[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / CodeGen / CGCUDANV.cpp
blob66147f656071f5383a54effe15652293b49f49b2
1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA
10 // runtime library.
12 //===----------------------------------------------------------------------===//
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/Basic/Cuda.h"
20 #include "clang/CodeGen/CodeGenABITypes.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/Frontend/Offloading/Utility.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/ReplaceConstant.h"
27 #include "llvm/Support/Format.h"
28 #include "llvm/Support/VirtualFileSystem.h"
30 using namespace clang;
31 using namespace CodeGen;
33 namespace {
34 constexpr unsigned CudaFatMagic = 0x466243b1;
35 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"
37 class CGNVCUDARuntime : public CGCUDARuntime {
39 private:
40 llvm::IntegerType *IntTy, *SizeTy;
41 llvm::Type *VoidTy;
42 llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
44 /// Convenience reference to LLVM Context
45 llvm::LLVMContext &Context;
46 /// Convenience reference to the current module
47 llvm::Module &TheModule;
48 /// Keeps track of kernel launch stubs and handles emitted in this module
49 struct KernelInfo {
50 llvm::Function *Kernel; // stub function to help launch kernel
51 const Decl *D;
53 llvm::SmallVector<KernelInfo, 16> EmittedKernels;
54 // Map a kernel mangled name to a symbol for identifying kernel in host code
55 // For CUDA, the symbol for identifying the kernel is the same as the device
56 // stub function. For HIP, they are different.
57 llvm::DenseMap<StringRef, llvm::GlobalValue *> KernelHandles;
58 // Map a kernel handle to the kernel stub.
59 llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs;
60 struct VarInfo {
61 llvm::GlobalVariable *Var;
62 const VarDecl *D;
63 DeviceVarFlags Flags;
65 llvm::SmallVector<VarInfo, 16> DeviceVars;
66 /// Keeps track of variable containing handle of GPU binary. Populated by
67 /// ModuleCtorFunction() and used to create corresponding cleanup calls in
68 /// ModuleDtorFunction()
69 llvm::GlobalVariable *GpuBinaryHandle = nullptr;
70 /// Whether we generate relocatable device code.
71 bool RelocatableDeviceCode;
72 /// Mangle context for device.
73 std::unique_ptr<MangleContext> DeviceMC;
74 /// Some zeros used for GEPs.
75 llvm::Constant *Zeros[2];
77 llvm::FunctionCallee getSetupArgumentFn() const;
78 llvm::FunctionCallee getLaunchFn() const;
80 llvm::FunctionType *getRegisterGlobalsFnTy() const;
81 llvm::FunctionType *getCallbackFnTy() const;
82 llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
83 std::string addPrefixToName(StringRef FuncName) const;
84 std::string addUnderscoredPrefixToName(StringRef FuncName) const;
86 /// Creates a function to register all kernel stubs generated in this module.
87 llvm::Function *makeRegisterGlobalsFn();
89 /// Helper function that generates a constant string and returns a pointer to
90 /// the start of the string. The result of this function can be used anywhere
91 /// where the C code specifies const char*.
92 llvm::Constant *makeConstantString(const std::string &Str,
93 const std::string &Name = "") {
94 auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
95 return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
96 ConstStr.getPointer(), Zeros);
99 /// Helper function which generates an initialized constant array from Str,
100 /// and optionally sets section name and alignment. AddNull specifies whether
101 /// the array should nave NUL termination.
102 llvm::Constant *makeConstantArray(StringRef Str,
103 StringRef Name = "",
104 StringRef SectionName = "",
105 unsigned Alignment = 0,
106 bool AddNull = false) {
107 llvm::Constant *Value =
108 llvm::ConstantDataArray::getString(Context, Str, AddNull);
109 auto *GV = new llvm::GlobalVariable(
110 TheModule, Value->getType(), /*isConstant=*/true,
111 llvm::GlobalValue::PrivateLinkage, Value, Name);
112 if (!SectionName.empty()) {
113 GV->setSection(SectionName);
114 // Mark the address as used which make sure that this section isn't
115 // merged and we will really have it in the object file.
116 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
118 if (Alignment)
119 GV->setAlignment(llvm::Align(Alignment));
120 return llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
123 /// Helper function that generates an empty dummy function returning void.
124 llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
125 assert(FnTy->getReturnType()->isVoidTy() &&
126 "Can only generate dummy functions returning void!");
127 llvm::Function *DummyFunc = llvm::Function::Create(
128 FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);
130 llvm::BasicBlock *DummyBlock =
131 llvm::BasicBlock::Create(Context, "", DummyFunc);
132 CGBuilderTy FuncBuilder(CGM, Context);
133 FuncBuilder.SetInsertPoint(DummyBlock);
134 FuncBuilder.CreateRetVoid();
136 return DummyFunc;
139 void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
140 void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
141 std::string getDeviceSideName(const NamedDecl *ND) override;
143 void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
144 bool Extern, bool Constant) {
145 DeviceVars.push_back({&Var,
147 {DeviceVarFlags::Variable, Extern, Constant,
148 VD->hasAttr<HIPManagedAttr>(),
149 /*Normalized*/ false, 0}});
151 void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var,
152 bool Extern, int Type) {
153 DeviceVars.push_back({&Var,
155 {DeviceVarFlags::Surface, Extern, /*Constant*/ false,
156 /*Managed*/ false,
157 /*Normalized*/ false, Type}});
159 void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var,
160 bool Extern, int Type, bool Normalized) {
161 DeviceVars.push_back({&Var,
163 {DeviceVarFlags::Texture, Extern, /*Constant*/ false,
164 /*Managed*/ false, Normalized, Type}});
167 /// Creates module constructor function
168 llvm::Function *makeModuleCtorFunction();
169 /// Creates module destructor function
170 llvm::Function *makeModuleDtorFunction();
171 /// Transform managed variables for device compilation.
172 void transformManagedVars();
173 /// Create offloading entries to register globals in RDC mode.
174 void createOffloadingEntries();
176 public:
177 CGNVCUDARuntime(CodeGenModule &CGM);
179 llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override;
180 llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override {
181 auto Loc = KernelStubs.find(Handle);
182 assert(Loc != KernelStubs.end());
183 return Loc->second;
185 void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
186 void handleVarRegistration(const VarDecl *VD,
187 llvm::GlobalVariable &Var) override;
188 void
189 internalizeDeviceSideVar(const VarDecl *D,
190 llvm::GlobalValue::LinkageTypes &Linkage) override;
192 llvm::Function *finalizeModule() override;
195 } // end anonymous namespace
197 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
198 if (CGM.getLangOpts().HIP)
199 return ((Twine("hip") + Twine(FuncName)).str());
200 return ((Twine("cuda") + Twine(FuncName)).str());
202 std::string
203 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
204 if (CGM.getLangOpts().HIP)
205 return ((Twine("__hip") + Twine(FuncName)).str());
206 return ((Twine("__cuda") + Twine(FuncName)).str());
209 static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) {
210 // If the host and device have different C++ ABIs, mark it as the device
211 // mangle context so that the mangling needs to retrieve the additional
212 // device lambda mangling number instead of the regular host one.
213 if (CGM.getContext().getAuxTargetInfo() &&
214 CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
215 CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
216 return std::unique_ptr<MangleContext>(
217 CGM.getContext().createDeviceMangleContext(
218 *CGM.getContext().getAuxTargetInfo()));
221 return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext(
222 CGM.getContext().getAuxTargetInfo()));
225 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
226 : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
227 TheModule(CGM.getModule()),
228 RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
229 DeviceMC(InitDeviceMC(CGM)) {
230 IntTy = CGM.IntTy;
231 SizeTy = CGM.SizeTy;
232 VoidTy = CGM.VoidTy;
233 Zeros[0] = llvm::ConstantInt::get(SizeTy, 0);
234 Zeros[1] = Zeros[0];
236 CharPtrTy = CGM.UnqualPtrTy;
237 VoidPtrTy = CGM.UnqualPtrTy;
238 VoidPtrPtrTy = CGM.UnqualPtrTy;
241 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
242 // cudaError_t cudaSetupArgument(void *, size_t, size_t)
243 llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
244 return CGM.CreateRuntimeFunction(
245 llvm::FunctionType::get(IntTy, Params, false),
246 addPrefixToName("SetupArgument"));
249 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
250 if (CGM.getLangOpts().HIP) {
251 // hipError_t hipLaunchByPtr(char *);
252 return CGM.CreateRuntimeFunction(
253 llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
255 // cudaError_t cudaLaunch(char *);
256 return CGM.CreateRuntimeFunction(
257 llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
260 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
261 return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
264 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
265 return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
268 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
269 llvm::Type *Params[] = {llvm::PointerType::getUnqual(Context), VoidPtrTy,
270 VoidPtrTy, llvm::PointerType::getUnqual(Context)};
271 return llvm::FunctionType::get(VoidTy, Params, false);
274 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) {
275 GlobalDecl GD;
276 // D could be either a kernel or a variable.
277 if (auto *FD = dyn_cast<FunctionDecl>(ND))
278 GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
279 else
280 GD = GlobalDecl(ND);
281 std::string DeviceSideName;
282 MangleContext *MC;
283 if (CGM.getLangOpts().CUDAIsDevice)
284 MC = &CGM.getCXXABI().getMangleContext();
285 else
286 MC = DeviceMC.get();
287 if (MC->shouldMangleDeclName(ND)) {
288 SmallString<256> Buffer;
289 llvm::raw_svector_ostream Out(Buffer);
290 MC->mangleName(GD, Out);
291 DeviceSideName = std::string(Out.str());
292 } else
293 DeviceSideName = std::string(ND->getIdentifier()->getName());
295 // Make unique name for device side static file-scope variable for HIP.
296 if (CGM.getContext().shouldExternalize(ND) &&
297 CGM.getLangOpts().GPURelocatableDeviceCode) {
298 SmallString<256> Buffer;
299 llvm::raw_svector_ostream Out(Buffer);
300 Out << DeviceSideName;
301 CGM.printPostfixForExternalizedDecl(Out, ND);
302 DeviceSideName = std::string(Out.str());
304 return DeviceSideName;
307 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
308 FunctionArgList &Args) {
309 EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
310 if (auto *GV =
311 dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn->getName()])) {
312 GV->setLinkage(CGF.CurFn->getLinkage());
313 GV->setInitializer(CGF.CurFn);
315 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
316 CudaFeature::CUDA_USES_NEW_LAUNCH) ||
317 (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI))
318 emitDeviceStubBodyNew(CGF, Args);
319 else
320 emitDeviceStubBodyLegacy(CGF, Args);
323 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
324 // array and kernels are launched using cudaLaunchKernel().
325 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
326 FunctionArgList &Args) {
327 // Build the shadow stack entry at the very start of the function.
329 // Calculate amount of space we will need for all arguments. If we have no
330 // args, allocate a single pointer so we still have a valid pointer to the
331 // argument array that we can pass to runtime, even if it will be unused.
332 Address KernelArgs = CGF.CreateTempAlloca(
333 VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
334 llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
335 // Store pointers to the arguments in a locally allocated launch_args.
336 for (unsigned i = 0; i < Args.size(); ++i) {
337 llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
338 llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
339 CGF.Builder.CreateDefaultAlignedStore(
340 VoidVarPtr,
341 CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i));
344 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
346 // Lookup cudaLaunchKernel/hipLaunchKernel function.
347 // HIP kernel launching API name depends on -fgpu-default-stream option. For
348 // the default value 'legacy', it is hipLaunchKernel. For 'per-thread',
349 // it is hipLaunchKernel_spt.
350 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
351 // void **args, size_t sharedMem,
352 // cudaStream_t stream);
353 // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim,
354 // dim3 blockDim, void **args,
355 // size_t sharedMem, hipStream_t stream);
356 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
357 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
358 std::string KernelLaunchAPI = "LaunchKernel";
359 if (CGF.getLangOpts().GPUDefaultStream ==
360 LangOptions::GPUDefaultStreamKind::PerThread) {
361 if (CGF.getLangOpts().HIP)
362 KernelLaunchAPI = KernelLaunchAPI + "_spt";
363 else if (CGF.getLangOpts().CUDA)
364 KernelLaunchAPI = KernelLaunchAPI + "_ptsz";
366 auto LaunchKernelName = addPrefixToName(KernelLaunchAPI);
367 IdentifierInfo &cudaLaunchKernelII =
368 CGM.getContext().Idents.get(LaunchKernelName);
369 FunctionDecl *cudaLaunchKernelFD = nullptr;
370 for (auto *Result : DC->lookup(&cudaLaunchKernelII)) {
371 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
372 cudaLaunchKernelFD = FD;
375 if (cudaLaunchKernelFD == nullptr) {
376 CGM.Error(CGF.CurFuncDecl->getLocation(),
377 "Can't find declaration for " + LaunchKernelName);
378 return;
380 // Create temporary dim3 grid_dim, block_dim.
381 ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
382 QualType Dim3Ty = GridDimParam->getType();
383 Address GridDim =
384 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
385 Address BlockDim =
386 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
387 Address ShmemSize =
388 CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
389 Address Stream =
390 CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
391 llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
392 llvm::FunctionType::get(IntTy,
393 {/*gridDim=*/GridDim.getType(),
394 /*blockDim=*/BlockDim.getType(),
395 /*ShmemSize=*/ShmemSize.getType(),
396 /*Stream=*/Stream.getType()},
397 /*isVarArg=*/false),
398 addUnderscoredPrefixToName("PopCallConfiguration"));
400 CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
401 {GridDim.getPointer(), BlockDim.getPointer(),
402 ShmemSize.getPointer(), Stream.getPointer()});
404 // Emit the call to cudaLaunch
405 llvm::Value *Kernel = CGF.Builder.CreatePointerCast(
406 KernelHandles[CGF.CurFn->getName()], VoidPtrTy);
407 CallArgList LaunchKernelArgs;
408 LaunchKernelArgs.add(RValue::get(Kernel),
409 cudaLaunchKernelFD->getParamDecl(0)->getType());
410 LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
411 LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
412 LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
413 cudaLaunchKernelFD->getParamDecl(3)->getType());
414 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
415 cudaLaunchKernelFD->getParamDecl(4)->getType());
416 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
417 cudaLaunchKernelFD->getParamDecl(5)->getType());
419 QualType QT = cudaLaunchKernelFD->getType();
420 QualType CQT = QT.getCanonicalType();
421 llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
422 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
424 const CGFunctionInfo &FI =
425 CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
426 llvm::FunctionCallee cudaLaunchKernelFn =
427 CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
428 CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
429 LaunchKernelArgs);
430 CGF.EmitBranch(EndBlock);
432 CGF.EmitBlock(EndBlock);
435 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
436 FunctionArgList &Args) {
437 // Emit a call to cudaSetupArgument for each arg in Args.
438 llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
439 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
440 CharUnits Offset = CharUnits::Zero();
441 for (const VarDecl *A : Args) {
442 auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType());
443 Offset = Offset.alignTo(TInfo.Align);
444 llvm::Value *Args[] = {
445 CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
446 VoidPtrTy),
447 llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()),
448 llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
450 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
451 llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
452 llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
453 llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
454 CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
455 CGF.EmitBlock(NextBlock);
456 Offset += TInfo.Width;
459 // Emit the call to cudaLaunch
460 llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
461 llvm::Value *Arg = CGF.Builder.CreatePointerCast(
462 KernelHandles[CGF.CurFn->getName()], CharPtrTy);
463 CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
464 CGF.EmitBranch(EndBlock);
466 CGF.EmitBlock(EndBlock);
469 // Replace the original variable Var with the address loaded from variable
470 // ManagedVar populated by HIP runtime.
471 static void replaceManagedVar(llvm::GlobalVariable *Var,
472 llvm::GlobalVariable *ManagedVar) {
473 SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList;
474 for (auto &&VarUse : Var->uses()) {
475 WorkList.push_back({VarUse.getUser()});
477 while (!WorkList.empty()) {
478 auto &&WorkItem = WorkList.pop_back_val();
479 auto *U = WorkItem.back();
480 if (isa<llvm::ConstantExpr>(U)) {
481 for (auto &&UU : U->uses()) {
482 WorkItem.push_back(UU.getUser());
483 WorkList.push_back(WorkItem);
484 WorkItem.pop_back();
486 continue;
488 if (auto *I = dyn_cast<llvm::Instruction>(U)) {
489 llvm::Value *OldV = Var;
490 llvm::Instruction *NewV =
491 new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false,
492 llvm::Align(Var->getAlignment()), I);
493 WorkItem.pop_back();
494 // Replace constant expressions directly or indirectly using the managed
495 // variable with instructions.
496 for (auto &&Op : WorkItem) {
497 auto *CE = cast<llvm::ConstantExpr>(Op);
498 auto *NewInst = CE->getAsInstruction(I);
499 NewInst->replaceUsesOfWith(OldV, NewV);
500 OldV = CE;
501 NewV = NewInst;
503 I->replaceUsesOfWith(OldV, NewV);
504 } else {
505 llvm_unreachable("Invalid use of managed variable");
510 /// Creates a function that sets up state on the host side for CUDA objects that
511 /// have a presence on both the host and device sides. Specifically, registers
512 /// the host side of kernel functions and device global variables with the CUDA
513 /// runtime.
514 /// \code
515 /// void __cuda_register_globals(void** GpuBinaryHandle) {
516 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
517 /// ...
518 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
519 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
520 /// ...
521 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
522 /// }
523 /// \endcode
524 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
525 // No need to register anything
526 if (EmittedKernels.empty() && DeviceVars.empty())
527 return nullptr;
529 llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
530 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
531 addUnderscoredPrefixToName("_register_globals"), &TheModule);
532 llvm::BasicBlock *EntryBB =
533 llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
534 CGBuilderTy Builder(CGM, Context);
535 Builder.SetInsertPoint(EntryBB);
537 // void __cudaRegisterFunction(void **, const char *, char *, const char *,
538 // int, uint3*, uint3*, dim3*, dim3*, int*)
539 llvm::Type *RegisterFuncParams[] = {
540 VoidPtrPtrTy, CharPtrTy,
541 CharPtrTy, CharPtrTy,
542 IntTy, VoidPtrTy,
543 VoidPtrTy, VoidPtrTy,
544 VoidPtrTy, llvm::PointerType::getUnqual(Context)};
545 llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
546 llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
547 addUnderscoredPrefixToName("RegisterFunction"));
549 // Extract GpuBinaryHandle passed as the first argument passed to
550 // __cuda_register_globals() and generate __cudaRegisterFunction() call for
551 // each emitted kernel.
552 llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
553 for (auto &&I : EmittedKernels) {
554 llvm::Constant *KernelName =
555 makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D)));
556 llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
557 llvm::Value *Args[] = {
558 &GpuBinaryHandlePtr,
559 KernelHandles[I.Kernel->getName()],
560 KernelName,
561 KernelName,
562 llvm::ConstantInt::get(IntTy, -1),
563 NullPtr,
564 NullPtr,
565 NullPtr,
566 NullPtr,
567 llvm::ConstantPointerNull::get(llvm::PointerType::getUnqual(Context))};
568 Builder.CreateCall(RegisterFunc, Args);
571 llvm::Type *VarSizeTy = IntTy;
572 // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
573 if (CGM.getLangOpts().HIP ||
574 ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90)
575 VarSizeTy = SizeTy;
577 // void __cudaRegisterVar(void **, char *, char *, const char *,
578 // int, int, int, int)
579 llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
580 CharPtrTy, IntTy, VarSizeTy,
581 IntTy, IntTy};
582 llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
583 llvm::FunctionType::get(VoidTy, RegisterVarParams, false),
584 addUnderscoredPrefixToName("RegisterVar"));
585 // void __hipRegisterManagedVar(void **, char *, char *, const char *,
586 // size_t, unsigned)
587 llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
588 CharPtrTy, VarSizeTy, IntTy};
589 llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction(
590 llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false),
591 addUnderscoredPrefixToName("RegisterManagedVar"));
592 // void __cudaRegisterSurface(void **, const struct surfaceReference *,
593 // const void **, const char *, int, int);
594 llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction(
595 llvm::FunctionType::get(
596 VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy},
597 false),
598 addUnderscoredPrefixToName("RegisterSurface"));
599 // void __cudaRegisterTexture(void **, const struct textureReference *,
600 // const void **, const char *, int, int, int)
601 llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction(
602 llvm::FunctionType::get(
603 VoidTy,
604 {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy},
605 false),
606 addUnderscoredPrefixToName("RegisterTexture"));
607 for (auto &&Info : DeviceVars) {
608 llvm::GlobalVariable *Var = Info.Var;
609 assert((!Var->isDeclaration() || Info.Flags.isManaged()) &&
610 "External variables should not show up here, except HIP managed "
611 "variables");
612 llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
613 switch (Info.Flags.getKind()) {
614 case DeviceVarFlags::Variable: {
615 uint64_t VarSize =
616 CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
617 if (Info.Flags.isManaged()) {
618 auto *ManagedVar = new llvm::GlobalVariable(
619 CGM.getModule(), Var->getType(),
620 /*isConstant=*/false, Var->getLinkage(),
621 /*Init=*/Var->isDeclaration()
622 ? nullptr
623 : llvm::ConstantPointerNull::get(Var->getType()),
624 /*Name=*/"", /*InsertBefore=*/nullptr,
625 llvm::GlobalVariable::NotThreadLocal);
626 ManagedVar->setDSOLocal(Var->isDSOLocal());
627 ManagedVar->setVisibility(Var->getVisibility());
628 ManagedVar->setExternallyInitialized(true);
629 ManagedVar->takeName(Var);
630 Var->setName(Twine(ManagedVar->getName() + ".managed"));
631 replaceManagedVar(Var, ManagedVar);
632 llvm::Value *Args[] = {
633 &GpuBinaryHandlePtr,
634 ManagedVar,
635 Var,
636 VarName,
637 llvm::ConstantInt::get(VarSizeTy, VarSize),
638 llvm::ConstantInt::get(IntTy, Var->getAlignment())};
639 if (!Var->isDeclaration())
640 Builder.CreateCall(RegisterManagedVar, Args);
641 } else {
642 llvm::Value *Args[] = {
643 &GpuBinaryHandlePtr,
644 Var,
645 VarName,
646 VarName,
647 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()),
648 llvm::ConstantInt::get(VarSizeTy, VarSize),
649 llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()),
650 llvm::ConstantInt::get(IntTy, 0)};
651 Builder.CreateCall(RegisterVar, Args);
653 break;
655 case DeviceVarFlags::Surface:
656 Builder.CreateCall(
657 RegisterSurf,
658 {&GpuBinaryHandlePtr, Var, VarName, VarName,
659 llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
660 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
661 break;
662 case DeviceVarFlags::Texture:
663 Builder.CreateCall(
664 RegisterTex,
665 {&GpuBinaryHandlePtr, Var, VarName, VarName,
666 llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
667 llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()),
668 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
669 break;
673 Builder.CreateRetVoid();
674 return RegisterKernelsFunc;
677 /// Creates a global constructor function for the module:
679 /// For CUDA:
680 /// \code
681 /// void __cuda_module_ctor() {
682 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
683 /// __cuda_register_globals(Handle);
684 /// }
685 /// \endcode
687 /// For HIP:
688 /// \code
689 /// void __hip_module_ctor() {
690 /// if (__hip_gpubin_handle == 0) {
691 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
692 /// __hip_register_globals(__hip_gpubin_handle);
693 /// }
694 /// }
695 /// \endcode
696 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
697 bool IsHIP = CGM.getLangOpts().HIP;
698 bool IsCUDA = CGM.getLangOpts().CUDA;
699 // No need to generate ctors/dtors if there is no GPU binary.
700 StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
701 if (CudaGpuBinaryFileName.empty() && !IsHIP)
702 return nullptr;
703 if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
704 DeviceVars.empty())
705 return nullptr;
707 // void __{cuda|hip}_register_globals(void* handle);
708 llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
709 // We always need a function to pass in as callback. Create a dummy
710 // implementation if we don't need to register anything.
711 if (RelocatableDeviceCode && !RegisterGlobalsFunc)
712 RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());
714 // void ** __{cuda|hip}RegisterFatBinary(void *);
715 llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
716 llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
717 addUnderscoredPrefixToName("RegisterFatBinary"));
718 // struct { int magic, int version, void * gpu_binary, void * dont_care };
719 llvm::StructType *FatbinWrapperTy =
720 llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);
722 // Register GPU binary with the CUDA runtime, store returned handle in a
723 // global variable and save a reference in GpuBinaryHandle to be cleaned up
724 // in destructor on exit. Then associate all known kernels with the GPU binary
725 // handle so CUDA runtime can figure out what to call on the GPU side.
726 std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
727 if (!CudaGpuBinaryFileName.empty()) {
728 auto VFS = CGM.getFileSystem();
729 auto CudaGpuBinaryOrErr =
730 VFS->getBufferForFile(CudaGpuBinaryFileName, -1, false);
731 if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
732 CGM.getDiags().Report(diag::err_cannot_open_file)
733 << CudaGpuBinaryFileName << EC.message();
734 return nullptr;
736 CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
739 llvm::Function *ModuleCtorFunc = llvm::Function::Create(
740 llvm::FunctionType::get(VoidTy, false),
741 llvm::GlobalValue::InternalLinkage,
742 addUnderscoredPrefixToName("_module_ctor"), &TheModule);
743 llvm::BasicBlock *CtorEntryBB =
744 llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
745 CGBuilderTy CtorBuilder(CGM, Context);
747 CtorBuilder.SetInsertPoint(CtorEntryBB);
749 const char *FatbinConstantName;
750 const char *FatbinSectionName;
751 const char *ModuleIDSectionName;
752 StringRef ModuleIDPrefix;
753 llvm::Constant *FatBinStr;
754 unsigned FatMagic;
755 if (IsHIP) {
756 FatbinConstantName = ".hip_fatbin";
757 FatbinSectionName = ".hipFatBinSegment";
759 ModuleIDSectionName = "__hip_module_id";
760 ModuleIDPrefix = "__hip_";
762 if (CudaGpuBinary) {
763 // If fatbin is available from early finalization, create a string
764 // literal containing the fat binary loaded from the given file.
765 const unsigned HIPCodeObjectAlign = 4096;
766 FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "",
767 FatbinConstantName, HIPCodeObjectAlign);
768 } else {
769 // If fatbin is not available, create an external symbol
770 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
771 // to contain the fat binary but will be populated somewhere else,
772 // e.g. by lld through link script.
773 FatBinStr = new llvm::GlobalVariable(
774 CGM.getModule(), CGM.Int8Ty,
775 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
776 "__hip_fatbin", nullptr,
777 llvm::GlobalVariable::NotThreadLocal);
778 cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
781 FatMagic = HIPFatMagic;
782 } else {
783 if (RelocatableDeviceCode)
784 FatbinConstantName = CGM.getTriple().isMacOSX()
785 ? "__NV_CUDA,__nv_relfatbin"
786 : "__nv_relfatbin";
787 else
788 FatbinConstantName =
789 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
790 // NVIDIA's cuobjdump looks for fatbins in this section.
791 FatbinSectionName =
792 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
794 ModuleIDSectionName = CGM.getTriple().isMacOSX()
795 ? "__NV_CUDA,__nv_module_id"
796 : "__nv_module_id";
797 ModuleIDPrefix = "__nv_";
799 // For CUDA, create a string literal containing the fat binary loaded from
800 // the given file.
801 FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "",
802 FatbinConstantName, 8);
803 FatMagic = CudaFatMagic;
806 // Create initialized wrapper structure that points to the loaded GPU binary
807 ConstantInitBuilder Builder(CGM);
808 auto Values = Builder.beginStruct(FatbinWrapperTy);
809 // Fatbin wrapper magic.
810 Values.addInt(IntTy, FatMagic);
811 // Fatbin version.
812 Values.addInt(IntTy, 1);
813 // Data.
814 Values.add(FatBinStr);
815 // Unused in fatbin v1.
816 Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
817 llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
818 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
819 /*constant*/ true);
820 FatbinWrapper->setSection(FatbinSectionName);
822 // There is only one HIP fat binary per linked module, however there are
823 // multiple constructor functions. Make sure the fat binary is registered
824 // only once. The constructor functions are executed by the dynamic loader
825 // before the program gains control. The dynamic loader cannot execute the
826 // constructor functions concurrently since doing that would not guarantee
827 // thread safety of the loaded program. Therefore we can assume sequential
828 // execution of constructor functions here.
829 if (IsHIP) {
830 auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
831 llvm::GlobalValue::LinkOnceAnyLinkage;
832 llvm::BasicBlock *IfBlock =
833 llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
834 llvm::BasicBlock *ExitBlock =
835 llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
836 // The name, size, and initialization pattern of this variable is part
837 // of HIP ABI.
838 GpuBinaryHandle = new llvm::GlobalVariable(
839 TheModule, VoidPtrPtrTy, /*isConstant=*/false,
840 Linkage,
841 /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
842 "__hip_gpubin_handle");
843 if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage)
844 GpuBinaryHandle->setComdat(
845 CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName()));
846 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
847 // Prevent the weak symbol in different shared libraries being merged.
848 if (Linkage != llvm::GlobalValue::InternalLinkage)
849 GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
850 Address GpuBinaryAddr(
851 GpuBinaryHandle, VoidPtrPtrTy,
852 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
854 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
855 llvm::Constant *Zero =
856 llvm::Constant::getNullValue(HandleValue->getType());
857 llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
858 CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
861 CtorBuilder.SetInsertPoint(IfBlock);
862 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
863 llvm::CallInst *RegisterFatbinCall =
864 CtorBuilder.CreateCall(RegisterFatbinFunc, FatbinWrapper);
865 CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
866 CtorBuilder.CreateBr(ExitBlock);
869 CtorBuilder.SetInsertPoint(ExitBlock);
870 // Call __hip_register_globals(GpuBinaryHandle);
871 if (RegisterGlobalsFunc) {
872 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
873 CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
876 } else if (!RelocatableDeviceCode) {
877 // Register binary with CUDA runtime. This is substantially different in
878 // default mode vs. separate compilation!
879 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
880 llvm::CallInst *RegisterFatbinCall =
881 CtorBuilder.CreateCall(RegisterFatbinFunc, FatbinWrapper);
882 GpuBinaryHandle = new llvm::GlobalVariable(
883 TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
884 llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
885 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
886 CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
887 CGM.getPointerAlign());
889 // Call __cuda_register_globals(GpuBinaryHandle);
890 if (RegisterGlobalsFunc)
891 CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
893 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
894 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
895 CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) {
896 // void __cudaRegisterFatBinaryEnd(void **);
897 llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
898 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
899 "__cudaRegisterFatBinaryEnd");
900 CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
902 } else {
903 // Generate a unique module ID.
904 SmallString<64> ModuleID;
905 llvm::raw_svector_ostream OS(ModuleID);
906 OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
907 llvm::Constant *ModuleIDConstant = makeConstantArray(
908 std::string(ModuleID.str()), "", ModuleIDSectionName, 32, /*AddNull=*/true);
910 // Create an alias for the FatbinWrapper that nvcc will look for.
911 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
912 Twine("__fatbinwrap") + ModuleID, FatbinWrapper);
914 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
915 // void *, void (*)(void **))
916 SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
917 RegisterLinkedBinaryName += ModuleID;
918 llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
919 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);
921 assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
922 llvm::Value *Args[] = {RegisterGlobalsFunc, FatbinWrapper, ModuleIDConstant,
923 makeDummyFunction(getCallbackFnTy())};
924 CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
927 // Create destructor and register it with atexit() the way NVCC does it. Doing
928 // it during regular destructor phase worked in CUDA before 9.2 but results in
929 // double-free in 9.2.
930 if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
931 // extern "C" int atexit(void (*f)(void));
932 llvm::FunctionType *AtExitTy =
933 llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
934 llvm::FunctionCallee AtExitFunc =
935 CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
936 /*Local=*/true);
937 CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
940 CtorBuilder.CreateRetVoid();
941 return ModuleCtorFunc;
944 /// Creates a global destructor function that unregisters the GPU code blob
945 /// registered by constructor.
947 /// For CUDA:
948 /// \code
949 /// void __cuda_module_dtor() {
950 /// __cudaUnregisterFatBinary(Handle);
951 /// }
952 /// \endcode
954 /// For HIP:
955 /// \code
956 /// void __hip_module_dtor() {
957 /// if (__hip_gpubin_handle) {
958 /// __hipUnregisterFatBinary(__hip_gpubin_handle);
959 /// __hip_gpubin_handle = 0;
960 /// }
961 /// }
962 /// \endcode
963 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
964 // No need for destructor if we don't have a handle to unregister.
965 if (!GpuBinaryHandle)
966 return nullptr;
968 // void __cudaUnregisterFatBinary(void ** handle);
969 llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
970 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
971 addUnderscoredPrefixToName("UnregisterFatBinary"));
973 llvm::Function *ModuleDtorFunc = llvm::Function::Create(
974 llvm::FunctionType::get(VoidTy, false),
975 llvm::GlobalValue::InternalLinkage,
976 addUnderscoredPrefixToName("_module_dtor"), &TheModule);
978 llvm::BasicBlock *DtorEntryBB =
979 llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
980 CGBuilderTy DtorBuilder(CGM, Context);
981 DtorBuilder.SetInsertPoint(DtorEntryBB);
983 Address GpuBinaryAddr(
984 GpuBinaryHandle, GpuBinaryHandle->getValueType(),
985 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
986 auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
987 // There is only one HIP fat binary per linked module, however there are
988 // multiple destructor functions. Make sure the fat binary is unregistered
989 // only once.
990 if (CGM.getLangOpts().HIP) {
991 llvm::BasicBlock *IfBlock =
992 llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
993 llvm::BasicBlock *ExitBlock =
994 llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
995 llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
996 llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
997 DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);
999 DtorBuilder.SetInsertPoint(IfBlock);
1000 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
1001 DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
1002 DtorBuilder.CreateBr(ExitBlock);
1004 DtorBuilder.SetInsertPoint(ExitBlock);
1005 } else {
1006 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
1008 DtorBuilder.CreateRetVoid();
1009 return ModuleDtorFunc;
1012 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
1013 return new CGNVCUDARuntime(CGM);
1016 void CGNVCUDARuntime::internalizeDeviceSideVar(
1017 const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) {
1018 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side
1019 // global variables become internal definitions. These have to be internal in
1020 // order to prevent name conflicts with global host variables with the same
1021 // name in a different TUs.
1023 // For -fgpu-rdc, the shadow variables should not be internalized because
1024 // they may be accessed by different TU.
1025 if (CGM.getLangOpts().GPURelocatableDeviceCode)
1026 return;
1028 // __shared__ variables are odd. Shadows do get created, but
1029 // they are not registered with the CUDA runtime, so they
1030 // can't really be used to access their device-side
1031 // counterparts. It's not clear yet whether it's nvcc's bug or
1032 // a feature, but we've got to do the same for compatibility.
1033 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
1034 D->hasAttr<CUDASharedAttr>() ||
1035 D->getType()->isCUDADeviceBuiltinSurfaceType() ||
1036 D->getType()->isCUDADeviceBuiltinTextureType()) {
1037 Linkage = llvm::GlobalValue::InternalLinkage;
1041 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D,
1042 llvm::GlobalVariable &GV) {
1043 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
1044 // Shadow variables and their properties must be registered with CUDA
1045 // runtime. Skip Extern global variables, which will be registered in
1046 // the TU where they are defined.
1048 // Don't register a C++17 inline variable. The local symbol can be
1049 // discarded and referencing a discarded local symbol from outside the
1050 // comdat (__cuda_register_globals) is disallowed by the ELF spec.
1052 // HIP managed variables need to be always recorded in device and host
1053 // compilations for transformation.
1055 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
1056 // added to llvm.compiler-used, therefore they are safe to be registered.
1057 if ((!D->hasExternalStorage() && !D->isInline()) ||
1058 CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) ||
1059 D->hasAttr<HIPManagedAttr>()) {
1060 registerDeviceVar(D, GV, !D->hasDefinition(),
1061 D->hasAttr<CUDAConstantAttr>());
1063 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
1064 D->getType()->isCUDADeviceBuiltinTextureType()) {
1065 // Builtin surfaces and textures and their template arguments are
1066 // also registered with CUDA runtime.
1067 const auto *TD = cast<ClassTemplateSpecializationDecl>(
1068 D->getType()->castAs<RecordType>()->getDecl());
1069 const TemplateArgumentList &Args = TD->getTemplateArgs();
1070 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
1071 assert(Args.size() == 2 &&
1072 "Unexpected number of template arguments of CUDA device "
1073 "builtin surface type.");
1074 auto SurfType = Args[1].getAsIntegral();
1075 if (!D->hasExternalStorage())
1076 registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue());
1077 } else {
1078 assert(Args.size() == 3 &&
1079 "Unexpected number of template arguments of CUDA device "
1080 "builtin texture type.");
1081 auto TexType = Args[1].getAsIntegral();
1082 auto Normalized = Args[2].getAsIntegral();
1083 if (!D->hasExternalStorage())
1084 registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(),
1085 Normalized.getZExtValue());
1090 // Transform managed variables to pointers to managed variables in device code.
1091 // Each use of the original managed variable is replaced by a load from the
1092 // transformed managed variable. The transformed managed variable contains
1093 // the address of managed memory which will be allocated by the runtime.
1094 void CGNVCUDARuntime::transformManagedVars() {
1095 for (auto &&Info : DeviceVars) {
1096 llvm::GlobalVariable *Var = Info.Var;
1097 if (Info.Flags.getKind() == DeviceVarFlags::Variable &&
1098 Info.Flags.isManaged()) {
1099 auto *ManagedVar = new llvm::GlobalVariable(
1100 CGM.getModule(), Var->getType(),
1101 /*isConstant=*/false, Var->getLinkage(),
1102 /*Init=*/Var->isDeclaration()
1103 ? nullptr
1104 : llvm::ConstantPointerNull::get(Var->getType()),
1105 /*Name=*/"", /*InsertBefore=*/nullptr,
1106 llvm::GlobalVariable::NotThreadLocal,
1107 CGM.getContext().getTargetAddressSpace(LangAS::cuda_device));
1108 ManagedVar->setDSOLocal(Var->isDSOLocal());
1109 ManagedVar->setVisibility(Var->getVisibility());
1110 ManagedVar->setExternallyInitialized(true);
1111 replaceManagedVar(Var, ManagedVar);
1112 ManagedVar->takeName(Var);
1113 Var->setName(Twine(ManagedVar->getName()) + ".managed");
1114 // Keep managed variables even if they are not used in device code since
1115 // they need to be allocated by the runtime.
1116 if (!Var->isDeclaration()) {
1117 assert(!ManagedVar->isDeclaration());
1118 CGM.addCompilerUsedGlobal(Var);
1119 CGM.addCompilerUsedGlobal(ManagedVar);
1125 // Creates offloading entries for all the kernels and globals that must be
1126 // registered. The linker will provide a pointer to this section so we can
1127 // register the symbols with the linked device image.
1128 void CGNVCUDARuntime::createOffloadingEntries() {
1129 StringRef Section = CGM.getLangOpts().HIP ? "hip_offloading_entries"
1130 : "cuda_offloading_entries";
1131 llvm::Module &M = CGM.getModule();
1132 for (KernelInfo &I : EmittedKernels)
1133 llvm::offloading::emitOffloadingEntry(
1134 M, KernelHandles[I.Kernel->getName()],
1135 getDeviceSideName(cast<NamedDecl>(I.D)), 0,
1136 DeviceVarFlags::OffloadGlobalEntry, Section);
1138 for (VarInfo &I : DeviceVars) {
1139 uint64_t VarSize =
1140 CGM.getDataLayout().getTypeAllocSize(I.Var->getValueType());
1141 if (I.Flags.getKind() == DeviceVarFlags::Variable) {
1142 llvm::offloading::emitOffloadingEntry(
1143 M, I.Var, getDeviceSideName(I.D), VarSize,
1144 I.Flags.isManaged() ? DeviceVarFlags::OffloadGlobalManagedEntry
1145 : DeviceVarFlags::OffloadGlobalEntry,
1146 Section);
1147 } else if (I.Flags.getKind() == DeviceVarFlags::Surface) {
1148 llvm::offloading::emitOffloadingEntry(
1149 M, I.Var, getDeviceSideName(I.D), VarSize,
1150 DeviceVarFlags::OffloadGlobalSurfaceEntry, Section);
1151 } else if (I.Flags.getKind() == DeviceVarFlags::Texture) {
1152 llvm::offloading::emitOffloadingEntry(
1153 M, I.Var, getDeviceSideName(I.D), VarSize,
1154 DeviceVarFlags::OffloadGlobalTextureEntry, Section);
1159 // Returns module constructor to be added.
1160 llvm::Function *CGNVCUDARuntime::finalizeModule() {
1161 if (CGM.getLangOpts().CUDAIsDevice) {
1162 transformManagedVars();
1164 // Mark ODR-used device variables as compiler used to prevent it from being
1165 // eliminated by optimization. This is necessary for device variables
1166 // ODR-used by host functions. Sema correctly marks them as ODR-used no
1167 // matter whether they are ODR-used by device or host functions.
1169 // We do not need to do this if the variable has used attribute since it
1170 // has already been added.
1172 // Static device variables have been externalized at this point, therefore
1173 // variables with LLVM private or internal linkage need not be added.
1174 for (auto &&Info : DeviceVars) {
1175 auto Kind = Info.Flags.getKind();
1176 if (!Info.Var->isDeclaration() &&
1177 !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) &&
1178 (Kind == DeviceVarFlags::Variable ||
1179 Kind == DeviceVarFlags::Surface ||
1180 Kind == DeviceVarFlags::Texture) &&
1181 Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) {
1182 CGM.addCompilerUsedGlobal(Info.Var);
1185 return nullptr;
1187 if (CGM.getLangOpts().OffloadingNewDriver && RelocatableDeviceCode)
1188 createOffloadingEntries();
1189 else
1190 return makeModuleCtorFunction();
1192 return nullptr;
1195 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F,
1196 GlobalDecl GD) {
1197 auto Loc = KernelHandles.find(F->getName());
1198 if (Loc != KernelHandles.end()) {
1199 auto OldHandle = Loc->second;
1200 if (KernelStubs[OldHandle] == F)
1201 return OldHandle;
1203 // We've found the function name, but F itself has changed, so we need to
1204 // update the references.
1205 if (CGM.getLangOpts().HIP) {
1206 // For HIP compilation the handle itself does not change, so we only need
1207 // to update the Stub value.
1208 KernelStubs[OldHandle] = F;
1209 return OldHandle;
1211 // For non-HIP compilation, erase the old Stub and fall-through to creating
1212 // new entries.
1213 KernelStubs.erase(OldHandle);
1216 if (!CGM.getLangOpts().HIP) {
1217 KernelHandles[F->getName()] = F;
1218 KernelStubs[F] = F;
1219 return F;
1222 auto *Var = new llvm::GlobalVariable(
1223 TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(),
1224 /*Initializer=*/nullptr,
1225 CGM.getMangledName(
1226 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel)));
1227 Var->setAlignment(CGM.getPointerAlign().getAsAlign());
1228 Var->setDSOLocal(F->isDSOLocal());
1229 Var->setVisibility(F->getVisibility());
1230 auto *FD = cast<FunctionDecl>(GD.getDecl());
1231 auto *FT = FD->getPrimaryTemplate();
1232 if (!FT || FT->isThisDeclarationADefinition())
1233 CGM.maybeSetTrivialComdat(*FD, *Var);
1234 KernelHandles[F->getName()] = Var;
1235 KernelStubs[Var] = F;
1236 return Var;