[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / AST / RecordLayoutBuilder.cpp
blobf1f2275da44dcadcbf804ebe923061d2dbe4e9da
1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/Attr.h"
12 #include "clang/AST/CXXInheritance.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/VTableBuilder.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
24 using namespace clang;
26 namespace {
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40 /// Class - The class for this base info.
41 const CXXRecordDecl *Class;
43 /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44 bool IsVirtual;
46 /// Bases - Information about the base subobjects.
47 SmallVector<BaseSubobjectInfo*, 4> Bases;
49 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50 /// of this base info (if one exists).
51 BaseSubobjectInfo *PrimaryVirtualBaseInfo;
53 // FIXME: Document.
54 const BaseSubobjectInfo *Derived;
57 /// Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
61 ExternalLayout() = default;
63 /// Overall record size in bits.
64 uint64_t Size = 0;
66 /// Overall record alignment in bits.
67 uint64_t Align = 0;
69 /// Record field offsets in bits.
70 llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
72 /// Direct, non-virtual base offsets.
73 llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
75 /// Virtual base offsets.
76 llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
78 /// Get the offset of the given field. The external source must provide
79 /// entries for all fields in the record.
80 uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81 assert(FieldOffsets.count(FD) &&
82 "Field does not have an external offset");
83 return FieldOffsets[FD];
86 bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87 auto Known = BaseOffsets.find(RD);
88 if (Known == BaseOffsets.end())
89 return false;
90 BaseOffset = Known->second;
91 return true;
94 bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95 auto Known = VirtualBaseOffsets.find(RD);
96 if (Known == VirtualBaseOffsets.end())
97 return false;
98 BaseOffset = Known->second;
99 return true;
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106 const ASTContext &Context;
107 uint64_t CharWidth;
109 /// Class - The class whose empty entries we're keeping track of.
110 const CXXRecordDecl *Class;
112 /// EmptyClassOffsets - A map from offsets to empty record decls.
113 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115 EmptyClassOffsetsMapTy EmptyClassOffsets;
117 /// MaxEmptyClassOffset - The highest offset known to contain an empty
118 /// base subobject.
119 CharUnits MaxEmptyClassOffset;
121 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122 /// member subobject that is empty.
123 void ComputeEmptySubobjectSizes();
125 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
127 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128 CharUnits Offset, bool PlacingEmptyBase);
130 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131 const CXXRecordDecl *Class, CharUnits Offset,
132 bool PlacingOverlappingField);
133 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134 bool PlacingOverlappingField);
136 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137 /// subobjects beyond the given offset.
138 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139 return Offset <= MaxEmptyClassOffset;
142 CharUnits
143 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145 assert(FieldOffset % CharWidth == 0 &&
146 "Field offset not at char boundary!");
148 return Context.toCharUnitsFromBits(FieldOffset);
151 protected:
152 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153 CharUnits Offset) const;
155 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156 CharUnits Offset);
158 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159 const CXXRecordDecl *Class,
160 CharUnits Offset) const;
161 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162 CharUnits Offset) const;
164 public:
165 /// This holds the size of the largest empty subobject (either a base
166 /// or a member). Will be zero if the record being built doesn't contain
167 /// any empty classes.
168 CharUnits SizeOfLargestEmptySubobject;
170 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172 ComputeEmptySubobjectSizes();
175 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176 /// at the given offset.
177 /// Returns false if placing the record will result in two components
178 /// (direct or indirect) of the same type having the same offset.
179 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180 CharUnits Offset);
182 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183 /// offset.
184 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188 // Check the bases.
189 for (const CXXBaseSpecifier &Base : Class->bases()) {
190 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
192 CharUnits EmptySize;
193 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194 if (BaseDecl->isEmpty()) {
195 // If the class decl is empty, get its size.
196 EmptySize = Layout.getSize();
197 } else {
198 // Otherwise, we get the largest empty subobject for the decl.
199 EmptySize = Layout.getSizeOfLargestEmptySubobject();
202 if (EmptySize > SizeOfLargestEmptySubobject)
203 SizeOfLargestEmptySubobject = EmptySize;
206 // Check the fields.
207 for (const FieldDecl *FD : Class->fields()) {
208 const RecordType *RT =
209 Context.getBaseElementType(FD->getType())->getAs<RecordType>();
211 // We only care about record types.
212 if (!RT)
213 continue;
215 CharUnits EmptySize;
216 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218 if (MemberDecl->isEmpty()) {
219 // If the class decl is empty, get its size.
220 EmptySize = Layout.getSize();
221 } else {
222 // Otherwise, we get the largest empty subobject for the decl.
223 EmptySize = Layout.getSizeOfLargestEmptySubobject();
226 if (EmptySize > SizeOfLargestEmptySubobject)
227 SizeOfLargestEmptySubobject = EmptySize;
231 bool
232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233 CharUnits Offset) const {
234 // We only need to check empty bases.
235 if (!RD->isEmpty())
236 return true;
238 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239 if (I == EmptyClassOffsets.end())
240 return true;
242 const ClassVectorTy &Classes = I->second;
243 if (!llvm::is_contained(Classes, RD))
244 return true;
246 // There is already an empty class of the same type at this offset.
247 return false;
250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251 CharUnits Offset) {
252 // We only care about empty bases.
253 if (!RD->isEmpty())
254 return;
256 // If we have empty structures inside a union, we can assign both
257 // the same offset. Just avoid pushing them twice in the list.
258 ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259 if (llvm::is_contained(Classes, RD))
260 return;
262 Classes.push_back(RD);
264 // Update the empty class offset.
265 if (Offset > MaxEmptyClassOffset)
266 MaxEmptyClassOffset = Offset;
269 bool
270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271 CharUnits Offset) {
272 // We don't have to keep looking past the maximum offset that's known to
273 // contain an empty class.
274 if (!AnyEmptySubobjectsBeyondOffset(Offset))
275 return true;
277 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278 return false;
280 // Traverse all non-virtual bases.
281 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282 for (const BaseSubobjectInfo *Base : Info->Bases) {
283 if (Base->IsVirtual)
284 continue;
286 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
288 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289 return false;
292 if (Info->PrimaryVirtualBaseInfo) {
293 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
295 if (Info == PrimaryVirtualBaseInfo->Derived) {
296 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297 return false;
301 // Traverse all member variables.
302 unsigned FieldNo = 0;
303 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305 if (I->isBitField())
306 continue;
308 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310 return false;
313 return true;
316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317 CharUnits Offset,
318 bool PlacingEmptyBase) {
319 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320 // We know that the only empty subobjects that can conflict with empty
321 // subobject of non-empty bases, are empty bases that can be placed at
322 // offset zero. Because of this, we only need to keep track of empty base
323 // subobjects with offsets less than the size of the largest empty
324 // subobject for our class.
325 return;
328 AddSubobjectAtOffset(Info->Class, Offset);
330 // Traverse all non-virtual bases.
331 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332 for (const BaseSubobjectInfo *Base : Info->Bases) {
333 if (Base->IsVirtual)
334 continue;
336 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
340 if (Info->PrimaryVirtualBaseInfo) {
341 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
343 if (Info == PrimaryVirtualBaseInfo->Derived)
344 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345 PlacingEmptyBase);
348 // Traverse all member variables.
349 unsigned FieldNo = 0;
350 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352 if (I->isBitField())
353 continue;
355 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361 CharUnits Offset) {
362 // If we know this class doesn't have any empty subobjects we don't need to
363 // bother checking.
364 if (SizeOfLargestEmptySubobject.isZero())
365 return true;
367 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368 return false;
370 // We are able to place the base at this offset. Make sure to update the
371 // empty base subobject map.
372 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373 return true;
376 bool
377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378 const CXXRecordDecl *Class,
379 CharUnits Offset) const {
380 // We don't have to keep looking past the maximum offset that's known to
381 // contain an empty class.
382 if (!AnyEmptySubobjectsBeyondOffset(Offset))
383 return true;
385 if (!CanPlaceSubobjectAtOffset(RD, Offset))
386 return false;
388 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
390 // Traverse all non-virtual bases.
391 for (const CXXBaseSpecifier &Base : RD->bases()) {
392 if (Base.isVirtual())
393 continue;
395 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
397 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399 return false;
402 if (RD == Class) {
403 // This is the most derived class, traverse virtual bases as well.
404 for (const CXXBaseSpecifier &Base : RD->vbases()) {
405 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
407 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409 return false;
413 // Traverse all member variables.
414 unsigned FieldNo = 0;
415 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416 I != E; ++I, ++FieldNo) {
417 if (I->isBitField())
418 continue;
420 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
422 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423 return false;
426 return true;
429 bool
430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431 CharUnits Offset) const {
432 // We don't have to keep looking past the maximum offset that's known to
433 // contain an empty class.
434 if (!AnyEmptySubobjectsBeyondOffset(Offset))
435 return true;
437 QualType T = FD->getType();
438 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
441 // If we have an array type we need to look at every element.
442 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443 QualType ElemTy = Context.getBaseElementType(AT);
444 const RecordType *RT = ElemTy->getAs<RecordType>();
445 if (!RT)
446 return true;
448 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
451 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452 CharUnits ElementOffset = Offset;
453 for (uint64_t I = 0; I != NumElements; ++I) {
454 // We don't have to keep looking past the maximum offset that's known to
455 // contain an empty class.
456 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457 return true;
459 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460 return false;
462 ElementOffset += Layout.getSize();
466 return true;
469 bool
470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471 CharUnits Offset) {
472 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473 return false;
475 // We are able to place the member variable at this offset.
476 // Make sure to update the empty field subobject map.
477 UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478 return true;
481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482 const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483 bool PlacingOverlappingField) {
484 // We know that the only empty subobjects that can conflict with empty
485 // field subobjects are subobjects of empty bases and potentially-overlapping
486 // fields that can be placed at offset zero. Because of this, we only need to
487 // keep track of empty field subobjects with offsets less than the size of
488 // the largest empty subobject for our class.
490 // (Proof: we will only consider placing a subobject at offset zero or at
491 // >= the current dsize. The only cases where the earlier subobject can be
492 // placed beyond the end of dsize is if it's an empty base or a
493 // potentially-overlapping field.)
494 if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495 return;
497 AddSubobjectAtOffset(RD, Offset);
499 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
501 // Traverse all non-virtual bases.
502 for (const CXXBaseSpecifier &Base : RD->bases()) {
503 if (Base.isVirtual())
504 continue;
506 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
508 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510 PlacingOverlappingField);
513 if (RD == Class) {
514 // This is the most derived class, traverse virtual bases as well.
515 for (const CXXBaseSpecifier &Base : RD->vbases()) {
516 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
518 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520 PlacingOverlappingField);
524 // Traverse all member variables.
525 unsigned FieldNo = 0;
526 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527 I != E; ++I, ++FieldNo) {
528 if (I->isBitField())
529 continue;
531 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
533 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538 const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539 QualType T = FD->getType();
540 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541 UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542 return;
545 // If we have an array type we need to update every element.
546 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547 QualType ElemTy = Context.getBaseElementType(AT);
548 const RecordType *RT = ElemTy->getAs<RecordType>();
549 if (!RT)
550 return;
552 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
555 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556 CharUnits ElementOffset = Offset;
558 for (uint64_t I = 0; I != NumElements; ++I) {
559 // We know that the only empty subobjects that can conflict with empty
560 // field subobjects are subobjects of empty bases that can be placed at
561 // offset zero. Because of this, we only need to keep track of empty field
562 // subobjects with offsets less than the size of the largest empty
563 // subobject for our class.
564 if (!PlacingOverlappingField &&
565 ElementOffset >= SizeOfLargestEmptySubobject)
566 return;
568 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569 PlacingOverlappingField);
570 ElementOffset += Layout.getSize();
575 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
577 class ItaniumRecordLayoutBuilder {
578 protected:
579 // FIXME: Remove this and make the appropriate fields public.
580 friend class clang::ASTContext;
582 const ASTContext &Context;
584 EmptySubobjectMap *EmptySubobjects;
586 /// Size - The current size of the record layout.
587 uint64_t Size;
589 /// Alignment - The current alignment of the record layout.
590 CharUnits Alignment;
592 /// PreferredAlignment - The preferred alignment of the record layout.
593 CharUnits PreferredAlignment;
595 /// The alignment if attribute packed is not used.
596 CharUnits UnpackedAlignment;
598 /// \brief The maximum of the alignments of top-level members.
599 CharUnits UnadjustedAlignment;
601 SmallVector<uint64_t, 16> FieldOffsets;
603 /// Whether the external AST source has provided a layout for this
604 /// record.
605 unsigned UseExternalLayout : 1;
607 /// Whether we need to infer alignment, even when we have an
608 /// externally-provided layout.
609 unsigned InferAlignment : 1;
611 /// Packed - Whether the record is packed or not.
612 unsigned Packed : 1;
614 unsigned IsUnion : 1;
616 unsigned IsMac68kAlign : 1;
618 unsigned IsNaturalAlign : 1;
620 unsigned IsMsStruct : 1;
622 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
623 /// this contains the number of bits in the last unit that can be used for
624 /// an adjacent bitfield if necessary. The unit in question is usually
625 /// a byte, but larger units are used if IsMsStruct.
626 unsigned char UnfilledBitsInLastUnit;
628 /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
629 /// storage unit of the previous field if it was a bitfield.
630 unsigned char LastBitfieldStorageUnitSize;
632 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
633 /// #pragma pack.
634 CharUnits MaxFieldAlignment;
636 /// DataSize - The data size of the record being laid out.
637 uint64_t DataSize;
639 CharUnits NonVirtualSize;
640 CharUnits NonVirtualAlignment;
641 CharUnits PreferredNVAlignment;
643 /// If we've laid out a field but not included its tail padding in Size yet,
644 /// this is the size up to the end of that field.
645 CharUnits PaddedFieldSize;
647 /// PrimaryBase - the primary base class (if one exists) of the class
648 /// we're laying out.
649 const CXXRecordDecl *PrimaryBase;
651 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
652 /// out is virtual.
653 bool PrimaryBaseIsVirtual;
655 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
656 /// pointer, as opposed to inheriting one from a primary base class.
657 bool HasOwnVFPtr;
659 /// the flag of field offset changing due to packed attribute.
660 bool HasPackedField;
662 /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
663 /// When there are OverlappingEmptyFields existing in the aggregate, the
664 /// flag shows if the following first non-empty or empty-but-non-overlapping
665 /// field has been handled, if any.
666 bool HandledFirstNonOverlappingEmptyField;
668 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
670 /// Bases - base classes and their offsets in the record.
671 BaseOffsetsMapTy Bases;
673 // VBases - virtual base classes and their offsets in the record.
674 ASTRecordLayout::VBaseOffsetsMapTy VBases;
676 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
677 /// primary base classes for some other direct or indirect base class.
678 CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
680 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
681 /// inheritance graph order. Used for determining the primary base class.
682 const CXXRecordDecl *FirstNearlyEmptyVBase;
684 /// VisitedVirtualBases - A set of all the visited virtual bases, used to
685 /// avoid visiting virtual bases more than once.
686 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
688 /// Valid if UseExternalLayout is true.
689 ExternalLayout External;
691 ItaniumRecordLayoutBuilder(const ASTContext &Context,
692 EmptySubobjectMap *EmptySubobjects)
693 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
694 Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
695 UnpackedAlignment(CharUnits::One()),
696 UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
697 InferAlignment(false), Packed(false), IsUnion(false),
698 IsMac68kAlign(false),
699 IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()),
700 IsMsStruct(false), UnfilledBitsInLastUnit(0),
701 LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
702 DataSize(0), NonVirtualSize(CharUnits::Zero()),
703 NonVirtualAlignment(CharUnits::One()),
704 PreferredNVAlignment(CharUnits::One()),
705 PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
706 PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
707 HandledFirstNonOverlappingEmptyField(false),
708 FirstNearlyEmptyVBase(nullptr) {}
710 void Layout(const RecordDecl *D);
711 void Layout(const CXXRecordDecl *D);
712 void Layout(const ObjCInterfaceDecl *D);
714 void LayoutFields(const RecordDecl *D);
715 void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
716 void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize,
717 bool FieldPacked, const FieldDecl *D);
718 void LayoutBitField(const FieldDecl *D);
720 TargetCXXABI getCXXABI() const {
721 return Context.getTargetInfo().getCXXABI();
724 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
725 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
727 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
728 BaseSubobjectInfoMapTy;
730 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
731 /// of the class we're laying out to their base subobject info.
732 BaseSubobjectInfoMapTy VirtualBaseInfo;
734 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
735 /// class we're laying out to their base subobject info.
736 BaseSubobjectInfoMapTy NonVirtualBaseInfo;
738 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
739 /// bases of the given class.
740 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
742 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
743 /// single class and all of its base classes.
744 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
745 bool IsVirtual,
746 BaseSubobjectInfo *Derived);
748 /// DeterminePrimaryBase - Determine the primary base of the given class.
749 void DeterminePrimaryBase(const CXXRecordDecl *RD);
751 void SelectPrimaryVBase(const CXXRecordDecl *RD);
753 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
755 /// LayoutNonVirtualBases - Determines the primary base class (if any) and
756 /// lays it out. Will then proceed to lay out all non-virtual base clasess.
757 void LayoutNonVirtualBases(const CXXRecordDecl *RD);
759 /// LayoutNonVirtualBase - Lays out a single non-virtual base.
760 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
762 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
763 CharUnits Offset);
765 /// LayoutVirtualBases - Lays out all the virtual bases.
766 void LayoutVirtualBases(const CXXRecordDecl *RD,
767 const CXXRecordDecl *MostDerivedClass);
769 /// LayoutVirtualBase - Lays out a single virtual base.
770 void LayoutVirtualBase(const BaseSubobjectInfo *Base);
772 /// LayoutBase - Will lay out a base and return the offset where it was
773 /// placed, in chars.
774 CharUnits LayoutBase(const BaseSubobjectInfo *Base);
776 /// InitializeLayout - Initialize record layout for the given record decl.
777 void InitializeLayout(const Decl *D);
779 /// FinishLayout - Finalize record layout. Adjust record size based on the
780 /// alignment.
781 void FinishLayout(const NamedDecl *D);
783 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
784 CharUnits PreferredAlignment);
785 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
786 UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment);
788 void UpdateAlignment(CharUnits NewAlignment) {
789 UpdateAlignment(NewAlignment, NewAlignment, NewAlignment);
792 /// Retrieve the externally-supplied field offset for the given
793 /// field.
795 /// \param Field The field whose offset is being queried.
796 /// \param ComputedOffset The offset that we've computed for this field.
797 uint64_t updateExternalFieldOffset(const FieldDecl *Field,
798 uint64_t ComputedOffset);
800 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
801 uint64_t UnpackedOffset, unsigned UnpackedAlign,
802 bool isPacked, const FieldDecl *D);
804 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
806 CharUnits getSize() const {
807 assert(Size % Context.getCharWidth() == 0);
808 return Context.toCharUnitsFromBits(Size);
810 uint64_t getSizeInBits() const { return Size; }
812 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
813 void setSize(uint64_t NewSize) { Size = NewSize; }
815 CharUnits getAligment() const { return Alignment; }
817 CharUnits getDataSize() const {
818 assert(DataSize % Context.getCharWidth() == 0);
819 return Context.toCharUnitsFromBits(DataSize);
821 uint64_t getDataSizeInBits() const { return DataSize; }
823 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
824 void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
826 ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
827 void operator=(const ItaniumRecordLayoutBuilder &) = delete;
829 } // end anonymous namespace
831 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
832 for (const auto &I : RD->bases()) {
833 assert(!I.getType()->isDependentType() &&
834 "Cannot layout class with dependent bases.");
836 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
838 // Check if this is a nearly empty virtual base.
839 if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
840 // If it's not an indirect primary base, then we've found our primary
841 // base.
842 if (!IndirectPrimaryBases.count(Base)) {
843 PrimaryBase = Base;
844 PrimaryBaseIsVirtual = true;
845 return;
848 // Is this the first nearly empty virtual base?
849 if (!FirstNearlyEmptyVBase)
850 FirstNearlyEmptyVBase = Base;
853 SelectPrimaryVBase(Base);
854 if (PrimaryBase)
855 return;
859 /// DeterminePrimaryBase - Determine the primary base of the given class.
860 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
861 // If the class isn't dynamic, it won't have a primary base.
862 if (!RD->isDynamicClass())
863 return;
865 // Compute all the primary virtual bases for all of our direct and
866 // indirect bases, and record all their primary virtual base classes.
867 RD->getIndirectPrimaryBases(IndirectPrimaryBases);
869 // If the record has a dynamic base class, attempt to choose a primary base
870 // class. It is the first (in direct base class order) non-virtual dynamic
871 // base class, if one exists.
872 for (const auto &I : RD->bases()) {
873 // Ignore virtual bases.
874 if (I.isVirtual())
875 continue;
877 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
879 if (Base->isDynamicClass()) {
880 // We found it.
881 PrimaryBase = Base;
882 PrimaryBaseIsVirtual = false;
883 return;
887 // Under the Itanium ABI, if there is no non-virtual primary base class,
888 // try to compute the primary virtual base. The primary virtual base is
889 // the first nearly empty virtual base that is not an indirect primary
890 // virtual base class, if one exists.
891 if (RD->getNumVBases() != 0) {
892 SelectPrimaryVBase(RD);
893 if (PrimaryBase)
894 return;
897 // Otherwise, it is the first indirect primary base class, if one exists.
898 if (FirstNearlyEmptyVBase) {
899 PrimaryBase = FirstNearlyEmptyVBase;
900 PrimaryBaseIsVirtual = true;
901 return;
904 assert(!PrimaryBase && "Should not get here with a primary base!");
907 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
908 const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
909 BaseSubobjectInfo *Info;
911 if (IsVirtual) {
912 // Check if we already have info about this virtual base.
913 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
914 if (InfoSlot) {
915 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
916 return InfoSlot;
919 // We don't, create it.
920 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
921 Info = InfoSlot;
922 } else {
923 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
926 Info->Class = RD;
927 Info->IsVirtual = IsVirtual;
928 Info->Derived = nullptr;
929 Info->PrimaryVirtualBaseInfo = nullptr;
931 const CXXRecordDecl *PrimaryVirtualBase = nullptr;
932 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
934 // Check if this base has a primary virtual base.
935 if (RD->getNumVBases()) {
936 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
937 if (Layout.isPrimaryBaseVirtual()) {
938 // This base does have a primary virtual base.
939 PrimaryVirtualBase = Layout.getPrimaryBase();
940 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
942 // Now check if we have base subobject info about this primary base.
943 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
945 if (PrimaryVirtualBaseInfo) {
946 if (PrimaryVirtualBaseInfo->Derived) {
947 // We did have info about this primary base, and it turns out that it
948 // has already been claimed as a primary virtual base for another
949 // base.
950 PrimaryVirtualBase = nullptr;
951 } else {
952 // We can claim this base as our primary base.
953 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
954 PrimaryVirtualBaseInfo->Derived = Info;
960 // Now go through all direct bases.
961 for (const auto &I : RD->bases()) {
962 bool IsVirtual = I.isVirtual();
964 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
966 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
969 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
970 // Traversing the bases must have created the base info for our primary
971 // virtual base.
972 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
973 assert(PrimaryVirtualBaseInfo &&
974 "Did not create a primary virtual base!");
976 // Claim the primary virtual base as our primary virtual base.
977 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
978 PrimaryVirtualBaseInfo->Derived = Info;
981 return Info;
984 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
985 const CXXRecordDecl *RD) {
986 for (const auto &I : RD->bases()) {
987 bool IsVirtual = I.isVirtual();
989 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
991 // Compute the base subobject info for this base.
992 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
993 nullptr);
995 if (IsVirtual) {
996 // ComputeBaseInfo has already added this base for us.
997 assert(VirtualBaseInfo.count(BaseDecl) &&
998 "Did not add virtual base!");
999 } else {
1000 // Add the base info to the map of non-virtual bases.
1001 assert(!NonVirtualBaseInfo.count(BaseDecl) &&
1002 "Non-virtual base already exists!");
1003 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
1008 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1009 CharUnits UnpackedBaseAlign) {
1010 CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
1012 // The maximum field alignment overrides base align.
1013 if (!MaxFieldAlignment.isZero()) {
1014 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1015 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1018 // Round up the current record size to pointer alignment.
1019 setSize(getSize().alignTo(BaseAlign));
1021 // Update the alignment.
1022 UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign);
1025 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1026 const CXXRecordDecl *RD) {
1027 // Then, determine the primary base class.
1028 DeterminePrimaryBase(RD);
1030 // Compute base subobject info.
1031 ComputeBaseSubobjectInfo(RD);
1033 // If we have a primary base class, lay it out.
1034 if (PrimaryBase) {
1035 if (PrimaryBaseIsVirtual) {
1036 // If the primary virtual base was a primary virtual base of some other
1037 // base class we'll have to steal it.
1038 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1039 PrimaryBaseInfo->Derived = nullptr;
1041 // We have a virtual primary base, insert it as an indirect primary base.
1042 IndirectPrimaryBases.insert(PrimaryBase);
1044 assert(!VisitedVirtualBases.count(PrimaryBase) &&
1045 "vbase already visited!");
1046 VisitedVirtualBases.insert(PrimaryBase);
1048 LayoutVirtualBase(PrimaryBaseInfo);
1049 } else {
1050 BaseSubobjectInfo *PrimaryBaseInfo =
1051 NonVirtualBaseInfo.lookup(PrimaryBase);
1052 assert(PrimaryBaseInfo &&
1053 "Did not find base info for non-virtual primary base!");
1055 LayoutNonVirtualBase(PrimaryBaseInfo);
1058 // If this class needs a vtable/vf-table and didn't get one from a
1059 // primary base, add it in now.
1060 } else if (RD->isDynamicClass()) {
1061 assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1062 CharUnits PtrWidth = Context.toCharUnitsFromBits(
1063 Context.getTargetInfo().getPointerWidth(LangAS::Default));
1064 CharUnits PtrAlign = Context.toCharUnitsFromBits(
1065 Context.getTargetInfo().getPointerAlign(LangAS::Default));
1066 EnsureVTablePointerAlignment(PtrAlign);
1067 HasOwnVFPtr = true;
1069 assert(!IsUnion && "Unions cannot be dynamic classes.");
1070 HandledFirstNonOverlappingEmptyField = true;
1072 setSize(getSize() + PtrWidth);
1073 setDataSize(getSize());
1076 // Now lay out the non-virtual bases.
1077 for (const auto &I : RD->bases()) {
1079 // Ignore virtual bases.
1080 if (I.isVirtual())
1081 continue;
1083 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1085 // Skip the primary base, because we've already laid it out. The
1086 // !PrimaryBaseIsVirtual check is required because we might have a
1087 // non-virtual base of the same type as a primary virtual base.
1088 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1089 continue;
1091 // Lay out the base.
1092 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1093 assert(BaseInfo && "Did not find base info for non-virtual base!");
1095 LayoutNonVirtualBase(BaseInfo);
1099 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1100 const BaseSubobjectInfo *Base) {
1101 // Layout the base.
1102 CharUnits Offset = LayoutBase(Base);
1104 // Add its base class offset.
1105 assert(!Bases.count(Base->Class) && "base offset already exists!");
1106 Bases.insert(std::make_pair(Base->Class, Offset));
1108 AddPrimaryVirtualBaseOffsets(Base, Offset);
1111 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1112 const BaseSubobjectInfo *Info, CharUnits Offset) {
1113 // This base isn't interesting, it has no virtual bases.
1114 if (!Info->Class->getNumVBases())
1115 return;
1117 // First, check if we have a virtual primary base to add offsets for.
1118 if (Info->PrimaryVirtualBaseInfo) {
1119 assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1120 "Primary virtual base is not virtual!");
1121 if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1122 // Add the offset.
1123 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1124 "primary vbase offset already exists!");
1125 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1126 ASTRecordLayout::VBaseInfo(Offset, false)));
1128 // Traverse the primary virtual base.
1129 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1133 // Now go through all direct non-virtual bases.
1134 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1135 for (const BaseSubobjectInfo *Base : Info->Bases) {
1136 if (Base->IsVirtual)
1137 continue;
1139 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1140 AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1144 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1145 const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1146 const CXXRecordDecl *PrimaryBase;
1147 bool PrimaryBaseIsVirtual;
1149 if (MostDerivedClass == RD) {
1150 PrimaryBase = this->PrimaryBase;
1151 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1152 } else {
1153 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1154 PrimaryBase = Layout.getPrimaryBase();
1155 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1158 for (const CXXBaseSpecifier &Base : RD->bases()) {
1159 assert(!Base.getType()->isDependentType() &&
1160 "Cannot layout class with dependent bases.");
1162 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1164 if (Base.isVirtual()) {
1165 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1166 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1168 // Only lay out the virtual base if it's not an indirect primary base.
1169 if (!IndirectPrimaryBase) {
1170 // Only visit virtual bases once.
1171 if (!VisitedVirtualBases.insert(BaseDecl).second)
1172 continue;
1174 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1175 assert(BaseInfo && "Did not find virtual base info!");
1176 LayoutVirtualBase(BaseInfo);
1181 if (!BaseDecl->getNumVBases()) {
1182 // This base isn't interesting since it doesn't have any virtual bases.
1183 continue;
1186 LayoutVirtualBases(BaseDecl, MostDerivedClass);
1190 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1191 const BaseSubobjectInfo *Base) {
1192 assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1194 // Layout the base.
1195 CharUnits Offset = LayoutBase(Base);
1197 // Add its base class offset.
1198 assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1199 VBases.insert(std::make_pair(Base->Class,
1200 ASTRecordLayout::VBaseInfo(Offset, false)));
1202 AddPrimaryVirtualBaseOffsets(Base, Offset);
1205 CharUnits
1206 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1207 assert(!IsUnion && "Unions cannot have base classes.");
1209 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1210 CharUnits Offset;
1212 // Query the external layout to see if it provides an offset.
1213 bool HasExternalLayout = false;
1214 if (UseExternalLayout) {
1215 if (Base->IsVirtual)
1216 HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1217 else
1218 HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1221 auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) {
1222 // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1223 // Per GCC's documentation, it only applies to non-static data members.
1224 return (Packed && ((Context.getLangOpts().getClangABICompat() <=
1225 LangOptions::ClangABI::Ver6) ||
1226 Context.getTargetInfo().getTriple().isPS() ||
1227 Context.getTargetInfo().getTriple().isOSAIX()))
1228 ? CharUnits::One()
1229 : UnpackedAlign;
1232 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1233 CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment();
1234 CharUnits BaseAlign =
1235 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign);
1236 CharUnits PreferredBaseAlign =
1237 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign);
1239 const bool DefaultsToAIXPowerAlignment =
1240 Context.getTargetInfo().defaultsToAIXPowerAlignment();
1241 if (DefaultsToAIXPowerAlignment) {
1242 // AIX `power` alignment does not apply the preferred alignment for
1243 // non-union classes if the source of the alignment (the current base in
1244 // this context) follows introduction of the first subobject with
1245 // exclusively allocated space or zero-extent array.
1246 if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) {
1247 // By handling a base class that is not empty, we're handling the
1248 // "first (inherited) member".
1249 HandledFirstNonOverlappingEmptyField = true;
1250 } else if (!IsNaturalAlign) {
1251 UnpackedPreferredBaseAlign = UnpackedBaseAlign;
1252 PreferredBaseAlign = BaseAlign;
1256 CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment
1257 ? UnpackedBaseAlign
1258 : UnpackedPreferredBaseAlign;
1259 // If we have an empty base class, try to place it at offset 0.
1260 if (Base->Class->isEmpty() &&
1261 (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1262 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1263 setSize(std::max(getSize(), Layout.getSize()));
1264 // On PS4/PS5, don't update the alignment, to preserve compatibility.
1265 if (!Context.getTargetInfo().getTriple().isPS())
1266 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1268 return CharUnits::Zero();
1271 // The maximum field alignment overrides the base align/(AIX-only) preferred
1272 // base align.
1273 if (!MaxFieldAlignment.isZero()) {
1274 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1275 PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment);
1276 UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment);
1279 CharUnits AlignTo =
1280 !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign;
1281 if (!HasExternalLayout) {
1282 // Round up the current record size to the base's alignment boundary.
1283 Offset = getDataSize().alignTo(AlignTo);
1285 // Try to place the base.
1286 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1287 Offset += AlignTo;
1288 } else {
1289 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1290 (void)Allowed;
1291 assert(Allowed && "Base subobject externally placed at overlapping offset");
1293 if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) {
1294 // The externally-supplied base offset is before the base offset we
1295 // computed. Assume that the structure is packed.
1296 Alignment = CharUnits::One();
1297 InferAlignment = false;
1301 if (!Base->Class->isEmpty()) {
1302 // Update the data size.
1303 setDataSize(Offset + Layout.getNonVirtualSize());
1305 setSize(std::max(getSize(), getDataSize()));
1306 } else
1307 setSize(std::max(getSize(), Offset + Layout.getSize()));
1309 // Remember max struct/class alignment.
1310 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1312 return Offset;
1315 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1316 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1317 IsUnion = RD->isUnion();
1318 IsMsStruct = RD->isMsStruct(Context);
1321 Packed = D->hasAttr<PackedAttr>();
1323 // Honor the default struct packing maximum alignment flag.
1324 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1325 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1328 // mac68k alignment supersedes maximum field alignment and attribute aligned,
1329 // and forces all structures to have 2-byte alignment. The IBM docs on it
1330 // allude to additional (more complicated) semantics, especially with regard
1331 // to bit-fields, but gcc appears not to follow that.
1332 if (D->hasAttr<AlignMac68kAttr>()) {
1333 assert(
1334 !D->hasAttr<AlignNaturalAttr>() &&
1335 "Having both mac68k and natural alignment on a decl is not allowed.");
1336 IsMac68kAlign = true;
1337 MaxFieldAlignment = CharUnits::fromQuantity(2);
1338 Alignment = CharUnits::fromQuantity(2);
1339 PreferredAlignment = CharUnits::fromQuantity(2);
1340 } else {
1341 if (D->hasAttr<AlignNaturalAttr>())
1342 IsNaturalAlign = true;
1344 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1345 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1347 if (unsigned MaxAlign = D->getMaxAlignment())
1348 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1351 HandledFirstNonOverlappingEmptyField =
1352 !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign;
1354 // If there is an external AST source, ask it for the various offsets.
1355 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1356 if (ExternalASTSource *Source = Context.getExternalSource()) {
1357 UseExternalLayout = Source->layoutRecordType(
1358 RD, External.Size, External.Align, External.FieldOffsets,
1359 External.BaseOffsets, External.VirtualBaseOffsets);
1361 // Update based on external alignment.
1362 if (UseExternalLayout) {
1363 if (External.Align > 0) {
1364 Alignment = Context.toCharUnitsFromBits(External.Align);
1365 PreferredAlignment = Context.toCharUnitsFromBits(External.Align);
1366 } else {
1367 // The external source didn't have alignment information; infer it.
1368 InferAlignment = true;
1374 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1375 InitializeLayout(D);
1376 LayoutFields(D);
1378 // Finally, round the size of the total struct up to the alignment of the
1379 // struct itself.
1380 FinishLayout(D);
1383 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1384 InitializeLayout(RD);
1386 // Lay out the vtable and the non-virtual bases.
1387 LayoutNonVirtualBases(RD);
1389 LayoutFields(RD);
1391 NonVirtualSize = Context.toCharUnitsFromBits(
1392 llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1393 NonVirtualAlignment = Alignment;
1394 PreferredNVAlignment = PreferredAlignment;
1396 // Lay out the virtual bases and add the primary virtual base offsets.
1397 LayoutVirtualBases(RD, RD);
1399 // Finally, round the size of the total struct up to the alignment
1400 // of the struct itself.
1401 FinishLayout(RD);
1403 #ifndef NDEBUG
1404 // Check that we have base offsets for all bases.
1405 for (const CXXBaseSpecifier &Base : RD->bases()) {
1406 if (Base.isVirtual())
1407 continue;
1409 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1411 assert(Bases.count(BaseDecl) && "Did not find base offset!");
1414 // And all virtual bases.
1415 for (const CXXBaseSpecifier &Base : RD->vbases()) {
1416 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1418 assert(VBases.count(BaseDecl) && "Did not find base offset!");
1420 #endif
1423 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1424 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1425 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1427 UpdateAlignment(SL.getAlignment());
1429 // We start laying out ivars not at the end of the superclass
1430 // structure, but at the next byte following the last field.
1431 setDataSize(SL.getDataSize());
1432 setSize(getDataSize());
1435 InitializeLayout(D);
1436 // Layout each ivar sequentially.
1437 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1438 IVD = IVD->getNextIvar())
1439 LayoutField(IVD, false);
1441 // Finally, round the size of the total struct up to the alignment of the
1442 // struct itself.
1443 FinishLayout(D);
1446 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1447 // Layout each field, for now, just sequentially, respecting alignment. In
1448 // the future, this will need to be tweakable by targets.
1449 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1450 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1451 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1452 auto Next(I);
1453 ++Next;
1454 LayoutField(*I,
1455 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1459 // Rounds the specified size to have it a multiple of the char size.
1460 static uint64_t
1461 roundUpSizeToCharAlignment(uint64_t Size,
1462 const ASTContext &Context) {
1463 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1464 return llvm::alignTo(Size, CharAlignment);
1467 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1468 uint64_t StorageUnitSize,
1469 bool FieldPacked,
1470 const FieldDecl *D) {
1471 assert(Context.getLangOpts().CPlusPlus &&
1472 "Can only have wide bit-fields in C++!");
1474 // Itanium C++ ABI 2.4:
1475 // If sizeof(T)*8 < n, let T' be the largest integral POD type with
1476 // sizeof(T')*8 <= n.
1478 QualType IntegralPODTypes[] = {
1479 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1480 Context.UnsignedLongTy, Context.UnsignedLongLongTy
1483 QualType Type;
1484 for (const QualType &QT : IntegralPODTypes) {
1485 uint64_t Size = Context.getTypeSize(QT);
1487 if (Size > FieldSize)
1488 break;
1490 Type = QT;
1492 assert(!Type.isNull() && "Did not find a type!");
1494 CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1496 // We're not going to use any of the unfilled bits in the last byte.
1497 UnfilledBitsInLastUnit = 0;
1498 LastBitfieldStorageUnitSize = 0;
1500 uint64_t FieldOffset;
1501 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1503 if (IsUnion) {
1504 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1505 Context);
1506 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1507 FieldOffset = 0;
1508 } else {
1509 // The bitfield is allocated starting at the next offset aligned
1510 // appropriately for T', with length n bits.
1511 FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1513 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1515 setDataSize(
1516 llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1517 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1520 // Place this field at the current location.
1521 FieldOffsets.push_back(FieldOffset);
1523 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1524 Context.toBits(TypeAlign), FieldPacked, D);
1526 // Update the size.
1527 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1529 // Remember max struct/class alignment.
1530 UpdateAlignment(TypeAlign);
1533 static bool isAIXLayout(const ASTContext &Context) {
1534 return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX;
1537 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1538 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1539 uint64_t FieldSize = D->getBitWidthValue(Context);
1540 TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1541 uint64_t StorageUnitSize = FieldInfo.Width;
1542 unsigned FieldAlign = FieldInfo.Align;
1543 bool AlignIsRequired = FieldInfo.isAlignRequired();
1545 // UnfilledBitsInLastUnit is the difference between the end of the
1546 // last allocated bitfield (i.e. the first bit offset available for
1547 // bitfields) and the end of the current data size in bits (i.e. the
1548 // first bit offset available for non-bitfields). The current data
1549 // size in bits is always a multiple of the char size; additionally,
1550 // for ms_struct records it's also a multiple of the
1551 // LastBitfieldStorageUnitSize (if set).
1553 // The struct-layout algorithm is dictated by the platform ABI,
1554 // which in principle could use almost any rules it likes. In
1555 // practice, UNIXy targets tend to inherit the algorithm described
1556 // in the System V generic ABI. The basic bitfield layout rule in
1557 // System V is to place bitfields at the next available bit offset
1558 // where the entire bitfield would fit in an aligned storage unit of
1559 // the declared type; it's okay if an earlier or later non-bitfield
1560 // is allocated in the same storage unit. However, some targets
1561 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1562 // require this storage unit to be aligned, and therefore always put
1563 // the bitfield at the next available bit offset.
1565 // ms_struct basically requests a complete replacement of the
1566 // platform ABI's struct-layout algorithm, with the high-level goal
1567 // of duplicating MSVC's layout. For non-bitfields, this follows
1568 // the standard algorithm. The basic bitfield layout rule is to
1569 // allocate an entire unit of the bitfield's declared type
1570 // (e.g. 'unsigned long'), then parcel it up among successive
1571 // bitfields whose declared types have the same size, making a new
1572 // unit as soon as the last can no longer store the whole value.
1573 // Since it completely replaces the platform ABI's algorithm,
1574 // settings like !useBitFieldTypeAlignment() do not apply.
1576 // A zero-width bitfield forces the use of a new storage unit for
1577 // later bitfields. In general, this occurs by rounding up the
1578 // current size of the struct as if the algorithm were about to
1579 // place a non-bitfield of the field's formal type. Usually this
1580 // does not change the alignment of the struct itself, but it does
1581 // on some targets (those that useZeroLengthBitfieldAlignment(),
1582 // e.g. ARM). In ms_struct layout, zero-width bitfields are
1583 // ignored unless they follow a non-zero-width bitfield.
1585 // A field alignment restriction (e.g. from #pragma pack) or
1586 // specification (e.g. from __attribute__((aligned))) changes the
1587 // formal alignment of the field. For System V, this alters the
1588 // required alignment of the notional storage unit that must contain
1589 // the bitfield. For ms_struct, this only affects the placement of
1590 // new storage units. In both cases, the effect of #pragma pack is
1591 // ignored on zero-width bitfields.
1593 // On System V, a packed field (e.g. from #pragma pack or
1594 // __attribute__((packed))) always uses the next available bit
1595 // offset.
1597 // In an ms_struct struct, the alignment of a fundamental type is
1598 // always equal to its size. This is necessary in order to mimic
1599 // the i386 alignment rules on targets which might not fully align
1600 // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1602 // First, some simple bookkeeping to perform for ms_struct structs.
1603 if (IsMsStruct) {
1604 // The field alignment for integer types is always the size.
1605 FieldAlign = StorageUnitSize;
1607 // If the previous field was not a bitfield, or was a bitfield
1608 // with a different storage unit size, or if this field doesn't fit into
1609 // the current storage unit, we're done with that storage unit.
1610 if (LastBitfieldStorageUnitSize != StorageUnitSize ||
1611 UnfilledBitsInLastUnit < FieldSize) {
1612 // Also, ignore zero-length bitfields after non-bitfields.
1613 if (!LastBitfieldStorageUnitSize && !FieldSize)
1614 FieldAlign = 1;
1616 UnfilledBitsInLastUnit = 0;
1617 LastBitfieldStorageUnitSize = 0;
1621 if (isAIXLayout(Context)) {
1622 if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) {
1623 // On AIX, [bool, char, short] bitfields have the same alignment
1624 // as [unsigned].
1625 StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy);
1626 } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) &&
1627 Context.getTargetInfo().getTriple().isArch32Bit() &&
1628 FieldSize <= 32) {
1629 // Under 32-bit compile mode, the bitcontainer is 32 bits if a single
1630 // long long bitfield has length no greater than 32 bits.
1631 StorageUnitSize = 32;
1633 if (!AlignIsRequired)
1634 FieldAlign = 32;
1637 if (FieldAlign < StorageUnitSize) {
1638 // The bitfield alignment should always be greater than or equal to
1639 // bitcontainer size.
1640 FieldAlign = StorageUnitSize;
1644 // If the field is wider than its declared type, it follows
1645 // different rules in all cases, except on AIX.
1646 // On AIX, wide bitfield follows the same rules as normal bitfield.
1647 if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) {
1648 LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D);
1649 return;
1652 // Compute the next available bit offset.
1653 uint64_t FieldOffset =
1654 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1656 // Handle targets that don't honor bitfield type alignment.
1657 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1658 // Some such targets do honor it on zero-width bitfields.
1659 if (FieldSize == 0 &&
1660 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1661 // Some targets don't honor leading zero-width bitfield.
1662 if (!IsUnion && FieldOffset == 0 &&
1663 !Context.getTargetInfo().useLeadingZeroLengthBitfield())
1664 FieldAlign = 1;
1665 else {
1666 // The alignment to round up to is the max of the field's natural
1667 // alignment and a target-specific fixed value (sometimes zero).
1668 unsigned ZeroLengthBitfieldBoundary =
1669 Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1670 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1672 // If that doesn't apply, just ignore the field alignment.
1673 } else {
1674 FieldAlign = 1;
1678 // Remember the alignment we would have used if the field were not packed.
1679 unsigned UnpackedFieldAlign = FieldAlign;
1681 // Ignore the field alignment if the field is packed unless it has zero-size.
1682 if (!IsMsStruct && FieldPacked && FieldSize != 0)
1683 FieldAlign = 1;
1685 // But, if there's an 'aligned' attribute on the field, honor that.
1686 unsigned ExplicitFieldAlign = D->getMaxAlignment();
1687 if (ExplicitFieldAlign) {
1688 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1689 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1692 // But, if there's a #pragma pack in play, that takes precedent over
1693 // even the 'aligned' attribute, for non-zero-width bitfields.
1694 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1695 if (!MaxFieldAlignment.isZero() && FieldSize) {
1696 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1697 if (FieldPacked)
1698 FieldAlign = UnpackedFieldAlign;
1699 else
1700 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1703 // But, ms_struct just ignores all of that in unions, even explicit
1704 // alignment attributes.
1705 if (IsMsStruct && IsUnion) {
1706 FieldAlign = UnpackedFieldAlign = 1;
1709 // For purposes of diagnostics, we're going to simultaneously
1710 // compute the field offsets that we would have used if we weren't
1711 // adding any alignment padding or if the field weren't packed.
1712 uint64_t UnpaddedFieldOffset = FieldOffset;
1713 uint64_t UnpackedFieldOffset = FieldOffset;
1715 // Check if we need to add padding to fit the bitfield within an
1716 // allocation unit with the right size and alignment. The rules are
1717 // somewhat different here for ms_struct structs.
1718 if (IsMsStruct) {
1719 // If it's not a zero-width bitfield, and we can fit the bitfield
1720 // into the active storage unit (and we haven't already decided to
1721 // start a new storage unit), just do so, regardless of any other
1722 // other consideration. Otherwise, round up to the right alignment.
1723 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1724 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1725 UnpackedFieldOffset =
1726 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1727 UnfilledBitsInLastUnit = 0;
1730 } else {
1731 // #pragma pack, with any value, suppresses the insertion of padding.
1732 bool AllowPadding = MaxFieldAlignment.isZero();
1734 // Compute the real offset.
1735 if (FieldSize == 0 ||
1736 (AllowPadding &&
1737 (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) {
1738 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1739 } else if (ExplicitFieldAlign &&
1740 (MaxFieldAlignmentInBits == 0 ||
1741 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1742 Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1743 // TODO: figure it out what needs to be done on targets that don't honor
1744 // bit-field type alignment like ARM APCS ABI.
1745 FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1748 // Repeat the computation for diagnostic purposes.
1749 if (FieldSize == 0 ||
1750 (AllowPadding &&
1751 (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize >
1752 StorageUnitSize))
1753 UnpackedFieldOffset =
1754 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1755 else if (ExplicitFieldAlign &&
1756 (MaxFieldAlignmentInBits == 0 ||
1757 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1758 Context.getTargetInfo().useExplicitBitFieldAlignment())
1759 UnpackedFieldOffset =
1760 llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1763 // If we're using external layout, give the external layout a chance
1764 // to override this information.
1765 if (UseExternalLayout)
1766 FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1768 // Okay, place the bitfield at the calculated offset.
1769 FieldOffsets.push_back(FieldOffset);
1771 // Bookkeeping:
1773 // Anonymous members don't affect the overall record alignment,
1774 // except on targets where they do.
1775 if (!IsMsStruct &&
1776 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1777 !D->getIdentifier())
1778 FieldAlign = UnpackedFieldAlign = 1;
1780 // On AIX, zero-width bitfields pad out to the natural alignment boundary,
1781 // but do not increase the alignment greater than the MaxFieldAlignment, or 1
1782 // if packed.
1783 if (isAIXLayout(Context) && !FieldSize) {
1784 if (FieldPacked)
1785 FieldAlign = 1;
1786 if (!MaxFieldAlignment.isZero()) {
1787 UnpackedFieldAlign =
1788 std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1789 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1793 // Diagnose differences in layout due to padding or packing.
1794 if (!UseExternalLayout)
1795 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1796 UnpackedFieldAlign, FieldPacked, D);
1798 // Update DataSize to include the last byte containing (part of) the bitfield.
1800 // For unions, this is just a max operation, as usual.
1801 if (IsUnion) {
1802 // For ms_struct, allocate the entire storage unit --- unless this
1803 // is a zero-width bitfield, in which case just use a size of 1.
1804 uint64_t RoundedFieldSize;
1805 if (IsMsStruct) {
1806 RoundedFieldSize = (FieldSize ? StorageUnitSize
1807 : Context.getTargetInfo().getCharWidth());
1809 // Otherwise, allocate just the number of bytes required to store
1810 // the bitfield.
1811 } else {
1812 RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1814 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1816 // For non-zero-width bitfields in ms_struct structs, allocate a new
1817 // storage unit if necessary.
1818 } else if (IsMsStruct && FieldSize) {
1819 // We should have cleared UnfilledBitsInLastUnit in every case
1820 // where we changed storage units.
1821 if (!UnfilledBitsInLastUnit) {
1822 setDataSize(FieldOffset + StorageUnitSize);
1823 UnfilledBitsInLastUnit = StorageUnitSize;
1825 UnfilledBitsInLastUnit -= FieldSize;
1826 LastBitfieldStorageUnitSize = StorageUnitSize;
1828 // Otherwise, bump the data size up to include the bitfield,
1829 // including padding up to char alignment, and then remember how
1830 // bits we didn't use.
1831 } else {
1832 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1833 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1834 setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1835 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1837 // The only time we can get here for an ms_struct is if this is a
1838 // zero-width bitfield, which doesn't count as anything for the
1839 // purposes of unfilled bits.
1840 LastBitfieldStorageUnitSize = 0;
1843 // Update the size.
1844 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1846 // Remember max struct/class alignment.
1847 UnadjustedAlignment =
1848 std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1849 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1850 Context.toCharUnitsFromBits(UnpackedFieldAlign));
1853 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1854 bool InsertExtraPadding) {
1855 auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1856 bool IsOverlappingEmptyField =
1857 D->isPotentiallyOverlapping() && FieldClass->isEmpty();
1859 CharUnits FieldOffset =
1860 (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize();
1862 const bool DefaultsToAIXPowerAlignment =
1863 Context.getTargetInfo().defaultsToAIXPowerAlignment();
1864 bool FoundFirstNonOverlappingEmptyFieldForAIX = false;
1865 if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) {
1866 assert(FieldOffset == CharUnits::Zero() &&
1867 "The first non-overlapping empty field should have been handled.");
1869 if (!IsOverlappingEmptyField) {
1870 FoundFirstNonOverlappingEmptyFieldForAIX = true;
1872 // We're going to handle the "first member" based on
1873 // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1874 // invocation of this function; record it as handled for future
1875 // invocations (except for unions, because the current field does not
1876 // represent all "firsts").
1877 HandledFirstNonOverlappingEmptyField = !IsUnion;
1881 if (D->isBitField()) {
1882 LayoutBitField(D);
1883 return;
1886 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1887 // Reset the unfilled bits.
1888 UnfilledBitsInLastUnit = 0;
1889 LastBitfieldStorageUnitSize = 0;
1891 llvm::Triple Target = Context.getTargetInfo().getTriple();
1893 AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1894 CharUnits FieldSize;
1895 CharUnits FieldAlign;
1896 // The amount of this class's dsize occupied by the field.
1897 // This is equal to FieldSize unless we're permitted to pack
1898 // into the field's tail padding.
1899 CharUnits EffectiveFieldSize;
1901 auto setDeclInfo = [&](bool IsIncompleteArrayType) {
1902 auto TI = Context.getTypeInfoInChars(D->getType());
1903 FieldAlign = TI.Align;
1904 // Flexible array members don't have any size, but they have to be
1905 // aligned appropriately for their element type.
1906 EffectiveFieldSize = FieldSize =
1907 IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
1908 AlignRequirement = TI.AlignRequirement;
1911 if (D->getType()->isIncompleteArrayType()) {
1912 setDeclInfo(true /* IsIncompleteArrayType */);
1913 } else {
1914 setDeclInfo(false /* IsIncompleteArrayType */);
1916 // A potentially-overlapping field occupies its dsize or nvsize, whichever
1917 // is larger.
1918 if (D->isPotentiallyOverlapping()) {
1919 const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1920 EffectiveFieldSize =
1921 std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1924 if (IsMsStruct) {
1925 // If MS bitfield layout is required, figure out what type is being
1926 // laid out and align the field to the width of that type.
1928 // Resolve all typedefs down to their base type and round up the field
1929 // alignment if necessary.
1930 QualType T = Context.getBaseElementType(D->getType());
1931 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1932 CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1934 if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1935 assert(
1936 !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1937 "Non PowerOf2 size in MSVC mode");
1938 // Base types with sizes that aren't a power of two don't work
1939 // with the layout rules for MS structs. This isn't an issue in
1940 // MSVC itself since there are no such base data types there.
1941 // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1942 // Any structs involving that data type obviously can't be ABI
1943 // compatible with MSVC regardless of how it is laid out.
1945 // Since ms_struct can be mass enabled (via a pragma or via the
1946 // -mms-bitfields command line parameter), this can trigger for
1947 // structs that don't actually need MSVC compatibility, so we
1948 // need to be able to sidestep the ms_struct layout for these types.
1950 // Since the combination of -mms-bitfields together with structs
1951 // like max_align_t (which contains a long double) for mingw is
1952 // quite common (and GCC handles it silently), just handle it
1953 // silently there. For other targets that have ms_struct enabled
1954 // (most probably via a pragma or attribute), trigger a diagnostic
1955 // that defaults to an error.
1956 if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1957 Diag(D->getLocation(), diag::warn_npot_ms_struct);
1959 if (TypeSize > FieldAlign &&
1960 llvm::isPowerOf2_64(TypeSize.getQuantity()))
1961 FieldAlign = TypeSize;
1966 bool FieldPacked = (Packed && (!FieldClass || FieldClass->isPOD() ||
1967 FieldClass->hasAttr<PackedAttr>() ||
1968 Context.getLangOpts().getClangABICompat() <=
1969 LangOptions::ClangABI::Ver15 ||
1970 Target.isPS() || Target.isOSDarwin() ||
1971 Target.isOSAIX())) ||
1972 D->hasAttr<PackedAttr>();
1974 // When used as part of a typedef, or together with a 'packed' attribute, the
1975 // 'aligned' attribute can be used to decrease alignment. In that case, it
1976 // overrides any computed alignment we have, and there is no need to upgrade
1977 // the alignment.
1978 auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] {
1979 // Enum alignment sources can be safely ignored here, because this only
1980 // helps decide whether we need the AIX alignment upgrade, which only
1981 // applies to floating-point types.
1982 return AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
1983 (AlignRequirement == AlignRequirementKind::RequiredByRecord &&
1984 FieldPacked);
1987 // The AIX `power` alignment rules apply the natural alignment of the
1988 // "first member" if it is of a floating-point data type (or is an aggregate
1989 // whose recursively "first" member or element is such a type). The alignment
1990 // associated with these types for subsequent members use an alignment value
1991 // where the floating-point data type is considered to have 4-byte alignment.
1993 // For the purposes of the foregoing: vtable pointers, non-empty base classes,
1994 // and zero-width bit-fields count as prior members; members of empty class
1995 // types marked `no_unique_address` are not considered to be prior members.
1996 CharUnits PreferredAlign = FieldAlign;
1997 if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() &&
1998 (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) {
1999 auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) {
2000 if (BTy->getKind() == BuiltinType::Double ||
2001 BTy->getKind() == BuiltinType::LongDouble) {
2002 assert(PreferredAlign == CharUnits::fromQuantity(4) &&
2003 "No need to upgrade the alignment value.");
2004 PreferredAlign = CharUnits::fromQuantity(8);
2008 const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe();
2009 if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) {
2010 performBuiltinTypeAlignmentUpgrade(
2011 CTy->getElementType()->castAs<BuiltinType>());
2012 } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) {
2013 performBuiltinTypeAlignmentUpgrade(BTy);
2014 } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
2015 const RecordDecl *RD = RT->getDecl();
2016 assert(RD && "Expected non-null RecordDecl.");
2017 const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD);
2018 PreferredAlign = FieldRecord.getPreferredAlignment();
2022 // The align if the field is not packed. This is to check if the attribute
2023 // was unnecessary (-Wpacked).
2024 CharUnits UnpackedFieldAlign = FieldAlign;
2025 CharUnits PackedFieldAlign = CharUnits::One();
2026 CharUnits UnpackedFieldOffset = FieldOffset;
2027 CharUnits OriginalFieldAlign = UnpackedFieldAlign;
2029 CharUnits MaxAlignmentInChars =
2030 Context.toCharUnitsFromBits(D->getMaxAlignment());
2031 PackedFieldAlign = std::max(PackedFieldAlign, MaxAlignmentInChars);
2032 PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars);
2033 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
2035 // The maximum field alignment overrides the aligned attribute.
2036 if (!MaxFieldAlignment.isZero()) {
2037 PackedFieldAlign = std::min(PackedFieldAlign, MaxFieldAlignment);
2038 PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment);
2039 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
2043 if (!FieldPacked)
2044 FieldAlign = UnpackedFieldAlign;
2045 if (DefaultsToAIXPowerAlignment)
2046 UnpackedFieldAlign = PreferredAlign;
2047 if (FieldPacked) {
2048 PreferredAlign = PackedFieldAlign;
2049 FieldAlign = PackedFieldAlign;
2052 CharUnits AlignTo =
2053 !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2054 // Round up the current record size to the field's alignment boundary.
2055 FieldOffset = FieldOffset.alignTo(AlignTo);
2056 UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
2058 if (UseExternalLayout) {
2059 FieldOffset = Context.toCharUnitsFromBits(
2060 updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
2062 if (!IsUnion && EmptySubobjects) {
2063 // Record the fact that we're placing a field at this offset.
2064 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
2065 (void)Allowed;
2066 assert(Allowed && "Externally-placed field cannot be placed here");
2068 } else {
2069 if (!IsUnion && EmptySubobjects) {
2070 // Check if we can place the field at this offset.
2071 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
2072 // We couldn't place the field at the offset. Try again at a new offset.
2073 // We try offset 0 (for an empty field) and then dsize(C) onwards.
2074 if (FieldOffset == CharUnits::Zero() &&
2075 getDataSize() != CharUnits::Zero())
2076 FieldOffset = getDataSize().alignTo(AlignTo);
2077 else
2078 FieldOffset += AlignTo;
2083 // Place this field at the current location.
2084 FieldOffsets.push_back(Context.toBits(FieldOffset));
2086 if (!UseExternalLayout)
2087 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2088 Context.toBits(UnpackedFieldOffset),
2089 Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2091 if (InsertExtraPadding) {
2092 CharUnits ASanAlignment = CharUnits::fromQuantity(8);
2093 CharUnits ExtraSizeForAsan = ASanAlignment;
2094 if (FieldSize % ASanAlignment)
2095 ExtraSizeForAsan +=
2096 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
2097 EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
2100 // Reserve space for this field.
2101 if (!IsOverlappingEmptyField) {
2102 uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
2103 if (IsUnion)
2104 setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
2105 else
2106 setDataSize(FieldOffset + EffectiveFieldSize);
2108 PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
2109 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2110 } else {
2111 setSize(std::max(getSizeInBits(),
2112 (uint64_t)Context.toBits(FieldOffset + FieldSize)));
2115 // Remember max struct/class ABI-specified alignment.
2116 UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
2117 UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign);
2119 // For checking the alignment of inner fields against
2120 // the alignment of its parent record.
2121 if (const RecordDecl *RD = D->getParent()) {
2122 // Check if packed attribute or pragma pack is present.
2123 if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero())
2124 if (FieldAlign < OriginalFieldAlign)
2125 if (D->getType()->isRecordType()) {
2126 // If the offset is a multiple of the alignment of
2127 // the type, raise the warning.
2128 // TODO: Takes no account the alignment of the outer struct
2129 if (FieldOffset % OriginalFieldAlign != 0)
2130 Diag(D->getLocation(), diag::warn_unaligned_access)
2131 << Context.getTypeDeclType(RD) << D->getName() << D->getType();
2135 if (Packed && !FieldPacked && PackedFieldAlign < FieldAlign)
2136 Diag(D->getLocation(), diag::warn_unpacked_field) << D;
2139 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2140 // In C++, records cannot be of size 0.
2141 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2142 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2143 // Compatibility with gcc requires a class (pod or non-pod)
2144 // which is not empty but of size 0; such as having fields of
2145 // array of zero-length, remains of Size 0
2146 if (RD->isEmpty())
2147 setSize(CharUnits::One());
2149 else
2150 setSize(CharUnits::One());
2153 // If we have any remaining field tail padding, include that in the overall
2154 // size.
2155 setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
2157 // Finally, round the size of the record up to the alignment of the
2158 // record itself.
2159 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
2160 uint64_t UnpackedSizeInBits =
2161 llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
2163 uint64_t RoundedSize = llvm::alignTo(
2164 getSizeInBits(),
2165 Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment()
2166 ? Alignment
2167 : PreferredAlignment));
2169 if (UseExternalLayout) {
2170 // If we're inferring alignment, and the external size is smaller than
2171 // our size after we've rounded up to alignment, conservatively set the
2172 // alignment to 1.
2173 if (InferAlignment && External.Size < RoundedSize) {
2174 Alignment = CharUnits::One();
2175 PreferredAlignment = CharUnits::One();
2176 InferAlignment = false;
2178 setSize(External.Size);
2179 return;
2182 // Set the size to the final size.
2183 setSize(RoundedSize);
2185 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2186 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2187 // Warn if padding was introduced to the struct/class/union.
2188 if (getSizeInBits() > UnpaddedSize) {
2189 unsigned PadSize = getSizeInBits() - UnpaddedSize;
2190 bool InBits = true;
2191 if (PadSize % CharBitNum == 0) {
2192 PadSize = PadSize / CharBitNum;
2193 InBits = false;
2195 Diag(RD->getLocation(), diag::warn_padded_struct_size)
2196 << Context.getTypeDeclType(RD)
2197 << PadSize
2198 << (InBits ? 1 : 0); // (byte|bit)
2201 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
2203 // Warn if we packed it unnecessarily, when the unpacked alignment is not
2204 // greater than the one after packing, the size in bits doesn't change and
2205 // the offset of each field is identical.
2206 // Unless the type is non-POD (for Clang ABI > 15), where the packed
2207 // attribute on such a type does allow the type to be packed into other
2208 // structures that use the packed attribute.
2209 if (Packed && UnpackedAlignment <= Alignment &&
2210 UnpackedSizeInBits == getSizeInBits() && !HasPackedField &&
2211 (!CXXRD || CXXRD->isPOD() ||
2212 Context.getLangOpts().getClangABICompat() <=
2213 LangOptions::ClangABI::Ver15))
2214 Diag(D->getLocation(), diag::warn_unnecessary_packed)
2215 << Context.getTypeDeclType(RD);
2219 void ItaniumRecordLayoutBuilder::UpdateAlignment(
2220 CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
2221 CharUnits PreferredNewAlignment) {
2222 // The alignment is not modified when using 'mac68k' alignment or when
2223 // we have an externally-supplied layout that also provides overall alignment.
2224 if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
2225 return;
2227 if (NewAlignment > Alignment) {
2228 assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
2229 "Alignment not a power of 2");
2230 Alignment = NewAlignment;
2233 if (UnpackedNewAlignment > UnpackedAlignment) {
2234 assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
2235 "Alignment not a power of 2");
2236 UnpackedAlignment = UnpackedNewAlignment;
2239 if (PreferredNewAlignment > PreferredAlignment) {
2240 assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&
2241 "Alignment not a power of 2");
2242 PreferredAlignment = PreferredNewAlignment;
2246 uint64_t
2247 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2248 uint64_t ComputedOffset) {
2249 uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2251 if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2252 // The externally-supplied field offset is before the field offset we
2253 // computed. Assume that the structure is packed.
2254 Alignment = CharUnits::One();
2255 PreferredAlignment = CharUnits::One();
2256 InferAlignment = false;
2259 // Use the externally-supplied field offset.
2260 return ExternalFieldOffset;
2263 /// Get diagnostic %select index for tag kind for
2264 /// field padding diagnostic message.
2265 /// WARNING: Indexes apply to particular diagnostics only!
2267 /// \returns diagnostic %select index.
2268 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2269 switch (Tag) {
2270 case TTK_Struct: return 0;
2271 case TTK_Interface: return 1;
2272 case TTK_Class: return 2;
2273 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2277 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2278 uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2279 unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2280 // We let objc ivars without warning, objc interfaces generally are not used
2281 // for padding tricks.
2282 if (isa<ObjCIvarDecl>(D))
2283 return;
2285 // Don't warn about structs created without a SourceLocation. This can
2286 // be done by clients of the AST, such as codegen.
2287 if (D->getLocation().isInvalid())
2288 return;
2290 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2292 // Warn if padding was introduced to the struct/class.
2293 if (!IsUnion && Offset > UnpaddedOffset) {
2294 unsigned PadSize = Offset - UnpaddedOffset;
2295 bool InBits = true;
2296 if (PadSize % CharBitNum == 0) {
2297 PadSize = PadSize / CharBitNum;
2298 InBits = false;
2300 if (D->getIdentifier())
2301 Diag(D->getLocation(), diag::warn_padded_struct_field)
2302 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2303 << Context.getTypeDeclType(D->getParent())
2304 << PadSize
2305 << (InBits ? 1 : 0) // (byte|bit)
2306 << D->getIdentifier();
2307 else
2308 Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2309 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2310 << Context.getTypeDeclType(D->getParent())
2311 << PadSize
2312 << (InBits ? 1 : 0); // (byte|bit)
2314 if (isPacked && Offset != UnpackedOffset) {
2315 HasPackedField = true;
2319 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2320 const CXXRecordDecl *RD) {
2321 // If a class isn't polymorphic it doesn't have a key function.
2322 if (!RD->isPolymorphic())
2323 return nullptr;
2325 // A class that is not externally visible doesn't have a key function. (Or
2326 // at least, there's no point to assigning a key function to such a class;
2327 // this doesn't affect the ABI.)
2328 if (!RD->isExternallyVisible())
2329 return nullptr;
2331 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2332 // Same behavior as GCC.
2333 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2334 if (TSK == TSK_ImplicitInstantiation ||
2335 TSK == TSK_ExplicitInstantiationDeclaration ||
2336 TSK == TSK_ExplicitInstantiationDefinition)
2337 return nullptr;
2339 bool allowInlineFunctions =
2340 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2342 for (const CXXMethodDecl *MD : RD->methods()) {
2343 if (!MD->isVirtual())
2344 continue;
2346 if (MD->isPure())
2347 continue;
2349 // Ignore implicit member functions, they are always marked as inline, but
2350 // they don't have a body until they're defined.
2351 if (MD->isImplicit())
2352 continue;
2354 if (MD->isInlineSpecified() || MD->isConstexpr())
2355 continue;
2357 if (MD->hasInlineBody())
2358 continue;
2360 // Ignore inline deleted or defaulted functions.
2361 if (!MD->isUserProvided())
2362 continue;
2364 // In certain ABIs, ignore functions with out-of-line inline definitions.
2365 if (!allowInlineFunctions) {
2366 const FunctionDecl *Def;
2367 if (MD->hasBody(Def) && Def->isInlineSpecified())
2368 continue;
2371 if (Context.getLangOpts().CUDA) {
2372 // While compiler may see key method in this TU, during CUDA
2373 // compilation we should ignore methods that are not accessible
2374 // on this side of compilation.
2375 if (Context.getLangOpts().CUDAIsDevice) {
2376 // In device mode ignore methods without __device__ attribute.
2377 if (!MD->hasAttr<CUDADeviceAttr>())
2378 continue;
2379 } else {
2380 // In host mode ignore __device__-only methods.
2381 if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2382 continue;
2386 // If the key function is dllimport but the class isn't, then the class has
2387 // no key function. The DLL that exports the key function won't export the
2388 // vtable in this case.
2389 if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() &&
2390 !Context.getTargetInfo().hasPS4DLLImportExport())
2391 return nullptr;
2393 // We found it.
2394 return MD;
2397 return nullptr;
2400 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2401 unsigned DiagID) {
2402 return Context.getDiagnostics().Report(Loc, DiagID);
2405 /// Does the target C++ ABI require us to skip over the tail-padding
2406 /// of the given class (considering it as a base class) when allocating
2407 /// objects?
2408 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2409 switch (ABI.getTailPaddingUseRules()) {
2410 case TargetCXXABI::AlwaysUseTailPadding:
2411 return false;
2413 case TargetCXXABI::UseTailPaddingUnlessPOD03:
2414 // FIXME: To the extent that this is meant to cover the Itanium ABI
2415 // rules, we should implement the restrictions about over-sized
2416 // bitfields:
2418 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2419 // In general, a type is considered a POD for the purposes of
2420 // layout if it is a POD type (in the sense of ISO C++
2421 // [basic.types]). However, a POD-struct or POD-union (in the
2422 // sense of ISO C++ [class]) with a bitfield member whose
2423 // declared width is wider than the declared type of the
2424 // bitfield is not a POD for the purpose of layout. Similarly,
2425 // an array type is not a POD for the purpose of layout if the
2426 // element type of the array is not a POD for the purpose of
2427 // layout.
2429 // Where references to the ISO C++ are made in this paragraph,
2430 // the Technical Corrigendum 1 version of the standard is
2431 // intended.
2432 return RD->isPOD();
2434 case TargetCXXABI::UseTailPaddingUnlessPOD11:
2435 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2436 // but with a lot of abstraction penalty stripped off. This does
2437 // assume that these properties are set correctly even in C++98
2438 // mode; fortunately, that is true because we want to assign
2439 // consistently semantics to the type-traits intrinsics (or at
2440 // least as many of them as possible).
2441 return RD->isTrivial() && RD->isCXX11StandardLayout();
2444 llvm_unreachable("bad tail-padding use kind");
2447 static bool isMsLayout(const ASTContext &Context) {
2448 return Context.getTargetInfo().getCXXABI().isMicrosoft();
2451 // This section contains an implementation of struct layout that is, up to the
2452 // included tests, compatible with cl.exe (2013). The layout produced is
2453 // significantly different than those produced by the Itanium ABI. Here we note
2454 // the most important differences.
2456 // * The alignment of bitfields in unions is ignored when computing the
2457 // alignment of the union.
2458 // * The existence of zero-width bitfield that occurs after anything other than
2459 // a non-zero length bitfield is ignored.
2460 // * There is no explicit primary base for the purposes of layout. All bases
2461 // with vfptrs are laid out first, followed by all bases without vfptrs.
2462 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2463 // function pointer) and a vbptr (virtual base pointer). They can each be
2464 // shared with a, non-virtual bases. These bases need not be the same. vfptrs
2465 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are
2466 // placed after the lexicographically last non-virtual base. This placement
2467 // is always before fields but can be in the middle of the non-virtual bases
2468 // due to the two-pass layout scheme for non-virtual-bases.
2469 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2470 // the virtual base and is used in conjunction with virtual overrides during
2471 // construction and destruction. This is always a 4 byte value and is used as
2472 // an alternative to constructor vtables.
2473 // * vtordisps are allocated in a block of memory with size and alignment equal
2474 // to the alignment of the completed structure (before applying __declspec(
2475 // align())). The vtordisp always occur at the end of the allocation block,
2476 // immediately prior to the virtual base.
2477 // * vfptrs are injected after all bases and fields have been laid out. In
2478 // order to guarantee proper alignment of all fields, the vfptr injection
2479 // pushes all bases and fields back by the alignment imposed by those bases
2480 // and fields. This can potentially add a significant amount of padding.
2481 // vfptrs are always injected at offset 0.
2482 // * vbptrs are injected after all bases and fields have been laid out. In
2483 // order to guarantee proper alignment of all fields, the vfptr injection
2484 // pushes all bases and fields back by the alignment imposed by those bases
2485 // and fields. This can potentially add a significant amount of padding.
2486 // vbptrs are injected immediately after the last non-virtual base as
2487 // lexicographically ordered in the code. If this site isn't pointer aligned
2488 // the vbptr is placed at the next properly aligned location. Enough padding
2489 // is added to guarantee a fit.
2490 // * The last zero sized non-virtual base can be placed at the end of the
2491 // struct (potentially aliasing another object), or may alias with the first
2492 // field, even if they are of the same type.
2493 // * The last zero size virtual base may be placed at the end of the struct
2494 // potentially aliasing another object.
2495 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2496 // between bases or vbases with specific properties. The criteria for
2497 // additional padding between two bases is that the first base is zero sized
2498 // or ends with a zero sized subobject and the second base is zero sized or
2499 // trails with a zero sized base or field (sharing of vfptrs can reorder the
2500 // layout of the so the leading base is not always the first one declared).
2501 // This rule does take into account fields that are not records, so padding
2502 // will occur even if the last field is, e.g. an int. The padding added for
2503 // bases is 1 byte. The padding added between vbases depends on the alignment
2504 // of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2505 // * There is no concept of non-virtual alignment, non-virtual alignment and
2506 // alignment are always identical.
2507 // * There is a distinction between alignment and required alignment.
2508 // __declspec(align) changes the required alignment of a struct. This
2509 // alignment is _always_ obeyed, even in the presence of #pragma pack. A
2510 // record inherits required alignment from all of its fields and bases.
2511 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2512 // alignment instead of its required alignment. This is the only known way
2513 // to make the alignment of a struct bigger than 8. Interestingly enough
2514 // this alignment is also immune to the effects of #pragma pack and can be
2515 // used to create structures with large alignment under #pragma pack.
2516 // However, because it does not impact required alignment, such a structure,
2517 // when used as a field or base, will not be aligned if #pragma pack is
2518 // still active at the time of use.
2520 // Known incompatibilities:
2521 // * all: #pragma pack between fields in a record
2522 // * 2010 and back: If the last field in a record is a bitfield, every object
2523 // laid out after the record will have extra padding inserted before it. The
2524 // extra padding will have size equal to the size of the storage class of the
2525 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra
2526 // padding can be avoided by adding a 0 sized bitfield after the non-zero-
2527 // sized bitfield.
2528 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2529 // greater due to __declspec(align()) then a second layout phase occurs after
2530 // The locations of the vf and vb pointers are known. This layout phase
2531 // suffers from the "last field is a bitfield" bug in 2010 and results in
2532 // _every_ field getting padding put in front of it, potentially including the
2533 // vfptr, leaving the vfprt at a non-zero location which results in a fault if
2534 // anything tries to read the vftbl. The second layout phase also treats
2535 // bitfields as separate entities and gives them each storage rather than
2536 // packing them. Additionally, because this phase appears to perform a
2537 // (an unstable) sort on the members before laying them out and because merged
2538 // bitfields have the same address, the bitfields end up in whatever order
2539 // the sort left them in, a behavior we could never hope to replicate.
2541 namespace {
2542 struct MicrosoftRecordLayoutBuilder {
2543 struct ElementInfo {
2544 CharUnits Size;
2545 CharUnits Alignment;
2547 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2548 MicrosoftRecordLayoutBuilder(const ASTContext &Context,
2549 EmptySubobjectMap *EmptySubobjects)
2550 : Context(Context), EmptySubobjects(EmptySubobjects) {}
2552 private:
2553 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2554 void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2555 public:
2556 void layout(const RecordDecl *RD);
2557 void cxxLayout(const CXXRecordDecl *RD);
2558 /// Initializes size and alignment and honors some flags.
2559 void initializeLayout(const RecordDecl *RD);
2560 /// Initialized C++ layout, compute alignment and virtual alignment and
2561 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
2562 /// laid out.
2563 void initializeCXXLayout(const CXXRecordDecl *RD);
2564 void layoutNonVirtualBases(const CXXRecordDecl *RD);
2565 void layoutNonVirtualBase(const CXXRecordDecl *RD,
2566 const CXXRecordDecl *BaseDecl,
2567 const ASTRecordLayout &BaseLayout,
2568 const ASTRecordLayout *&PreviousBaseLayout);
2569 void injectVFPtr(const CXXRecordDecl *RD);
2570 void injectVBPtr(const CXXRecordDecl *RD);
2571 /// Lays out the fields of the record. Also rounds size up to
2572 /// alignment.
2573 void layoutFields(const RecordDecl *RD);
2574 void layoutField(const FieldDecl *FD);
2575 void layoutBitField(const FieldDecl *FD);
2576 /// Lays out a single zero-width bit-field in the record and handles
2577 /// special cases associated with zero-width bit-fields.
2578 void layoutZeroWidthBitField(const FieldDecl *FD);
2579 void layoutVirtualBases(const CXXRecordDecl *RD);
2580 void finalizeLayout(const RecordDecl *RD);
2581 /// Gets the size and alignment of a base taking pragma pack and
2582 /// __declspec(align) into account.
2583 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2584 /// Gets the size and alignment of a field taking pragma pack and
2585 /// __declspec(align) into account. It also updates RequiredAlignment as a
2586 /// side effect because it is most convenient to do so here.
2587 ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2588 /// Places a field at an offset in CharUnits.
2589 void placeFieldAtOffset(CharUnits FieldOffset) {
2590 FieldOffsets.push_back(Context.toBits(FieldOffset));
2592 /// Places a bitfield at a bit offset.
2593 void placeFieldAtBitOffset(uint64_t FieldOffset) {
2594 FieldOffsets.push_back(FieldOffset);
2596 /// Compute the set of virtual bases for which vtordisps are required.
2597 void computeVtorDispSet(
2598 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2599 const CXXRecordDecl *RD) const;
2600 const ASTContext &Context;
2601 EmptySubobjectMap *EmptySubobjects;
2603 /// The size of the record being laid out.
2604 CharUnits Size;
2605 /// The non-virtual size of the record layout.
2606 CharUnits NonVirtualSize;
2607 /// The data size of the record layout.
2608 CharUnits DataSize;
2609 /// The current alignment of the record layout.
2610 CharUnits Alignment;
2611 /// The maximum allowed field alignment. This is set by #pragma pack.
2612 CharUnits MaxFieldAlignment;
2613 /// The alignment that this record must obey. This is imposed by
2614 /// __declspec(align()) on the record itself or one of its fields or bases.
2615 CharUnits RequiredAlignment;
2616 /// The size of the allocation of the currently active bitfield.
2617 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2618 /// is true.
2619 CharUnits CurrentBitfieldSize;
2620 /// Offset to the virtual base table pointer (if one exists).
2621 CharUnits VBPtrOffset;
2622 /// Minimum record size possible.
2623 CharUnits MinEmptyStructSize;
2624 /// The size and alignment info of a pointer.
2625 ElementInfo PointerInfo;
2626 /// The primary base class (if one exists).
2627 const CXXRecordDecl *PrimaryBase;
2628 /// The class we share our vb-pointer with.
2629 const CXXRecordDecl *SharedVBPtrBase;
2630 /// The collection of field offsets.
2631 SmallVector<uint64_t, 16> FieldOffsets;
2632 /// Base classes and their offsets in the record.
2633 BaseOffsetsMapTy Bases;
2634 /// virtual base classes and their offsets in the record.
2635 ASTRecordLayout::VBaseOffsetsMapTy VBases;
2636 /// The number of remaining bits in our last bitfield allocation.
2637 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2638 /// true.
2639 unsigned RemainingBitsInField;
2640 bool IsUnion : 1;
2641 /// True if the last field laid out was a bitfield and was not 0
2642 /// width.
2643 bool LastFieldIsNonZeroWidthBitfield : 1;
2644 /// True if the class has its own vftable pointer.
2645 bool HasOwnVFPtr : 1;
2646 /// True if the class has a vbtable pointer.
2647 bool HasVBPtr : 1;
2648 /// True if the last sub-object within the type is zero sized or the
2649 /// object itself is zero sized. This *does not* count members that are not
2650 /// records. Only used for MS-ABI.
2651 bool EndsWithZeroSizedObject : 1;
2652 /// True if this class is zero sized or first base is zero sized or
2653 /// has this property. Only used for MS-ABI.
2654 bool LeadsWithZeroSizedBase : 1;
2656 /// True if the external AST source provided a layout for this record.
2657 bool UseExternalLayout : 1;
2659 /// The layout provided by the external AST source. Only active if
2660 /// UseExternalLayout is true.
2661 ExternalLayout External;
2663 } // namespace
2665 MicrosoftRecordLayoutBuilder::ElementInfo
2666 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2667 const ASTRecordLayout &Layout) {
2668 ElementInfo Info;
2669 Info.Alignment = Layout.getAlignment();
2670 // Respect pragma pack.
2671 if (!MaxFieldAlignment.isZero())
2672 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2673 // Track zero-sized subobjects here where it's already available.
2674 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2675 // Respect required alignment, this is necessary because we may have adjusted
2676 // the alignment in the case of pragma pack. Note that the required alignment
2677 // doesn't actually apply to the struct alignment at this point.
2678 Alignment = std::max(Alignment, Info.Alignment);
2679 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2680 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2681 Info.Size = Layout.getNonVirtualSize();
2682 return Info;
2685 MicrosoftRecordLayoutBuilder::ElementInfo
2686 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2687 const FieldDecl *FD) {
2688 // Get the alignment of the field type's natural alignment, ignore any
2689 // alignment attributes.
2690 auto TInfo =
2691 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2692 ElementInfo Info{TInfo.Width, TInfo.Align};
2693 // Respect align attributes on the field.
2694 CharUnits FieldRequiredAlignment =
2695 Context.toCharUnitsFromBits(FD->getMaxAlignment());
2696 // Respect align attributes on the type.
2697 if (Context.isAlignmentRequired(FD->getType()))
2698 FieldRequiredAlignment = std::max(
2699 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2700 // Respect attributes applied to subobjects of the field.
2701 if (FD->isBitField())
2702 // For some reason __declspec align impacts alignment rather than required
2703 // alignment when it is applied to bitfields.
2704 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2705 else {
2706 if (auto RT =
2707 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2708 auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2709 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2710 FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2711 Layout.getRequiredAlignment());
2713 // Capture required alignment as a side-effect.
2714 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2716 // Respect pragma pack, attribute pack and declspec align
2717 if (!MaxFieldAlignment.isZero())
2718 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2719 if (FD->hasAttr<PackedAttr>())
2720 Info.Alignment = CharUnits::One();
2721 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2722 return Info;
2725 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2726 // For C record layout, zero-sized records always have size 4.
2727 MinEmptyStructSize = CharUnits::fromQuantity(4);
2728 initializeLayout(RD);
2729 layoutFields(RD);
2730 DataSize = Size = Size.alignTo(Alignment);
2731 RequiredAlignment = std::max(
2732 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2733 finalizeLayout(RD);
2736 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2737 // The C++ standard says that empty structs have size 1.
2738 MinEmptyStructSize = CharUnits::One();
2739 initializeLayout(RD);
2740 initializeCXXLayout(RD);
2741 layoutNonVirtualBases(RD);
2742 layoutFields(RD);
2743 injectVBPtr(RD);
2744 injectVFPtr(RD);
2745 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2746 Alignment = std::max(Alignment, PointerInfo.Alignment);
2747 auto RoundingAlignment = Alignment;
2748 if (!MaxFieldAlignment.isZero())
2749 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2750 if (!UseExternalLayout)
2751 Size = Size.alignTo(RoundingAlignment);
2752 NonVirtualSize = Size;
2753 RequiredAlignment = std::max(
2754 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2755 layoutVirtualBases(RD);
2756 finalizeLayout(RD);
2759 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2760 IsUnion = RD->isUnion();
2761 Size = CharUnits::Zero();
2762 Alignment = CharUnits::One();
2763 // In 64-bit mode we always perform an alignment step after laying out vbases.
2764 // In 32-bit mode we do not. The check to see if we need to perform alignment
2765 // checks the RequiredAlignment field and performs alignment if it isn't 0.
2766 RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2767 ? CharUnits::One()
2768 : CharUnits::Zero();
2769 // Compute the maximum field alignment.
2770 MaxFieldAlignment = CharUnits::Zero();
2771 // Honor the default struct packing maximum alignment flag.
2772 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2773 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2774 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
2775 // than the pointer size.
2776 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2777 unsigned PackedAlignment = MFAA->getAlignment();
2778 if (PackedAlignment <=
2779 Context.getTargetInfo().getPointerWidth(LangAS::Default))
2780 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2782 // Packed attribute forces max field alignment to be 1.
2783 if (RD->hasAttr<PackedAttr>())
2784 MaxFieldAlignment = CharUnits::One();
2786 // Try to respect the external layout if present.
2787 UseExternalLayout = false;
2788 if (ExternalASTSource *Source = Context.getExternalSource())
2789 UseExternalLayout = Source->layoutRecordType(
2790 RD, External.Size, External.Align, External.FieldOffsets,
2791 External.BaseOffsets, External.VirtualBaseOffsets);
2794 void
2795 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2796 EndsWithZeroSizedObject = false;
2797 LeadsWithZeroSizedBase = false;
2798 HasOwnVFPtr = false;
2799 HasVBPtr = false;
2800 PrimaryBase = nullptr;
2801 SharedVBPtrBase = nullptr;
2802 // Calculate pointer size and alignment. These are used for vfptr and vbprt
2803 // injection.
2804 PointerInfo.Size = Context.toCharUnitsFromBits(
2805 Context.getTargetInfo().getPointerWidth(LangAS::Default));
2806 PointerInfo.Alignment = Context.toCharUnitsFromBits(
2807 Context.getTargetInfo().getPointerAlign(LangAS::Default));
2808 // Respect pragma pack.
2809 if (!MaxFieldAlignment.isZero())
2810 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2813 void
2814 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2815 // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2816 // out any bases that do not contain vfptrs. We implement this as two passes
2817 // over the bases. This approach guarantees that the primary base is laid out
2818 // first. We use these passes to calculate some additional aggregated
2819 // information about the bases, such as required alignment and the presence of
2820 // zero sized members.
2821 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2822 bool HasPolymorphicBaseClass = false;
2823 // Iterate through the bases and lay out the non-virtual ones.
2824 for (const CXXBaseSpecifier &Base : RD->bases()) {
2825 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2826 HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2827 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2828 // Mark and skip virtual bases.
2829 if (Base.isVirtual()) {
2830 HasVBPtr = true;
2831 continue;
2833 // Check for a base to share a VBPtr with.
2834 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2835 SharedVBPtrBase = BaseDecl;
2836 HasVBPtr = true;
2838 // Only lay out bases with extendable VFPtrs on the first pass.
2839 if (!BaseLayout.hasExtendableVFPtr())
2840 continue;
2841 // If we don't have a primary base, this one qualifies.
2842 if (!PrimaryBase) {
2843 PrimaryBase = BaseDecl;
2844 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2846 // Lay out the base.
2847 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2849 // Figure out if we need a fresh VFPtr for this class.
2850 if (RD->isPolymorphic()) {
2851 if (!HasPolymorphicBaseClass)
2852 // This class introduces polymorphism, so we need a vftable to store the
2853 // RTTI information.
2854 HasOwnVFPtr = true;
2855 else if (!PrimaryBase) {
2856 // We have a polymorphic base class but can't extend its vftable. Add a
2857 // new vfptr if we would use any vftable slots.
2858 for (CXXMethodDecl *M : RD->methods()) {
2859 if (MicrosoftVTableContext::hasVtableSlot(M) &&
2860 M->size_overridden_methods() == 0) {
2861 HasOwnVFPtr = true;
2862 break;
2867 // If we don't have a primary base then we have a leading object that could
2868 // itself lead with a zero-sized object, something we track.
2869 bool CheckLeadingLayout = !PrimaryBase;
2870 // Iterate through the bases and lay out the non-virtual ones.
2871 for (const CXXBaseSpecifier &Base : RD->bases()) {
2872 if (Base.isVirtual())
2873 continue;
2874 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2875 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2876 // Only lay out bases without extendable VFPtrs on the second pass.
2877 if (BaseLayout.hasExtendableVFPtr()) {
2878 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2879 continue;
2881 // If this is the first layout, check to see if it leads with a zero sized
2882 // object. If it does, so do we.
2883 if (CheckLeadingLayout) {
2884 CheckLeadingLayout = false;
2885 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2887 // Lay out the base.
2888 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2889 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2891 // Set our VBPtroffset if we know it at this point.
2892 if (!HasVBPtr)
2893 VBPtrOffset = CharUnits::fromQuantity(-1);
2894 else if (SharedVBPtrBase) {
2895 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2896 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2900 static bool recordUsesEBO(const RecordDecl *RD) {
2901 if (!isa<CXXRecordDecl>(RD))
2902 return false;
2903 if (RD->hasAttr<EmptyBasesAttr>())
2904 return true;
2905 if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2906 // TODO: Double check with the next version of MSVC.
2907 if (LVA->getVersion() <= LangOptions::MSVC2015)
2908 return false;
2909 // TODO: Some later version of MSVC will change the default behavior of the
2910 // compiler to enable EBO by default. When this happens, we will need an
2911 // additional isCompatibleWithMSVC check.
2912 return false;
2915 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2916 const CXXRecordDecl *RD, const CXXRecordDecl *BaseDecl,
2917 const ASTRecordLayout &BaseLayout,
2918 const ASTRecordLayout *&PreviousBaseLayout) {
2919 // Insert padding between two bases if the left first one is zero sized or
2920 // contains a zero sized subobject and the right is zero sized or one leads
2921 // with a zero sized base.
2922 bool MDCUsesEBO = recordUsesEBO(RD);
2923 if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2924 BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2925 Size++;
2926 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2927 CharUnits BaseOffset;
2929 // Respect the external AST source base offset, if present.
2930 bool FoundBase = false;
2931 if (UseExternalLayout) {
2932 FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2933 if (BaseOffset > Size) {
2934 Size = BaseOffset;
2938 if (!FoundBase) {
2939 if (MDCUsesEBO && BaseDecl->isEmpty()) {
2940 assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2941 BaseOffset = CharUnits::Zero();
2942 } else {
2943 // Otherwise, lay the base out at the end of the MDC.
2944 BaseOffset = Size = Size.alignTo(Info.Alignment);
2947 Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2948 Size += BaseLayout.getNonVirtualSize();
2949 DataSize = Size;
2950 PreviousBaseLayout = &BaseLayout;
2953 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2954 LastFieldIsNonZeroWidthBitfield = false;
2955 for (const FieldDecl *Field : RD->fields())
2956 layoutField(Field);
2959 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2960 if (FD->isBitField()) {
2961 layoutBitField(FD);
2962 return;
2964 LastFieldIsNonZeroWidthBitfield = false;
2965 ElementInfo Info = getAdjustedElementInfo(FD);
2966 Alignment = std::max(Alignment, Info.Alignment);
2968 const CXXRecordDecl *FieldClass = FD->getType()->getAsCXXRecordDecl();
2969 bool IsOverlappingEmptyField = FD->isPotentiallyOverlapping() &&
2970 FieldClass->isEmpty() &&
2971 FieldClass->fields().empty();
2972 CharUnits FieldOffset = CharUnits::Zero();
2974 if (UseExternalLayout) {
2975 FieldOffset =
2976 Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2977 } else if (IsUnion) {
2978 FieldOffset = CharUnits::Zero();
2979 } else if (EmptySubobjects) {
2980 if (!IsOverlappingEmptyField)
2981 FieldOffset = DataSize.alignTo(Info.Alignment);
2983 while (!EmptySubobjects->CanPlaceFieldAtOffset(FD, FieldOffset)) {
2984 const CXXRecordDecl *ParentClass = cast<CXXRecordDecl>(FD->getParent());
2985 bool HasBases = ParentClass && (!ParentClass->bases().empty() ||
2986 !ParentClass->vbases().empty());
2987 if (FieldOffset == CharUnits::Zero() && DataSize != CharUnits::Zero() &&
2988 HasBases) {
2989 // MSVC appears to only do this when there are base classes;
2990 // otherwise it overlaps no_unique_address fields in non-zero offsets.
2991 FieldOffset = DataSize.alignTo(Info.Alignment);
2992 } else {
2993 FieldOffset += Info.Alignment;
2996 } else {
2997 FieldOffset = Size.alignTo(Info.Alignment);
2999 placeFieldAtOffset(FieldOffset);
3001 if (!IsOverlappingEmptyField)
3002 DataSize = std::max(DataSize, FieldOffset + Info.Size);
3004 Size = std::max(Size, FieldOffset + Info.Size);
3007 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
3008 unsigned Width = FD->getBitWidthValue(Context);
3009 if (Width == 0) {
3010 layoutZeroWidthBitField(FD);
3011 return;
3013 ElementInfo Info = getAdjustedElementInfo(FD);
3014 // Clamp the bitfield to a containable size for the sake of being able
3015 // to lay them out. Sema will throw an error.
3016 if (Width > Context.toBits(Info.Size))
3017 Width = Context.toBits(Info.Size);
3018 // Check to see if this bitfield fits into an existing allocation. Note:
3019 // MSVC refuses to pack bitfields of formal types with different sizes
3020 // into the same allocation.
3021 if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
3022 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
3023 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
3024 RemainingBitsInField -= Width;
3025 return;
3027 LastFieldIsNonZeroWidthBitfield = true;
3028 CurrentBitfieldSize = Info.Size;
3029 if (UseExternalLayout) {
3030 auto FieldBitOffset = External.getExternalFieldOffset(FD);
3031 placeFieldAtBitOffset(FieldBitOffset);
3032 auto NewSize = Context.toCharUnitsFromBits(
3033 llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
3034 Context.toBits(Info.Size));
3035 Size = std::max(Size, NewSize);
3036 Alignment = std::max(Alignment, Info.Alignment);
3037 } else if (IsUnion) {
3038 placeFieldAtOffset(CharUnits::Zero());
3039 Size = std::max(Size, Info.Size);
3040 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3041 } else {
3042 // Allocate a new block of memory and place the bitfield in it.
3043 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
3044 placeFieldAtOffset(FieldOffset);
3045 Size = FieldOffset + Info.Size;
3046 Alignment = std::max(Alignment, Info.Alignment);
3047 RemainingBitsInField = Context.toBits(Info.Size) - Width;
3049 DataSize = Size;
3052 void
3053 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
3054 // Zero-width bitfields are ignored unless they follow a non-zero-width
3055 // bitfield.
3056 if (!LastFieldIsNonZeroWidthBitfield) {
3057 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
3058 // TODO: Add a Sema warning that MS ignores alignment for zero
3059 // sized bitfields that occur after zero-size bitfields or non-bitfields.
3060 return;
3062 LastFieldIsNonZeroWidthBitfield = false;
3063 ElementInfo Info = getAdjustedElementInfo(FD);
3064 if (IsUnion) {
3065 placeFieldAtOffset(CharUnits::Zero());
3066 Size = std::max(Size, Info.Size);
3067 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3068 } else {
3069 // Round up the current record size to the field's alignment boundary.
3070 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
3071 placeFieldAtOffset(FieldOffset);
3072 Size = FieldOffset;
3073 Alignment = std::max(Alignment, Info.Alignment);
3075 DataSize = Size;
3078 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
3079 if (!HasVBPtr || SharedVBPtrBase)
3080 return;
3081 // Inject the VBPointer at the injection site.
3082 CharUnits InjectionSite = VBPtrOffset;
3083 // But before we do, make sure it's properly aligned.
3084 VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
3085 // Determine where the first field should be laid out after the vbptr.
3086 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
3087 // Shift everything after the vbptr down, unless we're using an external
3088 // layout.
3089 if (UseExternalLayout) {
3090 // It is possible that there were no fields or bases located after vbptr,
3091 // so the size was not adjusted before.
3092 if (Size < FieldStart)
3093 Size = FieldStart;
3094 return;
3096 // Make sure that the amount we push the fields back by is a multiple of the
3097 // alignment.
3098 CharUnits Offset = (FieldStart - InjectionSite)
3099 .alignTo(std::max(RequiredAlignment, Alignment));
3100 Size += Offset;
3101 for (uint64_t &FieldOffset : FieldOffsets)
3102 FieldOffset += Context.toBits(Offset);
3103 for (BaseOffsetsMapTy::value_type &Base : Bases)
3104 if (Base.second >= InjectionSite)
3105 Base.second += Offset;
3108 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
3109 if (!HasOwnVFPtr)
3110 return;
3111 // Make sure that the amount we push the struct back by is a multiple of the
3112 // alignment.
3113 CharUnits Offset =
3114 PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
3115 // Push back the vbptr, but increase the size of the object and push back
3116 // regular fields by the offset only if not using external record layout.
3117 if (HasVBPtr)
3118 VBPtrOffset += Offset;
3120 if (UseExternalLayout) {
3121 // The class may have size 0 and a vfptr (e.g. it's an interface class). The
3122 // size was not correctly set before in this case.
3123 if (Size.isZero())
3124 Size += Offset;
3125 return;
3128 Size += Offset;
3130 // If we're using an external layout, the fields offsets have already
3131 // accounted for this adjustment.
3132 for (uint64_t &FieldOffset : FieldOffsets)
3133 FieldOffset += Context.toBits(Offset);
3134 for (BaseOffsetsMapTy::value_type &Base : Bases)
3135 Base.second += Offset;
3138 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
3139 if (!HasVBPtr)
3140 return;
3141 // Vtordisps are always 4 bytes (even in 64-bit mode)
3142 CharUnits VtorDispSize = CharUnits::fromQuantity(4);
3143 CharUnits VtorDispAlignment = VtorDispSize;
3144 // vtordisps respect pragma pack.
3145 if (!MaxFieldAlignment.isZero())
3146 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
3147 // The alignment of the vtordisp is at least the required alignment of the
3148 // entire record. This requirement may be present to support vtordisp
3149 // injection.
3150 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3151 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3152 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3153 RequiredAlignment =
3154 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
3156 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
3157 // Compute the vtordisp set.
3158 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
3159 computeVtorDispSet(HasVtorDispSet, RD);
3160 // Iterate through the virtual bases and lay them out.
3161 const ASTRecordLayout *PreviousBaseLayout = nullptr;
3162 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3163 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3164 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3165 bool HasVtordisp = HasVtorDispSet.contains(BaseDecl);
3166 // Insert padding between two bases if the left first one is zero sized or
3167 // contains a zero sized subobject and the right is zero sized or one leads
3168 // with a zero sized base. The padding between virtual bases is 4
3169 // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3170 // the required alignment, we don't know why.
3171 if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
3172 BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
3173 HasVtordisp) {
3174 Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
3175 Alignment = std::max(VtorDispAlignment, Alignment);
3177 // Insert the virtual base.
3178 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
3179 CharUnits BaseOffset;
3181 // Respect the external AST source base offset, if present.
3182 if (UseExternalLayout) {
3183 if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
3184 BaseOffset = Size;
3185 } else
3186 BaseOffset = Size.alignTo(Info.Alignment);
3188 assert(BaseOffset >= Size && "base offset already allocated");
3190 VBases.insert(std::make_pair(BaseDecl,
3191 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
3192 Size = BaseOffset + BaseLayout.getNonVirtualSize();
3193 PreviousBaseLayout = &BaseLayout;
3197 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
3198 // Respect required alignment. Note that in 32-bit mode Required alignment
3199 // may be 0 and cause size not to be updated.
3200 DataSize = Size;
3201 if (!RequiredAlignment.isZero()) {
3202 Alignment = std::max(Alignment, RequiredAlignment);
3203 auto RoundingAlignment = Alignment;
3204 if (!MaxFieldAlignment.isZero())
3205 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
3206 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
3207 Size = Size.alignTo(RoundingAlignment);
3209 if (Size.isZero()) {
3210 if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
3211 EndsWithZeroSizedObject = true;
3212 LeadsWithZeroSizedBase = true;
3214 // Zero-sized structures have size equal to their alignment if a
3215 // __declspec(align) came into play.
3216 if (RequiredAlignment >= MinEmptyStructSize)
3217 Size = Alignment;
3218 else
3219 Size = MinEmptyStructSize;
3222 if (UseExternalLayout) {
3223 Size = Context.toCharUnitsFromBits(External.Size);
3224 if (External.Align)
3225 Alignment = Context.toCharUnitsFromBits(External.Align);
3229 // Recursively walks the non-virtual bases of a class and determines if any of
3230 // them are in the bases with overridden methods set.
3231 static bool
3232 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
3233 BasesWithOverriddenMethods,
3234 const CXXRecordDecl *RD) {
3235 if (BasesWithOverriddenMethods.count(RD))
3236 return true;
3237 // If any of a virtual bases non-virtual bases (recursively) requires a
3238 // vtordisp than so does this virtual base.
3239 for (const CXXBaseSpecifier &Base : RD->bases())
3240 if (!Base.isVirtual() &&
3241 RequiresVtordisp(BasesWithOverriddenMethods,
3242 Base.getType()->getAsCXXRecordDecl()))
3243 return true;
3244 return false;
3247 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3248 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
3249 const CXXRecordDecl *RD) const {
3250 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3251 // vftables.
3252 if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
3253 for (const CXXBaseSpecifier &Base : RD->vbases()) {
3254 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3255 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3256 if (Layout.hasExtendableVFPtr())
3257 HasVtordispSet.insert(BaseDecl);
3259 return;
3262 // If any of our bases need a vtordisp for this type, so do we. Check our
3263 // direct bases for vtordisp requirements.
3264 for (const CXXBaseSpecifier &Base : RD->bases()) {
3265 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3266 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3267 for (const auto &bi : Layout.getVBaseOffsetsMap())
3268 if (bi.second.hasVtorDisp())
3269 HasVtordispSet.insert(bi.first);
3271 // We don't introduce any additional vtordisps if either:
3272 // * A user declared constructor or destructor aren't declared.
3273 // * #pragma vtordisp(0) or the /vd0 flag are in use.
3274 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3275 RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3276 return;
3277 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3278 // possible for a partially constructed object with virtual base overrides to
3279 // escape a non-trivial constructor.
3280 assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
3281 // Compute a set of base classes which define methods we override. A virtual
3282 // base in this set will require a vtordisp. A virtual base that transitively
3283 // contains one of these bases as a non-virtual base will also require a
3284 // vtordisp.
3285 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3286 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3287 // Seed the working set with our non-destructor, non-pure virtual methods.
3288 for (const CXXMethodDecl *MD : RD->methods())
3289 if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3290 !isa<CXXDestructorDecl>(MD) && !MD->isPure())
3291 Work.insert(MD);
3292 while (!Work.empty()) {
3293 const CXXMethodDecl *MD = *Work.begin();
3294 auto MethodRange = MD->overridden_methods();
3295 // If a virtual method has no-overrides it lives in its parent's vtable.
3296 if (MethodRange.begin() == MethodRange.end())
3297 BasesWithOverriddenMethods.insert(MD->getParent());
3298 else
3299 Work.insert(MethodRange.begin(), MethodRange.end());
3300 // We've finished processing this element, remove it from the working set.
3301 Work.erase(MD);
3303 // For each of our virtual bases, check if it is in the set of overridden
3304 // bases or if it transitively contains a non-virtual base that is.
3305 for (const CXXBaseSpecifier &Base : RD->vbases()) {
3306 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3307 if (!HasVtordispSet.count(BaseDecl) &&
3308 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3309 HasVtordispSet.insert(BaseDecl);
3313 /// getASTRecordLayout - Get or compute information about the layout of the
3314 /// specified record (struct/union/class), which indicates its size and field
3315 /// position information.
3316 const ASTRecordLayout &
3317 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3318 // These asserts test different things. A record has a definition
3319 // as soon as we begin to parse the definition. That definition is
3320 // not a complete definition (which is what isDefinition() tests)
3321 // until we *finish* parsing the definition.
3323 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3324 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3325 // Complete the redecl chain (if necessary).
3326 (void)D->getMostRecentDecl();
3328 D = D->getDefinition();
3329 assert(D && "Cannot get layout of forward declarations!");
3330 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3331 assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3333 // Look up this layout, if already laid out, return what we have.
3334 // Note that we can't save a reference to the entry because this function
3335 // is recursive.
3336 const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3337 if (Entry) return *Entry;
3339 const ASTRecordLayout *NewEntry = nullptr;
3341 if (isMsLayout(*this)) {
3342 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3343 EmptySubobjectMap EmptySubobjects(*this, RD);
3344 MicrosoftRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3345 Builder.cxxLayout(RD);
3346 NewEntry = new (*this) ASTRecordLayout(
3347 *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3348 Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr,
3349 Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset,
3350 Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize,
3351 Builder.Alignment, Builder.Alignment, CharUnits::Zero(),
3352 Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3353 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3354 Builder.Bases, Builder.VBases);
3355 } else {
3356 MicrosoftRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3357 Builder.layout(D);
3358 NewEntry = new (*this) ASTRecordLayout(
3359 *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3360 Builder.Alignment, Builder.RequiredAlignment, Builder.Size,
3361 Builder.FieldOffsets);
3363 } else {
3364 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3365 EmptySubobjectMap EmptySubobjects(*this, RD);
3366 ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3367 Builder.Layout(RD);
3369 // In certain situations, we are allowed to lay out objects in the
3370 // tail-padding of base classes. This is ABI-dependent.
3371 // FIXME: this should be stored in the record layout.
3372 bool skipTailPadding =
3373 mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3375 // FIXME: This should be done in FinalizeLayout.
3376 CharUnits DataSize =
3377 skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3378 CharUnits NonVirtualSize =
3379 skipTailPadding ? DataSize : Builder.NonVirtualSize;
3380 NewEntry = new (*this) ASTRecordLayout(
3381 *this, Builder.getSize(), Builder.Alignment,
3382 Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3383 /*RequiredAlignment : used by MS-ABI)*/
3384 Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3385 CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3386 NonVirtualSize, Builder.NonVirtualAlignment,
3387 Builder.PreferredNVAlignment,
3388 EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3389 Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3390 Builder.VBases);
3391 } else {
3392 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3393 Builder.Layout(D);
3395 NewEntry = new (*this) ASTRecordLayout(
3396 *this, Builder.getSize(), Builder.Alignment,
3397 Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3398 /*RequiredAlignment : used by MS-ABI)*/
3399 Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3403 ASTRecordLayouts[D] = NewEntry;
3405 if (getLangOpts().DumpRecordLayouts) {
3406 llvm::outs() << "\n*** Dumping AST Record Layout\n";
3407 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3410 return *NewEntry;
3413 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3414 if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3415 return nullptr;
3417 assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3418 RD = RD->getDefinition();
3420 // Beware:
3421 // 1) computing the key function might trigger deserialization, which might
3422 // invalidate iterators into KeyFunctions
3423 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and
3424 // invalidate the LazyDeclPtr within the map itself
3425 LazyDeclPtr Entry = KeyFunctions[RD];
3426 const Decl *Result =
3427 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3429 // Store it back if it changed.
3430 if (Entry.isOffset() || Entry.isValid() != bool(Result))
3431 KeyFunctions[RD] = const_cast<Decl*>(Result);
3433 return cast_or_null<CXXMethodDecl>(Result);
3436 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3437 assert(Method == Method->getFirstDecl() &&
3438 "not working with method declaration from class definition");
3440 // Look up the cache entry. Since we're working with the first
3441 // declaration, its parent must be the class definition, which is
3442 // the correct key for the KeyFunctions hash.
3443 const auto &Map = KeyFunctions;
3444 auto I = Map.find(Method->getParent());
3446 // If it's not cached, there's nothing to do.
3447 if (I == Map.end()) return;
3449 // If it is cached, check whether it's the target method, and if so,
3450 // remove it from the cache. Note, the call to 'get' might invalidate
3451 // the iterator and the LazyDeclPtr object within the map.
3452 LazyDeclPtr Ptr = I->second;
3453 if (Ptr.get(getExternalSource()) == Method) {
3454 // FIXME: remember that we did this for module / chained PCH state?
3455 KeyFunctions.erase(Method->getParent());
3459 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3460 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3461 return Layout.getFieldOffset(FD->getFieldIndex());
3464 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3465 uint64_t OffsetInBits;
3466 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3467 OffsetInBits = ::getFieldOffset(*this, FD);
3468 } else {
3469 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3471 OffsetInBits = 0;
3472 for (const NamedDecl *ND : IFD->chain())
3473 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3476 return OffsetInBits;
3479 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3480 const ObjCImplementationDecl *ID,
3481 const ObjCIvarDecl *Ivar) const {
3482 Ivar = Ivar->getCanonicalDecl();
3483 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3485 // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3486 // in here; it should never be necessary because that should be the lexical
3487 // decl context for the ivar.
3489 // If we know have an implementation (and the ivar is in it) then
3490 // look up in the implementation layout.
3491 const ASTRecordLayout *RL;
3492 if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3493 RL = &getASTObjCImplementationLayout(ID);
3494 else
3495 RL = &getASTObjCInterfaceLayout(Container);
3497 // Compute field index.
3499 // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3500 // implemented. This should be fixed to get the information from the layout
3501 // directly.
3502 unsigned Index = 0;
3504 for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3505 IVD; IVD = IVD->getNextIvar()) {
3506 if (Ivar == IVD)
3507 break;
3508 ++Index;
3510 assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3512 return RL->getFieldOffset(Index);
3515 /// getObjCLayout - Get or compute information about the layout of the
3516 /// given interface.
3518 /// \param Impl - If given, also include the layout of the interface's
3519 /// implementation. This may differ by including synthesized ivars.
3520 const ASTRecordLayout &
3521 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3522 const ObjCImplementationDecl *Impl) const {
3523 // Retrieve the definition
3524 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3525 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3526 D = D->getDefinition();
3527 assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&
3528 "Invalid interface decl!");
3530 // Look up this layout, if already laid out, return what we have.
3531 const ObjCContainerDecl *Key =
3532 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3533 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3534 return *Entry;
3536 // Add in synthesized ivar count if laying out an implementation.
3537 if (Impl) {
3538 unsigned SynthCount = CountNonClassIvars(D);
3539 // If there aren't any synthesized ivars then reuse the interface
3540 // entry. Note we can't cache this because we simply free all
3541 // entries later; however we shouldn't look up implementations
3542 // frequently.
3543 if (SynthCount == 0)
3544 return getObjCLayout(D, nullptr);
3547 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3548 Builder.Layout(D);
3550 const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(
3551 *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment,
3552 Builder.UnadjustedAlignment,
3553 /*RequiredAlignment : used by MS-ABI)*/
3554 Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets);
3556 ObjCLayouts[Key] = NewEntry;
3558 return *NewEntry;
3561 static void PrintOffset(raw_ostream &OS,
3562 CharUnits Offset, unsigned IndentLevel) {
3563 OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3564 OS.indent(IndentLevel * 2);
3567 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3568 unsigned Begin, unsigned Width,
3569 unsigned IndentLevel) {
3570 llvm::SmallString<10> Buffer;
3572 llvm::raw_svector_ostream BufferOS(Buffer);
3573 BufferOS << Offset.getQuantity() << ':';
3574 if (Width == 0) {
3575 BufferOS << '-';
3576 } else {
3577 BufferOS << Begin << '-' << (Begin + Width - 1);
3581 OS << llvm::right_justify(Buffer, 10) << " | ";
3582 OS.indent(IndentLevel * 2);
3585 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3586 OS << " | ";
3587 OS.indent(IndentLevel * 2);
3590 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3591 const ASTContext &C,
3592 CharUnits Offset,
3593 unsigned IndentLevel,
3594 const char* Description,
3595 bool PrintSizeInfo,
3596 bool IncludeVirtualBases) {
3597 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3598 auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3600 PrintOffset(OS, Offset, IndentLevel);
3601 OS << C.getTypeDeclType(const_cast<RecordDecl *>(RD));
3602 if (Description)
3603 OS << ' ' << Description;
3604 if (CXXRD && CXXRD->isEmpty())
3605 OS << " (empty)";
3606 OS << '\n';
3608 IndentLevel++;
3610 // Dump bases.
3611 if (CXXRD) {
3612 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3613 bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3614 bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3616 // Vtable pointer.
3617 if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3618 PrintOffset(OS, Offset, IndentLevel);
3619 OS << '(' << *RD << " vtable pointer)\n";
3620 } else if (HasOwnVFPtr) {
3621 PrintOffset(OS, Offset, IndentLevel);
3622 // vfptr (for Microsoft C++ ABI)
3623 OS << '(' << *RD << " vftable pointer)\n";
3626 // Collect nvbases.
3627 SmallVector<const CXXRecordDecl *, 4> Bases;
3628 for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3629 assert(!Base.getType()->isDependentType() &&
3630 "Cannot layout class with dependent bases.");
3631 if (!Base.isVirtual())
3632 Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3635 // Sort nvbases by offset.
3636 llvm::stable_sort(
3637 Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3638 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3641 // Dump (non-virtual) bases
3642 for (const CXXRecordDecl *Base : Bases) {
3643 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3644 DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3645 Base == PrimaryBase ? "(primary base)" : "(base)",
3646 /*PrintSizeInfo=*/false,
3647 /*IncludeVirtualBases=*/false);
3650 // vbptr (for Microsoft C++ ABI)
3651 if (HasOwnVBPtr) {
3652 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3653 OS << '(' << *RD << " vbtable pointer)\n";
3657 // Dump fields.
3658 uint64_t FieldNo = 0;
3659 for (RecordDecl::field_iterator I = RD->field_begin(),
3660 E = RD->field_end(); I != E; ++I, ++FieldNo) {
3661 const FieldDecl &Field = **I;
3662 uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3663 CharUnits FieldOffset =
3664 Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3666 // Recursively dump fields of record type.
3667 if (auto RT = Field.getType()->getAs<RecordType>()) {
3668 DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3669 Field.getName().data(),
3670 /*PrintSizeInfo=*/false,
3671 /*IncludeVirtualBases=*/true);
3672 continue;
3675 if (Field.isBitField()) {
3676 uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3677 unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3678 unsigned Width = Field.getBitWidthValue(C);
3679 PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3680 } else {
3681 PrintOffset(OS, FieldOffset, IndentLevel);
3683 const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical
3684 ? Field.getType().getCanonicalType()
3685 : Field.getType();
3686 OS << FieldType << ' ' << Field << '\n';
3689 // Dump virtual bases.
3690 if (CXXRD && IncludeVirtualBases) {
3691 const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3692 Layout.getVBaseOffsetsMap();
3694 for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3695 assert(Base.isVirtual() && "Found non-virtual class!");
3696 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3698 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3700 if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3701 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3702 OS << "(vtordisp for vbase " << *VBase << ")\n";
3705 DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3706 VBase == Layout.getPrimaryBase() ?
3707 "(primary virtual base)" : "(virtual base)",
3708 /*PrintSizeInfo=*/false,
3709 /*IncludeVirtualBases=*/false);
3713 if (!PrintSizeInfo) return;
3715 PrintIndentNoOffset(OS, IndentLevel - 1);
3716 OS << "[sizeof=" << Layout.getSize().getQuantity();
3717 if (CXXRD && !isMsLayout(C))
3718 OS << ", dsize=" << Layout.getDataSize().getQuantity();
3719 OS << ", align=" << Layout.getAlignment().getQuantity();
3720 if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3721 OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity();
3723 if (CXXRD) {
3724 OS << ",\n";
3725 PrintIndentNoOffset(OS, IndentLevel - 1);
3726 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3727 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3728 if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3729 OS << ", preferrednvalign="
3730 << Layout.getPreferredNVAlignment().getQuantity();
3732 OS << "]\n";
3735 void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
3736 bool Simple) const {
3737 if (!Simple) {
3738 ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3739 /*PrintSizeInfo*/ true,
3740 /*IncludeVirtualBases=*/true);
3741 return;
3744 // The "simple" format is designed to be parsed by the
3745 // layout-override testing code. There shouldn't be any external
3746 // uses of this format --- when LLDB overrides a layout, it sets up
3747 // the data structures directly --- so feel free to adjust this as
3748 // you like as long as you also update the rudimentary parser for it
3749 // in libFrontend.
3751 const ASTRecordLayout &Info = getASTRecordLayout(RD);
3752 OS << "Type: " << getTypeDeclType(RD) << "\n";
3753 OS << "\nLayout: ";
3754 OS << "<ASTRecordLayout\n";
3755 OS << " Size:" << toBits(Info.getSize()) << "\n";
3756 if (!isMsLayout(*this))
3757 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
3758 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
3759 if (Target->defaultsToAIXPowerAlignment())
3760 OS << " PreferredAlignment:" << toBits(Info.getPreferredAlignment())
3761 << "\n";
3762 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3763 OS << " BaseOffsets: [";
3764 const CXXRecordDecl *Base = nullptr;
3765 for (auto I : CXXRD->bases()) {
3766 if (I.isVirtual())
3767 continue;
3768 if (Base)
3769 OS << ", ";
3770 Base = I.getType()->getAsCXXRecordDecl();
3771 OS << Info.CXXInfo->BaseOffsets[Base].getQuantity();
3773 OS << "]>\n";
3774 OS << " VBaseOffsets: [";
3775 const CXXRecordDecl *VBase = nullptr;
3776 for (auto I : CXXRD->vbases()) {
3777 if (VBase)
3778 OS << ", ";
3779 VBase = I.getType()->getAsCXXRecordDecl();
3780 OS << Info.CXXInfo->VBaseOffsets[VBase].VBaseOffset.getQuantity();
3782 OS << "]>\n";
3784 OS << " FieldOffsets: [";
3785 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3786 if (i)
3787 OS << ", ";
3788 OS << Info.getFieldOffset(i);
3790 OS << "]>\n";