[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / AST / VTableBuilder.cpp
blobcce0a507e8077d8819fa33fa57c49653ee578935
1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with generation of the layout of virtual tables.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/VTableBuilder.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTDiagnostic.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/RecordLayout.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Support/Format.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <cstdio>
27 using namespace clang;
29 #define DUMP_OVERRIDERS 0
31 namespace {
33 /// BaseOffset - Represents an offset from a derived class to a direct or
34 /// indirect base class.
35 struct BaseOffset {
36 /// DerivedClass - The derived class.
37 const CXXRecordDecl *DerivedClass;
39 /// VirtualBase - If the path from the derived class to the base class
40 /// involves virtual base classes, this holds the declaration of the last
41 /// virtual base in this path (i.e. closest to the base class).
42 const CXXRecordDecl *VirtualBase;
44 /// NonVirtualOffset - The offset from the derived class to the base class.
45 /// (Or the offset from the virtual base class to the base class, if the
46 /// path from the derived class to the base class involves a virtual base
47 /// class.
48 CharUnits NonVirtualOffset;
50 BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
51 NonVirtualOffset(CharUnits::Zero()) { }
52 BaseOffset(const CXXRecordDecl *DerivedClass,
53 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
54 : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
55 NonVirtualOffset(NonVirtualOffset) { }
57 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
60 /// FinalOverriders - Contains the final overrider member functions for all
61 /// member functions in the base subobjects of a class.
62 class FinalOverriders {
63 public:
64 /// OverriderInfo - Information about a final overrider.
65 struct OverriderInfo {
66 /// Method - The method decl of the overrider.
67 const CXXMethodDecl *Method;
69 /// VirtualBase - The virtual base class subobject of this overrider.
70 /// Note that this records the closest derived virtual base class subobject.
71 const CXXRecordDecl *VirtualBase;
73 /// Offset - the base offset of the overrider's parent in the layout class.
74 CharUnits Offset;
76 OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
77 Offset(CharUnits::Zero()) { }
80 private:
81 /// MostDerivedClass - The most derived class for which the final overriders
82 /// are stored.
83 const CXXRecordDecl *MostDerivedClass;
85 /// MostDerivedClassOffset - If we're building final overriders for a
86 /// construction vtable, this holds the offset from the layout class to the
87 /// most derived class.
88 const CharUnits MostDerivedClassOffset;
90 /// LayoutClass - The class we're using for layout information. Will be
91 /// different than the most derived class if the final overriders are for a
92 /// construction vtable.
93 const CXXRecordDecl *LayoutClass;
95 ASTContext &Context;
97 /// MostDerivedClassLayout - the AST record layout of the most derived class.
98 const ASTRecordLayout &MostDerivedClassLayout;
100 /// MethodBaseOffsetPairTy - Uniquely identifies a member function
101 /// in a base subobject.
102 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
104 typedef llvm::DenseMap<MethodBaseOffsetPairTy,
105 OverriderInfo> OverridersMapTy;
107 /// OverridersMap - The final overriders for all virtual member functions of
108 /// all the base subobjects of the most derived class.
109 OverridersMapTy OverridersMap;
111 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
112 /// as a record decl and a subobject number) and its offsets in the most
113 /// derived class as well as the layout class.
114 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
115 CharUnits> SubobjectOffsetMapTy;
117 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
119 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
120 /// given base.
121 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
122 CharUnits OffsetInLayoutClass,
123 SubobjectOffsetMapTy &SubobjectOffsets,
124 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
125 SubobjectCountMapTy &SubobjectCounts);
127 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
129 /// dump - dump the final overriders for a base subobject, and all its direct
130 /// and indirect base subobjects.
131 void dump(raw_ostream &Out, BaseSubobject Base,
132 VisitedVirtualBasesSetTy& VisitedVirtualBases);
134 public:
135 FinalOverriders(const CXXRecordDecl *MostDerivedClass,
136 CharUnits MostDerivedClassOffset,
137 const CXXRecordDecl *LayoutClass);
139 /// getOverrider - Get the final overrider for the given method declaration in
140 /// the subobject with the given base offset.
141 OverriderInfo getOverrider(const CXXMethodDecl *MD,
142 CharUnits BaseOffset) const {
143 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
144 "Did not find overrider!");
146 return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
149 /// dump - dump the final overriders.
150 void dump() {
151 VisitedVirtualBasesSetTy VisitedVirtualBases;
152 dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
153 VisitedVirtualBases);
158 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
159 CharUnits MostDerivedClassOffset,
160 const CXXRecordDecl *LayoutClass)
161 : MostDerivedClass(MostDerivedClass),
162 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
163 Context(MostDerivedClass->getASTContext()),
164 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
166 // Compute base offsets.
167 SubobjectOffsetMapTy SubobjectOffsets;
168 SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
169 SubobjectCountMapTy SubobjectCounts;
170 ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
171 /*IsVirtual=*/false,
172 MostDerivedClassOffset,
173 SubobjectOffsets, SubobjectLayoutClassOffsets,
174 SubobjectCounts);
176 // Get the final overriders.
177 CXXFinalOverriderMap FinalOverriders;
178 MostDerivedClass->getFinalOverriders(FinalOverriders);
180 for (const auto &Overrider : FinalOverriders) {
181 const CXXMethodDecl *MD = Overrider.first;
182 const OverridingMethods &Methods = Overrider.second;
184 for (const auto &M : Methods) {
185 unsigned SubobjectNumber = M.first;
186 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
187 SubobjectNumber)) &&
188 "Did not find subobject offset!");
190 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
191 SubobjectNumber)];
193 assert(M.second.size() == 1 && "Final overrider is not unique!");
194 const UniqueVirtualMethod &Method = M.second.front();
196 const CXXRecordDecl *OverriderRD = Method.Method->getParent();
197 assert(SubobjectLayoutClassOffsets.count(
198 std::make_pair(OverriderRD, Method.Subobject))
199 && "Did not find subobject offset!");
200 CharUnits OverriderOffset =
201 SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
202 Method.Subobject)];
204 OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
205 assert(!Overrider.Method && "Overrider should not exist yet!");
207 Overrider.Offset = OverriderOffset;
208 Overrider.Method = Method.Method;
209 Overrider.VirtualBase = Method.InVirtualSubobject;
213 #if DUMP_OVERRIDERS
214 // And dump them (for now).
215 dump();
216 #endif
219 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
220 const CXXRecordDecl *DerivedRD,
221 const CXXBasePath &Path) {
222 CharUnits NonVirtualOffset = CharUnits::Zero();
224 unsigned NonVirtualStart = 0;
225 const CXXRecordDecl *VirtualBase = nullptr;
227 // First, look for the virtual base class.
228 for (int I = Path.size(), E = 0; I != E; --I) {
229 const CXXBasePathElement &Element = Path[I - 1];
231 if (Element.Base->isVirtual()) {
232 NonVirtualStart = I;
233 QualType VBaseType = Element.Base->getType();
234 VirtualBase = VBaseType->getAsCXXRecordDecl();
235 break;
239 // Now compute the non-virtual offset.
240 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
241 const CXXBasePathElement &Element = Path[I];
243 // Check the base class offset.
244 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
246 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
248 NonVirtualOffset += Layout.getBaseClassOffset(Base);
251 // FIXME: This should probably use CharUnits or something. Maybe we should
252 // even change the base offsets in ASTRecordLayout to be specified in
253 // CharUnits.
254 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
258 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
259 const CXXRecordDecl *BaseRD,
260 const CXXRecordDecl *DerivedRD) {
261 CXXBasePaths Paths(/*FindAmbiguities=*/false,
262 /*RecordPaths=*/true, /*DetectVirtual=*/false);
264 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
265 llvm_unreachable("Class must be derived from the passed in base class!");
267 return ComputeBaseOffset(Context, DerivedRD, Paths.front());
270 static BaseOffset
271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
272 const CXXMethodDecl *DerivedMD,
273 const CXXMethodDecl *BaseMD) {
274 const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>();
275 const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>();
277 // Canonicalize the return types.
278 CanQualType CanDerivedReturnType =
279 Context.getCanonicalType(DerivedFT->getReturnType());
280 CanQualType CanBaseReturnType =
281 Context.getCanonicalType(BaseFT->getReturnType());
283 assert(CanDerivedReturnType->getTypeClass() ==
284 CanBaseReturnType->getTypeClass() &&
285 "Types must have same type class!");
287 if (CanDerivedReturnType == CanBaseReturnType) {
288 // No adjustment needed.
289 return BaseOffset();
292 if (isa<ReferenceType>(CanDerivedReturnType)) {
293 CanDerivedReturnType =
294 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
295 CanBaseReturnType =
296 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
297 } else if (isa<PointerType>(CanDerivedReturnType)) {
298 CanDerivedReturnType =
299 CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
300 CanBaseReturnType =
301 CanBaseReturnType->getAs<PointerType>()->getPointeeType();
302 } else {
303 llvm_unreachable("Unexpected return type!");
306 // We need to compare unqualified types here; consider
307 // const T *Base::foo();
308 // T *Derived::foo();
309 if (CanDerivedReturnType.getUnqualifiedType() ==
310 CanBaseReturnType.getUnqualifiedType()) {
311 // No adjustment needed.
312 return BaseOffset();
315 const CXXRecordDecl *DerivedRD =
316 cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
318 const CXXRecordDecl *BaseRD =
319 cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
321 return ComputeBaseOffset(Context, BaseRD, DerivedRD);
324 void
325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
326 CharUnits OffsetInLayoutClass,
327 SubobjectOffsetMapTy &SubobjectOffsets,
328 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
329 SubobjectCountMapTy &SubobjectCounts) {
330 const CXXRecordDecl *RD = Base.getBase();
332 unsigned SubobjectNumber = 0;
333 if (!IsVirtual)
334 SubobjectNumber = ++SubobjectCounts[RD];
336 // Set up the subobject to offset mapping.
337 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
338 && "Subobject offset already exists!");
339 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
340 && "Subobject offset already exists!");
342 SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
343 SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
344 OffsetInLayoutClass;
346 // Traverse our bases.
347 for (const auto &B : RD->bases()) {
348 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
350 CharUnits BaseOffset;
351 CharUnits BaseOffsetInLayoutClass;
352 if (B.isVirtual()) {
353 // Check if we've visited this virtual base before.
354 if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
355 continue;
357 const ASTRecordLayout &LayoutClassLayout =
358 Context.getASTRecordLayout(LayoutClass);
360 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
361 BaseOffsetInLayoutClass =
362 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
363 } else {
364 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
365 CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
367 BaseOffset = Base.getBaseOffset() + Offset;
368 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
371 ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
372 B.isVirtual(), BaseOffsetInLayoutClass,
373 SubobjectOffsets, SubobjectLayoutClassOffsets,
374 SubobjectCounts);
378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
379 VisitedVirtualBasesSetTy &VisitedVirtualBases) {
380 const CXXRecordDecl *RD = Base.getBase();
381 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
383 for (const auto &B : RD->bases()) {
384 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
386 // Ignore bases that don't have any virtual member functions.
387 if (!BaseDecl->isPolymorphic())
388 continue;
390 CharUnits BaseOffset;
391 if (B.isVirtual()) {
392 if (!VisitedVirtualBases.insert(BaseDecl).second) {
393 // We've visited this base before.
394 continue;
397 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
398 } else {
399 BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
402 dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
405 Out << "Final overriders for (";
406 RD->printQualifiedName(Out);
407 Out << ", ";
408 Out << Base.getBaseOffset().getQuantity() << ")\n";
410 // Now dump the overriders for this base subobject.
411 for (const auto *MD : RD->methods()) {
412 if (!VTableContextBase::hasVtableSlot(MD))
413 continue;
414 MD = MD->getCanonicalDecl();
416 OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
418 Out << " ";
419 MD->printQualifiedName(Out);
420 Out << " - (";
421 Overrider.Method->printQualifiedName(Out);
422 Out << ", " << Overrider.Offset.getQuantity() << ')';
424 BaseOffset Offset;
425 if (!Overrider.Method->isPure())
426 Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
428 if (!Offset.isEmpty()) {
429 Out << " [ret-adj: ";
430 if (Offset.VirtualBase) {
431 Offset.VirtualBase->printQualifiedName(Out);
432 Out << " vbase, ";
435 Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
438 Out << "\n";
442 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
443 struct VCallOffsetMap {
445 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
447 /// Offsets - Keeps track of methods and their offsets.
448 // FIXME: This should be a real map and not a vector.
449 SmallVector<MethodAndOffsetPairTy, 16> Offsets;
451 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
452 /// can share the same vcall offset.
453 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
454 const CXXMethodDecl *RHS);
456 public:
457 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
458 /// add was successful, or false if there was already a member function with
459 /// the same signature in the map.
460 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
462 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
463 /// vtable address point) for the given virtual member function.
464 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
466 // empty - Return whether the offset map is empty or not.
467 bool empty() const { return Offsets.empty(); }
470 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
471 const CXXMethodDecl *RHS) {
472 const FunctionProtoType *LT =
473 cast<FunctionProtoType>(LHS->getType().getCanonicalType());
474 const FunctionProtoType *RT =
475 cast<FunctionProtoType>(RHS->getType().getCanonicalType());
477 // Fast-path matches in the canonical types.
478 if (LT == RT) return true;
480 // Force the signatures to match. We can't rely on the overrides
481 // list here because there isn't necessarily an inheritance
482 // relationship between the two methods.
483 if (LT->getMethodQuals() != RT->getMethodQuals())
484 return false;
485 return LT->getParamTypes() == RT->getParamTypes();
488 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
489 const CXXMethodDecl *RHS) {
490 assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!");
491 assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!");
493 // A destructor can share a vcall offset with another destructor.
494 if (isa<CXXDestructorDecl>(LHS))
495 return isa<CXXDestructorDecl>(RHS);
497 // FIXME: We need to check more things here.
499 // The methods must have the same name.
500 DeclarationName LHSName = LHS->getDeclName();
501 DeclarationName RHSName = RHS->getDeclName();
502 if (LHSName != RHSName)
503 return false;
505 // And the same signatures.
506 return HasSameVirtualSignature(LHS, RHS);
509 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
510 CharUnits OffsetOffset) {
511 // Check if we can reuse an offset.
512 for (const auto &OffsetPair : Offsets) {
513 if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
514 return false;
517 // Add the offset.
518 Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
519 return true;
522 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
523 // Look for an offset.
524 for (const auto &OffsetPair : Offsets) {
525 if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
526 return OffsetPair.second;
529 llvm_unreachable("Should always find a vcall offset offset!");
532 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
533 class VCallAndVBaseOffsetBuilder {
534 public:
535 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
536 VBaseOffsetOffsetsMapTy;
538 private:
539 const ItaniumVTableContext &VTables;
541 /// MostDerivedClass - The most derived class for which we're building vcall
542 /// and vbase offsets.
543 const CXXRecordDecl *MostDerivedClass;
545 /// LayoutClass - The class we're using for layout information. Will be
546 /// different than the most derived class if we're building a construction
547 /// vtable.
548 const CXXRecordDecl *LayoutClass;
550 /// Context - The ASTContext which we will use for layout information.
551 ASTContext &Context;
553 /// Components - vcall and vbase offset components
554 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
555 VTableComponentVectorTy Components;
557 /// VisitedVirtualBases - Visited virtual bases.
558 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
560 /// VCallOffsets - Keeps track of vcall offsets.
561 VCallOffsetMap VCallOffsets;
564 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
565 /// relative to the address point.
566 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
568 /// FinalOverriders - The final overriders of the most derived class.
569 /// (Can be null when we're not building a vtable of the most derived class).
570 const FinalOverriders *Overriders;
572 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
573 /// given base subobject.
574 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
575 CharUnits RealBaseOffset);
577 /// AddVCallOffsets - Add vcall offsets for the given base subobject.
578 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
580 /// AddVBaseOffsets - Add vbase offsets for the given class.
581 void AddVBaseOffsets(const CXXRecordDecl *Base,
582 CharUnits OffsetInLayoutClass);
584 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
585 /// chars, relative to the vtable address point.
586 CharUnits getCurrentOffsetOffset() const;
588 public:
589 VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables,
590 const CXXRecordDecl *MostDerivedClass,
591 const CXXRecordDecl *LayoutClass,
592 const FinalOverriders *Overriders,
593 BaseSubobject Base, bool BaseIsVirtual,
594 CharUnits OffsetInLayoutClass)
595 : VTables(VTables), MostDerivedClass(MostDerivedClass),
596 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
597 Overriders(Overriders) {
599 // Add vcall and vbase offsets.
600 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
603 /// Methods for iterating over the components.
604 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
605 const_iterator components_begin() const { return Components.rbegin(); }
606 const_iterator components_end() const { return Components.rend(); }
608 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
609 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
610 return VBaseOffsetOffsets;
614 void
615 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
616 bool BaseIsVirtual,
617 CharUnits RealBaseOffset) {
618 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
620 // Itanium C++ ABI 2.5.2:
621 // ..in classes sharing a virtual table with a primary base class, the vcall
622 // and vbase offsets added by the derived class all come before the vcall
623 // and vbase offsets required by the base class, so that the latter may be
624 // laid out as required by the base class without regard to additions from
625 // the derived class(es).
627 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
628 // emit them for the primary base first).
629 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
630 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
632 CharUnits PrimaryBaseOffset;
634 // Get the base offset of the primary base.
635 if (PrimaryBaseIsVirtual) {
636 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
637 "Primary vbase should have a zero offset!");
639 const ASTRecordLayout &MostDerivedClassLayout =
640 Context.getASTRecordLayout(MostDerivedClass);
642 PrimaryBaseOffset =
643 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
644 } else {
645 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
646 "Primary base should have a zero offset!");
648 PrimaryBaseOffset = Base.getBaseOffset();
651 AddVCallAndVBaseOffsets(
652 BaseSubobject(PrimaryBase,PrimaryBaseOffset),
653 PrimaryBaseIsVirtual, RealBaseOffset);
656 AddVBaseOffsets(Base.getBase(), RealBaseOffset);
658 // We only want to add vcall offsets for virtual bases.
659 if (BaseIsVirtual)
660 AddVCallOffsets(Base, RealBaseOffset);
663 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
664 // OffsetIndex is the index of this vcall or vbase offset, relative to the
665 // vtable address point. (We subtract 3 to account for the information just
666 // above the address point, the RTTI info, the offset to top, and the
667 // vcall offset itself).
668 size_t NumComponentsAboveAddrPoint = 3;
669 if (Context.getLangOpts().OmitVTableRTTI)
670 NumComponentsAboveAddrPoint--;
671 int64_t OffsetIndex =
672 -(int64_t)(NumComponentsAboveAddrPoint + Components.size());
674 // Under the relative ABI, the offset widths are 32-bit ints instead of
675 // pointer widths.
676 CharUnits OffsetWidth = Context.toCharUnitsFromBits(
677 VTables.isRelativeLayout()
678 ? 32
679 : Context.getTargetInfo().getPointerWidth(LangAS::Default));
680 CharUnits OffsetOffset = OffsetWidth * OffsetIndex;
682 return OffsetOffset;
685 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
686 CharUnits VBaseOffset) {
687 const CXXRecordDecl *RD = Base.getBase();
688 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
690 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
692 // Handle the primary base first.
693 // We only want to add vcall offsets if the base is non-virtual; a virtual
694 // primary base will have its vcall and vbase offsets emitted already.
695 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
696 // Get the base offset of the primary base.
697 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
698 "Primary base should have a zero offset!");
700 AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
701 VBaseOffset);
704 // Add the vcall offsets.
705 for (const auto *MD : RD->methods()) {
706 if (!VTableContextBase::hasVtableSlot(MD))
707 continue;
708 MD = MD->getCanonicalDecl();
710 CharUnits OffsetOffset = getCurrentOffsetOffset();
712 // Don't add a vcall offset if we already have one for this member function
713 // signature.
714 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
715 continue;
717 CharUnits Offset = CharUnits::Zero();
719 if (Overriders) {
720 // Get the final overrider.
721 FinalOverriders::OverriderInfo Overrider =
722 Overriders->getOverrider(MD, Base.getBaseOffset());
724 /// The vcall offset is the offset from the virtual base to the object
725 /// where the function was overridden.
726 Offset = Overrider.Offset - VBaseOffset;
729 Components.push_back(
730 VTableComponent::MakeVCallOffset(Offset));
733 // And iterate over all non-virtual bases (ignoring the primary base).
734 for (const auto &B : RD->bases()) {
735 if (B.isVirtual())
736 continue;
738 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
739 if (BaseDecl == PrimaryBase)
740 continue;
742 // Get the base offset of this base.
743 CharUnits BaseOffset = Base.getBaseOffset() +
744 Layout.getBaseClassOffset(BaseDecl);
746 AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
747 VBaseOffset);
751 void
752 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
753 CharUnits OffsetInLayoutClass) {
754 const ASTRecordLayout &LayoutClassLayout =
755 Context.getASTRecordLayout(LayoutClass);
757 // Add vbase offsets.
758 for (const auto &B : RD->bases()) {
759 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
761 // Check if this is a virtual base that we haven't visited before.
762 if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
763 CharUnits Offset =
764 LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
766 // Add the vbase offset offset.
767 assert(!VBaseOffsetOffsets.count(BaseDecl) &&
768 "vbase offset offset already exists!");
770 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
771 VBaseOffsetOffsets.insert(
772 std::make_pair(BaseDecl, VBaseOffsetOffset));
774 Components.push_back(
775 VTableComponent::MakeVBaseOffset(Offset));
778 // Check the base class looking for more vbase offsets.
779 AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
783 /// ItaniumVTableBuilder - Class for building vtable layout information.
784 class ItaniumVTableBuilder {
785 public:
786 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
787 /// primary bases.
788 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
789 PrimaryBasesSetVectorTy;
791 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
792 VBaseOffsetOffsetsMapTy;
794 typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;
796 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
798 private:
799 /// VTables - Global vtable information.
800 ItaniumVTableContext &VTables;
802 /// MostDerivedClass - The most derived class for which we're building this
803 /// vtable.
804 const CXXRecordDecl *MostDerivedClass;
806 /// MostDerivedClassOffset - If we're building a construction vtable, this
807 /// holds the offset from the layout class to the most derived class.
808 const CharUnits MostDerivedClassOffset;
810 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
811 /// base. (This only makes sense when building a construction vtable).
812 bool MostDerivedClassIsVirtual;
814 /// LayoutClass - The class we're using for layout information. Will be
815 /// different than the most derived class if we're building a construction
816 /// vtable.
817 const CXXRecordDecl *LayoutClass;
819 /// Context - The ASTContext which we will use for layout information.
820 ASTContext &Context;
822 /// FinalOverriders - The final overriders of the most derived class.
823 const FinalOverriders Overriders;
825 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
826 /// bases in this vtable.
827 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
829 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
830 /// the most derived class.
831 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
833 /// Components - The components of the vtable being built.
834 SmallVector<VTableComponent, 64> Components;
836 /// AddressPoints - Address points for the vtable being built.
837 AddressPointsMapTy AddressPoints;
839 /// MethodInfo - Contains information about a method in a vtable.
840 /// (Used for computing 'this' pointer adjustment thunks.
841 struct MethodInfo {
842 /// BaseOffset - The base offset of this method.
843 const CharUnits BaseOffset;
845 /// BaseOffsetInLayoutClass - The base offset in the layout class of this
846 /// method.
847 const CharUnits BaseOffsetInLayoutClass;
849 /// VTableIndex - The index in the vtable that this method has.
850 /// (For destructors, this is the index of the complete destructor).
851 const uint64_t VTableIndex;
853 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
854 uint64_t VTableIndex)
855 : BaseOffset(BaseOffset),
856 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
857 VTableIndex(VTableIndex) { }
859 MethodInfo()
860 : BaseOffset(CharUnits::Zero()),
861 BaseOffsetInLayoutClass(CharUnits::Zero()),
862 VTableIndex(0) { }
864 MethodInfo(MethodInfo const&) = default;
867 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
869 /// MethodInfoMap - The information for all methods in the vtable we're
870 /// currently building.
871 MethodInfoMapTy MethodInfoMap;
873 /// MethodVTableIndices - Contains the index (relative to the vtable address
874 /// point) where the function pointer for a virtual function is stored.
875 MethodVTableIndicesTy MethodVTableIndices;
877 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
879 /// VTableThunks - The thunks by vtable index in the vtable currently being
880 /// built.
881 VTableThunksMapTy VTableThunks;
883 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
884 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
886 /// Thunks - A map that contains all the thunks needed for all methods in the
887 /// most derived class for which the vtable is currently being built.
888 ThunksMapTy Thunks;
890 /// AddThunk - Add a thunk for the given method.
891 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
893 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
894 /// part of the vtable we're currently building.
895 void ComputeThisAdjustments();
897 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
899 /// PrimaryVirtualBases - All known virtual bases who are a primary base of
900 /// some other base.
901 VisitedVirtualBasesSetTy PrimaryVirtualBases;
903 /// ComputeReturnAdjustment - Compute the return adjustment given a return
904 /// adjustment base offset.
905 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
907 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
908 /// the 'this' pointer from the base subobject to the derived subobject.
909 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
910 BaseSubobject Derived) const;
912 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
913 /// given virtual member function, its offset in the layout class and its
914 /// final overrider.
915 ThisAdjustment
916 ComputeThisAdjustment(const CXXMethodDecl *MD,
917 CharUnits BaseOffsetInLayoutClass,
918 FinalOverriders::OverriderInfo Overrider);
920 /// AddMethod - Add a single virtual member function to the vtable
921 /// components vector.
922 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
924 /// IsOverriderUsed - Returns whether the overrider will ever be used in this
925 /// part of the vtable.
927 /// Itanium C++ ABI 2.5.2:
929 /// struct A { virtual void f(); };
930 /// struct B : virtual public A { int i; };
931 /// struct C : virtual public A { int j; };
932 /// struct D : public B, public C {};
934 /// When B and C are declared, A is a primary base in each case, so although
935 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
936 /// adjustment is required and no thunk is generated. However, inside D
937 /// objects, A is no longer a primary base of C, so if we allowed calls to
938 /// C::f() to use the copy of A's vtable in the C subobject, we would need
939 /// to adjust this from C* to B::A*, which would require a third-party
940 /// thunk. Since we require that a call to C::f() first convert to A*,
941 /// C-in-D's copy of A's vtable is never referenced, so this is not
942 /// necessary.
943 bool IsOverriderUsed(const CXXMethodDecl *Overrider,
944 CharUnits BaseOffsetInLayoutClass,
945 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
946 CharUnits FirstBaseOffsetInLayoutClass) const;
949 /// AddMethods - Add the methods of this base subobject and all its
950 /// primary bases to the vtable components vector.
951 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
952 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
953 CharUnits FirstBaseOffsetInLayoutClass,
954 PrimaryBasesSetVectorTy &PrimaryBases);
956 // LayoutVTable - Layout the vtable for the given base class, including its
957 // secondary vtables and any vtables for virtual bases.
958 void LayoutVTable();
960 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
961 /// given base subobject, as well as all its secondary vtables.
963 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
964 /// or a direct or indirect base of a virtual base.
966 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
967 /// in the layout class.
968 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
969 bool BaseIsMorallyVirtual,
970 bool BaseIsVirtualInLayoutClass,
971 CharUnits OffsetInLayoutClass);
973 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
974 /// subobject.
976 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
977 /// or a direct or indirect base of a virtual base.
978 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
979 CharUnits OffsetInLayoutClass);
981 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
982 /// class hierarchy.
983 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
984 CharUnits OffsetInLayoutClass,
985 VisitedVirtualBasesSetTy &VBases);
987 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
988 /// given base (excluding any primary bases).
989 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
990 VisitedVirtualBasesSetTy &VBases);
992 /// isBuildingConstructionVTable - Return whether this vtable builder is
993 /// building a construction vtable.
994 bool isBuildingConstructorVTable() const {
995 return MostDerivedClass != LayoutClass;
998 public:
999 /// Component indices of the first component of each of the vtables in the
1000 /// vtable group.
1001 SmallVector<size_t, 4> VTableIndices;
1003 ItaniumVTableBuilder(ItaniumVTableContext &VTables,
1004 const CXXRecordDecl *MostDerivedClass,
1005 CharUnits MostDerivedClassOffset,
1006 bool MostDerivedClassIsVirtual,
1007 const CXXRecordDecl *LayoutClass)
1008 : VTables(VTables), MostDerivedClass(MostDerivedClass),
1009 MostDerivedClassOffset(MostDerivedClassOffset),
1010 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
1011 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
1012 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
1013 assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
1015 LayoutVTable();
1017 if (Context.getLangOpts().DumpVTableLayouts)
1018 dumpLayout(llvm::outs());
1021 uint64_t getNumThunks() const {
1022 return Thunks.size();
1025 ThunksMapTy::const_iterator thunks_begin() const {
1026 return Thunks.begin();
1029 ThunksMapTy::const_iterator thunks_end() const {
1030 return Thunks.end();
1033 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1034 return VBaseOffsetOffsets;
1037 const AddressPointsMapTy &getAddressPoints() const {
1038 return AddressPoints;
1041 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1042 return MethodVTableIndices.begin();
1045 MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1046 return MethodVTableIndices.end();
1049 ArrayRef<VTableComponent> vtable_components() const { return Components; }
1051 AddressPointsMapTy::const_iterator address_points_begin() const {
1052 return AddressPoints.begin();
1055 AddressPointsMapTy::const_iterator address_points_end() const {
1056 return AddressPoints.end();
1059 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1060 return VTableThunks.begin();
1063 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1064 return VTableThunks.end();
1067 /// dumpLayout - Dump the vtable layout.
1068 void dumpLayout(raw_ostream&);
1071 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1072 const ThunkInfo &Thunk) {
1073 assert(!isBuildingConstructorVTable() &&
1074 "Can't add thunks for construction vtable");
1076 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1078 // Check if we have this thunk already.
1079 if (llvm::is_contained(ThunksVector, Thunk))
1080 return;
1082 ThunksVector.push_back(Thunk);
1085 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1087 /// Visit all the methods overridden by the given method recursively,
1088 /// in a depth-first pre-order. The Visitor's visitor method returns a bool
1089 /// indicating whether to continue the recursion for the given overridden
1090 /// method (i.e. returning false stops the iteration).
1091 template <class VisitorTy>
1092 static void
1093 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1094 assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");
1096 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1097 if (!Visitor(OverriddenMD))
1098 continue;
1099 visitAllOverriddenMethods(OverriddenMD, Visitor);
1103 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1104 /// the overridden methods that the function decl overrides.
1105 static void
1106 ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1107 OverriddenMethodsSetTy& OverriddenMethods) {
1108 auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
1109 // Don't recurse on this method if we've already collected it.
1110 return OverriddenMethods.insert(MD).second;
1112 visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
1115 void ItaniumVTableBuilder::ComputeThisAdjustments() {
1116 // Now go through the method info map and see if any of the methods need
1117 // 'this' pointer adjustments.
1118 for (const auto &MI : MethodInfoMap) {
1119 const CXXMethodDecl *MD = MI.first;
1120 const MethodInfo &MethodInfo = MI.second;
1122 // Ignore adjustments for unused function pointers.
1123 uint64_t VTableIndex = MethodInfo.VTableIndex;
1124 if (Components[VTableIndex].getKind() ==
1125 VTableComponent::CK_UnusedFunctionPointer)
1126 continue;
1128 // Get the final overrider for this method.
1129 FinalOverriders::OverriderInfo Overrider =
1130 Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1132 // Check if we need an adjustment at all.
1133 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1134 // When a return thunk is needed by a derived class that overrides a
1135 // virtual base, gcc uses a virtual 'this' adjustment as well.
1136 // While the thunk itself might be needed by vtables in subclasses or
1137 // in construction vtables, there doesn't seem to be a reason for using
1138 // the thunk in this vtable. Still, we do so to match gcc.
1139 if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1140 continue;
1143 ThisAdjustment ThisAdjustment =
1144 ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1146 if (ThisAdjustment.isEmpty())
1147 continue;
1149 // Add it.
1150 VTableThunks[VTableIndex].This = ThisAdjustment;
1152 if (isa<CXXDestructorDecl>(MD)) {
1153 // Add an adjustment for the deleting destructor as well.
1154 VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1158 /// Clear the method info map.
1159 MethodInfoMap.clear();
1161 if (isBuildingConstructorVTable()) {
1162 // We don't need to store thunk information for construction vtables.
1163 return;
1166 for (const auto &TI : VTableThunks) {
1167 const VTableComponent &Component = Components[TI.first];
1168 const ThunkInfo &Thunk = TI.second;
1169 const CXXMethodDecl *MD;
1171 switch (Component.getKind()) {
1172 default:
1173 llvm_unreachable("Unexpected vtable component kind!");
1174 case VTableComponent::CK_FunctionPointer:
1175 MD = Component.getFunctionDecl();
1176 break;
1177 case VTableComponent::CK_CompleteDtorPointer:
1178 MD = Component.getDestructorDecl();
1179 break;
1180 case VTableComponent::CK_DeletingDtorPointer:
1181 // We've already added the thunk when we saw the complete dtor pointer.
1182 continue;
1185 if (MD->getParent() == MostDerivedClass)
1186 AddThunk(MD, Thunk);
1190 ReturnAdjustment
1191 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1192 ReturnAdjustment Adjustment;
1194 if (!Offset.isEmpty()) {
1195 if (Offset.VirtualBase) {
1196 // Get the virtual base offset offset.
1197 if (Offset.DerivedClass == MostDerivedClass) {
1198 // We can get the offset offset directly from our map.
1199 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1200 VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1201 } else {
1202 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1203 VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1204 Offset.VirtualBase).getQuantity();
1208 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1211 return Adjustment;
1214 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1215 BaseSubobject Base, BaseSubobject Derived) const {
1216 const CXXRecordDecl *BaseRD = Base.getBase();
1217 const CXXRecordDecl *DerivedRD = Derived.getBase();
1219 CXXBasePaths Paths(/*FindAmbiguities=*/true,
1220 /*RecordPaths=*/true, /*DetectVirtual=*/true);
1222 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1223 llvm_unreachable("Class must be derived from the passed in base class!");
1225 // We have to go through all the paths, and see which one leads us to the
1226 // right base subobject.
1227 for (const CXXBasePath &Path : Paths) {
1228 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
1230 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1232 if (Offset.VirtualBase) {
1233 // If we have a virtual base class, the non-virtual offset is relative
1234 // to the virtual base class offset.
1235 const ASTRecordLayout &LayoutClassLayout =
1236 Context.getASTRecordLayout(LayoutClass);
1238 /// Get the virtual base offset, relative to the most derived class
1239 /// layout.
1240 OffsetToBaseSubobject +=
1241 LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1242 } else {
1243 // Otherwise, the non-virtual offset is relative to the derived class
1244 // offset.
1245 OffsetToBaseSubobject += Derived.getBaseOffset();
1248 // Check if this path gives us the right base subobject.
1249 if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1250 // Since we're going from the base class _to_ the derived class, we'll
1251 // invert the non-virtual offset here.
1252 Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1253 return Offset;
1257 return BaseOffset();
1260 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1261 const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1262 FinalOverriders::OverriderInfo Overrider) {
1263 // Ignore adjustments for pure virtual member functions.
1264 if (Overrider.Method->isPure())
1265 return ThisAdjustment();
1267 BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1268 BaseOffsetInLayoutClass);
1270 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1271 Overrider.Offset);
1273 // Compute the adjustment offset.
1274 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1275 OverriderBaseSubobject);
1276 if (Offset.isEmpty())
1277 return ThisAdjustment();
1279 ThisAdjustment Adjustment;
1281 if (Offset.VirtualBase) {
1282 // Get the vcall offset map for this virtual base.
1283 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1285 if (VCallOffsets.empty()) {
1286 // We don't have vcall offsets for this virtual base, go ahead and
1287 // build them.
1288 VCallAndVBaseOffsetBuilder Builder(
1289 VTables, MostDerivedClass, MostDerivedClass,
1290 /*Overriders=*/nullptr,
1291 BaseSubobject(Offset.VirtualBase, CharUnits::Zero()),
1292 /*BaseIsVirtual=*/true,
1293 /*OffsetInLayoutClass=*/
1294 CharUnits::Zero());
1296 VCallOffsets = Builder.getVCallOffsets();
1299 Adjustment.Virtual.Itanium.VCallOffsetOffset =
1300 VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1303 // Set the non-virtual part of the adjustment.
1304 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1306 return Adjustment;
1309 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1310 ReturnAdjustment ReturnAdjustment) {
1311 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1312 assert(ReturnAdjustment.isEmpty() &&
1313 "Destructor can't have return adjustment!");
1315 // Add both the complete destructor and the deleting destructor.
1316 Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1317 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1318 } else {
1319 // Add the return adjustment if necessary.
1320 if (!ReturnAdjustment.isEmpty())
1321 VTableThunks[Components.size()].Return = ReturnAdjustment;
1323 // Add the function.
1324 Components.push_back(VTableComponent::MakeFunction(MD));
1328 /// OverridesIndirectMethodInBase - Return whether the given member function
1329 /// overrides any methods in the set of given bases.
1330 /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1331 /// For example, if we have:
1333 /// struct A { virtual void f(); }
1334 /// struct B : A { virtual void f(); }
1335 /// struct C : B { virtual void f(); }
1337 /// OverridesIndirectMethodInBase will return true if given C::f as the method
1338 /// and { A } as the set of bases.
1339 static bool OverridesIndirectMethodInBases(
1340 const CXXMethodDecl *MD,
1341 ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1342 if (Bases.count(MD->getParent()))
1343 return true;
1345 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1346 // Check "indirect overriders".
1347 if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1348 return true;
1351 return false;
1354 bool ItaniumVTableBuilder::IsOverriderUsed(
1355 const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1356 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1357 CharUnits FirstBaseOffsetInLayoutClass) const {
1358 // If the base and the first base in the primary base chain have the same
1359 // offsets, then this overrider will be used.
1360 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1361 return true;
1363 // We know now that Base (or a direct or indirect base of it) is a primary
1364 // base in part of the class hierarchy, but not a primary base in the most
1365 // derived class.
1367 // If the overrider is the first base in the primary base chain, we know
1368 // that the overrider will be used.
1369 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1370 return true;
1372 ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1374 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1375 PrimaryBases.insert(RD);
1377 // Now traverse the base chain, starting with the first base, until we find
1378 // the base that is no longer a primary base.
1379 while (true) {
1380 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1381 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1383 if (!PrimaryBase)
1384 break;
1386 if (Layout.isPrimaryBaseVirtual()) {
1387 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1388 "Primary base should always be at offset 0!");
1390 const ASTRecordLayout &LayoutClassLayout =
1391 Context.getASTRecordLayout(LayoutClass);
1393 // Now check if this is the primary base that is not a primary base in the
1394 // most derived class.
1395 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1396 FirstBaseOffsetInLayoutClass) {
1397 // We found it, stop walking the chain.
1398 break;
1400 } else {
1401 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1402 "Primary base should always be at offset 0!");
1405 if (!PrimaryBases.insert(PrimaryBase))
1406 llvm_unreachable("Found a duplicate primary base!");
1408 RD = PrimaryBase;
1411 // If the final overrider is an override of one of the primary bases,
1412 // then we know that it will be used.
1413 return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1416 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1418 /// FindNearestOverriddenMethod - Given a method, returns the overridden method
1419 /// from the nearest base. Returns null if no method was found.
1420 /// The Bases are expected to be sorted in a base-to-derived order.
1421 static const CXXMethodDecl *
1422 FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1423 BasesSetVectorTy &Bases) {
1424 OverriddenMethodsSetTy OverriddenMethods;
1425 ComputeAllOverriddenMethods(MD, OverriddenMethods);
1427 for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) {
1428 // Now check the overridden methods.
1429 for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
1430 // We found our overridden method.
1431 if (OverriddenMD->getParent() == PrimaryBase)
1432 return OverriddenMD;
1436 return nullptr;
1439 void ItaniumVTableBuilder::AddMethods(
1440 BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1441 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1442 CharUnits FirstBaseOffsetInLayoutClass,
1443 PrimaryBasesSetVectorTy &PrimaryBases) {
1444 // Itanium C++ ABI 2.5.2:
1445 // The order of the virtual function pointers in a virtual table is the
1446 // order of declaration of the corresponding member functions in the class.
1448 // There is an entry for any virtual function declared in a class,
1449 // whether it is a new function or overrides a base class function,
1450 // unless it overrides a function from the primary base, and conversion
1451 // between their return types does not require an adjustment.
1453 const CXXRecordDecl *RD = Base.getBase();
1454 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1456 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1457 CharUnits PrimaryBaseOffset;
1458 CharUnits PrimaryBaseOffsetInLayoutClass;
1459 if (Layout.isPrimaryBaseVirtual()) {
1460 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1461 "Primary vbase should have a zero offset!");
1463 const ASTRecordLayout &MostDerivedClassLayout =
1464 Context.getASTRecordLayout(MostDerivedClass);
1466 PrimaryBaseOffset =
1467 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1469 const ASTRecordLayout &LayoutClassLayout =
1470 Context.getASTRecordLayout(LayoutClass);
1472 PrimaryBaseOffsetInLayoutClass =
1473 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1474 } else {
1475 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1476 "Primary base should have a zero offset!");
1478 PrimaryBaseOffset = Base.getBaseOffset();
1479 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1482 AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1483 PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1484 FirstBaseOffsetInLayoutClass, PrimaryBases);
1486 if (!PrimaryBases.insert(PrimaryBase))
1487 llvm_unreachable("Found a duplicate primary base!");
1490 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1491 NewVirtualFunctionsTy NewVirtualFunctions;
1493 llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions;
1495 // Now go through all virtual member functions and add them.
1496 for (const auto *MD : RD->methods()) {
1497 if (!ItaniumVTableContext::hasVtableSlot(MD))
1498 continue;
1499 MD = MD->getCanonicalDecl();
1501 // Get the final overrider.
1502 FinalOverriders::OverriderInfo Overrider =
1503 Overriders.getOverrider(MD, Base.getBaseOffset());
1505 // Check if this virtual member function overrides a method in a primary
1506 // base. If this is the case, and the return type doesn't require adjustment
1507 // then we can just use the member function from the primary base.
1508 if (const CXXMethodDecl *OverriddenMD =
1509 FindNearestOverriddenMethod(MD, PrimaryBases)) {
1510 if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1511 OverriddenMD).isEmpty()) {
1512 // Replace the method info of the overridden method with our own
1513 // method.
1514 assert(MethodInfoMap.count(OverriddenMD) &&
1515 "Did not find the overridden method!");
1516 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1518 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1519 OverriddenMethodInfo.VTableIndex);
1521 assert(!MethodInfoMap.count(MD) &&
1522 "Should not have method info for this method yet!");
1524 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1525 MethodInfoMap.erase(OverriddenMD);
1527 // If the overridden method exists in a virtual base class or a direct
1528 // or indirect base class of a virtual base class, we need to emit a
1529 // thunk if we ever have a class hierarchy where the base class is not
1530 // a primary base in the complete object.
1531 if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1532 // Compute the this adjustment.
1533 ThisAdjustment ThisAdjustment =
1534 ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1535 Overrider);
1537 if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1538 Overrider.Method->getParent() == MostDerivedClass) {
1540 // There's no return adjustment from OverriddenMD and MD,
1541 // but that doesn't mean there isn't one between MD and
1542 // the final overrider.
1543 BaseOffset ReturnAdjustmentOffset =
1544 ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1545 ReturnAdjustment ReturnAdjustment =
1546 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1548 // This is a virtual thunk for the most derived class, add it.
1549 AddThunk(Overrider.Method,
1550 ThunkInfo(ThisAdjustment, ReturnAdjustment));
1554 continue;
1558 if (MD->isImplicit())
1559 NewImplicitVirtualFunctions.push_back(MD);
1560 else
1561 NewVirtualFunctions.push_back(MD);
1564 std::stable_sort(
1565 NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(),
1566 [](const CXXMethodDecl *A, const CXXMethodDecl *B) {
1567 if (A == B)
1568 return false;
1569 if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator())
1570 return A->isCopyAssignmentOperator();
1571 if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator())
1572 return A->isMoveAssignmentOperator();
1573 if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B))
1574 return isa<CXXDestructorDecl>(A);
1575 assert(A->getOverloadedOperator() == OO_EqualEqual &&
1576 B->getOverloadedOperator() == OO_EqualEqual &&
1577 "unexpected or duplicate implicit virtual function");
1578 // We rely on Sema to have declared the operator== members in the
1579 // same order as the corresponding operator<=> members.
1580 return false;
1582 NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(),
1583 NewImplicitVirtualFunctions.end());
1585 for (const CXXMethodDecl *MD : NewVirtualFunctions) {
1586 // Get the final overrider.
1587 FinalOverriders::OverriderInfo Overrider =
1588 Overriders.getOverrider(MD, Base.getBaseOffset());
1590 // Insert the method info for this method.
1591 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1592 Components.size());
1594 assert(!MethodInfoMap.count(MD) &&
1595 "Should not have method info for this method yet!");
1596 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1598 // Check if this overrider is going to be used.
1599 const CXXMethodDecl *OverriderMD = Overrider.Method;
1600 if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1601 FirstBaseInPrimaryBaseChain,
1602 FirstBaseOffsetInLayoutClass)) {
1603 Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1604 continue;
1607 // Check if this overrider needs a return adjustment.
1608 // We don't want to do this for pure virtual member functions.
1609 BaseOffset ReturnAdjustmentOffset;
1610 if (!OverriderMD->isPure()) {
1611 ReturnAdjustmentOffset =
1612 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1615 ReturnAdjustment ReturnAdjustment =
1616 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1618 AddMethod(Overrider.Method, ReturnAdjustment);
1622 void ItaniumVTableBuilder::LayoutVTable() {
1623 LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1624 CharUnits::Zero()),
1625 /*BaseIsMorallyVirtual=*/false,
1626 MostDerivedClassIsVirtual,
1627 MostDerivedClassOffset);
1629 VisitedVirtualBasesSetTy VBases;
1631 // Determine the primary virtual bases.
1632 DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1633 VBases);
1634 VBases.clear();
1636 LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1638 // -fapple-kext adds an extra entry at end of vtbl.
1639 bool IsAppleKext = Context.getLangOpts().AppleKext;
1640 if (IsAppleKext)
1641 Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1644 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1645 BaseSubobject Base, bool BaseIsMorallyVirtual,
1646 bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1647 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1649 unsigned VTableIndex = Components.size();
1650 VTableIndices.push_back(VTableIndex);
1652 // Add vcall and vbase offsets for this vtable.
1653 VCallAndVBaseOffsetBuilder Builder(
1654 VTables, MostDerivedClass, LayoutClass, &Overriders, Base,
1655 BaseIsVirtualInLayoutClass, OffsetInLayoutClass);
1656 Components.append(Builder.components_begin(), Builder.components_end());
1658 // Check if we need to add these vcall offsets.
1659 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1660 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1662 if (VCallOffsets.empty())
1663 VCallOffsets = Builder.getVCallOffsets();
1666 // If we're laying out the most derived class we want to keep track of the
1667 // virtual base class offset offsets.
1668 if (Base.getBase() == MostDerivedClass)
1669 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1671 // Add the offset to top.
1672 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1673 Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1675 // Next, add the RTTI.
1676 if (!Context.getLangOpts().OmitVTableRTTI)
1677 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1679 uint64_t AddressPoint = Components.size();
1681 // Now go through all virtual member functions and add them.
1682 PrimaryBasesSetVectorTy PrimaryBases;
1683 AddMethods(Base, OffsetInLayoutClass,
1684 Base.getBase(), OffsetInLayoutClass,
1685 PrimaryBases);
1687 const CXXRecordDecl *RD = Base.getBase();
1688 if (RD == MostDerivedClass) {
1689 assert(MethodVTableIndices.empty());
1690 for (const auto &I : MethodInfoMap) {
1691 const CXXMethodDecl *MD = I.first;
1692 const MethodInfo &MI = I.second;
1693 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1694 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1695 = MI.VTableIndex - AddressPoint;
1696 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1697 = MI.VTableIndex + 1 - AddressPoint;
1698 } else {
1699 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1704 // Compute 'this' pointer adjustments.
1705 ComputeThisAdjustments();
1707 // Add all address points.
1708 while (true) {
1709 AddressPoints.insert(
1710 std::make_pair(BaseSubobject(RD, OffsetInLayoutClass),
1711 VTableLayout::AddressPointLocation{
1712 unsigned(VTableIndices.size() - 1),
1713 unsigned(AddressPoint - VTableIndex)}));
1715 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1716 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1718 if (!PrimaryBase)
1719 break;
1721 if (Layout.isPrimaryBaseVirtual()) {
1722 // Check if this virtual primary base is a primary base in the layout
1723 // class. If it's not, we don't want to add it.
1724 const ASTRecordLayout &LayoutClassLayout =
1725 Context.getASTRecordLayout(LayoutClass);
1727 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1728 OffsetInLayoutClass) {
1729 // We don't want to add this class (or any of its primary bases).
1730 break;
1734 RD = PrimaryBase;
1737 // Layout secondary vtables.
1738 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1741 void
1742 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1743 bool BaseIsMorallyVirtual,
1744 CharUnits OffsetInLayoutClass) {
1745 // Itanium C++ ABI 2.5.2:
1746 // Following the primary virtual table of a derived class are secondary
1747 // virtual tables for each of its proper base classes, except any primary
1748 // base(s) with which it shares its primary virtual table.
1750 const CXXRecordDecl *RD = Base.getBase();
1751 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1752 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1754 for (const auto &B : RD->bases()) {
1755 // Ignore virtual bases, we'll emit them later.
1756 if (B.isVirtual())
1757 continue;
1759 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1761 // Ignore bases that don't have a vtable.
1762 if (!BaseDecl->isDynamicClass())
1763 continue;
1765 if (isBuildingConstructorVTable()) {
1766 // Itanium C++ ABI 2.6.4:
1767 // Some of the base class subobjects may not need construction virtual
1768 // tables, which will therefore not be present in the construction
1769 // virtual table group, even though the subobject virtual tables are
1770 // present in the main virtual table group for the complete object.
1771 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1772 continue;
1775 // Get the base offset of this base.
1776 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1777 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1779 CharUnits BaseOffsetInLayoutClass =
1780 OffsetInLayoutClass + RelativeBaseOffset;
1782 // Don't emit a secondary vtable for a primary base. We might however want
1783 // to emit secondary vtables for other bases of this base.
1784 if (BaseDecl == PrimaryBase) {
1785 LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1786 BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1787 continue;
1790 // Layout the primary vtable (and any secondary vtables) for this base.
1791 LayoutPrimaryAndSecondaryVTables(
1792 BaseSubobject(BaseDecl, BaseOffset),
1793 BaseIsMorallyVirtual,
1794 /*BaseIsVirtualInLayoutClass=*/false,
1795 BaseOffsetInLayoutClass);
1799 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1800 const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1801 VisitedVirtualBasesSetTy &VBases) {
1802 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1804 // Check if this base has a primary base.
1805 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1807 // Check if it's virtual.
1808 if (Layout.isPrimaryBaseVirtual()) {
1809 bool IsPrimaryVirtualBase = true;
1811 if (isBuildingConstructorVTable()) {
1812 // Check if the base is actually a primary base in the class we use for
1813 // layout.
1814 const ASTRecordLayout &LayoutClassLayout =
1815 Context.getASTRecordLayout(LayoutClass);
1817 CharUnits PrimaryBaseOffsetInLayoutClass =
1818 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1820 // We know that the base is not a primary base in the layout class if
1821 // the base offsets are different.
1822 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1823 IsPrimaryVirtualBase = false;
1826 if (IsPrimaryVirtualBase)
1827 PrimaryVirtualBases.insert(PrimaryBase);
1831 // Traverse bases, looking for more primary virtual bases.
1832 for (const auto &B : RD->bases()) {
1833 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1835 CharUnits BaseOffsetInLayoutClass;
1837 if (B.isVirtual()) {
1838 if (!VBases.insert(BaseDecl).second)
1839 continue;
1841 const ASTRecordLayout &LayoutClassLayout =
1842 Context.getASTRecordLayout(LayoutClass);
1844 BaseOffsetInLayoutClass =
1845 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1846 } else {
1847 BaseOffsetInLayoutClass =
1848 OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1851 DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1855 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1856 const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1857 // Itanium C++ ABI 2.5.2:
1858 // Then come the virtual base virtual tables, also in inheritance graph
1859 // order, and again excluding primary bases (which share virtual tables with
1860 // the classes for which they are primary).
1861 for (const auto &B : RD->bases()) {
1862 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1864 // Check if this base needs a vtable. (If it's virtual, not a primary base
1865 // of some other class, and we haven't visited it before).
1866 if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1867 !PrimaryVirtualBases.count(BaseDecl) &&
1868 VBases.insert(BaseDecl).second) {
1869 const ASTRecordLayout &MostDerivedClassLayout =
1870 Context.getASTRecordLayout(MostDerivedClass);
1871 CharUnits BaseOffset =
1872 MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1874 const ASTRecordLayout &LayoutClassLayout =
1875 Context.getASTRecordLayout(LayoutClass);
1876 CharUnits BaseOffsetInLayoutClass =
1877 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1879 LayoutPrimaryAndSecondaryVTables(
1880 BaseSubobject(BaseDecl, BaseOffset),
1881 /*BaseIsMorallyVirtual=*/true,
1882 /*BaseIsVirtualInLayoutClass=*/true,
1883 BaseOffsetInLayoutClass);
1886 // We only need to check the base for virtual base vtables if it actually
1887 // has virtual bases.
1888 if (BaseDecl->getNumVBases())
1889 LayoutVTablesForVirtualBases(BaseDecl, VBases);
1893 /// dumpLayout - Dump the vtable layout.
1894 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1895 // FIXME: write more tests that actually use the dumpLayout output to prevent
1896 // ItaniumVTableBuilder regressions.
1898 if (isBuildingConstructorVTable()) {
1899 Out << "Construction vtable for ('";
1900 MostDerivedClass->printQualifiedName(Out);
1901 Out << "', ";
1902 Out << MostDerivedClassOffset.getQuantity() << ") in '";
1903 LayoutClass->printQualifiedName(Out);
1904 } else {
1905 Out << "Vtable for '";
1906 MostDerivedClass->printQualifiedName(Out);
1908 Out << "' (" << Components.size() << " entries).\n";
1910 // Iterate through the address points and insert them into a new map where
1911 // they are keyed by the index and not the base object.
1912 // Since an address point can be shared by multiple subobjects, we use an
1913 // STL multimap.
1914 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1915 for (const auto &AP : AddressPoints) {
1916 const BaseSubobject &Base = AP.first;
1917 uint64_t Index =
1918 VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;
1920 AddressPointsByIndex.insert(std::make_pair(Index, Base));
1923 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1924 uint64_t Index = I;
1926 Out << llvm::format("%4d | ", I);
1928 const VTableComponent &Component = Components[I];
1930 // Dump the component.
1931 switch (Component.getKind()) {
1933 case VTableComponent::CK_VCallOffset:
1934 Out << "vcall_offset ("
1935 << Component.getVCallOffset().getQuantity()
1936 << ")";
1937 break;
1939 case VTableComponent::CK_VBaseOffset:
1940 Out << "vbase_offset ("
1941 << Component.getVBaseOffset().getQuantity()
1942 << ")";
1943 break;
1945 case VTableComponent::CK_OffsetToTop:
1946 Out << "offset_to_top ("
1947 << Component.getOffsetToTop().getQuantity()
1948 << ")";
1949 break;
1951 case VTableComponent::CK_RTTI:
1952 Component.getRTTIDecl()->printQualifiedName(Out);
1953 Out << " RTTI";
1954 break;
1956 case VTableComponent::CK_FunctionPointer: {
1957 const CXXMethodDecl *MD = Component.getFunctionDecl();
1959 std::string Str =
1960 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
1961 MD);
1962 Out << Str;
1963 if (MD->isPure())
1964 Out << " [pure]";
1966 if (MD->isDeleted())
1967 Out << " [deleted]";
1969 ThunkInfo Thunk = VTableThunks.lookup(I);
1970 if (!Thunk.isEmpty()) {
1971 // If this function pointer has a return adjustment, dump it.
1972 if (!Thunk.Return.isEmpty()) {
1973 Out << "\n [return adjustment: ";
1974 Out << Thunk.Return.NonVirtual << " non-virtual";
1976 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
1977 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
1978 Out << " vbase offset offset";
1981 Out << ']';
1984 // If this function pointer has a 'this' pointer adjustment, dump it.
1985 if (!Thunk.This.isEmpty()) {
1986 Out << "\n [this adjustment: ";
1987 Out << Thunk.This.NonVirtual << " non-virtual";
1989 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
1990 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
1991 Out << " vcall offset offset";
1994 Out << ']';
1998 break;
2001 case VTableComponent::CK_CompleteDtorPointer:
2002 case VTableComponent::CK_DeletingDtorPointer: {
2003 bool IsComplete =
2004 Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
2006 const CXXDestructorDecl *DD = Component.getDestructorDecl();
2008 DD->printQualifiedName(Out);
2009 if (IsComplete)
2010 Out << "() [complete]";
2011 else
2012 Out << "() [deleting]";
2014 if (DD->isPure())
2015 Out << " [pure]";
2017 ThunkInfo Thunk = VTableThunks.lookup(I);
2018 if (!Thunk.isEmpty()) {
2019 // If this destructor has a 'this' pointer adjustment, dump it.
2020 if (!Thunk.This.isEmpty()) {
2021 Out << "\n [this adjustment: ";
2022 Out << Thunk.This.NonVirtual << " non-virtual";
2024 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2025 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2026 Out << " vcall offset offset";
2029 Out << ']';
2033 break;
2036 case VTableComponent::CK_UnusedFunctionPointer: {
2037 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2039 std::string Str =
2040 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2041 MD);
2042 Out << "[unused] " << Str;
2043 if (MD->isPure())
2044 Out << " [pure]";
2049 Out << '\n';
2051 // Dump the next address point.
2052 uint64_t NextIndex = Index + 1;
2053 if (AddressPointsByIndex.count(NextIndex)) {
2054 if (AddressPointsByIndex.count(NextIndex) == 1) {
2055 const BaseSubobject &Base =
2056 AddressPointsByIndex.find(NextIndex)->second;
2058 Out << " -- (";
2059 Base.getBase()->printQualifiedName(Out);
2060 Out << ", " << Base.getBaseOffset().getQuantity();
2061 Out << ") vtable address --\n";
2062 } else {
2063 CharUnits BaseOffset =
2064 AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2066 // We store the class names in a set to get a stable order.
2067 std::set<std::string> ClassNames;
2068 for (const auto &I :
2069 llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
2070 assert(I.second.getBaseOffset() == BaseOffset &&
2071 "Invalid base offset!");
2072 const CXXRecordDecl *RD = I.second.getBase();
2073 ClassNames.insert(RD->getQualifiedNameAsString());
2076 for (const std::string &Name : ClassNames) {
2077 Out << " -- (" << Name;
2078 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2084 Out << '\n';
2086 if (isBuildingConstructorVTable())
2087 return;
2089 if (MostDerivedClass->getNumVBases()) {
2090 // We store the virtual base class names and their offsets in a map to get
2091 // a stable order.
2093 std::map<std::string, CharUnits> ClassNamesAndOffsets;
2094 for (const auto &I : VBaseOffsetOffsets) {
2095 std::string ClassName = I.first->getQualifiedNameAsString();
2096 CharUnits OffsetOffset = I.second;
2097 ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
2100 Out << "Virtual base offset offsets for '";
2101 MostDerivedClass->printQualifiedName(Out);
2102 Out << "' (";
2103 Out << ClassNamesAndOffsets.size();
2104 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2106 for (const auto &I : ClassNamesAndOffsets)
2107 Out << " " << I.first << " | " << I.second.getQuantity() << '\n';
2109 Out << "\n";
2112 if (!Thunks.empty()) {
2113 // We store the method names in a map to get a stable order.
2114 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2116 for (const auto &I : Thunks) {
2117 const CXXMethodDecl *MD = I.first;
2118 std::string MethodName =
2119 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2120 MD);
2122 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2125 for (const auto &I : MethodNamesAndDecls) {
2126 const std::string &MethodName = I.first;
2127 const CXXMethodDecl *MD = I.second;
2129 ThunkInfoVectorTy ThunksVector = Thunks[MD];
2130 llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2131 assert(LHS.Method == nullptr && RHS.Method == nullptr);
2132 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2135 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2136 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2138 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2139 const ThunkInfo &Thunk = ThunksVector[I];
2141 Out << llvm::format("%4d | ", I);
2143 // If this function pointer has a return pointer adjustment, dump it.
2144 if (!Thunk.Return.isEmpty()) {
2145 Out << "return adjustment: " << Thunk.Return.NonVirtual;
2146 Out << " non-virtual";
2147 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2148 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2149 Out << " vbase offset offset";
2152 if (!Thunk.This.isEmpty())
2153 Out << "\n ";
2156 // If this function pointer has a 'this' pointer adjustment, dump it.
2157 if (!Thunk.This.isEmpty()) {
2158 Out << "this adjustment: ";
2159 Out << Thunk.This.NonVirtual << " non-virtual";
2161 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2162 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2163 Out << " vcall offset offset";
2167 Out << '\n';
2170 Out << '\n';
2174 // Compute the vtable indices for all the member functions.
2175 // Store them in a map keyed by the index so we'll get a sorted table.
2176 std::map<uint64_t, std::string> IndicesMap;
2178 for (const auto *MD : MostDerivedClass->methods()) {
2179 // We only want virtual member functions.
2180 if (!ItaniumVTableContext::hasVtableSlot(MD))
2181 continue;
2182 MD = MD->getCanonicalDecl();
2184 std::string MethodName =
2185 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2186 MD);
2188 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2189 GlobalDecl GD(DD, Dtor_Complete);
2190 assert(MethodVTableIndices.count(GD));
2191 uint64_t VTableIndex = MethodVTableIndices[GD];
2192 IndicesMap[VTableIndex] = MethodName + " [complete]";
2193 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2194 } else {
2195 assert(MethodVTableIndices.count(MD));
2196 IndicesMap[MethodVTableIndices[MD]] = MethodName;
2200 // Print the vtable indices for all the member functions.
2201 if (!IndicesMap.empty()) {
2202 Out << "VTable indices for '";
2203 MostDerivedClass->printQualifiedName(Out);
2204 Out << "' (" << IndicesMap.size() << " entries).\n";
2206 for (const auto &I : IndicesMap) {
2207 uint64_t VTableIndex = I.first;
2208 const std::string &MethodName = I.second;
2210 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2211 << '\n';
2215 Out << '\n';
2219 static VTableLayout::AddressPointsIndexMapTy
2220 MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints,
2221 unsigned numVTables) {
2222 VTableLayout::AddressPointsIndexMapTy indexMap(numVTables);
2224 for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) {
2225 const auto &addressPointLoc = it->second;
2226 unsigned vtableIndex = addressPointLoc.VTableIndex;
2227 unsigned addressPoint = addressPointLoc.AddressPointIndex;
2228 if (indexMap[vtableIndex]) {
2229 // Multiple BaseSubobjects can map to the same AddressPointLocation, but
2230 // every vtable index should have a unique address point.
2231 assert(indexMap[vtableIndex] == addressPoint &&
2232 "Every vtable index should have a unique address point. Found a "
2233 "vtable that has two different address points.");
2234 } else {
2235 indexMap[vtableIndex] = addressPoint;
2239 // Note that by this point, not all the address may be initialized if the
2240 // AddressPoints map is empty. This is ok if the map isn't needed. See
2241 // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an
2242 // emprt map.
2243 return indexMap;
2246 VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
2247 ArrayRef<VTableComponent> VTableComponents,
2248 ArrayRef<VTableThunkTy> VTableThunks,
2249 const AddressPointsMapTy &AddressPoints)
2250 : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
2251 AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices(
2252 AddressPoints, VTableIndices.size())) {
2253 if (VTableIndices.size() <= 1)
2254 assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
2255 else
2256 this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);
2258 llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS,
2259 const VTableLayout::VTableThunkTy &RHS) {
2260 assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2261 "Different thunks should have unique indices!");
2262 return LHS.first < RHS.first;
2266 VTableLayout::~VTableLayout() { }
2268 bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) {
2269 return MD->isVirtual() && !MD->isImmediateFunction();
2272 ItaniumVTableContext::ItaniumVTableContext(
2273 ASTContext &Context, VTableComponentLayout ComponentLayout)
2274 : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {}
2276 ItaniumVTableContext::~ItaniumVTableContext() {}
2278 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2279 GD = GD.getCanonicalDecl();
2280 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2281 if (I != MethodVTableIndices.end())
2282 return I->second;
2284 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2286 computeVTableRelatedInformation(RD);
2288 I = MethodVTableIndices.find(GD);
2289 assert(I != MethodVTableIndices.end() && "Did not find index!");
2290 return I->second;
2293 CharUnits
2294 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2295 const CXXRecordDecl *VBase) {
2296 ClassPairTy ClassPair(RD, VBase);
2298 VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2299 VirtualBaseClassOffsetOffsets.find(ClassPair);
2300 if (I != VirtualBaseClassOffsetOffsets.end())
2301 return I->second;
2303 VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr,
2304 BaseSubobject(RD, CharUnits::Zero()),
2305 /*BaseIsVirtual=*/false,
2306 /*OffsetInLayoutClass=*/CharUnits::Zero());
2308 for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2309 // Insert all types.
2310 ClassPairTy ClassPair(RD, I.first);
2312 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2315 I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2316 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2318 return I->second;
2321 static std::unique_ptr<VTableLayout>
2322 CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2323 SmallVector<VTableLayout::VTableThunkTy, 1>
2324 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2326 return std::make_unique<VTableLayout>(
2327 Builder.VTableIndices, Builder.vtable_components(), VTableThunks,
2328 Builder.getAddressPoints());
2331 void
2332 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2333 std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];
2335 // Check if we've computed this information before.
2336 if (Entry)
2337 return;
2339 ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2340 /*MostDerivedClassIsVirtual=*/false, RD);
2341 Entry = CreateVTableLayout(Builder);
2343 MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2344 Builder.vtable_indices_end());
2346 // Add the known thunks.
2347 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2349 // If we don't have the vbase information for this class, insert it.
2350 // getVirtualBaseOffsetOffset will compute it separately without computing
2351 // the rest of the vtable related information.
2352 if (!RD->getNumVBases())
2353 return;
2355 const CXXRecordDecl *VBase =
2356 RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2358 if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2359 return;
2361 for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2362 // Insert all types.
2363 ClassPairTy ClassPair(RD, I.first);
2365 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2369 std::unique_ptr<VTableLayout>
2370 ItaniumVTableContext::createConstructionVTableLayout(
2371 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2372 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2373 ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2374 MostDerivedClassIsVirtual, LayoutClass);
2375 return CreateVTableLayout(Builder);
2378 namespace {
2380 // Vtables in the Microsoft ABI are different from the Itanium ABI.
2382 // The main differences are:
2383 // 1. Separate vftable and vbtable.
2385 // 2. Each subobject with a vfptr gets its own vftable rather than an address
2386 // point in a single vtable shared between all the subobjects.
2387 // Each vftable is represented by a separate section and virtual calls
2388 // must be done using the vftable which has a slot for the function to be
2389 // called.
2391 // 3. Virtual method definitions expect their 'this' parameter to point to the
2392 // first vfptr whose table provides a compatible overridden method. In many
2393 // cases, this permits the original vf-table entry to directly call
2394 // the method instead of passing through a thunk.
2395 // See example before VFTableBuilder::ComputeThisOffset below.
2397 // A compatible overridden method is one which does not have a non-trivial
2398 // covariant-return adjustment.
2400 // The first vfptr is the one with the lowest offset in the complete-object
2401 // layout of the defining class, and the method definition will subtract
2402 // that constant offset from the parameter value to get the real 'this'
2403 // value. Therefore, if the offset isn't really constant (e.g. if a virtual
2404 // function defined in a virtual base is overridden in a more derived
2405 // virtual base and these bases have a reverse order in the complete
2406 // object), the vf-table may require a this-adjustment thunk.
2408 // 4. vftables do not contain new entries for overrides that merely require
2409 // this-adjustment. Together with #3, this keeps vf-tables smaller and
2410 // eliminates the need for this-adjustment thunks in many cases, at the cost
2411 // of often requiring redundant work to adjust the "this" pointer.
2413 // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2414 // Vtordisps are emitted into the class layout if a class has
2415 // a) a user-defined ctor/dtor
2416 // and
2417 // b) a method overriding a method in a virtual base.
2419 // To get a better understanding of this code,
2420 // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2422 class VFTableBuilder {
2423 public:
2424 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2425 MethodVFTableLocationsTy;
2427 typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2428 method_locations_range;
2430 private:
2431 /// VTables - Global vtable information.
2432 MicrosoftVTableContext &VTables;
2434 /// Context - The ASTContext which we will use for layout information.
2435 ASTContext &Context;
2437 /// MostDerivedClass - The most derived class for which we're building this
2438 /// vtable.
2439 const CXXRecordDecl *MostDerivedClass;
2441 const ASTRecordLayout &MostDerivedClassLayout;
2443 const VPtrInfo &WhichVFPtr;
2445 /// FinalOverriders - The final overriders of the most derived class.
2446 const FinalOverriders Overriders;
2448 /// Components - The components of the vftable being built.
2449 SmallVector<VTableComponent, 64> Components;
2451 MethodVFTableLocationsTy MethodVFTableLocations;
2453 /// Does this class have an RTTI component?
2454 bool HasRTTIComponent = false;
2456 /// MethodInfo - Contains information about a method in a vtable.
2457 /// (Used for computing 'this' pointer adjustment thunks.
2458 struct MethodInfo {
2459 /// VBTableIndex - The nonzero index in the vbtable that
2460 /// this method's base has, or zero.
2461 const uint64_t VBTableIndex;
2463 /// VFTableIndex - The index in the vftable that this method has.
2464 const uint64_t VFTableIndex;
2466 /// Shadowed - Indicates if this vftable slot is shadowed by
2467 /// a slot for a covariant-return override. If so, it shouldn't be printed
2468 /// or used for vcalls in the most derived class.
2469 bool Shadowed;
2471 /// UsesExtraSlot - Indicates if this vftable slot was created because
2472 /// any of the overridden slots required a return adjusting thunk.
2473 bool UsesExtraSlot;
2475 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2476 bool UsesExtraSlot = false)
2477 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2478 Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2480 MethodInfo()
2481 : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2482 UsesExtraSlot(false) {}
2485 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2487 /// MethodInfoMap - The information for all methods in the vftable we're
2488 /// currently building.
2489 MethodInfoMapTy MethodInfoMap;
2491 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2493 /// VTableThunks - The thunks by vftable index in the vftable currently being
2494 /// built.
2495 VTableThunksMapTy VTableThunks;
2497 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2498 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2500 /// Thunks - A map that contains all the thunks needed for all methods in the
2501 /// most derived class for which the vftable is currently being built.
2502 ThunksMapTy Thunks;
2504 /// AddThunk - Add a thunk for the given method.
2505 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2506 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2508 // Check if we have this thunk already.
2509 if (llvm::is_contained(ThunksVector, Thunk))
2510 return;
2512 ThunksVector.push_back(Thunk);
2515 /// ComputeThisOffset - Returns the 'this' argument offset for the given
2516 /// method, relative to the beginning of the MostDerivedClass.
2517 CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2519 void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2520 CharUnits ThisOffset, ThisAdjustment &TA);
2522 /// AddMethod - Add a single virtual member function to the vftable
2523 /// components vector.
2524 void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2525 if (!TI.isEmpty()) {
2526 VTableThunks[Components.size()] = TI;
2527 AddThunk(MD, TI);
2529 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2530 assert(TI.Return.isEmpty() &&
2531 "Destructor can't have return adjustment!");
2532 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2533 } else {
2534 Components.push_back(VTableComponent::MakeFunction(MD));
2538 /// AddMethods - Add the methods of this base subobject and the relevant
2539 /// subbases to the vftable we're currently laying out.
2540 void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2541 const CXXRecordDecl *LastVBase,
2542 BasesSetVectorTy &VisitedBases);
2544 void LayoutVFTable() {
2545 // RTTI data goes before all other entries.
2546 if (HasRTTIComponent)
2547 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2549 BasesSetVectorTy VisitedBases;
2550 AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2551 VisitedBases);
2552 // Note that it is possible for the vftable to contain only an RTTI
2553 // pointer, if all virtual functions are constewval.
2554 assert(!Components.empty() && "vftable can't be empty");
2556 assert(MethodVFTableLocations.empty());
2557 for (const auto &I : MethodInfoMap) {
2558 const CXXMethodDecl *MD = I.first;
2559 const MethodInfo &MI = I.second;
2560 assert(MD == MD->getCanonicalDecl());
2562 // Skip the methods that the MostDerivedClass didn't override
2563 // and the entries shadowed by return adjusting thunks.
2564 if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2565 continue;
2566 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2567 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2568 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2569 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2570 } else {
2571 MethodVFTableLocations[MD] = Loc;
2576 public:
2577 VFTableBuilder(MicrosoftVTableContext &VTables,
2578 const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
2579 : VTables(VTables),
2580 Context(MostDerivedClass->getASTContext()),
2581 MostDerivedClass(MostDerivedClass),
2582 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2583 WhichVFPtr(Which),
2584 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2585 // Provide the RTTI component if RTTIData is enabled. If the vftable would
2586 // be available externally, we should not provide the RTTI componenent. It
2587 // is currently impossible to get available externally vftables with either
2588 // dllimport or extern template instantiations, but eventually we may add a
2589 // flag to support additional devirtualization that needs this.
2590 if (Context.getLangOpts().RTTIData)
2591 HasRTTIComponent = true;
2593 LayoutVFTable();
2595 if (Context.getLangOpts().DumpVTableLayouts)
2596 dumpLayout(llvm::outs());
2599 uint64_t getNumThunks() const { return Thunks.size(); }
2601 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2603 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2605 method_locations_range vtable_locations() const {
2606 return method_locations_range(MethodVFTableLocations.begin(),
2607 MethodVFTableLocations.end());
2610 ArrayRef<VTableComponent> vtable_components() const { return Components; }
2612 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2613 return VTableThunks.begin();
2616 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2617 return VTableThunks.end();
2620 void dumpLayout(raw_ostream &);
2623 } // end namespace
2625 // Let's study one class hierarchy as an example:
2626 // struct A {
2627 // virtual void f();
2628 // int x;
2629 // };
2631 // struct B : virtual A {
2632 // virtual void f();
2633 // };
2635 // Record layouts:
2636 // struct A:
2637 // 0 | (A vftable pointer)
2638 // 4 | int x
2640 // struct B:
2641 // 0 | (B vbtable pointer)
2642 // 4 | struct A (virtual base)
2643 // 4 | (A vftable pointer)
2644 // 8 | int x
2646 // Let's assume we have a pointer to the A part of an object of dynamic type B:
2647 // B b;
2648 // A *a = (A*)&b;
2649 // a->f();
2651 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2652 // "this" parameter to point at the A subobject, which is B+4.
2653 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2654 // performed as a *static* adjustment.
2656 // Interesting thing happens when we alter the relative placement of A and B
2657 // subobjects in a class:
2658 // struct C : virtual B { };
2660 // C c;
2661 // A *a = (A*)&c;
2662 // a->f();
2664 // Respective record layout is:
2665 // 0 | (C vbtable pointer)
2666 // 4 | struct A (virtual base)
2667 // 4 | (A vftable pointer)
2668 // 8 | int x
2669 // 12 | struct B (virtual base)
2670 // 12 | (B vbtable pointer)
2672 // The final overrider of f() in class C is still B::f(), so B+4 should be
2673 // passed as "this" to that code. However, "a" points at B-8, so the respective
2674 // vftable entry should hold a thunk that adds 12 to the "this" argument before
2675 // performing a tail call to B::f().
2677 // With this example in mind, we can now calculate the 'this' argument offset
2678 // for the given method, relative to the beginning of the MostDerivedClass.
2679 CharUnits
2680 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2681 BasesSetVectorTy Bases;
2684 // Find the set of least derived bases that define the given method.
2685 OverriddenMethodsSetTy VisitedOverriddenMethods;
2686 auto InitialOverriddenDefinitionCollector = [&](
2687 const CXXMethodDecl *OverriddenMD) {
2688 if (OverriddenMD->size_overridden_methods() == 0)
2689 Bases.insert(OverriddenMD->getParent());
2690 // Don't recurse on this method if we've already collected it.
2691 return VisitedOverriddenMethods.insert(OverriddenMD).second;
2693 visitAllOverriddenMethods(Overrider.Method,
2694 InitialOverriddenDefinitionCollector);
2697 // If there are no overrides then 'this' is located
2698 // in the base that defines the method.
2699 if (Bases.size() == 0)
2700 return Overrider.Offset;
2702 CXXBasePaths Paths;
2703 Overrider.Method->getParent()->lookupInBases(
2704 [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
2705 return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
2707 Paths);
2709 // This will hold the smallest this offset among overridees of MD.
2710 // This implies that an offset of a non-virtual base will dominate an offset
2711 // of a virtual base to potentially reduce the number of thunks required
2712 // in the derived classes that inherit this method.
2713 CharUnits Ret;
2714 bool First = true;
2716 const ASTRecordLayout &OverriderRDLayout =
2717 Context.getASTRecordLayout(Overrider.Method->getParent());
2718 for (const CXXBasePath &Path : Paths) {
2719 CharUnits ThisOffset = Overrider.Offset;
2720 CharUnits LastVBaseOffset;
2722 // For each path from the overrider to the parents of the overridden
2723 // methods, traverse the path, calculating the this offset in the most
2724 // derived class.
2725 for (const CXXBasePathElement &Element : Path) {
2726 QualType CurTy = Element.Base->getType();
2727 const CXXRecordDecl *PrevRD = Element.Class,
2728 *CurRD = CurTy->getAsCXXRecordDecl();
2729 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2731 if (Element.Base->isVirtual()) {
2732 // The interesting things begin when you have virtual inheritance.
2733 // The final overrider will use a static adjustment equal to the offset
2734 // of the vbase in the final overrider class.
2735 // For example, if the final overrider is in a vbase B of the most
2736 // derived class and it overrides a method of the B's own vbase A,
2737 // it uses A* as "this". In its prologue, it can cast A* to B* with
2738 // a static offset. This offset is used regardless of the actual
2739 // offset of A from B in the most derived class, requiring an
2740 // this-adjusting thunk in the vftable if A and B are laid out
2741 // differently in the most derived class.
2742 LastVBaseOffset = ThisOffset =
2743 Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2744 } else {
2745 ThisOffset += Layout.getBaseClassOffset(CurRD);
2749 if (isa<CXXDestructorDecl>(Overrider.Method)) {
2750 if (LastVBaseOffset.isZero()) {
2751 // If a "Base" class has at least one non-virtual base with a virtual
2752 // destructor, the "Base" virtual destructor will take the address
2753 // of the "Base" subobject as the "this" argument.
2754 ThisOffset = Overrider.Offset;
2755 } else {
2756 // A virtual destructor of a virtual base takes the address of the
2757 // virtual base subobject as the "this" argument.
2758 ThisOffset = LastVBaseOffset;
2762 if (Ret > ThisOffset || First) {
2763 First = false;
2764 Ret = ThisOffset;
2768 assert(!First && "Method not found in the given subobject?");
2769 return Ret;
2772 // Things are getting even more complex when the "this" adjustment has to
2773 // use a dynamic offset instead of a static one, or even two dynamic offsets.
2774 // This is sometimes required when a virtual call happens in the middle of
2775 // a non-most-derived class construction or destruction.
2777 // Let's take a look at the following example:
2778 // struct A {
2779 // virtual void f();
2780 // };
2782 // void foo(A *a) { a->f(); } // Knows nothing about siblings of A.
2784 // struct B : virtual A {
2785 // virtual void f();
2786 // B() {
2787 // foo(this);
2788 // }
2789 // };
2791 // struct C : virtual B {
2792 // virtual void f();
2793 // };
2795 // Record layouts for these classes are:
2796 // struct A
2797 // 0 | (A vftable pointer)
2799 // struct B
2800 // 0 | (B vbtable pointer)
2801 // 4 | (vtordisp for vbase A)
2802 // 8 | struct A (virtual base)
2803 // 8 | (A vftable pointer)
2805 // struct C
2806 // 0 | (C vbtable pointer)
2807 // 4 | (vtordisp for vbase A)
2808 // 8 | struct A (virtual base) // A precedes B!
2809 // 8 | (A vftable pointer)
2810 // 12 | struct B (virtual base)
2811 // 12 | (B vbtable pointer)
2813 // When one creates an object of type C, the C constructor:
2814 // - initializes all the vbptrs, then
2815 // - calls the A subobject constructor
2816 // (initializes A's vfptr with an address of A vftable), then
2817 // - calls the B subobject constructor
2818 // (initializes A's vfptr with an address of B vftable and vtordisp for A),
2819 // that in turn calls foo(), then
2820 // - initializes A's vfptr with an address of C vftable and zeroes out the
2821 // vtordisp
2822 // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2823 // without vtordisp thunks?
2824 // FIXME: how are vtordisp handled in the presence of nooverride/final?
2826 // When foo() is called, an object with a layout of class C has a vftable
2827 // referencing B::f() that assumes a B layout, so the "this" adjustments are
2828 // incorrect, unless an extra adjustment is done. This adjustment is called
2829 // "vtordisp adjustment". Vtordisp basically holds the difference between the
2830 // actual location of a vbase in the layout class and the location assumed by
2831 // the vftable of the class being constructed/destructed. Vtordisp is only
2832 // needed if "this" escapes a
2833 // structor (or we can't prove otherwise).
2834 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2835 // estimation of a dynamic adjustment]
2837 // foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2838 // so it just passes that pointer as "this" in a virtual call.
2839 // If there was no vtordisp, that would just dispatch to B::f().
2840 // However, B::f() assumes B+8 is passed as "this",
2841 // yet the pointer foo() passes along is B-4 (i.e. C+8).
2842 // An extra adjustment is needed, so we emit a thunk into the B vftable.
2843 // This vtordisp thunk subtracts the value of vtordisp
2844 // from the "this" argument (-12) before making a tailcall to B::f().
2846 // Let's consider an even more complex example:
2847 // struct D : virtual B, virtual C {
2848 // D() {
2849 // foo(this);
2850 // }
2851 // };
2853 // struct D
2854 // 0 | (D vbtable pointer)
2855 // 4 | (vtordisp for vbase A)
2856 // 8 | struct A (virtual base) // A precedes both B and C!
2857 // 8 | (A vftable pointer)
2858 // 12 | struct B (virtual base) // B precedes C!
2859 // 12 | (B vbtable pointer)
2860 // 16 | struct C (virtual base)
2861 // 16 | (C vbtable pointer)
2863 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2864 // to C::f(), which assumes C+8 as its "this" parameter. This time, foo()
2865 // passes along A, which is C-8. The A vtordisp holds
2866 // "D.vbptr[index_of_A] - offset_of_A_in_D"
2867 // and we statically know offset_of_A_in_D, so can get a pointer to D.
2868 // When we know it, we can make an extra vbtable lookup to locate the C vbase
2869 // and one extra static adjustment to calculate the expected value of C+8.
2870 void VFTableBuilder::CalculateVtordispAdjustment(
2871 FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2872 ThisAdjustment &TA) {
2873 const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2874 MostDerivedClassLayout.getVBaseOffsetsMap();
2875 const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2876 VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2877 assert(VBaseMapEntry != VBaseMap.end());
2879 // If there's no vtordisp or the final overrider is defined in the same vbase
2880 // as the initial declaration, we don't need any vtordisp adjustment.
2881 if (!VBaseMapEntry->second.hasVtorDisp() ||
2882 Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2883 return;
2885 // OK, now we know we need to use a vtordisp thunk.
2886 // The implicit vtordisp field is located right before the vbase.
2887 CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2888 TA.Virtual.Microsoft.VtordispOffset =
2889 (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2891 // A simple vtordisp thunk will suffice if the final overrider is defined
2892 // in either the most derived class or its non-virtual base.
2893 if (Overrider.Method->getParent() == MostDerivedClass ||
2894 !Overrider.VirtualBase)
2895 return;
2897 // Otherwise, we need to do use the dynamic offset of the final overrider
2898 // in order to get "this" adjustment right.
2899 TA.Virtual.Microsoft.VBPtrOffset =
2900 (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2901 MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2902 TA.Virtual.Microsoft.VBOffsetOffset =
2903 Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2904 VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2906 TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2909 static void GroupNewVirtualOverloads(
2910 const CXXRecordDecl *RD,
2911 SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
2912 // Put the virtual methods into VirtualMethods in the proper order:
2913 // 1) Group overloads by declaration name. New groups are added to the
2914 // vftable in the order of their first declarations in this class
2915 // (including overrides, non-virtual methods and any other named decl that
2916 // might be nested within the class).
2917 // 2) In each group, new overloads appear in the reverse order of declaration.
2918 typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
2919 SmallVector<MethodGroup, 10> Groups;
2920 typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
2921 VisitedGroupIndicesTy VisitedGroupIndices;
2922 for (const auto *D : RD->decls()) {
2923 const auto *ND = dyn_cast<NamedDecl>(D);
2924 if (!ND)
2925 continue;
2926 VisitedGroupIndicesTy::iterator J;
2927 bool Inserted;
2928 std::tie(J, Inserted) = VisitedGroupIndices.insert(
2929 std::make_pair(ND->getDeclName(), Groups.size()));
2930 if (Inserted)
2931 Groups.push_back(MethodGroup());
2932 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
2933 if (MicrosoftVTableContext::hasVtableSlot(MD))
2934 Groups[J->second].push_back(MD->getCanonicalDecl());
2937 for (const MethodGroup &Group : Groups)
2938 VirtualMethods.append(Group.rbegin(), Group.rend());
2941 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
2942 for (const auto &B : RD->bases()) {
2943 if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
2944 return true;
2946 return false;
2949 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2950 const CXXRecordDecl *LastVBase,
2951 BasesSetVectorTy &VisitedBases) {
2952 const CXXRecordDecl *RD = Base.getBase();
2953 if (!RD->isPolymorphic())
2954 return;
2956 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2958 // See if this class expands a vftable of the base we look at, which is either
2959 // the one defined by the vfptr base path or the primary base of the current
2960 // class.
2961 const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
2962 CharUnits NextBaseOffset;
2963 if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
2964 NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
2965 if (isDirectVBase(NextBase, RD)) {
2966 NextLastVBase = NextBase;
2967 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
2968 } else {
2969 NextBaseOffset =
2970 Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
2972 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2973 assert(!Layout.isPrimaryBaseVirtual() &&
2974 "No primary virtual bases in this ABI");
2975 NextBase = PrimaryBase;
2976 NextBaseOffset = Base.getBaseOffset();
2979 if (NextBase) {
2980 AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
2981 NextLastVBase, VisitedBases);
2982 if (!VisitedBases.insert(NextBase))
2983 llvm_unreachable("Found a duplicate primary base!");
2986 SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
2987 // Put virtual methods in the proper order.
2988 GroupNewVirtualOverloads(RD, VirtualMethods);
2990 // Now go through all virtual member functions and add them to the current
2991 // vftable. This is done by
2992 // - replacing overridden methods in their existing slots, as long as they
2993 // don't require return adjustment; calculating This adjustment if needed.
2994 // - adding new slots for methods of the current base not present in any
2995 // sub-bases;
2996 // - adding new slots for methods that require Return adjustment.
2997 // We keep track of the methods visited in the sub-bases in MethodInfoMap.
2998 for (const CXXMethodDecl *MD : VirtualMethods) {
2999 FinalOverriders::OverriderInfo FinalOverrider =
3000 Overriders.getOverrider(MD, Base.getBaseOffset());
3001 const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
3002 const CXXMethodDecl *OverriddenMD =
3003 FindNearestOverriddenMethod(MD, VisitedBases);
3005 ThisAdjustment ThisAdjustmentOffset;
3006 bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
3007 CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
3008 ThisAdjustmentOffset.NonVirtual =
3009 (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
3010 if ((OverriddenMD || FinalOverriderMD != MD) &&
3011 WhichVFPtr.getVBaseWithVPtr())
3012 CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
3013 ThisAdjustmentOffset);
3015 unsigned VBIndex =
3016 LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
3018 if (OverriddenMD) {
3019 // If MD overrides anything in this vftable, we need to update the
3020 // entries.
3021 MethodInfoMapTy::iterator OverriddenMDIterator =
3022 MethodInfoMap.find(OverriddenMD);
3024 // If the overridden method went to a different vftable, skip it.
3025 if (OverriddenMDIterator == MethodInfoMap.end())
3026 continue;
3028 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
3030 VBIndex = OverriddenMethodInfo.VBTableIndex;
3032 // Let's check if the overrider requires any return adjustments.
3033 // We must create a new slot if the MD's return type is not trivially
3034 // convertible to the OverriddenMD's one.
3035 // Once a chain of method overrides adds a return adjusting vftable slot,
3036 // all subsequent overrides will also use an extra method slot.
3037 ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3038 Context, MD, OverriddenMD).isEmpty() ||
3039 OverriddenMethodInfo.UsesExtraSlot;
3041 if (!ReturnAdjustingThunk) {
3042 // No return adjustment needed - just replace the overridden method info
3043 // with the current info.
3044 MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
3045 MethodInfoMap.erase(OverriddenMDIterator);
3047 assert(!MethodInfoMap.count(MD) &&
3048 "Should not have method info for this method yet!");
3049 MethodInfoMap.insert(std::make_pair(MD, MI));
3050 continue;
3053 // In case we need a return adjustment, we'll add a new slot for
3054 // the overrider. Mark the overridden method as shadowed by the new slot.
3055 OverriddenMethodInfo.Shadowed = true;
3057 // Force a special name mangling for a return-adjusting thunk
3058 // unless the method is the final overrider without this adjustment.
3059 ForceReturnAdjustmentMangling =
3060 !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3061 } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3062 MD->size_overridden_methods()) {
3063 // Skip methods that don't belong to the vftable of the current class,
3064 // e.g. each method that wasn't seen in any of the visited sub-bases
3065 // but overrides multiple methods of other sub-bases.
3066 continue;
3069 // If we got here, MD is a method not seen in any of the sub-bases or
3070 // it requires return adjustment. Insert the method info for this method.
3071 MethodInfo MI(VBIndex,
3072 HasRTTIComponent ? Components.size() - 1 : Components.size(),
3073 ReturnAdjustingThunk);
3075 assert(!MethodInfoMap.count(MD) &&
3076 "Should not have method info for this method yet!");
3077 MethodInfoMap.insert(std::make_pair(MD, MI));
3079 // Check if this overrider needs a return adjustment.
3080 // We don't want to do this for pure virtual member functions.
3081 BaseOffset ReturnAdjustmentOffset;
3082 ReturnAdjustment ReturnAdjustment;
3083 if (!FinalOverriderMD->isPure()) {
3084 ReturnAdjustmentOffset =
3085 ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3087 if (!ReturnAdjustmentOffset.isEmpty()) {
3088 ForceReturnAdjustmentMangling = true;
3089 ReturnAdjustment.NonVirtual =
3090 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3091 if (ReturnAdjustmentOffset.VirtualBase) {
3092 const ASTRecordLayout &DerivedLayout =
3093 Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3094 ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3095 DerivedLayout.getVBPtrOffset().getQuantity();
3096 ReturnAdjustment.Virtual.Microsoft.VBIndex =
3097 VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3098 ReturnAdjustmentOffset.VirtualBase);
3102 AddMethod(FinalOverriderMD,
3103 ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
3104 ForceReturnAdjustmentMangling ? MD : nullptr));
3108 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3109 for (const CXXRecordDecl *Elem : llvm::reverse(Path)) {
3110 Out << "'";
3111 Elem->printQualifiedName(Out);
3112 Out << "' in ";
3116 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3117 bool ContinueFirstLine) {
3118 const ReturnAdjustment &R = TI.Return;
3119 bool Multiline = false;
3120 const char *LinePrefix = "\n ";
3121 if (!R.isEmpty() || TI.Method) {
3122 if (!ContinueFirstLine)
3123 Out << LinePrefix;
3124 Out << "[return adjustment (to type '"
3125 << TI.Method->getReturnType().getCanonicalType() << "'): ";
3126 if (R.Virtual.Microsoft.VBPtrOffset)
3127 Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3128 if (R.Virtual.Microsoft.VBIndex)
3129 Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3130 Out << R.NonVirtual << " non-virtual]";
3131 Multiline = true;
3134 const ThisAdjustment &T = TI.This;
3135 if (!T.isEmpty()) {
3136 if (Multiline || !ContinueFirstLine)
3137 Out << LinePrefix;
3138 Out << "[this adjustment: ";
3139 if (!TI.This.Virtual.isEmpty()) {
3140 assert(T.Virtual.Microsoft.VtordispOffset < 0);
3141 Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3142 if (T.Virtual.Microsoft.VBPtrOffset) {
3143 Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3144 << " to the left,";
3145 assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3146 Out << LinePrefix << " vboffset at "
3147 << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3150 Out << T.NonVirtual << " non-virtual]";
3154 void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3155 Out << "VFTable for ";
3156 PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out);
3157 Out << "'";
3158 MostDerivedClass->printQualifiedName(Out);
3159 Out << "' (" << Components.size()
3160 << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3162 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3163 Out << llvm::format("%4d | ", I);
3165 const VTableComponent &Component = Components[I];
3167 // Dump the component.
3168 switch (Component.getKind()) {
3169 case VTableComponent::CK_RTTI:
3170 Component.getRTTIDecl()->printQualifiedName(Out);
3171 Out << " RTTI";
3172 break;
3174 case VTableComponent::CK_FunctionPointer: {
3175 const CXXMethodDecl *MD = Component.getFunctionDecl();
3177 // FIXME: Figure out how to print the real thunk type, since they can
3178 // differ in the return type.
3179 std::string Str = PredefinedExpr::ComputeName(
3180 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3181 Out << Str;
3182 if (MD->isPure())
3183 Out << " [pure]";
3185 if (MD->isDeleted())
3186 Out << " [deleted]";
3188 ThunkInfo Thunk = VTableThunks.lookup(I);
3189 if (!Thunk.isEmpty())
3190 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3192 break;
3195 case VTableComponent::CK_DeletingDtorPointer: {
3196 const CXXDestructorDecl *DD = Component.getDestructorDecl();
3198 DD->printQualifiedName(Out);
3199 Out << "() [scalar deleting]";
3201 if (DD->isPure())
3202 Out << " [pure]";
3204 ThunkInfo Thunk = VTableThunks.lookup(I);
3205 if (!Thunk.isEmpty()) {
3206 assert(Thunk.Return.isEmpty() &&
3207 "No return adjustment needed for destructors!");
3208 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3211 break;
3214 default:
3215 DiagnosticsEngine &Diags = Context.getDiagnostics();
3216 unsigned DiagID = Diags.getCustomDiagID(
3217 DiagnosticsEngine::Error,
3218 "Unexpected vftable component type %0 for component number %1");
3219 Diags.Report(MostDerivedClass->getLocation(), DiagID)
3220 << I << Component.getKind();
3223 Out << '\n';
3226 Out << '\n';
3228 if (!Thunks.empty()) {
3229 // We store the method names in a map to get a stable order.
3230 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3232 for (const auto &I : Thunks) {
3233 const CXXMethodDecl *MD = I.first;
3234 std::string MethodName = PredefinedExpr::ComputeName(
3235 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3237 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3240 for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
3241 const std::string &MethodName = MethodNameAndDecl.first;
3242 const CXXMethodDecl *MD = MethodNameAndDecl.second;
3244 ThunkInfoVectorTy ThunksVector = Thunks[MD];
3245 llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS,
3246 const ThunkInfo &RHS) {
3247 // Keep different thunks with the same adjustments in the order they
3248 // were put into the vector.
3249 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3252 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3253 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3255 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3256 const ThunkInfo &Thunk = ThunksVector[I];
3258 Out << llvm::format("%4d | ", I);
3259 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3260 Out << '\n';
3263 Out << '\n';
3267 Out.flush();
3270 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3271 ArrayRef<const CXXRecordDecl *> B) {
3272 for (const CXXRecordDecl *Decl : B) {
3273 if (A.count(Decl))
3274 return true;
3276 return false;
3279 static bool rebucketPaths(VPtrInfoVector &Paths);
3281 /// Produces MSVC-compatible vbtable data. The symbols produced by this
3282 /// algorithm match those produced by MSVC 2012 and newer, which is different
3283 /// from MSVC 2010.
3285 /// MSVC 2012 appears to minimize the vbtable names using the following
3286 /// algorithm. First, walk the class hierarchy in the usual order, depth first,
3287 /// left to right, to find all of the subobjects which contain a vbptr field.
3288 /// Visiting each class node yields a list of inheritance paths to vbptrs. Each
3289 /// record with a vbptr creates an initially empty path.
3291 /// To combine paths from child nodes, the paths are compared to check for
3292 /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of
3293 /// components in the same order. Each group of ambiguous paths is extended by
3294 /// appending the class of the base from which it came. If the current class
3295 /// node produced an ambiguous path, its path is extended with the current class.
3296 /// After extending paths, MSVC again checks for ambiguity, and extends any
3297 /// ambiguous path which wasn't already extended. Because each node yields an
3298 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3299 /// to produce an unambiguous set of paths.
3301 /// TODO: Presumably vftables use the same algorithm.
3302 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3303 const CXXRecordDecl *RD,
3304 VPtrInfoVector &Paths) {
3305 assert(Paths.empty());
3306 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3308 // Base case: this subobject has its own vptr.
3309 if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3310 Paths.push_back(std::make_unique<VPtrInfo>(RD));
3312 // Recursive case: get all the vbtables from our bases and remove anything
3313 // that shares a virtual base.
3314 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3315 for (const auto &B : RD->bases()) {
3316 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3317 if (B.isVirtual() && VBasesSeen.count(Base))
3318 continue;
3320 if (!Base->isDynamicClass())
3321 continue;
3323 const VPtrInfoVector &BasePaths =
3324 ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
3326 for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
3327 // Don't include the path if it goes through a virtual base that we've
3328 // already included.
3329 if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3330 continue;
3332 // Copy the path and adjust it as necessary.
3333 auto P = std::make_unique<VPtrInfo>(*BaseInfo);
3335 // We mangle Base into the path if the path would've been ambiguous and it
3336 // wasn't already extended with Base.
3337 if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3338 P->NextBaseToMangle = Base;
3340 // Keep track of which vtable the derived class is going to extend with
3341 // new methods or bases. We append to either the vftable of our primary
3342 // base, or the first non-virtual base that has a vbtable.
3343 if (P->ObjectWithVPtr == Base &&
3344 Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3345 : Layout.getPrimaryBase()))
3346 P->ObjectWithVPtr = RD;
3348 // Keep track of the full adjustment from the MDC to this vtable. The
3349 // adjustment is captured by an optional vbase and a non-virtual offset.
3350 if (B.isVirtual())
3351 P->ContainingVBases.push_back(Base);
3352 else if (P->ContainingVBases.empty())
3353 P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3355 // Update the full offset in the MDC.
3356 P->FullOffsetInMDC = P->NonVirtualOffset;
3357 if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3358 P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3360 Paths.push_back(std::move(P));
3363 if (B.isVirtual())
3364 VBasesSeen.insert(Base);
3366 // After visiting any direct base, we've transitively visited all of its
3367 // morally virtual bases.
3368 for (const auto &VB : Base->vbases())
3369 VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3372 // Sort the paths into buckets, and if any of them are ambiguous, extend all
3373 // paths in ambiguous buckets.
3374 bool Changed = true;
3375 while (Changed)
3376 Changed = rebucketPaths(Paths);
3379 static bool extendPath(VPtrInfo &P) {
3380 if (P.NextBaseToMangle) {
3381 P.MangledPath.push_back(P.NextBaseToMangle);
3382 P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3383 return true;
3385 return false;
3388 static bool rebucketPaths(VPtrInfoVector &Paths) {
3389 // What we're essentially doing here is bucketing together ambiguous paths.
3390 // Any bucket with more than one path in it gets extended by NextBase, which
3391 // is usually the direct base of the inherited the vbptr. This code uses a
3392 // sorted vector to implement a multiset to form the buckets. Note that the
3393 // ordering is based on pointers, but it doesn't change our output order. The
3394 // current algorithm is designed to match MSVC 2012's names.
3395 llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted(
3396 llvm::make_pointee_range(Paths));
3397 llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
3398 return LHS.MangledPath < RHS.MangledPath;
3400 bool Changed = false;
3401 for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3402 // Scan forward to find the end of the bucket.
3403 size_t BucketStart = I;
3404 do {
3405 ++I;
3406 } while (I != E &&
3407 PathsSorted[BucketStart].get().MangledPath ==
3408 PathsSorted[I].get().MangledPath);
3410 // If this bucket has multiple paths, extend them all.
3411 if (I - BucketStart > 1) {
3412 for (size_t II = BucketStart; II != I; ++II)
3413 Changed |= extendPath(PathsSorted[II]);
3414 assert(Changed && "no paths were extended to fix ambiguity");
3417 return Changed;
3420 MicrosoftVTableContext::~MicrosoftVTableContext() {}
3422 namespace {
3423 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
3424 llvm::DenseSet<BaseSubobject>> FullPathTy;
3427 // This recursive function finds all paths from a subobject centered at
3428 // (RD, Offset) to the subobject located at IntroducingObject.
3429 static void findPathsToSubobject(ASTContext &Context,
3430 const ASTRecordLayout &MostDerivedLayout,
3431 const CXXRecordDecl *RD, CharUnits Offset,
3432 BaseSubobject IntroducingObject,
3433 FullPathTy &FullPath,
3434 std::list<FullPathTy> &Paths) {
3435 if (BaseSubobject(RD, Offset) == IntroducingObject) {
3436 Paths.push_back(FullPath);
3437 return;
3440 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3442 for (const CXXBaseSpecifier &BS : RD->bases()) {
3443 const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
3444 CharUnits NewOffset = BS.isVirtual()
3445 ? MostDerivedLayout.getVBaseClassOffset(Base)
3446 : Offset + Layout.getBaseClassOffset(Base);
3447 FullPath.insert(BaseSubobject(Base, NewOffset));
3448 findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
3449 IntroducingObject, FullPath, Paths);
3450 FullPath.pop_back();
3454 // Return the paths which are not subsets of other paths.
3455 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
3456 FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
3457 for (const FullPathTy &OtherPath : FullPaths) {
3458 if (&SpecificPath == &OtherPath)
3459 continue;
3460 if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) {
3461 return OtherPath.contains(BSO);
3462 })) {
3463 return true;
3466 return false;
3470 static CharUnits getOffsetOfFullPath(ASTContext &Context,
3471 const CXXRecordDecl *RD,
3472 const FullPathTy &FullPath) {
3473 const ASTRecordLayout &MostDerivedLayout =
3474 Context.getASTRecordLayout(RD);
3475 CharUnits Offset = CharUnits::fromQuantity(-1);
3476 for (const BaseSubobject &BSO : FullPath) {
3477 const CXXRecordDecl *Base = BSO.getBase();
3478 // The first entry in the path is always the most derived record, skip it.
3479 if (Base == RD) {
3480 assert(Offset.getQuantity() == -1);
3481 Offset = CharUnits::Zero();
3482 continue;
3484 assert(Offset.getQuantity() != -1);
3485 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3486 // While we know which base has to be traversed, we don't know if that base
3487 // was a virtual base.
3488 const CXXBaseSpecifier *BaseBS = std::find_if(
3489 RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
3490 return BS.getType()->getAsCXXRecordDecl() == Base;
3492 Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
3493 : Offset + Layout.getBaseClassOffset(Base);
3494 RD = Base;
3496 return Offset;
3499 // We want to select the path which introduces the most covariant overrides. If
3500 // two paths introduce overrides which the other path doesn't contain, issue a
3501 // diagnostic.
3502 static const FullPathTy *selectBestPath(ASTContext &Context,
3503 const CXXRecordDecl *RD,
3504 const VPtrInfo &Info,
3505 std::list<FullPathTy> &FullPaths) {
3506 // Handle some easy cases first.
3507 if (FullPaths.empty())
3508 return nullptr;
3509 if (FullPaths.size() == 1)
3510 return &FullPaths.front();
3512 const FullPathTy *BestPath = nullptr;
3513 typedef std::set<const CXXMethodDecl *> OverriderSetTy;
3514 OverriderSetTy LastOverrides;
3515 for (const FullPathTy &SpecificPath : FullPaths) {
3516 assert(!SpecificPath.empty());
3517 OverriderSetTy CurrentOverrides;
3518 const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
3519 // Find the distance from the start of the path to the subobject with the
3520 // VPtr.
3521 CharUnits BaseOffset =
3522 getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
3523 FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
3524 for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
3525 if (!MicrosoftVTableContext::hasVtableSlot(MD))
3526 continue;
3527 FinalOverriders::OverriderInfo OI =
3528 Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
3529 const CXXMethodDecl *OverridingMethod = OI.Method;
3530 // Only overriders which have a return adjustment introduce problematic
3531 // thunks.
3532 if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
3533 .isEmpty())
3534 continue;
3535 // It's possible that the overrider isn't in this path. If so, skip it
3536 // because this path didn't introduce it.
3537 const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
3538 if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) {
3539 return BSO.getBase() == OverridingParent;
3541 continue;
3542 CurrentOverrides.insert(OverridingMethod);
3544 OverriderSetTy NewOverrides =
3545 llvm::set_difference(CurrentOverrides, LastOverrides);
3546 if (NewOverrides.empty())
3547 continue;
3548 OverriderSetTy MissingOverrides =
3549 llvm::set_difference(LastOverrides, CurrentOverrides);
3550 if (MissingOverrides.empty()) {
3551 // This path is a strict improvement over the last path, let's use it.
3552 BestPath = &SpecificPath;
3553 std::swap(CurrentOverrides, LastOverrides);
3554 } else {
3555 // This path introduces an overrider with a conflicting covariant thunk.
3556 DiagnosticsEngine &Diags = Context.getDiagnostics();
3557 const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
3558 const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
3559 Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
3560 << RD;
3561 Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
3562 << CovariantMD;
3563 Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
3564 << ConflictMD;
3567 // Go with the path that introduced the most covariant overrides. If there is
3568 // no such path, pick the first path.
3569 return BestPath ? BestPath : &FullPaths.front();
3572 static void computeFullPathsForVFTables(ASTContext &Context,
3573 const CXXRecordDecl *RD,
3574 VPtrInfoVector &Paths) {
3575 const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3576 FullPathTy FullPath;
3577 std::list<FullPathTy> FullPaths;
3578 for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
3579 findPathsToSubobject(
3580 Context, MostDerivedLayout, RD, CharUnits::Zero(),
3581 BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
3582 FullPaths);
3583 FullPath.clear();
3584 removeRedundantPaths(FullPaths);
3585 Info->PathToIntroducingObject.clear();
3586 if (const FullPathTy *BestPath =
3587 selectBestPath(Context, RD, *Info, FullPaths))
3588 for (const BaseSubobject &BSO : *BestPath)
3589 Info->PathToIntroducingObject.push_back(BSO.getBase());
3590 FullPaths.clear();
3594 static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
3595 const MethodVFTableLocation &LHS,
3596 const MethodVFTableLocation &RHS) {
3597 CharUnits L = LHS.VFPtrOffset;
3598 CharUnits R = RHS.VFPtrOffset;
3599 if (LHS.VBase)
3600 L += Layout.getVBaseClassOffset(LHS.VBase);
3601 if (RHS.VBase)
3602 R += Layout.getVBaseClassOffset(RHS.VBase);
3603 return L < R;
3606 void MicrosoftVTableContext::computeVTableRelatedInformation(
3607 const CXXRecordDecl *RD) {
3608 assert(RD->isDynamicClass());
3610 // Check if we've computed this information before.
3611 if (VFPtrLocations.count(RD))
3612 return;
3614 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3617 auto VFPtrs = std::make_unique<VPtrInfoVector>();
3618 computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3619 computeFullPathsForVFTables(Context, RD, *VFPtrs);
3620 VFPtrLocations[RD] = std::move(VFPtrs);
3623 MethodVFTableLocationsTy NewMethodLocations;
3624 for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
3625 VFTableBuilder Builder(*this, RD, *VFPtr);
3627 VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
3628 assert(VFTableLayouts.count(id) == 0);
3629 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3630 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3631 VFTableLayouts[id] = std::make_unique<VTableLayout>(
3632 ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks,
3633 EmptyAddressPointsMap);
3634 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3636 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3637 for (const auto &Loc : Builder.vtable_locations()) {
3638 auto Insert = NewMethodLocations.insert(Loc);
3639 if (!Insert.second) {
3640 const MethodVFTableLocation &NewLoc = Loc.second;
3641 MethodVFTableLocation &OldLoc = Insert.first->second;
3642 if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc))
3643 OldLoc = NewLoc;
3648 MethodVFTableLocations.insert(NewMethodLocations.begin(),
3649 NewMethodLocations.end());
3650 if (Context.getLangOpts().DumpVTableLayouts)
3651 dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3654 void MicrosoftVTableContext::dumpMethodLocations(
3655 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3656 raw_ostream &Out) {
3657 // Compute the vtable indices for all the member functions.
3658 // Store them in a map keyed by the location so we'll get a sorted table.
3659 std::map<MethodVFTableLocation, std::string> IndicesMap;
3660 bool HasNonzeroOffset = false;
3662 for (const auto &I : NewMethods) {
3663 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
3664 assert(hasVtableSlot(MD));
3666 std::string MethodName = PredefinedExpr::ComputeName(
3667 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3669 if (isa<CXXDestructorDecl>(MD)) {
3670 IndicesMap[I.second] = MethodName + " [scalar deleting]";
3671 } else {
3672 IndicesMap[I.second] = MethodName;
3675 if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
3676 HasNonzeroOffset = true;
3679 // Print the vtable indices for all the member functions.
3680 if (!IndicesMap.empty()) {
3681 Out << "VFTable indices for ";
3682 Out << "'";
3683 RD->printQualifiedName(Out);
3684 Out << "' (" << IndicesMap.size()
3685 << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3687 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3688 uint64_t LastVBIndex = 0;
3689 for (const auto &I : IndicesMap) {
3690 CharUnits VFPtrOffset = I.first.VFPtrOffset;
3691 uint64_t VBIndex = I.first.VBTableIndex;
3692 if (HasNonzeroOffset &&
3693 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3694 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3695 Out << " -- accessible via ";
3696 if (VBIndex)
3697 Out << "vbtable index " << VBIndex << ", ";
3698 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3699 LastVFPtrOffset = VFPtrOffset;
3700 LastVBIndex = VBIndex;
3703 uint64_t VTableIndex = I.first.Index;
3704 const std::string &MethodName = I.second;
3705 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3707 Out << '\n';
3710 Out.flush();
3713 const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
3714 const CXXRecordDecl *RD) {
3715 VirtualBaseInfo *VBI;
3718 // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell,
3719 // as it may be modified and rehashed under us.
3720 std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
3721 if (Entry)
3722 return *Entry;
3723 Entry = std::make_unique<VirtualBaseInfo>();
3724 VBI = Entry.get();
3727 computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3729 // First, see if the Derived class shared the vbptr with a non-virtual base.
3730 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3731 if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3732 // If the Derived class shares the vbptr with a non-virtual base, the shared
3733 // virtual bases come first so that the layout is the same.
3734 const VirtualBaseInfo &BaseInfo =
3735 computeVBTableRelatedInformation(VBPtrBase);
3736 VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(),
3737 BaseInfo.VBTableIndices.end());
3740 // New vbases are added to the end of the vbtable.
3741 // Skip the self entry and vbases visited in the non-virtual base, if any.
3742 unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3743 for (const auto &VB : RD->vbases()) {
3744 const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3745 if (!VBI->VBTableIndices.count(CurVBase))
3746 VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3749 return *VBI;
3752 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3753 const CXXRecordDecl *VBase) {
3754 const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived);
3755 assert(VBInfo.VBTableIndices.count(VBase));
3756 return VBInfo.VBTableIndices.find(VBase)->second;
3759 const VPtrInfoVector &
3760 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3761 return computeVBTableRelatedInformation(RD).VBPtrPaths;
3764 const VPtrInfoVector &
3765 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3766 computeVTableRelatedInformation(RD);
3768 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3769 return *VFPtrLocations[RD];
3772 const VTableLayout &
3773 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3774 CharUnits VFPtrOffset) {
3775 computeVTableRelatedInformation(RD);
3777 VFTableIdTy id(RD, VFPtrOffset);
3778 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3779 return *VFTableLayouts[id];
3782 MethodVFTableLocation
3783 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3784 assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) &&
3785 "Only use this method for virtual methods or dtors");
3786 if (isa<CXXDestructorDecl>(GD.getDecl()))
3787 assert(GD.getDtorType() == Dtor_Deleting);
3789 GD = GD.getCanonicalDecl();
3791 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3792 if (I != MethodVFTableLocations.end())
3793 return I->second;
3795 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3797 computeVTableRelatedInformation(RD);
3799 I = MethodVFTableLocations.find(GD);
3800 assert(I != MethodVFTableLocations.end() && "Did not find index!");
3801 return I->second;