1 //===- CFG.cpp - Classes for representing and building CFGs ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the CFG and CFGBuilder classes for representing and
10 // building Control-Flow Graphs (CFGs) from ASTs.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Analysis/CFG.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclGroup.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/OperationKinds.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/AST/StmtObjC.h"
28 #include "clang/AST/StmtVisitor.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Analysis/ConstructionContext.h"
31 #include "clang/Analysis/Support/BumpVector.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ExceptionSpecificationType.h"
34 #include "clang/Basic/JsonSupport.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/LangOptions.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/APSInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/Support/Allocator.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/DOTGraphTraits.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/GraphWriter.h"
54 #include "llvm/Support/SaveAndRestore.h"
55 #include "llvm/Support/raw_ostream.h"
64 using namespace clang
;
66 static SourceLocation
GetEndLoc(Decl
*D
) {
67 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(D
))
68 if (Expr
*Ex
= VD
->getInit())
69 return Ex
->getSourceRange().getEnd();
70 return D
->getLocation();
73 /// Returns true on constant values based around a single IntegerLiteral.
74 /// Allow for use of parentheses, integer casts, and negative signs.
75 /// FIXME: it would be good to unify this function with
76 /// getIntegerLiteralSubexpressionValue at some point given the similarity
77 /// between the functions.
79 static bool IsIntegerLiteralConstantExpr(const Expr
*E
) {
81 E
= E
->IgnoreParens();
83 // Allow conversions to different integer kind.
84 if (const auto *CE
= dyn_cast
<CastExpr
>(E
)) {
85 if (CE
->getCastKind() != CK_IntegralCast
)
90 // Allow negative numbers.
91 if (const auto *UO
= dyn_cast
<UnaryOperator
>(E
)) {
92 if (UO
->getOpcode() != UO_Minus
)
97 return isa
<IntegerLiteral
>(E
);
100 /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
101 /// constant expression or EnumConstantDecl from the given Expr. If it fails,
103 static const Expr
*tryTransformToIntOrEnumConstant(const Expr
*E
) {
104 E
= E
->IgnoreParens();
105 if (IsIntegerLiteralConstantExpr(E
))
107 if (auto *DR
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenImpCasts()))
108 return isa
<EnumConstantDecl
>(DR
->getDecl()) ? DR
: nullptr;
112 /// Tries to interpret a binary operator into `Expr Op NumExpr` form, if
113 /// NumExpr is an integer literal or an enum constant.
115 /// If this fails, at least one of the returned DeclRefExpr or Expr will be
117 static std::tuple
<const Expr
*, BinaryOperatorKind
, const Expr
*>
118 tryNormalizeBinaryOperator(const BinaryOperator
*B
) {
119 BinaryOperatorKind Op
= B
->getOpcode();
121 const Expr
*MaybeDecl
= B
->getLHS();
122 const Expr
*Constant
= tryTransformToIntOrEnumConstant(B
->getRHS());
123 // Expr looked like `0 == Foo` instead of `Foo == 0`
124 if (Constant
== nullptr) {
128 else if (Op
== BO_GE
)
130 else if (Op
== BO_LT
)
132 else if (Op
== BO_LE
)
135 MaybeDecl
= B
->getRHS();
136 Constant
= tryTransformToIntOrEnumConstant(B
->getLHS());
139 return std::make_tuple(MaybeDecl
, Op
, Constant
);
142 /// For an expression `x == Foo && x == Bar`, this determines whether the
143 /// `Foo` and `Bar` are either of the same enumeration type, or both integer
146 /// It's an error to pass this arguments that are not either IntegerLiterals
147 /// or DeclRefExprs (that have decls of type EnumConstantDecl)
148 static bool areExprTypesCompatible(const Expr
*E1
, const Expr
*E2
) {
149 // User intent isn't clear if they're mixing int literals with enum
151 if (isa
<DeclRefExpr
>(E1
) != isa
<DeclRefExpr
>(E2
))
154 // Integer literal comparisons, regardless of literal type, are acceptable.
155 if (!isa
<DeclRefExpr
>(E1
))
158 // IntegerLiterals are handled above and only EnumConstantDecls are expected
160 assert(isa
<DeclRefExpr
>(E1
) && isa
<DeclRefExpr
>(E2
));
161 auto *Decl1
= cast
<DeclRefExpr
>(E1
)->getDecl();
162 auto *Decl2
= cast
<DeclRefExpr
>(E2
)->getDecl();
164 assert(isa
<EnumConstantDecl
>(Decl1
) && isa
<EnumConstantDecl
>(Decl2
));
165 const DeclContext
*DC1
= Decl1
->getDeclContext();
166 const DeclContext
*DC2
= Decl2
->getDeclContext();
168 assert(isa
<EnumDecl
>(DC1
) && isa
<EnumDecl
>(DC2
));
176 /// The CFG builder uses a recursive algorithm to build the CFG. When
177 /// we process an expression, sometimes we know that we must add the
178 /// subexpressions as block-level expressions. For example:
182 /// When processing the '||' expression, we know that exp1 and exp2
183 /// need to be added as block-level expressions, even though they
184 /// might not normally need to be. AddStmtChoice records this
185 /// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then
186 /// the builder has an option not to add a subexpression as a
187 /// block-level expression.
188 class AddStmtChoice
{
190 enum Kind
{ NotAlwaysAdd
= 0, AlwaysAdd
= 1 };
192 AddStmtChoice(Kind a_kind
= NotAlwaysAdd
) : kind(a_kind
) {}
194 bool alwaysAdd(CFGBuilder
&builder
,
195 const Stmt
*stmt
) const;
197 /// Return a copy of this object, except with the 'always-add' bit
198 /// set as specified.
199 AddStmtChoice
withAlwaysAdd(bool alwaysAdd
) const {
200 return AddStmtChoice(alwaysAdd
? AlwaysAdd
: NotAlwaysAdd
);
207 /// LocalScope - Node in tree of local scopes created for C++ implicit
208 /// destructor calls generation. It contains list of automatic variables
209 /// declared in the scope and link to position in previous scope this scope
212 /// The process of creating local scopes is as follows:
213 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
214 /// - Before processing statements in scope (e.g. CompoundStmt) create
215 /// LocalScope object using CFGBuilder::ScopePos as link to previous scope
216 /// and set CFGBuilder::ScopePos to the end of new scope,
217 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
219 /// - For every normal (without jump) end of scope add to CFGBlock destructors
220 /// for objects in the current scope,
221 /// - For every jump add to CFGBlock destructors for objects
222 /// between CFGBuilder::ScopePos and local scope position saved for jump
223 /// target. Thanks to C++ restrictions on goto jumps we can be sure that
224 /// jump target position will be on the path to root from CFGBuilder::ScopePos
225 /// (adding any variable that doesn't need constructor to be called to
226 /// LocalScope can break this assumption),
230 using AutomaticVarsTy
= BumpVector
<VarDecl
*>;
232 /// const_iterator - Iterates local scope backwards and jumps to previous
233 /// scope on reaching the beginning of currently iterated scope.
234 class const_iterator
{
235 const LocalScope
* Scope
= nullptr;
237 /// VarIter is guaranteed to be greater then 0 for every valid iterator.
238 /// Invalid iterator (with null Scope) has VarIter equal to 0.
239 unsigned VarIter
= 0;
242 /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
243 /// Incrementing invalid iterator is allowed and will result in invalid
245 const_iterator() = default;
247 /// Create valid iterator. In case when S.Prev is an invalid iterator and
248 /// I is equal to 0, this will create invalid iterator.
249 const_iterator(const LocalScope
& S
, unsigned I
)
250 : Scope(&S
), VarIter(I
) {
251 // Iterator to "end" of scope is not allowed. Handle it by going up
252 // in scopes tree possibly up to invalid iterator in the root.
253 if (VarIter
== 0 && Scope
)
257 VarDecl
*const* operator->() const {
258 assert(Scope
&& "Dereferencing invalid iterator is not allowed");
259 assert(VarIter
!= 0 && "Iterator has invalid value of VarIter member");
260 return &Scope
->Vars
[VarIter
- 1];
263 const VarDecl
*getFirstVarInScope() const {
264 assert(Scope
&& "Dereferencing invalid iterator is not allowed");
265 assert(VarIter
!= 0 && "Iterator has invalid value of VarIter member");
266 return Scope
->Vars
[0];
269 VarDecl
*operator*() const {
270 return *this->operator->();
273 const_iterator
&operator++() {
277 assert(VarIter
!= 0 && "Iterator has invalid value of VarIter member");
283 const_iterator
operator++(int) {
284 const_iterator P
= *this;
289 bool operator==(const const_iterator
&rhs
) const {
290 return Scope
== rhs
.Scope
&& VarIter
== rhs
.VarIter
;
292 bool operator!=(const const_iterator
&rhs
) const {
293 return !(*this == rhs
);
296 explicit operator bool() const {
297 return *this != const_iterator();
300 int distance(const_iterator L
);
301 const_iterator
shared_parent(const_iterator L
);
302 bool pointsToFirstDeclaredVar() { return VarIter
== 1; }
303 bool inSameLocalScope(const_iterator rhs
) { return Scope
== rhs
.Scope
; }
307 BumpVectorContext ctx
;
309 /// Automatic variables in order of declaration.
310 AutomaticVarsTy Vars
;
312 /// Iterator to variable in previous scope that was declared just before
313 /// begin of this scope.
317 /// Constructs empty scope linked to previous scope in specified place.
318 LocalScope(BumpVectorContext ctx
, const_iterator P
)
319 : ctx(std::move(ctx
)), Vars(this->ctx
, 4), Prev(P
) {}
321 /// Begin of scope in direction of CFG building (backwards).
322 const_iterator
begin() const { return const_iterator(*this, Vars
.size()); }
324 void addVar(VarDecl
*VD
) {
325 Vars
.push_back(VD
, ctx
);
331 /// distance - Calculates distance from this to L. L must be reachable from this
332 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
333 /// number of scopes between this and L.
334 int LocalScope::const_iterator::distance(LocalScope::const_iterator L
) {
336 const_iterator F
= *this;
337 while (F
.Scope
!= L
.Scope
) {
338 assert(F
!= const_iterator() &&
339 "L iterator is not reachable from F iterator.");
343 D
+= F
.VarIter
- L
.VarIter
;
347 /// Calculates the closest parent of this iterator
348 /// that is in a scope reachable through the parents of L.
349 /// I.e. when using 'goto' from this to L, the lifetime of all variables
350 /// between this and shared_parent(L) end.
351 LocalScope::const_iterator
352 LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L
) {
353 // one of iterators is not valid (we are not in scope), so common
354 // parent is const_iterator() (i.e. sentinel).
355 if ((*this == const_iterator()) || (L
== const_iterator())) {
356 return const_iterator();
359 const_iterator F
= *this;
360 if (F
.inSameLocalScope(L
)) {
361 // Iterators are in the same scope, get common subset of variables.
362 F
.VarIter
= std::min(F
.VarIter
, L
.VarIter
);
366 llvm::SmallDenseMap
<const LocalScope
*, unsigned, 4> ScopesOfL
;
368 ScopesOfL
.try_emplace(L
.Scope
, L
.VarIter
);
369 if (L
== const_iterator())
375 if (auto LIt
= ScopesOfL
.find(F
.Scope
); LIt
!= ScopesOfL
.end()) {
376 // Get common subset of variables in given scope
377 F
.VarIter
= std::min(F
.VarIter
, LIt
->getSecond());
380 assert(F
!= const_iterator() &&
381 "L iterator is not reachable from F iterator.");
388 /// Structure for specifying position in CFG during its build process. It
389 /// consists of CFGBlock that specifies position in CFG and
390 /// LocalScope::const_iterator that specifies position in LocalScope graph.
391 struct BlockScopePosPair
{
392 CFGBlock
*block
= nullptr;
393 LocalScope::const_iterator scopePosition
;
395 BlockScopePosPair() = default;
396 BlockScopePosPair(CFGBlock
*b
, LocalScope::const_iterator scopePos
)
397 : block(b
), scopePosition(scopePos
) {}
400 /// TryResult - a class representing a variant over the values
401 /// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool,
402 /// and is used by the CFGBuilder to decide if a branch condition
403 /// can be decided up front during CFG construction.
408 TryResult() = default;
409 TryResult(bool b
) : X(b
? 1 : 0) {}
411 bool isTrue() const { return X
== 1; }
412 bool isFalse() const { return X
== 0; }
413 bool isKnown() const { return X
>= 0; }
423 static TryResult
bothKnownTrue(TryResult R1
, TryResult R2
) {
424 if (!R1
.isKnown() || !R2
.isKnown())
426 return TryResult(R1
.isTrue() && R2
.isTrue());
431 class reverse_children
{
432 llvm::SmallVector
<Stmt
*, 12> childrenBuf
;
433 ArrayRef
<Stmt
*> children
;
436 reverse_children(Stmt
*S
);
438 using iterator
= ArrayRef
<Stmt
*>::reverse_iterator
;
440 iterator
begin() const { return children
.rbegin(); }
441 iterator
end() const { return children
.rend(); }
446 reverse_children::reverse_children(Stmt
*S
) {
447 if (CallExpr
*CE
= dyn_cast
<CallExpr
>(S
)) {
448 children
= CE
->getRawSubExprs();
451 switch (S
->getStmtClass()) {
452 // Note: Fill in this switch with more cases we want to optimize.
453 case Stmt::InitListExprClass
: {
454 InitListExpr
*IE
= cast
<InitListExpr
>(S
);
455 children
= llvm::ArrayRef(reinterpret_cast<Stmt
**>(IE
->getInits()),
463 // Default case for all other statements.
464 llvm::append_range(childrenBuf
, S
->children());
466 // This needs to be done *after* childrenBuf has been populated.
467 children
= childrenBuf
;
472 /// CFGBuilder - This class implements CFG construction from an AST.
473 /// The builder is stateful: an instance of the builder should be used to only
474 /// construct a single CFG.
478 /// CFGBuilder builder;
479 /// std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
481 /// CFG construction is done via a recursive walk of an AST. We actually parse
482 /// the AST in reverse order so that the successor of a basic block is
483 /// constructed prior to its predecessor. This allows us to nicely capture
484 /// implicit fall-throughs without extra basic blocks.
486 using JumpTarget
= BlockScopePosPair
;
487 using JumpSource
= BlockScopePosPair
;
490 std::unique_ptr
<CFG
> cfg
;
493 CFGBlock
*Block
= nullptr;
495 // Block after the current block.
496 CFGBlock
*Succ
= nullptr;
498 JumpTarget ContinueJumpTarget
;
499 JumpTarget BreakJumpTarget
;
500 JumpTarget SEHLeaveJumpTarget
;
501 CFGBlock
*SwitchTerminatedBlock
= nullptr;
502 CFGBlock
*DefaultCaseBlock
= nullptr;
504 // This can point to either a C++ try, an Objective-C @try, or an SEH __try.
505 // try and @try can be mixed and generally work the same.
506 // The frontend forbids mixing SEH __try with either try or @try.
507 // So having one for all three is enough.
508 CFGBlock
*TryTerminatedBlock
= nullptr;
510 // Current position in local scope.
511 LocalScope::const_iterator ScopePos
;
513 // LabelMap records the mapping from Label expressions to their jump targets.
514 using LabelMapTy
= llvm::DenseMap
<LabelDecl
*, JumpTarget
>;
517 // A list of blocks that end with a "goto" that must be backpatched to their
518 // resolved targets upon completion of CFG construction.
519 using BackpatchBlocksTy
= std::vector
<JumpSource
>;
520 BackpatchBlocksTy BackpatchBlocks
;
522 // A list of labels whose address has been taken (for indirect gotos).
523 using LabelSetTy
= llvm::SmallSetVector
<LabelDecl
*, 8>;
524 LabelSetTy AddressTakenLabels
;
526 // Information about the currently visited C++ object construction site.
527 // This is set in the construction trigger and read when the constructor
528 // or a function that returns an object by value is being visited.
529 llvm::DenseMap
<Expr
*, const ConstructionContextLayer
*>
530 ConstructionContextMap
;
533 const CFG::BuildOptions
&BuildOpts
;
535 // State to track for building switch statements.
536 bool switchExclusivelyCovered
= false;
537 Expr::EvalResult
*switchCond
= nullptr;
539 CFG::BuildOptions::ForcedBlkExprs::value_type
*cachedEntry
= nullptr;
540 const Stmt
*lastLookup
= nullptr;
542 // Caches boolean evaluations of expressions to avoid multiple re-evaluations
543 // during construction of branches for chained logical operators.
544 using CachedBoolEvalsTy
= llvm::DenseMap
<Expr
*, TryResult
>;
545 CachedBoolEvalsTy CachedBoolEvals
;
548 explicit CFGBuilder(ASTContext
*astContext
,
549 const CFG::BuildOptions
&buildOpts
)
550 : Context(astContext
), cfg(new CFG()), BuildOpts(buildOpts
) {}
552 // buildCFG - Used by external clients to construct the CFG.
553 std::unique_ptr
<CFG
> buildCFG(const Decl
*D
, Stmt
*Statement
);
555 bool alwaysAdd(const Stmt
*stmt
);
558 // Visitors to walk an AST and construct the CFG.
559 CFGBlock
*VisitInitListExpr(InitListExpr
*ILE
, AddStmtChoice asc
);
560 CFGBlock
*VisitAddrLabelExpr(AddrLabelExpr
*A
, AddStmtChoice asc
);
561 CFGBlock
*VisitAttributedStmt(AttributedStmt
*A
, AddStmtChoice asc
);
562 CFGBlock
*VisitBinaryOperator(BinaryOperator
*B
, AddStmtChoice asc
);
563 CFGBlock
*VisitBreakStmt(BreakStmt
*B
);
564 CFGBlock
*VisitCallExpr(CallExpr
*C
, AddStmtChoice asc
);
565 CFGBlock
*VisitCaseStmt(CaseStmt
*C
);
566 CFGBlock
*VisitChooseExpr(ChooseExpr
*C
, AddStmtChoice asc
);
567 CFGBlock
*VisitCompoundStmt(CompoundStmt
*C
, bool ExternallyDestructed
);
568 CFGBlock
*VisitConditionalOperator(AbstractConditionalOperator
*C
,
570 CFGBlock
*VisitContinueStmt(ContinueStmt
*C
);
571 CFGBlock
*VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr
*E
,
573 CFGBlock
*VisitCXXCatchStmt(CXXCatchStmt
*S
);
574 CFGBlock
*VisitCXXConstructExpr(CXXConstructExpr
*C
, AddStmtChoice asc
);
575 CFGBlock
*VisitCXXNewExpr(CXXNewExpr
*DE
, AddStmtChoice asc
);
576 CFGBlock
*VisitCXXDeleteExpr(CXXDeleteExpr
*DE
, AddStmtChoice asc
);
577 CFGBlock
*VisitCXXForRangeStmt(CXXForRangeStmt
*S
);
578 CFGBlock
*VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr
*E
,
580 CFGBlock
*VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr
*C
,
582 CFGBlock
*VisitCXXThrowExpr(CXXThrowExpr
*T
);
583 CFGBlock
*VisitCXXTryStmt(CXXTryStmt
*S
);
584 CFGBlock
*VisitCXXTypeidExpr(CXXTypeidExpr
*S
, AddStmtChoice asc
);
585 CFGBlock
*VisitDeclStmt(DeclStmt
*DS
);
586 CFGBlock
*VisitDeclSubExpr(DeclStmt
*DS
);
587 CFGBlock
*VisitDefaultStmt(DefaultStmt
*D
);
588 CFGBlock
*VisitDoStmt(DoStmt
*D
);
589 CFGBlock
*VisitExprWithCleanups(ExprWithCleanups
*E
,
590 AddStmtChoice asc
, bool ExternallyDestructed
);
591 CFGBlock
*VisitForStmt(ForStmt
*F
);
592 CFGBlock
*VisitGotoStmt(GotoStmt
*G
);
593 CFGBlock
*VisitGCCAsmStmt(GCCAsmStmt
*G
, AddStmtChoice asc
);
594 CFGBlock
*VisitIfStmt(IfStmt
*I
);
595 CFGBlock
*VisitImplicitCastExpr(ImplicitCastExpr
*E
, AddStmtChoice asc
);
596 CFGBlock
*VisitConstantExpr(ConstantExpr
*E
, AddStmtChoice asc
);
597 CFGBlock
*VisitIndirectGotoStmt(IndirectGotoStmt
*I
);
598 CFGBlock
*VisitLabelStmt(LabelStmt
*L
);
599 CFGBlock
*VisitBlockExpr(BlockExpr
*E
, AddStmtChoice asc
);
600 CFGBlock
*VisitLambdaExpr(LambdaExpr
*E
, AddStmtChoice asc
);
601 CFGBlock
*VisitLogicalOperator(BinaryOperator
*B
);
602 std::pair
<CFGBlock
*, CFGBlock
*> VisitLogicalOperator(BinaryOperator
*B
,
605 CFGBlock
*FalseBlock
);
606 CFGBlock
*VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr
*MTE
,
608 CFGBlock
*VisitMemberExpr(MemberExpr
*M
, AddStmtChoice asc
);
609 CFGBlock
*VisitObjCAtCatchStmt(ObjCAtCatchStmt
*S
);
610 CFGBlock
*VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt
*S
);
611 CFGBlock
*VisitObjCAtThrowStmt(ObjCAtThrowStmt
*S
);
612 CFGBlock
*VisitObjCAtTryStmt(ObjCAtTryStmt
*S
);
613 CFGBlock
*VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt
*S
);
614 CFGBlock
*VisitObjCForCollectionStmt(ObjCForCollectionStmt
*S
);
615 CFGBlock
*VisitObjCMessageExpr(ObjCMessageExpr
*E
, AddStmtChoice asc
);
616 CFGBlock
*VisitPseudoObjectExpr(PseudoObjectExpr
*E
);
617 CFGBlock
*VisitReturnStmt(Stmt
*S
);
618 CFGBlock
*VisitCoroutineSuspendExpr(CoroutineSuspendExpr
*S
,
620 CFGBlock
*VisitSEHExceptStmt(SEHExceptStmt
*S
);
621 CFGBlock
*VisitSEHFinallyStmt(SEHFinallyStmt
*S
);
622 CFGBlock
*VisitSEHLeaveStmt(SEHLeaveStmt
*S
);
623 CFGBlock
*VisitSEHTryStmt(SEHTryStmt
*S
);
624 CFGBlock
*VisitStmtExpr(StmtExpr
*S
, AddStmtChoice asc
);
625 CFGBlock
*VisitSwitchStmt(SwitchStmt
*S
);
626 CFGBlock
*VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr
*E
,
628 CFGBlock
*VisitUnaryOperator(UnaryOperator
*U
, AddStmtChoice asc
);
629 CFGBlock
*VisitWhileStmt(WhileStmt
*W
);
630 CFGBlock
*VisitArrayInitLoopExpr(ArrayInitLoopExpr
*A
, AddStmtChoice asc
);
632 CFGBlock
*Visit(Stmt
*S
, AddStmtChoice asc
= AddStmtChoice::NotAlwaysAdd
,
633 bool ExternallyDestructed
= false);
634 CFGBlock
*VisitStmt(Stmt
*S
, AddStmtChoice asc
);
635 CFGBlock
*VisitChildren(Stmt
*S
);
636 CFGBlock
*VisitNoRecurse(Expr
*E
, AddStmtChoice asc
);
637 CFGBlock
*VisitOMPExecutableDirective(OMPExecutableDirective
*D
,
640 void maybeAddScopeBeginForVarDecl(CFGBlock
*B
, const VarDecl
*VD
,
642 if (ScopePos
&& (VD
== ScopePos
.getFirstVarInScope()))
643 appendScopeBegin(B
, VD
, S
);
646 /// When creating the CFG for temporary destructors, we want to mirror the
647 /// branch structure of the corresponding constructor calls.
648 /// Thus, while visiting a statement for temporary destructors, we keep a
649 /// context to keep track of the following information:
650 /// - whether a subexpression is executed unconditionally
651 /// - if a subexpression is executed conditionally, the first
652 /// CXXBindTemporaryExpr we encounter in that subexpression (which
653 /// corresponds to the last temporary destructor we have to call for this
654 /// subexpression) and the CFG block at that point (which will become the
655 /// successor block when inserting the decision point).
657 /// That way, we can build the branch structure for temporary destructors as
659 /// 1. If a subexpression is executed unconditionally, we add the temporary
660 /// destructor calls to the current block.
661 /// 2. If a subexpression is executed conditionally, when we encounter a
662 /// CXXBindTemporaryExpr:
663 /// a) If it is the first temporary destructor call in the subexpression,
664 /// we remember the CXXBindTemporaryExpr and the current block in the
665 /// TempDtorContext; we start a new block, and insert the temporary
667 /// b) Otherwise, add the temporary destructor call to the current block.
668 /// 3. When we finished visiting a conditionally executed subexpression,
669 /// and we found at least one temporary constructor during the visitation
670 /// (2.a has executed), we insert a decision block that uses the
671 /// CXXBindTemporaryExpr as terminator, and branches to the current block
672 /// if the CXXBindTemporaryExpr was marked executed, and otherwise
673 /// branches to the stored successor.
674 struct TempDtorContext
{
675 TempDtorContext() = default;
676 TempDtorContext(TryResult KnownExecuted
)
677 : IsConditional(true), KnownExecuted(KnownExecuted
) {}
679 /// Returns whether we need to start a new branch for a temporary destructor
680 /// call. This is the case when the temporary destructor is
681 /// conditionally executed, and it is the first one we encounter while
682 /// visiting a subexpression - other temporary destructors at the same level
683 /// will be added to the same block and are executed under the same
685 bool needsTempDtorBranch() const {
686 return IsConditional
&& !TerminatorExpr
;
689 /// Remember the successor S of a temporary destructor decision branch for
690 /// the corresponding CXXBindTemporaryExpr E.
691 void setDecisionPoint(CFGBlock
*S
, CXXBindTemporaryExpr
*E
) {
696 const bool IsConditional
= false;
697 const TryResult KnownExecuted
= true;
698 CFGBlock
*Succ
= nullptr;
699 CXXBindTemporaryExpr
*TerminatorExpr
= nullptr;
702 // Visitors to walk an AST and generate destructors of temporaries in
704 CFGBlock
*VisitForTemporaryDtors(Stmt
*E
, bool ExternallyDestructed
,
705 TempDtorContext
&Context
);
706 CFGBlock
*VisitChildrenForTemporaryDtors(Stmt
*E
, bool ExternallyDestructed
,
707 TempDtorContext
&Context
);
708 CFGBlock
*VisitBinaryOperatorForTemporaryDtors(BinaryOperator
*E
,
709 bool ExternallyDestructed
,
710 TempDtorContext
&Context
);
711 CFGBlock
*VisitCXXBindTemporaryExprForTemporaryDtors(
712 CXXBindTemporaryExpr
*E
, bool ExternallyDestructed
, TempDtorContext
&Context
);
713 CFGBlock
*VisitConditionalOperatorForTemporaryDtors(
714 AbstractConditionalOperator
*E
, bool ExternallyDestructed
,
715 TempDtorContext
&Context
);
716 void InsertTempDtorDecisionBlock(const TempDtorContext
&Context
,
717 CFGBlock
*FalseSucc
= nullptr);
719 // NYS == Not Yet Supported
725 // Remember to apply the construction context based on the current \p Layer
726 // when constructing the CFG element for \p CE.
727 void consumeConstructionContext(const ConstructionContextLayer
*Layer
,
730 // Scan \p Child statement to find constructors in it, while keeping in mind
731 // that its parent statement is providing a partial construction context
732 // described by \p Layer. If a constructor is found, it would be assigned
733 // the context based on the layer. If an additional construction context layer
734 // is found, the function recurses into that.
735 void findConstructionContexts(const ConstructionContextLayer
*Layer
,
738 // Scan all arguments of a call expression for a construction context.
739 // These sorts of call expressions don't have a common superclass,
740 // hence strict duck-typing.
741 template <typename CallLikeExpr
,
742 typename
= std::enable_if_t
<
743 std::is_base_of_v
<CallExpr
, CallLikeExpr
> ||
744 std::is_base_of_v
<CXXConstructExpr
, CallLikeExpr
> ||
745 std::is_base_of_v
<ObjCMessageExpr
, CallLikeExpr
>>>
746 void findConstructionContextsForArguments(CallLikeExpr
*E
) {
747 for (unsigned i
= 0, e
= E
->getNumArgs(); i
!= e
; ++i
) {
748 Expr
*Arg
= E
->getArg(i
);
749 if (Arg
->getType()->getAsCXXRecordDecl() && !Arg
->isGLValue())
750 findConstructionContexts(
751 ConstructionContextLayer::create(cfg
->getBumpVectorContext(),
752 ConstructionContextItem(E
, i
)),
757 // Unset the construction context after consuming it. This is done immediately
758 // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so
759 // there's no need to do this manually in every Visit... function.
760 void cleanupConstructionContext(Expr
*E
);
762 void autoCreateBlock() { if (!Block
) Block
= createBlock(); }
763 CFGBlock
*createBlock(bool add_successor
= true);
764 CFGBlock
*createNoReturnBlock();
766 CFGBlock
*addStmt(Stmt
*S
) {
767 return Visit(S
, AddStmtChoice::AlwaysAdd
);
770 CFGBlock
*addInitializer(CXXCtorInitializer
*I
);
771 void addLoopExit(const Stmt
*LoopStmt
);
772 void addAutomaticObjHandling(LocalScope::const_iterator B
,
773 LocalScope::const_iterator E
, Stmt
*S
);
774 void addAutomaticObjDestruction(LocalScope::const_iterator B
,
775 LocalScope::const_iterator E
, Stmt
*S
);
776 void addScopeExitHandling(LocalScope::const_iterator B
,
777 LocalScope::const_iterator E
, Stmt
*S
);
778 void addImplicitDtorsForDestructor(const CXXDestructorDecl
*DD
);
779 void addScopeChangesHandling(LocalScope::const_iterator SrcPos
,
780 LocalScope::const_iterator DstPos
,
782 CFGBlock
*createScopeChangesHandlingBlock(LocalScope::const_iterator SrcPos
,
784 LocalScope::const_iterator DstPost
,
787 // Local scopes creation.
788 LocalScope
* createOrReuseLocalScope(LocalScope
* Scope
);
790 void addLocalScopeForStmt(Stmt
*S
);
791 LocalScope
* addLocalScopeForDeclStmt(DeclStmt
*DS
,
792 LocalScope
* Scope
= nullptr);
793 LocalScope
* addLocalScopeForVarDecl(VarDecl
*VD
, LocalScope
* Scope
= nullptr);
795 void addLocalScopeAndDtors(Stmt
*S
);
797 const ConstructionContext
*retrieveAndCleanupConstructionContext(Expr
*E
) {
798 if (!BuildOpts
.AddRichCXXConstructors
)
801 const ConstructionContextLayer
*Layer
= ConstructionContextMap
.lookup(E
);
805 cleanupConstructionContext(E
);
806 return ConstructionContext::createFromLayers(cfg
->getBumpVectorContext(),
810 // Interface to CFGBlock - adding CFGElements.
812 void appendStmt(CFGBlock
*B
, const Stmt
*S
) {
813 if (alwaysAdd(S
) && cachedEntry
)
814 cachedEntry
->second
= B
;
816 // All block-level expressions should have already been IgnoreParens()ed.
817 assert(!isa
<Expr
>(S
) || cast
<Expr
>(S
)->IgnoreParens() == S
);
818 B
->appendStmt(const_cast<Stmt
*>(S
), cfg
->getBumpVectorContext());
821 void appendConstructor(CFGBlock
*B
, CXXConstructExpr
*CE
) {
822 if (const ConstructionContext
*CC
=
823 retrieveAndCleanupConstructionContext(CE
)) {
824 B
->appendConstructor(CE
, CC
, cfg
->getBumpVectorContext());
828 // No valid construction context found. Fall back to statement.
829 B
->appendStmt(CE
, cfg
->getBumpVectorContext());
832 void appendCall(CFGBlock
*B
, CallExpr
*CE
) {
833 if (alwaysAdd(CE
) && cachedEntry
)
834 cachedEntry
->second
= B
;
836 if (const ConstructionContext
*CC
=
837 retrieveAndCleanupConstructionContext(CE
)) {
838 B
->appendCXXRecordTypedCall(CE
, CC
, cfg
->getBumpVectorContext());
842 // No valid construction context found. Fall back to statement.
843 B
->appendStmt(CE
, cfg
->getBumpVectorContext());
846 void appendInitializer(CFGBlock
*B
, CXXCtorInitializer
*I
) {
847 B
->appendInitializer(I
, cfg
->getBumpVectorContext());
850 void appendNewAllocator(CFGBlock
*B
, CXXNewExpr
*NE
) {
851 B
->appendNewAllocator(NE
, cfg
->getBumpVectorContext());
854 void appendBaseDtor(CFGBlock
*B
, const CXXBaseSpecifier
*BS
) {
855 B
->appendBaseDtor(BS
, cfg
->getBumpVectorContext());
858 void appendMemberDtor(CFGBlock
*B
, FieldDecl
*FD
) {
859 B
->appendMemberDtor(FD
, cfg
->getBumpVectorContext());
862 void appendObjCMessage(CFGBlock
*B
, ObjCMessageExpr
*ME
) {
863 if (alwaysAdd(ME
) && cachedEntry
)
864 cachedEntry
->second
= B
;
866 if (const ConstructionContext
*CC
=
867 retrieveAndCleanupConstructionContext(ME
)) {
868 B
->appendCXXRecordTypedCall(ME
, CC
, cfg
->getBumpVectorContext());
872 B
->appendStmt(const_cast<ObjCMessageExpr
*>(ME
),
873 cfg
->getBumpVectorContext());
876 void appendTemporaryDtor(CFGBlock
*B
, CXXBindTemporaryExpr
*E
) {
877 B
->appendTemporaryDtor(E
, cfg
->getBumpVectorContext());
880 void appendAutomaticObjDtor(CFGBlock
*B
, VarDecl
*VD
, Stmt
*S
) {
881 B
->appendAutomaticObjDtor(VD
, S
, cfg
->getBumpVectorContext());
884 void appendCleanupFunction(CFGBlock
*B
, VarDecl
*VD
) {
885 B
->appendCleanupFunction(VD
, cfg
->getBumpVectorContext());
888 void appendLifetimeEnds(CFGBlock
*B
, VarDecl
*VD
, Stmt
*S
) {
889 B
->appendLifetimeEnds(VD
, S
, cfg
->getBumpVectorContext());
892 void appendLoopExit(CFGBlock
*B
, const Stmt
*LoopStmt
) {
893 B
->appendLoopExit(LoopStmt
, cfg
->getBumpVectorContext());
896 void appendDeleteDtor(CFGBlock
*B
, CXXRecordDecl
*RD
, CXXDeleteExpr
*DE
) {
897 B
->appendDeleteDtor(RD
, DE
, cfg
->getBumpVectorContext());
900 void addSuccessor(CFGBlock
*B
, CFGBlock
*S
, bool IsReachable
= true) {
901 B
->addSuccessor(CFGBlock::AdjacentBlock(S
, IsReachable
),
902 cfg
->getBumpVectorContext());
905 /// Add a reachable successor to a block, with the alternate variant that is
907 void addSuccessor(CFGBlock
*B
, CFGBlock
*ReachableBlock
, CFGBlock
*AltBlock
) {
908 B
->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock
, AltBlock
),
909 cfg
->getBumpVectorContext());
912 void appendScopeBegin(CFGBlock
*B
, const VarDecl
*VD
, const Stmt
*S
) {
913 if (BuildOpts
.AddScopes
)
914 B
->appendScopeBegin(VD
, S
, cfg
->getBumpVectorContext());
917 void appendScopeEnd(CFGBlock
*B
, const VarDecl
*VD
, const Stmt
*S
) {
918 if (BuildOpts
.AddScopes
)
919 B
->appendScopeEnd(VD
, S
, cfg
->getBumpVectorContext());
922 /// Find a relational comparison with an expression evaluating to a
923 /// boolean and a constant other than 0 and 1.
924 /// e.g. if ((x < y) == 10)
925 TryResult
checkIncorrectRelationalOperator(const BinaryOperator
*B
) {
926 const Expr
*LHSExpr
= B
->getLHS()->IgnoreParens();
927 const Expr
*RHSExpr
= B
->getRHS()->IgnoreParens();
929 const IntegerLiteral
*IntLiteral
= dyn_cast
<IntegerLiteral
>(LHSExpr
);
930 const Expr
*BoolExpr
= RHSExpr
;
931 bool IntFirst
= true;
933 IntLiteral
= dyn_cast
<IntegerLiteral
>(RHSExpr
);
938 if (!IntLiteral
|| !BoolExpr
->isKnownToHaveBooleanValue())
941 llvm::APInt IntValue
= IntLiteral
->getValue();
942 if ((IntValue
== 1) || (IntValue
== 0))
945 bool IntLarger
= IntLiteral
->getType()->isUnsignedIntegerType() ||
946 !IntValue
.isNegative();
948 BinaryOperatorKind Bok
= B
->getOpcode();
949 if (Bok
== BO_GT
|| Bok
== BO_GE
) {
950 // Always true for 10 > bool and bool > -1
951 // Always false for -1 > bool and bool > 10
952 return TryResult(IntFirst
== IntLarger
);
954 // Always true for -1 < bool and bool < 10
955 // Always false for 10 < bool and bool < -1
956 return TryResult(IntFirst
!= IntLarger
);
960 /// Find an incorrect equality comparison. Either with an expression
961 /// evaluating to a boolean and a constant other than 0 and 1.
962 /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
963 /// true/false e.q. (x & 8) == 4.
964 TryResult
checkIncorrectEqualityOperator(const BinaryOperator
*B
) {
965 const Expr
*LHSExpr
= B
->getLHS()->IgnoreParens();
966 const Expr
*RHSExpr
= B
->getRHS()->IgnoreParens();
968 std::optional
<llvm::APInt
> IntLiteral1
=
969 getIntegerLiteralSubexpressionValue(LHSExpr
);
970 const Expr
*BoolExpr
= RHSExpr
;
973 IntLiteral1
= getIntegerLiteralSubexpressionValue(RHSExpr
);
980 const BinaryOperator
*BitOp
= dyn_cast
<BinaryOperator
>(BoolExpr
);
981 if (BitOp
&& (BitOp
->getOpcode() == BO_And
||
982 BitOp
->getOpcode() == BO_Or
)) {
983 const Expr
*LHSExpr2
= BitOp
->getLHS()->IgnoreParens();
984 const Expr
*RHSExpr2
= BitOp
->getRHS()->IgnoreParens();
986 std::optional
<llvm::APInt
> IntLiteral2
=
987 getIntegerLiteralSubexpressionValue(LHSExpr2
);
990 IntLiteral2
= getIntegerLiteralSubexpressionValue(RHSExpr2
);
995 if ((BitOp
->getOpcode() == BO_And
&&
996 (*IntLiteral2
& *IntLiteral1
) != *IntLiteral1
) ||
997 (BitOp
->getOpcode() == BO_Or
&&
998 (*IntLiteral2
| *IntLiteral1
) != *IntLiteral1
)) {
999 if (BuildOpts
.Observer
)
1000 BuildOpts
.Observer
->compareBitwiseEquality(B
,
1001 B
->getOpcode() != BO_EQ
);
1002 return TryResult(B
->getOpcode() != BO_EQ
);
1004 } else if (BoolExpr
->isKnownToHaveBooleanValue()) {
1005 if ((*IntLiteral1
== 1) || (*IntLiteral1
== 0)) {
1008 return TryResult(B
->getOpcode() != BO_EQ
);
1014 // Helper function to get an APInt from an expression. Supports expressions
1015 // which are an IntegerLiteral or a UnaryOperator and returns the value with
1016 // all operations performed on it.
1017 // FIXME: it would be good to unify this function with
1018 // IsIntegerLiteralConstantExpr at some point given the similarity between the
1020 std::optional
<llvm::APInt
>
1021 getIntegerLiteralSubexpressionValue(const Expr
*E
) {
1024 if (const auto *UnOp
= dyn_cast
<UnaryOperator
>(E
->IgnoreParens())) {
1025 // Get the sub expression of the unary expression and get the Integer
1027 const Expr
*SubExpr
= UnOp
->getSubExpr()->IgnoreParens();
1029 if (const auto *IntLiteral
= dyn_cast
<IntegerLiteral
>(SubExpr
)) {
1031 llvm::APInt Value
= IntLiteral
->getValue();
1033 // Perform the operation manually.
1034 switch (UnOp
->getOpcode()) {
1042 return llvm::APInt(Context
->getTypeSize(Context
->IntTy
), !Value
);
1044 assert(false && "Unexpected unary operator!");
1045 return std::nullopt
;
1048 } else if (const auto *IntLiteral
=
1049 dyn_cast
<IntegerLiteral
>(E
->IgnoreParens()))
1050 return IntLiteral
->getValue();
1052 return std::nullopt
;
1055 TryResult
analyzeLogicOperatorCondition(BinaryOperatorKind Relation
,
1056 const llvm::APSInt
&Value1
,
1057 const llvm::APSInt
&Value2
) {
1058 assert(Value1
.isSigned() == Value2
.isSigned());
1063 return TryResult(Value1
== Value2
);
1065 return TryResult(Value1
!= Value2
);
1067 return TryResult(Value1
< Value2
);
1069 return TryResult(Value1
<= Value2
);
1071 return TryResult(Value1
> Value2
);
1073 return TryResult(Value1
>= Value2
);
1077 /// There are two checks handled by this function:
1078 /// 1. Find a law-of-excluded-middle or law-of-noncontradiction expression
1079 /// e.g. if (x || !x), if (x && !x)
1080 /// 2. Find a pair of comparison expressions with or without parentheses
1081 /// with a shared variable and constants and a logical operator between them
1082 /// that always evaluates to either true or false.
1083 /// e.g. if (x != 3 || x != 4)
1084 TryResult
checkIncorrectLogicOperator(const BinaryOperator
*B
) {
1085 assert(B
->isLogicalOp());
1086 const Expr
*LHSExpr
= B
->getLHS()->IgnoreParens();
1087 const Expr
*RHSExpr
= B
->getRHS()->IgnoreParens();
1089 auto CheckLogicalOpWithNegatedVariable
= [this, B
](const Expr
*E1
,
1091 if (const auto *Negate
= dyn_cast
<UnaryOperator
>(E1
)) {
1092 if (Negate
->getOpcode() == UO_LNot
&&
1093 Expr::isSameComparisonOperand(Negate
->getSubExpr(), E2
)) {
1094 bool AlwaysTrue
= B
->getOpcode() == BO_LOr
;
1095 if (BuildOpts
.Observer
)
1096 BuildOpts
.Observer
->logicAlwaysTrue(B
, AlwaysTrue
);
1097 return TryResult(AlwaysTrue
);
1103 TryResult Result
= CheckLogicalOpWithNegatedVariable(LHSExpr
, RHSExpr
);
1104 if (Result
.isKnown())
1106 Result
= CheckLogicalOpWithNegatedVariable(RHSExpr
, LHSExpr
);
1107 if (Result
.isKnown())
1110 const auto *LHS
= dyn_cast
<BinaryOperator
>(LHSExpr
);
1111 const auto *RHS
= dyn_cast
<BinaryOperator
>(RHSExpr
);
1115 if (!LHS
->isComparisonOp() || !RHS
->isComparisonOp())
1118 const Expr
*DeclExpr1
;
1119 const Expr
*NumExpr1
;
1120 BinaryOperatorKind BO1
;
1121 std::tie(DeclExpr1
, BO1
, NumExpr1
) = tryNormalizeBinaryOperator(LHS
);
1123 if (!DeclExpr1
|| !NumExpr1
)
1126 const Expr
*DeclExpr2
;
1127 const Expr
*NumExpr2
;
1128 BinaryOperatorKind BO2
;
1129 std::tie(DeclExpr2
, BO2
, NumExpr2
) = tryNormalizeBinaryOperator(RHS
);
1131 if (!DeclExpr2
|| !NumExpr2
)
1134 // Check that it is the same variable on both sides.
1135 if (!Expr::isSameComparisonOperand(DeclExpr1
, DeclExpr2
))
1138 // Make sure the user's intent is clear (e.g. they're comparing against two
1139 // int literals, or two things from the same enum)
1140 if (!areExprTypesCompatible(NumExpr1
, NumExpr2
))
1143 Expr::EvalResult L1Result
, L2Result
;
1144 if (!NumExpr1
->EvaluateAsInt(L1Result
, *Context
) ||
1145 !NumExpr2
->EvaluateAsInt(L2Result
, *Context
))
1148 llvm::APSInt L1
= L1Result
.Val
.getInt();
1149 llvm::APSInt L2
= L2Result
.Val
.getInt();
1151 // Can't compare signed with unsigned or with different bit width.
1152 if (L1
.isSigned() != L2
.isSigned() || L1
.getBitWidth() != L2
.getBitWidth())
1155 // Values that will be used to determine if result of logical
1156 // operator is always true/false
1157 const llvm::APSInt Values
[] = {
1158 // Value less than both Value1 and Value2
1159 llvm::APSInt::getMinValue(L1
.getBitWidth(), L1
.isUnsigned()),
1162 // Value between Value1 and Value2
1163 ((L1
< L2
) ? L1
: L2
) + llvm::APSInt(llvm::APInt(L1
.getBitWidth(), 1),
1167 // Value greater than both Value1 and Value2
1168 llvm::APSInt::getMaxValue(L1
.getBitWidth(), L1
.isUnsigned()),
1171 // Check whether expression is always true/false by evaluating the following
1172 // * variable x is less than the smallest literal.
1173 // * variable x is equal to the smallest literal.
1174 // * Variable x is between smallest and largest literal.
1175 // * Variable x is equal to the largest literal.
1176 // * Variable x is greater than largest literal.
1177 bool AlwaysTrue
= true, AlwaysFalse
= true;
1178 // Track value of both subexpressions. If either side is always
1179 // true/false, another warning should have already been emitted.
1180 bool LHSAlwaysTrue
= true, LHSAlwaysFalse
= true;
1181 bool RHSAlwaysTrue
= true, RHSAlwaysFalse
= true;
1182 for (const llvm::APSInt
&Value
: Values
) {
1183 TryResult Res1
, Res2
;
1184 Res1
= analyzeLogicOperatorCondition(BO1
, Value
, L1
);
1185 Res2
= analyzeLogicOperatorCondition(BO2
, Value
, L2
);
1187 if (!Res1
.isKnown() || !Res2
.isKnown())
1190 if (B
->getOpcode() == BO_LAnd
) {
1191 AlwaysTrue
&= (Res1
.isTrue() && Res2
.isTrue());
1192 AlwaysFalse
&= !(Res1
.isTrue() && Res2
.isTrue());
1194 AlwaysTrue
&= (Res1
.isTrue() || Res2
.isTrue());
1195 AlwaysFalse
&= !(Res1
.isTrue() || Res2
.isTrue());
1198 LHSAlwaysTrue
&= Res1
.isTrue();
1199 LHSAlwaysFalse
&= Res1
.isFalse();
1200 RHSAlwaysTrue
&= Res2
.isTrue();
1201 RHSAlwaysFalse
&= Res2
.isFalse();
1204 if (AlwaysTrue
|| AlwaysFalse
) {
1205 if (!LHSAlwaysTrue
&& !LHSAlwaysFalse
&& !RHSAlwaysTrue
&&
1206 !RHSAlwaysFalse
&& BuildOpts
.Observer
)
1207 BuildOpts
.Observer
->compareAlwaysTrue(B
, AlwaysTrue
);
1208 return TryResult(AlwaysTrue
);
1213 /// A bitwise-or with a non-zero constant always evaluates to true.
1214 TryResult
checkIncorrectBitwiseOrOperator(const BinaryOperator
*B
) {
1215 const Expr
*LHSConstant
=
1216 tryTransformToIntOrEnumConstant(B
->getLHS()->IgnoreParenImpCasts());
1217 const Expr
*RHSConstant
=
1218 tryTransformToIntOrEnumConstant(B
->getRHS()->IgnoreParenImpCasts());
1220 if ((LHSConstant
&& RHSConstant
) || (!LHSConstant
&& !RHSConstant
))
1223 const Expr
*Constant
= LHSConstant
? LHSConstant
: RHSConstant
;
1225 Expr::EvalResult Result
;
1226 if (!Constant
->EvaluateAsInt(Result
, *Context
))
1229 if (Result
.Val
.getInt() == 0)
1232 if (BuildOpts
.Observer
)
1233 BuildOpts
.Observer
->compareBitwiseOr(B
);
1235 return TryResult(true);
1238 /// Try and evaluate an expression to an integer constant.
1239 bool tryEvaluate(Expr
*S
, Expr::EvalResult
&outResult
) {
1240 if (!BuildOpts
.PruneTriviallyFalseEdges
)
1242 return !S
->isTypeDependent() &&
1243 !S
->isValueDependent() &&
1244 S
->EvaluateAsRValue(outResult
, *Context
);
1247 /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
1248 /// if we can evaluate to a known value, otherwise return -1.
1249 TryResult
tryEvaluateBool(Expr
*S
) {
1250 if (!BuildOpts
.PruneTriviallyFalseEdges
||
1251 S
->isTypeDependent() || S
->isValueDependent())
1254 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(S
)) {
1255 if (Bop
->isLogicalOp() || Bop
->isEqualityOp()) {
1256 // Check the cache first.
1257 CachedBoolEvalsTy::iterator I
= CachedBoolEvals
.find(S
);
1258 if (I
!= CachedBoolEvals
.end())
1259 return I
->second
; // already in map;
1261 // Retrieve result at first, or the map might be updated.
1262 TryResult Result
= evaluateAsBooleanConditionNoCache(S
);
1263 CachedBoolEvals
[S
] = Result
; // update or insert
1267 switch (Bop
->getOpcode()) {
1269 // For 'x & 0' and 'x * 0', we can determine that
1270 // the value is always false.
1273 // If either operand is zero, we know the value
1275 Expr::EvalResult LHSResult
;
1276 if (Bop
->getLHS()->EvaluateAsInt(LHSResult
, *Context
)) {
1277 llvm::APSInt IntVal
= LHSResult
.Val
.getInt();
1278 if (!IntVal
.getBoolValue()) {
1279 return TryResult(false);
1282 Expr::EvalResult RHSResult
;
1283 if (Bop
->getRHS()->EvaluateAsInt(RHSResult
, *Context
)) {
1284 llvm::APSInt IntVal
= RHSResult
.Val
.getInt();
1285 if (!IntVal
.getBoolValue()) {
1286 return TryResult(false);
1295 return evaluateAsBooleanConditionNoCache(S
);
1298 /// Evaluate as boolean \param E without using the cache.
1299 TryResult
evaluateAsBooleanConditionNoCache(Expr
*E
) {
1300 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(E
)) {
1301 if (Bop
->isLogicalOp()) {
1302 TryResult LHS
= tryEvaluateBool(Bop
->getLHS());
1303 if (LHS
.isKnown()) {
1304 // We were able to evaluate the LHS, see if we can get away with not
1305 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
1306 if (LHS
.isTrue() == (Bop
->getOpcode() == BO_LOr
))
1307 return LHS
.isTrue();
1309 TryResult RHS
= tryEvaluateBool(Bop
->getRHS());
1310 if (RHS
.isKnown()) {
1311 if (Bop
->getOpcode() == BO_LOr
)
1312 return LHS
.isTrue() || RHS
.isTrue();
1314 return LHS
.isTrue() && RHS
.isTrue();
1317 TryResult RHS
= tryEvaluateBool(Bop
->getRHS());
1318 if (RHS
.isKnown()) {
1319 // We can't evaluate the LHS; however, sometimes the result
1320 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
1321 if (RHS
.isTrue() == (Bop
->getOpcode() == BO_LOr
))
1322 return RHS
.isTrue();
1324 TryResult BopRes
= checkIncorrectLogicOperator(Bop
);
1325 if (BopRes
.isKnown())
1326 return BopRes
.isTrue();
1331 } else if (Bop
->isEqualityOp()) {
1332 TryResult BopRes
= checkIncorrectEqualityOperator(Bop
);
1333 if (BopRes
.isKnown())
1334 return BopRes
.isTrue();
1335 } else if (Bop
->isRelationalOp()) {
1336 TryResult BopRes
= checkIncorrectRelationalOperator(Bop
);
1337 if (BopRes
.isKnown())
1338 return BopRes
.isTrue();
1339 } else if (Bop
->getOpcode() == BO_Or
) {
1340 TryResult BopRes
= checkIncorrectBitwiseOrOperator(Bop
);
1341 if (BopRes
.isKnown())
1342 return BopRes
.isTrue();
1347 if (E
->EvaluateAsBooleanCondition(Result
, *Context
))
1353 bool hasTrivialDestructor(const VarDecl
*VD
) const;
1354 bool needsAutomaticDestruction(const VarDecl
*VD
) const;
1360 clang::extractElementInitializerFromNestedAILE(const ArrayInitLoopExpr
*AILE
) {
1364 Expr
*AILEInit
= AILE
->getSubExpr();
1365 while (const auto *E
= dyn_cast
<ArrayInitLoopExpr
>(AILEInit
))
1366 AILEInit
= E
->getSubExpr();
1371 inline bool AddStmtChoice::alwaysAdd(CFGBuilder
&builder
,
1372 const Stmt
*stmt
) const {
1373 return builder
.alwaysAdd(stmt
) || kind
== AlwaysAdd
;
1376 bool CFGBuilder::alwaysAdd(const Stmt
*stmt
) {
1377 bool shouldAdd
= BuildOpts
.alwaysAdd(stmt
);
1379 if (!BuildOpts
.forcedBlkExprs
)
1382 if (lastLookup
== stmt
) {
1384 assert(cachedEntry
->first
== stmt
);
1392 // Perform the lookup!
1393 CFG::BuildOptions::ForcedBlkExprs
*fb
= *BuildOpts
.forcedBlkExprs
;
1396 // No need to update 'cachedEntry', since it will always be null.
1397 assert(!cachedEntry
);
1401 CFG::BuildOptions::ForcedBlkExprs::iterator itr
= fb
->find(stmt
);
1402 if (itr
== fb
->end()) {
1403 cachedEntry
= nullptr;
1407 cachedEntry
= &*itr
;
1411 // FIXME: Add support for dependent-sized array types in C++?
1412 // Does it even make sense to build a CFG for an uninstantiated template?
1413 static const VariableArrayType
*FindVA(const Type
*t
) {
1414 while (const ArrayType
*vt
= dyn_cast
<ArrayType
>(t
)) {
1415 if (const VariableArrayType
*vat
= dyn_cast
<VariableArrayType
>(vt
))
1416 if (vat
->getSizeExpr())
1419 t
= vt
->getElementType().getTypePtr();
1425 void CFGBuilder::consumeConstructionContext(
1426 const ConstructionContextLayer
*Layer
, Expr
*E
) {
1427 assert((isa
<CXXConstructExpr
>(E
) || isa
<CallExpr
>(E
) ||
1428 isa
<ObjCMessageExpr
>(E
)) && "Expression cannot construct an object!");
1429 if (const ConstructionContextLayer
*PreviouslyStoredLayer
=
1430 ConstructionContextMap
.lookup(E
)) {
1431 (void)PreviouslyStoredLayer
;
1432 // We might have visited this child when we were finding construction
1433 // contexts within its parents.
1434 assert(PreviouslyStoredLayer
->isStrictlyMoreSpecificThan(Layer
) &&
1435 "Already within a different construction context!");
1437 ConstructionContextMap
[E
] = Layer
;
1441 void CFGBuilder::findConstructionContexts(
1442 const ConstructionContextLayer
*Layer
, Stmt
*Child
) {
1443 if (!BuildOpts
.AddRichCXXConstructors
)
1449 auto withExtraLayer
= [this, Layer
](const ConstructionContextItem
&Item
) {
1450 return ConstructionContextLayer::create(cfg
->getBumpVectorContext(), Item
,
1454 switch(Child
->getStmtClass()) {
1455 case Stmt::CXXConstructExprClass
:
1456 case Stmt::CXXTemporaryObjectExprClass
: {
1457 // Support pre-C++17 copy elision AST.
1458 auto *CE
= cast
<CXXConstructExpr
>(Child
);
1459 if (BuildOpts
.MarkElidedCXXConstructors
&& CE
->isElidable()) {
1460 findConstructionContexts(withExtraLayer(CE
), CE
->getArg(0));
1463 consumeConstructionContext(Layer
, CE
);
1466 // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr.
1467 // FIXME: An isa<> would look much better but this whole switch is a
1468 // workaround for an internal compiler error in MSVC 2015 (see r326021).
1469 case Stmt::CallExprClass
:
1470 case Stmt::CXXMemberCallExprClass
:
1471 case Stmt::CXXOperatorCallExprClass
:
1472 case Stmt::UserDefinedLiteralClass
:
1473 case Stmt::ObjCMessageExprClass
: {
1474 auto *E
= cast
<Expr
>(Child
);
1475 if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E
))
1476 consumeConstructionContext(Layer
, E
);
1479 case Stmt::ExprWithCleanupsClass
: {
1480 auto *Cleanups
= cast
<ExprWithCleanups
>(Child
);
1481 findConstructionContexts(Layer
, Cleanups
->getSubExpr());
1484 case Stmt::CXXFunctionalCastExprClass
: {
1485 auto *Cast
= cast
<CXXFunctionalCastExpr
>(Child
);
1486 findConstructionContexts(Layer
, Cast
->getSubExpr());
1489 case Stmt::ImplicitCastExprClass
: {
1490 auto *Cast
= cast
<ImplicitCastExpr
>(Child
);
1491 // Should we support other implicit cast kinds?
1492 switch (Cast
->getCastKind()) {
1494 case CK_ConstructorConversion
:
1495 findConstructionContexts(Layer
, Cast
->getSubExpr());
1502 case Stmt::CXXBindTemporaryExprClass
: {
1503 auto *BTE
= cast
<CXXBindTemporaryExpr
>(Child
);
1504 findConstructionContexts(withExtraLayer(BTE
), BTE
->getSubExpr());
1507 case Stmt::MaterializeTemporaryExprClass
: {
1508 // Normally we don't want to search in MaterializeTemporaryExpr because
1509 // it indicates the beginning of a temporary object construction context,
1510 // so it shouldn't be found in the middle. However, if it is the beginning
1511 // of an elidable copy or move construction context, we need to include it.
1512 if (Layer
->getItem().getKind() ==
1513 ConstructionContextItem::ElidableConstructorKind
) {
1514 auto *MTE
= cast
<MaterializeTemporaryExpr
>(Child
);
1515 findConstructionContexts(withExtraLayer(MTE
), MTE
->getSubExpr());
1519 case Stmt::ConditionalOperatorClass
: {
1520 auto *CO
= cast
<ConditionalOperator
>(Child
);
1521 if (Layer
->getItem().getKind() !=
1522 ConstructionContextItem::MaterializationKind
) {
1523 // If the object returned by the conditional operator is not going to be a
1524 // temporary object that needs to be immediately materialized, then
1525 // it must be C++17 with its mandatory copy elision. Do not yet promise
1526 // to support this case.
1527 assert(!CO
->getType()->getAsCXXRecordDecl() || CO
->isGLValue() ||
1528 Context
->getLangOpts().CPlusPlus17
);
1531 findConstructionContexts(Layer
, CO
->getLHS());
1532 findConstructionContexts(Layer
, CO
->getRHS());
1535 case Stmt::InitListExprClass
: {
1536 auto *ILE
= cast
<InitListExpr
>(Child
);
1537 if (ILE
->isTransparent()) {
1538 findConstructionContexts(Layer
, ILE
->getInit(0));
1541 // TODO: Handle other cases. For now, fail to find construction contexts.
1544 case Stmt::ParenExprClass
: {
1545 // If expression is placed into parenthesis we should propagate the parent
1546 // construction context to subexpressions.
1547 auto *PE
= cast
<ParenExpr
>(Child
);
1548 findConstructionContexts(Layer
, PE
->getSubExpr());
1556 void CFGBuilder::cleanupConstructionContext(Expr
*E
) {
1557 assert(BuildOpts
.AddRichCXXConstructors
&&
1558 "We should not be managing construction contexts!");
1559 assert(ConstructionContextMap
.count(E
) &&
1560 "Cannot exit construction context without the context!");
1561 ConstructionContextMap
.erase(E
);
1564 /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
1565 /// arbitrary statement. Examples include a single expression or a function
1566 /// body (compound statement). The ownership of the returned CFG is
1567 /// transferred to the caller. If CFG construction fails, this method returns
1569 std::unique_ptr
<CFG
> CFGBuilder::buildCFG(const Decl
*D
, Stmt
*Statement
) {
1574 // Create an empty block that will serve as the exit block for the CFG. Since
1575 // this is the first block added to the CFG, it will be implicitly registered
1576 // as the exit block.
1577 Succ
= createBlock();
1578 assert(Succ
== &cfg
->getExit());
1579 Block
= nullptr; // the EXIT block is empty. Create all other blocks lazily.
1581 if (BuildOpts
.AddImplicitDtors
)
1582 if (const CXXDestructorDecl
*DD
= dyn_cast_or_null
<CXXDestructorDecl
>(D
))
1583 addImplicitDtorsForDestructor(DD
);
1585 // Visit the statements and create the CFG.
1586 CFGBlock
*B
= addStmt(Statement
);
1591 // For C++ constructor add initializers to CFG. Constructors of virtual bases
1592 // are ignored unless the object is of the most derived class.
1593 // class VBase { VBase() = default; VBase(int) {} };
1594 // class A : virtual public VBase { A() : VBase(0) {} };
1595 // class B : public A {};
1596 // B b; // Constructor calls in order: VBase(), A(), B().
1597 // // VBase(0) is ignored because A isn't the most derived class.
1598 // This may result in the virtual base(s) being already initialized at this
1599 // point, in which case we should jump right onto non-virtual bases and
1600 // fields. To handle this, make a CFG branch. We only need to add one such
1601 // branch per constructor, since the Standard states that all virtual bases
1602 // shall be initialized before non-virtual bases and direct data members.
1603 if (const auto *CD
= dyn_cast_or_null
<CXXConstructorDecl
>(D
)) {
1604 CFGBlock
*VBaseSucc
= nullptr;
1605 for (auto *I
: llvm::reverse(CD
->inits())) {
1606 if (BuildOpts
.AddVirtualBaseBranches
&& !VBaseSucc
&&
1607 I
->isBaseInitializer() && I
->isBaseVirtual()) {
1608 // We've reached the first virtual base init while iterating in reverse
1609 // order. Make a new block for virtual base initializers so that we
1611 VBaseSucc
= Succ
= B
? B
: &cfg
->getExit();
1612 Block
= createBlock();
1614 B
= addInitializer(I
);
1619 // Make a branch block for potentially skipping virtual base initializers.
1623 CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch
));
1624 addSuccessor(B
, Block
, true);
1631 // Backpatch the gotos whose label -> block mappings we didn't know when we
1632 // encountered them.
1633 for (BackpatchBlocksTy::iterator I
= BackpatchBlocks
.begin(),
1634 E
= BackpatchBlocks
.end(); I
!= E
; ++I
) {
1636 CFGBlock
*B
= I
->block
;
1637 if (auto *G
= dyn_cast
<GotoStmt
>(B
->getTerminator())) {
1638 LabelMapTy::iterator LI
= LabelMap
.find(G
->getLabel());
1639 // If there is no target for the goto, then we are looking at an
1640 // incomplete AST. Handle this by not registering a successor.
1641 if (LI
== LabelMap
.end())
1643 JumpTarget JT
= LI
->second
;
1645 CFGBlock
*SuccBlk
= createScopeChangesHandlingBlock(
1646 I
->scopePosition
, B
, JT
.scopePosition
, JT
.block
);
1647 addSuccessor(B
, SuccBlk
);
1648 } else if (auto *G
= dyn_cast
<GCCAsmStmt
>(B
->getTerminator())) {
1649 CFGBlock
*Successor
= (I
+1)->block
;
1650 for (auto *L
: G
->labels()) {
1651 LabelMapTy::iterator LI
= LabelMap
.find(L
->getLabel());
1652 // If there is no target for the goto, then we are looking at an
1653 // incomplete AST. Handle this by not registering a successor.
1654 if (LI
== LabelMap
.end())
1656 JumpTarget JT
= LI
->second
;
1657 // Successor has been added, so skip it.
1658 if (JT
.block
== Successor
)
1660 addSuccessor(B
, JT
.block
);
1666 // Add successors to the Indirect Goto Dispatch block (if we have one).
1667 if (CFGBlock
*B
= cfg
->getIndirectGotoBlock())
1668 for (LabelSetTy::iterator I
= AddressTakenLabels
.begin(),
1669 E
= AddressTakenLabels
.end(); I
!= E
; ++I
) {
1670 // Lookup the target block.
1671 LabelMapTy::iterator LI
= LabelMap
.find(*I
);
1673 // If there is no target block that contains label, then we are looking
1674 // at an incomplete AST. Handle this by not registering a successor.
1675 if (LI
== LabelMap
.end()) continue;
1677 addSuccessor(B
, LI
->second
.block
);
1680 // Create an empty entry block that has no predecessors.
1681 cfg
->setEntry(createBlock());
1683 if (BuildOpts
.AddRichCXXConstructors
)
1684 assert(ConstructionContextMap
.empty() &&
1685 "Not all construction contexts were cleaned up!");
1687 return std::move(cfg
);
1690 /// createBlock - Used to lazily create blocks that are connected
1691 /// to the current (global) successor.
1692 CFGBlock
*CFGBuilder::createBlock(bool add_successor
) {
1693 CFGBlock
*B
= cfg
->createBlock();
1694 if (add_successor
&& Succ
)
1695 addSuccessor(B
, Succ
);
1699 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
1700 /// CFG. It is *not* connected to the current (global) successor, and instead
1701 /// directly tied to the exit block in order to be reachable.
1702 CFGBlock
*CFGBuilder::createNoReturnBlock() {
1703 CFGBlock
*B
= createBlock(false);
1704 B
->setHasNoReturnElement();
1705 addSuccessor(B
, &cfg
->getExit(), Succ
);
1709 /// addInitializer - Add C++ base or member initializer element to CFG.
1710 CFGBlock
*CFGBuilder::addInitializer(CXXCtorInitializer
*I
) {
1711 if (!BuildOpts
.AddInitializers
)
1714 bool HasTemporaries
= false;
1716 // Destructors of temporaries in initialization expression should be called
1717 // after initialization finishes.
1718 Expr
*Init
= I
->getInit();
1720 HasTemporaries
= isa
<ExprWithCleanups
>(Init
);
1722 if (BuildOpts
.AddTemporaryDtors
&& HasTemporaries
) {
1723 // Generate destructors for temporaries in initialization expression.
1724 TempDtorContext Context
;
1725 VisitForTemporaryDtors(cast
<ExprWithCleanups
>(Init
)->getSubExpr(),
1726 /*ExternallyDestructed=*/false, Context
);
1731 appendInitializer(Block
, I
);
1734 // If the initializer is an ArrayInitLoopExpr, we want to extract the
1735 // initializer, that's used for each element.
1736 auto *AILEInit
= extractElementInitializerFromNestedAILE(
1737 dyn_cast
<ArrayInitLoopExpr
>(Init
));
1739 findConstructionContexts(
1740 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), I
),
1741 AILEInit
? AILEInit
: Init
);
1743 if (HasTemporaries
) {
1744 // For expression with temporaries go directly to subexpression to omit
1745 // generating destructors for the second time.
1746 return Visit(cast
<ExprWithCleanups
>(Init
)->getSubExpr());
1748 if (BuildOpts
.AddCXXDefaultInitExprInCtors
) {
1749 if (CXXDefaultInitExpr
*Default
= dyn_cast
<CXXDefaultInitExpr
>(Init
)) {
1750 // In general, appending the expression wrapped by a CXXDefaultInitExpr
1751 // may cause the same Expr to appear more than once in the CFG. Doing it
1752 // here is safe because there's only one initializer per field.
1754 appendStmt(Block
, Default
);
1755 if (Stmt
*Child
= Default
->getExpr())
1756 if (CFGBlock
*R
= Visit(Child
))
1767 /// Retrieve the type of the temporary object whose lifetime was
1768 /// extended by a local reference with the given initializer.
1769 static QualType
getReferenceInitTemporaryType(const Expr
*Init
,
1770 bool *FoundMTE
= nullptr) {
1772 // Skip parentheses.
1773 Init
= Init
->IgnoreParens();
1775 // Skip through cleanups.
1776 if (const ExprWithCleanups
*EWC
= dyn_cast
<ExprWithCleanups
>(Init
)) {
1777 Init
= EWC
->getSubExpr();
1781 // Skip through the temporary-materialization expression.
1782 if (const MaterializeTemporaryExpr
*MTE
1783 = dyn_cast
<MaterializeTemporaryExpr
>(Init
)) {
1784 Init
= MTE
->getSubExpr();
1790 // Skip sub-object accesses into rvalues.
1791 SmallVector
<const Expr
*, 2> CommaLHSs
;
1792 SmallVector
<SubobjectAdjustment
, 2> Adjustments
;
1793 const Expr
*SkippedInit
=
1794 Init
->skipRValueSubobjectAdjustments(CommaLHSs
, Adjustments
);
1795 if (SkippedInit
!= Init
) {
1803 return Init
->getType();
1806 // TODO: Support adding LoopExit element to the CFG in case where the loop is
1807 // ended by ReturnStmt, GotoStmt or ThrowExpr.
1808 void CFGBuilder::addLoopExit(const Stmt
*LoopStmt
){
1809 if(!BuildOpts
.AddLoopExit
)
1812 appendLoopExit(Block
, LoopStmt
);
1815 /// Adds the CFG elements for leaving the scope of automatic objects in
1816 /// range [B, E). This include following:
1817 /// * AutomaticObjectDtor for variables with non-trivial destructor
1818 /// * LifetimeEnds for all variables
1819 /// * ScopeEnd for each scope left
1820 void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B
,
1821 LocalScope::const_iterator E
,
1823 if (!BuildOpts
.AddScopes
&& !BuildOpts
.AddImplicitDtors
&&
1824 !BuildOpts
.AddLifetime
)
1830 // Not leaving the scope, only need to handle destruction and lifetime
1831 if (B
.inSameLocalScope(E
)) {
1832 addAutomaticObjDestruction(B
, E
, S
);
1836 // Extract information about all local scopes that are left
1837 SmallVector
<LocalScope::const_iterator
, 10> LocalScopeEndMarkers
;
1838 LocalScopeEndMarkers
.push_back(B
);
1839 for (LocalScope::const_iterator I
= B
; I
!= E
; ++I
) {
1840 if (!I
.inSameLocalScope(LocalScopeEndMarkers
.back()))
1841 LocalScopeEndMarkers
.push_back(I
);
1843 LocalScopeEndMarkers
.push_back(E
);
1845 // We need to leave the scope in reverse order, so we reverse the end
1847 std::reverse(LocalScopeEndMarkers
.begin(), LocalScopeEndMarkers
.end());
1849 llvm::zip(LocalScopeEndMarkers
, llvm::drop_begin(LocalScopeEndMarkers
));
1850 for (auto [E
, B
] : Pairwise
) {
1851 if (!B
.inSameLocalScope(E
))
1852 addScopeExitHandling(B
, E
, S
);
1853 addAutomaticObjDestruction(B
, E
, S
);
1857 /// Add CFG elements corresponding to call destructor and end of lifetime
1858 /// of all automatic variables with non-trivial destructor in range [B, E).
1859 /// This include AutomaticObjectDtor and LifetimeEnds elements.
1860 void CFGBuilder::addAutomaticObjDestruction(LocalScope::const_iterator B
,
1861 LocalScope::const_iterator E
,
1863 if (!BuildOpts
.AddImplicitDtors
&& !BuildOpts
.AddLifetime
)
1869 SmallVector
<VarDecl
*, 10> DeclsNeedDestruction
;
1870 DeclsNeedDestruction
.reserve(B
.distance(E
));
1872 for (VarDecl
* D
: llvm::make_range(B
, E
))
1873 if (needsAutomaticDestruction(D
))
1874 DeclsNeedDestruction
.push_back(D
);
1876 for (VarDecl
*VD
: llvm::reverse(DeclsNeedDestruction
)) {
1877 if (BuildOpts
.AddImplicitDtors
) {
1878 // If this destructor is marked as a no-return destructor, we need to
1879 // create a new block for the destructor which does not have as a
1880 // successor anything built thus far: control won't flow out of this
1882 QualType Ty
= VD
->getType();
1883 if (Ty
->isReferenceType())
1884 Ty
= getReferenceInitTemporaryType(VD
->getInit());
1885 Ty
= Context
->getBaseElementType(Ty
);
1887 const CXXRecordDecl
*CRD
= Ty
->getAsCXXRecordDecl();
1888 if (CRD
&& CRD
->isAnyDestructorNoReturn())
1889 Block
= createNoReturnBlock();
1894 // Add LifetimeEnd after automatic obj with non-trivial destructors,
1895 // as they end their lifetime when the destructor returns. For trivial
1896 // objects, we end lifetime with scope end.
1897 if (BuildOpts
.AddLifetime
)
1898 appendLifetimeEnds(Block
, VD
, S
);
1899 if (BuildOpts
.AddImplicitDtors
&& !hasTrivialDestructor(VD
))
1900 appendAutomaticObjDtor(Block
, VD
, S
);
1901 if (VD
->hasAttr
<CleanupAttr
>())
1902 appendCleanupFunction(Block
, VD
);
1906 /// Add CFG elements corresponding to leaving a scope.
1907 /// Assumes that range [B, E) corresponds to single scope.
1908 /// This add following elements:
1909 /// * LifetimeEnds for all variables with non-trivial destructor
1910 /// * ScopeEnd for each scope left
1911 void CFGBuilder::addScopeExitHandling(LocalScope::const_iterator B
,
1912 LocalScope::const_iterator E
, Stmt
*S
) {
1913 assert(!B
.inSameLocalScope(E
));
1914 if (!BuildOpts
.AddLifetime
&& !BuildOpts
.AddScopes
)
1917 if (BuildOpts
.AddScopes
) {
1919 appendScopeEnd(Block
, B
.getFirstVarInScope(), S
);
1922 if (!BuildOpts
.AddLifetime
)
1925 // We need to perform the scope leaving in reverse order
1926 SmallVector
<VarDecl
*, 10> DeclsTrivial
;
1927 DeclsTrivial
.reserve(B
.distance(E
));
1929 // Objects with trivial destructor ends their lifetime when their storage
1930 // is destroyed, for automatic variables, this happens when the end of the
1932 for (VarDecl
* D
: llvm::make_range(B
, E
))
1933 if (!needsAutomaticDestruction(D
))
1934 DeclsTrivial
.push_back(D
);
1936 if (DeclsTrivial
.empty())
1940 for (VarDecl
*VD
: llvm::reverse(DeclsTrivial
))
1941 appendLifetimeEnds(Block
, VD
, S
);
1944 /// addScopeChangesHandling - appends information about destruction, lifetime
1945 /// and cfgScopeEnd for variables in the scope that was left by the jump, and
1946 /// appends cfgScopeBegin for all scopes that where entered.
1947 /// We insert the cfgScopeBegin at the end of the jump node, as depending on
1948 /// the sourceBlock, each goto, may enter different amount of scopes.
1949 void CFGBuilder::addScopeChangesHandling(LocalScope::const_iterator SrcPos
,
1950 LocalScope::const_iterator DstPos
,
1952 assert(Block
&& "Source block should be always crated");
1953 if (!BuildOpts
.AddImplicitDtors
&& !BuildOpts
.AddLifetime
&&
1954 !BuildOpts
.AddScopes
) {
1958 if (SrcPos
== DstPos
)
1961 // Get common scope, the jump leaves all scopes [SrcPos, BasePos), and
1962 // enter all scopes between [DstPos, BasePos)
1963 LocalScope::const_iterator BasePos
= SrcPos
.shared_parent(DstPos
);
1965 // Append scope begins for scopes entered by goto
1966 if (BuildOpts
.AddScopes
&& !DstPos
.inSameLocalScope(BasePos
)) {
1967 for (LocalScope::const_iterator I
= DstPos
; I
!= BasePos
; ++I
)
1968 if (I
.pointsToFirstDeclaredVar())
1969 appendScopeBegin(Block
, *I
, S
);
1972 // Append scopeEnds, destructor and lifetime with the terminator for
1973 // block left by goto.
1974 addAutomaticObjHandling(SrcPos
, BasePos
, S
);
1977 /// createScopeChangesHandlingBlock - Creates a block with cfgElements
1978 /// corresponding to changing the scope from the source scope of the GotoStmt,
1979 /// to destination scope. Add destructor, lifetime and cfgScopeEnd
1980 /// CFGElements to newly created CFGBlock, that will have the CFG terminator
1982 CFGBlock
*CFGBuilder::createScopeChangesHandlingBlock(
1983 LocalScope::const_iterator SrcPos
, CFGBlock
*SrcBlk
,
1984 LocalScope::const_iterator DstPos
, CFGBlock
*DstBlk
) {
1985 if (SrcPos
== DstPos
)
1988 if (!BuildOpts
.AddImplicitDtors
&& !BuildOpts
.AddLifetime
&&
1989 (!BuildOpts
.AddScopes
|| SrcPos
.inSameLocalScope(DstPos
)))
1992 // We will update CFBBuilder when creating new block, restore the
1993 // previous state at exit.
1994 SaveAndRestore
save_Block(Block
), save_Succ(Succ
);
1996 // Create a new block, and transfer terminator
1997 Block
= createBlock(false);
1998 Block
->setTerminator(SrcBlk
->getTerminator());
1999 SrcBlk
->setTerminator(CFGTerminator());
2000 addSuccessor(Block
, DstBlk
);
2002 // Fill the created Block with the required elements.
2003 addScopeChangesHandling(SrcPos
, DstPos
, Block
->getTerminatorStmt());
2005 assert(Block
&& "There should be at least one scope changing Block");
2009 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
2010 /// base and member objects in destructor.
2011 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl
*DD
) {
2012 assert(BuildOpts
.AddImplicitDtors
&&
2013 "Can be called only when dtors should be added");
2014 const CXXRecordDecl
*RD
= DD
->getParent();
2016 // At the end destroy virtual base objects.
2017 for (const auto &VI
: RD
->vbases()) {
2018 // TODO: Add a VirtualBaseBranch to see if the most derived class
2019 // (which is different from the current class) is responsible for
2021 const CXXRecordDecl
*CD
= VI
.getType()->getAsCXXRecordDecl();
2022 if (CD
&& !CD
->hasTrivialDestructor()) {
2024 appendBaseDtor(Block
, &VI
);
2028 // Before virtual bases destroy direct base objects.
2029 for (const auto &BI
: RD
->bases()) {
2030 if (!BI
.isVirtual()) {
2031 const CXXRecordDecl
*CD
= BI
.getType()->getAsCXXRecordDecl();
2032 if (CD
&& !CD
->hasTrivialDestructor()) {
2034 appendBaseDtor(Block
, &BI
);
2039 // First destroy member objects.
2040 for (auto *FI
: RD
->fields()) {
2041 // Check for constant size array. Set type to array element type.
2042 QualType QT
= FI
->getType();
2043 // It may be a multidimensional array.
2044 while (const ConstantArrayType
*AT
= Context
->getAsConstantArrayType(QT
)) {
2045 if (AT
->getSize() == 0)
2047 QT
= AT
->getElementType();
2050 if (const CXXRecordDecl
*CD
= QT
->getAsCXXRecordDecl())
2051 if (!CD
->hasTrivialDestructor()) {
2053 appendMemberDtor(Block
, FI
);
2058 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
2059 /// way return valid LocalScope object.
2060 LocalScope
* CFGBuilder::createOrReuseLocalScope(LocalScope
* Scope
) {
2063 llvm::BumpPtrAllocator
&alloc
= cfg
->getAllocator();
2064 return new (alloc
) LocalScope(BumpVectorContext(alloc
), ScopePos
);
2067 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
2068 /// that should create implicit scope (e.g. if/else substatements).
2069 void CFGBuilder::addLocalScopeForStmt(Stmt
*S
) {
2070 if (!BuildOpts
.AddImplicitDtors
&& !BuildOpts
.AddLifetime
&&
2071 !BuildOpts
.AddScopes
)
2074 LocalScope
*Scope
= nullptr;
2076 // For compound statement we will be creating explicit scope.
2077 if (CompoundStmt
*CS
= dyn_cast
<CompoundStmt
>(S
)) {
2078 for (auto *BI
: CS
->body()) {
2079 Stmt
*SI
= BI
->stripLabelLikeStatements();
2080 if (DeclStmt
*DS
= dyn_cast
<DeclStmt
>(SI
))
2081 Scope
= addLocalScopeForDeclStmt(DS
, Scope
);
2086 // For any other statement scope will be implicit and as such will be
2087 // interesting only for DeclStmt.
2088 if (DeclStmt
*DS
= dyn_cast
<DeclStmt
>(S
->stripLabelLikeStatements()))
2089 addLocalScopeForDeclStmt(DS
);
2092 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
2093 /// reuse Scope if not NULL.
2094 LocalScope
* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt
*DS
,
2095 LocalScope
* Scope
) {
2096 if (!BuildOpts
.AddImplicitDtors
&& !BuildOpts
.AddLifetime
&&
2097 !BuildOpts
.AddScopes
)
2100 for (auto *DI
: DS
->decls())
2101 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(DI
))
2102 Scope
= addLocalScopeForVarDecl(VD
, Scope
);
2106 bool CFGBuilder::needsAutomaticDestruction(const VarDecl
*VD
) const {
2107 return !hasTrivialDestructor(VD
) || VD
->hasAttr
<CleanupAttr
>();
2110 bool CFGBuilder::hasTrivialDestructor(const VarDecl
*VD
) const {
2111 // Check for const references bound to temporary. Set type to pointee.
2112 QualType QT
= VD
->getType();
2113 if (QT
->isReferenceType()) {
2114 // Attempt to determine whether this declaration lifetime-extends a
2117 // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
2118 // temporaries, and a single declaration can extend multiple temporaries.
2119 // We should look at the storage duration on each nested
2120 // MaterializeTemporaryExpr instead.
2122 const Expr
*Init
= VD
->getInit();
2124 // Probably an exception catch-by-reference variable.
2125 // FIXME: It doesn't really mean that the object has a trivial destructor.
2126 // Also are there other cases?
2130 // Lifetime-extending a temporary?
2131 bool FoundMTE
= false;
2132 QT
= getReferenceInitTemporaryType(Init
, &FoundMTE
);
2137 // Check for constant size array. Set type to array element type.
2138 while (const ConstantArrayType
*AT
= Context
->getAsConstantArrayType(QT
)) {
2139 if (AT
->getSize() == 0)
2141 QT
= AT
->getElementType();
2144 // Check if type is a C++ class with non-trivial destructor.
2145 if (const CXXRecordDecl
*CD
= QT
->getAsCXXRecordDecl())
2146 return !CD
->hasDefinition() || CD
->hasTrivialDestructor();
2150 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
2151 /// create add scope for automatic objects and temporary objects bound to
2152 /// const reference. Will reuse Scope if not NULL.
2153 LocalScope
* CFGBuilder::addLocalScopeForVarDecl(VarDecl
*VD
,
2154 LocalScope
* Scope
) {
2155 if (!BuildOpts
.AddImplicitDtors
&& !BuildOpts
.AddLifetime
&&
2156 !BuildOpts
.AddScopes
)
2159 // Check if variable is local.
2160 if (!VD
->hasLocalStorage())
2163 if (!BuildOpts
.AddLifetime
&& !BuildOpts
.AddScopes
&&
2164 !needsAutomaticDestruction(VD
)) {
2165 assert(BuildOpts
.AddImplicitDtors
);
2169 // Add the variable to scope
2170 Scope
= createOrReuseLocalScope(Scope
);
2172 ScopePos
= Scope
->begin();
2176 /// addLocalScopeAndDtors - For given statement add local scope for it and
2177 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
2178 void CFGBuilder::addLocalScopeAndDtors(Stmt
*S
) {
2179 LocalScope::const_iterator scopeBeginPos
= ScopePos
;
2180 addLocalScopeForStmt(S
);
2181 addAutomaticObjHandling(ScopePos
, scopeBeginPos
, S
);
2184 /// Visit - Walk the subtree of a statement and add extra
2185 /// blocks for ternary operators, &&, and ||. We also process "," and
2186 /// DeclStmts (which may contain nested control-flow).
2187 CFGBlock
*CFGBuilder::Visit(Stmt
* S
, AddStmtChoice asc
,
2188 bool ExternallyDestructed
) {
2194 if (Expr
*E
= dyn_cast
<Expr
>(S
))
2195 S
= E
->IgnoreParens();
2197 if (Context
->getLangOpts().OpenMP
)
2198 if (auto *D
= dyn_cast
<OMPExecutableDirective
>(S
))
2199 return VisitOMPExecutableDirective(D
, asc
);
2201 switch (S
->getStmtClass()) {
2203 return VisitStmt(S
, asc
);
2205 case Stmt::ImplicitValueInitExprClass
:
2206 if (BuildOpts
.OmitImplicitValueInitializers
)
2208 return VisitStmt(S
, asc
);
2210 case Stmt::InitListExprClass
:
2211 return VisitInitListExpr(cast
<InitListExpr
>(S
), asc
);
2213 case Stmt::AttributedStmtClass
:
2214 return VisitAttributedStmt(cast
<AttributedStmt
>(S
), asc
);
2216 case Stmt::AddrLabelExprClass
:
2217 return VisitAddrLabelExpr(cast
<AddrLabelExpr
>(S
), asc
);
2219 case Stmt::BinaryConditionalOperatorClass
:
2220 return VisitConditionalOperator(cast
<BinaryConditionalOperator
>(S
), asc
);
2222 case Stmt::BinaryOperatorClass
:
2223 return VisitBinaryOperator(cast
<BinaryOperator
>(S
), asc
);
2225 case Stmt::BlockExprClass
:
2226 return VisitBlockExpr(cast
<BlockExpr
>(S
), asc
);
2228 case Stmt::BreakStmtClass
:
2229 return VisitBreakStmt(cast
<BreakStmt
>(S
));
2231 case Stmt::CallExprClass
:
2232 case Stmt::CXXOperatorCallExprClass
:
2233 case Stmt::CXXMemberCallExprClass
:
2234 case Stmt::UserDefinedLiteralClass
:
2235 return VisitCallExpr(cast
<CallExpr
>(S
), asc
);
2237 case Stmt::CaseStmtClass
:
2238 return VisitCaseStmt(cast
<CaseStmt
>(S
));
2240 case Stmt::ChooseExprClass
:
2241 return VisitChooseExpr(cast
<ChooseExpr
>(S
), asc
);
2243 case Stmt::CompoundStmtClass
:
2244 return VisitCompoundStmt(cast
<CompoundStmt
>(S
), ExternallyDestructed
);
2246 case Stmt::ConditionalOperatorClass
:
2247 return VisitConditionalOperator(cast
<ConditionalOperator
>(S
), asc
);
2249 case Stmt::ContinueStmtClass
:
2250 return VisitContinueStmt(cast
<ContinueStmt
>(S
));
2252 case Stmt::CXXCatchStmtClass
:
2253 return VisitCXXCatchStmt(cast
<CXXCatchStmt
>(S
));
2255 case Stmt::ExprWithCleanupsClass
:
2256 return VisitExprWithCleanups(cast
<ExprWithCleanups
>(S
),
2257 asc
, ExternallyDestructed
);
2259 case Stmt::CXXDefaultArgExprClass
:
2260 case Stmt::CXXDefaultInitExprClass
:
2261 // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
2262 // called function's declaration, not by the caller. If we simply add
2263 // this expression to the CFG, we could end up with the same Expr
2264 // appearing multiple times (PR13385).
2266 // It's likewise possible for multiple CXXDefaultInitExprs for the same
2267 // expression to be used in the same function (through aggregate
2269 return VisitStmt(S
, asc
);
2271 case Stmt::CXXBindTemporaryExprClass
:
2272 return VisitCXXBindTemporaryExpr(cast
<CXXBindTemporaryExpr
>(S
), asc
);
2274 case Stmt::CXXConstructExprClass
:
2275 return VisitCXXConstructExpr(cast
<CXXConstructExpr
>(S
), asc
);
2277 case Stmt::CXXNewExprClass
:
2278 return VisitCXXNewExpr(cast
<CXXNewExpr
>(S
), asc
);
2280 case Stmt::CXXDeleteExprClass
:
2281 return VisitCXXDeleteExpr(cast
<CXXDeleteExpr
>(S
), asc
);
2283 case Stmt::CXXFunctionalCastExprClass
:
2284 return VisitCXXFunctionalCastExpr(cast
<CXXFunctionalCastExpr
>(S
), asc
);
2286 case Stmt::CXXTemporaryObjectExprClass
:
2287 return VisitCXXTemporaryObjectExpr(cast
<CXXTemporaryObjectExpr
>(S
), asc
);
2289 case Stmt::CXXThrowExprClass
:
2290 return VisitCXXThrowExpr(cast
<CXXThrowExpr
>(S
));
2292 case Stmt::CXXTryStmtClass
:
2293 return VisitCXXTryStmt(cast
<CXXTryStmt
>(S
));
2295 case Stmt::CXXTypeidExprClass
:
2296 return VisitCXXTypeidExpr(cast
<CXXTypeidExpr
>(S
), asc
);
2298 case Stmt::CXXForRangeStmtClass
:
2299 return VisitCXXForRangeStmt(cast
<CXXForRangeStmt
>(S
));
2301 case Stmt::DeclStmtClass
:
2302 return VisitDeclStmt(cast
<DeclStmt
>(S
));
2304 case Stmt::DefaultStmtClass
:
2305 return VisitDefaultStmt(cast
<DefaultStmt
>(S
));
2307 case Stmt::DoStmtClass
:
2308 return VisitDoStmt(cast
<DoStmt
>(S
));
2310 case Stmt::ForStmtClass
:
2311 return VisitForStmt(cast
<ForStmt
>(S
));
2313 case Stmt::GotoStmtClass
:
2314 return VisitGotoStmt(cast
<GotoStmt
>(S
));
2316 case Stmt::GCCAsmStmtClass
:
2317 return VisitGCCAsmStmt(cast
<GCCAsmStmt
>(S
), asc
);
2319 case Stmt::IfStmtClass
:
2320 return VisitIfStmt(cast
<IfStmt
>(S
));
2322 case Stmt::ImplicitCastExprClass
:
2323 return VisitImplicitCastExpr(cast
<ImplicitCastExpr
>(S
), asc
);
2325 case Stmt::ConstantExprClass
:
2326 return VisitConstantExpr(cast
<ConstantExpr
>(S
), asc
);
2328 case Stmt::IndirectGotoStmtClass
:
2329 return VisitIndirectGotoStmt(cast
<IndirectGotoStmt
>(S
));
2331 case Stmt::LabelStmtClass
:
2332 return VisitLabelStmt(cast
<LabelStmt
>(S
));
2334 case Stmt::LambdaExprClass
:
2335 return VisitLambdaExpr(cast
<LambdaExpr
>(S
), asc
);
2337 case Stmt::MaterializeTemporaryExprClass
:
2338 return VisitMaterializeTemporaryExpr(cast
<MaterializeTemporaryExpr
>(S
),
2341 case Stmt::MemberExprClass
:
2342 return VisitMemberExpr(cast
<MemberExpr
>(S
), asc
);
2344 case Stmt::NullStmtClass
:
2347 case Stmt::ObjCAtCatchStmtClass
:
2348 return VisitObjCAtCatchStmt(cast
<ObjCAtCatchStmt
>(S
));
2350 case Stmt::ObjCAutoreleasePoolStmtClass
:
2351 return VisitObjCAutoreleasePoolStmt(cast
<ObjCAutoreleasePoolStmt
>(S
));
2353 case Stmt::ObjCAtSynchronizedStmtClass
:
2354 return VisitObjCAtSynchronizedStmt(cast
<ObjCAtSynchronizedStmt
>(S
));
2356 case Stmt::ObjCAtThrowStmtClass
:
2357 return VisitObjCAtThrowStmt(cast
<ObjCAtThrowStmt
>(S
));
2359 case Stmt::ObjCAtTryStmtClass
:
2360 return VisitObjCAtTryStmt(cast
<ObjCAtTryStmt
>(S
));
2362 case Stmt::ObjCForCollectionStmtClass
:
2363 return VisitObjCForCollectionStmt(cast
<ObjCForCollectionStmt
>(S
));
2365 case Stmt::ObjCMessageExprClass
:
2366 return VisitObjCMessageExpr(cast
<ObjCMessageExpr
>(S
), asc
);
2368 case Stmt::OpaqueValueExprClass
:
2371 case Stmt::PseudoObjectExprClass
:
2372 return VisitPseudoObjectExpr(cast
<PseudoObjectExpr
>(S
));
2374 case Stmt::ReturnStmtClass
:
2375 case Stmt::CoreturnStmtClass
:
2376 return VisitReturnStmt(S
);
2378 case Stmt::CoyieldExprClass
:
2379 case Stmt::CoawaitExprClass
:
2380 return VisitCoroutineSuspendExpr(cast
<CoroutineSuspendExpr
>(S
), asc
);
2382 case Stmt::SEHExceptStmtClass
:
2383 return VisitSEHExceptStmt(cast
<SEHExceptStmt
>(S
));
2385 case Stmt::SEHFinallyStmtClass
:
2386 return VisitSEHFinallyStmt(cast
<SEHFinallyStmt
>(S
));
2388 case Stmt::SEHLeaveStmtClass
:
2389 return VisitSEHLeaveStmt(cast
<SEHLeaveStmt
>(S
));
2391 case Stmt::SEHTryStmtClass
:
2392 return VisitSEHTryStmt(cast
<SEHTryStmt
>(S
));
2394 case Stmt::UnaryExprOrTypeTraitExprClass
:
2395 return VisitUnaryExprOrTypeTraitExpr(cast
<UnaryExprOrTypeTraitExpr
>(S
),
2398 case Stmt::StmtExprClass
:
2399 return VisitStmtExpr(cast
<StmtExpr
>(S
), asc
);
2401 case Stmt::SwitchStmtClass
:
2402 return VisitSwitchStmt(cast
<SwitchStmt
>(S
));
2404 case Stmt::UnaryOperatorClass
:
2405 return VisitUnaryOperator(cast
<UnaryOperator
>(S
), asc
);
2407 case Stmt::WhileStmtClass
:
2408 return VisitWhileStmt(cast
<WhileStmt
>(S
));
2410 case Stmt::ArrayInitLoopExprClass
:
2411 return VisitArrayInitLoopExpr(cast
<ArrayInitLoopExpr
>(S
), asc
);
2415 CFGBlock
*CFGBuilder::VisitStmt(Stmt
*S
, AddStmtChoice asc
) {
2416 if (asc
.alwaysAdd(*this, S
)) {
2418 appendStmt(Block
, S
);
2421 return VisitChildren(S
);
2424 /// VisitChildren - Visit the children of a Stmt.
2425 CFGBlock
*CFGBuilder::VisitChildren(Stmt
*S
) {
2426 CFGBlock
*B
= Block
;
2428 // Visit the children in their reverse order so that they appear in
2429 // left-to-right (natural) order in the CFG.
2430 reverse_children
RChildren(S
);
2431 for (Stmt
*Child
: RChildren
) {
2433 if (CFGBlock
*R
= Visit(Child
))
2439 CFGBlock
*CFGBuilder::VisitInitListExpr(InitListExpr
*ILE
, AddStmtChoice asc
) {
2440 if (asc
.alwaysAdd(*this, ILE
)) {
2442 appendStmt(Block
, ILE
);
2444 CFGBlock
*B
= Block
;
2446 reverse_children
RChildren(ILE
);
2447 for (Stmt
*Child
: RChildren
) {
2450 if (CFGBlock
*R
= Visit(Child
))
2452 if (BuildOpts
.AddCXXDefaultInitExprInAggregates
) {
2453 if (auto *DIE
= dyn_cast
<CXXDefaultInitExpr
>(Child
))
2454 if (Stmt
*Child
= DIE
->getExpr())
2455 if (CFGBlock
*R
= Visit(Child
))
2462 CFGBlock
*CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr
*A
,
2463 AddStmtChoice asc
) {
2464 AddressTakenLabels
.insert(A
->getLabel());
2466 if (asc
.alwaysAdd(*this, A
)) {
2468 appendStmt(Block
, A
);
2474 static bool isFallthroughStatement(const AttributedStmt
*A
) {
2475 bool isFallthrough
= hasSpecificAttr
<FallThroughAttr
>(A
->getAttrs());
2476 assert((!isFallthrough
|| isa
<NullStmt
>(A
->getSubStmt())) &&
2477 "expected fallthrough not to have children");
2478 return isFallthrough
;
2481 CFGBlock
*CFGBuilder::VisitAttributedStmt(AttributedStmt
*A
,
2482 AddStmtChoice asc
) {
2483 // AttributedStmts for [[likely]] can have arbitrary statements as children,
2484 // and the current visitation order here would add the AttributedStmts
2485 // for [[likely]] after the child nodes, which is undesirable: For example,
2486 // if the child contains an unconditional return, the [[likely]] would be
2487 // considered unreachable.
2488 // So only add the AttributedStmt for FallThrough, which has CFG effects and
2489 // also no children, and omit the others. None of the other current StmtAttrs
2490 // have semantic meaning for the CFG.
2491 if (isFallthroughStatement(A
) && asc
.alwaysAdd(*this, A
)) {
2493 appendStmt(Block
, A
);
2496 return VisitChildren(A
);
2499 CFGBlock
*CFGBuilder::VisitUnaryOperator(UnaryOperator
*U
, AddStmtChoice asc
) {
2500 if (asc
.alwaysAdd(*this, U
)) {
2502 appendStmt(Block
, U
);
2505 if (U
->getOpcode() == UO_LNot
)
2506 tryEvaluateBool(U
->getSubExpr()->IgnoreParens());
2508 return Visit(U
->getSubExpr(), AddStmtChoice());
2511 CFGBlock
*CFGBuilder::VisitLogicalOperator(BinaryOperator
*B
) {
2512 CFGBlock
*ConfluenceBlock
= Block
? Block
: createBlock();
2513 appendStmt(ConfluenceBlock
, B
);
2518 return VisitLogicalOperator(B
, nullptr, ConfluenceBlock
,
2519 ConfluenceBlock
).first
;
2522 std::pair
<CFGBlock
*, CFGBlock
*>
2523 CFGBuilder::VisitLogicalOperator(BinaryOperator
*B
,
2525 CFGBlock
*TrueBlock
,
2526 CFGBlock
*FalseBlock
) {
2527 // Introspect the RHS. If it is a nested logical operation, we recursively
2528 // build the CFG using this function. Otherwise, resort to default
2529 // CFG construction behavior.
2530 Expr
*RHS
= B
->getRHS()->IgnoreParens();
2531 CFGBlock
*RHSBlock
, *ExitBlock
;
2534 if (BinaryOperator
*B_RHS
= dyn_cast
<BinaryOperator
>(RHS
))
2535 if (B_RHS
->isLogicalOp()) {
2536 std::tie(RHSBlock
, ExitBlock
) =
2537 VisitLogicalOperator(B_RHS
, Term
, TrueBlock
, FalseBlock
);
2541 // The RHS is not a nested logical operation. Don't push the terminator
2542 // down further, but instead visit RHS and construct the respective
2543 // pieces of the CFG, and link up the RHSBlock with the terminator
2544 // we have been provided.
2545 ExitBlock
= RHSBlock
= createBlock(false);
2547 // Even though KnownVal is only used in the else branch of the next
2548 // conditional, tryEvaluateBool performs additional checking on the
2549 // Expr, so it should be called unconditionally.
2550 TryResult KnownVal
= tryEvaluateBool(RHS
);
2551 if (!KnownVal
.isKnown())
2552 KnownVal
= tryEvaluateBool(B
);
2555 assert(TrueBlock
== FalseBlock
);
2556 addSuccessor(RHSBlock
, TrueBlock
);
2559 RHSBlock
->setTerminator(Term
);
2560 addSuccessor(RHSBlock
, TrueBlock
, !KnownVal
.isFalse());
2561 addSuccessor(RHSBlock
, FalseBlock
, !KnownVal
.isTrue());
2565 RHSBlock
= addStmt(RHS
);
2570 return std::make_pair(nullptr, nullptr);
2572 // Generate the blocks for evaluating the LHS.
2573 Expr
*LHS
= B
->getLHS()->IgnoreParens();
2575 if (BinaryOperator
*B_LHS
= dyn_cast
<BinaryOperator
>(LHS
))
2576 if (B_LHS
->isLogicalOp()) {
2577 if (B
->getOpcode() == BO_LOr
)
2578 FalseBlock
= RHSBlock
;
2580 TrueBlock
= RHSBlock
;
2582 // For the LHS, treat 'B' as the terminator that we want to sink
2583 // into the nested branch. The RHS always gets the top-most
2585 return VisitLogicalOperator(B_LHS
, B
, TrueBlock
, FalseBlock
);
2588 // Create the block evaluating the LHS.
2589 // This contains the '&&' or '||' as the terminator.
2590 CFGBlock
*LHSBlock
= createBlock(false);
2591 LHSBlock
->setTerminator(B
);
2594 CFGBlock
*EntryLHSBlock
= addStmt(LHS
);
2597 return std::make_pair(nullptr, nullptr);
2599 // See if this is a known constant.
2600 TryResult KnownVal
= tryEvaluateBool(LHS
);
2602 // Now link the LHSBlock with RHSBlock.
2603 if (B
->getOpcode() == BO_LOr
) {
2604 addSuccessor(LHSBlock
, TrueBlock
, !KnownVal
.isFalse());
2605 addSuccessor(LHSBlock
, RHSBlock
, !KnownVal
.isTrue());
2607 assert(B
->getOpcode() == BO_LAnd
);
2608 addSuccessor(LHSBlock
, RHSBlock
, !KnownVal
.isFalse());
2609 addSuccessor(LHSBlock
, FalseBlock
, !KnownVal
.isTrue());
2612 return std::make_pair(EntryLHSBlock
, ExitBlock
);
2615 CFGBlock
*CFGBuilder::VisitBinaryOperator(BinaryOperator
*B
,
2616 AddStmtChoice asc
) {
2618 if (B
->isLogicalOp())
2619 return VisitLogicalOperator(B
);
2621 if (B
->getOpcode() == BO_Comma
) { // ,
2623 appendStmt(Block
, B
);
2624 addStmt(B
->getRHS());
2625 return addStmt(B
->getLHS());
2628 if (B
->isAssignmentOp()) {
2629 if (asc
.alwaysAdd(*this, B
)) {
2631 appendStmt(Block
, B
);
2634 return Visit(B
->getRHS());
2637 if (asc
.alwaysAdd(*this, B
)) {
2639 appendStmt(Block
, B
);
2642 if (B
->isEqualityOp() || B
->isRelationalOp())
2645 CFGBlock
*RBlock
= Visit(B
->getRHS());
2646 CFGBlock
*LBlock
= Visit(B
->getLHS());
2647 // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
2648 // containing a DoStmt, and the LHS doesn't create a new block, then we should
2649 // return RBlock. Otherwise we'll incorrectly return NULL.
2650 return (LBlock
? LBlock
: RBlock
);
2653 CFGBlock
*CFGBuilder::VisitNoRecurse(Expr
*E
, AddStmtChoice asc
) {
2654 if (asc
.alwaysAdd(*this, E
)) {
2656 appendStmt(Block
, E
);
2661 CFGBlock
*CFGBuilder::VisitBreakStmt(BreakStmt
*B
) {
2662 // "break" is a control-flow statement. Thus we stop processing the current
2667 // Now create a new block that ends with the break statement.
2668 Block
= createBlock(false);
2669 Block
->setTerminator(B
);
2671 // If there is no target for the break, then we are looking at an incomplete
2672 // AST. This means that the CFG cannot be constructed.
2673 if (BreakJumpTarget
.block
) {
2674 addAutomaticObjHandling(ScopePos
, BreakJumpTarget
.scopePosition
, B
);
2675 addSuccessor(Block
, BreakJumpTarget
.block
);
2682 static bool CanThrow(Expr
*E
, ASTContext
&Ctx
) {
2683 QualType Ty
= E
->getType();
2684 if (Ty
->isFunctionPointerType() || Ty
->isBlockPointerType())
2685 Ty
= Ty
->getPointeeType();
2687 const FunctionType
*FT
= Ty
->getAs
<FunctionType
>();
2689 if (const FunctionProtoType
*Proto
= dyn_cast
<FunctionProtoType
>(FT
))
2690 if (!isUnresolvedExceptionSpec(Proto
->getExceptionSpecType()) &&
2697 CFGBlock
*CFGBuilder::VisitCallExpr(CallExpr
*C
, AddStmtChoice asc
) {
2698 // Compute the callee type.
2699 QualType calleeType
= C
->getCallee()->getType();
2700 if (calleeType
== Context
->BoundMemberTy
) {
2701 QualType boundType
= Expr::findBoundMemberType(C
->getCallee());
2703 // We should only get a null bound type if processing a dependent
2704 // CFG. Recover by assuming nothing.
2705 if (!boundType
.isNull()) calleeType
= boundType
;
2708 // If this is a call to a no-return function, this stops the block here.
2709 bool NoReturn
= getFunctionExtInfo(*calleeType
).getNoReturn();
2711 bool AddEHEdge
= false;
2713 // Languages without exceptions are assumed to not throw.
2714 if (Context
->getLangOpts().Exceptions
) {
2715 if (BuildOpts
.AddEHEdges
)
2719 // If this is a call to a builtin function, it might not actually evaluate
2720 // its arguments. Don't add them to the CFG if this is the case.
2721 bool OmitArguments
= false;
2723 if (FunctionDecl
*FD
= C
->getDirectCallee()) {
2724 // TODO: Support construction contexts for variadic function arguments.
2725 // These are a bit problematic and not very useful because passing
2726 // C++ objects as C-style variadic arguments doesn't work in general
2727 // (see [expr.call]).
2728 if (!FD
->isVariadic())
2729 findConstructionContextsForArguments(C
);
2731 if (FD
->isNoReturn() || C
->isBuiltinAssumeFalse(*Context
))
2733 if (FD
->hasAttr
<NoThrowAttr
>())
2735 if (FD
->getBuiltinID() == Builtin::BI__builtin_object_size
||
2736 FD
->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size
)
2737 OmitArguments
= true;
2740 if (!CanThrow(C
->getCallee(), *Context
))
2743 if (OmitArguments
) {
2744 assert(!NoReturn
&& "noreturn calls with unevaluated args not implemented");
2745 assert(!AddEHEdge
&& "EH calls with unevaluated args not implemented");
2747 appendStmt(Block
, C
);
2748 return Visit(C
->getCallee());
2751 if (!NoReturn
&& !AddEHEdge
) {
2753 appendCall(Block
, C
);
2755 return VisitChildren(C
);
2765 Block
= createNoReturnBlock();
2767 Block
= createBlock();
2769 appendCall(Block
, C
);
2772 // Add exceptional edges.
2773 if (TryTerminatedBlock
)
2774 addSuccessor(Block
, TryTerminatedBlock
);
2776 addSuccessor(Block
, &cfg
->getExit());
2779 return VisitChildren(C
);
2782 CFGBlock
*CFGBuilder::VisitChooseExpr(ChooseExpr
*C
,
2783 AddStmtChoice asc
) {
2784 CFGBlock
*ConfluenceBlock
= Block
? Block
: createBlock();
2785 appendStmt(ConfluenceBlock
, C
);
2789 AddStmtChoice alwaysAdd
= asc
.withAlwaysAdd(true);
2790 Succ
= ConfluenceBlock
;
2792 CFGBlock
*LHSBlock
= Visit(C
->getLHS(), alwaysAdd
);
2796 Succ
= ConfluenceBlock
;
2798 CFGBlock
*RHSBlock
= Visit(C
->getRHS(), alwaysAdd
);
2802 Block
= createBlock(false);
2803 // See if this is a known constant.
2804 const TryResult
& KnownVal
= tryEvaluateBool(C
->getCond());
2805 addSuccessor(Block
, KnownVal
.isFalse() ? nullptr : LHSBlock
);
2806 addSuccessor(Block
, KnownVal
.isTrue() ? nullptr : RHSBlock
);
2807 Block
->setTerminator(C
);
2808 return addStmt(C
->getCond());
2811 CFGBlock
*CFGBuilder::VisitCompoundStmt(CompoundStmt
*C
,
2812 bool ExternallyDestructed
) {
2813 LocalScope::const_iterator scopeBeginPos
= ScopePos
;
2814 addLocalScopeForStmt(C
);
2816 if (!C
->body_empty() && !isa
<ReturnStmt
>(*C
->body_rbegin())) {
2817 // If the body ends with a ReturnStmt, the dtors will be added in
2819 addAutomaticObjHandling(ScopePos
, scopeBeginPos
, C
);
2822 CFGBlock
*LastBlock
= Block
;
2824 for (Stmt
*S
: llvm::reverse(C
->body())) {
2825 // If we hit a segment of code just containing ';' (NullStmts), we can
2826 // get a null block back. In such cases, just use the LastBlock
2827 CFGBlock
*newBlock
= Visit(S
, AddStmtChoice::AlwaysAdd
,
2828 ExternallyDestructed
);
2831 LastBlock
= newBlock
;
2836 ExternallyDestructed
= false;
2842 CFGBlock
*CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator
*C
,
2843 AddStmtChoice asc
) {
2844 const BinaryConditionalOperator
*BCO
= dyn_cast
<BinaryConditionalOperator
>(C
);
2845 const OpaqueValueExpr
*opaqueValue
= (BCO
? BCO
->getOpaqueValue() : nullptr);
2847 // Create the confluence block that will "merge" the results of the ternary
2849 CFGBlock
*ConfluenceBlock
= Block
? Block
: createBlock();
2850 appendStmt(ConfluenceBlock
, C
);
2854 AddStmtChoice alwaysAdd
= asc
.withAlwaysAdd(true);
2856 // Create a block for the LHS expression if there is an LHS expression. A
2857 // GCC extension allows LHS to be NULL, causing the condition to be the
2858 // value that is returned instead.
2859 // e.g: x ?: y is shorthand for: x ? x : y;
2860 Succ
= ConfluenceBlock
;
2862 CFGBlock
*LHSBlock
= nullptr;
2863 const Expr
*trueExpr
= C
->getTrueExpr();
2864 if (trueExpr
!= opaqueValue
) {
2865 LHSBlock
= Visit(C
->getTrueExpr(), alwaysAdd
);
2871 LHSBlock
= ConfluenceBlock
;
2873 // Create the block for the RHS expression.
2874 Succ
= ConfluenceBlock
;
2875 CFGBlock
*RHSBlock
= Visit(C
->getFalseExpr(), alwaysAdd
);
2879 // If the condition is a logical '&&' or '||', build a more accurate CFG.
2880 if (BinaryOperator
*Cond
=
2881 dyn_cast
<BinaryOperator
>(C
->getCond()->IgnoreParens()))
2882 if (Cond
->isLogicalOp())
2883 return VisitLogicalOperator(Cond
, C
, LHSBlock
, RHSBlock
).first
;
2885 // Create the block that will contain the condition.
2886 Block
= createBlock(false);
2888 // See if this is a known constant.
2889 const TryResult
& KnownVal
= tryEvaluateBool(C
->getCond());
2890 addSuccessor(Block
, LHSBlock
, !KnownVal
.isFalse());
2891 addSuccessor(Block
, RHSBlock
, !KnownVal
.isTrue());
2892 Block
->setTerminator(C
);
2893 Expr
*condExpr
= C
->getCond();
2896 // Run the condition expression if it's not trivially expressed in
2897 // terms of the opaque value (or if there is no opaque value).
2898 if (condExpr
!= opaqueValue
)
2901 // Before that, run the common subexpression if there was one.
2902 // At least one of this or the above will be run.
2903 return addStmt(BCO
->getCommon());
2906 return addStmt(condExpr
);
2909 CFGBlock
*CFGBuilder::VisitDeclStmt(DeclStmt
*DS
) {
2910 // Check if the Decl is for an __label__. If so, elide it from the
2912 if (isa
<LabelDecl
>(*DS
->decl_begin()))
2915 // This case also handles static_asserts.
2916 if (DS
->isSingleDecl())
2917 return VisitDeclSubExpr(DS
);
2919 CFGBlock
*B
= nullptr;
2921 // Build an individual DeclStmt for each decl.
2922 for (DeclStmt::reverse_decl_iterator I
= DS
->decl_rbegin(),
2923 E
= DS
->decl_rend();
2926 // Allocate the DeclStmt using the BumpPtrAllocator. It will get
2927 // automatically freed with the CFG.
2928 DeclGroupRef
DG(*I
);
2930 DeclStmt
*DSNew
= new (Context
) DeclStmt(DG
, D
->getLocation(), GetEndLoc(D
));
2931 cfg
->addSyntheticDeclStmt(DSNew
, DS
);
2933 // Append the fake DeclStmt to block.
2934 B
= VisitDeclSubExpr(DSNew
);
2940 /// VisitDeclSubExpr - Utility method to add block-level expressions for
2941 /// DeclStmts and initializers in them.
2942 CFGBlock
*CFGBuilder::VisitDeclSubExpr(DeclStmt
*DS
) {
2943 assert(DS
->isSingleDecl() && "Can handle single declarations only.");
2945 if (const auto *TND
= dyn_cast
<TypedefNameDecl
>(DS
->getSingleDecl())) {
2946 // If we encounter a VLA, process its size expressions.
2947 const Type
*T
= TND
->getUnderlyingType().getTypePtr();
2948 if (!T
->isVariablyModifiedType())
2952 appendStmt(Block
, DS
);
2954 CFGBlock
*LastBlock
= Block
;
2955 for (const VariableArrayType
*VA
= FindVA(T
); VA
!= nullptr;
2956 VA
= FindVA(VA
->getElementType().getTypePtr())) {
2957 if (CFGBlock
*NewBlock
= addStmt(VA
->getSizeExpr()))
2958 LastBlock
= NewBlock
;
2963 VarDecl
*VD
= dyn_cast
<VarDecl
>(DS
->getSingleDecl());
2966 // Of everything that can be declared in a DeclStmt, only VarDecls and the
2967 // exceptions above impact runtime semantics.
2971 bool HasTemporaries
= false;
2973 // Guard static initializers under a branch.
2974 CFGBlock
*blockAfterStaticInit
= nullptr;
2976 if (BuildOpts
.AddStaticInitBranches
&& VD
->isStaticLocal()) {
2977 // For static variables, we need to create a branch to track
2978 // whether or not they are initialized.
2985 blockAfterStaticInit
= Succ
;
2988 // Destructors of temporaries in initialization expression should be called
2989 // after initialization finishes.
2990 Expr
*Init
= VD
->getInit();
2992 HasTemporaries
= isa
<ExprWithCleanups
>(Init
);
2994 if (BuildOpts
.AddTemporaryDtors
&& HasTemporaries
) {
2995 // Generate destructors for temporaries in initialization expression.
2996 TempDtorContext Context
;
2997 VisitForTemporaryDtors(cast
<ExprWithCleanups
>(Init
)->getSubExpr(),
2998 /*ExternallyDestructed=*/true, Context
);
3002 // If we bind to a tuple-like type, we iterate over the HoldingVars, and
3003 // create a DeclStmt for each of them.
3004 if (const auto *DD
= dyn_cast
<DecompositionDecl
>(VD
)) {
3005 for (auto *BD
: llvm::reverse(DD
->bindings())) {
3006 if (auto *VD
= BD
->getHoldingVar()) {
3007 DeclGroupRef
DG(VD
);
3009 new (Context
) DeclStmt(DG
, VD
->getLocation(), GetEndLoc(VD
));
3010 cfg
->addSyntheticDeclStmt(DSNew
, DS
);
3011 Block
= VisitDeclSubExpr(DSNew
);
3017 appendStmt(Block
, DS
);
3019 // If the initializer is an ArrayInitLoopExpr, we want to extract the
3020 // initializer, that's used for each element.
3021 const auto *AILE
= dyn_cast_or_null
<ArrayInitLoopExpr
>(Init
);
3023 findConstructionContexts(
3024 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), DS
),
3025 AILE
? AILE
->getSubExpr() : Init
);
3027 // Keep track of the last non-null block, as 'Block' can be nulled out
3028 // if the initializer expression is something like a 'while' in a
3029 // statement-expression.
3030 CFGBlock
*LastBlock
= Block
;
3033 if (HasTemporaries
) {
3034 // For expression with temporaries go directly to subexpression to omit
3035 // generating destructors for the second time.
3036 ExprWithCleanups
*EC
= cast
<ExprWithCleanups
>(Init
);
3037 if (CFGBlock
*newBlock
= Visit(EC
->getSubExpr()))
3038 LastBlock
= newBlock
;
3041 if (CFGBlock
*newBlock
= Visit(Init
))
3042 LastBlock
= newBlock
;
3046 // If the type of VD is a VLA, then we must process its size expressions.
3047 // FIXME: This does not find the VLA if it is embedded in other types,
3048 // like here: `int (*p_vla)[x];`
3049 for (const VariableArrayType
* VA
= FindVA(VD
->getType().getTypePtr());
3050 VA
!= nullptr; VA
= FindVA(VA
->getElementType().getTypePtr())) {
3051 if (CFGBlock
*newBlock
= addStmt(VA
->getSizeExpr()))
3052 LastBlock
= newBlock
;
3055 maybeAddScopeBeginForVarDecl(Block
, VD
, DS
);
3057 // Remove variable from local scope.
3058 if (ScopePos
&& VD
== *ScopePos
)
3061 CFGBlock
*B
= LastBlock
;
3062 if (blockAfterStaticInit
) {
3064 Block
= createBlock(false);
3065 Block
->setTerminator(DS
);
3066 addSuccessor(Block
, blockAfterStaticInit
);
3067 addSuccessor(Block
, B
);
3074 CFGBlock
*CFGBuilder::VisitIfStmt(IfStmt
*I
) {
3075 // We may see an if statement in the middle of a basic block, or it may be the
3076 // first statement we are processing. In either case, we create a new basic
3077 // block. First, we create the blocks for the then...else statements, and
3078 // then we create the block containing the if statement. If we were in the
3079 // middle of a block, we stop processing that block. That block is then the
3080 // implicit successor for the "then" and "else" clauses.
3082 // Save local scope position because in case of condition variable ScopePos
3083 // won't be restored when traversing AST.
3084 SaveAndRestore
save_scope_pos(ScopePos
);
3086 // Create local scope for C++17 if init-stmt if one exists.
3087 if (Stmt
*Init
= I
->getInit())
3088 addLocalScopeForStmt(Init
);
3090 // Create local scope for possible condition variable.
3091 // Store scope position. Add implicit destructor.
3092 if (VarDecl
*VD
= I
->getConditionVariable())
3093 addLocalScopeForVarDecl(VD
);
3095 addAutomaticObjHandling(ScopePos
, save_scope_pos
.get(), I
);
3097 // The block we were processing is now finished. Make it the successor
3105 // Process the false branch.
3106 CFGBlock
*ElseBlock
= Succ
;
3108 if (Stmt
*Else
= I
->getElse()) {
3109 SaveAndRestore
sv(Succ
);
3111 // NULL out Block so that the recursive call to Visit will
3112 // create a new basic block.
3115 // If branch is not a compound statement create implicit scope
3116 // and add destructors.
3117 if (!isa
<CompoundStmt
>(Else
))
3118 addLocalScopeAndDtors(Else
);
3120 ElseBlock
= addStmt(Else
);
3122 if (!ElseBlock
) // Can occur when the Else body has all NullStmts.
3123 ElseBlock
= sv
.get();
3130 // Process the true branch.
3131 CFGBlock
*ThenBlock
;
3133 Stmt
*Then
= I
->getThen();
3135 SaveAndRestore
sv(Succ
);
3138 // If branch is not a compound statement create implicit scope
3139 // and add destructors.
3140 if (!isa
<CompoundStmt
>(Then
))
3141 addLocalScopeAndDtors(Then
);
3143 ThenBlock
= addStmt(Then
);
3146 // We can reach here if the "then" body has all NullStmts.
3147 // Create an empty block so we can distinguish between true and false
3148 // branches in path-sensitive analyses.
3149 ThenBlock
= createBlock(false);
3150 addSuccessor(ThenBlock
, sv
.get());
3157 // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
3158 // having these handle the actual control-flow jump. Note that
3159 // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
3160 // we resort to the old control-flow behavior. This special handling
3161 // removes infeasible paths from the control-flow graph by having the
3162 // control-flow transfer of '&&' or '||' go directly into the then/else
3164 BinaryOperator
*Cond
=
3165 (I
->isConsteval() || I
->getConditionVariable())
3167 : dyn_cast
<BinaryOperator
>(I
->getCond()->IgnoreParens());
3168 CFGBlock
*LastBlock
;
3169 if (Cond
&& Cond
->isLogicalOp())
3170 LastBlock
= VisitLogicalOperator(Cond
, I
, ThenBlock
, ElseBlock
).first
;
3172 // Now create a new block containing the if statement.
3173 Block
= createBlock(false);
3175 // Set the terminator of the new block to the If statement.
3176 Block
->setTerminator(I
);
3178 // See if this is a known constant.
3180 if (!I
->isConsteval())
3181 KnownVal
= tryEvaluateBool(I
->getCond());
3183 // Add the successors. If we know that specific branches are
3184 // unreachable, inform addSuccessor() of that knowledge.
3185 addSuccessor(Block
, ThenBlock
, /* IsReachable = */ !KnownVal
.isFalse());
3186 addSuccessor(Block
, ElseBlock
, /* IsReachable = */ !KnownVal
.isTrue());
3188 // Add the condition as the last statement in the new block. This may
3189 // create new blocks as the condition may contain control-flow. Any newly
3190 // created blocks will be pointed to be "Block".
3191 LastBlock
= addStmt(I
->getCond());
3193 // If the IfStmt contains a condition variable, add it and its
3194 // initializer to the CFG.
3195 if (const DeclStmt
* DS
= I
->getConditionVariableDeclStmt()) {
3197 LastBlock
= addStmt(const_cast<DeclStmt
*>(DS
));
3201 // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
3202 if (Stmt
*Init
= I
->getInit()) {
3204 LastBlock
= addStmt(Init
);
3210 CFGBlock
*CFGBuilder::VisitReturnStmt(Stmt
*S
) {
3211 // If we were in the middle of a block we stop processing that block.
3213 // NOTE: If a "return" or "co_return" appears in the middle of a block, this
3214 // means that the code afterwards is DEAD (unreachable). We still keep
3215 // a basic block for that code; a simple "mark-and-sweep" from the entry
3216 // block will be able to report such dead blocks.
3217 assert(isa
<ReturnStmt
>(S
) || isa
<CoreturnStmt
>(S
));
3219 // Create the new block.
3220 Block
= createBlock(false);
3222 addAutomaticObjHandling(ScopePos
, LocalScope::const_iterator(), S
);
3224 if (auto *R
= dyn_cast
<ReturnStmt
>(S
))
3225 findConstructionContexts(
3226 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), R
),
3229 // If the one of the destructors does not return, we already have the Exit
3230 // block as a successor.
3231 if (!Block
->hasNoReturnElement())
3232 addSuccessor(Block
, &cfg
->getExit());
3234 // Add the return statement to the block.
3235 appendStmt(Block
, S
);
3238 if (ReturnStmt
*RS
= dyn_cast
<ReturnStmt
>(S
)) {
3239 if (Expr
*O
= RS
->getRetValue())
3240 return Visit(O
, AddStmtChoice::AlwaysAdd
, /*ExternallyDestructed=*/true);
3244 CoreturnStmt
*CRS
= cast
<CoreturnStmt
>(S
);
3246 if (CFGBlock
*R
= Visit(CRS
->getPromiseCall()))
3249 if (Expr
*RV
= CRS
->getOperand())
3250 if (RV
->getType()->isVoidType() && !isa
<InitListExpr
>(RV
))
3251 // A non-initlist void expression.
3252 if (CFGBlock
*R
= Visit(RV
))
3258 CFGBlock
*CFGBuilder::VisitCoroutineSuspendExpr(CoroutineSuspendExpr
*E
,
3259 AddStmtChoice asc
) {
3260 // We're modelling the pre-coro-xform CFG. Thus just evalate the various
3261 // active components of the co_await or co_yield. Note we do not model the
3262 // edge from the builtin_suspend to the exit node.
3263 if (asc
.alwaysAdd(*this, E
)) {
3265 appendStmt(Block
, E
);
3267 CFGBlock
*B
= Block
;
3268 if (auto *R
= Visit(E
->getResumeExpr()))
3270 if (auto *R
= Visit(E
->getSuspendExpr()))
3272 if (auto *R
= Visit(E
->getReadyExpr()))
3274 if (auto *R
= Visit(E
->getCommonExpr()))
3279 CFGBlock
*CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt
*ES
) {
3280 // SEHExceptStmt are treated like labels, so they are the first statement in a
3283 // Save local scope position because in case of exception variable ScopePos
3284 // won't be restored when traversing AST.
3285 SaveAndRestore
save_scope_pos(ScopePos
);
3287 addStmt(ES
->getBlock());
3288 CFGBlock
*SEHExceptBlock
= Block
;
3289 if (!SEHExceptBlock
)
3290 SEHExceptBlock
= createBlock();
3292 appendStmt(SEHExceptBlock
, ES
);
3294 // Also add the SEHExceptBlock as a label, like with regular labels.
3295 SEHExceptBlock
->setLabel(ES
);
3297 // Bail out if the CFG is bad.
3301 // We set Block to NULL to allow lazy creation of a new block (if necessary).
3304 return SEHExceptBlock
;
3307 CFGBlock
*CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt
*FS
) {
3308 return VisitCompoundStmt(FS
->getBlock(), /*ExternallyDestructed=*/false);
3311 CFGBlock
*CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt
*LS
) {
3312 // "__leave" is a control-flow statement. Thus we stop processing the current
3317 // Now create a new block that ends with the __leave statement.
3318 Block
= createBlock(false);
3319 Block
->setTerminator(LS
);
3321 // If there is no target for the __leave, then we are looking at an incomplete
3322 // AST. This means that the CFG cannot be constructed.
3323 if (SEHLeaveJumpTarget
.block
) {
3324 addAutomaticObjHandling(ScopePos
, SEHLeaveJumpTarget
.scopePosition
, LS
);
3325 addSuccessor(Block
, SEHLeaveJumpTarget
.block
);
3332 CFGBlock
*CFGBuilder::VisitSEHTryStmt(SEHTryStmt
*Terminator
) {
3333 // "__try"/"__except"/"__finally" is a control-flow statement. Thus we stop
3334 // processing the current block.
3335 CFGBlock
*SEHTrySuccessor
= nullptr;
3340 SEHTrySuccessor
= Block
;
3341 } else SEHTrySuccessor
= Succ
;
3343 // FIXME: Implement __finally support.
3344 if (Terminator
->getFinallyHandler())
3347 CFGBlock
*PrevSEHTryTerminatedBlock
= TryTerminatedBlock
;
3349 // Create a new block that will contain the __try statement.
3350 CFGBlock
*NewTryTerminatedBlock
= createBlock(false);
3352 // Add the terminator in the __try block.
3353 NewTryTerminatedBlock
->setTerminator(Terminator
);
3355 if (SEHExceptStmt
*Except
= Terminator
->getExceptHandler()) {
3356 // The code after the try is the implicit successor if there's an __except.
3357 Succ
= SEHTrySuccessor
;
3359 CFGBlock
*ExceptBlock
= VisitSEHExceptStmt(Except
);
3362 // Add this block to the list of successors for the block with the try
3364 addSuccessor(NewTryTerminatedBlock
, ExceptBlock
);
3366 if (PrevSEHTryTerminatedBlock
)
3367 addSuccessor(NewTryTerminatedBlock
, PrevSEHTryTerminatedBlock
);
3369 addSuccessor(NewTryTerminatedBlock
, &cfg
->getExit());
3371 // The code after the try is the implicit successor.
3372 Succ
= SEHTrySuccessor
;
3374 // Save the current "__try" context.
3375 SaveAndRestore
SaveTry(TryTerminatedBlock
, NewTryTerminatedBlock
);
3376 cfg
->addTryDispatchBlock(TryTerminatedBlock
);
3378 // Save the current value for the __leave target.
3379 // All __leaves should go to the code following the __try
3380 // (FIXME: or if the __try has a __finally, to the __finally.)
3381 SaveAndRestore
save_break(SEHLeaveJumpTarget
);
3382 SEHLeaveJumpTarget
= JumpTarget(SEHTrySuccessor
, ScopePos
);
3384 assert(Terminator
->getTryBlock() && "__try must contain a non-NULL body");
3386 return addStmt(Terminator
->getTryBlock());
3389 CFGBlock
*CFGBuilder::VisitLabelStmt(LabelStmt
*L
) {
3390 // Get the block of the labeled statement. Add it to our map.
3391 addStmt(L
->getSubStmt());
3392 CFGBlock
*LabelBlock
= Block
;
3394 if (!LabelBlock
) // This can happen when the body is empty, i.e.
3395 LabelBlock
= createBlock(); // scopes that only contains NullStmts.
3397 assert(!LabelMap
.contains(L
->getDecl()) && "label already in map");
3398 LabelMap
[L
->getDecl()] = JumpTarget(LabelBlock
, ScopePos
);
3400 // Labels partition blocks, so this is the end of the basic block we were
3401 // processing (L is the block's label). Because this is label (and we have
3402 // already processed the substatement) there is no extra control-flow to worry
3404 LabelBlock
->setLabel(L
);
3408 // We set Block to NULL to allow lazy creation of a new block (if necessary).
3411 // This block is now the implicit successor of other blocks.
3417 CFGBlock
*CFGBuilder::VisitBlockExpr(BlockExpr
*E
, AddStmtChoice asc
) {
3418 CFGBlock
*LastBlock
= VisitNoRecurse(E
, asc
);
3419 for (const BlockDecl::Capture
&CI
: E
->getBlockDecl()->captures()) {
3420 if (Expr
*CopyExpr
= CI
.getCopyExpr()) {
3421 CFGBlock
*Tmp
= Visit(CopyExpr
);
3429 CFGBlock
*CFGBuilder::VisitLambdaExpr(LambdaExpr
*E
, AddStmtChoice asc
) {
3430 CFGBlock
*LastBlock
= VisitNoRecurse(E
, asc
);
3433 for (LambdaExpr::capture_init_iterator it
= E
->capture_init_begin(),
3434 et
= E
->capture_init_end();
3435 it
!= et
; ++it
, ++Idx
) {
3436 if (Expr
*Init
= *it
) {
3437 // If the initializer is an ArrayInitLoopExpr, we want to extract the
3438 // initializer, that's used for each element.
3439 auto *AILEInit
= extractElementInitializerFromNestedAILE(
3440 dyn_cast
<ArrayInitLoopExpr
>(Init
));
3442 findConstructionContexts(ConstructionContextLayer::create(
3443 cfg
->getBumpVectorContext(), {E
, Idx
}),
3444 AILEInit
? AILEInit
: Init
);
3446 CFGBlock
*Tmp
= Visit(Init
);
3454 CFGBlock
*CFGBuilder::VisitGotoStmt(GotoStmt
*G
) {
3455 // Goto is a control-flow statement. Thus we stop processing the current
3456 // block and create a new one.
3458 Block
= createBlock(false);
3459 Block
->setTerminator(G
);
3461 // If we already know the mapping to the label block add the successor now.
3462 LabelMapTy::iterator I
= LabelMap
.find(G
->getLabel());
3464 if (I
== LabelMap
.end())
3465 // We will need to backpatch this block later.
3466 BackpatchBlocks
.push_back(JumpSource(Block
, ScopePos
));
3468 JumpTarget JT
= I
->second
;
3469 addSuccessor(Block
, JT
.block
);
3470 addScopeChangesHandling(ScopePos
, JT
.scopePosition
, G
);
3476 CFGBlock
*CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt
*G
, AddStmtChoice asc
) {
3477 // Goto is a control-flow statement. Thus we stop processing the current
3478 // block and create a new one.
3480 if (!G
->isAsmGoto())
3481 return VisitStmt(G
, asc
);
3488 Block
= createBlock();
3489 Block
->setTerminator(G
);
3490 // We will backpatch this block later for all the labels.
3491 BackpatchBlocks
.push_back(JumpSource(Block
, ScopePos
));
3492 // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is
3493 // used to avoid adding "Succ" again.
3494 BackpatchBlocks
.push_back(JumpSource(Succ
, ScopePos
));
3495 return VisitChildren(G
);
3498 CFGBlock
*CFGBuilder::VisitForStmt(ForStmt
*F
) {
3499 CFGBlock
*LoopSuccessor
= nullptr;
3501 // Save local scope position because in case of condition variable ScopePos
3502 // won't be restored when traversing AST.
3503 SaveAndRestore
save_scope_pos(ScopePos
);
3505 // Create local scope for init statement and possible condition variable.
3506 // Add destructor for init statement and condition variable.
3507 // Store scope position for continue statement.
3508 if (Stmt
*Init
= F
->getInit())
3509 addLocalScopeForStmt(Init
);
3510 LocalScope::const_iterator LoopBeginScopePos
= ScopePos
;
3512 if (VarDecl
*VD
= F
->getConditionVariable())
3513 addLocalScopeForVarDecl(VD
);
3514 LocalScope::const_iterator ContinueScopePos
= ScopePos
;
3516 addAutomaticObjHandling(ScopePos
, save_scope_pos
.get(), F
);
3520 // "for" is a control-flow statement. Thus we stop processing the current
3525 LoopSuccessor
= Block
;
3527 LoopSuccessor
= Succ
;
3529 // Save the current value for the break targets.
3530 // All breaks should go to the code following the loop.
3531 SaveAndRestore
save_break(BreakJumpTarget
);
3532 BreakJumpTarget
= JumpTarget(LoopSuccessor
, ScopePos
);
3534 CFGBlock
*BodyBlock
= nullptr, *TransitionBlock
= nullptr;
3536 // Now create the loop body.
3538 assert(F
->getBody());
3540 // Save the current values for Block, Succ, continue and break targets.
3541 SaveAndRestore
save_Block(Block
), save_Succ(Succ
);
3542 SaveAndRestore
save_continue(ContinueJumpTarget
);
3544 // Create an empty block to represent the transition block for looping back
3545 // to the head of the loop. If we have increment code, it will
3546 // go in this block as well.
3547 Block
= Succ
= TransitionBlock
= createBlock(false);
3548 TransitionBlock
->setLoopTarget(F
);
3551 // Loop iteration (after increment) should end with destructor of Condition
3552 // variable (if any).
3553 addAutomaticObjHandling(ScopePos
, LoopBeginScopePos
, F
);
3555 if (Stmt
*I
= F
->getInc()) {
3556 // Generate increment code in its own basic block. This is the target of
3557 // continue statements.
3561 // Finish up the increment (or empty) block if it hasn't been already.
3563 assert(Block
== Succ
);
3569 // The starting block for the loop increment is the block that should
3570 // represent the 'loop target' for looping back to the start of the loop.
3571 ContinueJumpTarget
= JumpTarget(Succ
, ContinueScopePos
);
3572 ContinueJumpTarget
.block
->setLoopTarget(F
);
3575 // If body is not a compound statement create implicit scope
3576 // and add destructors.
3577 if (!isa
<CompoundStmt
>(F
->getBody()))
3578 addLocalScopeAndDtors(F
->getBody());
3580 // Now populate the body block, and in the process create new blocks as we
3581 // walk the body of the loop.
3582 BodyBlock
= addStmt(F
->getBody());
3585 // In the case of "for (...;...;...);" we can have a null BodyBlock.
3586 // Use the continue jump target as the proxy for the body.
3587 BodyBlock
= ContinueJumpTarget
.block
;
3593 // Because of short-circuit evaluation, the condition of the loop can span
3594 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
3595 // evaluate the condition.
3596 CFGBlock
*EntryConditionBlock
= nullptr, *ExitConditionBlock
= nullptr;
3599 Expr
*C
= F
->getCond();
3600 SaveAndRestore
save_scope_pos(ScopePos
);
3602 // Specially handle logical operators, which have a slightly
3603 // more optimal CFG representation.
3604 if (BinaryOperator
*Cond
=
3605 dyn_cast_or_null
<BinaryOperator
>(C
? C
->IgnoreParens() : nullptr))
3606 if (Cond
->isLogicalOp()) {
3607 std::tie(EntryConditionBlock
, ExitConditionBlock
) =
3608 VisitLogicalOperator(Cond
, F
, BodyBlock
, LoopSuccessor
);
3612 // The default case when not handling logical operators.
3613 EntryConditionBlock
= ExitConditionBlock
= createBlock(false);
3614 ExitConditionBlock
->setTerminator(F
);
3616 // See if this is a known constant.
3617 TryResult
KnownVal(true);
3620 // Now add the actual condition to the condition block.
3621 // Because the condition itself may contain control-flow, new blocks may
3622 // be created. Thus we update "Succ" after adding the condition.
3623 Block
= ExitConditionBlock
;
3624 EntryConditionBlock
= addStmt(C
);
3626 // If this block contains a condition variable, add both the condition
3627 // variable and initializer to the CFG.
3628 if (VarDecl
*VD
= F
->getConditionVariable()) {
3629 if (Expr
*Init
= VD
->getInit()) {
3631 const DeclStmt
*DS
= F
->getConditionVariableDeclStmt();
3632 assert(DS
->isSingleDecl());
3633 findConstructionContexts(
3634 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), DS
),
3636 appendStmt(Block
, DS
);
3637 EntryConditionBlock
= addStmt(Init
);
3638 assert(Block
== EntryConditionBlock
);
3639 maybeAddScopeBeginForVarDecl(EntryConditionBlock
, VD
, C
);
3643 if (Block
&& badCFG
)
3646 KnownVal
= tryEvaluateBool(C
);
3649 // Add the loop body entry as a successor to the condition.
3650 addSuccessor(ExitConditionBlock
, KnownVal
.isFalse() ? nullptr : BodyBlock
);
3651 // Link up the condition block with the code that follows the loop. (the
3653 addSuccessor(ExitConditionBlock
,
3654 KnownVal
.isTrue() ? nullptr : LoopSuccessor
);
3657 // Link up the loop-back block to the entry condition block.
3658 addSuccessor(TransitionBlock
, EntryConditionBlock
);
3660 // The condition block is the implicit successor for any code above the loop.
3661 Succ
= EntryConditionBlock
;
3663 // If the loop contains initialization, create a new block for those
3664 // statements. This block can also contain statements that precede the loop.
3665 if (Stmt
*I
= F
->getInit()) {
3666 SaveAndRestore
save_scope_pos(ScopePos
);
3667 ScopePos
= LoopBeginScopePos
;
3668 Block
= createBlock();
3672 // There is no loop initialization. We are thus basically a while loop.
3673 // NULL out Block to force lazy block construction.
3675 Succ
= EntryConditionBlock
;
3676 return EntryConditionBlock
;
3680 CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr
*MTE
,
3681 AddStmtChoice asc
) {
3682 findConstructionContexts(
3683 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), MTE
),
3686 return VisitStmt(MTE
, asc
);
3689 CFGBlock
*CFGBuilder::VisitMemberExpr(MemberExpr
*M
, AddStmtChoice asc
) {
3690 if (asc
.alwaysAdd(*this, M
)) {
3692 appendStmt(Block
, M
);
3694 return Visit(M
->getBase());
3697 CFGBlock
*CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt
*S
) {
3698 // Objective-C fast enumeration 'for' statements:
3699 // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
3701 // for ( Type newVariable in collection_expression ) { statements }
3706 // 1. collection_expression
3707 // T. jump to loop_entry
3709 // 1. side-effects of element expression
3710 // 1. ObjCForCollectionStmt [performs binding to newVariable]
3711 // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil]
3714 // T. jump to loop_entry
3720 // Type existingItem;
3721 // for ( existingItem in expression ) { statements }
3725 // the same with newVariable replaced with existingItem; the binding works
3726 // the same except that for one ObjCForCollectionStmt::getElement() returns
3727 // a DeclStmt and the other returns a DeclRefExpr.
3729 CFGBlock
*LoopSuccessor
= nullptr;
3734 LoopSuccessor
= Block
;
3737 LoopSuccessor
= Succ
;
3739 // Build the condition blocks.
3740 CFGBlock
*ExitConditionBlock
= createBlock(false);
3742 // Set the terminator for the "exit" condition block.
3743 ExitConditionBlock
->setTerminator(S
);
3745 // The last statement in the block should be the ObjCForCollectionStmt, which
3746 // performs the actual binding to 'element' and determines if there are any
3747 // more items in the collection.
3748 appendStmt(ExitConditionBlock
, S
);
3749 Block
= ExitConditionBlock
;
3751 // Walk the 'element' expression to see if there are any side-effects. We
3752 // generate new blocks as necessary. We DON'T add the statement by default to
3753 // the CFG unless it contains control-flow.
3754 CFGBlock
*EntryConditionBlock
= Visit(S
->getElement(),
3755 AddStmtChoice::NotAlwaysAdd
);
3762 // The condition block is the implicit successor for the loop body as well as
3763 // any code above the loop.
3764 Succ
= EntryConditionBlock
;
3766 // Now create the true branch.
3768 // Save the current values for Succ, continue and break targets.
3769 SaveAndRestore
save_Block(Block
), save_Succ(Succ
);
3770 SaveAndRestore
save_continue(ContinueJumpTarget
),
3771 save_break(BreakJumpTarget
);
3773 // Add an intermediate block between the BodyBlock and the
3774 // EntryConditionBlock to represent the "loop back" transition, for looping
3775 // back to the head of the loop.
3776 CFGBlock
*LoopBackBlock
= nullptr;
3777 Succ
= LoopBackBlock
= createBlock();
3778 LoopBackBlock
->setLoopTarget(S
);
3780 BreakJumpTarget
= JumpTarget(LoopSuccessor
, ScopePos
);
3781 ContinueJumpTarget
= JumpTarget(Succ
, ScopePos
);
3783 CFGBlock
*BodyBlock
= addStmt(S
->getBody());
3786 BodyBlock
= ContinueJumpTarget
.block
; // can happen for "for (X in Y) ;"
3792 // This new body block is a successor to our "exit" condition block.
3793 addSuccessor(ExitConditionBlock
, BodyBlock
);
3796 // Link up the condition block with the code that follows the loop.
3797 // (the false branch).
3798 addSuccessor(ExitConditionBlock
, LoopSuccessor
);
3800 // Now create a prologue block to contain the collection expression.
3801 Block
= createBlock();
3802 return addStmt(S
->getCollection());
3805 CFGBlock
*CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt
*S
) {
3807 return addStmt(S
->getSubStmt());
3808 // TODO: consider adding cleanups for the end of @autoreleasepool scope.
3811 CFGBlock
*CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt
*S
) {
3812 // FIXME: Add locking 'primitives' to CFG for @synchronized.
3815 CFGBlock
*SyncBlock
= addStmt(S
->getSynchBody());
3817 // The sync body starts its own basic block. This makes it a little easier
3818 // for diagnostic clients.
3827 // Add the @synchronized to the CFG.
3829 appendStmt(Block
, S
);
3831 // Inline the sync expression.
3832 return addStmt(S
->getSynchExpr());
3835 CFGBlock
*CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr
*E
) {
3838 // Add the PseudoObject as the last thing.
3839 appendStmt(Block
, E
);
3841 CFGBlock
*lastBlock
= Block
;
3843 // Before that, evaluate all of the semantics in order. In
3844 // CFG-land, that means appending them in reverse order.
3845 for (unsigned i
= E
->getNumSemanticExprs(); i
!= 0; ) {
3846 Expr
*Semantic
= E
->getSemanticExpr(--i
);
3848 // If the semantic is an opaque value, we're being asked to bind
3849 // it to its source expression.
3850 if (OpaqueValueExpr
*OVE
= dyn_cast
<OpaqueValueExpr
>(Semantic
))
3851 Semantic
= OVE
->getSourceExpr();
3853 if (CFGBlock
*B
= Visit(Semantic
))
3860 CFGBlock
*CFGBuilder::VisitWhileStmt(WhileStmt
*W
) {
3861 CFGBlock
*LoopSuccessor
= nullptr;
3863 // Save local scope position because in case of condition variable ScopePos
3864 // won't be restored when traversing AST.
3865 SaveAndRestore
save_scope_pos(ScopePos
);
3867 // Create local scope for possible condition variable.
3868 // Store scope position for continue statement.
3869 LocalScope::const_iterator LoopBeginScopePos
= ScopePos
;
3870 if (VarDecl
*VD
= W
->getConditionVariable()) {
3871 addLocalScopeForVarDecl(VD
);
3872 addAutomaticObjHandling(ScopePos
, LoopBeginScopePos
, W
);
3876 // "while" is a control-flow statement. Thus we stop processing the current
3881 LoopSuccessor
= Block
;
3884 LoopSuccessor
= Succ
;
3887 CFGBlock
*BodyBlock
= nullptr, *TransitionBlock
= nullptr;
3889 // Process the loop body.
3891 assert(W
->getBody());
3893 // Save the current values for Block, Succ, continue and break targets.
3894 SaveAndRestore
save_Block(Block
), save_Succ(Succ
);
3895 SaveAndRestore
save_continue(ContinueJumpTarget
),
3896 save_break(BreakJumpTarget
);
3898 // Create an empty block to represent the transition block for looping back
3899 // to the head of the loop.
3900 Succ
= TransitionBlock
= createBlock(false);
3901 TransitionBlock
->setLoopTarget(W
);
3902 ContinueJumpTarget
= JumpTarget(Succ
, LoopBeginScopePos
);
3904 // All breaks should go to the code following the loop.
3905 BreakJumpTarget
= JumpTarget(LoopSuccessor
, ScopePos
);
3907 // Loop body should end with destructor of Condition variable (if any).
3908 addAutomaticObjHandling(ScopePos
, LoopBeginScopePos
, W
);
3910 // If body is not a compound statement create implicit scope
3911 // and add destructors.
3912 if (!isa
<CompoundStmt
>(W
->getBody()))
3913 addLocalScopeAndDtors(W
->getBody());
3915 // Create the body. The returned block is the entry to the loop body.
3916 BodyBlock
= addStmt(W
->getBody());
3919 BodyBlock
= ContinueJumpTarget
.block
; // can happen for "while(...) ;"
3920 else if (Block
&& badCFG
)
3924 // Because of short-circuit evaluation, the condition of the loop can span
3925 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
3926 // evaluate the condition.
3927 CFGBlock
*EntryConditionBlock
= nullptr, *ExitConditionBlock
= nullptr;
3930 Expr
*C
= W
->getCond();
3932 // Specially handle logical operators, which have a slightly
3933 // more optimal CFG representation.
3934 if (BinaryOperator
*Cond
= dyn_cast
<BinaryOperator
>(C
->IgnoreParens()))
3935 if (Cond
->isLogicalOp()) {
3936 std::tie(EntryConditionBlock
, ExitConditionBlock
) =
3937 VisitLogicalOperator(Cond
, W
, BodyBlock
, LoopSuccessor
);
3941 // The default case when not handling logical operators.
3942 ExitConditionBlock
= createBlock(false);
3943 ExitConditionBlock
->setTerminator(W
);
3945 // Now add the actual condition to the condition block.
3946 // Because the condition itself may contain control-flow, new blocks may
3947 // be created. Thus we update "Succ" after adding the condition.
3948 Block
= ExitConditionBlock
;
3949 Block
= EntryConditionBlock
= addStmt(C
);
3951 // If this block contains a condition variable, add both the condition
3952 // variable and initializer to the CFG.
3953 if (VarDecl
*VD
= W
->getConditionVariable()) {
3954 if (Expr
*Init
= VD
->getInit()) {
3956 const DeclStmt
*DS
= W
->getConditionVariableDeclStmt();
3957 assert(DS
->isSingleDecl());
3958 findConstructionContexts(
3959 ConstructionContextLayer::create(cfg
->getBumpVectorContext(),
3960 const_cast<DeclStmt
*>(DS
)),
3962 appendStmt(Block
, DS
);
3963 EntryConditionBlock
= addStmt(Init
);
3964 assert(Block
== EntryConditionBlock
);
3965 maybeAddScopeBeginForVarDecl(EntryConditionBlock
, VD
, C
);
3969 if (Block
&& badCFG
)
3972 // See if this is a known constant.
3973 const TryResult
& KnownVal
= tryEvaluateBool(C
);
3975 // Add the loop body entry as a successor to the condition.
3976 addSuccessor(ExitConditionBlock
, KnownVal
.isFalse() ? nullptr : BodyBlock
);
3977 // Link up the condition block with the code that follows the loop. (the
3979 addSuccessor(ExitConditionBlock
,
3980 KnownVal
.isTrue() ? nullptr : LoopSuccessor
);
3983 // Link up the loop-back block to the entry condition block.
3984 addSuccessor(TransitionBlock
, EntryConditionBlock
);
3986 // There can be no more statements in the condition block since we loop back
3987 // to this block. NULL out Block to force lazy creation of another block.
3990 // Return the condition block, which is the dominating block for the loop.
3991 Succ
= EntryConditionBlock
;
3992 return EntryConditionBlock
;
3995 CFGBlock
*CFGBuilder::VisitArrayInitLoopExpr(ArrayInitLoopExpr
*A
,
3996 AddStmtChoice asc
) {
3997 if (asc
.alwaysAdd(*this, A
)) {
3999 appendStmt(Block
, A
);
4002 CFGBlock
*B
= Block
;
4004 if (CFGBlock
*R
= Visit(A
->getSubExpr()))
4007 auto *OVE
= dyn_cast
<OpaqueValueExpr
>(A
->getCommonExpr());
4008 assert(OVE
&& "ArrayInitLoopExpr->getCommonExpr() should be wrapped in an "
4009 "OpaqueValueExpr!");
4010 if (CFGBlock
*R
= Visit(OVE
->getSourceExpr()))
4016 CFGBlock
*CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt
*CS
) {
4017 // ObjCAtCatchStmt are treated like labels, so they are the first statement
4020 // Save local scope position because in case of exception variable ScopePos
4021 // won't be restored when traversing AST.
4022 SaveAndRestore
save_scope_pos(ScopePos
);
4024 if (CS
->getCatchBody())
4025 addStmt(CS
->getCatchBody());
4027 CFGBlock
*CatchBlock
= Block
;
4029 CatchBlock
= createBlock();
4031 appendStmt(CatchBlock
, CS
);
4033 // Also add the ObjCAtCatchStmt as a label, like with regular labels.
4034 CatchBlock
->setLabel(CS
);
4036 // Bail out if the CFG is bad.
4040 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4046 CFGBlock
*CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt
*S
) {
4047 // If we were in the middle of a block we stop processing that block.
4051 // Create the new block.
4052 Block
= createBlock(false);
4054 if (TryTerminatedBlock
)
4055 // The current try statement is the only successor.
4056 addSuccessor(Block
, TryTerminatedBlock
);
4058 // otherwise the Exit block is the only successor.
4059 addSuccessor(Block
, &cfg
->getExit());
4061 // Add the statement to the block. This may create new blocks if S contains
4062 // control-flow (short-circuit operations).
4063 return VisitStmt(S
, AddStmtChoice::AlwaysAdd
);
4066 CFGBlock
*CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt
*Terminator
) {
4067 // "@try"/"@catch" is a control-flow statement. Thus we stop processing the
4069 CFGBlock
*TrySuccessor
= nullptr;
4074 TrySuccessor
= Block
;
4076 TrySuccessor
= Succ
;
4078 // FIXME: Implement @finally support.
4079 if (Terminator
->getFinallyStmt())
4082 CFGBlock
*PrevTryTerminatedBlock
= TryTerminatedBlock
;
4084 // Create a new block that will contain the try statement.
4085 CFGBlock
*NewTryTerminatedBlock
= createBlock(false);
4086 // Add the terminator in the try block.
4087 NewTryTerminatedBlock
->setTerminator(Terminator
);
4089 bool HasCatchAll
= false;
4090 for (ObjCAtCatchStmt
*CS
: Terminator
->catch_stmts()) {
4091 // The code after the try is the implicit successor.
4092 Succ
= TrySuccessor
;
4093 if (CS
->hasEllipsis()) {
4097 CFGBlock
*CatchBlock
= VisitObjCAtCatchStmt(CS
);
4100 // Add this block to the list of successors for the block with the try
4102 addSuccessor(NewTryTerminatedBlock
, CatchBlock
);
4105 // FIXME: This needs updating when @finally support is added.
4107 if (PrevTryTerminatedBlock
)
4108 addSuccessor(NewTryTerminatedBlock
, PrevTryTerminatedBlock
);
4110 addSuccessor(NewTryTerminatedBlock
, &cfg
->getExit());
4113 // The code after the try is the implicit successor.
4114 Succ
= TrySuccessor
;
4116 // Save the current "try" context.
4117 SaveAndRestore
SaveTry(TryTerminatedBlock
, NewTryTerminatedBlock
);
4118 cfg
->addTryDispatchBlock(TryTerminatedBlock
);
4120 assert(Terminator
->getTryBody() && "try must contain a non-NULL body");
4122 return addStmt(Terminator
->getTryBody());
4125 CFGBlock
*CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr
*ME
,
4126 AddStmtChoice asc
) {
4127 findConstructionContextsForArguments(ME
);
4130 appendObjCMessage(Block
, ME
);
4132 return VisitChildren(ME
);
4135 CFGBlock
*CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr
*T
) {
4136 // If we were in the middle of a block we stop processing that block.
4140 // Create the new block.
4141 Block
= createBlock(false);
4143 if (TryTerminatedBlock
)
4144 // The current try statement is the only successor.
4145 addSuccessor(Block
, TryTerminatedBlock
);
4147 // otherwise the Exit block is the only successor.
4148 addSuccessor(Block
, &cfg
->getExit());
4150 // Add the statement to the block. This may create new blocks if S contains
4151 // control-flow (short-circuit operations).
4152 return VisitStmt(T
, AddStmtChoice::AlwaysAdd
);
4155 CFGBlock
*CFGBuilder::VisitCXXTypeidExpr(CXXTypeidExpr
*S
, AddStmtChoice asc
) {
4156 if (asc
.alwaysAdd(*this, S
)) {
4158 appendStmt(Block
, S
);
4161 // C++ [expr.typeid]p3:
4162 // When typeid is applied to an expression other than an glvalue of a
4163 // polymorphic class type [...] [the] expression is an unevaluated
4165 // We add only potentially evaluated statements to the block to avoid
4166 // CFG generation for unevaluated operands.
4167 if (!S
->isTypeDependent() && S
->isPotentiallyEvaluated())
4168 return VisitChildren(S
);
4170 // Return block without CFG for unevaluated operands.
4174 CFGBlock
*CFGBuilder::VisitDoStmt(DoStmt
*D
) {
4175 CFGBlock
*LoopSuccessor
= nullptr;
4179 // "do...while" is a control-flow statement. Thus we stop processing the
4184 LoopSuccessor
= Block
;
4186 LoopSuccessor
= Succ
;
4188 // Because of short-circuit evaluation, the condition of the loop can span
4189 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
4190 // evaluate the condition.
4191 CFGBlock
*ExitConditionBlock
= createBlock(false);
4192 CFGBlock
*EntryConditionBlock
= ExitConditionBlock
;
4194 // Set the terminator for the "exit" condition block.
4195 ExitConditionBlock
->setTerminator(D
);
4197 // Now add the actual condition to the condition block. Because the condition
4198 // itself may contain control-flow, new blocks may be created.
4199 if (Stmt
*C
= D
->getCond()) {
4200 Block
= ExitConditionBlock
;
4201 EntryConditionBlock
= addStmt(C
);
4208 // The condition block is the implicit successor for the loop body.
4209 Succ
= EntryConditionBlock
;
4211 // See if this is a known constant.
4212 const TryResult
&KnownVal
= tryEvaluateBool(D
->getCond());
4214 // Process the loop body.
4215 CFGBlock
*BodyBlock
= nullptr;
4217 assert(D
->getBody());
4219 // Save the current values for Block, Succ, and continue and break targets
4220 SaveAndRestore
save_Block(Block
), save_Succ(Succ
);
4221 SaveAndRestore
save_continue(ContinueJumpTarget
),
4222 save_break(BreakJumpTarget
);
4224 // All continues within this loop should go to the condition block
4225 ContinueJumpTarget
= JumpTarget(EntryConditionBlock
, ScopePos
);
4227 // All breaks should go to the code following the loop.
4228 BreakJumpTarget
= JumpTarget(LoopSuccessor
, ScopePos
);
4230 // NULL out Block to force lazy instantiation of blocks for the body.
4233 // If body is not a compound statement create implicit scope
4234 // and add destructors.
4235 if (!isa
<CompoundStmt
>(D
->getBody()))
4236 addLocalScopeAndDtors(D
->getBody());
4238 // Create the body. The returned block is the entry to the loop body.
4239 BodyBlock
= addStmt(D
->getBody());
4242 BodyBlock
= EntryConditionBlock
; // can happen for "do ; while(...)"
4248 // Add an intermediate block between the BodyBlock and the
4249 // ExitConditionBlock to represent the "loop back" transition. Create an
4250 // empty block to represent the transition block for looping back to the
4251 // head of the loop.
4252 // FIXME: Can we do this more efficiently without adding another block?
4255 CFGBlock
*LoopBackBlock
= createBlock();
4256 LoopBackBlock
->setLoopTarget(D
);
4258 if (!KnownVal
.isFalse())
4259 // Add the loop body entry as a successor to the condition.
4260 addSuccessor(ExitConditionBlock
, LoopBackBlock
);
4262 addSuccessor(ExitConditionBlock
, nullptr);
4265 // Link up the condition block with the code that follows the loop.
4266 // (the false branch).
4267 addSuccessor(ExitConditionBlock
, KnownVal
.isTrue() ? nullptr : LoopSuccessor
);
4269 // There can be no more statements in the body block(s) since we loop back to
4270 // the body. NULL out Block to force lazy creation of another block.
4273 // Return the loop body, which is the dominating block for the loop.
4278 CFGBlock
*CFGBuilder::VisitContinueStmt(ContinueStmt
*C
) {
4279 // "continue" is a control-flow statement. Thus we stop processing the
4284 // Now create a new block that ends with the continue statement.
4285 Block
= createBlock(false);
4286 Block
->setTerminator(C
);
4288 // If there is no target for the continue, then we are looking at an
4289 // incomplete AST. This means the CFG cannot be constructed.
4290 if (ContinueJumpTarget
.block
) {
4291 addAutomaticObjHandling(ScopePos
, ContinueJumpTarget
.scopePosition
, C
);
4292 addSuccessor(Block
, ContinueJumpTarget
.block
);
4299 CFGBlock
*CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr
*E
,
4300 AddStmtChoice asc
) {
4301 if (asc
.alwaysAdd(*this, E
)) {
4303 appendStmt(Block
, E
);
4306 // VLA types have expressions that must be evaluated.
4307 // Evaluation is done only for `sizeof`.
4309 if (E
->getKind() != UETT_SizeOf
)
4312 CFGBlock
*lastBlock
= Block
;
4314 if (E
->isArgumentType()) {
4315 for (const VariableArrayType
*VA
=FindVA(E
->getArgumentType().getTypePtr());
4316 VA
!= nullptr; VA
= FindVA(VA
->getElementType().getTypePtr()))
4317 lastBlock
= addStmt(VA
->getSizeExpr());
4322 /// VisitStmtExpr - Utility method to handle (nested) statement
4323 /// expressions (a GCC extension).
4324 CFGBlock
*CFGBuilder::VisitStmtExpr(StmtExpr
*SE
, AddStmtChoice asc
) {
4325 if (asc
.alwaysAdd(*this, SE
)) {
4327 appendStmt(Block
, SE
);
4329 return VisitCompoundStmt(SE
->getSubStmt(), /*ExternallyDestructed=*/true);
4332 CFGBlock
*CFGBuilder::VisitSwitchStmt(SwitchStmt
*Terminator
) {
4333 // "switch" is a control-flow statement. Thus we stop processing the current
4335 CFGBlock
*SwitchSuccessor
= nullptr;
4337 // Save local scope position because in case of condition variable ScopePos
4338 // won't be restored when traversing AST.
4339 SaveAndRestore
save_scope_pos(ScopePos
);
4341 // Create local scope for C++17 switch init-stmt if one exists.
4342 if (Stmt
*Init
= Terminator
->getInit())
4343 addLocalScopeForStmt(Init
);
4345 // Create local scope for possible condition variable.
4346 // Store scope position. Add implicit destructor.
4347 if (VarDecl
*VD
= Terminator
->getConditionVariable())
4348 addLocalScopeForVarDecl(VD
);
4350 addAutomaticObjHandling(ScopePos
, save_scope_pos
.get(), Terminator
);
4355 SwitchSuccessor
= Block
;
4356 } else SwitchSuccessor
= Succ
;
4358 // Save the current "switch" context.
4359 SaveAndRestore
save_switch(SwitchTerminatedBlock
),
4360 save_default(DefaultCaseBlock
);
4361 SaveAndRestore
save_break(BreakJumpTarget
);
4363 // Set the "default" case to be the block after the switch statement. If the
4364 // switch statement contains a "default:", this value will be overwritten with
4365 // the block for that code.
4366 DefaultCaseBlock
= SwitchSuccessor
;
4368 // Create a new block that will contain the switch statement.
4369 SwitchTerminatedBlock
= createBlock(false);
4371 // Now process the switch body. The code after the switch is the implicit
4373 Succ
= SwitchSuccessor
;
4374 BreakJumpTarget
= JumpTarget(SwitchSuccessor
, ScopePos
);
4376 // When visiting the body, the case statements should automatically get linked
4377 // up to the switch. We also don't keep a pointer to the body, since all
4378 // control-flow from the switch goes to case/default statements.
4379 assert(Terminator
->getBody() && "switch must contain a non-NULL body");
4382 // For pruning unreachable case statements, save the current state
4383 // for tracking the condition value.
4384 SaveAndRestore
save_switchExclusivelyCovered(switchExclusivelyCovered
, false);
4386 // Determine if the switch condition can be explicitly evaluated.
4387 assert(Terminator
->getCond() && "switch condition must be non-NULL");
4388 Expr::EvalResult result
;
4389 bool b
= tryEvaluate(Terminator
->getCond(), result
);
4390 SaveAndRestore
save_switchCond(switchCond
, b
? &result
: nullptr);
4392 // If body is not a compound statement create implicit scope
4393 // and add destructors.
4394 if (!isa
<CompoundStmt
>(Terminator
->getBody()))
4395 addLocalScopeAndDtors(Terminator
->getBody());
4397 addStmt(Terminator
->getBody());
4403 // If we have no "default:" case, the default transition is to the code
4404 // following the switch body. Moreover, take into account if all the
4405 // cases of a switch are covered (e.g., switching on an enum value).
4407 // Note: We add a successor to a switch that is considered covered yet has no
4408 // case statements if the enumeration has no enumerators.
4409 bool SwitchAlwaysHasSuccessor
= false;
4410 SwitchAlwaysHasSuccessor
|= switchExclusivelyCovered
;
4411 SwitchAlwaysHasSuccessor
|= Terminator
->isAllEnumCasesCovered() &&
4412 Terminator
->getSwitchCaseList();
4413 addSuccessor(SwitchTerminatedBlock
, DefaultCaseBlock
,
4414 !SwitchAlwaysHasSuccessor
);
4416 // Add the terminator and condition in the switch block.
4417 SwitchTerminatedBlock
->setTerminator(Terminator
);
4418 Block
= SwitchTerminatedBlock
;
4419 CFGBlock
*LastBlock
= addStmt(Terminator
->getCond());
4421 // If the SwitchStmt contains a condition variable, add both the
4422 // SwitchStmt and the condition variable initialization to the CFG.
4423 if (VarDecl
*VD
= Terminator
->getConditionVariable()) {
4424 if (Expr
*Init
= VD
->getInit()) {
4426 appendStmt(Block
, Terminator
->getConditionVariableDeclStmt());
4427 LastBlock
= addStmt(Init
);
4428 maybeAddScopeBeginForVarDecl(LastBlock
, VD
, Init
);
4432 // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
4433 if (Stmt
*Init
= Terminator
->getInit()) {
4435 LastBlock
= addStmt(Init
);
4441 static bool shouldAddCase(bool &switchExclusivelyCovered
,
4442 const Expr::EvalResult
*switchCond
,
4448 bool addCase
= false;
4450 if (!switchExclusivelyCovered
) {
4451 if (switchCond
->Val
.isInt()) {
4452 // Evaluate the LHS of the case value.
4453 const llvm::APSInt
&lhsInt
= CS
->getLHS()->EvaluateKnownConstInt(Ctx
);
4454 const llvm::APSInt
&condInt
= switchCond
->Val
.getInt();
4456 if (condInt
== lhsInt
) {
4458 switchExclusivelyCovered
= true;
4460 else if (condInt
> lhsInt
) {
4461 if (const Expr
*RHS
= CS
->getRHS()) {
4462 // Evaluate the RHS of the case value.
4463 const llvm::APSInt
&V2
= RHS
->EvaluateKnownConstInt(Ctx
);
4464 if (V2
>= condInt
) {
4466 switchExclusivelyCovered
= true;
4477 CFGBlock
*CFGBuilder::VisitCaseStmt(CaseStmt
*CS
) {
4478 // CaseStmts are essentially labels, so they are the first statement in a
4480 CFGBlock
*TopBlock
= nullptr, *LastBlock
= nullptr;
4482 if (Stmt
*Sub
= CS
->getSubStmt()) {
4483 // For deeply nested chains of CaseStmts, instead of doing a recursion
4484 // (which can blow out the stack), manually unroll and create blocks
4486 while (isa
<CaseStmt
>(Sub
)) {
4487 CFGBlock
*currentBlock
= createBlock(false);
4488 currentBlock
->setLabel(CS
);
4491 addSuccessor(LastBlock
, currentBlock
);
4493 TopBlock
= currentBlock
;
4495 addSuccessor(SwitchTerminatedBlock
,
4496 shouldAddCase(switchExclusivelyCovered
, switchCond
,
4498 ? currentBlock
: nullptr);
4500 LastBlock
= currentBlock
;
4501 CS
= cast
<CaseStmt
>(Sub
);
4502 Sub
= CS
->getSubStmt();
4508 CFGBlock
*CaseBlock
= Block
;
4510 CaseBlock
= createBlock();
4512 // Cases statements partition blocks, so this is the top of the basic block we
4513 // were processing (the "case XXX:" is the label).
4514 CaseBlock
->setLabel(CS
);
4519 // Add this block to the list of successors for the block with the switch
4521 assert(SwitchTerminatedBlock
);
4522 addSuccessor(SwitchTerminatedBlock
, CaseBlock
,
4523 shouldAddCase(switchExclusivelyCovered
, switchCond
,
4526 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4530 addSuccessor(LastBlock
, CaseBlock
);
4533 // This block is now the implicit successor of other blocks.
4540 CFGBlock
*CFGBuilder::VisitDefaultStmt(DefaultStmt
*Terminator
) {
4541 if (Terminator
->getSubStmt())
4542 addStmt(Terminator
->getSubStmt());
4544 DefaultCaseBlock
= Block
;
4546 if (!DefaultCaseBlock
)
4547 DefaultCaseBlock
= createBlock();
4549 // Default statements partition blocks, so this is the top of the basic block
4550 // we were processing (the "default:" is the label).
4551 DefaultCaseBlock
->setLabel(Terminator
);
4556 // Unlike case statements, we don't add the default block to the successors
4557 // for the switch statement immediately. This is done when we finish
4558 // processing the switch statement. This allows for the default case
4559 // (including a fall-through to the code after the switch statement) to always
4560 // be the last successor of a switch-terminated block.
4562 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4565 // This block is now the implicit successor of other blocks.
4566 Succ
= DefaultCaseBlock
;
4568 return DefaultCaseBlock
;
4571 CFGBlock
*CFGBuilder::VisitCXXTryStmt(CXXTryStmt
*Terminator
) {
4572 // "try"/"catch" is a control-flow statement. Thus we stop processing the
4574 CFGBlock
*TrySuccessor
= nullptr;
4579 TrySuccessor
= Block
;
4581 TrySuccessor
= Succ
;
4583 CFGBlock
*PrevTryTerminatedBlock
= TryTerminatedBlock
;
4585 // Create a new block that will contain the try statement.
4586 CFGBlock
*NewTryTerminatedBlock
= createBlock(false);
4587 // Add the terminator in the try block.
4588 NewTryTerminatedBlock
->setTerminator(Terminator
);
4590 bool HasCatchAll
= false;
4591 for (unsigned I
= 0, E
= Terminator
->getNumHandlers(); I
!= E
; ++I
) {
4592 // The code after the try is the implicit successor.
4593 Succ
= TrySuccessor
;
4594 CXXCatchStmt
*CS
= Terminator
->getHandler(I
);
4595 if (CS
->getExceptionDecl() == nullptr) {
4599 CFGBlock
*CatchBlock
= VisitCXXCatchStmt(CS
);
4602 // Add this block to the list of successors for the block with the try
4604 addSuccessor(NewTryTerminatedBlock
, CatchBlock
);
4607 if (PrevTryTerminatedBlock
)
4608 addSuccessor(NewTryTerminatedBlock
, PrevTryTerminatedBlock
);
4610 addSuccessor(NewTryTerminatedBlock
, &cfg
->getExit());
4613 // The code after the try is the implicit successor.
4614 Succ
= TrySuccessor
;
4616 // Save the current "try" context.
4617 SaveAndRestore
SaveTry(TryTerminatedBlock
, NewTryTerminatedBlock
);
4618 cfg
->addTryDispatchBlock(TryTerminatedBlock
);
4620 assert(Terminator
->getTryBlock() && "try must contain a non-NULL body");
4622 return addStmt(Terminator
->getTryBlock());
4625 CFGBlock
*CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt
*CS
) {
4626 // CXXCatchStmt are treated like labels, so they are the first statement in a
4629 // Save local scope position because in case of exception variable ScopePos
4630 // won't be restored when traversing AST.
4631 SaveAndRestore
save_scope_pos(ScopePos
);
4633 // Create local scope for possible exception variable.
4634 // Store scope position. Add implicit destructor.
4635 if (VarDecl
*VD
= CS
->getExceptionDecl()) {
4636 LocalScope::const_iterator BeginScopePos
= ScopePos
;
4637 addLocalScopeForVarDecl(VD
);
4638 addAutomaticObjHandling(ScopePos
, BeginScopePos
, CS
);
4641 if (CS
->getHandlerBlock())
4642 addStmt(CS
->getHandlerBlock());
4644 CFGBlock
*CatchBlock
= Block
;
4646 CatchBlock
= createBlock();
4648 // CXXCatchStmt is more than just a label. They have semantic meaning
4649 // as well, as they implicitly "initialize" the catch variable. Add
4650 // it to the CFG as a CFGElement so that the control-flow of these
4651 // semantics gets captured.
4652 appendStmt(CatchBlock
, CS
);
4654 // Also add the CXXCatchStmt as a label, to mirror handling of regular
4656 CatchBlock
->setLabel(CS
);
4658 // Bail out if the CFG is bad.
4662 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4668 CFGBlock
*CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt
*S
) {
4669 // C++0x for-range statements are specified as [stmt.ranged]:
4672 // auto && __range = range-init;
4673 // for ( auto __begin = begin-expr,
4674 // __end = end-expr;
4675 // __begin != __end;
4677 // for-range-declaration = *__begin;
4682 // Save local scope position before the addition of the implicit variables.
4683 SaveAndRestore
save_scope_pos(ScopePos
);
4685 // Create local scopes and destructors for range, begin and end variables.
4686 if (Stmt
*Range
= S
->getRangeStmt())
4687 addLocalScopeForStmt(Range
);
4688 if (Stmt
*Begin
= S
->getBeginStmt())
4689 addLocalScopeForStmt(Begin
);
4690 if (Stmt
*End
= S
->getEndStmt())
4691 addLocalScopeForStmt(End
);
4692 addAutomaticObjHandling(ScopePos
, save_scope_pos
.get(), S
);
4694 LocalScope::const_iterator ContinueScopePos
= ScopePos
;
4696 // "for" is a control-flow statement. Thus we stop processing the current
4698 CFGBlock
*LoopSuccessor
= nullptr;
4702 LoopSuccessor
= Block
;
4704 LoopSuccessor
= Succ
;
4706 // Save the current value for the break targets.
4707 // All breaks should go to the code following the loop.
4708 SaveAndRestore
save_break(BreakJumpTarget
);
4709 BreakJumpTarget
= JumpTarget(LoopSuccessor
, ScopePos
);
4711 // The block for the __begin != __end expression.
4712 CFGBlock
*ConditionBlock
= createBlock(false);
4713 ConditionBlock
->setTerminator(S
);
4715 // Now add the actual condition to the condition block.
4716 if (Expr
*C
= S
->getCond()) {
4717 Block
= ConditionBlock
;
4718 CFGBlock
*BeginConditionBlock
= addStmt(C
);
4721 assert(BeginConditionBlock
== ConditionBlock
&&
4722 "condition block in for-range was unexpectedly complex");
4723 (void)BeginConditionBlock
;
4726 // The condition block is the implicit successor for the loop body as well as
4727 // any code above the loop.
4728 Succ
= ConditionBlock
;
4730 // See if this is a known constant.
4731 TryResult
KnownVal(true);
4734 KnownVal
= tryEvaluateBool(S
->getCond());
4736 // Now create the loop body.
4738 assert(S
->getBody());
4740 // Save the current values for Block, Succ, and continue targets.
4741 SaveAndRestore
save_Block(Block
), save_Succ(Succ
);
4742 SaveAndRestore
save_continue(ContinueJumpTarget
);
4744 // Generate increment code in its own basic block. This is the target of
4745 // continue statements.
4747 Succ
= addStmt(S
->getInc());
4750 ContinueJumpTarget
= JumpTarget(Succ
, ContinueScopePos
);
4752 // The starting block for the loop increment is the block that should
4753 // represent the 'loop target' for looping back to the start of the loop.
4754 ContinueJumpTarget
.block
->setLoopTarget(S
);
4756 // Finish up the increment block and prepare to start the loop body.
4762 // Add implicit scope and dtors for loop variable.
4763 addLocalScopeAndDtors(S
->getLoopVarStmt());
4765 // If body is not a compound statement create implicit scope
4766 // and add destructors.
4767 if (!isa
<CompoundStmt
>(S
->getBody()))
4768 addLocalScopeAndDtors(S
->getBody());
4770 // Populate a new block to contain the loop body and loop variable.
4771 addStmt(S
->getBody());
4775 CFGBlock
*LoopVarStmtBlock
= addStmt(S
->getLoopVarStmt());
4779 // This new body block is a successor to our condition block.
4780 addSuccessor(ConditionBlock
,
4781 KnownVal
.isFalse() ? nullptr : LoopVarStmtBlock
);
4784 // Link up the condition block with the code that follows the loop (the
4786 addSuccessor(ConditionBlock
, KnownVal
.isTrue() ? nullptr : LoopSuccessor
);
4788 // Add the initialization statements.
4789 Block
= createBlock();
4790 addStmt(S
->getBeginStmt());
4791 addStmt(S
->getEndStmt());
4792 CFGBlock
*Head
= addStmt(S
->getRangeStmt());
4794 Head
= addStmt(S
->getInit());
4798 CFGBlock
*CFGBuilder::VisitExprWithCleanups(ExprWithCleanups
*E
,
4799 AddStmtChoice asc
, bool ExternallyDestructed
) {
4800 if (BuildOpts
.AddTemporaryDtors
) {
4801 // If adding implicit destructors visit the full expression for adding
4802 // destructors of temporaries.
4803 TempDtorContext Context
;
4804 VisitForTemporaryDtors(E
->getSubExpr(), ExternallyDestructed
, Context
);
4806 // Full expression has to be added as CFGStmt so it will be sequenced
4807 // before destructors of it's temporaries.
4808 asc
= asc
.withAlwaysAdd(true);
4810 return Visit(E
->getSubExpr(), asc
);
4813 CFGBlock
*CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr
*E
,
4814 AddStmtChoice asc
) {
4815 if (asc
.alwaysAdd(*this, E
)) {
4817 appendStmt(Block
, E
);
4819 findConstructionContexts(
4820 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), E
),
4823 // We do not want to propagate the AlwaysAdd property.
4824 asc
= asc
.withAlwaysAdd(false);
4826 return Visit(E
->getSubExpr(), asc
);
4829 CFGBlock
*CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr
*C
,
4830 AddStmtChoice asc
) {
4831 // If the constructor takes objects as arguments by value, we need to properly
4832 // construct these objects. Construction contexts we find here aren't for the
4833 // constructor C, they're for its arguments only.
4834 findConstructionContextsForArguments(C
);
4837 appendConstructor(Block
, C
);
4839 return VisitChildren(C
);
4842 CFGBlock
*CFGBuilder::VisitCXXNewExpr(CXXNewExpr
*NE
,
4843 AddStmtChoice asc
) {
4845 appendStmt(Block
, NE
);
4847 findConstructionContexts(
4848 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), NE
),
4849 const_cast<CXXConstructExpr
*>(NE
->getConstructExpr()));
4851 if (NE
->getInitializer())
4852 Block
= Visit(NE
->getInitializer());
4854 if (BuildOpts
.AddCXXNewAllocator
)
4855 appendNewAllocator(Block
, NE
);
4857 if (NE
->isArray() && *NE
->getArraySize())
4858 Block
= Visit(*NE
->getArraySize());
4860 for (CXXNewExpr::arg_iterator I
= NE
->placement_arg_begin(),
4861 E
= NE
->placement_arg_end(); I
!= E
; ++I
)
4867 CFGBlock
*CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr
*DE
,
4868 AddStmtChoice asc
) {
4870 appendStmt(Block
, DE
);
4871 QualType DTy
= DE
->getDestroyedType();
4872 if (!DTy
.isNull()) {
4873 DTy
= DTy
.getNonReferenceType();
4874 CXXRecordDecl
*RD
= Context
->getBaseElementType(DTy
)->getAsCXXRecordDecl();
4876 if (RD
->isCompleteDefinition() && !RD
->hasTrivialDestructor())
4877 appendDeleteDtor(Block
, RD
, DE
);
4881 return VisitChildren(DE
);
4884 CFGBlock
*CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr
*E
,
4885 AddStmtChoice asc
) {
4886 if (asc
.alwaysAdd(*this, E
)) {
4888 appendStmt(Block
, E
);
4889 // We do not want to propagate the AlwaysAdd property.
4890 asc
= asc
.withAlwaysAdd(false);
4892 return Visit(E
->getSubExpr(), asc
);
4895 CFGBlock
*CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr
*C
,
4896 AddStmtChoice asc
) {
4897 // If the constructor takes objects as arguments by value, we need to properly
4898 // construct these objects. Construction contexts we find here aren't for the
4899 // constructor C, they're for its arguments only.
4900 findConstructionContextsForArguments(C
);
4903 appendConstructor(Block
, C
);
4904 return VisitChildren(C
);
4907 CFGBlock
*CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr
*E
,
4908 AddStmtChoice asc
) {
4909 if (asc
.alwaysAdd(*this, E
)) {
4911 appendStmt(Block
, E
);
4914 if (E
->getCastKind() == CK_IntegralToBoolean
)
4915 tryEvaluateBool(E
->getSubExpr()->IgnoreParens());
4917 return Visit(E
->getSubExpr(), AddStmtChoice());
4920 CFGBlock
*CFGBuilder::VisitConstantExpr(ConstantExpr
*E
, AddStmtChoice asc
) {
4921 return Visit(E
->getSubExpr(), AddStmtChoice());
4924 CFGBlock
*CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt
*I
) {
4925 // Lazily create the indirect-goto dispatch block if there isn't one already.
4926 CFGBlock
*IBlock
= cfg
->getIndirectGotoBlock();
4929 IBlock
= createBlock(false);
4930 cfg
->setIndirectGotoBlock(IBlock
);
4933 // IndirectGoto is a control-flow statement. Thus we stop processing the
4934 // current block and create a new one.
4938 Block
= createBlock(false);
4939 Block
->setTerminator(I
);
4940 addSuccessor(Block
, IBlock
);
4941 return addStmt(I
->getTarget());
4944 CFGBlock
*CFGBuilder::VisitForTemporaryDtors(Stmt
*E
, bool ExternallyDestructed
,
4945 TempDtorContext
&Context
) {
4946 assert(BuildOpts
.AddImplicitDtors
&& BuildOpts
.AddTemporaryDtors
);
4953 switch (E
->getStmtClass()) {
4955 return VisitChildrenForTemporaryDtors(E
, false, Context
);
4957 case Stmt::InitListExprClass
:
4958 return VisitChildrenForTemporaryDtors(E
, ExternallyDestructed
, Context
);
4960 case Stmt::BinaryOperatorClass
:
4961 return VisitBinaryOperatorForTemporaryDtors(cast
<BinaryOperator
>(E
),
4962 ExternallyDestructed
,
4965 case Stmt::CXXBindTemporaryExprClass
:
4966 return VisitCXXBindTemporaryExprForTemporaryDtors(
4967 cast
<CXXBindTemporaryExpr
>(E
), ExternallyDestructed
, Context
);
4969 case Stmt::BinaryConditionalOperatorClass
:
4970 case Stmt::ConditionalOperatorClass
:
4971 return VisitConditionalOperatorForTemporaryDtors(
4972 cast
<AbstractConditionalOperator
>(E
), ExternallyDestructed
, Context
);
4974 case Stmt::ImplicitCastExprClass
:
4975 // For implicit cast we want ExternallyDestructed to be passed further.
4976 E
= cast
<CastExpr
>(E
)->getSubExpr();
4979 case Stmt::CXXFunctionalCastExprClass
:
4980 // For functional cast we want ExternallyDestructed to be passed further.
4981 E
= cast
<CXXFunctionalCastExpr
>(E
)->getSubExpr();
4984 case Stmt::ConstantExprClass
:
4985 E
= cast
<ConstantExpr
>(E
)->getSubExpr();
4988 case Stmt::ParenExprClass
:
4989 E
= cast
<ParenExpr
>(E
)->getSubExpr();
4992 case Stmt::MaterializeTemporaryExprClass
: {
4993 const MaterializeTemporaryExpr
* MTE
= cast
<MaterializeTemporaryExpr
>(E
);
4994 ExternallyDestructed
= (MTE
->getStorageDuration() != SD_FullExpression
);
4995 SmallVector
<const Expr
*, 2> CommaLHSs
;
4996 SmallVector
<SubobjectAdjustment
, 2> Adjustments
;
4997 // Find the expression whose lifetime needs to be extended.
4998 E
= const_cast<Expr
*>(
4999 cast
<MaterializeTemporaryExpr
>(E
)
5001 ->skipRValueSubobjectAdjustments(CommaLHSs
, Adjustments
));
5002 // Visit the skipped comma operator left-hand sides for other temporaries.
5003 for (const Expr
*CommaLHS
: CommaLHSs
) {
5004 VisitForTemporaryDtors(const_cast<Expr
*>(CommaLHS
),
5005 /*ExternallyDestructed=*/false, Context
);
5010 case Stmt::BlockExprClass
:
5011 // Don't recurse into blocks; their subexpressions don't get evaluated
5015 case Stmt::LambdaExprClass
: {
5016 // For lambda expressions, only recurse into the capture initializers,
5017 // and not the body.
5018 auto *LE
= cast
<LambdaExpr
>(E
);
5019 CFGBlock
*B
= Block
;
5020 for (Expr
*Init
: LE
->capture_inits()) {
5022 if (CFGBlock
*R
= VisitForTemporaryDtors(
5023 Init
, /*ExternallyDestructed=*/true, Context
))
5030 case Stmt::StmtExprClass
:
5031 // Don't recurse into statement expressions; any cleanups inside them
5032 // will be wrapped in their own ExprWithCleanups.
5035 case Stmt::CXXDefaultArgExprClass
:
5036 E
= cast
<CXXDefaultArgExpr
>(E
)->getExpr();
5039 case Stmt::CXXDefaultInitExprClass
:
5040 E
= cast
<CXXDefaultInitExpr
>(E
)->getExpr();
5045 CFGBlock
*CFGBuilder::VisitChildrenForTemporaryDtors(Stmt
*E
,
5046 bool ExternallyDestructed
,
5047 TempDtorContext
&Context
) {
5048 if (isa
<LambdaExpr
>(E
)) {
5049 // Do not visit the children of lambdas; they have their own CFGs.
5053 // When visiting children for destructors we want to visit them in reverse
5054 // order that they will appear in the CFG. Because the CFG is built
5055 // bottom-up, this means we visit them in their natural order, which
5056 // reverses them in the CFG.
5057 CFGBlock
*B
= Block
;
5058 for (Stmt
*Child
: E
->children())
5060 if (CFGBlock
*R
= VisitForTemporaryDtors(Child
, ExternallyDestructed
, Context
))
5066 CFGBlock
*CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
5067 BinaryOperator
*E
, bool ExternallyDestructed
, TempDtorContext
&Context
) {
5068 if (E
->isCommaOp()) {
5069 // For the comma operator, the LHS expression is evaluated before the RHS
5070 // expression, so prepend temporary destructors for the LHS first.
5071 CFGBlock
*LHSBlock
= VisitForTemporaryDtors(E
->getLHS(), false, Context
);
5072 CFGBlock
*RHSBlock
= VisitForTemporaryDtors(E
->getRHS(), ExternallyDestructed
, Context
);
5073 return RHSBlock
? RHSBlock
: LHSBlock
;
5076 if (E
->isLogicalOp()) {
5077 VisitForTemporaryDtors(E
->getLHS(), false, Context
);
5078 TryResult RHSExecuted
= tryEvaluateBool(E
->getLHS());
5079 if (RHSExecuted
.isKnown() && E
->getOpcode() == BO_LOr
)
5080 RHSExecuted
.negate();
5082 // We do not know at CFG-construction time whether the right-hand-side was
5083 // executed, thus we add a branch node that depends on the temporary
5084 // constructor call.
5085 TempDtorContext
RHSContext(
5086 bothKnownTrue(Context
.KnownExecuted
, RHSExecuted
));
5087 VisitForTemporaryDtors(E
->getRHS(), false, RHSContext
);
5088 InsertTempDtorDecisionBlock(RHSContext
);
5093 if (E
->isAssignmentOp()) {
5094 // For assignment operators, the RHS expression is evaluated before the LHS
5095 // expression, so prepend temporary destructors for the RHS first.
5096 CFGBlock
*RHSBlock
= VisitForTemporaryDtors(E
->getRHS(), false, Context
);
5097 CFGBlock
*LHSBlock
= VisitForTemporaryDtors(E
->getLHS(), false, Context
);
5098 return LHSBlock
? LHSBlock
: RHSBlock
;
5101 // Any other operator is visited normally.
5102 return VisitChildrenForTemporaryDtors(E
, ExternallyDestructed
, Context
);
5105 CFGBlock
*CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
5106 CXXBindTemporaryExpr
*E
, bool ExternallyDestructed
, TempDtorContext
&Context
) {
5107 // First add destructors for temporaries in subexpression.
5108 // Because VisitCXXBindTemporaryExpr calls setDestructed:
5109 CFGBlock
*B
= VisitForTemporaryDtors(E
->getSubExpr(), true, Context
);
5110 if (!ExternallyDestructed
) {
5111 // If lifetime of temporary is not prolonged (by assigning to constant
5112 // reference) add destructor for it.
5114 const CXXDestructorDecl
*Dtor
= E
->getTemporary()->getDestructor();
5116 if (Dtor
->getParent()->isAnyDestructorNoReturn()) {
5117 // If the destructor is marked as a no-return destructor, we need to
5118 // create a new block for the destructor which does not have as a
5119 // successor anything built thus far. Control won't flow out of this
5122 Block
= createNoReturnBlock();
5123 } else if (Context
.needsTempDtorBranch()) {
5124 // If we need to introduce a branch, we add a new block that we will hook
5125 // up to a decision block later.
5127 Block
= createBlock();
5131 if (Context
.needsTempDtorBranch()) {
5132 Context
.setDecisionPoint(Succ
, E
);
5134 appendTemporaryDtor(Block
, E
);
5141 void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext
&Context
,
5142 CFGBlock
*FalseSucc
) {
5143 if (!Context
.TerminatorExpr
) {
5144 // If no temporary was found, we do not need to insert a decision point.
5147 assert(Context
.TerminatorExpr
);
5148 CFGBlock
*Decision
= createBlock(false);
5149 Decision
->setTerminator(CFGTerminator(Context
.TerminatorExpr
,
5150 CFGTerminator::TemporaryDtorsBranch
));
5151 addSuccessor(Decision
, Block
, !Context
.KnownExecuted
.isFalse());
5152 addSuccessor(Decision
, FalseSucc
? FalseSucc
: Context
.Succ
,
5153 !Context
.KnownExecuted
.isTrue());
5157 CFGBlock
*CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
5158 AbstractConditionalOperator
*E
, bool ExternallyDestructed
,
5159 TempDtorContext
&Context
) {
5160 VisitForTemporaryDtors(E
->getCond(), false, Context
);
5161 CFGBlock
*ConditionBlock
= Block
;
5162 CFGBlock
*ConditionSucc
= Succ
;
5163 TryResult ConditionVal
= tryEvaluateBool(E
->getCond());
5164 TryResult NegatedVal
= ConditionVal
;
5165 if (NegatedVal
.isKnown()) NegatedVal
.negate();
5167 TempDtorContext
TrueContext(
5168 bothKnownTrue(Context
.KnownExecuted
, ConditionVal
));
5169 VisitForTemporaryDtors(E
->getTrueExpr(), ExternallyDestructed
, TrueContext
);
5170 CFGBlock
*TrueBlock
= Block
;
5172 Block
= ConditionBlock
;
5173 Succ
= ConditionSucc
;
5174 TempDtorContext
FalseContext(
5175 bothKnownTrue(Context
.KnownExecuted
, NegatedVal
));
5176 VisitForTemporaryDtors(E
->getFalseExpr(), ExternallyDestructed
, FalseContext
);
5178 if (TrueContext
.TerminatorExpr
&& FalseContext
.TerminatorExpr
) {
5179 InsertTempDtorDecisionBlock(FalseContext
, TrueBlock
);
5180 } else if (TrueContext
.TerminatorExpr
) {
5182 InsertTempDtorDecisionBlock(TrueContext
);
5184 InsertTempDtorDecisionBlock(FalseContext
);
5189 CFGBlock
*CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective
*D
,
5190 AddStmtChoice asc
) {
5191 if (asc
.alwaysAdd(*this, D
)) {
5193 appendStmt(Block
, D
);
5196 // Iterate over all used expression in clauses.
5197 CFGBlock
*B
= Block
;
5199 // Reverse the elements to process them in natural order. Iterators are not
5200 // bidirectional, so we need to create temp vector.
5201 SmallVector
<Stmt
*, 8> Used(
5202 OMPExecutableDirective::used_clauses_children(D
->clauses()));
5203 for (Stmt
*S
: llvm::reverse(Used
)) {
5204 assert(S
&& "Expected non-null used-in-clause child.");
5205 if (CFGBlock
*R
= Visit(S
))
5208 // Visit associated structured block if any.
5209 if (!D
->isStandaloneDirective()) {
5210 Stmt
*S
= D
->getRawStmt();
5211 if (!isa
<CompoundStmt
>(S
))
5212 addLocalScopeAndDtors(S
);
5213 if (CFGBlock
*R
= addStmt(S
))
5220 /// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has
5221 /// no successors or predecessors. If this is the first block created in the
5222 /// CFG, it is automatically set to be the Entry and Exit of the CFG.
5223 CFGBlock
*CFG::createBlock() {
5224 bool first_block
= begin() == end();
5226 // Create the block.
5227 CFGBlock
*Mem
= new (getAllocator()) CFGBlock(NumBlockIDs
++, BlkBVC
, this);
5228 Blocks
.push_back(Mem
, BlkBVC
);
5230 // If this is the first block, set it as the Entry and Exit.
5232 Entry
= Exit
= &back();
5234 // Return the block.
5238 /// buildCFG - Constructs a CFG from an AST.
5239 std::unique_ptr
<CFG
> CFG::buildCFG(const Decl
*D
, Stmt
*Statement
,
5240 ASTContext
*C
, const BuildOptions
&BO
) {
5241 CFGBuilder
Builder(C
, BO
);
5242 return Builder
.buildCFG(D
, Statement
);
5245 bool CFG::isLinear() const {
5246 // Quick path: if we only have the ENTRY block, the EXIT block, and some code
5247 // in between, then we have no room for control flow.
5251 // Traverse the CFG until we find a branch.
5252 // TODO: While this should still be very fast,
5253 // maybe we should cache the answer.
5254 llvm::SmallPtrSet
<const CFGBlock
*, 4> Visited
;
5255 const CFGBlock
*B
= Entry
;
5257 auto IteratorAndFlag
= Visited
.insert(B
);
5258 if (!IteratorAndFlag
.second
) {
5259 // We looped back to a block that we've already visited. Not linear.
5263 // Iterate over reachable successors.
5264 const CFGBlock
*FirstReachableB
= nullptr;
5265 for (const CFGBlock::AdjacentBlock
&AB
: B
->succs()) {
5266 if (!AB
.isReachable())
5269 if (FirstReachableB
== nullptr) {
5270 FirstReachableB
= &*AB
;
5272 // We've encountered a branch. It's not a linear CFG.
5277 if (!FirstReachableB
) {
5278 // We reached a dead end. EXIT is unreachable. This is linear enough.
5282 // There's only one way to move forward. Proceed.
5283 B
= FirstReachableB
;
5286 // We reached EXIT and found no branches.
5290 const CXXDestructorDecl
*
5291 CFGImplicitDtor::getDestructorDecl(ASTContext
&astContext
) const {
5292 switch (getKind()) {
5293 case CFGElement::Initializer
:
5294 case CFGElement::NewAllocator
:
5295 case CFGElement::LoopExit
:
5296 case CFGElement::LifetimeEnds
:
5297 case CFGElement::Statement
:
5298 case CFGElement::Constructor
:
5299 case CFGElement::CXXRecordTypedCall
:
5300 case CFGElement::ScopeBegin
:
5301 case CFGElement::ScopeEnd
:
5302 case CFGElement::CleanupFunction
:
5303 llvm_unreachable("getDestructorDecl should only be used with "
5305 case CFGElement::AutomaticObjectDtor
: {
5306 const VarDecl
*var
= castAs
<CFGAutomaticObjDtor
>().getVarDecl();
5307 QualType ty
= var
->getType();
5309 // FIXME: See CFGBuilder::addLocalScopeForVarDecl.
5311 // Lifetime-extending constructs are handled here. This works for a single
5312 // temporary in an initializer expression.
5313 if (ty
->isReferenceType()) {
5314 if (const Expr
*Init
= var
->getInit()) {
5315 ty
= getReferenceInitTemporaryType(Init
);
5319 while (const ArrayType
*arrayType
= astContext
.getAsArrayType(ty
)) {
5320 ty
= arrayType
->getElementType();
5323 // The situation when the type of the lifetime-extending reference
5324 // does not correspond to the type of the object is supposed
5325 // to be handled by now. In particular, 'ty' is now the unwrapped
5327 const CXXRecordDecl
*classDecl
= ty
->getAsCXXRecordDecl();
5329 return classDecl
->getDestructor();
5331 case CFGElement::DeleteDtor
: {
5332 const CXXDeleteExpr
*DE
= castAs
<CFGDeleteDtor
>().getDeleteExpr();
5333 QualType DTy
= DE
->getDestroyedType();
5334 DTy
= DTy
.getNonReferenceType();
5335 const CXXRecordDecl
*classDecl
=
5336 astContext
.getBaseElementType(DTy
)->getAsCXXRecordDecl();
5337 return classDecl
->getDestructor();
5339 case CFGElement::TemporaryDtor
: {
5340 const CXXBindTemporaryExpr
*bindExpr
=
5341 castAs
<CFGTemporaryDtor
>().getBindTemporaryExpr();
5342 const CXXTemporary
*temp
= bindExpr
->getTemporary();
5343 return temp
->getDestructor();
5345 case CFGElement::MemberDtor
: {
5346 const FieldDecl
*field
= castAs
<CFGMemberDtor
>().getFieldDecl();
5347 QualType ty
= field
->getType();
5349 while (const ArrayType
*arrayType
= astContext
.getAsArrayType(ty
)) {
5350 ty
= arrayType
->getElementType();
5353 const CXXRecordDecl
*classDecl
= ty
->getAsCXXRecordDecl();
5355 return classDecl
->getDestructor();
5357 case CFGElement::BaseDtor
:
5358 // Not yet supported.
5361 llvm_unreachable("getKind() returned bogus value");
5364 //===----------------------------------------------------------------------===//
5365 // CFGBlock operations.
5366 //===----------------------------------------------------------------------===//
5368 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock
*B
, bool IsReachable
)
5369 : ReachableBlock(IsReachable
? B
: nullptr),
5370 UnreachableBlock(!IsReachable
? B
: nullptr,
5371 B
&& IsReachable
? AB_Normal
: AB_Unreachable
) {}
5373 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock
*B
, CFGBlock
*AlternateBlock
)
5374 : ReachableBlock(B
),
5375 UnreachableBlock(B
== AlternateBlock
? nullptr : AlternateBlock
,
5376 B
== AlternateBlock
? AB_Alternate
: AB_Normal
) {}
5378 void CFGBlock::addSuccessor(AdjacentBlock Succ
,
5379 BumpVectorContext
&C
) {
5380 if (CFGBlock
*B
= Succ
.getReachableBlock())
5381 B
->Preds
.push_back(AdjacentBlock(this, Succ
.isReachable()), C
);
5383 if (CFGBlock
*UnreachableB
= Succ
.getPossiblyUnreachableBlock())
5384 UnreachableB
->Preds
.push_back(AdjacentBlock(this, false), C
);
5386 Succs
.push_back(Succ
, C
);
5389 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions
&F
,
5390 const CFGBlock
*From
, const CFGBlock
*To
) {
5391 if (F
.IgnoreNullPredecessors
&& !From
)
5394 if (To
&& From
&& F
.IgnoreDefaultsWithCoveredEnums
) {
5395 // If the 'To' has no label or is labeled but the label isn't a
5396 // CaseStmt then filter this edge.
5397 if (const SwitchStmt
*S
=
5398 dyn_cast_or_null
<SwitchStmt
>(From
->getTerminatorStmt())) {
5399 if (S
->isAllEnumCasesCovered()) {
5400 const Stmt
*L
= To
->getLabel();
5401 if (!L
|| !isa
<CaseStmt
>(L
))
5410 //===----------------------------------------------------------------------===//
5411 // CFG pretty printing
5412 //===----------------------------------------------------------------------===//
5416 class StmtPrinterHelper
: public PrinterHelper
{
5417 using StmtMapTy
= llvm::DenseMap
<const Stmt
*, std::pair
<unsigned, unsigned>>;
5418 using DeclMapTy
= llvm::DenseMap
<const Decl
*, std::pair
<unsigned, unsigned>>;
5422 signed currentBlock
= 0;
5423 unsigned currStmt
= 0;
5424 const LangOptions
&LangOpts
;
5427 StmtPrinterHelper(const CFG
* cfg
, const LangOptions
&LO
)
5431 for (CFG::const_iterator I
= cfg
->begin(), E
= cfg
->end(); I
!= E
; ++I
) {
5433 for (CFGBlock::const_iterator BI
= (*I
)->begin(), BEnd
= (*I
)->end() ;
5434 BI
!= BEnd
; ++BI
, ++j
) {
5435 if (std::optional
<CFGStmt
> SE
= BI
->getAs
<CFGStmt
>()) {
5436 const Stmt
*stmt
= SE
->getStmt();
5437 std::pair
<unsigned, unsigned> P((*I
)->getBlockID(), j
);
5440 switch (stmt
->getStmtClass()) {
5441 case Stmt::DeclStmtClass
:
5442 DeclMap
[cast
<DeclStmt
>(stmt
)->getSingleDecl()] = P
;
5444 case Stmt::IfStmtClass
: {
5445 const VarDecl
*var
= cast
<IfStmt
>(stmt
)->getConditionVariable();
5450 case Stmt::ForStmtClass
: {
5451 const VarDecl
*var
= cast
<ForStmt
>(stmt
)->getConditionVariable();
5456 case Stmt::WhileStmtClass
: {
5457 const VarDecl
*var
=
5458 cast
<WhileStmt
>(stmt
)->getConditionVariable();
5463 case Stmt::SwitchStmtClass
: {
5464 const VarDecl
*var
=
5465 cast
<SwitchStmt
>(stmt
)->getConditionVariable();
5470 case Stmt::CXXCatchStmtClass
: {
5471 const VarDecl
*var
=
5472 cast
<CXXCatchStmt
>(stmt
)->getExceptionDecl();
5485 ~StmtPrinterHelper() override
= default;
5487 const LangOptions
&getLangOpts() const { return LangOpts
; }
5488 void setBlockID(signed i
) { currentBlock
= i
; }
5489 void setStmtID(unsigned i
) { currStmt
= i
; }
5491 bool handledStmt(Stmt
*S
, raw_ostream
&OS
) override
{
5492 StmtMapTy::iterator I
= StmtMap
.find(S
);
5494 if (I
== StmtMap
.end())
5497 if (currentBlock
>= 0 && I
->second
.first
== (unsigned) currentBlock
5498 && I
->second
.second
== currStmt
) {
5502 OS
<< "[B" << I
->second
.first
<< "." << I
->second
.second
<< "]";
5506 bool handleDecl(const Decl
*D
, raw_ostream
&OS
) {
5507 DeclMapTy::iterator I
= DeclMap
.find(D
);
5509 if (I
== DeclMap
.end())
5512 if (currentBlock
>= 0 && I
->second
.first
== (unsigned) currentBlock
5513 && I
->second
.second
== currStmt
) {
5517 OS
<< "[B" << I
->second
.first
<< "." << I
->second
.second
<< "]";
5522 class CFGBlockTerminatorPrint
5523 : public StmtVisitor
<CFGBlockTerminatorPrint
,void> {
5525 StmtPrinterHelper
* Helper
;
5526 PrintingPolicy Policy
;
5529 CFGBlockTerminatorPrint(raw_ostream
&os
, StmtPrinterHelper
* helper
,
5530 const PrintingPolicy
&Policy
)
5531 : OS(os
), Helper(helper
), Policy(Policy
) {
5532 this->Policy
.IncludeNewlines
= false;
5535 void VisitIfStmt(IfStmt
*I
) {
5537 if (Stmt
*C
= I
->getCond())
5538 C
->printPretty(OS
, Helper
, Policy
);
5542 void VisitStmt(Stmt
*Terminator
) {
5543 Terminator
->printPretty(OS
, Helper
, Policy
);
5546 void VisitDeclStmt(DeclStmt
*DS
) {
5547 VarDecl
*VD
= cast
<VarDecl
>(DS
->getSingleDecl());
5548 OS
<< "static init " << VD
->getName();
5551 void VisitForStmt(ForStmt
*F
) {
5556 if (Stmt
*C
= F
->getCond())
5557 C
->printPretty(OS
, Helper
, Policy
);
5564 void VisitWhileStmt(WhileStmt
*W
) {
5566 if (Stmt
*C
= W
->getCond())
5567 C
->printPretty(OS
, Helper
, Policy
);
5570 void VisitDoStmt(DoStmt
*D
) {
5571 OS
<< "do ... while ";
5572 if (Stmt
*C
= D
->getCond())
5573 C
->printPretty(OS
, Helper
, Policy
);
5576 void VisitSwitchStmt(SwitchStmt
*Terminator
) {
5578 Terminator
->getCond()->printPretty(OS
, Helper
, Policy
);
5581 void VisitCXXTryStmt(CXXTryStmt
*) { OS
<< "try ..."; }
5583 void VisitObjCAtTryStmt(ObjCAtTryStmt
*) { OS
<< "@try ..."; }
5585 void VisitSEHTryStmt(SEHTryStmt
*CS
) { OS
<< "__try ..."; }
5587 void VisitAbstractConditionalOperator(AbstractConditionalOperator
* C
) {
5588 if (Stmt
*Cond
= C
->getCond())
5589 Cond
->printPretty(OS
, Helper
, Policy
);
5590 OS
<< " ? ... : ...";
5593 void VisitChooseExpr(ChooseExpr
*C
) {
5594 OS
<< "__builtin_choose_expr( ";
5595 if (Stmt
*Cond
= C
->getCond())
5596 Cond
->printPretty(OS
, Helper
, Policy
);
5600 void VisitIndirectGotoStmt(IndirectGotoStmt
*I
) {
5602 if (Stmt
*T
= I
->getTarget())
5603 T
->printPretty(OS
, Helper
, Policy
);
5606 void VisitBinaryOperator(BinaryOperator
* B
) {
5607 if (!B
->isLogicalOp()) {
5613 B
->getLHS()->printPretty(OS
, Helper
, Policy
);
5615 switch (B
->getOpcode()) {
5623 llvm_unreachable("Invalid logical operator.");
5627 void VisitExpr(Expr
*E
) {
5628 E
->printPretty(OS
, Helper
, Policy
);
5632 void print(CFGTerminator T
) {
5633 switch (T
.getKind()) {
5634 case CFGTerminator::StmtBranch
:
5637 case CFGTerminator::TemporaryDtorsBranch
:
5638 OS
<< "(Temp Dtor) ";
5641 case CFGTerminator::VirtualBaseBranch
:
5642 OS
<< "(See if most derived ctor has already initialized vbases)";
5650 static void print_initializer(raw_ostream
&OS
, StmtPrinterHelper
&Helper
,
5651 const CXXCtorInitializer
*I
) {
5652 if (I
->isBaseInitializer())
5653 OS
<< I
->getBaseClass()->getAsCXXRecordDecl()->getName();
5654 else if (I
->isDelegatingInitializer())
5655 OS
<< I
->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
5657 OS
<< I
->getAnyMember()->getName();
5659 if (Expr
*IE
= I
->getInit())
5660 IE
->printPretty(OS
, &Helper
, PrintingPolicy(Helper
.getLangOpts()));
5663 if (I
->isBaseInitializer())
5664 OS
<< " (Base initializer)";
5665 else if (I
->isDelegatingInitializer())
5666 OS
<< " (Delegating initializer)";
5668 OS
<< " (Member initializer)";
5671 static void print_construction_context(raw_ostream
&OS
,
5672 StmtPrinterHelper
&Helper
,
5673 const ConstructionContext
*CC
) {
5674 SmallVector
<const Stmt
*, 3> Stmts
;
5675 switch (CC
->getKind()) {
5676 case ConstructionContext::SimpleConstructorInitializerKind
: {
5678 const auto *SICC
= cast
<SimpleConstructorInitializerConstructionContext
>(CC
);
5679 print_initializer(OS
, Helper
, SICC
->getCXXCtorInitializer());
5682 case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind
: {
5685 cast
<CXX17ElidedCopyConstructorInitializerConstructionContext
>(CC
);
5686 print_initializer(OS
, Helper
, CICC
->getCXXCtorInitializer());
5687 Stmts
.push_back(CICC
->getCXXBindTemporaryExpr());
5690 case ConstructionContext::SimpleVariableKind
: {
5691 const auto *SDSCC
= cast
<SimpleVariableConstructionContext
>(CC
);
5692 Stmts
.push_back(SDSCC
->getDeclStmt());
5695 case ConstructionContext::CXX17ElidedCopyVariableKind
: {
5696 const auto *CDSCC
= cast
<CXX17ElidedCopyVariableConstructionContext
>(CC
);
5697 Stmts
.push_back(CDSCC
->getDeclStmt());
5698 Stmts
.push_back(CDSCC
->getCXXBindTemporaryExpr());
5701 case ConstructionContext::NewAllocatedObjectKind
: {
5702 const auto *NECC
= cast
<NewAllocatedObjectConstructionContext
>(CC
);
5703 Stmts
.push_back(NECC
->getCXXNewExpr());
5706 case ConstructionContext::SimpleReturnedValueKind
: {
5707 const auto *RSCC
= cast
<SimpleReturnedValueConstructionContext
>(CC
);
5708 Stmts
.push_back(RSCC
->getReturnStmt());
5711 case ConstructionContext::CXX17ElidedCopyReturnedValueKind
: {
5713 cast
<CXX17ElidedCopyReturnedValueConstructionContext
>(CC
);
5714 Stmts
.push_back(RSCC
->getReturnStmt());
5715 Stmts
.push_back(RSCC
->getCXXBindTemporaryExpr());
5718 case ConstructionContext::SimpleTemporaryObjectKind
: {
5719 const auto *TOCC
= cast
<SimpleTemporaryObjectConstructionContext
>(CC
);
5720 Stmts
.push_back(TOCC
->getCXXBindTemporaryExpr());
5721 Stmts
.push_back(TOCC
->getMaterializedTemporaryExpr());
5724 case ConstructionContext::ElidedTemporaryObjectKind
: {
5725 const auto *TOCC
= cast
<ElidedTemporaryObjectConstructionContext
>(CC
);
5726 Stmts
.push_back(TOCC
->getCXXBindTemporaryExpr());
5727 Stmts
.push_back(TOCC
->getMaterializedTemporaryExpr());
5728 Stmts
.push_back(TOCC
->getConstructorAfterElision());
5731 case ConstructionContext::LambdaCaptureKind
: {
5732 const auto *LCC
= cast
<LambdaCaptureConstructionContext
>(CC
);
5733 Helper
.handledStmt(const_cast<LambdaExpr
*>(LCC
->getLambdaExpr()), OS
);
5734 OS
<< "+" << LCC
->getIndex();
5737 case ConstructionContext::ArgumentKind
: {
5738 const auto *ACC
= cast
<ArgumentConstructionContext
>(CC
);
5739 if (const Stmt
*BTE
= ACC
->getCXXBindTemporaryExpr()) {
5741 Helper
.handledStmt(const_cast<Stmt
*>(BTE
), OS
);
5744 Helper
.handledStmt(const_cast<Expr
*>(ACC
->getCallLikeExpr()), OS
);
5745 OS
<< "+" << ACC
->getIndex();
5752 Helper
.handledStmt(const_cast<Stmt
*>(I
), OS
);
5756 static void print_elem(raw_ostream
&OS
, StmtPrinterHelper
&Helper
,
5757 const CFGElement
&E
);
5759 void CFGElement::dumpToStream(llvm::raw_ostream
&OS
) const {
5760 LangOptions LangOpts
;
5761 StmtPrinterHelper
Helper(nullptr, LangOpts
);
5762 print_elem(OS
, Helper
, *this);
5765 static void print_elem(raw_ostream
&OS
, StmtPrinterHelper
&Helper
,
5766 const CFGElement
&E
) {
5767 switch (E
.getKind()) {
5768 case CFGElement::Kind::Statement
:
5769 case CFGElement::Kind::CXXRecordTypedCall
:
5770 case CFGElement::Kind::Constructor
: {
5771 CFGStmt CS
= E
.castAs
<CFGStmt
>();
5772 const Stmt
*S
= CS
.getStmt();
5773 assert(S
!= nullptr && "Expecting non-null Stmt");
5775 // special printing for statement-expressions.
5776 if (const StmtExpr
*SE
= dyn_cast
<StmtExpr
>(S
)) {
5777 const CompoundStmt
*Sub
= SE
->getSubStmt();
5779 auto Children
= Sub
->children();
5780 if (Children
.begin() != Children
.end()) {
5782 Helper
.handledStmt(*SE
->getSubStmt()->body_rbegin(),OS
);
5787 // special printing for comma expressions.
5788 if (const BinaryOperator
* B
= dyn_cast
<BinaryOperator
>(S
)) {
5789 if (B
->getOpcode() == BO_Comma
) {
5791 Helper
.handledStmt(B
->getRHS(),OS
);
5796 S
->printPretty(OS
, &Helper
, PrintingPolicy(Helper
.getLangOpts()));
5798 if (auto VTC
= E
.getAs
<CFGCXXRecordTypedCall
>()) {
5799 if (isa
<CXXOperatorCallExpr
>(S
))
5800 OS
<< " (OperatorCall)";
5801 OS
<< " (CXXRecordTypedCall";
5802 print_construction_context(OS
, Helper
, VTC
->getConstructionContext());
5804 } else if (isa
<CXXOperatorCallExpr
>(S
)) {
5805 OS
<< " (OperatorCall)";
5806 } else if (isa
<CXXBindTemporaryExpr
>(S
)) {
5807 OS
<< " (BindTemporary)";
5808 } else if (const CXXConstructExpr
*CCE
= dyn_cast
<CXXConstructExpr
>(S
)) {
5809 OS
<< " (CXXConstructExpr";
5810 if (std::optional
<CFGConstructor
> CE
= E
.getAs
<CFGConstructor
>()) {
5811 print_construction_context(OS
, Helper
, CE
->getConstructionContext());
5813 OS
<< ", " << CCE
->getType() << ")";
5814 } else if (const CastExpr
*CE
= dyn_cast
<CastExpr
>(S
)) {
5815 OS
<< " (" << CE
->getStmtClassName() << ", " << CE
->getCastKindName()
5816 << ", " << CE
->getType() << ")";
5819 // Expressions need a newline.
5826 case CFGElement::Kind::Initializer
:
5827 print_initializer(OS
, Helper
, E
.castAs
<CFGInitializer
>().getInitializer());
5831 case CFGElement::Kind::AutomaticObjectDtor
: {
5832 CFGAutomaticObjDtor DE
= E
.castAs
<CFGAutomaticObjDtor
>();
5833 const VarDecl
*VD
= DE
.getVarDecl();
5834 Helper
.handleDecl(VD
, OS
);
5836 QualType T
= VD
->getType();
5837 if (T
->isReferenceType())
5838 T
= getReferenceInitTemporaryType(VD
->getInit(), nullptr);
5841 T
.getUnqualifiedType().print(OS
, PrintingPolicy(Helper
.getLangOpts()));
5842 OS
<< "() (Implicit destructor)\n";
5846 case CFGElement::Kind::CleanupFunction
:
5847 OS
<< "CleanupFunction ("
5848 << E
.castAs
<CFGCleanupFunction
>().getFunctionDecl()->getName() << ")\n";
5851 case CFGElement::Kind::LifetimeEnds
:
5852 Helper
.handleDecl(E
.castAs
<CFGLifetimeEnds
>().getVarDecl(), OS
);
5853 OS
<< " (Lifetime ends)\n";
5856 case CFGElement::Kind::LoopExit
:
5857 OS
<< E
.castAs
<CFGLoopExit
>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n";
5860 case CFGElement::Kind::ScopeBegin
:
5861 OS
<< "CFGScopeBegin(";
5862 if (const VarDecl
*VD
= E
.castAs
<CFGScopeBegin
>().getVarDecl())
5863 OS
<< VD
->getQualifiedNameAsString();
5867 case CFGElement::Kind::ScopeEnd
:
5868 OS
<< "CFGScopeEnd(";
5869 if (const VarDecl
*VD
= E
.castAs
<CFGScopeEnd
>().getVarDecl())
5870 OS
<< VD
->getQualifiedNameAsString();
5874 case CFGElement::Kind::NewAllocator
:
5875 OS
<< "CFGNewAllocator(";
5876 if (const CXXNewExpr
*AllocExpr
= E
.castAs
<CFGNewAllocator
>().getAllocatorExpr())
5877 AllocExpr
->getType().print(OS
, PrintingPolicy(Helper
.getLangOpts()));
5881 case CFGElement::Kind::DeleteDtor
: {
5882 CFGDeleteDtor DE
= E
.castAs
<CFGDeleteDtor
>();
5883 const CXXRecordDecl
*RD
= DE
.getCXXRecordDecl();
5886 CXXDeleteExpr
*DelExpr
=
5887 const_cast<CXXDeleteExpr
*>(DE
.getDeleteExpr());
5888 Helper
.handledStmt(cast
<Stmt
>(DelExpr
->getArgument()), OS
);
5889 OS
<< "->~" << RD
->getName().str() << "()";
5890 OS
<< " (Implicit destructor)\n";
5894 case CFGElement::Kind::BaseDtor
: {
5895 const CXXBaseSpecifier
*BS
= E
.castAs
<CFGBaseDtor
>().getBaseSpecifier();
5896 OS
<< "~" << BS
->getType()->getAsCXXRecordDecl()->getName() << "()";
5897 OS
<< " (Base object destructor)\n";
5901 case CFGElement::Kind::MemberDtor
: {
5902 const FieldDecl
*FD
= E
.castAs
<CFGMemberDtor
>().getFieldDecl();
5903 const Type
*T
= FD
->getType()->getBaseElementTypeUnsafe();
5904 OS
<< "this->" << FD
->getName();
5905 OS
<< ".~" << T
->getAsCXXRecordDecl()->getName() << "()";
5906 OS
<< " (Member object destructor)\n";
5910 case CFGElement::Kind::TemporaryDtor
: {
5911 const CXXBindTemporaryExpr
*BT
=
5912 E
.castAs
<CFGTemporaryDtor
>().getBindTemporaryExpr();
5914 BT
->getType().print(OS
, PrintingPolicy(Helper
.getLangOpts()));
5915 OS
<< "() (Temporary object destructor)\n";
5921 static void print_block(raw_ostream
&OS
, const CFG
* cfg
,
5923 StmtPrinterHelper
&Helper
, bool print_edges
,
5925 Helper
.setBlockID(B
.getBlockID());
5927 // Print the header.
5929 OS
.changeColor(raw_ostream::YELLOW
, true);
5931 OS
<< "\n [B" << B
.getBlockID();
5933 if (&B
== &cfg
->getEntry())
5934 OS
<< " (ENTRY)]\n";
5935 else if (&B
== &cfg
->getExit())
5937 else if (&B
== cfg
->getIndirectGotoBlock())
5938 OS
<< " (INDIRECT GOTO DISPATCH)]\n";
5939 else if (B
.hasNoReturnElement())
5940 OS
<< " (NORETURN)]\n";
5947 // Print the label of this block.
5948 if (Stmt
*Label
= const_cast<Stmt
*>(B
.getLabel())) {
5952 if (LabelStmt
*L
= dyn_cast
<LabelStmt
>(Label
))
5954 else if (CaseStmt
*C
= dyn_cast
<CaseStmt
>(Label
)) {
5956 if (const Expr
*LHS
= C
->getLHS())
5957 LHS
->printPretty(OS
, &Helper
, PrintingPolicy(Helper
.getLangOpts()));
5958 if (const Expr
*RHS
= C
->getRHS()) {
5960 RHS
->printPretty(OS
, &Helper
, PrintingPolicy(Helper
.getLangOpts()));
5962 } else if (isa
<DefaultStmt
>(Label
))
5964 else if (CXXCatchStmt
*CS
= dyn_cast
<CXXCatchStmt
>(Label
)) {
5966 if (const VarDecl
*ED
= CS
->getExceptionDecl())
5967 ED
->print(OS
, PrintingPolicy(Helper
.getLangOpts()), 0);
5971 } else if (ObjCAtCatchStmt
*CS
= dyn_cast
<ObjCAtCatchStmt
>(Label
)) {
5973 if (const VarDecl
*PD
= CS
->getCatchParamDecl())
5974 PD
->print(OS
, PrintingPolicy(Helper
.getLangOpts()), 0);
5978 } else if (SEHExceptStmt
*ES
= dyn_cast
<SEHExceptStmt
>(Label
)) {
5980 ES
->getFilterExpr()->printPretty(OS
, &Helper
,
5981 PrintingPolicy(Helper
.getLangOpts()), 0);
5984 llvm_unreachable("Invalid label statement in CFGBlock.");
5989 // Iterate through the statements in the block and print them.
5992 for (CFGBlock::const_iterator I
= B
.begin(), E
= B
.end() ;
5993 I
!= E
; ++I
, ++j
) {
5994 // Print the statement # in the basic block and the statement itself.
5998 OS
<< llvm::format("%3d", j
) << ": ";
6000 Helper
.setStmtID(j
);
6002 print_elem(OS
, Helper
, *I
);
6005 // Print the terminator of this block.
6006 if (B
.getTerminator().isValid()) {
6008 OS
.changeColor(raw_ostream::GREEN
);
6012 Helper
.setBlockID(-1);
6014 PrintingPolicy
PP(Helper
.getLangOpts());
6015 CFGBlockTerminatorPrint
TPrinter(OS
, &Helper
, PP
);
6016 TPrinter
.print(B
.getTerminator());
6024 // Print the predecessors of this block.
6025 if (!B
.pred_empty()) {
6026 const raw_ostream::Colors Color
= raw_ostream::BLUE
;
6028 OS
.changeColor(Color
);
6032 OS
<< '(' << B
.pred_size() << "):";
6036 OS
.changeColor(Color
);
6038 for (CFGBlock::const_pred_iterator I
= B
.pred_begin(), E
= B
.pred_end();
6044 bool Reachable
= true;
6047 B
= I
->getPossiblyUnreachableBlock();
6050 OS
<< " B" << B
->getBlockID();
6052 OS
<< "(Unreachable)";
6061 // Print the successors of this block.
6062 if (!B
.succ_empty()) {
6063 const raw_ostream::Colors Color
= raw_ostream::MAGENTA
;
6065 OS
.changeColor(Color
);
6069 OS
<< '(' << B
.succ_size() << "):";
6073 OS
.changeColor(Color
);
6075 for (CFGBlock::const_succ_iterator I
= B
.succ_begin(), E
= B
.succ_end();
6082 bool Reachable
= true;
6085 B
= I
->getPossiblyUnreachableBlock();
6089 OS
<< " B" << B
->getBlockID();
6091 OS
<< "(Unreachable)";
6105 /// dump - A simple pretty printer of a CFG that outputs to stderr.
6106 void CFG::dump(const LangOptions
&LO
, bool ShowColors
) const {
6107 print(llvm::errs(), LO
, ShowColors
);
6110 /// print - A simple pretty printer of a CFG that outputs to an ostream.
6111 void CFG::print(raw_ostream
&OS
, const LangOptions
&LO
, bool ShowColors
) const {
6112 StmtPrinterHelper
Helper(this, LO
);
6114 // Print the entry block.
6115 print_block(OS
, this, getEntry(), Helper
, true, ShowColors
);
6117 // Iterate through the CFGBlocks and print them one by one.
6118 for (const_iterator I
= Blocks
.begin(), E
= Blocks
.end() ; I
!= E
; ++I
) {
6119 // Skip the entry block, because we already printed it.
6120 if (&(**I
) == &getEntry() || &(**I
) == &getExit())
6123 print_block(OS
, this, **I
, Helper
, true, ShowColors
);
6126 // Print the exit block.
6127 print_block(OS
, this, getExit(), Helper
, true, ShowColors
);
6132 size_t CFGBlock::getIndexInCFG() const {
6133 return llvm::find(*getParent(), this) - getParent()->begin();
6136 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
6137 void CFGBlock::dump(const CFG
* cfg
, const LangOptions
&LO
,
6138 bool ShowColors
) const {
6139 print(llvm::errs(), cfg
, LO
, ShowColors
);
6142 LLVM_DUMP_METHOD
void CFGBlock::dump() const {
6143 dump(getParent(), LangOptions(), false);
6146 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
6147 /// Generally this will only be called from CFG::print.
6148 void CFGBlock::print(raw_ostream
&OS
, const CFG
* cfg
,
6149 const LangOptions
&LO
, bool ShowColors
) const {
6150 StmtPrinterHelper
Helper(cfg
, LO
);
6151 print_block(OS
, cfg
, *this, Helper
, true, ShowColors
);
6155 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
6156 void CFGBlock::printTerminator(raw_ostream
&OS
,
6157 const LangOptions
&LO
) const {
6158 CFGBlockTerminatorPrint
TPrinter(OS
, nullptr, PrintingPolicy(LO
));
6159 TPrinter
.print(getTerminator());
6162 /// printTerminatorJson - Pretty-prints the terminator in JSON format.
6163 void CFGBlock::printTerminatorJson(raw_ostream
&Out
, const LangOptions
&LO
,
6164 bool AddQuotes
) const {
6166 llvm::raw_string_ostream
TempOut(Buf
);
6168 printTerminator(TempOut
, LO
);
6170 Out
<< JsonFormat(TempOut
.str(), AddQuotes
);
6173 // Returns true if by simply looking at the block, we can be sure that it
6174 // results in a sink during analysis. This is useful to know when the analysis
6175 // was interrupted, and we try to figure out if it would sink eventually.
6176 // There may be many more reasons why a sink would appear during analysis
6177 // (eg. checkers may generate sinks arbitrarily), but here we only consider
6178 // sinks that would be obvious by looking at the CFG.
6179 static bool isImmediateSinkBlock(const CFGBlock
*Blk
) {
6180 if (Blk
->hasNoReturnElement())
6183 // FIXME: Throw-expressions are currently generating sinks during analysis:
6184 // they're not supported yet, and also often used for actually terminating
6185 // the program. So we should treat them as sinks in this analysis as well,
6186 // at least for now, but once we have better support for exceptions,
6187 // we'd need to carefully handle the case when the throw is being
6188 // immediately caught.
6189 if (llvm::any_of(*Blk
, [](const CFGElement
&Elm
) {
6190 if (std::optional
<CFGStmt
> StmtElm
= Elm
.getAs
<CFGStmt
>())
6191 if (isa
<CXXThrowExpr
>(StmtElm
->getStmt()))
6200 bool CFGBlock::isInevitablySinking() const {
6201 const CFG
&Cfg
= *getParent();
6203 const CFGBlock
*StartBlk
= this;
6204 if (isImmediateSinkBlock(StartBlk
))
6207 llvm::SmallVector
<const CFGBlock
*, 32> DFSWorkList
;
6208 llvm::SmallPtrSet
<const CFGBlock
*, 32> Visited
;
6210 DFSWorkList
.push_back(StartBlk
);
6211 while (!DFSWorkList
.empty()) {
6212 const CFGBlock
*Blk
= DFSWorkList
.back();
6213 DFSWorkList
.pop_back();
6214 Visited
.insert(Blk
);
6216 // If at least one path reaches the CFG exit, it means that control is
6217 // returned to the caller. For now, say that we are not sure what
6218 // happens next. If necessary, this can be improved to analyze
6219 // the parent StackFrameContext's call site in a similar manner.
6220 if (Blk
== &Cfg
.getExit())
6223 for (const auto &Succ
: Blk
->succs()) {
6224 if (const CFGBlock
*SuccBlk
= Succ
.getReachableBlock()) {
6225 if (!isImmediateSinkBlock(SuccBlk
) && !Visited
.count(SuccBlk
)) {
6226 // If the block has reachable child blocks that aren't no-return,
6227 // add them to the worklist.
6228 DFSWorkList
.push_back(SuccBlk
);
6234 // Nothing reached the exit. It can only mean one thing: there's no return.
6238 const Expr
*CFGBlock::getLastCondition() const {
6239 // If the terminator is a temporary dtor or a virtual base, etc, we can't
6240 // retrieve a meaningful condition, bail out.
6241 if (Terminator
.getKind() != CFGTerminator::StmtBranch
)
6244 // Also, if this method was called on a block that doesn't have 2 successors,
6245 // this block doesn't have retrievable condition.
6246 if (succ_size() < 2)
6249 // FIXME: Is there a better condition expression we can return in this case?
6253 auto StmtElem
= rbegin()->getAs
<CFGStmt
>();
6257 const Stmt
*Cond
= StmtElem
->getStmt();
6258 if (isa
<ObjCForCollectionStmt
>(Cond
) || isa
<DeclStmt
>(Cond
))
6261 // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence
6263 return cast
<Expr
>(Cond
)->IgnoreParens();
6266 Stmt
*CFGBlock::getTerminatorCondition(bool StripParens
) {
6267 Stmt
*Terminator
= getTerminatorStmt();
6273 switch (Terminator
->getStmtClass()) {
6277 case Stmt::CXXForRangeStmtClass
:
6278 E
= cast
<CXXForRangeStmt
>(Terminator
)->getCond();
6281 case Stmt::ForStmtClass
:
6282 E
= cast
<ForStmt
>(Terminator
)->getCond();
6285 case Stmt::WhileStmtClass
:
6286 E
= cast
<WhileStmt
>(Terminator
)->getCond();
6289 case Stmt::DoStmtClass
:
6290 E
= cast
<DoStmt
>(Terminator
)->getCond();
6293 case Stmt::IfStmtClass
:
6294 E
= cast
<IfStmt
>(Terminator
)->getCond();
6297 case Stmt::ChooseExprClass
:
6298 E
= cast
<ChooseExpr
>(Terminator
)->getCond();
6301 case Stmt::IndirectGotoStmtClass
:
6302 E
= cast
<IndirectGotoStmt
>(Terminator
)->getTarget();
6305 case Stmt::SwitchStmtClass
:
6306 E
= cast
<SwitchStmt
>(Terminator
)->getCond();
6309 case Stmt::BinaryConditionalOperatorClass
:
6310 E
= cast
<BinaryConditionalOperator
>(Terminator
)->getCond();
6313 case Stmt::ConditionalOperatorClass
:
6314 E
= cast
<ConditionalOperator
>(Terminator
)->getCond();
6317 case Stmt::BinaryOperatorClass
: // '&&' and '||'
6318 E
= cast
<BinaryOperator
>(Terminator
)->getLHS();
6321 case Stmt::ObjCForCollectionStmtClass
:
6328 return E
? E
->IgnoreParens() : nullptr;
6331 //===----------------------------------------------------------------------===//
6332 // CFG Graphviz Visualization
6333 //===----------------------------------------------------------------------===//
6335 static StmtPrinterHelper
*GraphHelper
;
6337 void CFG::viewCFG(const LangOptions
&LO
) const {
6338 StmtPrinterHelper
H(this, LO
);
6340 llvm::ViewGraph(this,"CFG");
6341 GraphHelper
= nullptr;
6347 struct DOTGraphTraits
<const CFG
*> : public DefaultDOTGraphTraits
{
6348 DOTGraphTraits(bool isSimple
= false) : DefaultDOTGraphTraits(isSimple
) {}
6350 static std::string
getNodeLabel(const CFGBlock
*Node
, const CFG
*Graph
) {
6351 std::string OutSStr
;
6352 llvm::raw_string_ostream
Out(OutSStr
);
6353 print_block(Out
,Graph
, *Node
, *GraphHelper
, false, false);
6354 std::string
& OutStr
= Out
.str();
6356 if (OutStr
[0] == '\n') OutStr
.erase(OutStr
.begin());
6358 // Process string output to make it nicer...
6359 for (unsigned i
= 0; i
!= OutStr
.length(); ++i
)
6360 if (OutStr
[i
] == '\n') { // Left justify
6362 OutStr
.insert(OutStr
.begin()+i
+1, 'l');