getCastKind()) {
14555 default:
14556 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14558 case CK_IntegralToFloating: {
14559 APSInt IntResult;
14560 const FPOptions FPO = E->getFPFeaturesInEffect(
14561 Info.Ctx.getLangOpts());
14562 return EvaluateInteger(SubExpr, IntResult, Info) &&
14563 HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
14564 IntResult, E->getType(), Result);
14567 case CK_FixedPointToFloating: {
14568 APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
14569 if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
14570 return false;
14571 Result =
14572 FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
14573 return true;
14576 case CK_FloatingCast: {
14577 if (!Visit(SubExpr))
14578 return false;
14579 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
14580 Result);
14583 case CK_FloatingComplexToReal: {
14584 ComplexValue V;
14585 if (!EvaluateComplex(SubExpr, V, Info))
14586 return false;
14587 Result = V.getComplexFloatReal();
14588 return true;
14593 //===----------------------------------------------------------------------===//
14594 // Complex Evaluation (for float and integer)
14595 //===----------------------------------------------------------------------===//
14597 namespace {
14598 class ComplexExprEvaluator
14599 : public ExprEvaluatorBase<ComplexExprEvaluator> {
14600 ComplexValue &Result;
14602 public:
14603 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
14604 : ExprEvaluatorBaseTy(info), Result(Result) {}
14606 bool Success(const APValue &V, const Expr *e) {
14607 Result.setFrom(V);
14608 return true;
14611 bool ZeroInitialization(const Expr *E);
14613 //===--------------------------------------------------------------------===//
14614 // Visitor Methods
14615 //===--------------------------------------------------------------------===//
14617 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
14618 bool VisitCastExpr(const CastExpr *E);
14619 bool VisitBinaryOperator(const BinaryOperator *E);
14620 bool VisitUnaryOperator(const UnaryOperator *E);
14621 bool VisitInitListExpr(const InitListExpr *E);
14622 bool VisitCallExpr(const CallExpr *E);
14624 } // end anonymous namespace
14626 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
14627 EvalInfo &Info) {
14628 assert(!E->isValueDependent());
14629 assert(E->isPRValue() && E->getType()->isAnyComplexType());
14630 return ComplexExprEvaluator(Info, Result).Visit(E);
14633 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
14634 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
14635 if (ElemTy->isRealFloatingType()) {
14636 Result.makeComplexFloat();
14637 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
14638 Result.FloatReal = Zero;
14639 Result.FloatImag = Zero;
14640 } else {
14641 Result.makeComplexInt();
14642 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
14643 Result.IntReal = Zero;
14644 Result.IntImag = Zero;
14646 return true;
14649 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
14650 const Expr* SubExpr = E->getSubExpr();
14652 if (SubExpr->getType()->isRealFloatingType()) {
14653 Result.makeComplexFloat();
14654 APFloat &Imag = Result.FloatImag;
14655 if (!EvaluateFloat(SubExpr, Imag, Info))
14656 return false;
14658 Result.FloatReal = APFloat(Imag.getSemantics());
14659 return true;
14660 } else {
14661 assert(SubExpr->getType()->isIntegerType() &&
14662 "Unexpected imaginary literal.");
14664 Result.makeComplexInt();
14665 APSInt &Imag = Result.IntImag;
14666 if (!EvaluateInteger(SubExpr, Imag, Info))
14667 return false;
14669 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
14670 return true;
14674 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
14676 switch (E->getCastKind()) {
14677 case CK_BitCast:
14678 case CK_BaseToDerived:
14679 case CK_DerivedToBase:
14680 case CK_UncheckedDerivedToBase:
14681 case CK_Dynamic:
14682 case CK_ToUnion:
14683 case CK_ArrayToPointerDecay:
14684 case CK_FunctionToPointerDecay:
14685 case CK_NullToPointer:
14686 case CK_NullToMemberPointer:
14687 case CK_BaseToDerivedMemberPointer:
14688 case CK_DerivedToBaseMemberPointer:
14689 case CK_MemberPointerToBoolean:
14690 case CK_ReinterpretMemberPointer:
14691 case CK_ConstructorConversion:
14692 case CK_IntegralToPointer:
14693 case CK_PointerToIntegral:
14694 case CK_PointerToBoolean:
14695 case CK_ToVoid:
14696 case CK_VectorSplat:
14697 case CK_IntegralCast:
14698 case CK_BooleanToSignedIntegral:
14699 case CK_IntegralToBoolean:
14700 case CK_IntegralToFloating:
14701 case CK_FloatingToIntegral:
14702 case CK_FloatingToBoolean:
14703 case CK_FloatingCast:
14704 case CK_CPointerToObjCPointerCast:
14705 case CK_BlockPointerToObjCPointerCast:
14706 case CK_AnyPointerToBlockPointerCast:
14707 case CK_ObjCObjectLValueCast:
14708 case CK_FloatingComplexToReal:
14709 case CK_FloatingComplexToBoolean:
14710 case CK_IntegralComplexToReal:
14711 case CK_IntegralComplexToBoolean:
14712 case CK_ARCProduceObject:
14713 case CK_ARCConsumeObject:
14714 case CK_ARCReclaimReturnedObject:
14715 case CK_ARCExtendBlockObject:
14716 case CK_CopyAndAutoreleaseBlockObject:
14717 case CK_BuiltinFnToFnPtr:
14718 case CK_ZeroToOCLOpaqueType:
14719 case CK_NonAtomicToAtomic:
14720 case CK_AddressSpaceConversion:
14721 case CK_IntToOCLSampler:
14722 case CK_FloatingToFixedPoint:
14723 case CK_FixedPointToFloating:
14724 case CK_FixedPointCast:
14725 case CK_FixedPointToBoolean:
14726 case CK_FixedPointToIntegral:
14727 case CK_IntegralToFixedPoint:
14728 case CK_MatrixCast:
14729 llvm_unreachable("invalid cast kind for complex value");
14731 case CK_LValueToRValue:
14732 case CK_AtomicToNonAtomic:
14733 case CK_NoOp:
14734 case CK_LValueToRValueBitCast:
14735 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14737 case CK_Dependent:
14738 case CK_LValueBitCast:
14739 case CK_UserDefinedConversion:
14740 return Error(E);
14742 case CK_FloatingRealToComplex: {
14743 APFloat &Real = Result.FloatReal;
14744 if (!EvaluateFloat(E->getSubExpr(), Real, Info))
14745 return false;
14747 Result.makeComplexFloat();
14748 Result.FloatImag = APFloat(Real.getSemantics());
14749 return true;
14752 case CK_FloatingComplexCast: {
14753 if (!Visit(E->getSubExpr()))
14754 return false;
14756 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14757 QualType From
14758 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14760 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
14761 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
14764 case CK_FloatingComplexToIntegralComplex: {
14765 if (!Visit(E->getSubExpr()))
14766 return false;
14768 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14769 QualType From
14770 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14771 Result.makeComplexInt();
14772 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
14773 To, Result.IntReal) &&
14774 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
14775 To, Result.IntImag);
14778 case CK_IntegralRealToComplex: {
14779 APSInt &Real = Result.IntReal;
14780 if (!EvaluateInteger(E->getSubExpr(), Real, Info))
14781 return false;
14783 Result.makeComplexInt();
14784 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
14785 return true;
14788 case CK_IntegralComplexCast: {
14789 if (!Visit(E->getSubExpr()))
14790 return false;
14792 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14793 QualType From
14794 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14796 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
14797 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
14798 return true;
14801 case CK_IntegralComplexToFloatingComplex: {
14802 if (!Visit(E->getSubExpr()))
14803 return false;
14805 const FPOptions FPO = E->getFPFeaturesInEffect(
14806 Info.Ctx.getLangOpts());
14807 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14808 QualType From
14809 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14810 Result.makeComplexFloat();
14811 return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
14812 To, Result.FloatReal) &&
14813 HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
14814 To, Result.FloatImag);
14818 llvm_unreachable("unknown cast resulting in complex value");
14821 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14822 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14823 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14825 // Track whether the LHS or RHS is real at the type system level. When this is
14826 // the case we can simplify our evaluation strategy.
14827 bool LHSReal = false, RHSReal = false;
14829 bool LHSOK;
14830 if (E->getLHS()->getType()->isRealFloatingType()) {
14831 LHSReal = true;
14832 APFloat &Real = Result.FloatReal;
14833 LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
14834 if (LHSOK) {
14835 Result.makeComplexFloat();
14836 Result.FloatImag = APFloat(Real.getSemantics());
14838 } else {
14839 LHSOK = Visit(E->getLHS());
14841 if (!LHSOK && !Info.noteFailure())
14842 return false;
14844 ComplexValue RHS;
14845 if (E->getRHS()->getType()->isRealFloatingType()) {
14846 RHSReal = true;
14847 APFloat &Real = RHS.FloatReal;
14848 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
14849 return false;
14850 RHS.makeComplexFloat();
14851 RHS.FloatImag = APFloat(Real.getSemantics());
14852 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
14853 return false;
14855 assert(!(LHSReal && RHSReal) &&
14856 "Cannot have both operands of a complex operation be real.");
14857 switch (E->getOpcode()) {
14858 default: return Error(E);
14859 case BO_Add:
14860 if (Result.isComplexFloat()) {
14861 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
14862 APFloat::rmNearestTiesToEven);
14863 if (LHSReal)
14864 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14865 else if (!RHSReal)
14866 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
14867 APFloat::rmNearestTiesToEven);
14868 } else {
14869 Result.getComplexIntReal() += RHS.getComplexIntReal();
14870 Result.getComplexIntImag() += RHS.getComplexIntImag();
14872 break;
14873 case BO_Sub:
14874 if (Result.isComplexFloat()) {
14875 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
14876 APFloat::rmNearestTiesToEven);
14877 if (LHSReal) {
14878 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14879 Result.getComplexFloatImag().changeSign();
14880 } else if (!RHSReal) {
14881 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
14882 APFloat::rmNearestTiesToEven);
14884 } else {
14885 Result.getComplexIntReal() -= RHS.getComplexIntReal();
14886 Result.getComplexIntImag() -= RHS.getComplexIntImag();
14888 break;
14889 case BO_Mul:
14890 if (Result.isComplexFloat()) {
14891 // This is an implementation of complex multiplication according to the
14892 // constraints laid out in C11 Annex G. The implementation uses the
14893 // following naming scheme:
14894 // (a + ib) * (c + id)
14895 ComplexValue LHS = Result;
14896 APFloat &A = LHS.getComplexFloatReal();
14897 APFloat &B = LHS.getComplexFloatImag();
14898 APFloat &C = RHS.getComplexFloatReal();
14899 APFloat &D = RHS.getComplexFloatImag();
14900 APFloat &ResR = Result.getComplexFloatReal();
14901 APFloat &ResI = Result.getComplexFloatImag();
14902 if (LHSReal) {
14903 assert(!RHSReal && "Cannot have two real operands for a complex op!");
14904 ResR = A * C;
14905 ResI = A * D;
14906 } else if (RHSReal) {
14907 ResR = C * A;
14908 ResI = C * B;
14909 } else {
14910 // In the fully general case, we need to handle NaNs and infinities
14911 // robustly.
14912 APFloat AC = A * C;
14913 APFloat BD = B * D;
14914 APFloat AD = A * D;
14915 APFloat BC = B * C;
14916 ResR = AC - BD;
14917 ResI = AD + BC;
14918 if (ResR.isNaN() && ResI.isNaN()) {
14919 bool Recalc = false;
14920 if (A.isInfinity() || B.isInfinity()) {
14921 A = APFloat::copySign(
14922 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14923 B = APFloat::copySign(
14924 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14925 if (C.isNaN())
14926 C = APFloat::copySign(APFloat(C.getSemantics()), C);
14927 if (D.isNaN())
14928 D = APFloat::copySign(APFloat(D.getSemantics()), D);
14929 Recalc = true;
14931 if (C.isInfinity() || D.isInfinity()) {
14932 C = APFloat::copySign(
14933 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14934 D = APFloat::copySign(
14935 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14936 if (A.isNaN())
14937 A = APFloat::copySign(APFloat(A.getSemantics()), A);
14938 if (B.isNaN())
14939 B = APFloat::copySign(APFloat(B.getSemantics()), B);
14940 Recalc = true;
14942 if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
14943 AD.isInfinity() || BC.isInfinity())) {
14944 if (A.isNaN())
14945 A = APFloat::copySign(APFloat(A.getSemantics()), A);
14946 if (B.isNaN())
14947 B = APFloat::copySign(APFloat(B.getSemantics()), B);
14948 if (C.isNaN())
14949 C = APFloat::copySign(APFloat(C.getSemantics()), C);
14950 if (D.isNaN())
14951 D = APFloat::copySign(APFloat(D.getSemantics()), D);
14952 Recalc = true;
14954 if (Recalc) {
14955 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
14956 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
14960 } else {
14961 ComplexValue LHS = Result;
14962 Result.getComplexIntReal() =
14963 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
14964 LHS.getComplexIntImag() * RHS.getComplexIntImag());
14965 Result.getComplexIntImag() =
14966 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
14967 LHS.getComplexIntImag() * RHS.getComplexIntReal());
14969 break;
14970 case BO_Div:
14971 if (Result.isComplexFloat()) {
14972 // This is an implementation of complex division according to the
14973 // constraints laid out in C11 Annex G. The implementation uses the
14974 // following naming scheme:
14975 // (a + ib) / (c + id)
14976 ComplexValue LHS = Result;
14977 APFloat &A = LHS.getComplexFloatReal();
14978 APFloat &B = LHS.getComplexFloatImag();
14979 APFloat &C = RHS.getComplexFloatReal();
14980 APFloat &D = RHS.getComplexFloatImag();
14981 APFloat &ResR = Result.getComplexFloatReal();
14982 APFloat &ResI = Result.getComplexFloatImag();
14983 if (RHSReal) {
14984 ResR = A / C;
14985 ResI = B / C;
14986 } else {
14987 if (LHSReal) {
14988 // No real optimizations we can do here, stub out with zero.
14989 B = APFloat::getZero(A.getSemantics());
14991 int DenomLogB = 0;
14992 APFloat MaxCD = maxnum(abs(C), abs(D));
14993 if (MaxCD.isFinite()) {
14994 DenomLogB = ilogb(MaxCD);
14995 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
14996 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
14998 APFloat Denom = C * C + D * D;
14999 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
15000 APFloat::rmNearestTiesToEven);
15001 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
15002 APFloat::rmNearestTiesToEven);
15003 if (ResR.isNaN() && ResI.isNaN()) {
15004 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
15005 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
15006 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
15007 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
15008 D.isFinite()) {
15009 A = APFloat::copySign(
15010 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
15011 B = APFloat::copySign(
15012 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
15013 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
15014 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
15015 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
15016 C = APFloat::copySign(
15017 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
15018 D = APFloat::copySign(
15019 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
15020 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
15021 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
15025 } else {
15026 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
15027 return Error(E, diag::note_expr_divide_by_zero);
15029 ComplexValue LHS = Result;
15030 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
15031 RHS.getComplexIntImag() * RHS.getComplexIntImag();
15032 Result.getComplexIntReal() =
15033 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
15034 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
15035 Result.getComplexIntImag() =
15036 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
15037 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
15039 break;
15042 return true;
15045 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
15046 // Get the operand value into 'Result'.
15047 if (!Visit(E->getSubExpr()))
15048 return false;
15050 switch (E->getOpcode()) {
15051 default:
15052 return Error(E);
15053 case UO_Extension:
15054 return true;
15055 case UO_Plus:
15056 // The result is always just the subexpr.
15057 return true;
15058 case UO_Minus:
15059 if (Result.isComplexFloat()) {
15060 Result.getComplexFloatReal().changeSign();
15061 Result.getComplexFloatImag().changeSign();
15063 else {
15064 Result.getComplexIntReal() = -Result.getComplexIntReal();
15065 Result.getComplexIntImag() = -Result.getComplexIntImag();
15067 return true;
15068 case UO_Not:
15069 if (Result.isComplexFloat())
15070 Result.getComplexFloatImag().changeSign();
15071 else
15072 Result.getComplexIntImag() = -Result.getComplexIntImag();
15073 return true;
15077 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
15078 if (E->getNumInits() == 2) {
15079 if (E->getType()->isComplexType()) {
15080 Result.makeComplexFloat();
15081 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
15082 return false;
15083 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
15084 return false;
15085 } else {
15086 Result.makeComplexInt();
15087 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
15088 return false;
15089 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
15090 return false;
15092 return true;
15094 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
15097 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
15098 if (!IsConstantEvaluatedBuiltinCall(E))
15099 return ExprEvaluatorBaseTy::VisitCallExpr(E);
15101 switch (E->getBuiltinCallee()) {
15102 case Builtin::BI__builtin_complex:
15103 Result.makeComplexFloat();
15104 if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
15105 return false;
15106 if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
15107 return false;
15108 return true;
15110 default:
15111 return false;
15115 //===----------------------------------------------------------------------===//
15116 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
15117 // implicit conversion.
15118 //===----------------------------------------------------------------------===//
15120 namespace {
15121 class AtomicExprEvaluator :
15122 public ExprEvaluatorBase<AtomicExprEvaluator> {
15123 const LValue *This;
15124 APValue &Result;
15125 public:
15126 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
15127 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
15129 bool Success(const APValue &V, const Expr *E) {
15130 Result = V;
15131 return true;
15134 bool ZeroInitialization(const Expr *E) {
15135 ImplicitValueInitExpr VIE(
15136 E->getType()->castAs<AtomicType>()->getValueType());
15137 // For atomic-qualified class (and array) types in C++, initialize the
15138 // _Atomic-wrapped subobject directly, in-place.
15139 return This ? EvaluateInPlace(Result, Info, *This, &VIE)
15140 : Evaluate(Result, Info, &VIE);
15143 bool VisitCastExpr(const CastExpr *E) {
15144 switch (E->getCastKind()) {
15145 default:
15146 return ExprEvaluatorBaseTy::VisitCastExpr(E);
15147 case CK_NullToPointer:
15148 VisitIgnoredValue(E->getSubExpr());
15149 return ZeroInitialization(E);
15150 case CK_NonAtomicToAtomic:
15151 return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
15152 : Evaluate(Result, Info, E->getSubExpr());
15156 } // end anonymous namespace
15158 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
15159 EvalInfo &Info) {
15160 assert(!E->isValueDependent());
15161 assert(E->isPRValue() && E->getType()->isAtomicType());
15162 return AtomicExprEvaluator(Info, This, Result).Visit(E);
15165 //===----------------------------------------------------------------------===//
15166 // Void expression evaluation, primarily for a cast to void on the LHS of a
15167 // comma operator
15168 //===----------------------------------------------------------------------===//
15170 namespace {
15171 class VoidExprEvaluator
15172 : public ExprEvaluatorBase<VoidExprEvaluator> {
15173 public:
15174 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
15176 bool Success(const APValue &V, const Expr *e) { return true; }
15178 bool ZeroInitialization(const Expr *E) { return true; }
15180 bool VisitCastExpr(const CastExpr *E) {
15181 switch (E->getCastKind()) {
15182 default:
15183 return ExprEvaluatorBaseTy::VisitCastExpr(E);
15184 case CK_ToVoid:
15185 VisitIgnoredValue(E->getSubExpr());
15186 return true;
15190 bool VisitCallExpr(const CallExpr *E) {
15191 if (!IsConstantEvaluatedBuiltinCall(E))
15192 return ExprEvaluatorBaseTy::VisitCallExpr(E);
15194 switch (E->getBuiltinCallee()) {
15195 case Builtin::BI__assume:
15196 case Builtin::BI__builtin_assume:
15197 // The argument is not evaluated!
15198 return true;
15200 case Builtin::BI__builtin_operator_delete:
15201 return HandleOperatorDeleteCall(Info, E);
15203 default:
15204 return false;
15208 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
15210 } // end anonymous namespace
15212 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
15213 // We cannot speculatively evaluate a delete expression.
15214 if (Info.SpeculativeEvaluationDepth)
15215 return false;
15217 FunctionDecl *OperatorDelete = E->getOperatorDelete();
15218 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
15219 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
15220 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
15221 return false;
15224 const Expr *Arg = E->getArgument();
15226 LValue Pointer;
15227 if (!EvaluatePointer(Arg, Pointer, Info))
15228 return false;
15229 if (Pointer.Designator.Invalid)
15230 return false;
15232 // Deleting a null pointer has no effect.
15233 if (Pointer.isNullPointer()) {
15234 // This is the only case where we need to produce an extension warning:
15235 // the only other way we can succeed is if we find a dynamic allocation,
15236 // and we will have warned when we allocated it in that case.
15237 if (!Info.getLangOpts().CPlusPlus20)
15238 Info.CCEDiag(E, diag::note_constexpr_new);
15239 return true;
15242 std::optional<DynAlloc *> Alloc = CheckDeleteKind(
15243 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
15244 if (!Alloc)
15245 return false;
15246 QualType AllocType = Pointer.Base.getDynamicAllocType();
15248 // For the non-array case, the designator must be empty if the static type
15249 // does not have a virtual destructor.
15250 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
15251 !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
15252 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
15253 << Arg->getType()->getPointeeType() << AllocType;
15254 return false;
15257 // For a class type with a virtual destructor, the selected operator delete
15258 // is the one looked up when building the destructor.
15259 if (!E->isArrayForm() && !E->isGlobalDelete()) {
15260 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
15261 if (VirtualDelete &&
15262 !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
15263 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
15264 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
15265 return false;
15269 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
15270 (*Alloc)->Value, AllocType))
15271 return false;
15273 if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
15274 // The element was already erased. This means the destructor call also
15275 // deleted the object.
15276 // FIXME: This probably results in undefined behavior before we get this
15277 // far, and should be diagnosed elsewhere first.
15278 Info.FFDiag(E, diag::note_constexpr_double_delete);
15279 return false;
15282 return true;
15285 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
15286 assert(!E->isValueDependent());
15287 assert(E->isPRValue() && E->getType()->isVoidType());
15288 return VoidExprEvaluator(Info).Visit(E);
15291 //===----------------------------------------------------------------------===//
15292 // Top level Expr::EvaluateAsRValue method.
15293 //===----------------------------------------------------------------------===//
15295 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
15296 assert(!E->isValueDependent());
15297 // In C, function designators are not lvalues, but we evaluate them as if they
15298 // are.
15299 QualType T = E->getType();
15300 if (E->isGLValue() || T->isFunctionType()) {
15301 LValue LV;
15302 if (!EvaluateLValue(E, LV, Info))
15303 return false;
15304 LV.moveInto(Result);
15305 } else if (T->isVectorType()) {
15306 if (!EvaluateVector(E, Result, Info))
15307 return false;
15308 } else if (T->isIntegralOrEnumerationType()) {
15309 if (!IntExprEvaluator(Info, Result).Visit(E))
15310 return false;
15311 } else if (T->hasPointerRepresentation()) {
15312 LValue LV;
15313 if (!EvaluatePointer(E, LV, Info))
15314 return false;
15315 LV.moveInto(Result);
15316 } else if (T->isRealFloatingType()) {
15317 llvm::APFloat F(0.0);
15318 if (!EvaluateFloat(E, F, Info))
15319 return false;
15320 Result = APValue(F);
15321 } else if (T->isAnyComplexType()) {
15322 ComplexValue C;
15323 if (!EvaluateComplex(E, C, Info))
15324 return false;
15325 C.moveInto(Result);
15326 } else if (T->isFixedPointType()) {
15327 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
15328 } else if (T->isMemberPointerType()) {
15329 MemberPtr P;
15330 if (!EvaluateMemberPointer(E, P, Info))
15331 return false;
15332 P.moveInto(Result);
15333 return true;
15334 } else if (T->isArrayType()) {
15335 LValue LV;
15336 APValue &Value =
15337 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
15338 if (!EvaluateArray(E, LV, Value, Info))
15339 return false;
15340 Result = Value;
15341 } else if (T->isRecordType()) {
15342 LValue LV;
15343 APValue &Value =
15344 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
15345 if (!EvaluateRecord(E, LV, Value, Info))
15346 return false;
15347 Result = Value;
15348 } else if (T->isVoidType()) {
15349 if (!Info.getLangOpts().CPlusPlus11)
15350 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
15351 << E->getType();
15352 if (!EvaluateVoid(E, Info))
15353 return false;
15354 } else if (T->isAtomicType()) {
15355 QualType Unqual = T.getAtomicUnqualifiedType();
15356 if (Unqual->isArrayType() || Unqual->isRecordType()) {
15357 LValue LV;
15358 APValue &Value = Info.CurrentCall->createTemporary(
15359 E, Unqual, ScopeKind::FullExpression, LV);
15360 if (!EvaluateAtomic(E, &LV, Value, Info))
15361 return false;
15362 Result = Value;
15363 } else {
15364 if (!EvaluateAtomic(E, nullptr, Result, Info))
15365 return false;
15367 } else if (Info.getLangOpts().CPlusPlus11) {
15368 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
15369 return false;
15370 } else {
15371 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
15372 return false;
15375 return true;
15378 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
15379 /// cases, the in-place evaluation is essential, since later initializers for
15380 /// an object can indirectly refer to subobjects which were initialized earlier.
15381 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
15382 const Expr *E, bool AllowNonLiteralTypes) {
15383 assert(!E->isValueDependent());
15385 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
15386 return false;
15388 if (E->isPRValue()) {
15389 // Evaluate arrays and record types in-place, so that later initializers can
15390 // refer to earlier-initialized members of the object.
15391 QualType T = E->getType();
15392 if (T->isArrayType())
15393 return EvaluateArray(E, This, Result, Info);
15394 else if (T->isRecordType())
15395 return EvaluateRecord(E, This, Result, Info);
15396 else if (T->isAtomicType()) {
15397 QualType Unqual = T.getAtomicUnqualifiedType();
15398 if (Unqual->isArrayType() || Unqual->isRecordType())
15399 return EvaluateAtomic(E, &This, Result, Info);
15403 // For any other type, in-place evaluation is unimportant.
15404 return Evaluate(Result, Info, E);
15407 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
15408 /// lvalue-to-rvalue cast if it is an lvalue.
15409 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
15410 assert(!E->isValueDependent());
15412 if (E->getType().isNull())
15413 return false;
15415 if (!CheckLiteralType(Info, E))
15416 return false;
15418 if (Info.EnableNewConstInterp) {
15419 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
15420 return false;
15421 } else {
15422 if (!::Evaluate(Result, Info, E))
15423 return false;
15426 // Implicit lvalue-to-rvalue cast.
15427 if (E->isGLValue()) {
15428 LValue LV;
15429 LV.setFrom(Info.Ctx, Result);
15430 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
15431 return false;
15434 // Check this core constant expression is a constant expression.
15435 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
15436 ConstantExprKind::Normal) &&
15437 CheckMemoryLeaks(Info);
15440 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
15441 const ASTContext &Ctx, bool &IsConst) {
15442 // Fast-path evaluations of integer literals, since we sometimes see files
15443 // containing vast quantities of these.
15444 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
15445 Result.Val = APValue(APSInt(L->getValue(),
15446 L->getType()->isUnsignedIntegerType()));
15447 IsConst = true;
15448 return true;
15451 if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Exp)) {
15452 Result.Val = APValue(APSInt(APInt(1, L->getValue())));
15453 IsConst = true;
15454 return true;
15457 if (const auto *CE = dyn_cast<ConstantExpr>(Exp)) {
15458 if (CE->hasAPValueResult()) {
15459 Result.Val = CE->getAPValueResult();
15460 IsConst = true;
15461 return true;
15464 // The SubExpr is usually just an IntegerLiteral.
15465 return FastEvaluateAsRValue(CE->getSubExpr(), Result, Ctx, IsConst);
15468 // This case should be rare, but we need to check it before we check on
15469 // the type below.
15470 if (Exp->getType().isNull()) {
15471 IsConst = false;
15472 return true;
15475 return false;
15478 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
15479 Expr::SideEffectsKind SEK) {
15480 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
15481 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
15484 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
15485 const ASTContext &Ctx, EvalInfo &Info) {
15486 assert(!E->isValueDependent());
15487 bool IsConst;
15488 if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
15489 return IsConst;
15491 return EvaluateAsRValue(Info, E, Result.Val);
15494 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
15495 const ASTContext &Ctx,
15496 Expr::SideEffectsKind AllowSideEffects,
15497 EvalInfo &Info) {
15498 assert(!E->isValueDependent());
15499 if (!E->getType()->isIntegralOrEnumerationType())
15500 return false;
15502 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
15503 !ExprResult.Val.isInt() ||
15504 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15505 return false;
15507 return true;
15510 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
15511 const ASTContext &Ctx,
15512 Expr::SideEffectsKind AllowSideEffects,
15513 EvalInfo &Info) {
15514 assert(!E->isValueDependent());
15515 if (!E->getType()->isFixedPointType())
15516 return false;
15518 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
15519 return false;
15521 if (!ExprResult.Val.isFixedPoint() ||
15522 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15523 return false;
15525 return true;
15528 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
15529 /// any crazy technique (that has nothing to do with language standards) that
15530 /// we want to. If this function returns true, it returns the folded constant
15531 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
15532 /// will be applied to the result.
15533 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
15534 bool InConstantContext) const {
15535 assert(!isValueDependent() &&
15536 "Expression evaluator can't be called on a dependent expression.");
15537 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue");
15538 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15539 Info.InConstantContext = InConstantContext;
15540 return ::EvaluateAsRValue(this, Result, Ctx, Info);
15543 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
15544 bool InConstantContext) const {
15545 assert(!isValueDependent() &&
15546 "Expression evaluator can't be called on a dependent expression.");
15547 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition");
15548 EvalResult Scratch;
15549 return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
15550 HandleConversionToBool(Scratch.Val, Result);
15553 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
15554 SideEffectsKind AllowSideEffects,
15555 bool InConstantContext) const {
15556 assert(!isValueDependent() &&
15557 "Expression evaluator can't be called on a dependent expression.");
15558 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt");
15559 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15560 Info.InConstantContext = InConstantContext;
15561 return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
15564 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
15565 SideEffectsKind AllowSideEffects,
15566 bool InConstantContext) const {
15567 assert(!isValueDependent() &&
15568 "Expression evaluator can't be called on a dependent expression.");
15569 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint");
15570 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15571 Info.InConstantContext = InConstantContext;
15572 return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
15575 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
15576 SideEffectsKind AllowSideEffects,
15577 bool InConstantContext) const {
15578 assert(!isValueDependent() &&
15579 "Expression evaluator can't be called on a dependent expression.");
15581 if (!getType()->isRealFloatingType())
15582 return false;
15584 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat");
15585 EvalResult ExprResult;
15586 if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
15587 !ExprResult.Val.isFloat() ||
15588 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15589 return false;
15591 Result = ExprResult.Val.getFloat();
15592 return true;
15595 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
15596 bool InConstantContext) const {
15597 assert(!isValueDependent() &&
15598 "Expression evaluator can't be called on a dependent expression.");
15600 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue");
15601 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
15602 Info.InConstantContext = InConstantContext;
15603 LValue LV;
15604 CheckedTemporaries CheckedTemps;
15605 if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
15606 Result.HasSideEffects ||
15607 !CheckLValueConstantExpression(Info, getExprLoc(),
15608 Ctx.getLValueReferenceType(getType()), LV,
15609 ConstantExprKind::Normal, CheckedTemps))
15610 return false;
15612 LV.moveInto(Result.Val);
15613 return true;
15616 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
15617 APValue DestroyedValue, QualType Type,
15618 SourceLocation Loc, Expr::EvalStatus &EStatus,
15619 bool IsConstantDestruction) {
15620 EvalInfo Info(Ctx, EStatus,
15621 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
15622 : EvalInfo::EM_ConstantFold);
15623 Info.setEvaluatingDecl(Base, DestroyedValue,
15624 EvalInfo::EvaluatingDeclKind::Dtor);
15625 Info.InConstantContext = IsConstantDestruction;
15627 LValue LVal;
15628 LVal.set(Base);
15630 if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
15631 EStatus.HasSideEffects)
15632 return false;
15634 if (!Info.discardCleanups())
15635 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15637 return true;
15640 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
15641 ConstantExprKind Kind) const {
15642 assert(!isValueDependent() &&
15643 "Expression evaluator can't be called on a dependent expression.");
15644 bool IsConst;
15645 if (FastEvaluateAsRValue(this, Result, Ctx, IsConst) && Result.Val.hasValue())
15646 return true;
15648 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr");
15649 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
15650 EvalInfo Info(Ctx, Result, EM);
15651 Info.InConstantContext = true;
15653 // The type of the object we're initializing is 'const T' for a class NTTP.
15654 QualType T = getType();
15655 if (Kind == ConstantExprKind::ClassTemplateArgument)
15656 T.addConst();
15658 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
15659 // represent the result of the evaluation. CheckConstantExpression ensures
15660 // this doesn't escape.
15661 MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
15662 APValue::LValueBase Base(&BaseMTE);
15664 Info.setEvaluatingDecl(Base, Result.Val);
15665 LValue LVal;
15666 LVal.set(Base);
15669 // C++23 [intro.execution]/p5
15670 // A full-expression is [...] a constant-expression
15671 // So we need to make sure temporary objects are destroyed after having
15672 // evaluating the expression (per C++23 [class.temporary]/p4).
15673 FullExpressionRAII Scope(Info);
15674 if (!::EvaluateInPlace(Result.Val, Info, LVal, this) ||
15675 Result.HasSideEffects || !Scope.destroy())
15676 return false;
15679 if (!Info.discardCleanups())
15680 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15682 if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
15683 Result.Val, Kind))
15684 return false;
15685 if (!CheckMemoryLeaks(Info))
15686 return false;
15688 // If this is a class template argument, it's required to have constant
15689 // destruction too.
15690 if (Kind == ConstantExprKind::ClassTemplateArgument &&
15691 (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
15692 true) ||
15693 Result.HasSideEffects)) {
15694 // FIXME: Prefix a note to indicate that the problem is lack of constant
15695 // destruction.
15696 return false;
15699 return true;
15702 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
15703 const VarDecl *VD,
15704 SmallVectorImpl<PartialDiagnosticAt> &Notes,
15705 bool IsConstantInitialization) const {
15706 assert(!isValueDependent() &&
15707 "Expression evaluator can't be called on a dependent expression.");
15709 llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] {
15710 std::string Name;
15711 llvm::raw_string_ostream OS(Name);
15712 VD->printQualifiedName(OS);
15713 return Name;
15716 Expr::EvalStatus EStatus;
15717 EStatus.Diag = &Notes;
15719 EvalInfo Info(Ctx, EStatus,
15720 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus)
15721 ? EvalInfo::EM_ConstantExpression
15722 : EvalInfo::EM_ConstantFold);
15723 Info.setEvaluatingDecl(VD, Value);
15724 Info.InConstantContext = IsConstantInitialization;
15726 if (Info.EnableNewConstInterp) {
15727 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
15728 if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
15729 return false;
15730 } else {
15731 LValue LVal;
15732 LVal.set(VD);
15734 if (!EvaluateInPlace(Value, Info, LVal, this,
15735 /*AllowNonLiteralTypes=*/true) ||
15736 EStatus.HasSideEffects)
15737 return false;
15739 // At this point, any lifetime-extended temporaries are completely
15740 // initialized.
15741 Info.performLifetimeExtension();
15743 if (!Info.discardCleanups())
15744 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15747 SourceLocation DeclLoc = VD->getLocation();
15748 QualType DeclTy = VD->getType();
15749 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
15750 ConstantExprKind::Normal) &&
15751 CheckMemoryLeaks(Info);
15754 bool VarDecl::evaluateDestruction(
15755 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
15756 Expr::EvalStatus EStatus;
15757 EStatus.Diag = &Notes;
15759 // Only treat the destruction as constant destruction if we formally have
15760 // constant initialization (or are usable in a constant expression).
15761 bool IsConstantDestruction = hasConstantInitialization();
15763 // Make a copy of the value for the destructor to mutate, if we know it.
15764 // Otherwise, treat the value as default-initialized; if the destructor works
15765 // anyway, then the destruction is constant (and must be essentially empty).
15766 APValue DestroyedValue;
15767 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
15768 DestroyedValue = *getEvaluatedValue();
15769 else if (!handleDefaultInitValue(getType(), DestroyedValue))
15770 return false;
15772 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
15773 getType(), getLocation(), EStatus,
15774 IsConstantDestruction) ||
15775 EStatus.HasSideEffects)
15776 return false;
15778 ensureEvaluatedStmt()->HasConstantDestruction = true;
15779 return true;
15782 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
15783 /// constant folded, but discard the result.
15784 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
15785 assert(!isValueDependent() &&
15786 "Expression evaluator can't be called on a dependent expression.");
15788 EvalResult Result;
15789 return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
15790 !hasUnacceptableSideEffect(Result, SEK);
15793 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
15794 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15795 assert(!isValueDependent() &&
15796 "Expression evaluator can't be called on a dependent expression.");
15798 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt");
15799 EvalResult EVResult;
15800 EVResult.Diag = Diag;
15801 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15802 Info.InConstantContext = true;
15804 bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
15805 (void)Result;
15806 assert(Result && "Could not evaluate expression");
15807 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15809 return EVResult.Val.getInt();
15812 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
15813 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15814 assert(!isValueDependent() &&
15815 "Expression evaluator can't be called on a dependent expression.");
15817 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow");
15818 EvalResult EVResult;
15819 EVResult.Diag = Diag;
15820 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15821 Info.InConstantContext = true;
15822 Info.CheckingForUndefinedBehavior = true;
15824 bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
15825 (void)Result;
15826 assert(Result && "Could not evaluate expression");
15827 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15829 return EVResult.Val.getInt();
15832 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
15833 assert(!isValueDependent() &&
15834 "Expression evaluator can't be called on a dependent expression.");
15836 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow");
15837 bool IsConst;
15838 EvalResult EVResult;
15839 if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
15840 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15841 Info.CheckingForUndefinedBehavior = true;
15842 (void)::EvaluateAsRValue(Info, this, EVResult.Val);
15846 bool Expr::EvalResult::isGlobalLValue() const {
15847 assert(Val.isLValue());
15848 return IsGlobalLValue(Val.getLValueBase());
15851 /// isIntegerConstantExpr - this recursive routine will test if an expression is
15852 /// an integer constant expression.
15854 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
15855 /// comma, etc
15857 // CheckICE - This function does the fundamental ICE checking: the returned
15858 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
15859 // and a (possibly null) SourceLocation indicating the location of the problem.
15861 // Note that to reduce code duplication, this helper does no evaluation
15862 // itself; the caller checks whether the expression is evaluatable, and
15863 // in the rare cases where CheckICE actually cares about the evaluated
15864 // value, it calls into Evaluate.
15866 namespace {
15868 enum ICEKind {
15869 /// This expression is an ICE.
15870 IK_ICE,
15871 /// This expression is not an ICE, but if it isn't evaluated, it's
15872 /// a legal subexpression for an ICE. This return value is used to handle
15873 /// the comma operator in C99 mode, and non-constant subexpressions.
15874 IK_ICEIfUnevaluated,
15875 /// This expression is not an ICE, and is not a legal subexpression for one.
15876 IK_NotICE
15879 struct ICEDiag {
15880 ICEKind Kind;
15881 SourceLocation Loc;
15883 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
15888 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
15890 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
15892 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
15893 Expr::EvalResult EVResult;
15894 Expr::EvalStatus Status;
15895 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15897 Info.InConstantContext = true;
15898 if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
15899 !EVResult.Val.isInt())
15900 return ICEDiag(IK_NotICE, E->getBeginLoc());
15902 return NoDiag();
15905 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
15906 assert(!E->isValueDependent() && "Should not see value dependent exprs!");
15907 if (!E->getType()->isIntegralOrEnumerationType())
15908 return ICEDiag(IK_NotICE, E->getBeginLoc());
15910 switch (E->getStmtClass()) {
15911 #define ABSTRACT_STMT(Node)
15912 #define STMT(Node, Base) case Expr::Node##Class:
15913 #define EXPR(Node, Base)
15914 #include "clang/AST/StmtNodes.inc"
15915 case Expr::PredefinedExprClass:
15916 case Expr::FloatingLiteralClass:
15917 case Expr::ImaginaryLiteralClass:
15918 case Expr::StringLiteralClass:
15919 case Expr::ArraySubscriptExprClass:
15920 case Expr::MatrixSubscriptExprClass:
15921 case Expr::OMPArraySectionExprClass:
15922 case Expr::OMPArrayShapingExprClass:
15923 case Expr::OMPIteratorExprClass:
15924 case Expr::MemberExprClass:
15925 case Expr::CompoundAssignOperatorClass:
15926 case Expr::CompoundLiteralExprClass:
15927 case Expr::ExtVectorElementExprClass:
15928 case Expr::DesignatedInitExprClass:
15929 case Expr::ArrayInitLoopExprClass:
15930 case Expr::ArrayInitIndexExprClass:
15931 case Expr::NoInitExprClass:
15932 case Expr::DesignatedInitUpdateExprClass:
15933 case Expr::ImplicitValueInitExprClass:
15934 case Expr::ParenListExprClass:
15935 case Expr::VAArgExprClass:
15936 case Expr::AddrLabelExprClass:
15937 case Expr::StmtExprClass:
15938 case Expr::CXXMemberCallExprClass:
15939 case Expr::CUDAKernelCallExprClass:
15940 case Expr::CXXAddrspaceCastExprClass:
15941 case Expr::CXXDynamicCastExprClass:
15942 case Expr::CXXTypeidExprClass:
15943 case Expr::CXXUuidofExprClass:
15944 case Expr::MSPropertyRefExprClass:
15945 case Expr::MSPropertySubscriptExprClass:
15946 case Expr::CXXNullPtrLiteralExprClass:
15947 case Expr::UserDefinedLiteralClass:
15948 case Expr::CXXThisExprClass:
15949 case Expr::CXXThrowExprClass:
15950 case Expr::CXXNewExprClass:
15951 case Expr::CXXDeleteExprClass:
15952 case Expr::CXXPseudoDestructorExprClass:
15953 case Expr::UnresolvedLookupExprClass:
15954 case Expr::TypoExprClass:
15955 case Expr::RecoveryExprClass:
15956 case Expr::DependentScopeDeclRefExprClass:
15957 case Expr::CXXConstructExprClass:
15958 case Expr::CXXInheritedCtorInitExprClass:
15959 case Expr::CXXStdInitializerListExprClass:
15960 case Expr::CXXBindTemporaryExprClass:
15961 case Expr::ExprWithCleanupsClass:
15962 case Expr::CXXTemporaryObjectExprClass:
15963 case Expr::CXXUnresolvedConstructExprClass:
15964 case Expr::CXXDependentScopeMemberExprClass:
15965 case Expr::UnresolvedMemberExprClass:
15966 case Expr::ObjCStringLiteralClass:
15967 case Expr::ObjCBoxedExprClass:
15968 case Expr::ObjCArrayLiteralClass:
15969 case Expr::ObjCDictionaryLiteralClass:
15970 case Expr::ObjCEncodeExprClass:
15971 case Expr::ObjCMessageExprClass:
15972 case Expr::ObjCSelectorExprClass:
15973 case Expr::ObjCProtocolExprClass:
15974 case Expr::ObjCIvarRefExprClass:
15975 case Expr::ObjCPropertyRefExprClass:
15976 case Expr::ObjCSubscriptRefExprClass:
15977 case Expr::ObjCIsaExprClass:
15978 case Expr::ObjCAvailabilityCheckExprClass:
15979 case Expr::ShuffleVectorExprClass:
15980 case Expr::ConvertVectorExprClass:
15981 case Expr::BlockExprClass:
15982 case Expr::NoStmtClass:
15983 case Expr::OpaqueValueExprClass:
15984 case Expr::PackExpansionExprClass:
15985 case Expr::SubstNonTypeTemplateParmPackExprClass:
15986 case Expr::FunctionParmPackExprClass:
15987 case Expr::AsTypeExprClass:
15988 case Expr::ObjCIndirectCopyRestoreExprClass:
15989 case Expr::MaterializeTemporaryExprClass:
15990 case Expr::PseudoObjectExprClass:
15991 case Expr::AtomicExprClass:
15992 case Expr::LambdaExprClass:
15993 case Expr::CXXFoldExprClass:
15994 case Expr::CoawaitExprClass:
15995 case Expr::DependentCoawaitExprClass:
15996 case Expr::CoyieldExprClass:
15997 case Expr::SYCLUniqueStableNameExprClass:
15998 case Expr::CXXParenListInitExprClass:
15999 return ICEDiag(IK_NotICE, E->getBeginLoc());
16001 case Expr::InitListExprClass: {
16002 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
16003 // form "T x = { a };" is equivalent to "T x = a;".
16004 // Unless we're initializing a reference, T is a scalar as it is known to be
16005 // of integral or enumeration type.
16006 if (E->isPRValue())
16007 if (cast<InitListExpr>(E)->getNumInits() == 1)
16008 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
16009 return ICEDiag(IK_NotICE, E->getBeginLoc());
16012 case Expr::SizeOfPackExprClass:
16013 case Expr::GNUNullExprClass:
16014 case Expr::SourceLocExprClass:
16015 return NoDiag();
16017 case Expr::SubstNonTypeTemplateParmExprClass:
16018 return
16019 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
16021 case Expr::ConstantExprClass:
16022 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
16024 case Expr::ParenExprClass:
16025 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
16026 case Expr::GenericSelectionExprClass:
16027 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
16028 case Expr::IntegerLiteralClass:
16029 case Expr::FixedPointLiteralClass:
16030 case Expr::CharacterLiteralClass:
16031 case Expr::ObjCBoolLiteralExprClass:
16032 case Expr::CXXBoolLiteralExprClass:
16033 case Expr::CXXScalarValueInitExprClass:
16034 case Expr::TypeTraitExprClass:
16035 case Expr::ConceptSpecializationExprClass:
16036 case Expr::RequiresExprClass:
16037 case Expr::ArrayTypeTraitExprClass:
16038 case Expr::ExpressionTraitExprClass:
16039 case Expr::CXXNoexceptExprClass:
16040 return NoDiag();
16041 case Expr::CallExprClass:
16042 case Expr::CXXOperatorCallExprClass: {
16043 // C99 6.6/3 allows function calls within unevaluated subexpressions of
16044 // constant expressions, but they can never be ICEs because an ICE cannot
16045 // contain an operand of (pointer to) function type.
16046 const CallExpr *CE = cast<CallExpr>(E);
16047 if (CE->getBuiltinCallee())
16048 return CheckEvalInICE(E, Ctx);
16049 return ICEDiag(IK_NotICE, E->getBeginLoc());
16051 case Expr::CXXRewrittenBinaryOperatorClass:
16052 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
16053 Ctx);
16054 case Expr::DeclRefExprClass: {
16055 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
16056 if (isa<EnumConstantDecl>(D))
16057 return NoDiag();
16059 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
16060 // integer variables in constant expressions:
16062 // C++ 7.1.5.1p2
16063 // A variable of non-volatile const-qualified integral or enumeration
16064 // type initialized by an ICE can be used in ICEs.
16066 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
16067 // that mode, use of reference variables should not be allowed.
16068 const VarDecl *VD = dyn_cast<VarDecl>(D);
16069 if (VD && VD->isUsableInConstantExpressions(Ctx) &&
16070 !VD->getType()->isReferenceType())
16071 return NoDiag();
16073 return ICEDiag(IK_NotICE, E->getBeginLoc());
16075 case Expr::UnaryOperatorClass: {
16076 const UnaryOperator *Exp = cast<UnaryOperator>(E);
16077 switch (Exp->getOpcode()) {
16078 case UO_PostInc:
16079 case UO_PostDec:
16080 case UO_PreInc:
16081 case UO_PreDec:
16082 case UO_AddrOf:
16083 case UO_Deref:
16084 case UO_Coawait:
16085 // C99 6.6/3 allows increment and decrement within unevaluated
16086 // subexpressions of constant expressions, but they can never be ICEs
16087 // because an ICE cannot contain an lvalue operand.
16088 return ICEDiag(IK_NotICE, E->getBeginLoc());
16089 case UO_Extension:
16090 case UO_LNot:
16091 case UO_Plus:
16092 case UO_Minus:
16093 case UO_Not:
16094 case UO_Real:
16095 case UO_Imag:
16096 return CheckICE(Exp->getSubExpr(), Ctx);
16098 llvm_unreachable("invalid unary operator class");
16100 case Expr::OffsetOfExprClass: {
16101 // Note that per C99, offsetof must be an ICE. And AFAIK, using
16102 // EvaluateAsRValue matches the proposed gcc behavior for cases like
16103 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
16104 // compliance: we should warn earlier for offsetof expressions with
16105 // array subscripts that aren't ICEs, and if the array subscripts
16106 // are ICEs, the value of the offsetof must be an integer constant.
16107 return CheckEvalInICE(E, Ctx);
16109 case Expr::UnaryExprOrTypeTraitExprClass: {
16110 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
16111 if ((Exp->getKind() == UETT_SizeOf) &&
16112 Exp->getTypeOfArgument()->isVariableArrayType())
16113 return ICEDiag(IK_NotICE, E->getBeginLoc());
16114 return NoDiag();
16116 case Expr::BinaryOperatorClass: {
16117 const BinaryOperator *Exp = cast<BinaryOperator>(E);
16118 switch (Exp->getOpcode()) {
16119 case BO_PtrMemD:
16120 case BO_PtrMemI:
16121 case BO_Assign:
16122 case BO_MulAssign:
16123 case BO_DivAssign:
16124 case BO_RemAssign:
16125 case BO_AddAssign:
16126 case BO_SubAssign:
16127 case BO_ShlAssign:
16128 case BO_ShrAssign:
16129 case BO_AndAssign:
16130 case BO_XorAssign:
16131 case BO_OrAssign:
16132 // C99 6.6/3 allows assignments within unevaluated subexpressions of
16133 // constant expressions, but they can never be ICEs because an ICE cannot
16134 // contain an lvalue operand.
16135 return ICEDiag(IK_NotICE, E->getBeginLoc());
16137 case BO_Mul:
16138 case BO_Div:
16139 case BO_Rem:
16140 case BO_Add:
16141 case BO_Sub:
16142 case BO_Shl:
16143 case BO_Shr:
16144 case BO_LT:
16145 case BO_GT:
16146 case BO_LE:
16147 case BO_GE:
16148 case BO_EQ:
16149 case BO_NE:
16150 case BO_And:
16151 case BO_Xor:
16152 case BO_Or:
16153 case BO_Comma:
16154 case BO_Cmp: {
16155 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
16156 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
16157 if (Exp->getOpcode() == BO_Div ||
16158 Exp->getOpcode() == BO_Rem) {
16159 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
16160 // we don't evaluate one.
16161 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
16162 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
16163 if (REval == 0)
16164 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16165 if (REval.isSigned() && REval.isAllOnes()) {
16166 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
16167 if (LEval.isMinSignedValue())
16168 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16172 if (Exp->getOpcode() == BO_Comma) {
16173 if (Ctx.getLangOpts().C99) {
16174 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
16175 // if it isn't evaluated.
16176 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
16177 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16178 } else {
16179 // In both C89 and C++, commas in ICEs are illegal.
16180 return ICEDiag(IK_NotICE, E->getBeginLoc());
16183 return Worst(LHSResult, RHSResult);
16185 case BO_LAnd:
16186 case BO_LOr: {
16187 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
16188 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
16189 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
16190 // Rare case where the RHS has a comma "side-effect"; we need
16191 // to actually check the condition to see whether the side
16192 // with the comma is evaluated.
16193 if ((Exp->getOpcode() == BO_LAnd) !=
16194 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
16195 return RHSResult;
16196 return NoDiag();
16199 return Worst(LHSResult, RHSResult);
16202 llvm_unreachable("invalid binary operator kind");
16204 case Expr::ImplicitCastExprClass:
16205 case Expr::CStyleCastExprClass:
16206 case Expr::CXXFunctionalCastExprClass:
16207 case Expr::CXXStaticCastExprClass:
16208 case Expr::CXXReinterpretCastExprClass:
16209 case Expr::CXXConstCastExprClass:
16210 case Expr::ObjCBridgedCastExprClass: {
16211 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
16212 if (isa<ExplicitCastExpr>(E)) {
16213 if (const FloatingLiteral *FL
16214 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
16215 unsigned DestWidth = Ctx.getIntWidth(E->getType());
16216 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
16217 APSInt IgnoredVal(DestWidth, !DestSigned);
16218 bool Ignored;
16219 // If the value does not fit in the destination type, the behavior is
16220 // undefined, so we are not required to treat it as a constant
16221 // expression.
16222 if (FL->getValue().convertToInteger(IgnoredVal,
16223 llvm::APFloat::rmTowardZero,
16224 &Ignored) & APFloat::opInvalidOp)
16225 return ICEDiag(IK_NotICE, E->getBeginLoc());
16226 return NoDiag();
16229 switch (cast<CastExpr>(E)->getCastKind()) {
16230 case CK_LValueToRValue:
16231 case CK_AtomicToNonAtomic:
16232 case CK_NonAtomicToAtomic:
16233 case CK_NoOp:
16234 case CK_IntegralToBoolean:
16235 case CK_IntegralCast:
16236 return CheckICE(SubExpr, Ctx);
16237 default:
16238 return ICEDiag(IK_NotICE, E->getBeginLoc());
16241 case Expr::BinaryConditionalOperatorClass: {
16242 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
16243 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
16244 if (CommonResult.Kind == IK_NotICE) return CommonResult;
16245 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
16246 if (FalseResult.Kind == IK_NotICE) return FalseResult;
16247 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
16248 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
16249 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
16250 return FalseResult;
16252 case Expr::ConditionalOperatorClass: {
16253 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
16254 // If the condition (ignoring parens) is a __builtin_constant_p call,
16255 // then only the true side is actually considered in an integer constant
16256 // expression, and it is fully evaluated. This is an important GNU
16257 // extension. See GCC PR38377 for discussion.
16258 if (const CallExpr *CallCE
16259 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
16260 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
16261 return CheckEvalInICE(E, Ctx);
16262 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
16263 if (CondResult.Kind == IK_NotICE)
16264 return CondResult;
16266 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
16267 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
16269 if (TrueResult.Kind == IK_NotICE)
16270 return TrueResult;
16271 if (FalseResult.Kind == IK_NotICE)
16272 return FalseResult;
16273 if (CondResult.Kind == IK_ICEIfUnevaluated)
16274 return CondResult;
16275 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
16276 return NoDiag();
16277 // Rare case where the diagnostics depend on which side is evaluated
16278 // Note that if we get here, CondResult is 0, and at least one of
16279 // TrueResult and FalseResult is non-zero.
16280 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
16281 return FalseResult;
16282 return TrueResult;
16284 case Expr::CXXDefaultArgExprClass:
16285 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
16286 case Expr::CXXDefaultInitExprClass:
16287 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
16288 case Expr::ChooseExprClass: {
16289 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
16291 case Expr::BuiltinBitCastExprClass: {
16292 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
16293 return ICEDiag(IK_NotICE, E->getBeginLoc());
16294 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
16298 llvm_unreachable("Invalid StmtClass!");
16301 /// Evaluate an expression as a C++11 integral constant expression.
16302 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
16303 const Expr *E,
16304 llvm::APSInt *Value,
16305 SourceLocation *Loc) {
16306 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
16307 if (Loc) *Loc = E->getExprLoc();
16308 return false;
16311 APValue Result;
16312 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
16313 return false;
16315 if (!Result.isInt()) {
16316 if (Loc) *Loc = E->getExprLoc();
16317 return false;
16320 if (Value) *Value = Result.getInt();
16321 return true;
16324 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
16325 SourceLocation *Loc) const {
16326 assert(!isValueDependent() &&
16327 "Expression evaluator can't be called on a dependent expression.");
16329 ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr");
16331 if (Ctx.getLangOpts().CPlusPlus11)
16332 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
16334 ICEDiag D = CheckICE(this, Ctx);
16335 if (D.Kind != IK_ICE) {
16336 if (Loc) *Loc = D.Loc;
16337 return false;
16339 return true;
16342 std::optional<llvm::APSInt>
16343 Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc) const {
16344 if (isValueDependent()) {
16345 // Expression evaluator can't succeed on a dependent expression.
16346 return std::nullopt;
16349 APSInt Value;
16351 if (Ctx.getLangOpts().CPlusPlus11) {
16352 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
16353 return Value;
16354 return std::nullopt;
16357 if (!isIntegerConstantExpr(Ctx, Loc))
16358 return std::nullopt;
16360 // The only possible side-effects here are due to UB discovered in the
16361 // evaluation (for instance, INT_MAX + 1). In such a case, we are still
16362 // required to treat the expression as an ICE, so we produce the folded
16363 // value.
16364 EvalResult ExprResult;
16365 Expr::EvalStatus Status;
16366 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
16367 Info.InConstantContext = true;
16369 if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
16370 llvm_unreachable("ICE cannot be evaluated!");
16372 return ExprResult.Val.getInt();
16375 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
16376 assert(!isValueDependent() &&
16377 "Expression evaluator can't be called on a dependent expression.");
16379 return CheckICE(this, Ctx).Kind == IK_ICE;
16382 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
16383 SourceLocation *Loc) const {
16384 assert(!isValueDependent() &&
16385 "Expression evaluator can't be called on a dependent expression.");
16387 // We support this checking in C++98 mode in order to diagnose compatibility
16388 // issues.
16389 assert(Ctx.getLangOpts().CPlusPlus);
16391 // Build evaluation settings.
16392 Expr::EvalStatus Status;
16393 SmallVector<PartialDiagnosticAt, 8> Diags;
16394 Status.Diag = &Diags;
16395 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16397 APValue Scratch;
16398 bool IsConstExpr =
16399 ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
16400 // FIXME: We don't produce a diagnostic for this, but the callers that
16401 // call us on arbitrary full-expressions should generally not care.
16402 Info.discardCleanups() && !Status.HasSideEffects;
16404 if (!Diags.empty()) {
16405 IsConstExpr = false;
16406 if (Loc) *Loc = Diags[0].first;
16407 } else if (!IsConstExpr) {
16408 // FIXME: This shouldn't happen.
16409 if (Loc) *Loc = getExprLoc();
16412 return IsConstExpr;
16415 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
16416 const FunctionDecl *Callee,
16417 ArrayRef<const Expr*> Args,
16418 const Expr *This) const {
16419 assert(!isValueDependent() &&
16420 "Expression evaluator can't be called on a dependent expression.");
16422 llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] {
16423 std::string Name;
16424 llvm::raw_string_ostream OS(Name);
16425 Callee->getNameForDiagnostic(OS, Ctx.getPrintingPolicy(),
16426 /*Qualified=*/true);
16427 return Name;
16430 Expr::EvalStatus Status;
16431 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
16432 Info.InConstantContext = true;
16434 LValue ThisVal;
16435 const LValue *ThisPtr = nullptr;
16436 if (This) {
16437 #ifndef NDEBUG
16438 auto *MD = dyn_cast<CXXMethodDecl>(Callee);
16439 assert(MD && "Don't provide `this` for non-methods.");
16440 assert(MD->isImplicitObjectMemberFunction() &&
16441 "Don't provide `this` for methods without an implicit object.");
16442 #endif
16443 if (!This->isValueDependent() &&
16444 EvaluateObjectArgument(Info, This, ThisVal) &&
16445 !Info.EvalStatus.HasSideEffects)
16446 ThisPtr = &ThisVal;
16448 // Ignore any side-effects from a failed evaluation. This is safe because
16449 // they can't interfere with any other argument evaluation.
16450 Info.EvalStatus.HasSideEffects = false;
16453 CallRef Call = Info.CurrentCall->createCall(Callee);
16454 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
16455 I != E; ++I) {
16456 unsigned Idx = I - Args.begin();
16457 if (Idx >= Callee->getNumParams())
16458 break;
16459 const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
16460 if ((*I)->isValueDependent() ||
16461 !EvaluateCallArg(PVD, *I, Call, Info) ||
16462 Info.EvalStatus.HasSideEffects) {
16463 // If evaluation fails, throw away the argument entirely.
16464 if (APValue *Slot = Info.getParamSlot(Call, PVD))
16465 *Slot = APValue();
16468 // Ignore any side-effects from a failed evaluation. This is safe because
16469 // they can't interfere with any other argument evaluation.
16470 Info.EvalStatus.HasSideEffects = false;
16473 // Parameter cleanups happen in the caller and are not part of this
16474 // evaluation.
16475 Info.discardCleanups();
16476 Info.EvalStatus.HasSideEffects = false;
16478 // Build fake call to Callee.
16479 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This,
16480 Call);
16481 // FIXME: Missing ExprWithCleanups in enable_if conditions?
16482 FullExpressionRAII Scope(Info);
16483 return Evaluate(Value, Info, this) && Scope.destroy() &&
16484 !Info.EvalStatus.HasSideEffects;
16487 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
16488 SmallVectorImpl<
16489 PartialDiagnosticAt> &Diags) {
16490 // FIXME: It would be useful to check constexpr function templates, but at the
16491 // moment the constant expression evaluator cannot cope with the non-rigorous
16492 // ASTs which we build for dependent expressions.
16493 if (FD->isDependentContext())
16494 return true;
16496 llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] {
16497 std::string Name;
16498 llvm::raw_string_ostream OS(Name);
16499 FD->getNameForDiagnostic(OS, FD->getASTContext().getPrintingPolicy(),
16500 /*Qualified=*/true);
16501 return Name;
16504 Expr::EvalStatus Status;
16505 Status.Diag = &Diags;
16507 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
16508 Info.InConstantContext = true;
16509 Info.CheckingPotentialConstantExpression = true;
16511 // The constexpr VM attempts to compile all methods to bytecode here.
16512 if (Info.EnableNewConstInterp) {
16513 Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
16514 return Diags.empty();
16517 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
16518 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
16520 // Fabricate an arbitrary expression on the stack and pretend that it
16521 // is a temporary being used as the 'this' pointer.
16522 LValue This;
16523 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
16524 This.set({&VIE, Info.CurrentCall->Index});
16526 ArrayRef<const Expr*> Args;
16528 APValue Scratch;
16529 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
16530 // Evaluate the call as a constant initializer, to allow the construction
16531 // of objects of non-literal types.
16532 Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
16533 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
16534 } else {
16535 SourceLocation Loc = FD->getLocation();
16536 HandleFunctionCall(
16537 Loc, FD, (MD && MD->isImplicitObjectMemberFunction()) ? &This : nullptr,
16538 &VIE, Args, CallRef(), FD->getBody(), Info, Scratch,
16539 /*ResultSlot=*/nullptr);
16542 return Diags.empty();
16545 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
16546 const FunctionDecl *FD,
16547 SmallVectorImpl<
16548 PartialDiagnosticAt> &Diags) {
16549 assert(!E->isValueDependent() &&
16550 "Expression evaluator can't be called on a dependent expression.");
16552 Expr::EvalStatus Status;
16553 Status.Diag = &Diags;
16555 EvalInfo Info(FD->getASTContext(), Status,
16556 EvalInfo::EM_ConstantExpressionUnevaluated);
16557 Info.InConstantContext = true;
16558 Info.CheckingPotentialConstantExpression = true;
16560 // Fabricate a call stack frame to give the arguments a plausible cover story.
16561 CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr,
16562 /*CallExpr=*/nullptr, CallRef());
16564 APValue ResultScratch;
16565 Evaluate(ResultScratch, Info, E);
16566 return Diags.empty();
16569 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
16570 unsigned Type) const {
16571 if (!getType()->isPointerType())
16572 return false;
16574 Expr::EvalStatus Status;
16575 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16576 return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
16579 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
16580 EvalInfo &Info) {
16581 if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
16582 return false;
16584 LValue String;
16586 if (!EvaluatePointer(E, String, Info))
16587 return false;
16589 QualType CharTy = E->getType()->getPointeeType();
16591 // Fast path: if it's a string literal, search the string value.
16592 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
16593 String.getLValueBase().dyn_cast<const Expr *>())) {
16594 StringRef Str = S->getBytes();
16595 int64_t Off = String.Offset.getQuantity();
16596 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
16597 S->getCharByteWidth() == 1 &&
16598 // FIXME: Add fast-path for wchar_t too.
16599 Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
16600 Str = Str.substr(Off);
16602 StringRef::size_type Pos = Str.find(0);
16603 if (Pos != StringRef::npos)
16604 Str = Str.substr(0, Pos);
16606 Result = Str.size();
16607 return true;
16610 // Fall through to slow path.
16613 // Slow path: scan the bytes of the string looking for the terminating 0.
16614 for (uint64_t Strlen = 0; /**/; ++Strlen) {
16615 APValue Char;
16616 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
16617 !Char.isInt())
16618 return false;
16619 if (!Char.getInt()) {
16620 Result = Strlen;
16621 return true;
16623 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
16624 return false;
16628 bool Expr::EvaluateCharRangeAsString(std::string &Result,
16629 const Expr *SizeExpression,
16630 const Expr *PtrExpression, ASTContext &Ctx,
16631 EvalResult &Status) const {
16632 LValue String;
16633 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16634 Info.InConstantContext = true;
16636 FullExpressionRAII Scope(Info);
16637 APSInt SizeValue;
16638 if (!::EvaluateInteger(SizeExpression, SizeValue, Info))
16639 return false;
16641 int64_t Size = SizeValue.getExtValue();
16643 if (!::EvaluatePointer(PtrExpression, String, Info))
16644 return false;
16646 QualType CharTy = PtrExpression->getType()->getPointeeType();
16647 for (int64_t I = 0; I < Size; ++I) {
16648 APValue Char;
16649 if (!handleLValueToRValueConversion(Info, PtrExpression, CharTy, String,
16650 Char))
16651 return false;
16653 APSInt C = Char.getInt();
16654 Result.push_back(static_cast<char>(C.getExtValue()));
16655 if (!HandleLValueArrayAdjustment(Info, PtrExpression, String, CharTy, 1))
16656 return false;
16658 if (!Scope.destroy())
16659 return false;
16661 if (!CheckMemoryLeaks(Info))
16662 return false;
16664 return true;
16667 bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
16668 Expr::EvalStatus Status;
16669 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16670 return EvaluateBuiltinStrLen(this, Result, Info);