[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / Analysis / FlowSensitive / DataflowEnvironment.cpp
blobcf1e9eb7b1fd7f28e1fbea07a02422a9239f2d8c
1 //===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an Environment class that is used by dataflow analyses
10 // that run over Control-Flow Graphs (CFGs) to keep track of the state of the
11 // program at given program points.
13 //===----------------------------------------------------------------------===//
15 #include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/Type.h"
19 #include "clang/Analysis/FlowSensitive/DataflowLattice.h"
20 #include "clang/Analysis/FlowSensitive/Value.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include <cassert>
27 #include <utility>
29 namespace clang {
30 namespace dataflow {
32 // FIXME: convert these to parameters of the analysis or environment. Current
33 // settings have been experimentaly validated, but only for a particular
34 // analysis.
35 static constexpr int MaxCompositeValueDepth = 3;
36 static constexpr int MaxCompositeValueSize = 1000;
38 /// Returns a map consisting of key-value entries that are present in both maps.
39 template <typename K, typename V>
40 llvm::DenseMap<K, V> intersectDenseMaps(const llvm::DenseMap<K, V> &Map1,
41 const llvm::DenseMap<K, V> &Map2) {
42 llvm::DenseMap<K, V> Result;
43 for (auto &Entry : Map1) {
44 auto It = Map2.find(Entry.first);
45 if (It != Map2.end() && Entry.second == It->second)
46 Result.insert({Entry.first, Entry.second});
48 return Result;
51 // Whether to consider equivalent two values with an unknown relation.
53 // FIXME: this function is a hack enabling unsoundness to support
54 // convergence. Once we have widening support for the reference/pointer and
55 // struct built-in models, this should be unconditionally `false` (and inlined
56 // as such at its call sites).
57 static bool equateUnknownValues(Value::Kind K) {
58 switch (K) {
59 case Value::Kind::Integer:
60 case Value::Kind::Pointer:
61 case Value::Kind::Record:
62 return true;
63 default:
64 return false;
68 static bool compareDistinctValues(QualType Type, Value &Val1,
69 const Environment &Env1, Value &Val2,
70 const Environment &Env2,
71 Environment::ValueModel &Model) {
72 // Note: Potentially costly, but, for booleans, we could check whether both
73 // can be proven equivalent in their respective environments.
75 // FIXME: move the reference/pointers logic from `areEquivalentValues` to here
76 // and implement separate, join/widen specific handling for
77 // reference/pointers.
78 switch (Model.compare(Type, Val1, Env1, Val2, Env2)) {
79 case ComparisonResult::Same:
80 return true;
81 case ComparisonResult::Different:
82 return false;
83 case ComparisonResult::Unknown:
84 return equateUnknownValues(Val1.getKind());
86 llvm_unreachable("All cases covered in switch");
89 /// Attempts to merge distinct values `Val1` and `Val2` in `Env1` and `Env2`,
90 /// respectively, of the same type `Type`. Merging generally produces a single
91 /// value that (soundly) approximates the two inputs, although the actual
92 /// meaning depends on `Model`.
93 static Value *mergeDistinctValues(QualType Type, Value &Val1,
94 const Environment &Env1, Value &Val2,
95 const Environment &Env2,
96 Environment &MergedEnv,
97 Environment::ValueModel &Model) {
98 // Join distinct boolean values preserving information about the constraints
99 // in the respective path conditions.
100 if (isa<BoolValue>(&Val1) && isa<BoolValue>(&Val2)) {
101 // FIXME: Checking both values should be unnecessary, since they should have
102 // a consistent shape. However, right now we can end up with BoolValue's in
103 // integer-typed variables due to our incorrect handling of
104 // boolean-to-integer casts (we just propagate the BoolValue to the result
105 // of the cast). So, a join can encounter an integer in one branch but a
106 // bool in the other.
107 // For example:
108 // ```
109 // std::optional<bool> o;
110 // int x;
111 // if (o.has_value())
112 // x = o.value();
113 // ```
114 auto &Expr1 = cast<BoolValue>(Val1).formula();
115 auto &Expr2 = cast<BoolValue>(Val2).formula();
116 auto &A = MergedEnv.arena();
117 auto &MergedVal = A.makeAtomRef(A.makeAtom());
118 MergedEnv.addToFlowCondition(
119 A.makeOr(A.makeAnd(A.makeAtomRef(Env1.getFlowConditionToken()),
120 A.makeEquals(MergedVal, Expr1)),
121 A.makeAnd(A.makeAtomRef(Env2.getFlowConditionToken()),
122 A.makeEquals(MergedVal, Expr2))));
123 return &A.makeBoolValue(MergedVal);
126 Value *MergedVal = nullptr;
127 if (auto *RecordVal1 = dyn_cast<RecordValue>(&Val1)) {
128 auto *RecordVal2 = cast<RecordValue>(&Val2);
130 if (&RecordVal1->getLoc() == &RecordVal2->getLoc())
131 // `RecordVal1` and `RecordVal2` may have different properties associated
132 // with them. Create a new `RecordValue` with the same location but
133 // without any properties so that we soundly approximate both values. If a
134 // particular analysis needs to merge properties, it should do so in
135 // `DataflowAnalysis::merge()`.
136 MergedVal = &MergedEnv.create<RecordValue>(RecordVal1->getLoc());
137 else
138 // If the locations for the two records are different, need to create a
139 // completely new value.
140 MergedVal = MergedEnv.createValue(Type);
141 } else {
142 MergedVal = MergedEnv.createValue(Type);
145 // FIXME: Consider destroying `MergedValue` immediately if `ValueModel::merge`
146 // returns false to avoid storing unneeded values in `DACtx`.
147 if (MergedVal)
148 if (Model.merge(Type, Val1, Env1, Val2, Env2, *MergedVal, MergedEnv))
149 return MergedVal;
151 return nullptr;
154 // When widening does not change `Current`, return value will equal `&Prev`.
155 static Value &widenDistinctValues(QualType Type, Value &Prev,
156 const Environment &PrevEnv, Value &Current,
157 Environment &CurrentEnv,
158 Environment::ValueModel &Model) {
159 // Boolean-model widening.
160 if (isa<BoolValue>(&Prev)) {
161 assert(isa<BoolValue>(Current));
162 // Widen to Top, because we know they are different values. If previous was
163 // already Top, re-use that to (implicitly) indicate that no change occured.
164 if (isa<TopBoolValue>(Prev))
165 return Prev;
166 return CurrentEnv.makeTopBoolValue();
169 // FIXME: Add other built-in model widening.
171 // Custom-model widening.
172 if (auto *W = Model.widen(Type, Prev, PrevEnv, Current, CurrentEnv))
173 return *W;
175 return equateUnknownValues(Prev.getKind()) ? Prev : Current;
178 // Returns whether the values in `Map1` and `Map2` compare equal for those
179 // keys that `Map1` and `Map2` have in common.
180 template <typename Key>
181 bool compareKeyToValueMaps(const llvm::MapVector<Key, Value *> &Map1,
182 const llvm::MapVector<Key, Value *> &Map2,
183 const Environment &Env1, const Environment &Env2,
184 Environment::ValueModel &Model) {
185 for (auto &Entry : Map1) {
186 Key K = Entry.first;
187 assert(K != nullptr);
189 Value *Val = Entry.second;
190 assert(Val != nullptr);
192 auto It = Map2.find(K);
193 if (It == Map2.end())
194 continue;
195 assert(It->second != nullptr);
197 if (!areEquivalentValues(*Val, *It->second) &&
198 !compareDistinctValues(K->getType(), *Val, Env1, *It->second, Env2,
199 Model))
200 return false;
203 return true;
206 // Perform a join on either `LocToVal` or `ExprToVal`. `Key` must be either
207 // `const StorageLocation *` or `const Expr *`.
208 template <typename Key>
209 llvm::MapVector<Key, Value *>
210 joinKeyToValueMap(const llvm::MapVector<Key, Value *> &Map1,
211 const llvm::MapVector<Key, Value *> &Map2,
212 const Environment &Env1, const Environment &Env2,
213 Environment &JoinedEnv, Environment::ValueModel &Model) {
214 llvm::MapVector<Key, Value *> MergedMap;
215 for (auto &Entry : Map1) {
216 Key K = Entry.first;
217 assert(K != nullptr);
219 Value *Val = Entry.second;
220 assert(Val != nullptr);
222 auto It = Map2.find(K);
223 if (It == Map2.end())
224 continue;
225 assert(It->second != nullptr);
227 if (areEquivalentValues(*Val, *It->second)) {
228 MergedMap.insert({K, Val});
229 continue;
232 if (Value *MergedVal = mergeDistinctValues(
233 K->getType(), *Val, Env1, *It->second, Env2, JoinedEnv, Model)) {
234 MergedMap.insert({K, MergedVal});
238 return MergedMap;
241 // Perform widening on either `LocToVal` or `ExprToVal`. `Key` must be either
242 // `const StorageLocation *` or `const Expr *`.
243 template <typename Key>
244 llvm::MapVector<Key, Value *>
245 widenKeyToValueMap(const llvm::MapVector<Key, Value *> &CurMap,
246 const llvm::MapVector<Key, Value *> &PrevMap,
247 Environment &CurEnv, const Environment &PrevEnv,
248 Environment::ValueModel &Model, LatticeJoinEffect &Effect) {
249 llvm::MapVector<Key, Value *> WidenedMap;
250 for (auto &Entry : CurMap) {
251 Key K = Entry.first;
252 assert(K != nullptr);
254 Value *Val = Entry.second;
255 assert(Val != nullptr);
257 auto PrevIt = PrevMap.find(K);
258 if (PrevIt == PrevMap.end())
259 continue;
260 assert(PrevIt->second != nullptr);
262 if (areEquivalentValues(*Val, *PrevIt->second)) {
263 WidenedMap.insert({K, Val});
264 continue;
267 Value &WidenedVal = widenDistinctValues(K->getType(), *PrevIt->second,
268 PrevEnv, *Val, CurEnv, Model);
269 WidenedMap.insert({K, &WidenedVal});
270 if (&WidenedVal != PrevIt->second)
271 Effect = LatticeJoinEffect::Changed;
274 return WidenedMap;
277 /// Initializes a global storage value.
278 static void insertIfGlobal(const Decl &D,
279 llvm::DenseSet<const VarDecl *> &Vars) {
280 if (auto *V = dyn_cast<VarDecl>(&D))
281 if (V->hasGlobalStorage())
282 Vars.insert(V);
285 static void insertIfFunction(const Decl &D,
286 llvm::DenseSet<const FunctionDecl *> &Funcs) {
287 if (auto *FD = dyn_cast<FunctionDecl>(&D))
288 Funcs.insert(FD);
291 static MemberExpr *getMemberForAccessor(const CXXMemberCallExpr &C) {
292 if (!C.getMethodDecl())
293 return nullptr;
294 auto *Body = dyn_cast_or_null<CompoundStmt>(C.getMethodDecl()->getBody());
295 if (!Body || Body->size() != 1)
296 return nullptr;
297 if (auto *RS = dyn_cast<ReturnStmt>(*Body->body_begin()))
298 if (auto *Return = RS->getRetValue())
299 return dyn_cast<MemberExpr>(Return->IgnoreParenImpCasts());
300 return nullptr;
303 static void
304 getFieldsGlobalsAndFuncs(const Decl &D, FieldSet &Fields,
305 llvm::DenseSet<const VarDecl *> &Vars,
306 llvm::DenseSet<const FunctionDecl *> &Funcs) {
307 insertIfGlobal(D, Vars);
308 insertIfFunction(D, Funcs);
309 if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D))
310 for (const auto *B : Decomp->bindings())
311 if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding()))
312 // FIXME: should we be using `E->getFoundDecl()`?
313 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
314 Fields.insert(FD);
317 /// Traverses `S` and inserts into `Fields`, `Vars` and `Funcs` any fields,
318 /// global variables and functions that are declared in or referenced from
319 /// sub-statements.
320 static void
321 getFieldsGlobalsAndFuncs(const Stmt &S, FieldSet &Fields,
322 llvm::DenseSet<const VarDecl *> &Vars,
323 llvm::DenseSet<const FunctionDecl *> &Funcs) {
324 for (auto *Child : S.children())
325 if (Child != nullptr)
326 getFieldsGlobalsAndFuncs(*Child, Fields, Vars, Funcs);
327 if (const auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(&S))
328 getFieldsGlobalsAndFuncs(*DefaultInit->getExpr(), Fields, Vars, Funcs);
330 if (auto *DS = dyn_cast<DeclStmt>(&S)) {
331 if (DS->isSingleDecl())
332 getFieldsGlobalsAndFuncs(*DS->getSingleDecl(), Fields, Vars, Funcs);
333 else
334 for (auto *D : DS->getDeclGroup())
335 getFieldsGlobalsAndFuncs(*D, Fields, Vars, Funcs);
336 } else if (auto *E = dyn_cast<DeclRefExpr>(&S)) {
337 insertIfGlobal(*E->getDecl(), Vars);
338 insertIfFunction(*E->getDecl(), Funcs);
339 } else if (const auto *C = dyn_cast<CXXMemberCallExpr>(&S)) {
340 // If this is a method that returns a member variable but does nothing else,
341 // model the field of the return value.
342 if (MemberExpr *E = getMemberForAccessor(*C))
343 if (const auto *FD = dyn_cast<FieldDecl>(E->getMemberDecl()))
344 Fields.insert(FD);
345 } else if (auto *E = dyn_cast<MemberExpr>(&S)) {
346 // FIXME: should we be using `E->getFoundDecl()`?
347 const ValueDecl *VD = E->getMemberDecl();
348 insertIfGlobal(*VD, Vars);
349 insertIfFunction(*VD, Funcs);
350 if (const auto *FD = dyn_cast<FieldDecl>(VD))
351 Fields.insert(FD);
352 } else if (auto *InitList = dyn_cast<InitListExpr>(&S)) {
353 if (RecordDecl *RD = InitList->getType()->getAsRecordDecl())
354 for (const auto *FD : getFieldsForInitListExpr(RD))
355 Fields.insert(FD);
359 // FIXME: Add support for resetting globals after function calls to enable
360 // the implementation of sound analyses.
361 void Environment::initFieldsGlobalsAndFuncs(const FunctionDecl *FuncDecl) {
362 assert(FuncDecl->getBody() != nullptr);
364 FieldSet Fields;
365 llvm::DenseSet<const VarDecl *> Vars;
366 llvm::DenseSet<const FunctionDecl *> Funcs;
368 // Look for global variable and field references in the
369 // constructor-initializers.
370 if (const auto *CtorDecl = dyn_cast<CXXConstructorDecl>(FuncDecl)) {
371 for (const auto *Init : CtorDecl->inits()) {
372 if (Init->isMemberInitializer()) {
373 Fields.insert(Init->getMember());
374 } else if (Init->isIndirectMemberInitializer()) {
375 for (const auto *I : Init->getIndirectMember()->chain())
376 Fields.insert(cast<FieldDecl>(I));
378 const Expr *E = Init->getInit();
379 assert(E != nullptr);
380 getFieldsGlobalsAndFuncs(*E, Fields, Vars, Funcs);
382 // Add all fields mentioned in default member initializers.
383 for (const FieldDecl *F : CtorDecl->getParent()->fields())
384 if (const auto *I = F->getInClassInitializer())
385 getFieldsGlobalsAndFuncs(*I, Fields, Vars, Funcs);
387 getFieldsGlobalsAndFuncs(*FuncDecl->getBody(), Fields, Vars, Funcs);
389 // These have to be added before the lines that follow to ensure that
390 // `create*` work correctly for structs.
391 DACtx->addModeledFields(Fields);
393 for (const VarDecl *D : Vars) {
394 if (getStorageLocation(*D) != nullptr)
395 continue;
397 setStorageLocation(*D, createObject(*D));
400 for (const FunctionDecl *FD : Funcs) {
401 if (getStorageLocation(*FD) != nullptr)
402 continue;
403 auto &Loc = createStorageLocation(FD->getType());
404 setStorageLocation(*FD, Loc);
408 Environment::Environment(DataflowAnalysisContext &DACtx)
409 : DACtx(&DACtx),
410 FlowConditionToken(DACtx.arena().makeFlowConditionToken()) {}
412 Environment Environment::fork() const {
413 Environment Copy(*this);
414 Copy.FlowConditionToken = DACtx->forkFlowCondition(FlowConditionToken);
415 return Copy;
418 Environment::Environment(DataflowAnalysisContext &DACtx,
419 const DeclContext &DeclCtx)
420 : Environment(DACtx) {
421 CallStack.push_back(&DeclCtx);
423 if (const auto *FuncDecl = dyn_cast<FunctionDecl>(&DeclCtx)) {
424 assert(FuncDecl->getBody() != nullptr);
426 initFieldsGlobalsAndFuncs(FuncDecl);
428 for (const auto *ParamDecl : FuncDecl->parameters()) {
429 assert(ParamDecl != nullptr);
430 setStorageLocation(*ParamDecl, createObject(*ParamDecl, nullptr));
434 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(&DeclCtx)) {
435 auto *Parent = MethodDecl->getParent();
436 assert(Parent != nullptr);
438 if (Parent->isLambda()) {
439 for (auto Capture : Parent->captures()) {
440 if (Capture.capturesVariable()) {
441 const auto *VarDecl = Capture.getCapturedVar();
442 assert(VarDecl != nullptr);
443 setStorageLocation(*VarDecl, createObject(*VarDecl, nullptr));
444 } else if (Capture.capturesThis()) {
445 const auto *SurroundingMethodDecl =
446 cast<CXXMethodDecl>(DeclCtx.getNonClosureAncestor());
447 QualType ThisPointeeType =
448 SurroundingMethodDecl->getFunctionObjectParameterType();
449 ThisPointeeLoc =
450 &cast<RecordValue>(createValue(ThisPointeeType))->getLoc();
453 } else if (MethodDecl->isImplicitObjectMemberFunction()) {
454 QualType ThisPointeeType = MethodDecl->getFunctionObjectParameterType();
455 ThisPointeeLoc =
456 &cast<RecordValue>(createValue(ThisPointeeType))->getLoc();
461 bool Environment::canDescend(unsigned MaxDepth,
462 const DeclContext *Callee) const {
463 return CallStack.size() <= MaxDepth && !llvm::is_contained(CallStack, Callee);
466 Environment Environment::pushCall(const CallExpr *Call) const {
467 Environment Env(*this);
469 if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Call)) {
470 if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) {
471 if (!isa<CXXThisExpr>(Arg))
472 Env.ThisPointeeLoc =
473 cast<RecordStorageLocation>(getStorageLocation(*Arg));
474 // Otherwise (when the argument is `this`), retain the current
475 // environment's `ThisPointeeLoc`.
479 Env.pushCallInternal(Call->getDirectCallee(),
480 llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
482 return Env;
485 Environment Environment::pushCall(const CXXConstructExpr *Call) const {
486 Environment Env(*this);
488 Env.ThisPointeeLoc = &Env.getResultObjectLocation(*Call);
490 Env.pushCallInternal(Call->getConstructor(),
491 llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
493 return Env;
496 void Environment::pushCallInternal(const FunctionDecl *FuncDecl,
497 ArrayRef<const Expr *> Args) {
498 // Canonicalize to the definition of the function. This ensures that we're
499 // putting arguments into the same `ParamVarDecl`s` that the callee will later
500 // be retrieving them from.
501 assert(FuncDecl->getDefinition() != nullptr);
502 FuncDecl = FuncDecl->getDefinition();
504 CallStack.push_back(FuncDecl);
506 initFieldsGlobalsAndFuncs(FuncDecl);
508 const auto *ParamIt = FuncDecl->param_begin();
510 // FIXME: Parameters don't always map to arguments 1:1; examples include
511 // overloaded operators implemented as member functions, and parameter packs.
512 for (unsigned ArgIndex = 0; ArgIndex < Args.size(); ++ParamIt, ++ArgIndex) {
513 assert(ParamIt != FuncDecl->param_end());
514 const VarDecl *Param = *ParamIt;
515 setStorageLocation(*Param, createObject(*Param, Args[ArgIndex]));
519 void Environment::popCall(const CallExpr *Call, const Environment &CalleeEnv) {
520 // We ignore some entries of `CalleeEnv`:
521 // - `DACtx` because is already the same in both
522 // - We don't want the callee's `DeclCtx`, `ReturnVal`, `ReturnLoc` or
523 // `ThisPointeeLoc` because they don't apply to us.
524 // - `DeclToLoc`, `ExprToLoc`, and `ExprToVal` capture information from the
525 // callee's local scope, so when popping that scope, we do not propagate
526 // the maps.
527 this->LocToVal = std::move(CalleeEnv.LocToVal);
528 this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
530 if (Call->isGLValue()) {
531 if (CalleeEnv.ReturnLoc != nullptr)
532 setStorageLocation(*Call, *CalleeEnv.ReturnLoc);
533 } else if (!Call->getType()->isVoidType()) {
534 if (CalleeEnv.ReturnVal != nullptr)
535 setValue(*Call, *CalleeEnv.ReturnVal);
539 void Environment::popCall(const CXXConstructExpr *Call,
540 const Environment &CalleeEnv) {
541 // See also comment in `popCall(const CallExpr *, const Environment &)` above.
542 this->LocToVal = std::move(CalleeEnv.LocToVal);
543 this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
545 if (Value *Val = CalleeEnv.getValue(*CalleeEnv.ThisPointeeLoc)) {
546 setValue(*Call, *Val);
550 bool Environment::equivalentTo(const Environment &Other,
551 Environment::ValueModel &Model) const {
552 assert(DACtx == Other.DACtx);
554 if (ReturnVal != Other.ReturnVal)
555 return false;
557 if (ReturnLoc != Other.ReturnLoc)
558 return false;
560 if (ThisPointeeLoc != Other.ThisPointeeLoc)
561 return false;
563 if (DeclToLoc != Other.DeclToLoc)
564 return false;
566 if (ExprToLoc != Other.ExprToLoc)
567 return false;
569 if (!compareKeyToValueMaps(ExprToVal, Other.ExprToVal, *this, Other, Model))
570 return false;
572 if (!compareKeyToValueMaps(LocToVal, Other.LocToVal, *this, Other, Model))
573 return false;
575 return true;
578 LatticeJoinEffect Environment::widen(const Environment &PrevEnv,
579 Environment::ValueModel &Model) {
580 assert(DACtx == PrevEnv.DACtx);
581 assert(ReturnVal == PrevEnv.ReturnVal);
582 assert(ReturnLoc == PrevEnv.ReturnLoc);
583 assert(ThisPointeeLoc == PrevEnv.ThisPointeeLoc);
584 assert(CallStack == PrevEnv.CallStack);
586 auto Effect = LatticeJoinEffect::Unchanged;
588 // By the API, `PrevEnv` is a previous version of the environment for the same
589 // block, so we have some guarantees about its shape. In particular, it will
590 // be the result of a join or widen operation on previous values for this
591 // block. For `DeclToLoc`, `ExprToVal`, and `ExprToLoc`, join guarantees that
592 // these maps are subsets of the maps in `PrevEnv`. So, as long as we maintain
593 // this property here, we don't need change their current values to widen.
594 assert(DeclToLoc.size() <= PrevEnv.DeclToLoc.size());
595 assert(ExprToVal.size() <= PrevEnv.ExprToVal.size());
596 assert(ExprToLoc.size() <= PrevEnv.ExprToLoc.size());
598 ExprToVal = widenKeyToValueMap(ExprToVal, PrevEnv.ExprToVal, *this, PrevEnv,
599 Model, Effect);
601 LocToVal = widenKeyToValueMap(LocToVal, PrevEnv.LocToVal, *this, PrevEnv,
602 Model, Effect);
603 if (DeclToLoc.size() != PrevEnv.DeclToLoc.size() ||
604 ExprToLoc.size() != PrevEnv.ExprToLoc.size() ||
605 ExprToVal.size() != PrevEnv.ExprToVal.size() ||
606 LocToVal.size() != PrevEnv.LocToVal.size())
607 Effect = LatticeJoinEffect::Changed;
609 return Effect;
612 Environment Environment::join(const Environment &EnvA, const Environment &EnvB,
613 Environment::ValueModel &Model) {
614 assert(EnvA.DACtx == EnvB.DACtx);
615 assert(EnvA.ThisPointeeLoc == EnvB.ThisPointeeLoc);
616 assert(EnvA.CallStack == EnvB.CallStack);
618 Environment JoinedEnv(*EnvA.DACtx);
620 JoinedEnv.CallStack = EnvA.CallStack;
621 JoinedEnv.ThisPointeeLoc = EnvA.ThisPointeeLoc;
623 if (EnvA.ReturnVal == nullptr || EnvB.ReturnVal == nullptr) {
624 // `ReturnVal` might not always get set -- for example if we have a return
625 // statement of the form `return some_other_func()` and we decide not to
626 // analyze `some_other_func()`.
627 // In this case, we can't say anything about the joined return value -- we
628 // don't simply want to propagate the return value that we do have, because
629 // it might not be the correct one.
630 // This occurs for example in the test `ContextSensitiveMutualRecursion`.
631 JoinedEnv.ReturnVal = nullptr;
632 } else if (areEquivalentValues(*EnvA.ReturnVal, *EnvB.ReturnVal)) {
633 JoinedEnv.ReturnVal = EnvA.ReturnVal;
634 } else {
635 assert(!EnvA.CallStack.empty());
636 // FIXME: Make `CallStack` a vector of `FunctionDecl` so we don't need this
637 // cast.
638 auto *Func = dyn_cast<FunctionDecl>(EnvA.CallStack.back());
639 assert(Func != nullptr);
640 if (Value *MergedVal =
641 mergeDistinctValues(Func->getReturnType(), *EnvA.ReturnVal, EnvA,
642 *EnvB.ReturnVal, EnvB, JoinedEnv, Model))
643 JoinedEnv.ReturnVal = MergedVal;
646 if (EnvA.ReturnLoc == EnvB.ReturnLoc)
647 JoinedEnv.ReturnLoc = EnvA.ReturnLoc;
648 else
649 JoinedEnv.ReturnLoc = nullptr;
651 JoinedEnv.DeclToLoc = intersectDenseMaps(EnvA.DeclToLoc, EnvB.DeclToLoc);
653 JoinedEnv.ExprToLoc = intersectDenseMaps(EnvA.ExprToLoc, EnvB.ExprToLoc);
655 // FIXME: update join to detect backedges and simplify the flow condition
656 // accordingly.
657 JoinedEnv.FlowConditionToken = EnvA.DACtx->joinFlowConditions(
658 EnvA.FlowConditionToken, EnvB.FlowConditionToken);
660 JoinedEnv.ExprToVal = joinKeyToValueMap(EnvA.ExprToVal, EnvB.ExprToVal, EnvA,
661 EnvB, JoinedEnv, Model);
663 JoinedEnv.LocToVal = joinKeyToValueMap(EnvA.LocToVal, EnvB.LocToVal, EnvA,
664 EnvB, JoinedEnv, Model);
666 return JoinedEnv;
669 StorageLocation &Environment::createStorageLocation(QualType Type) {
670 return DACtx->createStorageLocation(Type);
673 StorageLocation &Environment::createStorageLocation(const ValueDecl &D) {
674 // Evaluated declarations are always assigned the same storage locations to
675 // ensure that the environment stabilizes across loop iterations. Storage
676 // locations for evaluated declarations are stored in the analysis context.
677 return DACtx->getStableStorageLocation(D);
680 StorageLocation &Environment::createStorageLocation(const Expr &E) {
681 // Evaluated expressions are always assigned the same storage locations to
682 // ensure that the environment stabilizes across loop iterations. Storage
683 // locations for evaluated expressions are stored in the analysis context.
684 return DACtx->getStableStorageLocation(E);
687 void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) {
688 assert(!DeclToLoc.contains(&D));
689 DeclToLoc[&D] = &Loc;
692 StorageLocation *Environment::getStorageLocation(const ValueDecl &D) const {
693 auto It = DeclToLoc.find(&D);
694 if (It == DeclToLoc.end())
695 return nullptr;
697 StorageLocation *Loc = It->second;
699 return Loc;
702 void Environment::removeDecl(const ValueDecl &D) { DeclToLoc.erase(&D); }
704 void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) {
705 // `DeclRefExpr`s to builtin function types aren't glvalues, for some reason,
706 // but we still want to be able to associate a `StorageLocation` with them,
707 // so allow these as an exception.
708 assert(E.isGLValue() ||
709 E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
710 setStorageLocationInternal(E, Loc);
713 StorageLocation *Environment::getStorageLocation(const Expr &E) const {
714 // See comment in `setStorageLocation()`.
715 assert(E.isGLValue() ||
716 E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
717 return getStorageLocationInternal(E);
720 RecordStorageLocation *Environment::getThisPointeeStorageLocation() const {
721 return ThisPointeeLoc;
724 RecordStorageLocation &
725 Environment::getResultObjectLocation(const Expr &RecordPRValue) {
726 assert(RecordPRValue.getType()->isRecordType());
727 assert(RecordPRValue.isPRValue());
729 if (StorageLocation *ExistingLoc = getStorageLocationInternal(RecordPRValue))
730 return *cast<RecordStorageLocation>(ExistingLoc);
731 auto &Loc = cast<RecordStorageLocation>(
732 DACtx->getStableStorageLocation(RecordPRValue));
733 setStorageLocationInternal(RecordPRValue, Loc);
734 return Loc;
737 PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) {
738 return DACtx->getOrCreateNullPointerValue(PointeeType);
741 void Environment::setValue(const StorageLocation &Loc, Value &Val) {
742 assert(!isa<RecordValue>(&Val) || &cast<RecordValue>(&Val)->getLoc() == &Loc);
744 LocToVal[&Loc] = &Val;
747 void Environment::setValue(const Expr &E, Value &Val) {
748 assert(E.isPRValue());
749 ExprToVal[&E] = &Val;
752 Value *Environment::getValue(const StorageLocation &Loc) const {
753 return LocToVal.lookup(&Loc);
756 Value *Environment::getValue(const ValueDecl &D) const {
757 auto *Loc = getStorageLocation(D);
758 if (Loc == nullptr)
759 return nullptr;
760 return getValue(*Loc);
763 Value *Environment::getValue(const Expr &E) const {
764 if (E.isPRValue()) {
765 auto It = ExprToVal.find(&ignoreCFGOmittedNodes(E));
766 return It == ExprToVal.end() ? nullptr : It->second;
769 auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
770 if (It == ExprToLoc.end())
771 return nullptr;
772 return getValue(*It->second);
775 Value *Environment::createValue(QualType Type) {
776 llvm::DenseSet<QualType> Visited;
777 int CreatedValuesCount = 0;
778 Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0,
779 CreatedValuesCount);
780 if (CreatedValuesCount > MaxCompositeValueSize) {
781 llvm::errs() << "Attempting to initialize a huge value of type: " << Type
782 << '\n';
784 return Val;
787 void Environment::setStorageLocationInternal(const Expr &E,
788 StorageLocation &Loc) {
789 const Expr &CanonE = ignoreCFGOmittedNodes(E);
790 assert(!ExprToLoc.contains(&CanonE));
791 ExprToLoc[&CanonE] = &Loc;
794 StorageLocation *Environment::getStorageLocationInternal(const Expr &E) const {
795 auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
796 return It == ExprToLoc.end() ? nullptr : &*It->second;
799 Value *Environment::createValueUnlessSelfReferential(
800 QualType Type, llvm::DenseSet<QualType> &Visited, int Depth,
801 int &CreatedValuesCount) {
802 assert(!Type.isNull());
803 assert(!Type->isReferenceType());
805 // Allow unlimited fields at depth 1; only cap at deeper nesting levels.
806 if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) ||
807 Depth > MaxCompositeValueDepth)
808 return nullptr;
810 if (Type->isBooleanType()) {
811 CreatedValuesCount++;
812 return &makeAtomicBoolValue();
815 if (Type->isIntegerType()) {
816 // FIXME: consider instead `return nullptr`, given that we do nothing useful
817 // with integers, and so distinguishing them serves no purpose, but could
818 // prevent convergence.
819 CreatedValuesCount++;
820 return &arena().create<IntegerValue>();
823 if (Type->isPointerType()) {
824 CreatedValuesCount++;
825 QualType PointeeType = Type->getPointeeType();
826 StorageLocation &PointeeLoc =
827 createLocAndMaybeValue(PointeeType, Visited, Depth, CreatedValuesCount);
829 return &arena().create<PointerValue>(PointeeLoc);
832 if (Type->isRecordType()) {
833 CreatedValuesCount++;
834 llvm::DenseMap<const ValueDecl *, StorageLocation *> FieldLocs;
835 for (const FieldDecl *Field : DACtx->getModeledFields(Type)) {
836 assert(Field != nullptr);
838 QualType FieldType = Field->getType();
840 FieldLocs.insert(
841 {Field, &createLocAndMaybeValue(FieldType, Visited, Depth + 1,
842 CreatedValuesCount)});
845 RecordStorageLocation &Loc =
846 arena().create<RecordStorageLocation>(Type, std::move(FieldLocs));
847 RecordValue &RecordVal = create<RecordValue>(Loc);
849 // As we already have a storage location for the `RecordValue`, we can and
850 // should associate them in the environment.
851 setValue(Loc, RecordVal);
853 return &RecordVal;
856 return nullptr;
859 StorageLocation &
860 Environment::createLocAndMaybeValue(QualType Ty,
861 llvm::DenseSet<QualType> &Visited,
862 int Depth, int &CreatedValuesCount) {
863 if (!Visited.insert(Ty.getCanonicalType()).second)
864 return createStorageLocation(Ty.getNonReferenceType());
865 Value *Val = createValueUnlessSelfReferential(
866 Ty.getNonReferenceType(), Visited, Depth, CreatedValuesCount);
867 Visited.erase(Ty.getCanonicalType());
869 Ty = Ty.getNonReferenceType();
871 if (Val == nullptr)
872 return createStorageLocation(Ty);
874 if (Ty->isRecordType())
875 return cast<RecordValue>(Val)->getLoc();
877 StorageLocation &Loc = createStorageLocation(Ty);
878 setValue(Loc, *Val);
879 return Loc;
882 StorageLocation &Environment::createObjectInternal(const ValueDecl *D,
883 QualType Ty,
884 const Expr *InitExpr) {
885 if (Ty->isReferenceType()) {
886 // Although variables of reference type always need to be initialized, it
887 // can happen that we can't see the initializer, so `InitExpr` may still
888 // be null.
889 if (InitExpr) {
890 if (auto *InitExprLoc = getStorageLocation(*InitExpr))
891 return *InitExprLoc;
894 // Even though we have an initializer, we might not get an
895 // InitExprLoc, for example if the InitExpr is a CallExpr for which we
896 // don't have a function body. In this case, we just invent a storage
897 // location and value -- it's the best we can do.
898 return createObjectInternal(D, Ty.getNonReferenceType(), nullptr);
901 Value *Val = nullptr;
902 if (InitExpr)
903 // In the (few) cases where an expression is intentionally
904 // "uninterpreted", `InitExpr` is not associated with a value. There are
905 // two ways to handle this situation: propagate the status, so that
906 // uninterpreted initializers result in uninterpreted variables, or
907 // provide a default value. We choose the latter so that later refinements
908 // of the variable can be used for reasoning about the surrounding code.
909 // For this reason, we let this case be handled by the `createValue()`
910 // call below.
912 // FIXME. If and when we interpret all language cases, change this to
913 // assert that `InitExpr` is interpreted, rather than supplying a
914 // default value (assuming we don't update the environment API to return
915 // references).
916 Val = getValue(*InitExpr);
917 if (!Val)
918 Val = createValue(Ty);
920 if (Ty->isRecordType())
921 return cast<RecordValue>(Val)->getLoc();
923 StorageLocation &Loc =
924 D ? createStorageLocation(*D) : createStorageLocation(Ty);
926 if (Val)
927 setValue(Loc, *Val);
929 return Loc;
932 void Environment::assume(const Formula &F) {
933 DACtx->addFlowConditionConstraint(FlowConditionToken, F);
936 bool Environment::proves(const Formula &F) const {
937 return DACtx->flowConditionImplies(FlowConditionToken, F);
940 bool Environment::allows(const Formula &F) const {
941 return DACtx->flowConditionAllows(FlowConditionToken, F);
944 void Environment::dump(raw_ostream &OS) const {
945 // FIXME: add printing for remaining fields and allow caller to decide what
946 // fields are printed.
947 OS << "DeclToLoc:\n";
948 for (auto [D, L] : DeclToLoc)
949 OS << " [" << D->getNameAsString() << ", " << L << "]\n";
951 OS << "ExprToLoc:\n";
952 for (auto [E, L] : ExprToLoc)
953 OS << " [" << E << ", " << L << "]\n";
955 OS << "ExprToVal:\n";
956 for (auto [E, V] : ExprToVal)
957 OS << " [" << E << ", " << V << ": " << *V << "]\n";
959 OS << "LocToVal:\n";
960 for (auto [L, V] : LocToVal) {
961 OS << " [" << L << ", " << V << ": " << *V << "]\n";
964 OS << "FlowConditionToken:\n";
965 DACtx->dumpFlowCondition(FlowConditionToken, OS);
968 void Environment::dump() const {
969 dump(llvm::dbgs());
972 RecordStorageLocation *getImplicitObjectLocation(const CXXMemberCallExpr &MCE,
973 const Environment &Env) {
974 Expr *ImplicitObject = MCE.getImplicitObjectArgument();
975 if (ImplicitObject == nullptr)
976 return nullptr;
977 if (ImplicitObject->getType()->isPointerType()) {
978 if (auto *Val = cast_or_null<PointerValue>(Env.getValue(*ImplicitObject)))
979 return &cast<RecordStorageLocation>(Val->getPointeeLoc());
980 return nullptr;
982 return cast_or_null<RecordStorageLocation>(
983 Env.getStorageLocation(*ImplicitObject));
986 RecordStorageLocation *getBaseObjectLocation(const MemberExpr &ME,
987 const Environment &Env) {
988 Expr *Base = ME.getBase();
989 if (Base == nullptr)
990 return nullptr;
991 if (ME.isArrow()) {
992 if (auto *Val = cast_or_null<PointerValue>(Env.getValue(*Base)))
993 return &cast<RecordStorageLocation>(Val->getPointeeLoc());
994 return nullptr;
996 return cast_or_null<RecordStorageLocation>(Env.getStorageLocation(*Base));
999 std::vector<FieldDecl *> getFieldsForInitListExpr(const RecordDecl *RD) {
1000 // Unnamed bitfields are only used for padding and do not appear in
1001 // `InitListExpr`'s inits. However, those fields do appear in `RecordDecl`'s
1002 // field list, and we thus need to remove them before mapping inits to
1003 // fields to avoid mapping inits to the wrongs fields.
1004 std::vector<FieldDecl *> Fields;
1005 llvm::copy_if(
1006 RD->fields(), std::back_inserter(Fields),
1007 [](const FieldDecl *Field) { return !Field->isUnnamedBitfield(); });
1008 return Fields;
1011 RecordValue &refreshRecordValue(RecordStorageLocation &Loc, Environment &Env) {
1012 auto &NewVal = Env.create<RecordValue>(Loc);
1013 Env.setValue(Loc, NewVal);
1014 return NewVal;
1017 RecordValue &refreshRecordValue(const Expr &Expr, Environment &Env) {
1018 assert(Expr.getType()->isRecordType());
1020 if (Expr.isPRValue()) {
1021 if (auto *ExistingVal = cast_or_null<RecordValue>(Env.getValue(Expr))) {
1022 auto &NewVal = Env.create<RecordValue>(ExistingVal->getLoc());
1023 Env.setValue(Expr, NewVal);
1024 return NewVal;
1027 auto &NewVal = *cast<RecordValue>(Env.createValue(Expr.getType()));
1028 Env.setValue(Expr, NewVal);
1029 return NewVal;
1032 if (auto *Loc =
1033 cast_or_null<RecordStorageLocation>(Env.getStorageLocation(Expr))) {
1034 auto &NewVal = Env.create<RecordValue>(*Loc);
1035 Env.setValue(*Loc, NewVal);
1036 return NewVal;
1039 auto &NewVal = *cast<RecordValue>(Env.createValue(Expr.getType()));
1040 Env.setStorageLocation(Expr, NewVal.getLoc());
1041 return NewVal;
1044 } // namespace dataflow
1045 } // namespace clang